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a b s t r a c t

We revisit the finite-sample behavior of single-variable just-identified instrumental
variables (just-ID IV) estimators, arguing that in most microeconometric applications, the
usual inference strategies are likely reliable. Three widely-cited applications are used to
explain why this is so. We then consider pretesting strategies of the form t1 > c , where
t1 is the first-stage t-statistic, and the first-stage sign is given. Although pervasive in
empirical practice, pretesting on the first-stage F-statistic exacerbates bias and distorts
inference. We show, however, that median bias is both minimized and roughly halved
by setting c = 0, that is by screening on the sign of the estimated first stage. This
bias reduction is a free lunch: conventional confidence interval coverage is unchanged
by screening on the estimated first-stage sign. To the extent that IV analysts sign-
screen already, these results strengthen the case for a sanguine view of the finite-sample
behavior of just-ID IV.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

The heavily over-identified two-stage least squares (2SLS) estimates reported in Angrist (1990) and Angrist and Krueger
1991, AK91) sparked a flood of interest in the finite-sample behavior of IV estimators. Kicked off by Bekker (1994) and
ound et al. (1995), attention to bias in 2SLS estimates with many weak instruments has since become a staple of applied
icroeconometrics. The fact that the finite-sample distribution of 2SLS estimates is shifted towards the corresponding
rdinary least squares (OLS) probability limit is especially worrying. IV is often motivated by the belief that OLS estimates
re compromised by omitted variable bias (OVB). The IV analyst hopes, therefore, that when IV and OLS are close, this
ignals minimal OVB rather than substantial finite-sample bias in the IV estimates.
2SLS combines multiple instruments in an effort to estimate a single causal effect with acceptable precision. Strikingly,

owever, Bound et al. (1995) show that in the AK91 specifications interacting quarter of birth dummies with covariates to
enerate 180 instruments, replacing real quarter of birth dummies with dummies randomly drawn yields 2SLS estimates

✩ We thank Ahmet Gulek and Luther Yap for expert research assistance. Thanks also go to Tim Armstrong, Isaiah Andrews, Brigham Frandsen,
Guido Imbens, Mike Keane, Dave Lee, Whitney Newey, and Steve Pischke for helpful discussions and insightful comments. Kolesár acknowledges
support from a Sloan Research Fellowship and by National Science Foundation, United States Grant SES-22049356. The views expressed here are
our own.

∗ Corresponding author.
E-mail addresses: angrist@mit.edu (J. Angrist), mkolesar@princeton.edu (M. Kolesár).
Please cite this article as: J. Angrist and M. Kolesár, One instrument to rule them all: The bias and coverage of just-ID IV. Journal of Econometrics (2023),
https://doi.org/10.1016/j.jeconom.2022.12.012.

https://doi.org/10.1016/j.jeconom.2022.12.012
0304-4076/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jeconom.2022.12.012
https://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
mailto:angrist@mit.edu
mailto:mkolesar@princeton.edu
https://doi.org/10.1016/j.jeconom.2022.12.012


J. Angrist and M. Kolesár Journal of Econometrics xxx (xxxx) xxx

a
v
b
s
a

c
n
b
r
a
Y

d
r
e
f
s
c
a

E
a
s
I
Y
s
l
b

i
a
H
a
i
i

(
r
e
T
c
h

s
m
a
s
s

c
c

nd standard errors much like those generated by the real thing.1 But most IV studies featuring a single endogenous
ariable build on a single underlying instrument, such as a dummy for draft-eligibility in Angrist (1990) and quarter of
irth in AK91. Just-identified IV with a single endogenous variable (just-ID IV) offers a simple, transparent estimation
trategy in such cases. Our analysis comes in the wake of renewed interest in the finite-sample properties of just-ID IV,
n interest reflected in Andrews and Armstrong (2017), Lee et al. (2022), and Keane and Neal (2022), among others.
We argue here that in typical microeconometric applications of just-ID IV, conventional IV estimates and t-tests are

ompromised little by failures of the usual asymptotic theory. Our analysis builds on the (approximate) finite-sample
ormality of reduced-form and first-stage estimators (in the argot of classical simultaneous equations models, these are
oth estimated ‘‘reduced forms’’). This modeling framework parallels that used in Andrews et al. (2019) and earlier theo-
etical investigations of weak instrument problems. The normality of reduced-form estimates is justified by conventional
symptotic reasoning, as well as by the local-to-zero asymptotic sequence used in Staiger and Stock (1997) and Stock and
ogo (2005), in which the first stage shrinks to zero at a rate inversely proportional to the square root of the sample size.
Our setup has two free parameters: the correlation between structural and first-stage residuals (henceforth, ‘‘en-

ogeneity’’), and the population first-stage F-statistic. This fact lends itself to the construction of easily-interpreted
ejection contours characterizing conventional second-stage t-tests and confidence interval coverage rates. We see, for
xample, that for endogeneity less than about 0.76, 95% confidence interval coverage is distorted by no more than 5%
or any population F . This is explained by the fact that, even as median bias increases when the first stage gets weaker,
econd-stage precision falls (we focus on median bias because the conventional just-ID IV estimator has no moments). In
ontrast with the over-identified case, conventional just-ID IV standard errors reflect this, and confidence intervals widen
ccordingly. This fact keeps interval coverage high unless endogeneity is extraordinarily high.
What range of values for endogeneity is relevant? Three applications are used to calibrate this: AK91, the Angrist and

vans (1998, AE98) IV estimates using a dummy for samesex sibships as an instrument for family size, and the Angrist
nd Lavy (1999, AL99) fuzzy regression discontinuity estimates of class size effects on student learning. These studies
pan a range of OVB scenarios, from modest (for most of the AK91 estimates), to substantial (in AE98, where OLS exceeds
V by about 50%), to dramatic (in AL99, where IV exceeds small, insignificant OLS estimates by an order of magnitude).
et, the absolute value of estimated endogeneity is no more than 0.47 in these applications, and over 0.4 only for a single
pecification and sample. Although three examples do not make a theorem, we argue that the features of these studies
imiting endogeneity are common to empirical strategies designed to estimate causal effects or to mitigate attenuation
ias in models with measurement error.2
Evidence on the reliability of conventional just-ID IV inference notwithstanding, IV practitioners have come to see weak

nstruments as problematic in just-identified as well as over-identified models. Responding to Bound et al. (1995), Staiger
nd Stock (1997), analysts now routinely report first-stage t- and F-statistics, a practice that is hard to argue with. Yet,
all et al. (1996) and others since have noted that requiring, say, a first-stage F-statistic greater than 10 when instruments
re truly weak often does more harm than good. Requiring first-stage estimates to meet a prespecified cutoff amounts to
mposition of a pretest that distorts sampling distributions and makes conventional confidence intervals misleading. This
s the IV version of the general pretesting problem highlighted by Leeb and Pötscher (2005).3

Most discussions of pretesting presume the analyst is agnostic as to the sign of the first stage. Andrews and Armstrong
2017) observe, however, that the typical just-ID IV scenario includes a theoretical sign restriction. This leads us to
econsider the effects of pretesting under the assumption that the population first stage is positive. Specifically, we
xamine pretesting rules of the form t1 > c , where t1 is the first-stage t-statistic and c is a constant chosen by the analyst.
his examination leads to a novel theoretical result: the median bias of just-ID IV conditional on t1 > c is minimized by
hoosing c = 0, that is, by screening on the sign of the estimated first-stage. Moreover, median bias of just-ID IV is roughly
alved by requiring the estimated first-stage to have the expected (that is, population) sign.
Surprisingly, pre-screening on the estimated first-stage sign is also virtually costless: rejection contours for a sign-

creened estimator are shown here to differ little from those obtained without screening. The upshot is that sign-screening
itigates the already-modest median bias of just-ID IV without degrading coverage. To the extent that such screening is
feature of modern empirical work, reported IV estimates reflect the impressively minimal bias characteristic of sign-
creened IV. Our theoretical results on the bias-minimizing and bias-mitigating consequences of requiring t1 > 0 therefore
trengthen the case for a sanguine view of conventional inference for just-ID IV.
Finally, the theorem establishing bias mitigation from screening on an estimated first stage sign provides an interesting

ontrast to Andrews and Armstrong (2017), which shows how to use a sign restriction on the population first stage to
onstruct a mean unbiased just-ID IV estimator. We show that conditional on the sign of the estimated first stage, this
estimator, denoted β̂U , is no longer unbiased. Rather, β̂U is unbiased by virtue of the fact that it averages two conditional

1 This ‘‘fake instruments’’ simulation was originally suggested by Alan Krueger. Although not an empirical study, Bekker (1994) is likewise
motivated by a heavily over-identified specification in Angrist (1990) that uses 73 draft lottery dummies plus interaction terms as instruments for
Vietnam-era veteran status. This application is discussed at the end of Bekker’s paper, and, originally, in an Amsterdam bar in 1992, where Paul
Bekker first confronted Angrist with claims of finite-sample bias.
2 The spirit of this argument differs from that in Stock and Yogo (2005), which focuses on worst-case rejection rates over all possible endogeneity

values. Lee et al. (2022) and Keane and Neal (2022), discussed further in Section 3 below, consider though largely downplay restrictions on
endogeneity.
3 The Andrews et al. (2019) survey of recent empirical scholarship using IV documents widespread pretesting based on first-stage F-statistics.
1
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stimators, each biased but in opposite directions. If, as seems likely, empirical sign-screening is endemic in applied
icroeconomics, this would seem to reduce the appeal of β̂U for empirical practice.
The next section details the just-ID IV setup assuming normally distributed first-stage and reduced-form estimates

and derives an expression for endogeneity in terms of OLS OVB. Section 3 reviews the relationship between t-test
rejection rates and the parameters that govern the normal model. This section also explains why endogeneity in
applied microeconometrics is unlikely to be high enough for conventional IV inference to mislead, and quantifies the
length advantage of conventional confidence intervals relative to Anderson–Rubin-based intervals. Section 4 presents our
theoretical results on first-stage screening. Section 5 concludes with a discussion of the implications of our results. Proofs
and details behind numerical calculations appear in the appendix.

2. Setup

The sample is assumed to consist of n units indexed by i, with data on outcome variable, Yi, a scalar treatment
variable, Di, a vector of covariates, Xi, and a scalar instrument, Zi. Population regressions of outcome and treatment on
the instrument and covariates define the reduced form and first stage. These are written as follows:

Yi = Ziδ + X ′

iψ1 + ui, (1)

Di = Ziπ + X ′

iψ2 + vi. (2)

The parameter of interest is β =
δ
π
, the ratio of the reduced-form and first-stage regression coefficients on Zi. Provided

that the instrument, Zi, satisfies an exclusion restriction and is relevant (i.e. π ̸= 0), this parameter captures the causal
effect of Di on Yi. More generally, if treatment effects are heterogeneous and a monotonicity condition holds, β is a
weighted average of individual causal effects (Imbens and Angrist, 1994; Angrist and Imbens, 1995). While treatment
effect heterogeneity affects the interpretation of β , heterogeneity has no bearing on the behavior of the estimators and
inference procedures considered in our just-ID IV setting.

Let δ̂ =
∑n

i=1 Z̃iYi/
∑n

i=1 Z̃
2
i and π̂ =

∑n
i=1 Z̃iDi/

∑n
i=1 Z̃

2
i denote OLS estimates of δ and π , where Z̃i is the residual from

a regression of Zi on Xi. Under mild regularity conditions that allow the errors (ui, vi) to be non-normal, heteroskedastic,
nd serially or cluster-dependent, (δ̂, π̂ ) is consistent and asymptotically normal as n → ∞, with an asymptotic covariance
atrix that can be consistently estimated. Importantly, this holds regardless of the strength of the instrument. We

herefore follow Andrews et al. (2019) and earlier analyses of weak instrument problems by assuming this large-sample
pproximation holds exactly. Specifically, we assume:(

δ̂

π̂

)
∼ N

((
πβ

π

)
,Σ =

(
σ 2
δ̂

σδ̂π̂
σδ̂π̂ σ 2

π̂

))
, (3)

ith a known covariance matrix, Σ . This distributional assumption is implied by the Staiger and Stock (1997) weak-
nstrument asymptotic sequence (see Andrews et al. (2019, Section 3.2) for additional discussion and references).
inite-sample results under Eq. (3) can therefore be seen as asymptotic under the Staiger and Stock (1997) sequence.
Eq. (3) is our only substantive restriction; this assumption allows us to focus on the weak instrument problem,

eparating this from other finite-same problems, such as the effect of high-leverage observations on the quality of the
ormal approximation to the distribution of the OLS estimators (δ̂, π̂ ) and the challenge of standard-error estimation with
lustered data.4 With (3) as foundation, we derive finite-sample properties of the IV estimator:

β̂IV =
δ̂

π̂
, (4)

and the null rejection rate for the corresponding Wald test. The latter is based on a t-statistic centered at the parameter
of interest, β , with denominator given by the estimated IV standard error, σ̂IV :

tW =
β̂IV − β

σ̂IV
; σ̂ 2

IV =
σ 2
δ̂

− 2σδ̂π̂ β̂IV + σ 2
π̂
β̂2
IV

π̂2 , (5)

here σ̂ 2
IV estimates the asymptotic variance of β̂IV under standard n → ∞ asymptotics. The corresponding theoretical

ariance is σ 2
IV = (σ 2

δ̂
− 2σδ̂π̂β + σ 2

π̂
β2)/π2. In a homoskedastic model with constant causal effects, this simplifies to the

amiliar formula

σ 2
IV =

σ 2
ϵ

nE[Z̈2
i ]π2

,

where Z̈i is the residual from the population projection of Zi on Xi, and σ 2
ϵ is the variance of the residual in the structural

equation,

Yi = Diβ + X ′

i (ψ1 − ψ2β) + ϵi, (6)

that motivates IV estimation in the classic linear set-up (the structural residual is ϵi = ui − viβ).

4 Young (2022) discusses these problems in an IV context.
2
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Given the assumption of a known covariance matrix for the first-stage and reduced-form estimates, both tW and
ˆ IV depend on the data only through (δ̂, π̂ ). These have distributions determined by the two unknown parameters, π
nd β . It is illuminating, however, to reparametrize in terms of instrument strength and the degree of endogeneity (a
eparametrization adopted in Staiger and Stock (1997) and Lee et al. (2022), among others). The first parameter in this
cheme, denoted E[F ], is defined as:

E[F ] = π2/σ 2
π̂ + 1.

ecause E[F ] is the expectation of F = π̂2/σ 2
π̂
, the F-statistic testing π = 0, it is sometimes called the population first-stage

-statistic, a term adopted here. Since π is a scalar, E[F ] = E[t1]2 + 1, where t1 = π̂/σπ̂ is the first-stage t-statistic.
The second parameter is defined as:

ρ = cor(δ̂ − π̂β, π̂ ) =
σπ̂√

σ 2
δ̂

− 2βσδ̂π̂ + σ 2
π̂
β2

× (σδ̂π̂/σ
2
π̂ − β). (7)

ith independent heteroskedastic errors, ρ is also given by cor(Z̈iϵi, Z̈ivi). When, in addition, the errors (ui, vi) are
omoskedastic, ρ = cor(ϵi, vi), where ϵi is the structural residual in (6). We therefore refer to ρ as (the degree of)
ndogeneity.5
With weak instruments as well as homoskedastic error terms, ρ is proportional to the bias of the OLS estimand. This

an be seen by using the first-stage and reduced-form equations to write the OLS slope coefficient, βOLS , as follows:

βOLS =
E[D̈iYi]

E[D̈2
i ]

=
E[Z̈2

i ]π2β + E[uivi]

E[Z̈2
i ]π2 + σ 2

v

= R2
pβ + (1 − R2

p)
E[uivi]

σ 2
v

; R2
p =

E[Z̈2
i ]π2

E[Z̈2
i ]π2 + σ 2

v

, (8)

here D̈i is the residual from a population regression of Di on Xi, and σ 2
v = E[v2i ]. The weight multiplying β in (8),

enoted R2
p , is the population partial R2 generated by adding the instrument to the first-stage regression. When the

nstrument is weak, R2
p is close to zero, and (8) is approximately E[uivi]/σ

2
v . The OLS estimand likewise converges to

[uivi]/σ
2
v in the Staiger and Stock (1997) weak-instrument sequence (which takes π → 0). This in turn equals σδ̂π̂/σ

2
π̂

nder homoskedasticity, so the second term on the right-hand side of (7),

σδ̂π̂/σ
2
π̂ − β = βWOLS − β, (9)

s the weak-instrument OVB of OLS (where we have introduced the notation βWOLS for σδ̂π̂/σ
2
π̂
). Moreover, when π = 0,

t follows from (3) that βWOLS − β is the median bias of β̂IV , a result requiring no independence or heteroskedasticity
assumptions on the errors in (1) and (2).6 Thus, ρ also measures endogeneity in the sense that it is proportional to the
edian bias of the IV estimator when the instrument is irrelevant.

. Rejection rates in theory and practice

We start by considering t-test rejection rates when the null hypothesis is true. For a two-sided t-test with level α,
he rejection rate is the probability that the absolute value of a t-statistic, |tW |, exceeds z1−α/2, the 1 − α/2 quantile of a
tandard normal distribution. The rejection rate of interest can therefore be written:

RW = PE[F ],ρ(|tW | > z1−α/2),

where PE[F ],ρ is the distribution of tW parameterized by E[F ], ρ. We evaluate RW by numerical integration, a computation
detailed in Appendix A.3.

Summarizing the behavior of a conventional 5% nominal test, Panel (a) in Fig. 1 depicts rejection rates for tW as a
contour plot given ρ and E[F ]. The figure shows that rejection rates substantially exceed the nominal 5% level only
if the instrument is weak (i.e., E[F ] is close to 1) and endogeneity is high. Stock and Yogo (2005, Section 3.2) define
instruments as weak if the usual 5% level t-test rejects a true null more than 10% of the time. The figure shows that, as
long as |ρ| < 0.76, rejection rates stay below 10% regardless of the strength of the first stage. A stricter standard based
on any over-rejection is met as long as |ρ| < 0.565 (this cutoff is also noted in Lee et al., 2022). A simple corollary to

5 This simplification is obtained using the fact that, under homoskedasticity, the variance of vi is σ 2
v = σ 2

π̂
· nE[Z̈2

i ] and the variance of ϵi is
σ 2
ϵ = (σ 2

δ̂
− 2βσδ̂π̂ + σ 2

π̂
β2) · nE[Z̈2

i ], with cov(vi, ϵi) = (σδ̂π̂ − βσ 2
π̂
) · nE[Z̈2

i ]. The homoskedastic formula for the variance of ϵi also leads yields the
implification of the formula for σ 2

IV noted above.
6 Assumption (3) implies that we can write reduced form and first stage estimates as δ̂ = πβ+(σδ̂π̂/σπ̂ )Zπ+(σ 2

δ̂
−σ 2

δ̂π̂
/σ 2

π̂
)1/2Zδ and π̂ = π+σπ̂Zπ ,

here Zδ and Zπ are independent standard normal variables. When π = 0, therefore, β̂IV =
1
σπ̂

(σ 2
δ̂

− σ 2
δ̂π̂
/σπ̂ )1/2(Zδ/Zπ ) + βWOLS . The median of

this is β , since Z /Z has a standard Cauchy distribution with zero median.
WOLS δ π

3
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Fig. 1. Contour plot of the rejection rate of conventional t-test with nominal level α = 0.05 as function of E[F ] and ρ. Panel (a) plots the unconditional
ejection rate, RW . Panel (b) plots the rejection rate Rc

W conditional on π̂ > 0. See Appendix A.3 for computational details.

these observations, substantiated below by showing that worryingly high values of ρ should be seen as unusual, is that
conventional confidence intervals for β̂IV are likely to have satisfactory coverage in most applications.

The modest over-rejection seen in Fig. 1 is explained by a signal feature of just-ID IV: the median bias of β̂IV rises as the
nstrument grows weaker, but precision falls apace. The IV standard error reflects this lack of precision well enough, so
hat unless endogeneity is egregious, inference is distorted little. This contrasts with over-identified 2SLS with many weak
nstruments (as in Bound et al. (1995), Bekker (1994)), where the usual standard errors for 2SLS remain small enough for
-statistics to be misleading.

Our conclusions here also contrast with those drawn in Stock and Yogo (2005) and Lee et al. (2022) regarding the
eliability of inference based on a conventional just-ID IV t-statistic. Both studies emphasize worst-case rejection rates
4
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Table 1
Estimates and endogeneity in three IV Applications.

Estimates

Outcome Treatment OLS π̂ δ̂ IV ρ̂

Sample (1) (2) (3) (4) (5) (6) (7)

A. AK91 (instrument is first-quarter birth)
Men born 1920–29 (n = 247, 199) Log weekly wage Years of education 0.080 −0.122 −0.009 0.072 0.043

[0.65] [3.36] (0.0004) (0.016) (0.003) (0.023) (−0.210, 0.292)
Men born 1930–39 (n = 329, 509) Log weekly wage Years of education 0.071 −0.106 −0.011 0.105 −0.175

[0.68] [3.28] (0.0004) (0.013) (0.003) (0.025) (−0.407, 0.068)
B. AE98 (instrument is samesex sibship)

1980 Census, mothers aged 18–35 (n = 394, 840) Worked for pay More than 2 kids −0.176 0.061 −0.007 −0.117 −0.058
[0.50] [0.49] (0.002) (0.001) (0.002) (0.025) (−0.105,−0.010)
Weeks worked −8.978 0.061 −0.340 −5.559 −0.075
[22.29] [0.49] (0.071) (0.001) (0.069) (1.118) (−0.122,−0.027)

1990 Census, mothers aged 18–35 (n = 380, 007) Worked for pay −0.164 0.062 −0.006 −0.092 −0.069
[0.48] [0.48] (0.002) (0.002) (0.002) (0.025) (−0.116,−0.022)
Weeks worked −8.649 0.062 −0.341 −5.462 −0.067
[22.87] [0.48] (0.077) (0.002) (0.073) (1.156) (−0.114,−0.020)

C. AL99 (instrument is Maimonides’ rule)
5th grade, full sample (n = 2, 019) Reading score Class size 0.009 0.477 −0.125 −0.263 0.357

[7.68] [6.55] (0.034) (0.041) (0.042) (0.094) (0.207, 0.499)
Math score 0.036 0.477 −0.126 −0.264 0.315
[9.60] [6.54] (0.045) (0.041) (0.056) (0.123) (0.160, 0.462)

5th grade, discontinuity sample (n = 471) Reading score −0.070 0.481 −0.197 −0.410 0.469
[8.18] [7.42] (0.050) (0.057) (0.050) (0.118) (0.279, 0.639)
Math score 0.090 0.481 −0.089 −0.185 0.322
[10.20] [7.42] (0.070) (0.057) (0.072) (0.155) (0.107, 0.521)

Notes: This table reports IV and OLS estimates replicating the AK91, AE98, and AL99 studies discussed in the text. For each study, the table reports IV and OLS estimates from multiple samples, as well as the
orresponding first-stage estimates, π̂ , reduced-form estimates, δ̂, and estimates of the endogeneity parameter, ρ̂. Standard errors appear in parentheses. These are robust for AK91 and AE98, and clustered on
school for AL99. Confidence intervals for ρ, reported below parameter estimates, are computed as described in Appendix A.1. Standard deviations for the outcome and treatment are reported in columns 1–2 in
brackets.

over ρ, for a given E[F ]. As Fig. 1 shows, this worst-case rejection rate occurs at |ρ| = 1. In the same spirit, Keane and
Neal (2022) highlights simulations showing that conventional just-ID IV t-tests can be misleading when endogeneity is
very high. Sections 3.1 and 3.2 explain why we are not much concerned with high values of ρ.

Keane and Neal (2022) also observe that, since σ̂IV and β̂IV tend to be negatively correlated when ρ is positive, most
false rejections occur when β̂IV > β . This, they argue, militates so strongly against tW that conventional Wald tests are
to be avoided even with a first-stage F in the thousands. As we see it, such behavior, which is related to asymmetry
in the power function of tW , does not make conventional frequentist inference unreliable. The conventional standard
for reliability of inference is the accuracy of confidence interval coverage, gauged without conditioning on parameter
estimates. Our analysis aligns with this.7

3.1. The anatomy of endogeneity

We put endogeneity in context using three IV applications. These are the AK91 study that launched the modern weak
instruments literature, the AE98 study using a dummy for samesex sibships of first- and second-born children as an
instrument for family size, and the AL99 fuzzy regression discontinuity estimates of class size effects. The AE98 and AL99
first-stage t-statistics exceed those for AK91 and are arguably out of the zone where an instrument might be considered
weak. With a first-stage t-statistic of almost 8, the AK91 quarter-of-birth instrument also seems strong enough. But all
three studies can be used to calibrate endogeneity and to document the contextual features that constrain it.

Table 1 reports key statistics for specifications drawn from each study (some estimates in the table differ slightly from
those in the original). The first row in Panel A shows estimates of the economic returns to schooling in the AK91 sample
of men born 1920–29. Here, OLS and IV estimates equal 0.080 and 0.072, respectively. These are close, so endogeneity is
small in this case, with an estimated ρ of only 0.043. Schooling returns estimated in the second AK91 sample, consisting
of men born 1930–39, exhibit more OVB. In this sample, the IV estimate of 0.105 surprisingly exceeds the OLS estimate
of 0.071 (IV estimation of the returns to schooling is usually motivated by a concern that omitted ability controls causes
OLS estimates to be too large). Endogeneity is correspondingly larger at ρ = −0.175, but still well outside the danger
zone depicted in Fig. 1.

The AK91, AE98, and AL99 studies span a range of OVB scenarios, from modest in the first AK91 sample, to substantial
in AE98 (where OLS magnitudes consistently exceed IV by at least 50%), to dramatic in AL99 (where IV exceeds small,
insignificant OLS estimates, mostly by an order of magnitude, and sometimes with a sign flip). Yet, the magnitude of
endogeneity exceeds 0.40 in only one specification, that for reading scores in the AL99 discontinuity sample (which
consists of classes in schools with enrollment near the cutoff that determines class size). Just-ID IV inference in all three
studies is therefore unlikely to be compromised by weak instruments (the robust confidence intervals for ρ reported in
the last column of the table likewise exclude values above 0.76).8

7 The Keane and Neal (2022) critique implicitly rules out many standard procedures. Consider, for instance, a conventional 1 − α confidence
nterval [U(n),U(n)/α

1/n
] for the endpoint of a uniform distribution supported on [0, θ], where U(n) denotes the largest order statistic in a sample of

ize n. Here all false rejections occur when the minimum variance unbiased estimate U(n)/(n + 1) is below θ (provided α < 1/ exp(1)).
8 Endogeneity confidence intervals are computed by inverting the Anderson–Rubin test, and are therefore robust to weak instruments. See
ppendix A.1 for details. In the examples analyzed here, the instruments are not particularly weak, so the bias in estimated endogeneity is negligible
nd conventional delta-method intervals are similar to those reported in the table.
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Although the consistently moderate levels of endogeneity documented in Table 1 do not add up to a theorem, the
applications summarized in the table have features in common with many IV-driven microeconometric investigations
of causal effects. Specifically, endogeneity in research on causal effects is often capped by the modest size of the causal
effects of interest. To make this point, it is helpful to write ρ as a function of OVB. Using Eqs. (7)–(9), we can express ρ
under homoskedasticity as:

ρ =
σv

σϵ
(βWOLS − β) (10)

=
σv

σϵ

(
βOLS − β

1 − R2
p

)
≈
σD

σY
(βOLS − β),

here the approximation σv

σϵ (1−R2p)
≈

σD
σY

holds if the explanatory power of the right-hand-side variables in both the

structural and the first-stage equation is low. We can use this expression to compute ρ by replacing β with β̂IV . The
elevance of this representation of ρ can be seen in the AE98 estimates of the effects of a third child on weeks worked by
omen aged 21–35 in the 1980 Census. Here, the difference between OLS and the corresponding IV estimate is −3.42.
ecause the first-stage partial R-square (R2

p) is close to zero, the term multiplying this, σv
σϵ
, is well-approximated by the

ratio of the endogenous variable standard deviation to the dependent variable standard deviation, σD
σY

, a ratio of about
0.022. The product of these two terms gives −0.075, equal to the value of ρ reported in the table for this sample.

Eq. (10) suggests a bound on endogeneity motivated by plausible limits to effect size and OVB. In the AK91 scenario,
for instance, it seems reasonable to assume that the (causal) economic returns to schooling are no more than double the
OLS estimand. Under these restrictions, the descriptive statistics in Table 1, which approximate σv

σϵ
at around 5.2 in this

case, suggest |ρ| can be no more than about 0.41. Although substantial, this is still below the 0.565 and 0.76 values beyond
which coverage deteriorates. With β bounded below by zero, large magnitudes of ρ require β to far exceed βWOLS . Only
when the causal effect of schooling is triple the OLS estimand (so that OLS is too small by 0.16) does the endogeneity
danger zone become relevant.9

Many microeconometric IV applications involve linear probability models in which causal effects are changes in
probabilities. This also has implications for endogeneity. The AE98 OLS estimates of the effect of the birth of a third child on
female labor force participation in 1980, for example, are roughly −0.18. Labor force participation rates for women with
only two children run around 57%. Causal effects might therefore be as large as −0.57, but no larger, since probabilities
cannot be negative. In this case, σv

σϵ
is about 1 (again, using standard deviations in the data rather than residuals), so

βOLS − β can be no larger than −0.18 + 0.57 = 0.39, thereby bounding ρ at this value. This generous bound ignores the
act that selection bias is likely to make OLS estimates of family-size effects on female supply too large (in magnitude)
ather than too small. Other applications with Bernoulli outcomes admit similar sorts of bounds.

A related argument, appropriate for models with continuous outcomes, shows endogeneity to be constrained by
lausible values for causal effects measured in standard deviation units. This line of reasoning is especially apt for
ducation research where standardized effect sizes are widely reported. The influential Tennessee STAR class size
xperiment analyzed in Krueger (1999), for instance, generated a reduction of 7 students per class, roughly one standard
eviation of class size in the AL99 data. The STAR experiment yielded treatment effects of about 0.2σ , an impact typical of

education interventions deemed effective. At the same time, education researchers often view effect sizes as large as half
a standard deviation in the outcome distribution as rare, if not implausible. Scaling this effect by the ratio σY/σD = 1.17
puts β at −0.59. Using the fact that σv

σϵ
is about equal to 0.85(1 − R2

p) in the AL99 data, the scenario of a half-standard
eviation effect size generated by a one-standard deviation reduction in class size implies σv

σϵ

β

1−R2p
= −0.50 on the second

line of Eq. (10). At the same time, OLS estimates of class size effects in AL99 are mostly zero (as is often found in class
size research; see e g., Hanushek (1986)), so the magnitude of endogeneity in this case is capped around 0.50.

Contributing to all three of these empirically-grounded arguments is the fact that endogeneity under homoskedasticity
can be split into the difference between two R-squared-like terms:

ρ ≈
σD

σY
(βOLS − β) =

σD

σY
βOLS −

σD

σY
β.

The square of the first term, ( σD
σY
βOLS)2, is the variation in the dependent variable accounted for by Di in an analysis-

f-variance for Yi. In microeconometric applications, this sort of R2 term is mostly small, as is the causal analog that
determines the square of the second term, ( σD

σY
β)2. The small size of these two R2 terms limits the magnitude of the

difference between them. Consistent with this claim to generality, the many IV estimates collated in Chernozhukov and
Hansen (2008) likewise show modest endogeneity.

It is noteworthy that the bound of 0.41 derived for the AK91 study depends only on βOLS , standard deviations σY
and σD, and bounds on the causal effect of interest. The resulting calculations therefore seem likely to be relevant for

9 Keane and Neal (2022) consider bounds on ρ motivated by the view that OLS estimates of schooling returns should exceed causal effects.
Although this seems defensible, it is worth noting that the literature surveyed by Card (2001) reports many IV estimates in excess of the corresponding
OLS estimates, a pattern first highlighted by Lang (1993).
6
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ther empirical strategies estimating returns to schooling. As far as details go, our back-of-the-envelope bounds leverage
omoskedasticity and the presumption that right-hand-side variables have little explanatory power. In applications where
hese restrictions are a stretch, Eq. (7) gives a basis for bounds that apply more generally. Specifically, because ρ is
onotone decreasing in β , plugging bounds on β into Eq. (7) along with estimates of the covariance matrix, Σ , bounds
. Estimates of reduced-form and first-stage standard errors are typically readily available, while estimates of σδ̂π̂ can

be obtained from Eq. (A.1) in the Appendix. For the AK91 study, this strategy leads to a bound on ρ that matches the
rough cut. For the AE98 and AL99 studies, assuming (as above) that effects of a third child on labor force participation lie
between 0 and −0.57, and class size effects lie between 0 and σY

2σD
, yields upper bounds on |ρ| equal to 0.36, and 0.57,

espectively. These numbers are likewise close to the corresponding rough-cut bounds of 0.39 and 0.5.

.2. When measurement error motivates IV

Beyond causal effects, a second major arena for microeconometric IV involves models with measurement error. Suppose
he regression of interest is Yi = D∗

i β+X ′

i γ+ηi, where ηi is a residual uncorrelated with (D∗

i , Xi) by definition. The regressor
∗

i is unobserved; we see only a noisy measure, Di = D∗

i + ei, where the measurement error, ei, is assumed to be classical,
that is uncorrelated with (D∗

i , Xi, ηi). Replacing D∗

i with Di yields the structural equation to be instrumented:

Yi = Diβ + X ′

i γ + ϵi,

where ϵi = ηi − eiβ is the structural residual. Given an instrument correlated with D∗

i and uncorrelated with ϵi, the
oefficients of interest are consistently estimated by IV. The first stage in this scenario can be written as in (2), with
irst-stage residual, vi.

To calibrate endogeneity in this model, note first that given the classical measurement error assumption, cov(vi, ϵi) =

σ 2
e β . Under homoskedasticity, endogeneity squared can therefore be written:

ρ2
=
σ 4
e β

2

σ 2
v σ

2
ϵ

=
σ 4
e β

2

σ 2
v (σ 2

η + β2σ 2
e )

≤
σ 2
e

σ 2
v

=
1 − r
1 − R2

p
, (11)

here r = σ 2
D̈∗
/σ 2

D̈
denotes the reliability (signal-to-noise ratio) of mismeasured Di, after partialing out covariates.10

lthough we cannot speak to reliability across all fields, labor economists have collected evidence on the reliability of key
ariables of interest. These include schooling, earnings, hours worked, and hourly wages. Schooling often appears on the
ight-hand side of wage equations, while earnings, hours, and hourly wages are used in various configurations to estimate
abor supply elasticities.

The Angrist and Krueger (1999) summary of reliability estimates suggests r ≈ 0.9 for schooling and r ≈ 0.8 for
earnings, falling to about 0.65 − 0.75 for hours worked and hourly wages. The lower end of this range may be more
relevant for wage reliability after partialing out covariates or differencing. With r = 0.65 as a reasonably conservative
value, we’d need R2

p equal to at least 0.4 for ρ to reach 0.76. But E[F ] =
nR2p
1−R2p

+ 1, so, at this level of first-stage fit, E[F ] is
nowhere near the trouble zone for any sample size that seems empirically relevant. Of course, reliability can be lower than
0.65. Wealth, for instance, is notoriously hard to measure (Saez and Zucman, 2016; Smith et al., 2022), as is consumption
(Bee et al., 2015). But neither wealth nor consumption are seen often in the role of a mismeasured endogenous variable
to be instrumented. In any case, provided reliability is reasonably high, microeconometric measurement error can be
expected to generate parameter combinations for which conventional IV inference is trouble-free.

3.3. Anderson–Rubin vs. Conventional confidence intervals

The Anderson and Rubin (1949, AR) statistic for just-ID IV offers an alternative to conventional asymptotic inference.
AR inference is appealing by virtue of the fact that AR test size is undistorted by weak instruments under the Staiger and
Stock (1997) sequence. Moreover, in the just-ID IV context, an AR test is optimal among unbiased tests (Moreira, 2009).
In our setting, the AR statistic can be written:

tAR =
δ̂ − π̂β√

σ 2
δ̂

− 2σδ̂π̂β + σ 2
π̂
β2
. (12)

his differs from tW in that it replaces β̂IV with the null value of β in the formula for σ̂ 2
IV : in the context of the just-ID IV

odel described by Eq. (3), the square of tAR is the Lagrange multiplier statistic testing whether δ
π

equals β .11 AR tests

10 The first equality in (11) follows from the definition of correlation, the middle inequality uses the fact that σ 2
η must be non-negative, and the

ast equality uses the definition of partial R2 in Eq. (8).
11 Since the moment restrictions in the IV model are linear, Proposition 3 in Newey and West (1987) implies that t2AR is also the relevant likelihood
ratio statistic. The tW vs tAR distinction arises solely by virtue of the different variance estimators used in the denominator, making tests based on
these two statistics first-order equivalent. See Anderson and Rubin (1949) for the AR statistic in over-identified models with a fixed number of
instruments and Mikusheva and Sun (2022) for an adaptation to models with many weak instruments.
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re also compelling by virtue of the fact that, when testing β = 0, tAR is the t-statistic for the associated reduced form. It
s hard to imagine a convincing case for statistical significance of a just-ID IV estimate when the associated reduced form
s statistically indistinguishable from zero.

The AR test can be inverted to yield a confidence set that guarantees undistorted coverage for any values of E[F ] and
. Why not then default to AR confidence sets? For one thing, AR robustness comes at a cost in precision. AR confidence
ets have infinite length when F ≤ z21−α/2 (a value less than about 4 for 95% intervals). When F > z21−α/2, AR intervals
are longer than the corresponding conventional intervals. In particular, Appendix A.2 shows that finite AR intervals can
be written:

β̂IV − rAR ± τ1
(
ρ̂2(τ 21 − 1) + 1

)1/2
× z1−α/2σ̂IV , (13)

here ρ̂ is an endogeneity estimator given in Eq. (A.2), τ1 = (1− z21−α/2/F )
−1/2, and rAR = ρ̂σ̂IV F 1/2(τ 21 − 1). AR therefore

recenters the usual interval at β̂IV − rAR, while adjusting conventional critical value z1−α/2 by τ1
(
ρ̂2(τ 21 − 1) + 1

)1/2
> 1.

The AR length penalty is inversely proportional to estimated first-stage strength; this penalty is substantial even for
moderately strong instruments. When F = 16, for instance, the AR interval adjustment factor ranges roughly from 15–32%,
depending on estimated endogeneity, while the penalty ranges from about 9–18% when F = 25. Lee et al. (2022) develop
an appealingly simple alternative robust inference strategy, called tF , that adjusts critical values for tW depending on the
value of F . Because the tF adjustment is made presuming worst-case endogeneity, however, the penalty here is even
larger: tF intervals are 42% longer than the usual interval when F = 16, and 25% longer for F = 25.12

The bounding arguments illustrated in Sections 3.1 and 3.2 suggest endogeneity is typically too low for conventional
intervals to suffer substantial distortion. In such cases, AR and tF intervals may incur a substantial length penalty while
mattering little for coverage. AR and tF intervals are most valuable in applications where endogeneity might plausibly be
exceptionally high.

4. Bias under a good sign

Having made an empirical case for conventional inference with just-ID IV, we add a novel analytical argument showing
substantial bias reduction from screening IV estimates on the sign of the estimated first stage. This argument builds on
the idea that IV identification strategies are most credible when institutional or theoretical foundations motivate the first
stage. Such foundations usually imply a sign for π . In the AK91 application, for example, the quarter-of-birth first stage
arises from the fact that children born later in the year enter school younger, and are therefore constrained by compulsory
attendance laws to stay in school longer than those born earlier. The AE98 samesex instrument for family size is predicated
on parents’ preference for mixed-sex sibships. The AL99 Maimonides Rule instrument for class size is derived from Israeli
regulations that determine class size as a function of enrollment. In these and many other applied micro applications,
institutions or preferences sign π .

4.1. Sign-screened bias and coverage

We gauge estimator performance under sign restrictions using median bias since the expectation of a just-ID IV
estimator is undefined (2SLS moments exists only for over-identified models). Assuming the sign of π is known, the
theorem below shows that c = 0 minimizes the median bias of β̂IV among screening rules of the form t1 > c.

Theorem 1. Consider the model in Eq. (3), and suppose π > 0. The absolute value of the median bias of β̂IV conditional on
t1 > c, denoted medianE[F ],ρ(β̂IV − β | t1 > c), is minimized at c = 0 for all values of E[F ] and ρ.

Note that empirical sign-screening yields the greatest bias reduction uniformly over all parameter values (E[F ], ρ). In
particular, empirical sign-screening reduces median bias relative to no screening, since the latter sets c = −∞.

For intuition as to why sign-screening is optimal, note first that by virtue of joint normality of first-stage and reduced
form estimates in Eq. (3), the distribution of β̂IV − β conditional on t1 is normal with a mean and median that can be
written:

E[β̂IV − β | t1] = median(β̂IV − β | t1) = (βWOLS − β)
t1 − E[t1]

t1
. (14)

uppose ρ > 0, so βWOLS−β > 0 is positive. When t1 is positive, Eq. (14) implies that conditional median bias is increasing
n t1. Hence, for any a > 0, screening on t1 > 0 is better than screening on t1 > a, since IV estimates in samples with
1 ∈ [0, a] are less biased than estimates with t1 > a. To see why screening on t1 > 0 is better than screening on t1 > a for
a < 0, note that conditional on negative t1, Eq. (14) implies that IV bias exceeds that of OLS, because (t1 − E[t1])/t1 > 1.
But, as we show in Theorem 2 below, median bias of IV conditional on t1 > 0 is smaller than OLS bias. Inclusion of samples
with negative t1 therefore increases median bias. The upshot is an optimal screening cutoff of zero. Fig. 2 demonstrates
this for selected values of E[F ] (numerical computation of median bias is described in Appendix A.7). The kinks at zero
in the figure reflect the fact that the median of β̂IV conditional on t1 is discontinuous at zero.

12 The tF interval adjustment is smaller than the AR adjustment for values of F between z2 and 6.8.
1−α/2
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Fig. 2. Relative median bias of β̂IV conditional on t1 > c. The figure plots median(β̂IV − β | t1 > c)/|βWOLS − β| as a function of test cutoff c for
select values of E[F ]. Shaded areas cover the range of variation in relative bias over possible values of ρ. Blue: E[F ] = 2, orange: E[F ] = 3.5, gray:
[F ] = 5. Dotted lines denote limiting relative bias as ρ → 0. For each value of E[F ], horizontal gridlines mark the value of this relative bias when
= −∞, and vertical gridlines mark the cutoff value for which screening on t1 > c increases bias relative to no screening. See Appendix A.7 for
omputational details. (Colors appear in the online version of this article.)

While sign-screening is always salutary, pretesting on t1 > c for c > 0 exacerbates median bias relative to no pretesting
nless E[F ] is exceedingly small. The figure demonstrates this by marking values of the screening cutoff beyond which
creening aggravates bias (these values, determined by bias when c = −∞, are 0.86 for E[F ] = 2, 0.5 for E[F ] = 3.5 and
0.38 for E[F ] = 5). The fact that critical values of c are small in this context explains why pretest rules such as F > 10 are
often counter-productive. Intuitively, large Fs signal realizations in which the in-sample correlation between instruments
and structural errors is largest, exacerbating the median bias of β̂IV .

The fact that sign-screening affords substantial bias reduction is established by a theorem characterizing median IV
bias scaled by the weak-IV bias of OLS. Rescaling simplifies bias formulas, while the relationship between conditional and
unconditional bias stands without this.13 The theorem below gives a result for worst-case relative bias over ρ, which
obtains in the limit as |ρ| → 0 (this is not the same as relative bias when ρ = 0; with no endogeneity, both IV and OLS
are unbiased, so that relative bias is discontinuous in ρ). The relationship between ρ and relative median bias derived
here contrasts with that in Section 3, which shows higher endogeneity leads to worse coverage. This reversal reflects
the fact that, although the bias of β̂IV increases with endogeneity, OLS OVB increases faster. Worst-case relative bias is
characterized by:

Theorem 2. Consider the model in Eq. (3), and suppose that π > 0. Then, the unconditional relative median bias of β̂IV is
given by

sup
ρ

⏐⏐⏐⏐⏐medianE[F ],ρ(β̂IV − β)
βWOLS − β

⏐⏐⏐⏐⏐ =
φ(E[t1])

E[t1][Φ(E[t1]) − 1/2] + φ(E[t1])
. (15)

oreover, if E[t1] ≥ 0.84, the relative median bias of β̂IV conditional on π̂ > 0 satisfies

sup
ρ

⏐⏐⏐⏐⏐medianE[F ],ρ(β̂IV − β | π̂ > 0)
βWOLS − β

⏐⏐⏐⏐⏐ =
φ(E[t1])

E[t1]Φ(E[t1]) + φ(E[t1])
. (16)

quivalently, these expressions give the limit of relative unconditional and conditional median bias as |ρ| → 0.

Maintaining the assumptions of the theorem, IV with or without sign-screening has bias below the weak-instrument
bias of OLS, since the right-hand sides of both (15) and (16) are in (0, 1) as long as π > 0. Note also that the ratio of
the two bias expressions in the theorem is close to 0.5 for all but the smallest values of E[F ]. Specifically, the ratio of

13 Stock and Yogo (2005) use a similar rescaling, focusing on relative mean bias for 2SLS models with over-identifying restrictions.
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Fig. 3. Median bias of β̂IV conditional on t1 > 0 relative to unconditional median bias. The solid line plots the bias ratio when ρ = 1; the dotted
line denotes the limit of the bias ratio as ρ → 0. The blue shaded area covers the range of the bias ratio over possible values of ρ. The solid orange
line marks a reference line at 0.5. See Appendix A.7 for computational details. (Colors appear in the online version of this article)

conditional to unconditional median bias is:

1 −
0.5E[t1]

E[t1]Φ(E[t1]) + φ(E[t1])
.

This quantity is within 1 percentage point of 0.5 once E[t1] greater than about 1.5 since the normal cdf is then close to
ne and the normal density close to zero.
Theorem 2 describes worst-case bias over ρ. Remarkably, however, the bias reduction from sign-screening varies little

ith the degree of endogeneity. This is documented in Fig. 3, which plots relative bias as a function of the population
irst-stage F , using shading to mark variation in relative bias as a function of ρ (as in the previous figure, this figure plots
umerical calculations detailed in Appendix A.7). We see, for example, that for E[F ] around 3.5, the ratio of sign-screened
o unconditional bias varies between 0.5–0.52, converging quickly to 0.5 thereafter.14

The substantial bias reduction generated by sign-screening may seem surprising since wrong-signed first-stage
stimates are rare unless E[F ] is small. For instance, when E[F ] = 3.5, the probability of a wrong-signed estimate is
(t1 < 0) = Φ(−E[t1]) ≈ 5.6%. Bias gains from sign-screening arise from the fact that, for positive ρ, the distribution of

ˆ IV conditional on t1 < 0 is heavily shifted to the right. Sign-screening therefore discards samples mostly in the far right
ail of the IV sampling distribution. In fact, Eq. (14) implies that wrong-signed-conditional median IV bias exceeds OLS
ias. So screening yields a material improvement in median IV bias even while the events screened out are rare.
While Theorem 2 establishes the bias-mitigation payoff to sign-screening, Hall et al. (1996) and others show that

creening on the first-stage F-statistic is a form of pretesting that may degrade inference. The problem here is that, when
is truly zero, large F-statistics overstate first-stage strength, leading to overly optimistic standard errors. And, as noted

n the discussion of Fig. 2, conditional bias is aggravated by the fact that large Fs signal sample realizations in which the in-
ample correlation between instruments and structural errors is largest, exacerbating the bias of β̂IV . Consequently, when
nstruments are truly weak, pretesting can lead to confidence intervals with very poor coverage. It is therefore worth
nvestigating whether empirical sign-screening runs a similar risk. As noted above, wrong-signed first stage estimates are
are when the first stage is nonzero, but pretesting problems are most salient when instruments are indeed weak.

As it turns out, pretesting concerns here are unfounded. By way of evidence on this point, Panel (b) in Fig. 1 plots
ejection contours for a conventional (second-stage) t-test conditional on π̂ > 0. That is, the figure plots contours for:

Rc
W = PE[F ],ρ(|tW | > z1−α/2 | π̂ > 0).

omparison of the two panels in Fig. 1 suggests sign-screening affects rejection rates little. For instance, the endogeneity
hreshold required to keep rejections rates below 10% is |ρ| ≤ 0.75, close to the unconditional value of 0.76 otherwise

14 Richardson (1968) shows that under homoskedasticity, the relative (mean) bias of over-identified 2SLS relative to (weak-instrument) OLS bias
is unrelated to ρ.
10
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equired for this. This happy finding is explained by the fact that, when the instrument is very weak, sign-screening has
wo effects. On one hand, screening out wrong-signed first-stage estimates tends to overestimate first-stage strength. At
he same time, in contrast to screening on first-stage F , the median bias of β̂IV is reduced. These two effects are just about
offsetting, so that the conditional rejection contours in panel (b) of Fig. 1 are much like the unconditional contours plotted
in panel (a).

4.2. Theoretical sign restrictions only

Andrews and Armstrong (2017) introduce an estimator that is unbiased given a sign restriction on the population
first-stage coefficient, rather than the sign of estimated π̂ . This unbiased estimator is:

β̂U ≡ t1µ(t1)β̂IV + (1 − t1µ(t1))βWOLS = τ̂ (δ̂ − βWOLS π̂ ) + βWOLS, (17)

where µ(x) =
1−Φ(x)
φ(x) is the Mills’ ratio of a standard normal random variable (φ and Φ denote the standard normal density

and cdf, respectively) and τ̂ ≡
µ(t1)
σπ̂

. Estimator β̂U is unbiased because, under normality of first-stage estimates and given
> 0,

E[τ̂ ] =
1
π
,

that is, τ̂ is an unbiased estimator of the reciprocal of π . Moreover, δ̂− βWOLS π̂ and τ̂ are uncorrelated, since βWOLS is the
slope in the regression of the estimated reduced form on the estimated first stage. Unbiasedness then follows from the
fact that E[δ̂ − βWOLS π̂ ] = (β − βWOLS)π .
β̂U has an interesting and counter-intuitive shrinkage interpretation when t1 > 0. Observe that:

0 ≤ 1 − t1µ(t1) ≤
1
t21
, (18)

hen t1 > 0 (this is implied by a Mill’s ratio inequality given in Feller (1968, p. 175)). Thus, when the first stage is
ight-signed, the weights t1µ(t1) in Eq. (17) lie between 0 and 1, and β̂U shrinks the conventional IV estimate towards OLS.

The shrinkage interpretation of β̂U seems surprising since shrinkage towards OLS increases bias. This fact is reconciled
ith the unbiasedness of β̂U by the following theorem:

heorem 3. Consider the model in (3), and suppose that π > 0. Then, the mean bias of β̂U conditional on t1 > 0 can be
written:

E[β̂U − β | t1 > 0] =
0.5e−0.5E[t1]

2

Φ(E[t1])
(βWOLS − β),

while, conditional on t1 < 0, mean bias is:

E[β̂U − β | t1 < 0] = −
0.5e−0.5E[t1]

2

1 −Φ(E[t1])
(βWOLS − β).

Note that the denominators in these bias expressions equal the probability t1 is positive and negative, respectively. β̂U is
therefore unbiased because it averages equal-magnitude conditional positive bias when t1 > 0 and conditional negative
bias when t1 < 0.

An analyst who is prepared to sign the population first stage seems unlikely to ignore the sign of the estimated first
stage. Yet, when it comes to β̂U , empirical sign-screening results in more bias not less. This would seem to strip β̂U of its
appeal. And use of median rather than mean bias to measure performance does not ameliorate this: Appendix A.7 shows
that the conditional median bias of β̂IV is always less than that of β̂U , and at least 50% smaller once E[t1] ≥ 1.15

5. Summary and conclusions

Assuming reduced-form and first-stage estimates are approximately normally distributed, null rejection rates for
conventional t-tests in just-ID IV models are distorted little unless endogeneity is exceptionally high. Conventional
confidence intervals are therefore also likely to have good coverage. Three diverse applications, two of which exhibit
considerable OLS OVB, are characterized by moderate endogeneity and consequently fall well inside the low-distortion
just-ID IV comfort zone. We have argued that these three examples should be seen as representative rather than
idiosyncratic: the structure of much applied micro research naturally bounds endogeneity.

15 Andrews and Armstrong (2017) shows numerically that the unconditional median bias of β̂U is smaller than that of β̂IV when E[F ] is small,
hile this bias ranking reverses for larger E[F ]. Andrews and Armstrong (2017) notes also that the median absolute deviation of β̂U is always smaller
han that of β̂ . Our numerical calculations indicate that, conditional on the estimated first stage sign, this no longer holds for all parameter values.
IV

11
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We also develop a new theoretical argument further alleviating bias concerns for just-ID IV. As Andrews and Armstrong
(2017) note, the most convincing applications of just-ID IV restrict the sign of the first stage. Unlike Andrews and
Armstrong (2017), however, we impose the same sign restriction on the estimated as well as the theoretical first stage.
In contrast to screening on a first-stage F-statistic, which may do more harm than good, empirical sign-screening roughly
halves median bias of just-ID IV estimates without degrading coverage. Since most analysts likely impose an estimated
first-stage sign screen as a matter of course, the bias reduction sign-conditioning engenders should be reflected in
published empirical work.

What practical lesson should we draw from this? In the context of the AK91, AE98, and AL99 studies, first-stage sign
screening adds no action items to the empirical agenda. The first-stage estimates in these applications are robustly right-
signed. In applications with weaker instruments than these, an empirical strategy that begins by examining the first-stage
sign would seem to have no downside. Claims for credible causal evidence requires more than this, however. In AK91,
for instance, the quarter-of-birth story holds water because schooling can be seen to move sharply up and down with
quarter of birth as predicted by compulsory attendance laws, across 30 birth cohorts in three data sets, and because
graduate degree completion, which should be changed little by compulsory attendance, moves little with quarter of birth.
This sort of coherence contributes as much or more than statistical significance to first stage strength.

Appendix. Derivations and proofs

The appendix uses the notation β̃IV = (β̂IV − β)/|βWOLS − β| and β̃U = (β̂IV − β)/|βWOLS − β| to denote the IV and
ndrews and Armstrong (2017) unbiased estimator, after centering and scaling by the weak-IV OVB of OLS. Also, let
= ρ/

√
1 − ρ2.

A.1. Estimating ρ

We estimate ρ (defined in Eq. (7)) using first-stage and IV estimates, and the associated first-stage, reduced-form and
IV standard errors. To see how this works, rewrite Eq. (5) as:

σδ̂π̂ =
σ 2
π̂
β̂2
IV − π̂2σ̂ 2

IV + σ 2
δ̂

2β̂IV
. (A.1)

ith this in hand for σδ̂π̂ , endogeneity can be computed as the sample analog of Eq. (7), replacing β with β̂IV . The resulting
ndogeneity estimator is:

ρ̂ =
σπ̂

|π̂ |σ̂IV
× (σδ̂π̂/σ

2
π̂ − β̂IV ). (A.2)

Under the normal model in Eq. (3), this estimator depends on the data only through β̂IV , with the derivative given by
∂ρ̂/∂β̂IV = σ̂−1

IV · (ρ̂2
− 1)/|t1|. Hence, the delta-method standard error for ρ̂ is simply (1 − ρ̂2)/|t1|.

Paralleling concerns with finite-sample coverage of the usual confidence interval for β , we might worry that confidence
ntervals for ρ based on delta-method standard errors suffer from undercoverage if endogeneity is high and the
nstruments are weak. We therefore compute confidence sets for ρ by inverting the AR statistic. Specifically, denote the
R confidence set by [βℓ, βu] when this is finite. Since ρ is monotone decreasing in β , this leads to a confidence set for ρ
hat can be written [ϱ(βu), ϱ(βℓ)], where ϱ(β) =

σπ̂√
σ2
δ̂
−2βσ

δ̂π̂
+σ2

π̂
β2

× (σδ̂π̂/σ
2
π̂

− β). When the AR confidence set takes the

orm (−∞, βℓ] ∪ [βu,∞), the confidence set for ρ is [−1, ϱ(βu)] ∪ [ϱ(βℓ), 1].

.2. AR confidence sets for β

The AR confidence set consists of all points β0 that are not rejected by the AR test. These points must therefore satisfy
the inequality z21−α/2 ≥

(δ̂−π̂β0)2

σ2
δ̂
−2σ

δ̂π̂
β0+σ2

π̂
β20

. Letting ∆0 = β0 − β̂IV , and using Eqs. (A.2) and (5), we can write this inequality
as

(F − z21−α/2)∆
2
0 + 2z21−α/2ρ̂F

1/2σ̂IV∆0 − z21−α/2F σ̂
2
IV ≤ 0.

Solving this quadratic inequality, we obtain that when F > z21−α/2, the confidence interval for β− β̂IV has endpoints given
by

−(τ 21 − 1)ρ̂F 1/2σ̂IV ± τ1z1−α/2σ̂IV
√
(τ 21 − 1)ρ̂2 + 1.

It follows that the confidence interval for β is given by Eq. (13).
12
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.3. t-test rejection rates

This section writes the rejection probabilities of the t-test as an integral indexed by (E[F ], ρ). Stock and Yogo (2005)
se Monte Carlo methods to compute unconditional rejection probabilities in a similar setup. The calculation described
ere is much faster. More importantly, it allows us to easily compute both unconditional rejection rates and rejection
ates conditional on sign-screening.

Using Eq. (7), and the fact that βWOLS − β and ρ have the same sign, we may write tAR as

tAR =
(δ̂ − π̂β)|ρ|

σπ̂ |βWOLS − β|
. (A.3)

onsequently,

β̃IV =
δ̂ − βπ̂

σπ̂ t1|βWOLS − β|
=

tAR
|ρ|t1

. (A.4)

hus,

tW =
sign(t1)tAR√

σ2
δ̂
/σ2
π̂

−2βWOLSβ+β2

(βWOLS−β)2
ρ2 +

t2AR
t21

− 2ρ tAR
t1

=
sign(t1)tAR√

1 + t2AR/t
2
1 − 2ρtAR/t1

(A.5)

here the first equality uses Eq. (A.4) and the definition of βWOLS , and the second equality uses Eq. (7). This expression for
W implies that conditional on t1, the rejection region {|tW | ≥ z1−α/2} is quadratic in tAR. Solving this quadratic inequality
mplies that the rejection region is given by

tAR ∈

⎧⎪⎨⎪⎩
∅ if t21 ≤ (1 − ρ2)z21−α/2,
[a1, a2] if (1 − ρ2)z21−α/2 ≤ t21 ≤ z21−α/2.
(−∞, a2) ∪ (a1,∞) if t21 ≥ z21−α/2

here

a1 =

ρz21−α/2t1 − |t1|z1−α/2
√
t21 − (1 − ρ2)z21−α/2

z21−α/2 − t21
,

a2 =

ρz21−α/2t1 + |t1|z1−α/2
√
t21 − (1 − ρ2)z21−α/2

z21−α/2 − t21
.

ote that cor(tAR, t1) = ρ, so that

P(tAR ≤ x | t1) = Φ((x − ρ(t1 − E[t1]))/
√
1 − ρ2). (A.6)

hus, conditional on t1, the rejection probability is given by

P(|tW | ≥ z1−α/2 | t1) = (P(tAR ≤ a2 | t1) − P(tAR ≤ a1 | t1))I{t21 ≥ z21−α/2(1 − ρ2)}

+ I{t21 ≥ z21−α/2}

= f (t1; E[t1], ρ)I{t21 ≥ (1 − ρ2)z21−α/2} + I{t21 ≥ z21−α/2},

(A.7)

where

f (t1; E[t1], ρ) = Φ

(
a2 − ρ(t1 − E[t1])√

1 − ρ2

)
−Φ

(
a1 − ρ(t1 − E[t1])√

1 − ρ2

)
.

ince t1 ∼ N (E[t1], 1), the rejection probability conditional on t1 ≥ c is therefore given by

P(|tW | ≥ z1−α/2 | t1 ≥ c) =

∫
∞

c (I{ t21
1−ρ2

≥ z1−α/2}f (t1; E[t1], ρ) + I{t21 ≥ z21−α/2})φ(t1 − E[t1])dt1

Φ(E[t1] − c)
.

he unconditional rejection probability RW obtains by setting c = −∞. The rejection probability conditional on sign
creening, Rc

W , obtains by setting c = 0. The rejection contours in Fig. 1 evaluate the above expression as a function of
ρ, E[t ]) by numerical integration.
1
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.4. Proof of Theorem 1

The distribution of β̃IV conditional on t1 can be written as

Pω,E[t1](β̃IV ≤ x | t1) =

{
P(tAR ≤ |ρ|t1x | t1) = Φ(ω[E[t1] − (1 − sign(ω)x)t1]) if t1 ≥ 0,
P(tAR ≥ |ρ|t1x | t1) = Φ(−ω[E[t1] − (1 − sign(ω)x)t1]) if t1 < 0,

(A.8)

here the first equality uses Eq. (A.4), and the second equality follows from Eq. (A.6). Observe that since P−ω,E[t1](β̃IV ≤

x | t1) = 1 − Pω,E[t1](β̃IV ≤ −x | t1), the distribution is symmetric in ω. It therefore suffices to consider ω > 0.
Let pc(x) = Pω,E[t1](β̃IV ≤ x | t1 > c) denote the distribution of β̃IV conditional on t1 > c (this shorthand notation

ignores the dependence on ω and E[t1]). By Eq. (A.8),

pc(x) =

{ 1
Φ(E[t1]−c)

∫
∞

c−E[t1]
Φ (y(z)) φ(z)dz if c ≥ 0,

1
Φ(E[t1]−c)

[∫
−E[t1]

c−E[t1]
Φ(−y(z))φ(z)dz +

∫
∞

−E[t1]
Φ(y(z))φ(z)dz

]
if c < 0,

here y(z) = ω[xE[t1] − (1 − x)z]. Observe that for all c , the conditional median of β̃IV , denoted mc = mc(ω), is smaller
han 1. In particular, for c ≥ 0,

pc(1) =
Φ (ωE[t1])
Φ(E[t1] − c)

∫
∞

c−E[t1]

φ(z)dz = Φ(ωE[t1]) ≥ 1/2, (A.9)

while if c < 0,

pc(1) =
1

Φ(E[t1] − c)
[Φ(E[t1] − c) −Φ(E[t1]) +Φ(ωE[t1])(−Φ(E[t1] − c) + 2Φ(E[t1]))]

≥
1

Φ(E[t1] − c)

[
Φ(E[t1] − c) −Φ(E[t1]) +

1
2
(2Φ(E[t1]) −Φ(E[t1] − c))

]
=

1
2
.

e now show that the mc is minimized at c = 0. If c ≥ 0, by Leibniz rule,
∂pc(x)
∂c

=
φ(E[t1] − c)
Φ(E[t1] − c)

[pc(x) −Φ (ω[E[t1] − (1 − x)c])] ,

which is negative for x ≤ 1, since it follows from Eq. (A.8) that pc(x) ≤
1

Φ(E[t1]−c)

∫
∞

c−E[t1]
Φ(ω[E[t1] − (1 − x)c])φ(z)dz =

(ω[E[t1] − (1 − x)c]). Therefore, mc is decreasing for positive c.
Now consider c < 0. From Eq. (A.8), it follows that

pc(x) =
1

Φ(E[t1] − c)

[∫
−E[t1]

c−E[t1]

Φ(ω[−E[t1] + (1 − x)(z + E[t1])])φ(z)dz +Φ(E[t1])p0(x)
]
.

Suppose p0(mc) < 1/2. Then it follows from the preceding display that for x ≤ 1,

1
2
<

1
Φ(E[t1] − c)

[∫
−E[t1]

c−E[t1]

Φ(ω[−E[t1] + (1 − x)(z + E[t1])])φ(z)dz +Φ(E[t1])
1
2

]
≤

1
Φ(E[t1] − c)

[
1
2

∫
−E[t1]

c−E[t1]

φ(z)dz +Φ(E[t1])
1
2

]
=

1
2
,

here the second inequality uses the fact that Φ(ω[−E[t1] + (1− x)(z + E[t1])]) ≤ Φ(−E[t1]ω) ≤ Φ(0) over the range of
ntegration. Hence, p0(mc) ≥ 1/2, which implies that m0 ≤ mc . By the proof of Theorem 2 m0 ≥ 0. Thus, setting c = 0
inimizes |mc | for all c , as claimed.

.5. Proof of Theorem 2

The proof begins by characterizing the distribution of β̃IV conditional on t1 > 0. The previous proof establishes that
the conditional median for this distribution is less than 1, so it suffices to consider p0(x) for x ≤ 1. By the mean value
heorem, for some ω̃ = ω̃(x, ω) ∈ [0, ω],

p0(x) = Φ (0)+
ω

Φ(E[t1])

∫
∞

−E[t1]

((x − 1)z + xE[t1])φ (ω̃((x − 1)z + xE[t1])) φ(z)dz

=
1
2

+
ω

ω̃2(1 − x)Φ(E[t1])

∫ ω̃E[t1]

−∞

yφ (y) φ(a + by)dy,

where the second line uses the change of variables y = ω̃xE[t1] − ω̃(1 − x)z, and we let a = xE[t1]/(1 − x), b = −
1

ω̃(1−x) .
y line 111 of Table 1 in Owen (1980),∫

xφ(x)φ(a + bx) =
φ(a/t)

2

[
−φ(tx + ab/t) −

ab
Φ(tx + ab/t)

]
, t =

√
1 + b2. (A.10)
t t
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p0(x) =
1
2

+
ω

ω̃2(1 − x)Φ(E[t1])
φ(a/t)
1 + b2

[
−φ (tω̃E[t1] + ab/t)−

ab
√
1 + b2

Φ(tω̃E[t1] + ab/t)
]

=
1
2

+
ω

Φ(E[t1])
φ(a/t)(1 − x)
ω̃2(1 − x)2 + 1

[
x

|1 − x|
E[t1]
g̃(x, ω̃)

Φ(E[t1]g(x, ω̃)) − φ (E[t1]g(x, ω̃))
]
,

where g(x, ω̃) =
ω̃2

|1−x|+sign(1−x)
√
ω̃2(1−x)2+1

, and g̃(x, ω̃) =

√
ω̃2(1 − x)2 + 1. When evaluated at the conditional median, m0, the

xpression in square brackets must equal zero by definition of the median. Therefore, m0 > 0, and since we also know
rom Eq. (A.9) that m0 < 1, the conditional median must satisfy

m0 =
1

E[t1]

g̃(m0,ω̃(m0,ω))
Φ(E[t1]g(m0,ω̃(m0,ω)))
φ(E[t1]g(m0,ω̃(m0,ω)))

+ 1
, (A.11)

We have

E[t1]
g̃

Φ (E[t1]g)
φ(E[t1]g)

≥
E[t1]
g̃

Φ
(
E[t1]g̃

)
φ(E[t1]g̃)

, and
E[t1]
g̃

Φ
(
E[t1]g̃

)
φ(E[t1]g̃)

≥ E[t1]
Φ (E[t1])
φ(E[t1])

if E[t1] ≥ 0.84.

ere the first inequality follows because Φ(x)/φ(x) is increasing in x, and g ≥ g̃ , and the second inequality follows because
Φ(x)
xφ(x) is increasing for x ≥ 0.84, and g̃ ≥ 1. Therefore,

m0 ≤
φ(E[t1])

E[t1]Φ(E[t1]) + φ(E[t1])
= lim

ω↓0
m0(ω),

where the equality follows since the right-hand side of Eq. (A.11) converges to φ(E[t1])
E[t1]Φ(E[t1])+φ(E[t1]) as ω → 0.

We now prove the claims concerning the unconditional distribution of β̃IV . By arguments in the proof of Theorem 1,
the median is smaller than 1, so it suffices to consider p−∞(x) for x ≤ 1. By arguments as in the conditional case,

p−∞(x) =
1
2

+
ω

ω̃2(1 − x)

[∫ ω̃E[t1]

−∞

yφ (y) φ(a + by)dy −

∫
∞

ω̃E[t1]

yφ (y) φ(a + by)dy

]

=
1
2

+
ω

ω̃2(1 − x)
φ(a/t)
1 + b2

[
−2φ(tω̃E[t1] + ab/t) − 2

ab
t
Φ(tω̃E[t1] + ab/t) +

ab
t

]
=

1
2

+
ω

ω̃2(1 − x)
φ(a/t)
1 + b2

[
−2φ(E[t1]g(ω̃, x)) + 2

x
1 − x

E[t1]
g̃
Φ(E[t1]g(ω̃, x)) −

x
1 − x

E[t1]
g̃

]
.

ere the first line follows by the mean value theorem, where ω̃ = ω̃(x, ω) ∈ [0, ω], the second line uses Eq. (A.10), and the
ast line follows by algebra. When evaluated at x = m−∞, the expression in square brackets must equal zero by definition
f the median. Therefore, m−∞ > 0, and it must satisfy

m−∞ =
1

E[t1]

g̃
Φ(E[t1]g)−1/2
φ(E[t1]g) + 1

(A.12)

Now,
E[t1]
g̃

Φ(E[t1]g) − 1/2
φ(E[t1]g)

≥
E[t1]
g̃

Φ(E[t1]g̃) − 1/2
φ(E[t1]g̃)

≥ E[t1]
Φ(E[t1]) − 1/2

φ(E[t1])
.

ere the first inequality follows because Φ(x)/φ(x) is increasing in x, and g ≥ g̃ , and the second inequality follows because
Φ(x)−1/2

xφ(x) is increasing for x > 0. As a result,

m−∞ ≤
φ(E[t1])

E[t1](Φ(E[t1]) − 1/2 + φ(E[t1]))
= lim

ω↓0
m−∞(ω),

where the equality follows since the right-hand side of Eq. (A.12) converges to φ(E[t1])
E[t1](Φ(E[t1])−1/2+φ(E[t1])) as ω → 0.

A.6. Proof of Theorem 3

We may write

β̃U = t1µ(t1)β̃IV + (1 − t1µ(t1)) sign(ρ) = µ(t1)
tAR
|ρ|

+ (1 − t1µ(t1)) sign(ρ) (A.13)

here the first equality follows from Eq. (17), and the fact that βWOLS − β and ρ have the same sign, and the second
quality applies Eq. (A.4).
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Since E[tAR | t1] = ρ(t1 − E[t1]), the relative bias conditional on t1 is given by

E[β̃U | t1] = sign(ρ) [1 − E[t1]µ(t1)] .

By arguments analogous to those in the proof of Lemma 2.1 in Andrews and Armstrong (2017), we have

E[t1]E[µ(t1) | t1 > 0] =
E[t1]

Φ(E[t1])

∫
∞

t=0

1 −Φ(t)
φ(t)

φ(t − E[t1])dt =
e−

E[t1]
2

2

Φ(E[t1])

∫
∞

t=0
(1 −Φ(t))E[t1]eE[t1]tdt

=
e−E[t1]

2/2

Φ(E[t1])

{[
eE[t1]t (1 −Φ(E[t1]))

]∞
t=0 +

∫
∞

t=0
φ(t)eE[t1]tdt

}
=

1
Φ(E[t1])

[
−

1
2
e−E[t1]

2/2
+

∫
∞

t=0
φ(t − E[t1])dt

]
= −

1
2
e−E[t1]

2/2

Φ(E[t1])
+ 1,

here the first line uses the definition of the Mills’ ratio, the second line uses integration by parts, and the third follows
y completing the square. It therefore follows that

E[β̂U − β | t1 > 0]
βWOLS − β

=
1
2
e−E[t1]

2/2

Φ(E[t1])
.

The second claim follows by an analogous argument.

A.7. Median bias comparisons

To evaluate the relative median bias of β̂IV as a function of both E[F ] and ρ conditional on t1 ≥ c , we first evaluate its
distribution

P(β̃IV ≤ x | t1 ≥ c; ρ, E[t1]) =
1

Φ(E[t1] − c)

∫
∞

c−E[t1]

fIV (z; x, E[t1], ω)φ(z)dz (A.14)

by numerical integration. Here we use the formula fIV (z; x, ρ, E[t1]) = Φ(ω[sign(z + E[t1])E[t1] − (1 − x)|z + E[t1]|])
from Eq. (A.8) for the cdf conditional on z = t1 − E[t1]. We then numerically solve for the median. The shaded regions in
Fig. 2 correspond to the range of the absolute value of the relative median bias as ρ varies between −1 and 1. Similarly,
the shaded regions in Fig. 3 show how the median bias conditional on t1 ≥ 0 relative to the unconditional median bias
(that sets c = −∞) varies with ρ.

To compare the relative median bias to that of β̂U , it suffices to consider ρ > 0, since the distributions of β̂U and β̂IV
are symmetric in ρ. By Eq. (A.13), it follows that for t1 > 0,

P(β̃U ≤ x | t1;ω) = P
(
β̃IV ≤ x − (1 − x)

(1 − t1µ(t1))
t1µ(t1)

⏐⏐⏐ t1;ω) ,
hich for x < 1 is smaller than P(β̃IV ≤ x | t1;ω). Since the median of β̃IV conditional on t1 > 0 is smaller than 1, it

follows that the conditional median bias of β̃IV is always smaller than that of β̃U .
To compare the relative magnitudes of the median biases, we compute the relative median bias of β̃U analogously

to that of β̃IV , except we replace fIV in Eq. (A.14) with fU (z; x, E[t1], ρ) = Φ(ω[E[t1] − (1 − sign(ω)x)/µ(E[t1] + z)]) (it
follows from Eqs. (A.6) and (A.13) that this is the cdf β̃U conditional on z = t1 − E[t1]). We then compute the ratio
medianE[t1],ρ(β̃U | t1 > 0)/medianE[t1],ρ(β̃IV | t1 > 0) of the median biases on a fine grid of values of (ρ, E[t1]). This ratio
is greater than 2 if E[F ] ≥ 2, and greater than 3 if E[F ] ≥ 3, regardless of the value of ρ. Likewise, comparison of the ratio
of the conditional and unconditional median IV bias, medianE[t1],ρ(β̃IV | t1 > 0)/medianE[t1],ρ(β̃IV ) = medianE[t1],ρ(β̂IV −β |

t1 > 0)/medianE[t1],ρ(β̂IV − β) shows that the ratio lies between 0.5 and 0.525 for E[t1] ≥ 1.5, regardless of the value of
ρ.

References

Anderson, T.W., Rubin, H., 1949. Estimation of the parameters of a single equation in a complete system of stochastic equations. Ann. Math. Stat.
20 (1), 46–63. http://dx.doi.org/10.1214/aoms/1177730090.

Andrews, I., Armstrong, T.B., 2017. Unbiased instrumental variables estimation under known first-stage sign. Quant. Econ. 8 (2), 479–503. http:
//dx.doi.org/10.3982/QE700.

Andrews, I., Stock, J.H., Sun, L., 2019. Weak instruments in instrumental variables regression: Theory and practice. Annu. Rev. Econ. 11 (1), 727–753.
http://dx.doi.org/10.1146/annurev-economics-080218-025643.

Angrist, J.D., 1990. Lifetime earnings and the Vietnam era draft lottery: Evidence from social security administrative records. Amer. Econ. Rev. 80
(3), 313–336, URL https://www.jstor.org/stable/10.2307/2006669.

Angrist, J.D., Evans, W.N., 1998. Children and their parents’ labor supply: Evidence from exogenous variation in family size. Amer. Econ. Rev. 88 (3),
450–477, URL https://www.jstor.org/stable/116844.

Angrist, J.D., Imbens, G.W., 1995. Two-stage least squares estimation of average causal effects in models with variable treatment intensity. J. Am.
Stat. Assoc. 90 (430), 431–442. http://dx.doi.org/10.1080/01621459.1995.10476535.
16

http://dx.doi.org/10.1214/aoms/1177730090
http://dx.doi.org/10.3982/QE700
http://dx.doi.org/10.3982/QE700
http://dx.doi.org/10.3982/QE700
http://dx.doi.org/10.1146/annurev-economics-080218-025643
https://www.jstor.org/stable/10.2307/2006669
https://www.jstor.org/stable/116844
http://dx.doi.org/10.1080/01621459.1995.10476535


J. Angrist and M. Kolesár Journal of Econometrics xxx (xxxx) xxx

A

A

A

B

B

B

C

C

F
H

H

I

K
K

L
L

L

M
M

N

O
R

S

S

S

S

Y

ngrist, J.D., Krueger, A.B., 1991. Does compulsory school attendance affect schooling and earnings? Q. J. Econ. 106 (4), 979–1014. http://dx.doi.org/
10.2307/2937954.

ngrist, J.D., Krueger, A.B., 1999. Empirical strategies in labor economics. In: Ashenfelter, O.C., Card, D. (Eds.), Handbook of Labor Economics. Elsevier,
pp. 1277–1366. http://dx.doi.org/10.1016/S1573-4463(99)03004-7.

ngrist, J.D., Lavy, V., 1999. Using Maimonides’ rule to estimate the effect of class size on scholastic achievement. Q. J. Econ. 114 (2), 533–575.
http://dx.doi.org/10.1162/003355399556061.

ee, A., Meyer, B.D., Sullivan, J.X., 2015. The validity of consumption data: Are the consumer expenditure interview and diary surveys informative? In:
Carroll, C.D., Crossley, T.F., Sabelhaus, J. (Eds.), Improving the Measurement of Consumer Expenditures. In: Studies in Income and Wealth, Vol.
74, The University of Chicago Press, Chicago, IL, pp. 204–240.

ekker, P.A., 1994. Alternative approximations to the distributions of instrumental variable estimators. Econometrica 62 (3), 657–681. http:
//dx.doi.org/10.2307/2951662.

ound, J., Jaeger, D.A., Baker, R.M., 1995. Problems with instrumental variables estimation when the correlation between the instruments and the
endogenous explanatory variable is weak. J. Amer. Statist. Assoc. 90 (430), 443–450. http://dx.doi.org/10.1080/01621459.1995.10476536.

ard, D., 2001. Estimating the return to schooling: Progress on some persistent econometric problems. Econometrica 69 (5), 1127–1160. http:
//dx.doi.org/10.1111/1468-0262.00237.

hernozhukov, V., Hansen, C., 2008. The reduced form: A simple approach to inference with weak instruments. Econom. Lett. 100 (1), 68–71.
http://dx.doi.org/10.1016/j.econlet.2007.11.012.

eller, W., 1968. An Introduction to Probability Theory and Its Application, third ed. Vol. 1, Wiley, New York, NY.
all, A.R., Rudebusch, G.D., Wilcox, D.W., 1996. Judging instrument relevance in instrumental variables estimation. Internat. Econom. Rev. 37 (2),

283. http://dx.doi.org/10.2307/2527324.
anushek, E.A., 1986. The economics of schooling: Production and efficiency in public schools. J. Econ. Lit. 24 (3), 1141–1177, URL https:

//www.jstor.org/stable/2725865.
mbens, G.W., Angrist, J.D., 1994. Identification and estimation of local average treatment effects. Econometrica 62 (2), 467–475. http://dx.doi.org/10.

2307/2951620.
eane, M., Neal, T., 2022. A practical guide to weak instruments. Working Paper, SSRN, http://dx.doi.org/10.2139/ssrn.3846841.
rueger, A.B., 1999. Experimental estimates of education production functions. Q. J. Econ. 114 (2), 497–532. http://dx.doi.org/10.1162/

003355399556052.
ang, K., 1993. Ability bias, discount rate bias, and the return to education. Unpublished manuscript, Boston University.
ee, D.S., McCrary, J., Moreira, M.J., Porter, J., 2022. Valid t-ratio inference for IV. Am. Econ. Rev. 112 (10), 3260–3290. http://dx.doi.org/10.1257/aer.

20211063.
eeb, H., Pötscher, B.M., 2005. Model selection and inference: Facts and fiction. Econometric Theory 21 (1), 21–59. http://dx.doi.org/10.1017/

S0266466605050036.
ikusheva, A., Sun, L., 2022. Inference with many weak instruments. Rev. Econom. Stud. 89 (5), 2663–2686. http://dx.doi.org/10.1093/restud/rdab097.
oreira, M.J., 2009. Tests with correct size when instruments can be arbitrarily weak. J. Econometrics 152 (2), 131–140. http://dx.doi.org/10.1016/j.
jeconom.2009.01.012.

ewey, W.K., West, K.D., 1987. Hypothesis testing with efficient method of moments estimation. Internat. Econom. Rev. 28 (3), 777–787. http:
//dx.doi.org/10.2307/2526578.

wen, D.B., 1980. A table of normal integrals. Comm. Statist. Simulation Comput. 9 (4), 389–419. http://dx.doi.org/10.1080/03610918008812164.
ichardson, D.H., 1968. The exact distribution of a structural coefficient estimator. J. Amer. Statist. Assoc. 63 (324), 1214–1226. http://dx.doi.org/10.

1080/01621459.1968.10480921.
aez, E., Zucman, G., 2016. Wealth inequality in the United States since 1913: Evidence from capitalized income tax data. Q. J. Econ. 131 (2), 519–578.

http://dx.doi.org/10.1093/qje/qjw004.
mith, M., Zidar, O., Zwick, E., 2022. Top wealth in America: New estimates under heterogeneous returns. Q. J. Econ. http://dx.doi.org/10.1093/qje/

qjac033.
taiger, D., Stock, J.H., 1997. Instrumental variables regression with weak instruments. Econometrica 65 (3), 557–586. http://dx.doi.org/10.2307/

2171753.
tock, J.H., Yogo, M., 2005. Testing for weak instruments in linear IV regression. In: Andrews, D.W.K., Stock, J.H. (Eds.), Identification and

Inference for Econometric Models: Essays in Honor of Thomas Rothenberg. Cambridge University Press, Cambridge, UK, pp. 80–108. http:
//dx.doi.org/10.1017/CBO9780511614491.006.

oung, A., 2022. Consistency without inference: Instrumental variables in practical application. Eur. Econ. Rev. 147, http://dx.doi.org/10.1016/j.
euroecorev.2022.104112.
17

http://dx.doi.org/10.2307/2937954
http://dx.doi.org/10.2307/2937954
http://dx.doi.org/10.2307/2937954
http://dx.doi.org/10.1016/S1573-4463(99)03004-7
http://dx.doi.org/10.1162/003355399556061
http://refhub.elsevier.com/S0304-4076(23)00029-5/sb10
http://refhub.elsevier.com/S0304-4076(23)00029-5/sb10
http://refhub.elsevier.com/S0304-4076(23)00029-5/sb10
http://refhub.elsevier.com/S0304-4076(23)00029-5/sb10
http://refhub.elsevier.com/S0304-4076(23)00029-5/sb10
http://dx.doi.org/10.2307/2951662
http://dx.doi.org/10.2307/2951662
http://dx.doi.org/10.2307/2951662
http://dx.doi.org/10.1080/01621459.1995.10476536
http://dx.doi.org/10.1111/1468-0262.00237
http://dx.doi.org/10.1111/1468-0262.00237
http://dx.doi.org/10.1111/1468-0262.00237
http://dx.doi.org/10.1016/j.econlet.2007.11.012
http://refhub.elsevier.com/S0304-4076(23)00029-5/sb15
http://dx.doi.org/10.2307/2527324
https://www.jstor.org/stable/2725865
https://www.jstor.org/stable/2725865
https://www.jstor.org/stable/2725865
http://dx.doi.org/10.2307/2951620
http://dx.doi.org/10.2307/2951620
http://dx.doi.org/10.2307/2951620
http://dx.doi.org/10.2139/ssrn.3846841
http://dx.doi.org/10.1162/003355399556052
http://dx.doi.org/10.1162/003355399556052
http://dx.doi.org/10.1162/003355399556052
http://refhub.elsevier.com/S0304-4076(23)00029-5/sb21
http://dx.doi.org/10.1257/aer.20211063
http://dx.doi.org/10.1257/aer.20211063
http://dx.doi.org/10.1257/aer.20211063
http://dx.doi.org/10.1017/S0266466605050036
http://dx.doi.org/10.1017/S0266466605050036
http://dx.doi.org/10.1017/S0266466605050036
http://dx.doi.org/10.1093/restud/rdab097
http://dx.doi.org/10.1016/j.jeconom.2009.01.012
http://dx.doi.org/10.1016/j.jeconom.2009.01.012
http://dx.doi.org/10.1016/j.jeconom.2009.01.012
http://dx.doi.org/10.2307/2526578
http://dx.doi.org/10.2307/2526578
http://dx.doi.org/10.2307/2526578
http://dx.doi.org/10.1080/03610918008812164
http://dx.doi.org/10.1080/01621459.1968.10480921
http://dx.doi.org/10.1080/01621459.1968.10480921
http://dx.doi.org/10.1080/01621459.1968.10480921
http://dx.doi.org/10.1093/qje/qjw004
http://dx.doi.org/10.1093/qje/qjac033
http://dx.doi.org/10.1093/qje/qjac033
http://dx.doi.org/10.1093/qje/qjac033
http://dx.doi.org/10.2307/2171753
http://dx.doi.org/10.2307/2171753
http://dx.doi.org/10.2307/2171753
http://dx.doi.org/10.1017/CBO9780511614491.006
http://dx.doi.org/10.1017/CBO9780511614491.006
http://dx.doi.org/10.1017/CBO9780511614491.006
http://dx.doi.org/10.1016/j.euroecorev.2022.104112
http://dx.doi.org/10.1016/j.euroecorev.2022.104112
http://dx.doi.org/10.1016/j.euroecorev.2022.104112

	One instrument to rule them all: The bias and coverage of just-ID IV
	Introduction
	Setup
	Rejection Rates in Theory and Practice
	The Anatomy of Endogeneity
	When Measurement Error Motivates IV
	Anderson–Rubin vs. Conventional Confidence Intervals

	Bias Under a Good Sign
	Sign-Screened Bias and Coverage
	Theoretical Sign Restrictions Only

	Summary and Conclusions
	Appendix. Derivations and Proofs
	Estimating rho
	AR confidence sets for beta
	t-test Rejection Rates
	Proof of theorem:median-biasc0
	Proof of theorem:medianbias
	Proof of theorem:biasbetaU
	Median Bias Comparisons

	References


