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Too Much Data: Prices and Inefficiencies in Data Markets†

By Daron Acemoglu, Ali Makhdoumi, 
Azarakhsh Malekian, and Asu Ozdaglar*

When a user shares her data with online platforms, she reveals infor-
mation about others. In such a setting, externalities depress the price 
of data because once a user's information is leaked by others, she 
has less reason to protect her data and privacy. These depressed 
prices lead to excessive data sharing. We characterize conditions 
under which shutting down data markets improves welfare. Platform 
competition does not redress the problem of excessively low data 
prices and too much data sharing and may further reduce welfare. 
We propose a scheme based on mediated data sharing that improves 
efficiency. (JEL  D62, D83, H23, L51, L86, L88)

The data of billions of individuals are currently being utilized for personalized 
advertising or other online services.1 The use and transaction of individuals’ 

data are set to grow exponentially in the coming years, with more extensive data 
collection from new online apps and integrated technologies such as the Internet of 
Things and with the more widespread applications of artificial intelligence (AI) and 
machine-learning techniques. Most economic analyses emphasize benefits from the 
use and sharing of data because this permits better customization, better information, 
and more input into AI applications. It is often claimed that because data enables 
a better allocation of resources and more or higher-quality innovation, the market 
mechanism generates too little data sharing (e.g., Varian 2009; Jones et al. 2018; 
Farboodi et al. 2019; Veldkamp and Chung 2019). Economists have recognized that 
consumers might have privacy concerns (e.g., Stigler 1980; Posner 1981; Varian 
2009) but have often argued that data markets could appropriately balance privacy 
concerns and the social benefits of data (e.g., Laudon 1996; Posner and Weyl 2018). 
In any case, the willingness of the majority of users to allow their data to be used for 

1 Facebook alone has almost 2.5 billion monthly (active) individual users.
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no, or very little, direct benefit is argued to be evidence that most users place only a 
small value on privacy.2

This paper, in contrast, argues that there are forces that will make  individual-level 
data underpriced and make the market economy generate too much data. The reason 
is simple: when an individual shares her data, she compromises not only her own 
privacy but the privacy of other individuals whose information is correlated with 
hers. This negative externality tends to create excessive data sharing. Moreover, 
when there is excessive data sharing, each individual will overlook her privacy con-
cerns and part with her own information because others’ sharing decisions will have 
already revealed much about her.

The following example illustrates the nature of the problem, introduces some of 
our key concepts, and clarifies why there will be excessive data sharing and very 
little willingness to protect privacy on the part of users. Consider a platform with 
two users,  i = 1, 2 . Each user owns her own personal data, which we represent with 
a random variable   X i    (from the viewpoint of the platform). The relevant data of the 
two users are related, which we capture by assuming that their random variables are 
jointly normally distributed with mean zero and correlation coefficient  ρ . The plat-
form can acquire or buy the data of a user in order to better estimate her preferences 
or actions. Its objective is to minimize the mean square error of its estimates of user 
types, or to maximize the amount of leaked information about them. Suppose that 
the valuation (in monetary terms) of the platform for the users’ leaked information 
is one, while the value that the first user attaches to her privacy—again, in terms of 
leaked information about her—is one-half, and for the second user it is  v > 0 . We 
also assume that the platform makes  take-it-or-leave-it offers to the users to purchase 
their data. In the absence of any restrictions on data markets or transaction costs, 
the first user will always sell her data (because her valuation of privacy, at one-half, 
is less than the value of information to the platform, one). But given the correlation 
between the types of the two users, this implies that the platform will already have 
a fairly good estimate of the second user’s information. Suppose, for illustration, 
that  ρ ≈ 1 . In this case, the platform will know almost everything relevant about 
User 2 from User 1’s data, and this undermines the willingness of User 2 to pro-
tect her data. In fact, since User 1 is revealing almost everything about her, User 
2 would be willing to sell her own data for a very low price (approximately zero, 
given  ρ ≈ 1 ). But once User 2 is selling her own data, this also reveals User 1’s 
data, so User 1 can only charge a very low price for her data. Therefore, in this sim-
ple example, the platform will be able to acquire both users’ data at approximately 
zero price. Critically, however, this price does not reflect the users’ valuation of 
privacy. When  v ≤ 1 , the equilibrium is efficient because data are socially ben-
eficial in this case (even if data externalities change the distribution of economic 
surplus to the advantage of the platform). However, it can be arbitrarily inefficient 
when  v  is sufficiently high. This is because User 1, by selling her data, is creating a 
negative externality for User 2.

2 Consumers often report valuing privacy (e.g., Westin 1968; Goldfarb and Tucker 2012) but do not take much 
action to protect their privacy (e.g., Nitasha 2018; Athey et al. 2017).



220 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS NOVEMBER 2022

We develop a stylized and tractable  reduced-form model consisting of a commu-
nity of users with correlated information to explore more systematically the ideas 
illustrated by this example. We analyze the model both under a monopoly platform 
and under competition between platforms trying simultaneously to attract users and 
acquire their data.

Our main results correspond to generalizations of the insights summarized by 
the preceding example. First, we introduce our general framework and characterize 
the  first-best allocation, which maximizes the sum of surplus users and platforms. 
The first-best allocation typically involves considerable data transactions, but those 
individuals creating significant (negative) externalities on others should not share 
their data. Second, we establish the existence of an equilibrium and characterize 
the prices at which data will be transacted. This characterization clarifies how the 
market price of data for a user and the distribution of surplus depend on infor-
mation leaked by other users. Third, and more importantly, we provide conditions 
under which the equilibrium in the data market is inefficient as well as conditions 
for simple restrictions on markets to improve welfare. At the root of these ineffi-
ciencies are the economic forces already highlighted by our example: inefficiencies 
arise when a subset of users are willing to part with their data, which are informa-
tive about other users whose value of privacy is high. We show that these insights 
extend to environments with competing platforms and incomplete information  
as well.

We further investigate various policy approaches to data markets.  Person-specific 
taxes on data transactions can restore the first best, but are impractical. We show, 
in addition, how uniform taxation on all data transactions might, under some con-
ditions, improve welfare. Finally, we propose a new regulation scheme in which 
data transactions are mediated in a way that reduces their correlation with the data 
of other users, thus minimizing leaked information about others. We additionally 
develop a procedure for implementing this scheme based on “ decorrelation,” mean-
ing transforming users’ data so that their correlation with others’ data and types is 
removed.3

Our paper relates to the literature on privacy and its legal and economic aspects. 
The classic definition of privacy, proposed by justices Warren and Brandeis in 1890, 
is the protection of someone’s personal space and the right to be let alone (Warren 
and Brandeis 1890). Relatedly, and more relevant to our focus, Westin (1968) defines 
it as the control over and safeguarding of personal information, and this perspective 
has been explored from various angles in recent work (e.g., Pasquale 2015; Tirole 
2019; Zuboff 2019).

Papers more closely related to our work include MacCarthy (2018), Boyd 
(2011), and Fairfield and Engel (2015), who make the first contributions we are 
aware of that emphasize externalities in data-sharing. More recently, Choi et al. 
(2019) develop a model with a related informational externality and a number 
of results similar to our excessive information sharing finding. There are several 
important differences between this paper and ours, however. First, Choi et  al. 

3 This  decorrelation procedure is different from anonymization of data because it does not hide information 
about the user sharing her data but about others who are correlated with this user.
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(2019) assume that consumers are identical, while our above example illustrates 
that heterogeneity in privacy concerns plays a critical role in the inefficiencies 
in data markets. Our analysis highlights that there are only limited inefficien-
cies when users are homogeneous (specifically, the equilibrium is efficient in this 
case, when they have low or sufficiently high value of privacy). Second, in con-
trast to Choi et al. (2019), much of our analysis is devoted to the study of how 
the correlation structure across different users jointly determines sharing deci-
sions, prices, and the amount of leaked information. Third, their paper does not 
analyze the case with competing platforms. More recent and independent work 
by Bergemann et al. (2019) also studies an environment with data externalities. 
Though there are some parallels between the two papers, their work is different 
from and largely complementary to ours. In particular, they analyze an economy 
with symmetric users where there is a monopolist platform and data are used by 
this monopolist or other downstream firms (such as advertisers) for price discrim-
ination. They also consider learning (willingness to pay) on the users’ side and 
focus on the implications for market prices, profits, and the efficiency of the struc-
ture of the downstream market and whether data are collected in an anonymized 
or  nonanonymized form. Other recent and relevant contributions to this literature 
include Fainmesser et  al. (2019) and Jullien et  al. (2020), which consider the 
negative effects of leaking users’ (private) personalized data but do not study data 
externalities; Gradwohl (2017), which investigates user behavior in the presence 
of data externality but does not analyze prices and inefficiencies; and Ichihashi 
(2019), Ichihashi (2020b), and Ichihashi (2020a), which study the role of infor-
mation intermediaries and dynamic data collection by platforms.

Our paper also relates to the growing literature on information markets. One 
branch of this literature focuses on the use of personal data for improved alloca-
tion of online resources (e.g., Bergemann and Bonatti 2015; Goldfarb and Tucker 
2011; Montes et  al. 2019). Another branch investigates how information can be 
monetized either by dynamic sales or optimal mechanisms. For example, Anton and 
Yao (2002), Babaioff et al. (2012), Eső and Szentes (2007), Hörner and Skrzypacz 
(2016), Bergemann et al. (2018), and Eliaz et al. (2019) consider either static or 
dynamic mechanisms for selling data; Ghosh and Roth (2015) use the differential 
privacy framework of Dwork et al. (2014) and study mechanism design with privacy 
constraints; and Admati and Pfleiderer (1986) and Begenau et al. (2018) study mar-
kets for financial data. A third branch focuses on the optimal collection and acqui-
sition of information, for example, Agarwal et al. (2019), Chen and Zheng (2019), 
and Chen et al. (2018). Last, a number of papers investigate the question of whether 
information harms consumers—either because users are unaware of the data being 
collected about them (Taylor 2004) or because of price-discrimination–related rea-
sons (Acquisti and Varian 2005). See Acquisti et al. (2016), Bergemann and Bonatti 
(2019), and Agrawal et al. (2018) for excellent surveys of different aspects of this 
literature.

The rest of the paper proceeds as follows. Section I presents our model, focus-
ing on the case with a single platform for simplicity. Section II provides our main 
results—in particular, characterizing the structure of equilibria in data markets 
and highlighting their inefficiency due to data externalities. It also shows how 
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shutting down data markets may improve welfare. Section  III extends these 
results to a setting with competing platforms, while Section IV presents a number 
of  generalizations. Section V studies how taxes and  third-party-mediated informa-
tion-sharing schemes can improve welfare. Section VI concludes, while Appendix A 
presents the proofs of some of the results in the text and the online Appendix con-
tains the remaining proofs and additional results.

I. Model

In this section we introduce our model, focusing first on the case with a single 
platform. Competition between platforms is analyzed in Section III.

A. Information and Payoffs

We consider  n  users represented by the set   = {1, …, n} . Each user  i ∈   
has a type denoted by   x i   , which is a realization of a random variable   X i   . We assume 
that the vector of random variables  X = ( X 1  , …,  X n  )  has a joint normal distribu-
tion  (0, Σ) , where  Σ ∈  ℝ   n×n   is the covariance matrix of  X . Let   Σ ij    designate 
the  (i, j) -th entry of  Σ  and   Σ ii   =  σ  i  

2  > 0  denote the variance of individual  i ’s type.
Each user has some personal data,   S i   , which are informative about her type. These 

include both data that user activity on the platform generates (such as search and 
purchase histories) and additional data that users may share about their preferences, 
contacts, or past behavior. We suppose that   S i   =  X i   +  Z i   , where   Z i    is an indepen-
dent random variable with standard normal distribution; i.e.,   Z i   ∼ (0, 1) .4

For any user joining the platform, the platform can derive additional revenue if 
it can predict her type. This might be because of improved personalized services, 
targeted advertising, or price discrimination for some services sold on the platform. 
Since the exact source of revenue for the platform is immaterial for our analysis, we 
simply assume that the platform’s revenue from each user is a(n inverse) function 
of the mean square error of its forecast of the user’s type, minus what the platform 
pays to users to acquire their information. Namely, the objective of the platform is 
to minimize

(1)    ∑ 
i∈

  
 

    {E [  (  x ˆ   i   (S)  −  X i  )    
2
 ]  −  σ  i  

2  +  p i  }  ,

where  S  is the vector of data the platform acquires,    x ˆ   i  (S)  is the platform’s estimate 
of the user’s type given this information,  − σ  i  

2   is included as a convenient normal-
ization, and   p i    denotes payments to user  i  from the platform. This price represents 
both direct payments to the users in exchange for the type and amount of data shared 
as well as indirect payments, for example, in the form of some good or service the 
platform provides to the user in exchange for her data.

4 For transparency, we assume that both user type and personal data are represented by  one-dimensional vari-
ables, but all of our main results and insights generalize to a setting with  multidimensional types and data.
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Users value their privacy, which we also model in a  reduced-form manner as a func-
tion of the same mean square error.5 This reflects both pecuniary and  nonpecuniary 
motives—for example, the fact that a user may receive a greater consumer surplus 
when the platform knows less about her or that she may have a genuine demand for 
keeping her preferences, behavior, and information private. There may also be polit-
ical and social reasons for privacy—for example, concealing dissident activities or 
behaviors disapproved by some groups. We assume, specifically, that user i’s value 
of privacy is   v i   ≥ 0 , and her payoff is

   v i   {E [  (  x ˆ   i   (S)  −  X i  )    
2
 ]  −  σ  i  

2 }  +  p i    .

This expression and its comparison with (1) clarify that the platform and users have 
 potentially opposing preferences over information about user type. We have again 
subtracted   σ  i  

2   as a normalization, which ensures that if the platform acquires no 
additional information about the user and makes no payment to her, her payoff is 
zero.6

Critically, users with   v i   < 1  value their privacy less than the valuation that the 
platform attaches to information about them, and thus reducing the mean square 
error of the estimates of their types is socially beneficial. In contrast, users with   
v i   > 1  value their privacy more, and reducing their mean square error is socially 
costly. In a world without data externalities (where data about one user have no 
relevance to the information about other users), the first group of users should allow 
the platform to acquire (buy) their data while the second group should not. A simple 
market mechanism based on prices for data can implement this efficient outcome.

We will see that the situation is very different in the presence of data externalities.

B. Leaked Information

A key notion for our analysis is leaked information, which captures the reduction 
in the mean square error of the platform’s estimate of the type of a user. When the 
platform has no information about user  i , its estimate satisfies  E [(  x ˆ   i   −  X i  )   2 ] =  σ  i  

2  . As 
the platform receives data from this and other users, its estimate improves and the 
mean square error declines. The notion of leaked information captures this reduction 
in mean square error.

Specifically, let   a i   ∈ {0, 1}  denote the data-sharing action of user  i ∈  , with   
a i   = 1  corresponding to sharing. Denote the profile of sharing decisions by 
 a = ( a 1  , …,  a n  )  and the decisions of agents other than  i  by   a −i    . We also 
use the notation   S a    to denote the data of all individuals for whom   a j   = 1 , i.e., 
  S a   = ( S j   : j ∈  such that   a j   = 1) . Given a profile of actions  a , the leaked 

5 For simplicity, we postpone the introduction of joining decisions to Section III.
6 The positive social benefits from data are represented by the platform’s payoff function. This may be because 

the platform can price its other services in such a way as to capture all of these gains from users. But in our analysis, 
this assumption is imposed mainly for notational simplicity. If these social benefits from data were shared between 
the platform and users so that the fraction   β i   < 1  of these gains went directly to users, all of our results would 
apply without any modification.
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 information of (or about) user  i ∈   is the reduction in the mean square error of the 
best estimator of the type of user  i :

    i   (a)  =  σ  i  
2  −  min  

  x ˆ   i  
  

 
   E [  ( X i   −   x ˆ   i   ( S a  ) )    

2
 ]  .

Notably, because of data externalities, leaked information about user  i  depends 
not just on her decisions but also on the sharing actions taken by all users. With 
this notion at hand, we can write the payoff of user  i  given the price vector 
 p = ( p 1  , …,  p n  )  as

   u i   ( a i  ,  a −i  , p)  =  { 
 p i   −  v i     i   ( a i   = 1,  a −i  ) ,

  
 a i   = 1;

    
− v i     i   ( a i   = 0,  a −i  ) ,

  
 a i   = 0;

    

where we recall that   v i   ≥ 0  is the user’s value of privacy. The platform’s objective 
is to minimize (1) or to maximize

(2)  U (a, p)  =   ∑ 
i∈

  
 

      i   (a)  −   ∑ 
i∈: a i  =1

  
 

    p i    .

C. Equilibrium Concept

An action profile  a = ( a 1  , …,  a n  )  and a price vector  p = ( p 1  , …,  p n  )  constitute 
a pure strategy equilibrium if both users and the platform maximize their payoffs 
given other players’ strategies. More formally, in the next definition we define an 
equilibrium as a Stackelberg equilibrium, in which the platform chooses the price 
vector recognizing the user equilibrium that will result following this choice.

DEFINITION 1: Given the price vector  p = ( p 1  , …,  p n  ) , an action profile 
 a = ( a 1  , …,  a n  )  is user equilibrium if for all  i ∈  ,

   a i   ∈  arg max  
a∈{0,1}

  
 
    u i   ( a i   = a,  a −i  , p)  .

We denote the set of user equilibria at a given price vector  p  by  (p) . A pair  ( p   E ,  a   E )  
of price and action vectors is a pure-strategy Stackelberg equilibrium if 
  a   E  ∈ ( p   E )  and there is no profitable deviation for the platform; i.e.,

  U ( a   E ,  p   E )  ≥ U (a, p) , for all p and for all a ∈  (p)  .

In what follows, we refer to a pure-strategy Stackelberg equilibrium simply as an 
equilibrium. The notion of Stackelberg equilibrium in Definition 1 is a refinement 
of subgame-perfect equilibrium and ensures that the platform can choose the best 
action profile among those that are best responses for users. Without this refinement, 
there may be additional multiplicity of equilibria.
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II. Analysis

In this section, we first study the  first-best information-sharing decisions that 
maximize the sum of users and platform payoffs and then proceed to characterizing 
the equilibrium and its efficiency properties.

A. First Best

We define the first best as the data-sharing decisions that maximize utilitarian 
social welfare or social surplus given by the sum of the payoffs of the platform and 
users. Social surplus from an action profile  a  is

  Social surplus (a)  = U (a, p)  +   ∑ 
i∈

  
 

    u i   (a, p)  =   ∑ 
i∈

  
 

    (1 −  v i  )   i   (a)  .

Prices do not appear in this expression because they are transfers from the plat-
form to users.7 The  first-best action profile,   a   W  , maximizes this expression. The next 
proposition characterizes the  first-best action profile.

PROPOSITION 1: The first best involves   a  i  
W  = 1  if

(3)    ∑ 
j∈

  
 

    (1 −  v j  )    
  [Cov ( X i  ,  X j   ∣  a i   = 0,  a  −i  

W  ) ]    
2
 
   _______________________   

1 +  σ  j  
2  −   j   ( a i   = 0,  a  −i  

W  ) 
   ≥ 0 ,

and   a  i  
W  = 0  if the  left-hand side of (3) is negative.

The proof of this proposition and all other proofs, unless otherwise stated, are 
presented in Appendix A.

To understand this result, consider first the case in which there are no data exter-
nalities so that the covariance terms in (3) are zero, except  Cov( X i  ,  X i   ∣  a i   = 0,  a  −i  

W  ) 
=  σ  i  

2   , so that the  left-hand side is simply   σ  i  
4 /(1 +  σ  i  

2  )  times  1 −  v i   . This yields   
a  i  

W  = 1  if   v i   ≤ 1 . The situation is different in the presence of data externalities, 
because now the covariance terms are  nonzero. In this case, an individual should 
optimally share her data only if it does not reveal too much about users with   
v j   > 1 .

B. Equilibrium Preliminaries

The next lemma characterizes two important properties of the leaked information 
function    i   :  {0, 1}   n  → ℝ .

7 In including the platform’s payoff in social surplus, we are assuming that this payoff is not coming from shift-
ing revenues from some other (perhaps  offline) businesses. If we do not include the payoff of the platform in our 
welfare measure, our inefficiency results would hold a fortiori.
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LEMMA 1:

 (1) Monotonicity: for two action profiles  a  and   a ′    with  a ≥  a ′   ,

    i   (a)  ≥   i   ( a ′  ) , for all i ∈  {1, …, n}  .

 (2) Submodularity: for two action profiles  a  and   a ′    with   a  −i  ′   ≥  a −i    ,

    i   ( a i   = 1,  a −i  )  −   i   ( a i   = 0,  a −i  )  ≥   i   ( a i   = 1,  a  −i  ′  )  −   i   ( a i   = 0,  a  −i  ′  )  .

The monotonicity property states that as the set of users who share their informa-
tion expands, the leaked information about each user (weakly) increases. This is an 
intuitive consequence of the fact that more information always facilitates the esti-
mation problem of the platform and reduces the mean square error of its estimates. 
More important for the rest of our analysis is the submodularity property, which 
implies that the marginal increase in the leaked information from individual  i ’s shar-
ing decision is decreasing in the information shared by others. This, too, is intuitive 
and follows from the fact that when others’ actions reveal more information, there is 
less to be revealed by the sharing decision of any given individual.

Using Lemma 1 we next show that for any price vector  p ∈  ℝ   n  , the set   (p)   is 
a ( nonempty) complete lattice.

LEMMA 2: For any  p , the set  (p)  is a complete lattice and thus has a least and a 
greatest element.

Lemma 2 implies that the set of user equilibria is always  nonempty but may not 
be a singleton, as we illustrate in the next example.

Example 1: Suppose there are two users,  1  and  2 , with covariance matrix  Σ  such 
that   Σ 11   =  Σ 22   = 1  and   Σ 12   =  Σ 21   = ρ  and values   v 1   =  v 2   = 1 . The set of 

user equilibria in this case is depicted in Figure 1Figure 1. When   p 1  ,  p 2   ∈  [  
 (2 −  ρ   2 )   2 

 _______ 
2(4 −  ρ   2 )

   ,   1 _ 2  ]  , 

both action profiles   a 1   =  a 2   = 0  and   a 1   =  a 2   = 1  are user equilibria. This is a 
consequence of the submodularity of the leaked information function (Lemma 1): 
when User 1 shares her data, she is also revealing a lot about User 2 and making 
it less costly for User 2 to share her data. Conversely, when User 1 does not share, 
this encourages User 2 not to share. Despite this multiplicity of user equilibria, there 
exists a unique (Stackelberg) equilibrium for this game, given by   a  1  

E  =  a  2  
E  = 1  and 

  p  1  
E  =  p  2  

E  =   
 (2 −  ρ   2 )   2 

 _______ 
2(4 −  ρ   2 )

    . This uniqueness follows because the platform can choose 

the price vector to encourage both users to share.

C. Existence of Equilibrium

The next theorem establishes the existence of a (pure-strategy) equilibrium.
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THEOREM 1: An equilibrium always exists. That is, there exist an action profile   a   E   
and a price vector   p   E   such that   a   E  ∈ ( p   E ) , and

(4)  U ( a   E ,  p   E )  ≥ U (a, p)  for all p and for all a ∈  (p)  .

Note that the equilibrium may not be unique, but if there are multiple equilibria, 
all of them yield the same payoff for the platform (since otherwise (4) would not be 
satisfied for the equilibrium with lower payoff for the platform).

D. An Illustrative Example

In this subsection, we provide an illustrative example that highlights a few of 
the subtle aspects of the equilibrium. Consider the same setting as in Example 1 
with two users with the same value of privacy,  v , and a correlation coefficient  ρ  
between their information. We first show that the total payment from the platform to 
users is  nonmonotonic in the number of users sharing their information. When the 
platform induces both users to share (  a 1   =  a 2   = 1 ), it makes a total payment of 
 v(2 −  ρ   2  )   2 /(4 −  ρ   2 ) . In contrast, when it only induces the first user to share 
(  a 1   = 1 ,   a 2   = 0 ), this will cost  v/2 . Therefore, when   ρ   2  ≥ (7 −  √ 

_
 17  )/4 ≈ 0.71 , 

the platform pays less to have both users share their data. Intuitively, this  cost  saving 

Figure 1. The User Equilibrium as a Function of Price Vector  ( p 1  ,  p 2  )  in the Setting of Example 1

Notes: For the prices in the purple area in the center, both   a 1   =  a 2   = 0  and   a 1   =  a 2   = 1  are user equilibria.

p2

p1

a1 = 0

a2 = 1

a1 = 0

a2 = 0

a1 = 1

a2 = 1

a1 = 1

a2 = 0

(2 − ρ 2)2
_________
2(4 − ρ 2)

(2 − ρ2)2
_________
2(4 − ρ 2)

1__
2

1__
2



228 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS NOVEMBER 2022

for the platform is a consequence of the submodularity of leaked information 
(Lemma 1): when both users share, the data of each user are less valuable in view 
of the information revealed by the other user. This finding reflects one of the claims 
made in the introduction: market prices for data do not reflect the value that users 
attach to their privacy and may be depressed because of data externalities.

We next illustrate that equilibrium (social) surplus is  nonmonotonic in the users’ 
value of privacy. Equilibrium surplus is depicted in Figure 2Figure 2. For values of  v  larger 
than  4/(2 −  ρ   2  )   2  , users do not share their data and equilibrium surplus is zero. 
When  v  is smaller than  one , users share their data and equilibrium surplus is posi-
tive. For intermediate values of  v , in particular for  v ∈ [1, 4/(2 −  ρ   2  )   2 ] , the platform 
chooses a price vector that induces both users to share their data, but in this case, the 
social surplus is negative. The intuition is related to the point already emphasized in 
the previous paragraph: when both users share their data, the externalities depress 
the market prices for data, and this makes it profitable for the platform to acquire 
the users’ data even though  v > 1 . More explicitly, when User 2 shares her data, 
this reveals sufficient information about User 1 that she becomes willing to accept a 
relatively low price for sharing her data, and this maintains an equilibrium with low 
prices for data even though both users attach a relatively high value to their privacy.

E. Equilibrium Prices

In this subsection we characterize the equilibrium price vector. For any action 
profile  a ∈  {0, 1}   n  , let   p   a   denote the least ( element-wise minimum) equilibrium 

Figure 2. Equilibrium and Social Surplus as a Function of the Value of Privacy  v  
for a Setting with Two Users with   σ  1  

2  =  σ  2  
2  = 1 ,   Σ 12   = ρ  and   v 1   =  v 2   = v 
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price vector that sustains an action profile  a  in a user equilibrium. More specifically,   
p   a   is defined such that8

   p   a  ≤ p, for all p such that a ∈  (p)  .

Profit maximization by the platform implies that equilibrium prices must satisfy this 
property, since otherwise the platform could reduce prices and still implement the 
same action profile. We therefore refer to   p   a   as “equilibrium price vector” or simply 
as “equilibrium prices” (with the understanding that these would be the equilibrium 
prices when the platform chooses to induce action profile  a ).

The next theorem computes this price vector (and shows that it exists).

THEOREM 2: For any action profile  a ∈  {0, 1}   n  , we have

(5)    i   ( a i   = 1,  a −i  )  =   i   ( a i   = 0,  a −i  )  +   
  [ σ  i  

2  −   i   ( a i   = 0,  a −i  ) ]    
2
 
   _______________________   

 ( σ  i  
2  + 1)  −   i   ( a i   = 0,  a −i  ) 

    

and

    i   ( a i   = 0,  a −i  )  =  d  i  
T   (I +  D i  )    −1  d i  , for all   a i   = 1 ,

where   D i    is the matrix obtained by removing row and column  i  from matrix  Σ  as well 
as all rows and columns  j  for which   a j   = 0 , and   d i    is   (Σ ij   : j such that  a j   = 1) . The 
equilibrium price that sustains action profile  a  is

   p  i  
a  =  

⎧
 

⎪
 ⎨ 

⎪
 

⎩
  v i      

  [ σ  i  
2  −   i   ( a i   = 0,  a −i  ) ]    

2
 
  ___________________  

 ( σ  i  
2  + 1)  −   i   ( a i   = 0,  a −i  ) 

  ,   a i   = 1;    

0,

  

 a i   = 0.

    

The first part of Theorem 2 provides a decomposition of leaked information about 
User  i  when she does not share her data. In particular, the first term on the  right-hand 
side of Equation (5),    i  ( a i   = 0,  a −i  )  , is her leaked information resulting from the 
data sharing of other users, and thus represents the data externality. The second term 
is the additional leakage when User  i  shares her data. The second part of Theorem 2 
states that because the platform offers the prices, the equilibrium price for any user  i  
who shares her information must equal her reservation value, making her indifferent 
between sharing and not sharing. This result explains why the equilibrium price,   p  i  

a  
, is equal to the value of privacy,   v i    , multiplied by the second term in (5), which is 
the additional leakage of information and, hence, the loss of privacy resulting from 
the user’s own data-sharing.

The following is an immediate corollary of Theorem 2.

8 Prices for users not sharing their data are not  well defined.
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COROLLARY 1: For any user  i , the equilibrium price   p  i  
  ( a i  =1, a −i  )   (which induces   

a i   = 1  for any action profile   a −i   ∈  {0, 1}   n−1   ) is increasing in   σ  i  
2   and decreasing 

in the data externality captured by    i  ( a i   = 0,  a −i  ) . Moreover, leaked information   
 i  ( a i   = 1,  a −i  )  is increasing in   σ  i  

2   and in the data externality    i  ( a i   = 0,  a −i  ) .

The first part of Corollary 1 shows that a higher variance of the user’s type,   σ  i  
2  , 

increases the equilibrium price. Intuitively, a higher variance makes the user’s type 
more difficult to predict and thus makes her own information more valuable. This 
also explains why the price is decreasing in the data externality, represented by infor-
mation leaked by others,    i  ( a i   = 0,  a −i  ) . The last part of Corollary 1 shows that a 
higher variance of individual type, as well as a greater data externality, increases the 
overall leakage of information about the user.

The next proposition establishes that equilibrium prices are nonincreasing in the 
set of users that share their data, as well.

PROPOSITION 2: For two action profiles  a,  a ′    with   a ′   ≥ a , we have   p  i  
 a ′    ≤  p  i  

a   for 
all  i ∈   for which   a i   = 1 .

Proposition  2 follows from Theorem  2 and Lemma  1. In particular, using 
Theorem 2, the equilibrium price for User  i  is her additional loss of privacy (increase 
in the information leakage multiplied by   v i   ) if she shares her data. From the submod-
ularity of information leakage (Lemma 1), the additional information the user leaks 
about herself decreases when more people share their data.9

F. Inefficiency

This subsection presents one of our main results, documenting the extent of inef-
ficiency in data markets.

First, note that all users with value of privacy less than one will always share their 
data in equilibrium. For future reference, we state this straightforward result as a 
lemma.

LEMMA 3: All users with value of privacy   v i   ≤ 1  share their data in equilibrium.10

9 Notice also the connection between Proposition 2 and Crémer and Mclean (1988), who establish in the context 
of a mechanism-design problem with correlated values that when agents reveal more information about each other, 
their information rent becomes smaller. In our setting, when more users share their data, the value of another user 
sharing her data becomes small, but this result originates from the correlation in personal data, not from correlated 
values.

10 The only subtlety here is about users with   v i   = 1 . If these users’ information is correlated with others who 
are already sharing, their equilibrium prices will be strictly less than one, and this will make it strictly beneficial 
for the platform to purchase their data. If they are correlated with others who are not sharing, then the platform 
would still like to purchase these data because of the additional reduction in the mean square error of its estimates 
of others’ types that they enable. When such an individual is uncorrelated with anybody else, then the platform 
would be indifferent between purchasing her data or not. In this case, for simplicity of notation, we suppose that it 
still purchases the data.
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Motivated by this lemma, we partition users into two sets—those with a value of 
privacy below one (“ low-value users”) and those with a value above one (“ high-value 
users”):

       (l)   =  {i ∈  :  v i   ≤ 1}  and      (h)   =  {i ∈  :  v i   > 1}  .

We also denote by   v   (h)   and   v   (l)   the vectors of valuations of privacy for  high-value 
and  low-value users, respectively. Lemma 3 then implies that for all  i ∈     (l)  , we 
have   a  i  

E  = 1 .
The next theorem provides conditions for efficiency and inefficiency. More pre-

cisely, we show that if every  high-value user is uncorrelated with all other users, 
then equilibrium is efficient. Otherwise, if a  high-value user is correlated with a 
 low-value user, or if two  high-value users are correlated, there exists a set of valua-
tions (consistent with the set of high- and  low-value users) such that any equilibrium 
is inefficient.

THEOREM 3:

 (1) Suppose every  high-value user is uncorrelated with all other users. Then the 
equilibrium is efficient.

 (2) Suppose at least one  high-value user is correlated (has a  nonzero correlation 
coefficient) with a  low-value user. Then, there exists   v –   ∈  ℝ   |    (h) |   such that for   
v   (h)  ≥  v –    the equilibrium is inefficient.

 (3) Suppose every  high-value user is uncorrelated with all  low-value users and 
that at least one  high-value user is correlated with another  high-value user. 
Let     ̃     (h)  ⊆      (h)    be the subset of  high-value users correlated with at least one 
other  high-value user. Then, for each  i ∈    ̃     (h)   there exists    v –  i   > 1  such that 
if for any  i ∈    ̃     (h)    v i   <   v –  i    , the equilibrium is inefficient.

Theorem 3 clarifies the source of inefficiency in our model. If  high-value users 
are not correlated with others, the equilibrium is efficient. In this case, there may 
still be data externalities among  low-value users and these may affect market prices 
(and the distribution of economic gains between the users and the platform). But 
they do not create a loss of privacy for users who prefer not to share their data.

However, the second part of the theorem shows that if  high-value users are cor-
related with  low-value users, the equilibrium is typically inefficient. The additional 
condition   v   (h)  ≥  v –    is not a restrictive one, as highlighted in Example 2 below, and it 
rules out cases in which  high-value users suffer only a little loss of privacy but gener-
ate socially valuable information about  low-value users. In general, the inefficiency 
identified in this part of the theorem can take one of two forms: either  high-value 
users do not share their data but, because of information leaked about them, they 
suffer a loss of privacy; or, given the amount of leaked information about them, 
 high-value users decide to share themselves—even though, absent the  correlation 
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with  low-value users or  low-value users’ data-sharing, they would have preferred 
not to do so.

Finally, the third part of the theorem covers the remaining case, where  high-value 
users are uncorrelated with  low-value users but are correlated among themselves. 
The equilibrium is again inefficient, because the platform can induce some of them 
to share their data (even though, individually, each would prefer not to). This is 
because when a subset of them share, this compromises the privacy of others, 
depresses data prices, and may incentivize others to share, too (further depressing 
data prices, in turn). This inefficiency applies when some  high-value users have 
intermediate values of privacy (i.e.,   v i   ∈ (1,   v –  i  ) ), since those with a sufficiently high 
value of privacy cannot be induced to share their data.

Overall, this theorem highlights that inefficiency in data markets originates from 
the combination of a sufficiently high value attached to privacy by some users and 
their correlation with other users. It therefore emphasizes that inefficiency in our 
model is tightly linked to data externalities.

G. Are Data Markets Beneficial?

Theorem 3 focuses on the comparison of the market equilibrium to the first best. 
This is a tough comparison for the market because in the first best, some users share 
their data and benefit from market transactions while others do not share. A lower 
bar for data markets is whether they achieve positive social surplus so that any inef-
ficiencies they create are (partially) compensated by benefits for other agents. We 
next show that this is not necessarily the case and provide a sufficient condition for 
the equilibrium (social) surplus to be negative, so that shutting down data markets 
altogether would improve social surplus (and thus utilitarian welfare).

Let us also introduce the following notation: for any action profile  a ∈  {0, 1}   n  , we 
let    i  (T )  denote the leaked information about User  i  where  T = {i ∈  :  a i   = 1} .

PROPOSITION 3: We have

  Social surplus ( a   E )  ≤   ∑ 
i∈     (l)  

  
 

    (1 −  v i  )   i   ()  −   ∑ 
i∈     (h)  

  
 

    ( v i   − 1)   i   (     (l)  )  .

This implies that if

(6)    ∑ 
i∈     (h)  

  
 

    ( v i   − 1)   i   (     (l)  )  >   ∑ 
i∈     (l)  

  
 

    (1 −  v i  )   i   ()  ,

then the equilibrium surplus is negative and utilitarian welfare improves if data 
markets are shut down.

This proposition follows immediately from Lemma 3. The first term is an upper 
bound on the gain in social surplus from the sharing decisions of  low-value users 
(even if these gains do not necessarily accrue to the users themselves and are mainly 
captured by the platform). This expression is an upper bound because we are evalu-
ating this term under the assumption that all users share their data, thus maximizing 
the amount of socially beneficial information about  low-value users. The second 
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term is a lower bound on the loss of privacy from  high-value users. It is a lower 
bound because the loss of privacy is evaluated for the minimal set of agents, the 
 low-value ones, who always share their data. (In equilibrium, a superset of      (l)   will 
share their data.)

We also add that leaked information in this proposition is only a function of the 
matrix  Σ  as shown in Theorem 2, so the  right-hand side is in terms of model param-
eters and does not depend on equilibrium objects.

The next proposition provides a sufficient condition in terms of values of privacy 
and correlations between data that ensures condition (6) and implies that the equi-
librium necessarily has negative social surplus.

PROPOSITION 4: Suppose

(7)    ∑ 
i∈     (h)  

  
 

    [ ( v i   − 1)    
 ∑ j∈     (l)    

 
    Σ  ij  

2  
 __________ 

|| Σ    (l)   || 1   + 1
  ]  >   ∑ 

i∈     (l)  

  
 

    σ  i  
2  (1 −  v i  )  ,

where  || Σ   (l)  || 1    denotes the  1-norm of the submatrix of  Σ , which only includes the 
rows and columns corresponding to  low-value users. Then the equilibrium surplus 
is negative.11

Proposition 4 provides a sufficient condition in terms of the values of privacy and 
the correlation between high- and  low-value users for negative equilibrium surplus. 
It highlights the inefficiencies caused by direct data externalities, which correspond 
to Part 2 of Theorem 3. To interpret condition (7), let us fix the set of  low-value 
users and their values. Condition (7) is more likely to hold when there exist users 
with sufficiently high values and high correlation with  low-value users, so that data 
shared by  low-value users leaks a lot of information about users who value their 
privacy highly.

Example 2: We consider a setting with two communities, each of size ten. Suppose 
that all users in Community 1 are  low-value and have a value of privacy equal to  0.9  , 
while all users in Community 2 are  high-value (with   v h   > 1 ). We also take the vari-
ances of all user data to be  one , the correlation between any two users who belong 
to the same community to be  1/20 , and the correlation between any two users who 
belong to different communities to be  ρ . Figure 3Figure 3 depicts equilibrium surplus as a 
function of   v h    and  ρ . The curve in the figure represents the combinations of these 
two variables for which the social surplus is equal to zero. Moving in the northeast 
direction reduces equilibrium surplus, and hence, the shaded area has negative sur-
plus. Consequently, in this part of the parameter space, shutting down data markets 
improves utilitarian social welfare. Two points are worth noting. First, relatively 
small values of the correlation coefficient  ρ  are sufficient for social surplus to be 
negative. Second, when   v h    is very close to one, the social surplus is always positive 
because the negative surplus from  high-value users is compensated by the social 

11  1-norm of a matrix  A  is defined as  ||A || 1   =  max i   ∑ j=1  
n   | A ij  | .
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benefits their data-sharing creates for  low-value users. In Example  B-1 in the online 
Appendix, we build on this example to provide an explicit case where the platform 
benefits from data markets even when users lose out.

III. Competition among Platforms

In this section we generalize the main results from the previous section to a set-
ting in which two platforms compete for (the data of) users and focus on the case 
where the platforms set prices before joining decisions to attract users.12 The timing 
of the events is as follows:

 (1) Platforms simultaneously offer price vectors   p   1  ∈  ℝ   n   and   p   2  ∈  ℝ   n  .

 (2) Users simultaneously decide which platform, if any, to join and whether to 
share their data.

For any  i ∈  , we denote by   b i   ∈ {0, 1, 2}  the joining decision of User  i , where   
b i   = 0  means User  i  does not join,   b i   = 1  means she joins platform 1, and   b i   = 2  
stands for joining platform 2. Let us also define

   J 1   =  {i ∈  :  b i   = 1}  and  J 2   =  {i ∈  :  b i   = 2}  

as the sets of users joining the two platforms.

12 An alternative timing of events is one where users first join platforms and then data prices are announced. In 
the working paper version of our work, we also analyzed this case and showed that although the analysis is some-
what simpler, similar inefficiencies apply in this case, as well.

Figure 3. Shaded Area Shows the Pairs of  (ρ,  v h  )  with 
Negative Equilibrium Surplus in the Setting of Example 2
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Similar to the monopoly case in the previous section, the payoff of a platform 
is a function of leaked information about users and payments to users. So for plat-
form  k ∈ {1, 2} , we have

(8)   U    (k)   ( J k  ,  a    J k   ,  p    J k   )  =   ∑ 
i∈ J k  

  
 

      i   ( a    J k   )  −   ∑ 
i∈ J k  : a  i  

 J k   =1

  
 

    p  i  
 J k     ,

where   a    J k    ∈ {0, 1 }   | J k  |   denotes the sharing decision of users belonging to this plat-
form, and   p    J k     denotes the vector of prices the platform offers to users in   J k    .

The payoff of a user has three parts. First, each user receives a valuable service 
from the platform it joins. Since we are modeling joining decisions in this section, 
we will be more explicit about this “joining value” and assume that it depends on 
who else joins the platform. We therefore write this part of the payoff as   c i  ( J  b i    )  for 
User  i  joining Platform   b i    , with the convention that   J 0   = ∅ , and also normalize   c i   
(J)  = 0  for all  J ∌ i  and for all  i ∈  . Second, the user suffers a disutility due to 
loss of privacy from leaked information, as before, and we again denote the value 
of privacy for User  i  by   v i    . Third, she receives benefits from any payments from the 
platform in return for the data she shares. Thus, the payoff to User  i  joining Platform   
b i   ∈ {1, 2}  is

(9)   u i   ( a i  ,  b i  ,  a −i  ,  𝐛 −i  ,  p   1 ,  p   2 )  =  
{

 
 p  i  

 b i    −  v i     i   ( a i   = 1,  a  −i  
 J  b i      )  +  c i   ( J  b i    ) ,

  
 a i   = 1;

     
−  v i     i   ( a i   = 0,  a  −i  

 J  b i      )  +  c i   ( J  b i    ) ,
  

 a i   = 0;
    

where   a    J k     denotes the vector of sharing decisions in the set   J k    for  k = 1, 2 .
Since our focus is on situations in which users join online platforms and share 

their data, we impose that joining values are sufficiently large.

ASSUMPTION 1: For each  i ∈  , we have

 (1) for all  J  and   J ′    such that  i ∈ J  and  J ⊂  J ′   , we have   c i  ( J ′   ) >  c i  (J) .

 (2)   c i  ({i}) >  max j∈    v j    σ  j  
2  .

This assumption implies that users receive greater services from a platform 
when there are more users on the platform, which captures the network effects 
in online services and social media. The fact that this benefit is indexed by  i  
means that users can prefer being on the same platform with different sets of other 
users. The second part of this assumption imposes that the minimum value of the 
( nondata) services provided by the platform is larger than the maximum disutil-
ity from leaked information. In the rest of this section, we impose Assumption 1 
without explicitly stating it.

Equilibria in this environment will typically be in mixed strategies, and we for-
mally define mixed-strategy equilibria in the online Appendix in terms of strate-
gies that define probability distributions over price vectors for the platforms and 
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user actions. Theorem   B-1 in the online Appendix establishes the existence of a 
mixed-strategy equilibrium with competition.13

The next lemma ensures that all users join one of the platforms and simplifies our 
analysis in this section.14

LEMMA 4: Each user joins one of the two platforms. In other words,   b i   = 1  or  2  
for all  i ∈  .

We next show that the equilibrium is even more likely to be inefficient when plat-
forms compete using data prices. In particular, in contrast to the settings studied so 
far, the equilibrium is inefficient not only when  high-value users are correlated with 
other users but also when there is correlation only among  low-value users. For this 
theorem, let us define

  δ =   min  
i,T⊂

  
 
    c i   ()  −  c i   (T)  and Δ =   max  

i,T⊆
  

 
    c i   ()  −  c i   (T)  .

THEOREM 4:

 (1) Suppose every user is uncorrelated with all other users. Then, the equilib-
rium is efficient.

 (2) Suppose that every  high-value user is uncorrelated with all other users, but 
at least two  low-value users are correlated with each other. Then, there exist   
δ _  ,   Δ 

–
   ,   Δ ̃   ,   v –   , and   v ̃    such that

(2-1) If  δ ≥  δ _  , the equilibrium is efficient.

(2-2) If  Δ ≤  Δ 
–
    and   v   (l)  ≤  v –   , the equilibrium is efficient.

(2-3) If  Δ ≤  Δ ̃    and   v   (l)  ≥  v ̃   , the equilibrium is inefficient.

 (3) Suppose that at least one  high-value user is correlated with a  low-value user. 
Then, there exist   δ ̃   >  Δ 

–
   >  δ 

–
  > 0 ,   v –   ∈  ℝ   |    (h) |  , and   v _  ∈  ℝ   |    (l) |   such that

(3-1)  If   v   (h)  ≥  v –   ,   v   (l)  ≥  v _  ,  Δ ≤  Δ 
–
   , and  δ ≥  δ 

–
  , the equilibrium is 

inefficient.

(3-2)  If  δ ≥  δ ̃   , the equilibrium is efficient.

13 In our setting with a monopoly platform, users no longer have the option of switching to another platform, 
and we focus on the Stackelberg equilibrium, where the platform sets prices anticipating user choices and selects 
the most advantageous user equilibrium for itself (when there were multiple user equilibria). This ensures that an 
equilibrium data price yields a (weakly) greater payoff for the platform than any other price for any other user 
equilibrium. Because users now make their joining decisions after price offers, we focus on Nash equilibria, which 
require that for each platform no other price induces a user equilibrium in which the platform has a payoff greater 
than its equilibrium payoff.

14 This assumption also implies that in a monopoly setting all users join the monopoly platform, which is the 
reason we did not introduce the joining decision in the previous section.
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The first part is straightforward: without correlation there is no data externality, 
which ensures efficiency. The second part is new relative to our previous results: 
now the equilibrium is inefficient even when  high-value users are uncorrelated 
with all other users. This inefficiency is caused by competition using data prices. 
Since there is no correlation between  high-value and  low-value users, the first best 
involves all  low-value users sharing their data and all ( high-value and  low-value) 
users joining the same platform in order to benefit from the highest joining val-
ues. However, we show in Part   2-3 that such an allocation is not an equilibrium 
because the other platform can attract some of the  low-value users, who can benefit 
by having less of their information leaked by other  low-value users. (Even though 
information leakage about these users is socially beneficial, it is privately costly for 
them.) This leads to a fragmented distribution of users across platforms, leading to 
inefficiency (in particular, in this case the surplus under competition is smaller than 
the surplus under monopoly). Parts  2-1 and  2-2 provide conditions for efficiency in 
terms of the  c  function being sufficiently steep or the privacy concerns of  low-value 
users being sufficiently weak.

Competition affects not only efficiency but also the distribution of surplus. In 
particular, in the monopoly model, data prices are depressed, benefiting the platform 
at the expense of the consumers. Competition may partially rectify this, because 
 low-value users may segregate between the two platforms, which reduces informa-
tion leakages about them and increase data prices. Nevertheless, Part  2-3 shows that 
this does not restore efficiency because it fails to exploit the joining (service quality) 
and  data-sharing benefits of having  low-value users on the same platform.

Part 3-1 of the theorem is similar to our other inefficiency results. In this case, in the 
first best all users join the same platform (because the  c  function is sufficiently steep), 
but only  low-value users uncorrelated with  high-value users share their data (because   
v   (h)   is sufficiently high). We show, however, that this allocation cannot be an equilib-
rium because the other platform can deviate and attract a subset of  low-value users and 
induce them to share their data. In Part  3-2 the first best is, once again, for all users to 
join one of the platforms. (In this case, the surplus under competition is higher than 
the surplus under monopoly.) But now, because the joining values are even steeper, 
the other platform can no longer attract a subset of these users, while the threat of all 
users switching to this other platform supports the  first-best allocation (though there 
also exist inefficient equilibria in this case). Finally, we show in the working paper ver-
sion that when  high-value users are uncorrelated with  low-value users but correlated 
among themselves, the equilibrium may or may not be efficient.

IV. Extensions

Our framework is purposefully stylized. This raises the question of whether some 
of our conclusions critically depend on our simplifying assumptions. In this sec-
tion, we show that all of our main insights generalize when the correlation structure 
across users is more general than the Gaussian distributions we have assumed, when 
the values of privacy of different users are not known by the platform(s), and when 
the correlation of information across users is unknown. For simplicity, we focus on 
the case of a monopoly platform in this section.
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A. General Correlation Structures

As noted above, all of our results so far depend on and follow from Lemma 1, 
which was established using the fact that the measure of leaked information is mean 
square error and all data and signals are Gaussian. We also prove that this lemma 
holds, and all of our results readily extend, under more general assumptions so long 
as the following four properties hold (see Appendix A):

 (1) No leakage with independence: If a user  i ’s information is independent 
from the information of all other users, then we have    j  ( a i   = 1,  a −i  ) = 
  j  ( a i   = 0,  a −i  )  for all  j ≠ i,  a −i   ∈ {0, 1 }   n−1  .

 (2) Leakage with  nonindependence: If the information of two users  i  and  j  are 
 nonindependent (given any set of other users who share), then for any action 
profile  a ∈ {0, 1 }   n   where User  i  shares her data, leaked information about User  
j  will be  nonzero. That is,    j  ( a i   = 1,  a −i  ) > 0  for all   a −i   ∈  {0, 1}   n−1  .

 (3) Monotonicity: For two action profiles  a  and   a ′    with  a ≥  a ′   , we have 
   i  (a) ≥   i  ( a ′   )  for all  i = 1, …, n .

 (3) Submodularity:  For two action profiles  a  and   a ′    with   a  −i  ′   ≥  a −i   , we have   
 i  ( a i   = 1,  a −i  ) −   i  ( a i   = 0,  a −i  ) ≥   i  ( a i   = 1,  a  −i  ′  ) −   i  ( a i   = 0,  a  −i  ′  ) .

These four properties hold under our baseline leaked-information measure and 
Gaussian signals. We also prove in Appendix A that they and, thus, Lemma 1 gener-
alize to another benchmark case, when the measure of leaked information is mutual 
information between a user’s type and the vector of types of users who have shared 
their data:    i  (a) = I [ X i   ; ( X j   :  a j   = 1)]   (where the mutual information between 

two random variables  X  and  Y  is defined as  I(X; Y ) =  E X,Y   [−log   
P (X) P (Y) 

 _______ 
P (X, Y) 

  ]  ). In 

 particular, this measure of leaked information satisfies Properties  1 through 4 for 

any distribution of random variables  X .

B. Unknown Valuations

Our analysis has so far assumed that platforms know the value of privacy of 
different users. In this section, we adopt the more realistic assumption that they do 
not know the exact valuations of users but understand that the value of privacy of 
User  i ,   v i   , has a distribution represented by the cumulative distribution function   F i    
and density function   f i    (with upper support denoted by   v   max  ). Users know their own 
value of privacy. We then show how the platform can design a mechanism to elicit 
this information (in the form of users reporting their value of privacy) and prove that 
all of the main insights from our analysis generalize to this case.

Using the revelation principle we can define an equilibrium as a pair  ( a   E ,  p   E )  of 
functions of the reported valuations  v = ( v 1  , …,  v n  )  such that each user finds it 
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incentive compatible to report her true value and the expected payoff of the platform 
is maximized, taking this reporting behavior as given. That is,

  ( a   E ,  p   E )  =   max  
a: ℝ   n → {0,1}   n ,p: ℝ   n → ℝ   n 

  
 
   E v   {

  ∑ 
i=1

  
n

      i   [a (v) ]  −   ∑ 
i: a i   (v) =1

  
 

    p i   (v) 
}

  , such that

   p i   (v)  −  v i     i   [a (v) ]  ≥  p i   ( v −i  ,  v  i  ′  )  −  v i     i   [a ( v −i  ,  v  i  ′  ) ]  for all  v  i  ′  , v, and i ∈  .

In the online Appendix, using an argument similar to Myerson (1981), we charac-
terize the equilibrium in this case and prove that our inefficiency results hold, with 
the only difference being that instead of valuations, the virtual valuations define 
low- and high-value users where the virtual valuation of a user with value  v  is 
  Φ i  (v) = v +  [ F i  (v)/ f i  (v)]  .

C. Unknown Correlation

Another simplifying assumption we have utilized is that both the platform and 
the users know the correlation structure  Σ . We now show that our main results gen-
eralize when this correlation structure is unknown. Suppose, in particular, that the 
correlation structure  Σ  is drawn from a distribution  μ  over a finite set  𝒮  of covari-
ance matrices. The timing of the events is as follows. First, the platform offers prices 
(knowing only the distribution of correlations  μ ). Then, users decide whether they 
want to share their data (again, knowing only the distribution of correlations  μ ). 
Finally, the correlation structure is realized, which—together with the action profile 
of users—determines the utility of the users and the platform. This implies that, 
given action profile  a ∈  {0, 1}   n  , the utility of User  i  in this setting becomes

   u i   ( a i  ,  a −i  , p)  =  
{

 
 p i   −  v i    E Σ∼μ   [  i   ( a i   = 1,  a −i  ) ] ,

  
 a i   = 1;

     
− v i    E Σ∼μ   [  i   ( a i   = 0,  a −i  ) ] ,

  
 a i   = 0;

   

and the utility of the platform becomes

  U (a, p)  =   ∑ 
i∈

  
 

     E Σ∼μ   [  i   (a) ]  −   ∑ 
i∈: a i  =1

  
 

    p i    .

The next theorem, which is the analogue of Theorem 3, characterizes the conditions 
for efficiency and inefficiency in this case.15

15 One may wish to go even further and investigate whether the platform can learn the distribution of valua-
tions from past observations. This is a challenging question because it would require an extension of our model to 
a fully dynamic setting and new statistical tools for learning the general  variance–covariance structure from past 
observations.
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THEOREM 5:

 (1) Suppose every  high-value user is uncorrelated with all other users almost 
surely; i.e.,   ℙ Σ∼μ  ( Σ ij   = 0) = 1  for all  i ∈     (h) , j ∈     (l)  . Then the equilib-
rium is efficient.

 (2) Suppose at least one  high-value user is correlated (has a  nonzero correla-
tion coefficient) with a  low-value user with  nonzero probability; i.e., there 
exist  i ∈     (h)   and  j ∈     (l)   such that   ℙ Σ∼μ  ( Σ ij   ≠ 0) > 0 . Then there exists 
  v –   ∈  ℝ   |    (h) |   such that for   v   (h)  ≥  v –    the equilibrium is inefficient.

 (3) Suppose every  high-value user is uncorrelated with all  low-value users 
almost surely, and at least one  high-value user is correlated with another 
 high-value user with positive probability. Let     ̃     (h)  ⊆     (h)   be the subset of 
 high-value users correlated with at least one other  high-value user with pos-
itive probability. Then for each  i ∈    ̃     (h)   there exists    v –  i   > 1  such that if for 
any  i ∈    ̃     (h)    v i   <   v –  i    , the equilibrium is inefficient.

V. Regulation

The inefficiencies documented so far raise the question of whether certain types 
of government policies or regulations could help data markets function better. We 
briefly address this question in this section. We first discuss taxes and then turn to 
a regulation scheme based on  decorrelation to reduce the informativeness of users' 
data about others. For simplicity, we focus on the case of a single platform with 
complete information.

A. Taxation

It is straightforward to establish that a simple Pigovian tax scheme, using 
personalized taxes on data transactions, can restore the first best (see our work-
ing-paper version). This is because not taxing users, who should be sharing in 
the first best, is sufficient to ensure that they share in the  post-tax equilibrium, 
as well, regardless of the sharing decisions of the rest of the users. Then, impos-
ing prohibitive taxes on the data transactions of users who should not be sharing 
implements the first best. Pigovian taxes implement the first best, but these taxes 
vary across individuals, which presupposes a huge amount of information on the 
part of the planner or  tax authority. A natural question is whether a uniform tax 
scheme can also improve over the equilibrium allocation. If equilibrium surplus 
is negative, then a uniform and sufficiently high tax on data transactions improves 
equilibrium surplus and can shut down the data market. However, beyond this 
simple case with negative equilibrium surplus, there is no guarantee that uniform 
taxes on data transactions improve welfare. This is because such taxes may pre-
vent beneficial data trades, as well. We next consider an alternative regulation 
that keeps the beneficial data trades while eliminating the negative effects of  
data-sharing.
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B. Mediated Data-Sharing and  Decorrelation

In this subsection, we propose a different approach to improving the efficiency 
of data markets. Our analysis has clarified that a main source of inefficiency in 
such markets is the correlation between the data of a user who is not sharing and 
the data of others who have shared their data. Our present approach is founded 
on the observation that the data of different users can be transformed in such a 
manner as to remove the correlation between any user who does not wish to 
share her data and all other users while maintaining the correlation of infor-
mation within the set of users sharing their data. We refer to such a scheme as 
 decorrelation.

Suppose that instead of sharing their data with the platform, users share their data 
with a (trusted  third-party) mediator, who can either not share these data with the 
platform (as instructed) or transform them before revealing them to the platform.16 
Recall that User  i ’s data are represented by   S i   =  X i   +  Z i    . The main idea is that the 
mediator collects all the data from the users and then computes transformed vari-
ables for each user, removing the correlation with the information of other users, 
and only shares the transformed data of those who are willing to sell their data (but 
utilizes the data of others for removing the correlation with their information).17

Formally, we consider the following  decorrelation scheme.   S ̃   =  Σ   −1 S  
where  S = ( S 1  , …,  S n  )  is the vector of data of all users. Clearly,   S ̃    is jointly normal 
and has the property that if User  i  does not share her data, then the data of other users 
leak no information about User  i ’s type. This is formally stated in the next lemma.

LEMMA 5: With  decorrelation, for any action profile  a ∈  {0, 1}   n  , the leaked infor-
mation about User  i  is

     ̃   i   (a)  =  σ  i  
2  −  min  

  x ˆ   i  
  

 
   E [  ( X i   −   x ˆ   i   (  S ̃   a  ) )    

2
 ]  =  { 

0,
  

 a i   = 0;
   

  i   ( a i  ,  a −i  ) ,
  

 a i   = 1.
     

This lemma clarifies our claim in the introduction and shows that the  decorrelation 
scheme leaves information leaked about the user sharing her data the same, but 
removes the leakage about users who are not sharing their data.

We next characterize the equilibrium pricing, denoted by    p ̃     E  , and sharing profile, 
denoted by    a ̃     E  , with this transformation and show that with  decorrelation, there is 
no information leakage about those who do not share and therefore they do not 
contribute to the platform’s payoff. Moreover, the price offered to users who share 
must make them indifferent between sharing and not sharing and thus give them 
zero payoff (which they can guarantee by not sharing). Given this characterization, 
it follows that  decorrelation always improves equilibrium surplus and, moreover, 
eliminates cases where the social surplus is negative.

16 Obviously, a  decorrelation scheme can only work if the mediator is fully reliable and trusted. This is an 
important constraint in practice, which we are not dealing with in this paper.

17 In practice, it may be more relevant to remove the correlation between a user’s data and the average data of 
different user types. In that case, we can partition the set of users into  K  cells and apply this  decorrelation procedure 
to the average data of cells.
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THEOREM 6:

 (1) The equilibrium-sharing profile after  decorrelation is given by

    a ̃     E  =  arg max  
a∈ {0,1}   n 

  
 
    ∑ 

i∈
  

 

    (1 −  v i  )    ̃   i   (a)  ,

with prices    p ̃    i  E  =  v i      ̃   i  (  a ̃     E  )  for any  i ∈   such that    a ̃    i  E  = 1 .

 (2) Let  (  a ̃     E ,   p ̃     E )  and  ( a   E ,  p   E )  denote the equilibrium with and without the 
 decorrelation scheme, respectively. Then

  Social surplus (  a ̃     E )  ≥ max {Social surplus ( a   E ) , 0}  .

That equilibrium surplus increases after  decorrelation is a consequence of the 
fact that in the original equilibrium the contribution of  high-value users (who do not 
share) to social surplus is less than or equal to zero, while after  decorrelation their 
contribution to social surplus is greater than or equal to zero.18 Moreover, because 
there are no users with negative contribution to social surplus after  decorrelation, 
equilibrium surplus is always positive. This observation also implies that the 
 decorrelation scheme outperforms policies that shut down data markets, since 
instead of achieving zero equilibrium surplus by shutting down these markets—e.g., 
as in Proposition 3—this scheme always guarantees positive social surplus.

Our proposed  decorrelation scheme provides a simple benchmark that shows how 
the correlation between any user who does not wish to share her data and all other 
users can be removed while maintaining the socially beneficial correlation among 
users interested in sharing their data. A more practical version of this scheme would 
remove the correlation between classes of users but still ensure that leaked informa-
tion about users not wishing to share their data is minimized. An alternative regula-
tion that may achieve similar objectives is to allow users to decide whether others’ 
data can be used in advertisements or for the services that they receive, and this may 
be sufficient to remove some or all of the negative externalities. Open questions 
include whether  decorrelation schemes or regulations that give additional control 
to users can be easily implemented and to what extent users would trust mediators 
or promises that others’ data will not be used for obtaining information about them.

VI. Conclusion

Because data generated by economic agents are useful for solving economic, 
social, or technical problems facing others in society and for designing or invent-
ing new products and services, much economic analysis in this area argues that 

18 As with personalized taxes,  decorrelation involves a considerable amount of information being pooled in the 
hands of a centralized body. The difference, however, is that  decorrelation, by ensuring that no information is leaked 
about users who do not want to share their data, makes such information-pooling incentive compatible. Providing 
information to regulatory authorities is typically not incentive compatible.
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the market may produce too little data. This paper develops the perspective that, 
in the presence of privacy concerns of some agents, the market may generate too 
much data. Moreover, because the data of a subset of users reveal information about 
other users, the market price of data tends to be depressed, creating the impression 
that users do not value their privacy much. The depressed market price of data and 
excessive data generation are intimately linked.

We exposit these ideas in a simple model in which a platform wishes to estimate 
the types of a collection of users and each user has personal data (based on their 
preferences, past behavior, and contacts) that are correlated both with their types 
and with the data and types of other users. As a result, when a user decides to share 
her data with the platform, this enables the platform to improve its estimate of other 
users’ types. We model the market for data by allowing the platform to offer prices 
(or other services) in exchange for data.

We prove the existence of an equilibrium in the data market and show that there 
will be too much data shared on the platform and the price of data will be exces-
sively depressed. The result, that the platform acquires too much data, is a direct 
consequence of the externalities from the data of others. The root cause of depressed 
data prices is the submodularity of leaked information: when data-sharing by other 
users already compromises the information of an individual, she has less incentive 
to protect her data and privacy. We further show that under some simple conditions 
the social surplus generated by data markets is negative, meaning that shutting down 
data markets improves (utilitarian) social welfare.

We extend these results to a setting with multiple platforms. Various types of 
competition between platforms do not alter the fundamental forces leading to too 
much data-sharing and excessively low prices of data. In fact, competition may 
make inefficiencies worse. This is in part because more data may be shared in the 
presence of competition and also because the desire of some users to avoid exces-
sive data-sharing about them may lead to an inefficiently fragmented distribution of 
users across platforms, even when network externalities would be better exploited 
by having all users join the same platform. We also extend these results to a setting 
in which the values of privacy of different users are their private information.

Excessive data-sharing may call for policy interventions to correct for the exter-
nalities and the excessively low prices of data.  Individual-specific (Pigovian) taxes 
on data transactions can restore the first best. More interestingly, we propose a 
scheme based on  mediated data-sharing that can improve welfare. In our baseline 
model, when equilibrium surplus is negative, shutting down data markets—for 
example, with high uniform taxes on all data transactions—would improve welfare. 
But this prevents the sharing of the data from users with a low value for privacy or 
a high benefit from goods and services who depend on the platform accessing their 
data. We show that if user data are first shared with a mediator, which transforms 
data before revealing them to the platform, the correlation of the data with the infor-
mation of  privacy-conscious users can be eliminated and this would improve wel-
fare relative to the option of shutting off data markets altogether.

We view our work as part of an emerging literature on data markets and the eco-
nomics of privacy. Our results suggest several interesting areas for research. First, it 
is important to develop models of the marketplace for data that allow for richer types 
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of competition between different platforms. Second, our modeling of privacy and 
the use of data by the platform has been  reduced form. Distinguishing the uses of 
personal data for price discrimination, advertising, and designing new products and 
services could lead to novel insights. For example, it may enable an investigation 
of whether applications of personal data to designing personalized services can be 
unbundled from their use for intrusive marketing, price discrimination, or mislead-
ing advertising. Third, there is much more to do about the effects of competition for 
data. One interesting direction is to allow platforms to differ in terms of the tech-
nology they use for processing data and protecting privacy, which may change the 
nature of competition. Finally, we only touched upon the possibility of designing 
new mechanisms for improving the functioning of data markets while reducing data 
externalities. Our proposed mechanism can be simplified and made more practical–
for example, by aiming to remove the correlation between different user classes, as 
noted above, or by focusing on only some types of data. Other mediated data-shar-
ing arrangements or completely new approaches to this problem could be developed 
as well but should take into account the possibility that third parties may not be fully 
trustworthy, either. Finally, our result that market prices or current user actions for 
protecting privacy do not reveal the value of privacy highlights the need for careful 
empirical analysis documenting and estimating the value of data to platforms and 
the value that users attach to their privacy in the presence of data externalities.

Appendix A

In this part of the Appendix, we provide some of the proofs omitted from the text. 
Remaining proofs are presented in the online Appendix, and the details of several of 
the examples discussed in the text are included in the working paper version.

PROOF OF PROPOSITION 1:
Recall that   a   W   denotes the first best. For any  i ∈  , we have   a  i  

W  = 1  if and 
only if  Social surplus( a  −i  

W  ,  a i   = 1) ≥ Social surplus( a  −i  
W  ,  a i   = 0) . Substituting the 

expression for the social surplus into this equation yields

( A-1)    ∑ 
j∈

  
 

    (1 −  v j  )  [  j   ( a  −i  
W  ,  a i   = 1)  −   j   ( a  −i  

W  ,  a i   = 0) ]  ≥ 0 .

Conditional on the data provided by other users—i.e.,  k ≠ i , for which   a  k  
W  = 1 — 

 ( X j  ,  S i  )  are jointly normal and their covariance matrix is given by

   
(

 
 σ  j  

2  −   j   ( a  −i  
W  ,  a i   = 0) 

  
Cov ( X i  ,  X j   ∣  a  −i  

W  ,  a i   = 0) 
     

Cov ( X i  ,  X j   ∣  a  −i  
W  ,  a i   = 0) 

  
1 +  σ  i  

2  −   i   ( a  −i  
W  ,  a i   = 0) 

 
)

  .

Therefore, if in addition to users  k ≠ i , for which   a  k  
W  = 1 , User  i  also shares her 

data, then the leaked information of user  j  becomes

( A-2)    j   ( a  −i  
W  ,  a i   = 1)  =   j   ( a  −i  

W  ,  a i   = 0)  +   
Cov  ( X i  ,  X j   ∣  a  −i  

W  ,  a i   = 0)    
2
 
  _______________________  

1 +  σ  i  
2  −   i   ( a  −i  

W  ,  a i   = 0) 
    .
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Substituting equation ( A-2) into equation ( A-1) completes the proof. ∎

PROOF OF LEMMA 1:

Part 1 (Monotonicity): In order to show that leaked information is monotonically 
increasing in the set of users who share, it suffices to establish that for any  i, j ∈   
and   a −j   ∈  {0, 1}   n−1  , we have    i  ( a j   = 1,  a −j  ) ≥   i  ( a j   = 0,  a −j  ) . We next consider 
the two possible cases where  i = j  and  i ≠ j  and show this inequality.

 •  i = j  : conditional on shared data, the joint distribution of  ( X i  ,  S i  )  is normal 

with covariance matrix   ( 
  σ ˆ    i  

2 
  

  σ ˆ    i  
2 
  

  σ ˆ    i  
2 
  

1 +   σ ˆ    i  
2 
 )  , where    σ ˆ    i  

2  = E[ X  i  
2  ∣  a −j  ] . We have 

   i  ( a i   = 1,  a −i  ) =  σ  i  
2  −  (  σ ˆ    i  

2  −   
  σ ˆ    i  

4 
 _ 

1 +   σ ˆ    i  
2 
  )  ≥  σ  i  

2  −   σ ˆ    i  
2  =   i  ( a i   = 0,  a −i  ) , 

completing the proof of this part.

 •  i ≠ j  : conditional on shared data, the joint distribution of  ( X i  ,  S j  )  

is normal with covariance matrix   
(

  
  σ ˆ    i  

2 
  

  Σ ˆ   ij  
  

  Σ ˆ   ij  
  

1 +   σ ˆ    j  
2 
 
)

  , where    σ ˆ    i  
2  = E[ X  i  

2  ∣  a −j  ] , 

   σ ˆ    j  
2  = E[ X  j  

2  ∣  a −j  ] , and    Σ ˆ   ij   = E[ X i    X j   ∣  a −j  ] . We have    i  ( a j   = 1,  a −j  ) = 

 σ  i  
2  −  (  σ ˆ    i  

2  −   
  Σ ˆ    ij  

2
  
 _ 

1 +   σ ˆ    j  
2 
  )  ≥  σ  i  

2  −   σ ˆ    i  
2  =   i  ( a j   = 0,  a −j  ) , completing the proof 

of the monotonicity.

Part 2 (Submodularity): We first introduce some additional notation for this proof. 
For any pair  i, j ∈  ,   a −{i,j}    is the collection of all users’ actions except for User  i  and 
User  j . To prove this part, it suffices to establish that for any   a −{i,j}   ∈  {0, 1}   n−2  , we 
have

    j   ( a − {i,j}   ,  a j   = 1,  a i   = 0)  −   j   ( a − {i,j}   ,  a j   = 0,  a i   = 0) 

 ≥   j   ( a − {i,j}   ,  a j   = 1,  a i   = 1)  −   j   ( a − {i,j}   ,  a j   = 0,  a i   = 1) . 

Conditional on   a −{i,j}   ,  ( X j  ,  S j  ,  S i  )  has a normal distribution with covariance matrix

   

⎛

 ⎜ 

⎝

  

  σ ˆ    j  
2 

  

  σ ˆ    j  
2 

  

  Σ ˆ   ij  

     σ ˆ    j  
2   1 +   σ ˆ    j  

2     Σ ˆ   ij     

  Σ ˆ   ij  

  

  Σ ˆ   ij  

  

1 +   σ ˆ    i  
2 

 

⎞

 ⎟ 

⎠

   ,

where    σ ˆ    i  
2  = E[ X  i  

2  ∣  a −{i,j}  ] ,    σ ˆ    j  
2  = E[ X  j  

2  ∣  a −{i,j}  ] , and    Σ ˆ   ij   = E[ X i    X j   ∣  a −{i,j}  ] . Note that 
in writing this matrix, we are using the fact that the correlation between   X i    and   S j    is 
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the same as the correlation between   S i    and   S j   . (This holds because   S i   =  X i   +  Z i    for 
some independent noise   Z i   .) Based on this covariance matrix,

( A-3)    j   ( a − {i,j}   ,  a j   = 1,  a i   = 0)  −   j   ( a − {i,j}   ,  a j   = 0,  a i   = 0)  =   
  σ ˆ    j  

4 
 _ 

1 +   σ ˆ    j  
2 
    .

We also have

( A-4)     j   ( a − {i,j}   ,  a j   = 1,  a i   = 1)  −   j   ( a − {i,j}   ,  a j   = 0,  a i   = 1) 

  =   
  σ ˆ    j  

4  (1 +   σ ˆ    i  
2 )  +   Σ ˆ    ij  

2   (1 +   σ ˆ    j  
2 )  − 2  Σ ˆ    ij  

2     σ ˆ    j  
2 
   _______________________________   

 (1 +   σ ˆ    i  
2 )  (1 +   σ ˆ    j  

2 )  −   Σ ˆ    ij  
2  
   −   

  Σ ˆ    ij  
2  
 ______ 

1 +   σ ˆ    i  
2 
    .

Comparing ( A-3) and ( A-4), the submodularity of leaked information becomes 
equivalent to    σ ˆ    j  

4 (1 +   σ ˆ    i  
2  ) +   Σ ˆ    ij  

2  (1 +   σ ˆ    j  
2  ) ≤ 2  σ ˆ    j  

2 (1 +   σ ˆ    j  
2  )(1 +   σ ˆ    i  

2  ) , which follows 
from    Σ ˆ    ij  

2   ≤   σ ˆ    i  
2    σ ˆ    j  

2  . ∎

PROOF OF LEMMA 2:
Using Lemma 1, we first establish that the game is supermodular. The rest of 

the proof follows from Tarski’s fixed-point theorem. Specifically, for any  i ∈  , 
we prove that the game has an increasing differences property. This follows from 
Part  2 of Lemma  1, which establishes that if   a  −i  ′   ≥  a −i   , then    i  ( a i   = 1,  a  −i  ′  )  
−   i   ( a i   = 0,  a  −i  ′  )  ≤   i  ( a i   = 1,  a −i  ) −   i  ( a i   = 0,  a −i  ) , which yields  
  u i  ( a i   = 1,  a  −i  ′  ) −  u i  ( a i   = 0,  a  −i  ′  ) ≥  u i  ( a i   = 1,  a −i  ) −  u i  ( a i   = 0,  a −i  ) . Now con-
sider the mapping  F : {0, 1}   n  →  {0, 1}   n   where   F i  (a) =  arg max a∈{0,1}   u i  (a,  a −i  ) .  
Using supermodularity of the game, this mapping is order preserving. Tarski’s 
 theorem establishes that its fixed points form a complete lattice and that therefore it 
is  nonempty and has greatest and least elements. Finally, note that each fixed point 
of the mapping  F  is a user equilibrium, and vice versa. Therefore, the set of fixed 
points of the mapping  F  is exactly the set of user equilibria denoted by  (p) . ∎

PROOF OF THEOREM 1:
We prove that the following action profile and price vector constitute an 

equilibrium:

   a   E  =  arg max a∈  {0,1}    n     ∑ 
i∈

  
 

    (1 −  v i  )   i   (a)  +  v i     i   ( a −i  ,  a i   = 0)  ,

and   p  i  
E  =  v i   [  i  ( a i   = 1,  a  −i  

E  ) −   i  ( a i   = 0,  a  −i  
E   )]  , if   a  i  

E  = 1  and   p  i  
E  = 0  if   

a  i  
E  = 0  . First note, that   a   E  ∈ ( p   E ) . This is because the payoff of User  i  when   

a  i  
E  = 1  is   p  i  

E  −  v i     i  ( a   E  ) = − v i     i  ( a  −i  
E  ,  a i   = 0) . If User  i  deviates and chooses not 

to share, her payoff would remain unchanged. However, when   a  i  
E  = 0 , her payoff is 

 − v i     i  ( a  −i  
E  ,  a i   = 0) , and deviation to sharing would lead to the lower payoff of 

 − v i     i  ( a  −i  
E  ,  a i   = 1) . Therefore, faced with the price vector offer of   p   E  , the users do 

not have a profitable deviation from   a   E  . We next show that for any  p  and  a ∈ (p) , 
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we have  U( a   E ,  p   E ) ≥ U(a, p) . Since  a  is a user equilibrium for the price vector  p ; 
i.e.,  a ∈ (p) ; for all  i  such that   a i   = 1 , we must have   p i   ≥  v i   [  i  ( a i   = 1,  a −i  ) − 
  i  ( a i   = 0,  a −i  )]  . This is because if   p i   <  v i   [  i  ( a i   = 1,  a −i  ) −   i  ( a i   = 0,  a −i  )]  , then 
User  i  would have a profitable deviation to not share her data. Thus,

 U (a, p)  =   ∑ 
i∈

  
 

      i   (a)  −   ∑ 
i∈: a i  =1

  
 

    p i  

 ≤   ∑ 
i∈

  
 

      i   (a)  −   ∑ 
i∈: a i  =1

  
 

    v i   [  i   ( a i   = 1,  a −i  )  −   i   ( a i   = 0,  a −i  ) ]  

  =   ∑ 
i∈

  
 

    (1 −  v i  )   i   (a)  +  v i     i   ( a −i  ,  a i   = 0)  ≤ U ( a   E ,  p   E )  . ∎

PROOF OF THEOREM 2:
We use the following lemmas in this proof.

LEMMA  A-1 (Horn and Johnson 1987, Chapter 0.7):

 • The inverse of a matrix in terms of its blocks is

   (  A  B  
C

  
D

 )    
−1

  =  

⎛
 ⎜ 

⎝
  

  (A − B D   −1 C)    
−1

 
  

− A   −1 B  (D − C A   −1 B)    
−1

 
     

− D   −1 C  (A − B D   −1 C)    
−1

 
  

  (D − C A   −1 B)    
−1

 
  

⎞
 ⎟ 

⎠
   .

 •  Sherman–Morrison–Woodbury formula for the inverse of rank-one pertur-
bation of matrix: Suppose  A ∈  ℝ   n×n   is an invertible square matrix and  
u, v ∈  ℝ   n   are column vectors. Then  A + u v   T   is invertible if and only if 
 1 +  v   T  A   −1 u ≠ 0 . If  A + u v   T   is invertible, then its inverse is  (A + u v   T  )   −1  = 

 A   −1  −    A   −1 u v   T  A   −1  _ 
1 +  v   T  A   −1 u

    .

LEMMA  A-2 (Feller 2008, Chapter 5, Theorem 5): Suppose  ( X 1  , …,  X n  )  has a 
normal distribution with covariance matrix  Σ . The conditional distribution of   
X 1    given   X 2  , …,  X n    is normal with covariance matrix   Σ 11   −  d   T  D   −1 d , where  D  
is the matrix obtained from  Σ  by removing the first row and the first column and 
 d = ( Σ 12  , …,  Σ 1n   )   T  .

We now proceed with the proof of the theorem. We first prove the existence of   
p   a  . Let   p  i  

a  =  v i   [  i  ( a i   = 1,  a −i  ) −   i  ( a i   = 0,  a −i  )]  . For any price vector  p  such 
that  a ∈ (p) , we have

    u i   ( a i   = 1,  a −i  )  =  p i   −  v i     i   ( a i   = 1,  a −i  )  ≥  u i   ( a i   = 0,  a −i  ) 

 = − v i     i   ( a i   = 0,  a −i  ) , for all i such that  a i   = 1 .
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Rearranging this inequality leads to   p i   ≥  v i   [  i  ( a i   = 1,  a −i  ) −   i  ( a i   = 0,  a −i  )]  =  
p  i  

a   .We next find the price vector   p   a   in terms of the matrix  Σ . Let  S ⊆ {1, …, n}  be 
the set of users who have shared their data. Leaked information about any user  i  is 
only a function of the correlation among users in  S  and the correlation between User  
i  and the users in  S . The relevant covariance matrix for finding leaked information 
about User  i is given by the rows and columns of the matrix  Σ  corresponding to 
users in  S ∪ {i} . Therefore, without loss of generality, we suppose that  i = 1  and 
all users have shared their data and work with the entire matrix  Σ . We find the equi-
librium price for User 1. (The price offered to other users can be obtained similarly.) 
With   a 1   = …,  a n   = 1 ,  ( X 1  ,  S 1  , …,  S n  )  is normally distributed with covariance 
matrix

   

⎛

 ⎜ 

⎝

  

 σ  1  
2 

  

 σ  1  
2 

  

 Σ 12  

  

 … 

  

 Σ 1n  

    
 σ  1  

2 
  

1 +  σ  1  
2 
  

 Σ 12  
  

 … 
  

 Σ 1n  
     Σ 12     Σ 12    1 +  σ  2  

2    …    Σ 2n      

⋮
  

⋮
  

⋮
  

⋱
  

⋮
    

 Σ 1n  

  

 Σ 1n  

  

 Σ 2n  

  

 … 

  

1 +  σ  n  
2 

 

⎞

 ⎟ 

⎠

   .

Therefore, using Lemma  A-2, the conditional distribution of   X 1    given   s 1  , …,  s n    is 
normal with variance   σ  1  

2  − ( σ  1  
2 ,  Σ 12  , …,  Σ 1n  ) (I + Σ)   −1 ( σ  1  

2 ,  Σ 12  , …,  Σ 1n   )   T  . The best 
estimator of   X 1    given   s 1  , …,  s n    is its mean, which leads to the following leaked 
information:

( A-5)    1   ( a 1   = 1,  a −1  )  =  ( σ  1  
2 ,  Σ 12  , …,  Σ 1n  )   (I + Σ)    −1   ( σ  1  

2 ,  Σ 12  , …,  Σ 1n  )    
T
  .

If User  1  deviates to   a 1   = 0 , then   ( X 1  ,  S 2  , …,  S n  )   has a normal distribution with 
covariance

   

⎛

 ⎜ 

⎝

  

 σ  1  
2 

  

 Σ 12  

  

 … 

  

 Σ 1n  

   
 Σ 12    

⋱
  

 
  

⋮
   

⋮
  

 
  

I + D
  

 
   

 Σ 1n  

  

 … 

  

 

  

⋱

  

⎞

 ⎟ 

⎠

   ,

where  D  is obtained from  Σ  by removing the first row and column. Therefore, 
using Lemma  A-2, the conditional distribution of   X 1    given   s 2  , …,  s n    is normal with 
variance   σ  1  

2  − ( Σ 12  , …,  Σ 1n  )(I + D )   −1 ( Σ 12  , …,  Σ 1n   )   T  , and leaked information of 
User 1 is

( A-6)     1   ( a 1   = 0,  a −1  )  =  ( Σ 12  , …,  Σ 1n  )   (I + D)    −1   ( Σ 12  , …,  Σ 1n  )    T  .

Using  A-5 and  A-6, the price offered to User  1  must satisfy   p  1  
a / v 1   = ( σ  1  

2 ,  d   T  )   T    

×  ( 
 σ  1  

2  + 1
  

 d   T 
  

d
  

(I + D)
 )    

−1

 ( σ  1  
2 ,  d   T ) −  d   T  (I + D)   −1 d , where  d = ( Σ 12  , …,  Σ 1n  ) . We 
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next simplify the  right-hand side of the above equation. Using Part  1 of  
Lemma  A-1,

    ( σ  1  
2 ,  d   T )    

T
   (  σ  1  

2  + 1   d   T   
d

  
I + D

 )    
−1

  ( σ  1  
2 ,  d   T )  −  d   T   (I + D)    −1 d

   =   ( σ  1  
2 ,  d   T )    

T
 M ( σ  1  

2 ,  d   T )  −  d   T   (I + D)    −1 d ,

with

  M =  

⎛

 ⎜ 
⎝

  
  [ ( σ  1  

2  + 1)  −  d   T   (I + D)    −1 d]    
−1

 
  

−   1 _ 
 σ  1  

2  + 1
    d   T   [ (I + D)  −   1 _ 

1 +  σ  1  
2 
    dd   T ]    

−1
 
        

−  (I + D)    −1 d  [ ( σ  1  
2  + 1)  −  d   T   (I + D)    −1 d]    

−1
 
  

  [ (I + D)  −   1 _ 
1 +  σ  1  

2 
    dd   T ]    

−1
 
  

⎞

 ⎟ 

⎠

   .

Using Part 2 of Lemma  A-1 and    1  ( a 1   = 0,  a −1  ) =  d   T  (I + D)   −1 d , we can further 

simplify this equation to    
  [ σ  1  

2  −   1  ( a 1   = 0,  a −1  )]    
2
 
  ___________________  

( σ  1  
2  + 1) −   1  ( a 1   = 0,  a −1  )

    . This also implies the decomposition 
stated in the theorem. ∎

PROOF OF COROLLARY 1:
Using Theorem  2, we have   p  i  

  ( a i  =1, a −i  )  =  v i     
  [ σ  i  

2  −   i  ( a i   = 0,  a −i  )]    
2
 
  __________________  

( σ  i  
1  + 1) −   i  ( a i   = 0,  a −i  )

    , which is  

increasing in   σ  i  
2   and decreasing in    i  ( a i   = 0,  a −i  ) . Again, using Theorem 2, we have 

   i  ( a i   = 1,  a −i  ) =   i  ( a i   = 0,  a −i  ) +   
 [ σ  i  

2  −   i  ( a i   = 0,  a −i  )]      2 
  __________________  

( σ  i  
1  + 1) −   i  ( a i   = 0,  a −i  )

    , which is increasing in 

both    i  ( a i   = 0,  a −i  )  and   σ  i  
2  . ∎

PROOF OF PROPOSITION 2:
Let  i ∈   be such that   a  i  ′   =  a i   = 1 . Using Theorem  2, we have   p  i  

a  

=  v i   [  i  ( a i   = 1,  a −i  ) −   i  ( a i   = 0,  a −i  )]    ≥     
(a)

   v i   [  i  ( a  i  ′   = 1,  a  −i  ′  ) −   i  ( a  i  ′   = 0,  a  −i  ′  )] 
=  p  i  

 a ′    , where (a) follows from submodularity of leaked information, i.e., Part 2 of 
Lemma 1. ∎

PROOF OF LEMMA 3:
Suppose, to obtain a contradiction, that in equilibrium   a  i  

E  = 0  for some  i ∈   
with   v i   ≤ 1 . We prove that there exists a deviation that increases the platform’s pay-
off. In particular, the platform can deviate and offer price   p i   =  v i   [  i  ( a i   = 1,  a  −i  

E  ) − 
  i  ( a i   = 0,  a  −i  

E  )]   so that User  i  shares her data.
From Theorem 1, the equilibrium action profile   a   E   must maximize   ∑ i∈  

 
   (1 −  v i  ) 

×   i  (a) +  v i     i  ( a i   = 0,  a −i  ) . We show that  ( a i   = 1,  a  −i  
E   )  increases this objective, 

which yields a contradiction:

  
[

  ∑ 
j∈ \ {i} 

  
 

      j   ( a i   = 1,  a  −i  
E  )  −   j   ( a i   = 0,  a  −i  

E  ) 
]

  −  
[

  ∑ 
j∈: a  j  

E =1

  
 

    p  j  
 ( a i  =1, a  −i  

E  )   −  p  j  
 ( a i  =0, a  −i  

E  )  
]

 

 +  [ (1 −  v i  )   i   ( a i   = 1,  a  −i  
E  )  +  v i      i   ( a i   = 0,  a  −i  

E  ) ]  −   i   ( a i   = 0,  a  −i  
E  ) 
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    ≥     
(a)

  − 
(

  ∑ 
j∈: a  j  

E =1

  
 

    p  j  
   ( a i  =1, a  −i  

E  )   −  p  j  
   ( a i  =0, a  −i  

E  )  
)

 

 +  [ (1 −  v i  )   i   ( a i   = 1,  a  −i  
E  )  +  v i     i   ( a i   = 0,  a  −i  

E  ) ]  −   i   ( a i   = 0,  a  −i  
E  ) 

    ≥     
(b)

   (1 −  v i  )  [  i   ( a i   = 1,  a  −i  
E  )  −   i   ( a i   = 0,  a  −i  

E  ) ] 

   ≥     
(c)

  0 ,

where (a) follows from monotonicity of leaked information (i.e., Part 1 of Lemma 1), 
(b) follows from Proposition 2, and (c) follows from the fact that   v i   ≤ 1  and leaked 
information is monotonic. This shows that for any  i  such that   v i   ≤ 1 , we must have   
a  i  

E  = 1 . ∎

PROOF OF THEOREM 3:
We use the following notation in this proof. For any action profile  a ∈  {0, 1}   n   

and any subset  T ⊆ {1, …, n} , we let   a T    denote a vector that includes all the entries 
of   a i    for which  i ∈ T .

Part 1: For a given action profile  a , the social surplus can be written as

  Social surplus (a)  =   ∑ 
i∈

  
 

    (1 −  v i  )   i   (a) 

     =     
(a)    ∑ 

i∈     (l)  

  
 

    (1 −  v i  )   i   ( a      (l)    ,  a      (h)     = 0) 

 +   ∑ 
i∈     (h)  

  
 

    (1 −  v i  )   i   ( a i  ,  a −i   = 0) 

     ≤     
(b)

    ∑ 
i∈     (l)  

  
 

    (1 −  v i  )   i   (     (l)  )  ,

where (a) follows from the fact that the data of  high-value users are not correlated 
with the data of any other user and (b) follows from the fact that for  i ∈     (l)  , leaked 
information about User  i  (weakly) increases in the set of users who share (from 
Part 1 of Lemma 1) and  1 −  v i   ≥ 0 . Conversely, for  i ∈     (h)  , we have  1 −  v i   < 0  . 
This implies   a  i  

W  = 1  if and only if  i ∈     (l)  .
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The payoff of the platform for a given action profile  a  (and the corresponding 
equilibrium prices to sustain it) can be written as

 U (a,  p   a )  =   ∑ 
i∈

  
 

     (1 −  v i  )   i   (a)  +  v i     i   ( a i   = 0,  a −i  ) 

   =     
(a)    ∑ 

i∈     (l)  

  
 

    (1 −  v i  )   i   ( a      (l)    )  +  v i     i   ( a      (l)  \ {i}   )  +   ∑ 
i∈     (h)  

  
 

    (1 −  v i  )   i   ( a i  ,  a −i   = 0) 

   ≤     
(b)

    ∑ 
i∈     (l)  

  
 

    (1 −  v i  )   i   ( a      (l)    )  +  v i     i   ( a      (l)  \ {i}   ) 

   ≤     
(c)

    ∑ 
i∈     (l)  

  
 

    (1 −  v i  )   i   (     (l)  )  +  v i     i   (     (l)  \ {i} )  ,

where (a) follows from the fact that the data of  high-value users are not correlated 
with the data of any other user, (b) follows from the fact that  1 −  v i   < 0  for  i ∈     (h)  , 
and (c) follows from Lemma 3. Therefore, no  high-value user shares in equilibrium, 
and we have   a   E  =  a   W  .

Part 2: Let  i ∈     (l)   and  j ∈     (h)   be such that   Σ ij   > 0 . Therefore, there exists  
δ > 0  such that    j  (    (l) ) = δ > 0 . We next show that for   v j   > 1 + ( ∑ i∈    (l)   

      σ  i  
2 /δ) ,  

the surplus of the action profile   a   E   is negative, establishing that it does not coincide 
with the first best. We have

 Social surplus ( a   E )  =   ∑ 
i∈     (l)  

  
 

    (1 −  v i  )   i   ( a   E )  +   ∑ 
i∈     (h)  

  
 

    (1 −  v i  )   i   ( a   E ) 

   ≤     
(a)

    ∑ 
i∈     (l)  

  
 

    (1 −  v i  )  σ  i  
2  +   ∑ 

i∈     (h)  

  
 

    (1 −  v i  )   i   ( a   E ) 

   ≤     
(b)

   
[

  ∑ 
i∈     (l)  

  
 

    (1 −  v i  )  σ  i  
2 
]

  +  (1 −  v j  )   j   (     (l)  ) 

 ≤  
[

  ∑ 
i∈     (l)  

  
 

    σ  i  
2 
]

  +  (1 −  v j  )   j   (     (l)  ) 

   <     
(c)

  0, 

where in (a), for  low-value users, we have upper-bounded leaked information with 
its maximum; in (b), we removed all the negative terms in the second summation 
except for the one corresponding to  j , for which we replaced the leaked information 
(of equilibrium action profile) by its minimum (using Lemma 3); and in (c), we 
used   v j   > 1 + ( ∑ i∈    (l)   

 
     σ  i  

2 /δ) .
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Part 3: Let  i, k ∈     (h)   be such that   Σ ik   > 0 . The first best involves all  low-value 
users sharing their data and none of the  high-value users doing so. We next show 
that if the value of privacy for  high-value user  i  is small enough, then at least one 
 high-value user shares in equilibrium. We show this by assuming the contrary and 
then reaching a contradiction. Suppose that none of  high-value users share their 
data. We show that if User  i  shares, the platform’s payoff increases. We let   a   ′ n   denote 
the sharing profile in which all users in      (l)  ∪ {i}  share their data and  a ∈  {0, 1}   n   
denote the sharing profile in which all users in      (l)   share their data. Using this nota-
tion, let us write

 U ( a ′  ,  p    a ′   )  =  (1 −  v i  )   i   (     (l)   ∪  {i} )  +  v i     i   (     (l)  )  +   ∑ 
k∈     (h)  \ {i} 

  
 

     k   (     (l)   ∪  {i} ) 

 +  
[

  ∑ 
j∈     (l)  

  
 

    (1 −  v j  )   j   (     (l)   ∪  {i} )  +  v j     j   (     (l)   ∪  {i} \ {j} ) 
]

 

   =     
(a)   (1 −  v i  )   i   (     (l)   ∪  {i} )  +  v i     i   (     (l)  ) 

 +  
[

  ∑ 
k∈     (h)  \ {i} 

  
 

     k   (     (l)   ∪  {i} ) 
]

  + U (a,  p   a ) 

   >     
(b)

  U (a,  p   a )  ,

where (a) follows from the fact that high- and  low-value users are uncorrelated and 

(b) follows by letting   v i   <   
  i  (    (l)  ∪ {i}) +  ∑ k∈     (h)  \{i}  

 
      k  (    (l)  ∪ {i})

   __________________________  
  i  (    (l)  ∪ {i}) −   i  (    (l) )

   =   
  i  ({i}) +  ∑ k∈    (h) \{i}  

 
      k  ({i})  _________________ 

  i  ({i})
    . 

Finally, note that using  Σ ik   > 0 , the  right-hand side of the above inequality is strictly 

larger than  one . The proof is completed by letting    v –  i   =   
  i  ({i}) +  ∑ k∈    (h) \{i}  

 
      k  ({i})  _________________  

  i  ({i})
    . ∎

PROOF OF PROPOSITION 3:

For an equilibrium action profile   a   E  , social surplus is  Social surplus( a   E ) = 

 ∑ i∈  
 
   (1 −  v i  )  i  ( a   E )   ≤     

(a)
   ∑ i∈    (l)   

 
   (1 −  v i  )  i  () +  ∑ i∈    (h)   

 
   (1 −  v i  )  i  (    (l) ) , where (a) fol-

lows from the fact that for  i ∈     (l)  , leaked information about User  i  increases in the 

set of users who share (i.e., Part 1 of Lemma 1) and  1 −  v i   ≥ 0 ; and for  i ∈     (h)  , 
we have  1 −  v i   < 0  and    i  ( a   E ) ≥   i  (    (l) )  by using Lemma 3. ∎

PROOF OF PROPOSITION 4:
Using Theorem 2, leaked information about a  high-value user  i ∈     (h)   if 

 low-value users share is

   ( Σ i j 1    , …,  Σ i j k    )   [ (I + Σ)  + M]    
−1

   ( Σ i j 1    , …,  Σ i j k    )    T  ,
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where  low-value users are denoted by   j 1  , …,  j k   , the diagonal entries of  M  are zero, 
and   M r,s    is the covariance between two  low-value users  r  and  s . We next prove 

that this leaked information is larger than or equal to   ∑ l=1  
k     

 Σ  i j l    
2  
 _______ ||Σ| | 1   + 1

    , where  ||Σ| | 1   = 

 max i=1,…,n   ∑ j=1  
n   | Σ ij  | . We first show that    [(I + Σ) + M]    

−1
  −   [||Σ| | 1   + 1)I]    

−1
  ⪰ 0  

(i.e., the matrix    [(I + Σ) + M]    
−1

  −   [(||Σ| | 1   + 1)I]    
−1

   is positive semidefinite). 
Letting   μ i    denote an eigenvalue of the matrix    [(I + Σ) + M]    

−1
  −   [(||Σ| | 1   + 1)I]    

−1
  , 

it suffices to show that   μ i   ≥ 0 . There exists an eigenvalue,   λ i   , of the matrix  
(I + Σ) + M  for which we have   μ i   = (1/ λ i  ) −  [1/(||Σ| | 1   + 1)]  . We next show 
that all eigenvalues of the matrix  (I + Σ) + M  are (weakly) smaller than  ||Σ| | 1   + 1 , 
which establishes that   μ i   ≥ 0 . Using Gershgorin Circle Theorem, the matrix 
 (||Σ| | 1   + 1)I −  [(I + Σ) + M]   is positive semidefinite. This is because for row  i  of 
this matrix, the diagonal entry is  ||Σ| | 1   −  Σ ii   , which is larger than the summation of 
the absolute values of the  off-diagonal entries   ∑ j≠i  

 
    Σ ij   . Therefore, for any eigenvalue 

of the matrix  (I + Σ) + M  such as   λ i   , we have   λ i   ≤ ||Σ| | 1   + 1 . We can write

( A-7)   ( Σ i j 1    , …,  Σ i j k    )   [ (I + Σ)  + M]    
−1

   ( Σ i j 1    , …,  Σ i j k    )    T  

    ≥  ( Σ i j 1    , …,  Σ i j k    )   [ (||Σ| | 1   + 1) I]    
−1

   ( Σ i j 1    , …,  Σ i j k    )    T  =   ∑ 
l=1

  
k

      
 Σ  i j l    

2  
 ________ ||Σ || 1   + 1

   .

Using Proposition 3, equilibrium surplus is negative if   ∑ i∈    (h)   
 
   ( v i   − 1)  i  (    (l) ) > 

 ∑ i∈    (l)   
 
   (1 −  v i  )  i  () . From inequality (Proof of Proposition  4) and    i  () ≤  σ  i  

2   , 

this condition holds provided that   ∑ i∈    (h)   
 
   ( v i   − 1)   

 ∑ j∈    (l)   
  
    Σ  ij  

2  
 ________ 

|| Σ   (l) || + 1
   >  ∑ i∈    (l)   

 
    σ  i  

2 (1 −  v i  ) , 
where   Σ   (l)   denotes the submatrix of  Σ , which only includes the rows and columns 
corresponding to low-value users. This completes the proof. ∎

PROOF OF GENERALIZATION OF LEMMA 3 UNDER PROPERTIES  1–4:
The proof follows the proof of Lemma 3 closely, and we provide a sketch, empha-

sizing the places where we use Properties  1–4. Suppose, to obtain a contradiction, 
that in equilibrium   a  i  

E  = 0  for some  i ∈   with   v i   ≤ 1 . The equilibrium action 
profile   a   E   must maximize   ∑ i∈  

 
   (1 −  v i  )  i  (a) +  v i     i  ( a i   = 0,  a −i  ) . We show that 

 ( a i   = 1,  a  −i  
E  )  increases this objective, which yields a contradiction:

  
[

  ∑ 
j∈∖ {i} 

     j   ( a i   = 1,  a  −i  
E  )  −   j   ( a i   = 0,  a  −i  

E  ) 
]

  −  
[

  ∑ 
j∈: a  j  

E =1
    p  j  

  ( a i  =1, a  −i  
E  )   −  p  j  

  ( a i  =0, a  −i  
E  )  

]
 

 +  [ (1 −  v i  )   i   ( a i   = 1,  a  −i  
E  )  +  v i     i   ( a i   = 0,  a  −i  

E  ) ]  −   i   ( a i   = 0,  a  −i  
E  ) 

   ≥     
(a)

  − 
(

  ∑ 
j∈: a  j  

E =1

  
 

    p  j  
  ( a i  =1, a  −i  

E  )   −  p  j  
  ( a i  =0, a  −i  

E  )  
)

 

 +  [ (1 −  v i  )   i   ( a i   = 1,  a  −i  
E  )  +  v i     i   ( a i   = 0,  a  −i  

E  ) ]  −   i   ( a i   = 0,  a  −i  
E  ) 
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   ≥     
(b)

   (1 −  v i  )  [  i   ( a i   = 1,  a  −i  
E  )  −   i   ( a i   = 0,  a  −i  

E  ) ] 

   ≥     
(c)

  0 ,

where (a) follows from monotonicity of leaked information (i.e., Property 3), (b) 
follows from the fact that the price is   p i   =  v i   [  i  ( a i   = 1,  a  −i  

E  ) −   i  ( a i   = 0,  a  −i  
E  )]   

and the submodularity of leaked information (i.e., Property 4), and (c) follows from 
the fact that   v i   ≤ 1  and leaked information is monotone (i.e., Property  3). This 
shows that for any  i  such that   v i   ≤ 1  we must have   a  i  

E  = 1 . The proof of this 
lemma uses Properties 3 and 4. A generalization of Theorem 3 under Properties  1–4 
uses this lemma and Properties 1 and 2. ∎

MUTUAL INFORMATION SATISFIES PROPERTIES  1–4:

No Leakage with Independence: If   X i    is independent from  ( X j   : j ≠ i) , then 
for any action profile   a −i    and any user  j , we have    j  ( a i   = 1,  a −i  ) = I [ X j  ; ( X i  , Y )]  
  =     
(a)  H(Y ) + H( X i   | Y ) −  [H(Y |  X j  ) + H( X i   |  X j  , Y )]    =     

(b)  H(Y ) + H( X i  ) − H(Y |  X j  ) − 
H( X i  ) = H(Y ) − H(Y |  X j  ) = I( X j  ; Y ) =   j  ( a i   = 0,  a −i  ) , where  Y = ( X k   :  a k   = 1, 
k ≠ i, j) ; (a) follows from the definition of mutual information and the entropy func-
tion and the chain rule for entropy, and (b) follows from the fact that   X i    is independent 
of the rest of the random variables.

Leakage with  Nonindependence: If   X i    and   X j    are  nonindependent conditional 
on any other set of random variables, then for any action profile   a −i    we have 

   j  ( a i   = 1,  a −i  ) −   j  ( a i   = 0,  a −i  ) = I [ X j  ; ( X i  , Y )]  − I( X j  ; Y ) = I( X i  ;  X j   | Y )   >     
(a)

  0 , 
where  Y = ( X k   :  a k   = 1, k ≠ i, j)  and (a) follows from the fact that mutual infor-
mation is  nonnegative and becomes zero if and only if the two random variables are 
independent.

Monotonicity: For  i ∈  , let  Y = ( X j   :  a j   = 1)  and  Z = ( X j   :  a  j  ′   = 1,  
a j   = 0) . Then the inequality   I i  ( a ′   ) ≥  I i  (a)  becomes equivalent to  I( X i  ; Y, Z ) ≥ 
I( X i  ; Y ) . This inequality holds because  I( X i  ; Y, Z ) = I( X i  ; Y ) + I( X i  ; Z | Y )≥ 
I( X i  ; Y )  , where we used the chain rule for mutual information and positivity of (con-
ditional) mutual information (see, e.g., Cover and Thomas 2012).

Submodularity: For  i ∈  , let  Y = ( X j   :  a j   = 1, j ≠ i)  and  Z = ( X j   :  a  j  ′   = 1, 
 a j   = 0, j ≠ i) . Then the inequality   I i  ( a i   = 1,  a −i  ) −  I i  ( a i   = 0,  a −i  ) ≥ 
 I i  ( a i   = 1,  a  −i  ′  ) −  I i  ( a i   = 0,  a  −i  ′  )  becomes equivalent to  I( X i  ;  X i  , Y ) − I( X i  ; Y ) ≥ 
I( X i  ;  X i  , Y, Z ) − I( X i  ; Y, Z ) , which, in turn, is equivalent to  I( X i  ; Y, Z ) ≥ I( X i  ; Y ) , as 
we established above.
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