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This paper studies optimal decision rules, including estimators and tests, for weakly
identified GMM models. We derive the limit experiment for weakly identified GMM,
and propose a theoretically-motivated class of priors which give rise to quasi-Bayes
decision rules as a limiting case. Together with results in the previous literature, this
establishes desirable properties for the quasi-Bayes approach regardless of model iden-
tification status, and we recommend quasi-Bayes for settings where identification is a
concern. We further propose weighted average power-optimal identification-robust fre-
quentist tests and confidence sets, and prove a Bernstein-von Mises-type result for the
quasi-Bayes posterior under weak identification.

KEYWORDS: Limit experiment, quasi-Bayes, weak identification, nonlinear GMM.

1. INTRODUCTION

WEAK IDENTIFICATION ARISES in a wide range of empirical settings. Weakly identified
nonlinear models have objective functions which are near-flat in certain directions, or
have multiple near-optima. Standard asymptotic approximations break down when iden-
tification is weak, resulting in biased and non-normal estimates, as well as invalid standard
errors and confidence sets. Further, existing optimality results do not apply in weakly
identified settings, making it unclear how researchers should best extract the information
present in the data.

To provide guidance for such cases, this paper develops a theory of optimality for non-
linear GMM models with weak identification.! Even when identification is weak, the sam-
ple average GMM moment function is approximately normally distributed, allowing us to
derive a novel Gaussian process limit experiment which upper-bounds attainable large-
sample performance. This limit experiment is infinite-dimensional, reflecting the semi-
parametric nature of the GMM model, and there typically exists no uniformly best proce-
dure. As a consequence, asymptotically optimal approaches for weakly identified GMM
necessarily trade off performance across different parts of the parameter space.

We discipline these tradeoffs by considering Bayes decision rules, and propose a
theoretically-motivated class of computationally tractable priors for the limit experiment.
This class yields the quasi-Bayes approach studied by Kim (2002) and Chernozhukov and
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Hong (2003) as a diffuse-prior limit. Quasi-Bayes treats a transformation of the continu-
ously updating GMM objective function as a likelihood, which is combined with a prior
to produce Bayes decision rules. We further prove a Bernstein—von Mises-type result es-
tablishing the asymptotic properties of quasi-Bayes under weak identification.

For inference, one may report quasi-Bayes credible regions. However, these do not
in general have correct frequentist coverage under weak identification. To address this
issue, we derive weighted average power-maximizing frequentist tests with respect to our
recommended priors, and construct confidence sets by collecting the parameter values not
rejected by these tests. These confidence sets take a form similar to quasi-Bayes highest
posterior density regions, but ensure correct coverage under weak identification.

Finally, we illustrate our analysis with simulations and empirical results based on quan-
tile IV applied to data from Graddy (1995) on the demand for fish.

The bottom line of this analysis is that quasi-Bayes decision rules have desirable op-
timality properties whether identification is weak or strong. Unlike for conventional
GMM estimators, to use the quasi-Bayes approach researchers must specify a prior. Cher-
nozhukov and Hong (2003) showed, however, that quasi-Bayes procedures are equivalent
to efficient GMM in large samples under strong identification, and so are insensitive to
the prior in this case. Under weak identification, by contrast, the prior plays an important
role, since the data provide only limited information. Even under weak identification,
however, our robust confidence sets guarantee correct coverage regardless of the choice
of prior. These results complement earlier findings from Chen, Christensen, and Tamer
(2018) who showed, among many other findings, that quasi-Bayes highest posterior den-
sity sets based on flat priors have correct coverage for the identified set in strongly but
partially identified models, establishing a further desirable property for quasi-Bayes ap-
proaches in settings with non-standard identification.” Based on these results, we recom-
mend quasi-Bayes for settings where identification is a concern.

The next section introduces our setting and derives the limit experiment. Section 3
motivates and derives our recommended class of priors and shows that quasi-Bayes cor-
responds to their diffuse limit. Section 4 discusses quasi-Bayes decision rules and con-
structs optimal frequentist tests. Section 5 discusses feasible quasi-Bayes decision rules
and characterizes their large-sample behavior. Finally, Section 6 provides empirical re-
sults for quantile IV applied to data from Graddy (1995).

2. LIMIT EXPERIMENT FOR WEAKLY IDENTIFIED GMM
2.1. Weak Identification in Nonlinear GMM

Suppose we observe a sample of independent and identically distributed observations
{X;,i=1,...,n} with support X. We are interested in a structural parameter 6* € 0,
which is assumed to satisfy the moment equality Ep[¢(X, 6*)] = 0 € R¥, for P the un-
known distribution of the data and ¢(-,-) a known function of the data and parame-
ters.> We assume 6* corresponds to a quantity of economic interest which is well-defined
whether or not it can be recovered from the data, and want to choose an action a € A to
minimize a loss L(a, 6*) > 0 that depends only on a and 6*.

2Chen, Christensen, and Tamer (2018) also showed that, in the partially, strongly identified setting, quasi-
Bayes posteriors based on informative priors can be used to form critical values for confidence sets for the full
parameter vector and subvectors, and proposed simple confidence sets for scalar subvectors.

30ur results in this section allow infinite-dimensional structural parameters, but in the remainder of the
paper we assume that 6 is finite-dimensional.
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ExAaMPLE—Quantile IV: Suppose the observed data X = (Y, W, Z) consist of an out-
come Y, a (p — 1)-dimensional vector of endogenous regressors W, and a k-dimensional
vector of instruments Z. For 6 = (a, B) € 0, consider the moment condition

d(X,0) = (I{Y —a—-WB<0}-7)Z, (1)

introduced by Chernozhukov and Hansen (2005) for inference on the rth conditional
quantile. For estimation of 6, we could take .A = ® and consider squared error loss,
L(a, 6) = ||la— 6]~

If the data are informative, standard asymptotic arguments imply that the GMM esti-
mator for 6* is approximately normally distributed in large samples, with standard errors
that can be consistently estimated. Under regularity conditions, one can further show that
the optimally-weighted GMM estimator is asymptotically efficient, in the sense of mini-
mizing expected squared error loss in large samples, and that efficient decision rules for
many other problems may be constructed based on this estimator. By contrast, when the
data are less informative and identification is weak, these approximations break down.
Consequently, GMM estimators may be far from normally distributed, and it is less clear
how to efficiently estimate 6* or solve other decision problems.

EXAMPLE—Quantile IV, continued: We illustrate the problem of weak identification
with an application of quantile IV to data from Graddy (1995) on the demand for fish
at the Fulton fish market. Following Chernozhukov, Hansen, and Jansson (2009), who
discussed finite-sample frequentist inference in this setting, we consider the quantile IV
moment conditions stated in equation (1) with Y the log quantity of fish purchased,
W the log price, and Z a vector of instruments consisting of a constant, a dummy for
whether the weather offshore was mixed (with wave height above 3.8 feet and windspeed
over 13 knots), and a dummy for whether the weather offshore was stormy (with wave
height above 4.5 feet and windspeed over 18 knots). We focus on results for the 75th
percentile, 7 = 0.75. For further details on the data and setting, see Graddy (1995) and
Chernozhukov, Hansen, and Jansson (2009).

The first panel of Figure 1 plots contours of the continuously updating GMM objec-

tive function, Q,,(0) = g.(6)'2," (6, 0).(0), for g,(-) = 7= >_i_, $(Xi, ) and %,,(6, 0) the
sample variance of ¢ (X;, 6). The second and third panels plot the profiled objective func-
tions for @ and B, respectively, where the profiled objective for « is ming Q, (e, B). The
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FIGURE 1.—GMM objective function Q,(0) for quantile IV, 7 = 0.75, based on Graddy (1995) data.
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FIGURE 2.—Finite-sample distribution of GMM estimator in simulations calibrated to Graddy (1995) data,
along with weak- and strong-asymptotic large-sample distributions. Based on 1000 simulation draws, dropping
top and bottom 1% of draws in the left panel for visibility.

GMM objective is low over a substantial part of the parameter space, suggesting, as previ-
ously noted by Chernozhukov, Hansen, and Jansson (2009), that weak identification may
be an issue here.

The details of Figure 1 suggest particular trouble for conventional asymptotic approx-
imations. Standard arguments for the large-sample normality of GMM estimators rely
on quadratic approximations to the objective function, but Figure 1 shows that the sam-
ple objective function is far from quadratic in these data. To explore the implications for
GMM estimation, we calibrate simulations to the Graddy (1995) data.* The first column
of Figure 2 shows the distribution of the GMM estimators for & and B in these cali-
brations, and highlights that these distributions are clearly non-normal, with substantial
right-skewness. Hence, we see that weak identification undermines the validity of conven-
tional asymptotic approximations in this setting, raising the question of how to efficiently
estimate the structural parameters.

To develop asymptotic results for weakly identified GMM, we need a framework for
modeling weak identification. Intuitively, 6* is weakly identified when the mean of the
moment function Ep[¢(X, 0)] is close to zero, relative to sampling uncertainty, over a
nontrivial part of the parameter space ©. To obtain asymptotic approximations that reflect
this situation, we adopt a nonparametric version of weak-identification asymptotics and
model the data generating process as local to identification failure. Specifically, we assume
the sample of size n follows distribution P = P, ;, where the sequence P, ; converges to
some (unknown) limit P,

1 2
[|vtars; - ary - Spar?| —o @

4Details of the calibration may be found in Appendix D.
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as n — oo. Restriction (2) is a differentiability in quadratic mean condition, and is stan-
dard in the literature on semiparameteric efficiency (see Chapter 25 in Van der Vaart
(1998)).> We focus on the case where the structural parameter 6* is set-identified under
Py, in the sense that the identified set

0y ={0€0O:Ep[d(X,0)] =0}

contains at least two distinct elements, and assume that 0, is compact, with 6* € ©,.5

A measurable function f in (2) is called a score, and necessarily satisfies Ep [f(X)] =0
and Ep [f2(X)] < oo (see Van der Vaart and Wellner (1996), Lemma 3.10.10). Denote the
space of score functions by T (P,), and note that this is a linear subspace of L,(FP,), the
space of functions from X to R that are square integrable with respect to Py. Intuitively,
each f € T(P,) specifies a different “direction” from which the sequence of data gener-
ating processes P, ; may approach P,. The space of such directions is typically infinite-
dimensional (in particular, whenever X has a continuously distributed element), and de-
scribes the many ways in which the data generating P, ; may depart from P, in terms of
means and covariances, but also in terms of higher moments and other features. Condi-
tion (2) then implies that P, ; approaches P, at rate ﬁ, so the difference between the
two distributions is on the same order of magnitude as sampling uncertainty. This ensures
that P, ; and P, remain “close” in a statistical sense even in large samples.

While the score f controls the distribution of the data, our interest lies in the struc-
tural parameter 6*. Identifying information about 6* comes from the fact that not all
elements of T'(P,) are consistent with a given 6*. Specifically, the scaled sample average
of the moments has (asymptotic) mean zero at 6* under P, ; if and only if Ep [f(X) (X,
0*)] = 0. Correspondingly, the subspace of scores consistent with 6* is

Ty (P) = {f € T(Py) : B [f(X) (X, 0°)] =0}.

This space is typically infinite-dimensional, in keeping with the semiparametric nature of
the GMM model. We are now equipped to define the finite-sample statistical experiment.

DEFINITION 1: The finite-sample experiment for sample size n, £, corresponds to ob-
serving an i.i.d. sample of random variables X;,i=1, ..., n, distributed according to P, ¢,
with parameter space {(6*, f) : 6* € Oy, f € Tp-(Py)}.

ExXAMPLE—Quantile IV, continued: A variety of different distributions P, give rise to
nontrivial identified sets ©, in this example. Correspondingly, there are many ways weak
identification may arise. For example, suppose that the first element of Z is a constant,
while the remaining elements of Z can be written as U Z*, for U a mean-zero random
variable independent of (Y, W, Z*) and Z* a potentially informative, but unobserved,
instrument. The last kK — 1 elements of Ep [¢ (X, 0)] are thus identically zero on ©, while
the first element of Ep [¢ (X, 0)] is zero if and only if « is equal to the 7th quantile of Y —
W'B under Py, qp, .(Y — W’B). Hence, the identified set under P, is Oy ={0 = (o, B) €
O:a=qp . (Y -—WPB)}

To illustrate the utility of weak-identification asymptotic approximations, we return to
our simulations calibrated to Graddy (1995). The second column of Figure 2 shows the

SPrior work by Kaji (2021) also analyzes weak identification using paths satisfying (2).
®The more general assumption that 6* is local to © yields a limit experiment similar to that derived below,
at the cost of heavier notation. Hence, we focus on the case with 6* € 0.
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distribution of GMM estimators when we (a) increase the sample size by a factor of 100
and (b) model the finite-sample distribution P, ; as converging (in the sense of (2)) to the
distribution P, discussed above, with score f chosen to match the distribution at the orig-
inal sample size. For comparison, the third column shows the distribution under strong-
identification asymptotics, which hold the data generating process fixed as n grows. As
Figure 2 makes clear, weak-identification asymptotics preserve the asymmetric and heavy-
tailed behavior seen in the data-calibrated design. By contrast, under strong-identification
asymptotics, the distribution appears approximately normal. This is expected given stan-
dard asymptotic results, but is a much worse approximation to the small-sample distribu-
tion.

2.2. Asymptotic Representation Theorem

This section shows that to construct asymptotically optimal decision rules for weakly
identified GMM, it suffices to derive optimal decision rules in a limit experiment. This
limit experiment corresponds to observing a Gaussian process g(-) with unknown mean
function m(-) and known covariance function (-, -), where 6* satisfies m(6*) = 0. Intu-
itively, g(-) corresponds to the scaled sample average of the moments, since, as we discuss
below, under P, ¢,

T e =5 > g0 ~0Pm) )

on ©,, where = denotes weak convergence as a process, m(-) = Ep[f(X)d(X,-)],
2(601,6,) =Ep [ (X, 0:)p(X, 6,)], and 2 is consistently estimable. We assume through-
out that ¥, is continuous in both arguments.’

To derive the limit experiment, we first discuss the parameter space for the mean func-
tion m(-). Define a linear transformation mapping f € T'(P,) to functions m(-):

m(-) =Ep[f(X) (X, )] 4)

Let H be the image of 7'(P,) under this transformation. Lemma 2 in the Appendix shows
that H is the Reproducing Kernel Hilbert Space (RKHS) associated with the covariance
function 2. Let Hq = {m € H : m(6*) = 0} denote the subset of ‘H with a zero at 6*.

DEFINITION 2: The Gaussian process experiment £, corresponds to observing a Gaus-
sian process g(-) ~ GP(m(-), %) with known covariance function (-, -), unknown mean
function m, and parameter space {(6*, m) : 0* € Og, m € Hy}.

To compare &, to £, we need to relate their parameter spaces. A challenge here is
that the space of scores f in the experiment £ is larger than the space of means m in ;.
To address this, we decompose each score as f = f* + f*, where f* is isomorphic to m,
while f+ reflects aspects of the data generating process which are irrelevant to the large-
sample behavior of the moments, and so can safely be ignored when constructing decision
rules. Specifically, denote the null space of the linear operator (4) by H*. By definition,

"Together with compactness of @, this implies that we can take the stochastic process g to be everywhere
continuous almost surely. See Lemma 1.3.1 of Adler and Taylor (2007).
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H* is a linear subspace of T(P,). Let H* be the orthogonal complement of H*.® For
any score f € T(P,), denote by f* and f* its projections onto H* and H*, respectively.
By definition, f* is orthogonal to the GMM moment condition, so two scores imply the
same mean function if and only if they have the same projection f* onto H*. We can
rewrite the parameter space for £* as a Cartesian product

[0 €00, f=(f" f")eTyr(Py))={0" €O f eH) x {f*eH")

for Hj. ={f* e H* : Ep [f*(X) (X, 6%)] = 0}. For fixed f+, however, (4) defines an iso-
morphism between the parameter space in £ and that in £, so, following the literature
on limits of experiments (cf. Le Cam (1986)), we can compare these experiments in terms
of the attainable risk (expected loss) functions.

THEOREM 1: Consider any sequence of statistics S, which has a limit distribution under
&, in the sense that under P, for any f € T(Py), Su(Xi,...,X,) = Sy as n — oo. As-
sume there exists a complete separable set S, such that Pr{S; € So} =1 for all f € T(P),
and that the loss function L is continuous in its first argument. For any f+ € H*, there ex-
ists in E, a (possibly randomized) statistic S such that, defining f = f* + f*+ and m(-) =
Er [f(X)$(X, )]

HminfEp, [L(S,, 0%)] = En[L(S, 0%)] forall 6" € ©, f* € 1.,

n—oo

where E,, is the expectation in £, under mean function m.

Theorem 1 establishes that the attainable risk functions in £, lower-bound the attain-
able asymptotic risk functions in £*. Thus, if a sequence of decision rules S, has risk con-
verging to an optimal risk function in &£, it must be asymptotically optimal. The proof of
this result builds on Van der Vaart (1991), who derived the limit experiment for inference
on f. In our setting, however, f* is a nuisance parameter that neither interacts with the
parameter of interest 6* nor enters the loss function. Thus, to derive optimal procedures
it suffices to study optimality holding f~ fixed, similar to the “slicing” argument of Hirano
and Porter (2009).

Theorem 1 gives a criterion which may be checked to verify asymptotic optimality. In
many cases, a plug-in approach further suggests the form of an asymptotically optimal
rule. Suppose we know an optimal decision rule S = s(g, %) in &£, where we now make
dependence on the covariance function expli/c\it.9 If a uniform central limit theorem holds
under P, and we have a consistent estimator 2, for X (e.g., the sample covariance function
3(6, 0) = éa/(qb(X,-; 0), ¢(X;; 0))), then Le Cam’s third lemma implies that the weak
convergence (3) holds, while % remains consistent under P, ;. Provided s(g, %) is almost-
everywhere continuous in (g(-), %), the Continuous Mapping theorem thus implies that
S, = 5(g.(-), %) = s(g,2) = S under P, , so the sequence of rules S, is asymptotically
optimal so long as convergence in distribution implies convergence in expected loss (e.g.,
under uniform integrability conditions).

8The proof of Lemma 2 shows that #* is the completion of the space spanned by scores of the form f(X) =
Zj’:l d)(X, 0/‘)/bj in Lz(P(])

°All of our results allow for randomized decision rules, for example, S = s(g(-), 3, U) with U ~ U[0, 1]
independent of the data, but for simplicity we suppress randomization in our notation.
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SPECIAL CASE—Finite ®: Suppose that @y = {6y, ..., 6,} is finite. In this case, the
Gaussian process experiment £, reduces to observing the normal random vector g =
(g(01),...,8(6,)) € R* with unknown mean m = (m(6,),...,m(6,)’) and known
rk x rk variance matrix . We assume for this example that % has full rank, which im-
plies that 7 = R™. The parameter space in &£, thus consists of (6%, m) pairs where the
sub-vector of m corresponding to 6* is zero: {6* € @y, m € R’* : m(6*) = 0}. Hence, the
limit problem reduces to observing a collection of normal random vectors and trying to
infer which among them have mean zero.

Even for finite ©, the score f in the finite-sample experiment £* is typically infinite-
dimensional and controls all features of the data distribution, for instance, the skewness
and kurtosis of ¢ (X, 6). Asymptotically, however, only part of f is important, namely,
its projection f*(X) = ¢(X)2'Ep[d(X)f(X)] on ¢(X) = ((X, 0,),...,d(X,6,)),
where there is a one-to-one correspondence between scores f* and m € H. Theorem 1
then implies that (under regularity conditions) it is without loss, in terms of attainable
asymptotic performance, to limit attention to decision rules that depend on the data only

through the sample average moments ﬁ Y ¢(X;) and the estimated variance ..

The idea of solving a limit problem in order to derive asymptotically optimal decision
rules is of course not new—see, for example, Le Cam (1986). More recently, Mueller
(2011) proposed an alternative approach to derive asymptotically optimal tests starting
from weak convergence conditions like (3). Relative to the approach of Mueller (2011)
applied to our setting, the benefits of Theorem 1 are (i) to show that there is, in a sense, no
asymptotic information loss from limiting attention to the sample average of the moments
and (ii) the ability to consider general decision problems in addition to tests.

3. PRIORS FOR GMM LIMIT PROBLEM

The previous section showed that we can reduce the search for asymptotically optimal
decision rules to a search for rules based on the Gaussian process g(-) ~ GP(m, %), with a
known covariance function (-, -) and an unknown mean function m such that m(6*) = 0.

While the Gaussian process limit experiment is much simpler than the original finite-
sample GMM setting, it still has an infinite-dimensional parameter space. Moreover, min-
imizing risk at different parameter values generally produces different decision rules, so
there do not exist uniformly best estimators or uniformly most powerful tests. Instead, op-
timal decision rules trade off performance over different regions of the parameter space.
In this paper, we focus on Bayes decision rules, which make this tradeoff explicit through
the prior. The Bayes decision rule for the prior 7 minimizes 7r-weighted average risk,
min; [ By« ,,[L(5(g), 6%)]dmw(6*, m).

Bayes decision rules are closely linked to optimality, and in particular admissibility, in
the limit problem. A decision rule s(g) in the experiment &, is admissible if there exists
no rule §(g) with weakly lower risk for all parameter values, and strictly lower risk for
some. A class S of rules is complete if it contains all admissible rules. For convex loss
functions, a result in Brown (1986) implies that pointwise limits of Bayes decision rules
are a complete class.

THEOREM 2—Brown (1986): Suppose that A is closed, with A C R? for some d, that
L(a, 0) is continuous and strictly convex in a for every 0, and that either A is bounded or
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limy,j—o L(a, 6) = oo. Then, for every admissible decision rule s in E;p, there exists a se-
quence of priors 1, and corresponding Bayes decision rules s,

[ Eval (50 00, 0)]dm (6, m) =min [ B [L(5(6), 0)] (67, m),
such that s, (g) — s(g) as r — oo for almost every g.

Related results hold for settings with non-convex loss, for example, in testing problems.
For instance, Strasser (1985, Theorem 47.9) showed that the weak limits of Bayes decision
rules form an essentially complete class in settings with bounded loss.

Even focusing on Bayes decision rules, it remains to choose a prior 7 (6*, m) and to
derive the resulting optimal rule. The infinite-dimensional nature of the limit experiment
makes it difficult to specify subjective priors, so in this section we propose that researchers
use a subjective prior for the structural parameter 6* together with a default prior on an
infinite-dimensional nuisance parameter. While these default priors are motivated by con-
jugacy and invariance arguments, it turns out that all priors in the class we consider deliver
the quasi-Bayes approach suggested by Chernozhukov and Hong (2003) as a limiting case.

3.1. A Class of Priors for the Limit Problem

We derive our class of priors in three steps. First, we reparameterize the limit experi-
ment to separate the structural parameter 6* from an infinite-dimensional nuisance pa-
rameter. Second, for tractability we consider independent priors on the two components.
Third, we use a conjugate Gaussian prior on the nuisance parameter, and show that a
natural invariance property for default priors greatly restricts the choice of prior covari-
ance. In particular, invariance generically limits attention to what we term proportional
priors, which are indexed by a scalar variance parameter. Taking this variance parameter
to infinity yields the quasi-Bayes approach.

3.1.1. Reparameterization

The parameter space {(0*, m) : 0* € Oy, m € Hq} in Ep requires that, for fixed 6%, the
mean function m must lie in the linear subspace Hgy«, so the parameter space for the
infinite-dimensional parameter m depends on 6*. To simplify the analysis, we reparame-
terize the model to disentangle 6* from the nuisance parameter.

Denote by C the space of continuous functions from 0, to R*, and let A4 be any lin-
ear functional A4 : C — R* such that Cov(A(g), g(0)) is nonsingular for all 6, where we
assume such a functional A4 exists.

LEMMA 1: Let ¢ = A(g), h(-) = g(-) — Cov(g(), £) Var(¢) &, and u(-) = m(-) —
Cov(g(-), &) Var(¢)~' A(m). Then there exist one-to-one correspondences (i) between
{(6*,m) : 6 € Oy, m € Hy} and (6%, ) € Oy x H,, and (ii) between g(-) and (&, h(-))
such that: N
(@) Thevector §{ ~ N(v(60%, ), ) and process h(-) ~ GP(u, ) are independent, where
v, 3¢, and X are known transformations of (%, A)._

(b) H, is the RKHS generated by covariance function ..

Lemma 1 reparameterizes the model in terms of the structural parameter 6* and a
functional nuisance parameter wu, where the parameter space for (6*, u) is a Cartesian
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product and the parameter space for w is linear. Intuitively, each H, imposes the k-
dimensional linear restriction m(6*) = 0, while the reparameterization expresses these
6*-specific restrictions as restrictions on a common k-dimensional functional A4(m), leav-
ing the remainder of m, described by u, unrestricted. Lemma 1 also establishes a corre-
sponding decomposition of the observed process g(-) into components (&, (-)), where
the distribution of /# depends only on w.

SPECIAL CASE—Point Evaluation: Suppose A is the point evaluation functional at
some value 6y, so ¢ = A(g) = g(6y). Andrews and Mikusheva (2016) showed that

h(-) = g() = 2(-, 00)X(6s, 60) "' g(6o) ®)

is a Gaussian process independent of & ~ N (m(6,), %(6y, 6,)), while Lemma 1 establishes
that if 2(-, 6) is everywhere full rank, knowledge of the functional parameter

p(:) =E[A(-)] =m(-) = 2(, 60)2(80, 60)~'m(6)

and the structural parameter 6* suffices to reconstruct the mean function m.

Analogous reparameterizations can be constructed for other linear functionals 4, and
we obtain a different parameterization for each such functional. Since 4 does not matter
for the procedure we ultimately recommend, we do not discuss how to choose it.

SPECIAL CASE—Finite ©, continued: When O is finite, any k-dimensional linear func-
tional 4 with A(0) = 0 corresponds to a k x rk matrix. In this case, { = Agisa k x 1
Gaussian vector, while & = (h(6,),...,h(6,)) = (I —2A'(AXA')"'A)g is a Gaussian
vector with mean p = (I — 2A'(AXA")"' A)ym and rank (q — 1)k covariance matrix
3 =3 —-3A (AT A)' A3. In this context, our assumption that Cov(Ag, g(0)) is non-
singular for all 6 is equivalent to requiring that all r of the k x k blocks in the k x rk
matrix A% have full rank. Since 3 has full rank, such A4 always exists. Lemma 1 then
states that the transformation from (6*, m) to (6*, u) is one-to-one, and hence a repa-
rameterization. The original parameter space for m is the subset of R™* where at least
one k-dimensional component is exactly zero. This space is not linear, or even convex,
as convex combinations of two mean vectors with zeros at different 6’s need not be zero
anywhere. By contrast, the parameter space for (6*, ) is the Cartesian product ) x H,,,

where H,, = Span{3} is a (r — 1)k-dimensional linear subspace of R'*.

3.1.2. Prior Independence
The likelihood function £(u, 6*; g) based on the observed data g(-) factors as'

O, 075 8) = L(u, 075 £)E(us ),

where £(w, 6%; ¢) and £(u; k) are the likelihood functions based on ¢ and A, with the
latter depending only on n and not on 6*. Since the loss function depends only on 6*, to
derive Bayes decision rules it suffices to construct the marginal posterior distribution for

Al Gaussian processes with covariance function 3 and mean functions in H are mutually absolutely con-
tinuous, so we can define the likelihood with respect to any base measure in this class.
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0*. For analytical tractability, we consider independent priors 7 (6*)7(w) on 6* and p.
Under such priors, the marginal posterior for 6* simplifies to

7(9*|8)=M for K*(9)=/€(M, 0; &) dm(ulh), (6)
/ 7(0)¢*(0)do

where 7(u|h) denotes the posterior for u given h.

3.1.3. Conjugacy and Invariance

The posterior (6) depends on the data (&, /(-)), the prior 7(6*) on the structural pa-
rameter, and the prior 77(x) on the nuisance parameter. Researchers may have informa-
tive priors about 6* in a given application, but seem unlikely to have strong priors about p.
Moreover, the infinite-dimensional nature of u makes it challenging to specify a subjec-
tive prior even when the researcher has prior information. We thus leave the prior on 6*
free to be selected by the researcher, while seeking a default recommendation for 7 (u).

In our search for a default 7(u), we restrict attention to Gaussian process priors
u~GP(0,Q), for Q(-, -) a continuous covariance function. This allows us to exploit con-
jugacy results, greatly simplifying computation of the integrated likelihood ¢*(6).!" Even
with this restriction, the space of potential covariance functions () is enormous, and it is
challenging to directly evaluate whether or not a given prior covariance is reasonable. To
derive default priors, we thus take a different approach, and ask what choices of prior
covariance () lead to decision rules with desirable properties.

We want a default 7(u) to imply reasonable decision rules when combined with many
different choices of (6*). To this end, we impose that if a researcher rules out some
parameter values ex ante, the implied Bayes decision rules should not depend on the
behavior of the moments at the excluded parameter values. Formally, we require that
for priors 7 (6*) with restricted support © C 0, Bayes decision rules based on the prior
7(6*)m(n) should depend on the data only through ¢ and the restriction of /4 to ©. For
this invariance property to hold for all possible priors 7(6*) and all loss functions L(a, 6*),
however, it must be that ¢*(6) depends on the data only through (¢, 4(9)) for all 6 € ©,."
This restriction dramatically narrows the class of candidate covariance functions ().

THEOREM 3: Assume the covariance function () is continuous.

(a) Forall 6* € O such that 2.(6%, 6*) and Q(6*, 6*) have full rank, the integrated likeli-
hood £*(6*) depends on the data only through (¢, h(6*)) if and only if

Q(6%,67) 7' Q(6%, ) =3(67, ) '3(67,6) forall 6 €O, (7)

(b) Assume, further, that for some 6, € O such that i( 6o, 00) is full rank, there does not
exist a nontrivial (nonempty, but strictly smaller than R*) linear subspace V' C R* that

"For Gaussian 7(u), £*(6*) corresponds to a Gaussian likelihood for observation ¢ with mean given by the
best linear predictor of ¢ based on 4 under the prior. The solution to this linear prediction problem is obtained
in Parzen (1962), and details appear in the proof of Theorem 3, stated below.

12See Appendix B for details, and a formal invariance argument.
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is invariant for the whole family of symmetric matrices™
= {D(6) = R(60, O)R(60, 6)', 6 € O, : det(S(6, 6)) > 0},

where R(6,, ) = 5(00, 90)*1/25(00, Q)i(@, 0)~'2 is a correlation function. Then con-
dition (7) is equivalent to Q(-, -) = AX.(-, -) for some A > 0.

Two positive-definite matrices share an invariant subspace if and only if several eigen-
vectors of one matrix span the same subspace as several eigenvectors of the other. Gener-
ically (i.e., everywhere but a nowhere-dense subset), two positive-definite matrices share
no nontrivial invariant subspace. For the condition in part (b) of Theorem 3 to fail re-
quires something still stronger, namely that the same subspace be invariant for a whole
family of matrices indexed by 6. Thus, invariance generically reduces the class of candi-

date priors to the one-dimensional family Q(-, -) = AZ(, -).

SPECIAL CASE—Finite O, continued: Recall that in this case H, = Span{i} isa (r—
1)k-dimensional linear subspace of R™. Hence, h ~ N (u, i) has support H,, and the
inverse of 3 is well defined on "H,.. Consider a Gaussian prior u ~ N (0, ) with support
‘H,. This implies that () is also rank (r — 1)k, with a well-defined inverse on #H,. The
posterior mean for u given 7 is thus (3~ + Q-1)"1S-1A.

The proof of Theorem 3 establishes that the integrated likelihood £*(6*) depends on the
data through (¢, £(6")) if and only if the posterior mean for u(6*) given & depends only
on A(6"). Given the formula for the posterior mean, the matrix (' + Q')"'3~" must
therefore be block-diagonal, with r blocks of size k x k. We then show that, generically in
the space of covariance matrices s, (E '+071)" 151 is block- diagonal if and only if Q) is
proportional to s,

While the condition in Theorem 3(b) holds generically, it can fail in cases where the mo-
ments have special structure. For instance, suppose a researcher forms moments based on
two independent data sets, where one data set is used to form the first group of moments
while the other is used for the rest. In this case, % will be block-diagonal, and will imply
two orthogonal invariant subspaces that are common across all 6. If these are the only
nontrivial invariant subspaces, the family of () satisfying condition (7) is two-dimensional,
allowing a researcher to put different coefficients of proportionality on two invariant sub-
spaces.

3.2. Proportional Priors and Quasi-Likelihood

Motivated by Theorem 3, we focus on proportional prior covariance functions, (-, -) =
AZ (-, +)." In this case,

O =085 0) = [AO)] - exp( - 5u(0/A®) u(o) ).

13A linear subspace V' C RF is invariant for a linear operator L if, for any v € VV, we have Lv € V. Invariant
subspaces for a symmetric matrix L are the subspaces spanned by subsets of its eigenvectors.

1Similar to, for example, Jeffreys prior, proportional priors depend on the data generating process and so
violate the likelihood principal.
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for u(0) = 75¥(0)'8(0) + 15& A0) = 5 [¥(O) 126, O)[Y(O) '] + 5 Var(§),
where the k x k-matrix valued function #(-) = Cov(g(-), £) Var(£)~! depends on A4
and 2. Hence, for proportional priors, the posterior distribution (6) takes a simple form.

The constant of proportionality A controls the strength of identification under the prior.
When A = 0, the prior implies that the mean function m is zero with probability 1, so
nothing can be learned from g and the posterior on #* is equal to the prior. By contrast,
under the diffuse (A — oo) limit, the prior variance of m diverges. In this case,

fim €(658.% ) = [0(0)| - 50, 0)] - exp( - 38(0)%(0.0) '5(0) ). ®)

Hence, as A — oo, £*(0) converges to a transformation of the continuously updating
GMM objective function, multiplied by factors that do not depend on g and so may be
absorbed into the prior. Note, in particular, that A enters (8) only through [¢(6)], so as
A — oo our default priors deliver posteriors of the same form for all choices of A.

The quasi-likelihood (8) was used by Chernozhukov and Hong (2003) as part of their
quasi-Bayes approach, discussed further in the next section. Motivated by the simplifi-
cations obtained by taking A — oo (e.g., the elimination of dependence on A) together
with other desirable properties discussed in the following sections, we recommend using

this limiting quasi-likelihood, absorbing |¢(0)| and |%(6, 6)| 2 into the prior to obtain a
quasi-posterior of the form (6) with £*(6) = exp(—3Q(6)) for Q(6) = g(6)'2(6, 6)~'g(0).
While (8) resembles a Gaussian likelihood, under weak identification the function Q(6)
will often be far from quadratic, implying highly non-normal quasi-posteriors for the
structural parameter 6. In strongly identified settings, by contrast, the data rule out values
of 0 outside a small neighborhood of 6*, allowing Taylor expansion arguments to estab-
lish that the function Q(0) is approximately quadratic in 6 and the quasi-posterior for 6
is approximately normal. Intuitively, the Gaussian form of (8) reflects that the moment
function, evaluated at a given point, is asymptotically normal, but under weak identifica-
tion this does not imply normality of the quasi-posterior for the structural parameter.

4. DECISION RULES BASED ON THE QUASI-POSTERIOR

The last section derived a class of priors for the limit problem, and showed that they
imply the quasi-likelihood (8) as a limiting case. This section discusses how to use this
quasi-likelihood to construct decision rules. We first consider point estimation and other
decision problems with no constraint on the class of rules, and then turn to statistical tests,
which impose frequentist size control as a side condition.

4.1. Estimation

We first consider quasi-Bayes estimates, or other unconstrained decision rules, which
solve the weighted average risk minimization problem over the class of all decision rules.
To minimize weighted average risk, it suffices to minimize the posterior expected loss for
each realization of g, taking

/ L(a, O)W(O)GXp{—%Q(H)}dH

0y

s(g) € argmifr‘lf L(a, 0)dw(6|g) = argmij‘l 9)
ae @0 ae

/@ﬂ 7 (0) exp{—%Q(@)} do
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For instance, under squared-error loss L(a, 0) = |la — 6||3, equation (9) delivers the quasi-
posterior mean. If 6 is scalar and we instead consider the check-function loss L(a, ) =
(1 — {6 < a})(6 — a), the optimal decision rule corresponds to the rth quasi-posterior
quantile. While the quasi-posterior 7(6|g) is not, in general, available in closed form,
there is a large Bayesian computational literature on how to obtain posterior draws (e.g.,
via Markov chain Monte Carlo). Given a sample of such draws, we can then approximate
the optimal decision rule by minimizing the sample average loss. Chernozhukov and Hong
(2003) provided a detailed discussion of computation of quasi-Bayes decision rules (9).

Chernozhukov and Hong (2003) advocated the quasi-Bayes approach as a computa-
tional device for point-identified, strongly identified settings where Bayesian techniques
are more numerically tractable than minimization, and showed that the resulting estima-
tors are asymptotically efficient (again under strong identification). We have established
that the same quasi-posterior arises as the limit of proper-prior Bayes posteriors even
under weak identification. Appendix C shows that under further regularity conditions,
quasi-Bayes decision rules correspond to pointwise limits of proper-prior (and admissi-
ble) Bayes decision rules, consistent with the conditions of Theorem 2. Section 5 estab-
lishes the asymptotic properties for a feasible version of these rules. Given the range of
desirable properties established for these rules, we recommend the use of quasi-Bayes
decision rules in settings where weak identification is a concern.

Bayesian Approaches to GMM

Several other papers have justified quasi-Bayes decision rules (9) from a Bayesian per-
spective. Closest to our approach, Florens and Simoni (2021) considered Bayesian in-
ference based on an asymptotic normal approximation to a transformation of the data,
and obtained the quasi-likelihood (8) as a diffuse-prior limit. Unlike our analysis, how-
ever, they specified a Gaussian process prior on the finite-sample density of the data X,
rather than on the mean function in the limit experiment. Earlier work by Kim (2002) ob-
tained the same quasi-likelihood via maximum entropy arguments, while Gallant (2016)
obtained it as a Bayesian likelihood based on a coarsened sigma-algebra. Unlike our anal-
ysis, none of these papers speak to questions of optimality.

Other authors have considered alternative Bayesian approaches for moment condi-
tion models that do not run through the quasi-likelihood (8). Chamberlain and Imbens
(2003) considered inference for just-identified moment condition models with discrete
data, while Bornn, Shephard, and Solgi (2019) considered discrete data and potentially
over-identified moment conditions. Both procedures have a finite-sample Bayesian jus-
tification, unlike our approach. Shin (2015) considered Bayesian approaches based on
Dirichlet process priors and exponential tilting arguments. Finally, Lazar (2003) discussed
posteriors formed using the empirical likelihood objective, and Schennach (2005) showed
that a particular generalized empirical likelihood (GEL)-type objective function arises in
the limit for a family of nonparametric priors.

It may be surprising that the quasi-likelihood (8) is simply a transformation of the lim-
iting GMM objective function, since there are many other objectives that can be used to
fit moment conditional models, particularly GEL approaches. Guggenberger and Smith
(2005) showed, however, that under regularity conditions all GEL objective functions are
first-order asymptotically equivalent under weak (as well as strong) identification. Since
continuously updating GMM is a member of the GEL family, this implies that all ap-
proaches in this family, including Bayesian empirical likelihood as proposed by Lazar
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(2003), are equivalent to (8) in the limit experiment. Since the approach of Schennach
(2005) is closely related to GEL, it is likewise equivalent to (8) in the limit problem."

4.2. Optimal Tests

Our results show desirable properties for quasi-Bayes decision rules, but Bayesian infer-
ence does not in general control frequentist size or coverage under weak identification. In
particular, while Chernozhukov and Hong (2003) showed that credible sets formed based
on quasi-posterior quantiles have correct coverage when identification is strong, these
sets can badly under-cover when identification is weak, consistent with well-known results
on Bayesian inference for settings with identification failure (e.g., Moon and Schorfheide
(2012)). Our results are nonetheless useful for frequentist inference, since Theorem 1
implies that attainable asymptotic type-I and type-II error functions are bounded below
by the corresponding functions in the limit experiment. Hence, if we can characterize
optimal tests in the limit experiment, these bound the attainable asymptotic power.

In previous work (Andrews and Mikusheva (2016)), we developed a general technique
for constructing identification-robust tests based on a wide variety of test statistics. Dif-
ferent choices of test statistic imply different power properties, however, and the optimal
choice of statistic remained an open question. Here, we characterize optimal tests.

Consider the problem of testing the null H : 6* = 6, against the composite alternative
H, : 6% # 6,. For this problem, it is natural to let 4 be the point evaluation functional at 6,
A(m) =m(6,). Define u and 4 as in Lemma 1 and the point evaluation example. There
is no uniformly most powerful test in this setting, so we instead specify weights 7 (6*, )
over parameter values in the alternative. We want to maximize weighted average power
(WAP), subject to controlling the rejection probability under the null

max/ Eg u[@]dm (6, 1) subjectto Ey [¢] <aforallpueH,,
¢

where ¢ =0 and ¢ = 1 denote non-rejection and rejection of H,, respectively. Unfortu-
nately, the size constraint in this setting is challenging to work with, since it involves the
infinite-dimensional nuisance parameter u € H,. If we strengthen the size constraint to
require similarity,

Eg ule]=a forallueH,, (10)

this simplifies the problem.'® Theorem S2.1 in the supplement to Andrews and Miku-
sheva (2016) establishes that any test ¢ satistfying (10) must be conditionally similar, with
Eg,[¢|h] = « for almost every i, and shows how to construct conditionally similar tests.
Together with the results above, this delivers WAP-optimal similar tests:

THEOREM 4: Let T = %, where £*(-) is defined in (6). Let c,(h) be 1 — a quantile
of the conditional distribution of T given h under 6,. Provided the distribution of T given h is
almost surely continuous, the test *(6y) = I{T > c,(h)} is similar. Further, ¢*(6,) maximizes
(0, w) = 7w (0)m(n)-weighted average power over the class of similar tests, in the sense that

for any other test ¢ with By, ,[¢] =a forall p € H,, [Ey,[¢*(60) — ¢]dm(6, n) > 0.

5The equivalence proofs in Guggenberger and Smith (2005) extend directly to this case.

I6WAP-optimal similar tests for the weak IV model have been studied by D. Andrews, Moreira, and Stock
(2006), Moreira and Ridder (2017), and Moreira and Moreira (2019), among others. Specialized to linear IV,
the method we propose here is equivalent to a particular class of priors.
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Theorem 4 states that optimal similar tests reject when an integrated likelihood ra-
tio exceeds a conditional critical value. Implementation is straightforward so long as one
can efficiently evaluate the integrated likelihood ratio statistic 7 = #(g) for a given re-
alization of g(-). Specifically, to simulate the conditional critical value c,(4), we draw
&~ N(0,3(6, 6,)) and take T* = 1(g"), where g*(-) = h(-) + 3(, 60)2 (60, 6) ' &". The
conditional critical value ¢, (%) is the 1 — a quantile of 7%, and the test rejects if T exceeds
c.(h).

Note that while the test ¢*(6,) depends on the weight function 77, it controls the re-
jection probability for all parameter values consistent with the null. Hence, if we form a
confidence set by collecting the non-rejected values,

/Z*(?))w(?))d@

this set has frequentist coverage 1 — a for 0* no matter the choice of 7. Thus, while
we use priors to direct power, this confidence set is valid in the usual frequentist sense.
Comparing CS to the level 1 — « highest quasi-posterior density credible region,

CS={0€®:§0*(0)=0}={0:6*(0)2

/ 0*(8)m () d

x(g)m(6) }
for k(g)~! the a-quantile of the posterior density %,
take a similar form, thresholding ¢*(6), where the confidence set chooses the threshold to

ensure correct coverage. In this sense, the confidence set is a natural complement to the
credible region, modifying the threshold to ensure correct coverage.

CR={0€®:£*(0)2

we see that the two sets

5. FEASIBLE PROCEDURES

The limit experiment studied in the previous sections treats ®, as known. In prac-
tice, however, the structure of weak identification, and thus the set ©®,, is often un-
known. Moreover, we do not observe the limiting process g(-), and do not know 3. Fea-
sible quasi-Bayes procedures replace them by the normalized sample moments g, (-) =

% YL, ¢(X;, ) and estimated covariance 3,,. The researcher specifies a prior over the
whole parameter space ©, and for Q,(6) = gn(O)’igl(G, 0)g.(6) uses the decision rule

[ L@ oy enf-S0.0 | a0
[7@ew]-50.0|a0

(11)

$n(8,) = argmin

This section shows that feasible decision rules (11) are asymptotically equivalent to
infeasible rules based on knowledge of ©,. In particular, the feasible quasi-posterior
~ _ Jzm(6)exp{— 1 0n(0)}db
7(0lg,) = Jo m(0) exp{~3 On(0)}db
ist infeasible decision rules that are asymptotically equivalent to (11) for a large class of

concentrates on neighborhoods of ©,."” Moreover, there ex-

"Liao and Jiang (2010) established a similar consistency result for the case where the weighting matrix does
not vary with 6.
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loss functions. These rules correspond to a prior 7° supported on @, and a transforma-
tion of the moments. Specifically, some of the original moments are used to estimate ©,
while the remainder are used to form the posterior on ®,. We focus on unconstrained
decision rules for brevity, but a similar analysis applies for tests, and sufficient conditions
for uniform asymptotic validity of tests are provided in Andrews and Mikusheva (2016).

To derive these results, we first assume that the moments, appropriately centered and
scaled, converge to a Gaussian process with consistently estimable variance.

ASSUMPTION 1: The distribution P, is such that ®(0) = Ep [$(X;; 0)] and 2(-, -) are
continuous, and the determinant of %(0) = 2.(0, 0) is nonzero. Further, under P,,

Gu()=8u() —vn®() = G()~GP(,3),
and the covariance estimator S, is uniformly consistent, sup, ||§n(0) —-2(0)l—,0.

We next assume that, on a neighborhood of @, the model can be reparameterized in
terms of strongly identified parameter vy and weakly or partially identified parameter B.

ASSUMPTION 2: There exists a continuously differentiable function (B, y) : E — 0* C
0, where O, C O*, £ ={(B,v) : B € B,y € I'(B) C R} is compact, (B, y) € O, if and
only if y =0, and 0 lies in the interior of I'(B) for all B € B. There exists a (positive) measure
(B, y) on E such that w(0) on O is the pushforward of (B, y) under 9. The conditional
prior on vy given B has a uniformly bounded density ,(y|B) that is uniformly continuous
and positive at y =0, and [, dw(B) > 0.

Finally, we shorthand ®(, y) = ®(J(B, v)) and ®(B) = ®(, 0) for all functions.

ASSUMPTION 3: The function ®(B,y) is uniformly (over B € B) differentiable in vy at
v = 0. Further, for V(B) = %qD(B), J(B) = 3V(B)'2(B) 'V (B) is everywhere positive defi-
nite.

Assumption 1 is standard for asymptotic analysis. Assumption 2 imposes that, on a
neighborhood of O, there exists some (unknown to the researcher) reparameterization
of the model in terms of 8 and vy, where B indexes the weakly or partially identified
parameter, while y can be called strongly identified. The set ©, corresponds to y =0, and
is parameterized by 8 € B. Han and McCloskey (2019) provided sufficient conditions for
such a reparameterization to exist. The mapping from (B, y) to 6 can be many-to-one,
and we impose very little structure on the set B, which may, for example, be a collection
of points or intervals. We also note that (3, y) need not integrate to 1, since ®* may be
a strict subset of 0. Assumption 3 requires that y be strongly identified, in the sense that
the Jacobian of the moments with respect to y has full rank at y = 0.

THEOREM 5: Suppose Assumptions 1, 2, and 3 hold. If the prior w(6) has bounded density

on O, then for any sequence c, — oo, under sequences P, ; local to P, in the sense of (2), we
have

77({0 € ®: D(0)3(0)"'D(0) > %}

gn) —0,(1). (12)
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Moreover, for any bounded function c(6) uniformly continuous at ©,,

[cto@)ew]-S0rm | are)

/ c(0) d(6]g,) - —o,(1),  (13)

[[ew]-50:0)| ame)

where dm"(8) = m,(0|B)|[(B)|~* dm(B), Q¢(B) = g.(B)Y M(B)g.(B), and
M(B)=32(B)"' —3(B)'V(B)J(B)'V(B)S(B)".

Theorem 5 is a version of the Bernstein—von Mises theorem for weakly and partially
identified quasi-Bayesian settings. The GMM objective function Q,(6) is bounded on 6,
but diverges away from ©,. As (12) highlights, this forces the quasi-posterior to concen-
trate on infinitesimal neighborhoods of ®, corresponding to consistent estimation of the
strongly identified parameter y. The rank k — p, matrix M (B) then selects the linear
combination of moments orthogonal to those used to estimate vy, and this combination
is used to form the posterior on B. Unlike in the classical Bernstein—-von Mises theorem,
the prior on 0, (i.e., on B) matters asymptotically, and is adjusted based on the precision
of the estimate for y as measured by J(B).!® Overall, we obtain that feasible quasi-Bayes
posteriors are asymptotically equivalent to infeasible posteriors based on a transforma-
tion of the prior and moment conditions. This likewise implies asymptotic equivalence of
feasible and infeasible decision rules.

COROLLARY 1: Let the assumptions of Theorem 5 hold. Assume that the loss function
L(a, 0) is Lipschitz in a and continuous in 6 over ®*, and that A is compact. Assume

further that for almost all realization of process G(B) ~ GP(0,2), the process L(a) =
[z L(a,9(B))exp{—3G(B)YM(B)G(B)}d="(B) has a unique minimizer over A. Then

La, 9(B) x| ~50(8) | a'(8)

[[ew|-3020) ) aw )

B

$2(g) = argmin P 5,(8).

Uniqueness of the minimizer L (a) is guaranteed to hold if the loss function is convex in
a. Sufficient conditions for uniqueness in non-convex cases are discussed in Cox (2020).

Overall, we obtain that feasible quasi-Bayes decision rules, computed without knowl-
edge of ®,, converge to infeasible quasi-Bayes rules based on knowledge of ®, and a
transformation of the moments and prior. These rules are, in turn, the limit of sequences
of proper-prior Bayes decision rules in the limit problem by our previous results.

EXAMPLE—Quantile IV (continued): As discussed above, in this example 0 = {6 =
(o, B) : = qp, (Y — W’'B)}. This set is one-dimensional, and can be parameterized by
B. We may then define the strongly identified parameter as y = a — gp (Y — W'B), so
3(B,y) =(v+4gp..(Y —W’'B),B),and (B, y) € O if and only if y =0, as required for
Assumption 2. The remainder of Assumptions 1-3 hold under regularity conditions on

8See Kleibergen and Mavroeidis (2014) for related discussion.
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Py and 7(6). Hence, Theorem 5 and Corollary 1 imply that feasible quasi-Bayes decision
rules (11), formed without knowledge of ®,, are asymptotically equivalent to rules formed
with knowledge of P, and a reduced set of moments.

6. EMPIRICAL ILLUSTRATION

This section returns to quantile IV in the Graddy (1995) data, and reports the results
from a quasi-Bayesian analysis. Following Chernozhukov, Hansen, and Jansson (2009),
we restrict attention to « € [0,30] and B € [-10,30]." We use a flat prior 7(6*) on
0 = (a, B), and calculate the quasi-Bayes posterior distribution discussed in Section 5 via
slice sampling (Neal (2003)). The first row of Figure 3 plots a sample from the joint poste-
rior, along with the marginals for « and 8. Three features emerge clearly. First, the quasi-
posterior distribution is highly non-normal, and is indeed bimodal, consistent with weak
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FIGURE 3.—Joint and marginal quasi-posteriors for quantile IV, 7 = 0.75, based on Graddy (1995) data.
The results in the first row are based on the continuously updated GMM objective following Chernozhukov
and Hong (2003), while the second row is empirical likelihood quasi-posterior proposed by Lazar (2003), and
the third row is the exponentially tilted empirical likelihood posterior proposed by Schennach (2005).

YThis choice of parameter space was discussed in the working paper version, Chernozhukov, Hansen, and
Jansson (2006).
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FIGURE 4.—Quasi-likelihood exp(—10Q,(6)) for quantile IV, 7 = 0.75, based on Graddy (1995) data. Note
that this is a transformation of the GMM objective plotted in Figure 1.

identification. Second, the quasi-posterior mean differs considerably from the GMM es-
timate, again consistent with weak identification. Third, despite weak identification of «
and B separately, the quasi-posterior is concentrated around a lower-dimensional set, as
expected given the posterior consistency for ®, established by Theorem 5.

The posterior bimodality observed in Figure 3 stems from a combination of two forces.
First, if we consider the profiled quasi-likelihood for « and 3 separately, as shown in the
second and third panels of Figure 4, we see that it is multimodal, albeit with a pronounced
global maximum at the GMM estimate. As is clear from inspection, however, both pro-
filed quasi-likelihoods are less right-skewed than their respective quasi-posteriors. The
additional skewness of the quasi-posterior reflects that the quasi-likelihood becomes less
steeply curved in the strongly identified direction as « and B increase, and so remains high
over a wider region, as shown in the first panel of Figure 4. When we integrate against the
prior, this increases the posterior mass assigned to large values of « and B. This effect

is captured in the |J(B)|~? term in Theorem 5, which shows that quasi-posterior assigns
more mass to regions where the strongly identified parameter is less precisely estimated.

While we have focused on quasi-Bayes procedures (11) based on the continuously up-
dating GMM objective function, as noted in Section 4, quasi-Bayes procedures based on
other GEL-type objectives are equivalent in the limit experiment. The second and third
rows of Figure 3 plot the empirical likelihood quasi-posterior proposed by Lazar (2003)
and the exponentially tilted empirical likelihood posterior proposed by Schennach (2005),
along with the corresponding estimators. In both cases, the results are qualitatively similar
to those obtained based on continuously updating GMM.

Finally, to illustrate the impact of varying identification strength on the quasi-posterior,
we consider inference on the median 7 = 0.5, which might be expected to be more strongly
identified than 7 = 0.75. Consistent with this intuition, the quasi-posterior for the median
(plotted in Figure 5) is much more concentrated, and the GMM estimate is closer to
the quasi-posterior mean. Interestingly, however, even in this case the quasi-posterior is
clearly non-normal, suggesting that strong-identification asymptotic approximations may
not be fully reliable. Consistent with this possibility, in simulations calibrated to this ap-
plication (and reported in the Appendix), we find that the distribution of the GMM esti-
mator is clearly non-normal, and that the weak-identification asymptotic approximation
again better matches the finite-sample distribution.

While one could use the quasi-posteriors discussed above to form credible sets, as dis-
cussed in Section 4.2 these sets will not in general have correct frequentist coverage. To
ensure coverage, one can instead compute identification-robust confidence sets. In this
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FIGURE 5.—Joint and marginal quasi-posteriors for quantile IV for median, 7 = 0.5, based on Graddy
(1995) data.

application the resulting confidence set, shown in Appendix D, closely resembles the 95%
highest posterior density set.

APPENDIX A: PROOFS

DEFINITION 3: The Reproducing Kernel Hilbert Space (RKHS) H associated with X is
a space of functions from @, to R¥, which is obtained as the completion of the space
spanned by functions of the form Z;:, 2(-, 6;)b; for any finite set of constant vectors

{b;} C R* and parameters {6;} C ©,, with respect to the scalar product (-, -}, defined on
the basis set as

<Z S(, 0,)b;, > S( é,)c,> =Y "> b3(6;, 0)a.
j=1 I=1 o =l =1
LEMMA 2: The image of T (Py) under transformation (4) is ‘H.

PROOF OF LEMMA 2: A score f(X) =) _, ¢(X, 6;)'a; corresponds to the function
m() =Ep[f(X)$(X, )] =D En[d(X, )(X, ) a;] =Y _3(, 6,)a;.
i=1 i=1

For two scores f1(X) =Y, ¢(X, 6;)a; and f,(X) = Zj*:, ¢(X, 67)'b; and correspond-
ing mean functions m;(-) = >_,_, 3(-, 6;)a; and m,(-) = Z‘;; (-, 07)b;, we have

B, [/1(X) f2(X)] ZZa/EPO b(X, 0,)b(X, 07)]b;

i=1 j=1
_Zzaz is ] b _<ml,m2>
i=1 j=1

This implies that there is an isomorphism between H and the completion of the space
spanned by scores of the form f(X) =3""_, ¢(X, 6,)'b; in L,(P).
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It remains to show that for any f* € T(P) that is orthogonal to the completion of
the space spanned by scores of the form f(X) =}_, #(X, 6;)'b; in L,(P;), we have
Ep[f*(X)¢(X, )] =0 € RF. Indeed, f* is orthogonal to a'¢ (X, 6) for any vector a € R¥
and any 0 € ©,. Thus, Ep [f*(X)a'¢(X, 0)] = 0. This also shows that 7{* coincides with
the completion of the space spanned by scores of the form f(X) = Z‘;Zl ¢(X,0,)b; in
L, (Py). Q.E.D.

DEFINITION 4: Let {¢;} be a complete orthonormal basis in 7 (). Define the exper-
iment £ as one of observing the (infinite) sequence of independent random variables
W; ~ N(Ep,[f(X);(X)], 1), with parameter space {(6*, f) : 6* € Oy, f € To-(Py)}.

LEMMA 3—Theorem 3.1 in Van der Vaart (1991): Consider a sequence of statistics S,
which has a limit distribution under £, in the sense that under any P, for f € T(P),
S (X1,...,X,) = Sy as n — oo. Assume there exists a complete separable set S, such that
S¢(So) =1 for all f € T(Py). Then, in the experiment E*,, there exists a (possibly random-
ized) statistic S* = s*({W;}, U) for a random variable U ~ U[0, 1] independent of W; such
that 8* ~ Sy under f for all f € T(P,).

PROOF OF THEOREM 1: Define the orthonormal basis {¢;(X)} of T(FP,) to consist of
the union of an orthonormal basis {¢7(X)} of H* and an orthonormal basis {¢; (X)} of
‘H*. The limit experiment £, corresponds to observing the union of two sets of mutually
independent random variables:

Wi~ N(En[f(X)e)(X)].1) and W ~N(Er[f(X)e) (X)].1).

Due to Lemma 2, we have Ep[f(X)¢j(X)] = (m, ¢})4. The experiment of observing
only W ~ N({m, })4, 1) is equivalent to the Gaussian Process experiment &, (see,
e.g., Theorem 4.3 of Van der Vaart and Van Zanten (2008)).

By independence, dP;(W*, W*) = dP;.(W*) x dPs.(W~). The loss function depends
only on 6%, and the parameter space for (6, f*, f*) is the Cartesian product {6* € O, f* €
Hi} x {f*+ € H*}. The risk of a decision rule 8 is

R(o", 1) =R(6", f*, ) =B, [L(3(W", W*), 67)].

We claim that, for any fixed value f*, there exists a decision rule in the experiment &,
with risk R(6*, m) = ﬁ(ﬁ*, f*, ) for all (6%, f*) € {0* € Oy, f* € H}.}, where m corre-
sponds to f*. Indeed, since experiment £, is equivalent to observing only the W;* vari-
ables, it is enough for each realization W* = w to draw a random variable (W) from dis-
tribution dP;. (which is fixed) and produce a randomized decision as 8(w) = 8(w, W™+).
The last line of the result then follows from the portmanteau lemma. Q.E.D.

PROOF OF THEOREM 2: The distribution of g for any m € ‘H is dominated by the dis-
tribution under m = 0. Moreover, the form of the likelihood ratio for Gaussian processes
(see, e.g., Theorem 54 in Berlinet and Thomas-Agnan) implies that condition (1) in Sec-
tion 4A.1 of Brown (1986) holds. Our assumptions likewise imply condition (2) of Brown
(1986). This result is thus immediate from Theorem 4A.12 of Brown (1986). Q.E.D.

PROOF OF LEMMA 1: Denote by G(-) = g(-) — m(-) the mean-zero Gaussian process
with covariance function 2. The regression of the process G on the anchor A(G) defines
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a Pettis integral

W) =[11()s -, ()] =E[GO)AG) [E[A(G) A(G)] ' e HY, (14)

where each column is a function in H (see Van der Vaart and Van Zanten (2008), for
discussion) and depends only on 3 and A. Let H, be the linear subspace of H or-
thogonal to {{(-), ..., ¥r(-)}. For each m(-) € H, define u(-) to be the projection of
m on the linear subspace H,. The properties of Pettis integrals imply that (s, m); =
[A(G)A(G)]'A(m) and (i, ), = [A(G)A(G)']™!, which yields the orthogonal de-
composition

m(-) = p() + () A(m).

For any 6* and m € Hgy, m(6*) =0, so A(m) = —[¢(6*)]' u(0*). We can consequently
rewrite m(-) as a function of (6*, u),

m() = p() — v (0] w(6).

This establishes a one-to-one correspondence between {(6*,m) : 6* € ©y, m € Hq} and
(0%, u) € Oy x H,. Moreover, H,, is the RKHS generated by the covariance function

3(01, 02) = 2(01, 02) — 4 (0)E[A(G) A(G) [(6:).

Define the random vector £ and stochastic process & by & = A(g)andh(-) = g(+) —
¥ (-)¢. By construction, & ~ N(v(6*, u), %) for v(6*, u) = —[(6*)] 'u(6*) and X, =
E[A(G)A(G)'], while h(-) ~ GP(u, 2). Moreover, ¢ and 4 are jointly normal and uncor-
related, and therefore independent. Q.E.D.

PROOF OF THEOREM 3: According to Neveu (1968), the conditional distribution of
E~N(—[¢(69)] 'r(67),2) given the realization of 2 = u + GP(0, ), assuming u ~
GP(0, Q), is Gaussian and the conditional mean coincides with the best linear predictor.
_Let p(-) = E[éh(-)] = —[¥(6")]7'Q(6", -), and note that E[/(6,)h(6,)] = Q(6:, 62) +
2(61, 6,). Denote by K the RKHS corresponding to the covariance function Q) + 2, and
by L(h) the subspace of L, random variables obtained as the closure of linear combi-
nations of A. Define &* as the projection of ¢ onto L(4). By definition, it is the best
linear predictor of ¢ given &, and E[éA(-)] =E[&*h(-)] = p(-). Lemma 13 in Berlinet and
Thomas-Agnan (2004) implies that p(-) € . Denote by ¥ the canonical congruence be-
tween L(h) and K, defined by

‘I’(Z a.fh(ej)) = a;(Q(6;,) +2(6;,) €K,
j j

and extended by continuity. Then & =W¥~"'(p(-)). See Section 3 of Berlinet and Thomas-

Agnan (2004) for further discussion.

To prove (a), we fix 6%, assume that condition (7) holds, and show that the best linear
predictor depends on (&, g(6*)) only. Condition (7) implies that

0%, ) +3(0%, ) = (L + 3(67, 0)Q (0%, 67) ) (6%, -).
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Thus,
p() = [0 (09)] " (L +2(67, 01)Q(6, 6°) ) [Q(67, ) +2(6%, )],

and the canonical congruence has the form

() = [w(6)] " (L +Z (0, )67, 07) ) (),

which depends on the data only through 4 (6*) = g(6*) — ¢ (6*)&.

Now let us assume that, for each 6", the likelihood depends only on (&, g(6*)) and prove
that (7) holds. Since the conditional distribution of ¢ given 6* and &* is N (&%, 2¢), £&* must
depend only on (&, g(6*)) or, equivalently, on (&, #(6*)). Linearity of £&* in 4 then implies
that there exists a non-random k x k matrix B(6*) such that W~'(p(-)) = B(6*)h(6*). By
the definition of the canonical congruence, this implies p(-) = B(6*)[Q(6%, -) +Z(6*, -)].
Since p(-) = —[(6*)]7'Q(6", ), however, [§(6*)]7'Q(6", -) = B(6")[ (6", ) + (6", )].
Since ¢(6*) has full rank, both sides are invertible when evaluated at 6*, and some rear-
rangement yields (7). This finishes the proof of (a).

To prove (b), let B = (6, 6,). Condition (7) implies that

(80, 0) = BS(6y, 0,)'S(60, 0) and  Q(6, 0)"Q(6, ;) = (6, 6)"'3(6, 6,).
The transposed equations are
Q(6, 00) = 3(0, 0)(60, 0) "B and  Q(6,, )0, 6)~" = S(6,, 0)S(0, 0)~".
We can calculate Q(6, )Q(6, 6)~'Q(6, 6,) in two ways, so
(60, 0)2(6, 0)7'3(6, 60)S.(60, 00) "' B = B(6y, 0,)"'S(60, 0)2(6, 0)"'3(0, 6,).
Pre- and post-multiply the last equation with 5(90, 6y)~"/* and let
B =3(60, 00)""2BS (6, 6,) V2.

We obtain that B commutes with a whole family of symmetric matrices: D(H)B =
BD(O) Assume B has r distinct eigenvalues. Since B is symmetric, all eigenvectors
corresponding to distinct eigenvalues are orthogonal. Let V5, ..., V, be the orthogonal
subspaces spanned by eigenvectors of the B corresponding to eigenvalges AL, ...y A, TE-
spectively. Consider a symmetric matrix D(6) € D that commutes with B. Take any v; € V;
and v; e Vj:

v,D(0)Bv; = \ju.D(0)v; = v,BD(0)v; = \;u,D(6)v;.
This implies v;D(60)v; = 0 for any i # j. Thus D(0)v; € V}, and V3, ..., V, are invariant

subspaces for D(8). Thus, we proved that 1, ..., V, are invariant spaces f0£ the whole
family of operators D. Under the conditions of the lemma, this implies that B has single
eigenvalue A > 0, and thus Q(-, -) = AZ(, -). Q.E.D.

PROOF OF THEOREM 4: Similarity of ¢*(6,) follows from Andrews and Mikusheva
(2016). For any u € H,, and any test ¢,

[ e@dn@rm ]

//EO,M[¢]dW(M)dW(0)=E7T[¢]=E90’I-L|: (e, 00; E)0(: h) ¢
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Since ¢ = g(6y), £(m, 6p; €) does not depend on w, and is equal to £*(6y). Lemma 2 of

Andrews and Mikusheva (2016) implies that (6,) = 1{LE04mO/W - & (1)} maximizes

€4(00)(p:h)
E.[¢] over the class of size-« similar tests, where ¢, (/) is the 1 —« quantile of %

conditional on % under the null. The test statistic in $(6,) differs from that in ¢*(6,)
only through terms depending on 4. These can be absorbed into the critical value, so

®(60) = ¢*(6o)- O.E.D.
PROOF OF THEOREM 5: By contiguity, it is enough to prove the statement under P;.
Denote Q(6) = ®(6)'%(6)~'® (). Due to Assumption 1, %,(6)~" is uniformly bounded

in probability and G,(-) = GP(0,2); thus, maxeo G,(0)'2,(0)"'G.(0) = O,(1). Since
8.(0) = /n®(0) + G, (0), we have

20.(6) =nQ(B)(1+ 0,(1) + maxG,()S,(6) " Go(0)
%Qn((a) > gQ(O)(l +0,(1)) — max G.(0)2,(0)"'G.(0).

Define a set @5, ={0 € O : () < 2} for some 6 >0 and @, ={0 € O : Q(6) > =}:

/% W(G)exp{—%Qn(G)}dG /0 w(e)exp{—gQ(g)}dG

[ (o) ew]-30.0)] [ RO

Due to uniform differentiability of (S, ), there exist positive constants C;, C, and small
enough & > 0 such that, for all 6 € @ ={0 = I(B,y) : Iyl < &}, we have C|ly|* <
Q(B, v) < G ||v|I*. For large enough n, we have ©; , C ©*. Thus,

W(@in|g,,) = = 017(1) :

Py

[ w@ao=[[  mepdvar@zc[  dyzcat.
Os.n BJO@B7)=} 2=y

Divide the integral over OF into integrals over @; N 07 and over O N (O;), where

(07)°=(0\ 07). We have O N O: C {6 =3(B,7): Clyll* > %}. Denote by O the
nonzero minimum of Q(6) over (0*). Thus,

J

7 (0) exp!—gQ(H)} dé

f@ 7(8)do

¢
n

<Cn'? (exp{—ﬁQ} +/ exp{—nCi v’} dv)
2 CollvlP= %

<o(1)+ / exp{—~Cillyl*} dy — 0.
Collyl?=cn

In the last line, we used the change of variables y = 4/ny and integrability of exp{—||y|/*}.
This proves (12), and implies that for me, the prior restricted to ©,,, the posterior

o, (Y|g,) = %;l’gf)") defined on sets Y C O is asymptotically the same as 7(Y|g,).
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If < — 0, then due to compactness of ©*, for large enough n we have ., C ©*. Thus,
we can treat the parameterization described in Assumption 2 as applying to the whole
parameter space 0.

The above implies that, for any ¢ > 0, there exists 6 large enough such that

Py 1

' ) o= = 15
{sl;pn /g(mzexp{ 2Q (B y)} > 8} <e (15)
and also sup, P{|N(0,J7'(B))Il = 8} < &. Define gi(B,v) = g.(B) + +/nV(B)y and
R.(B,v) =8.(B,v) — 2B, y)- Let us show that

sup sup |R.(B,v)|—"0. (16)

B yi2<®

Indeed, [IR.(B, V) = val®(B, ) = V(B)YII + 1Gx(B,v) — Gu(B)ll. We have that
supgsup,,2<s |G (B, ¥) — G.(B) | —7 0 due to stochastic equicontinuity. Uniform dif-

ferentiability implies supgsup.._s /2| P(B, ¥) — V(B) Yl — 0.
Denote Q(B, v) = 82%(B, v)='(B)g2(B, v)- Equation (16) implies that

sup sup
B yi2<?

1-exp|-5(0.(6.7) - Q.M || >0, (1)

Indeed, the left-hand side is bounded above by

sup sup |Q,(B,v) — O%B, )|

2_96
B yiz<2

<sup sup {|(g.+ &)=, Ru| + |22, (B, v) =371 (B))g’|} =7 0.

s
B y12<?

The last convergence follows from continuity of covariance function 2, equation (16), and
boundedness in probability of g,, gJ, and 3~ over {|y|I* < 2}.
Denote QF(B) = g.(B)M(B)g.(B). Let us define a projection operator P(f) =

3-3(B)V(B)I(B)'V(B)S%(B). Notice that M(B8) =32 (B) (I — P(B))2 " (B):

Q0(B.v) = &h(B, Y)Y M(B)E)(B, v) + &)(B, V'S (B)P(B)2 ™2 (B)g)(B, ¥)
=07(B) +(G"(B) + vny) T(B)(G"(B) + v/n),
where G*(B) =J(B)'V(B)'Z'(B)G.(B). Integration of the Gaussian pdf gives

n? exp{—%(G*(B) +/ny) J1(B)(G*(B) + ﬁv)} dy

lyl2<g
= |J(B>}5P{HN<%G*(B),F (B)) H < a}

S 1(B)| FP{|N(0,77(B)) | < 6},
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where & was chosen large enough that ¢(8) = P{|N(0,J7(B))| < 6} > 1 — e. Thus,

Py
n?2
IvI2<

Joining together the last statement with equations (15) and (17), we get

sup
B

onf-3026. 0 | av - 1B ) e~ 3028) || -0

n

sup
B

1 -1 1
wt [ ewl =308y lro ew| 50280
r®) 2 2
Given statement (15), for ¢(B, y) satisfying assumptions of Theorem 5 we have

sup
B

o [ e nen|-50.6.0|dr-c@oli@)]|  en|-50i)}| -0

Assumption 2 implies |, ,(0|B)|J( B)|~2 exp{— 108(B)}ydm(B) is stochastically bounded
away from zero. Thus, (13) holds. Q.E.D.

PROOF OF COROLLARY 1: For each a € A, we can apply (13) to ¢(0) = L(a, 0). Since
L(a, 6) is Lipschitz in a and A is compact, this implies

[ L@ 3.0 el S 020 | ame)
sup

/@ L(a, 6) dm(8lg,) —

’—)” 0.

[[ew|-3028)] ax6)
We also have weak convergence of the process
/B L("ﬁ(B,O))%p{—%Qf(B)}dW”(B)
[[ew] 5020 a7 e)

= L()

on A. This implies [, L(-, ) dm(6|g,) = L(-). Due to Theorem 3.2.2 in Van der Vaart
and Wellner (1996), (s.(g.), s2(g.)) = (argmin,_, L(a), argmin,_, L(a)). Thus, s,(g,) —
s%(g.) =7 0. Q.E.D.

APPENDIX B: INVARIANCE ARGUMENT

We seek default priors on u that yield reasonable decision rules when combined with
many different priors on 6, including priors with restricted support © € ©,. For any such
prior 7(60*), define a corresponding restricted model with parameter space © x H,,. Intu-
itively, by specifying a restricted-support prior 7r(6*), a researcher limits attention to the
restricted model.

We next introduce a group of transformations. Define #,, g to be the linear subspace

of functions in H,, that are zero everywhere on 0,

H,5={neH,: n6)=0foral oc0).
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The decision problem in the restricted model is invariant with respect to the group of
transformations that, for @ € H,, 5, takes (¢, h(-)) — (&, h(-) + (-)) in the sample space,
and (6%, u(-)) — (0%, u(-) + @(+)) in the parameter space. See Chapter 3 of Lehman and
Casella (1998) for an introduction to invariance in decision problems.

A maximal invariant in the parameter space under this group of transformations is
(0%, u(-)I{- € ©}). The statistic (¢, h(-)[{- € O}) is also invariant, and is sufficient for
(6%, nu(-)I{- € ®}). Hence, once we restrict ourselves to invariant decision rules, it is with-
out loss (in terms of attainable risk) to limit attention to decision rules that depend on the
data only through (¢, h(-){- € ©}).

By definition, Bayes decision rules in our setting minimize the quasi-posterior risk

/ L(a, 0)¢*(0) dm(0)
/ ¢(0) dm(8)

min
acA

for almost every realization of the data. Motivated by the invariance of the restricted
model, we seek default priors 7(u) such that, for all priors 7(6*) with restricted sup-
port ® C 0y, the joint prior 7(6*)m(w) admits Bayes decision rules depending only on

(& h(O{- € 6}).

DEFINITION 5:_A prior mr(u) is invariance-compatible for action space A and loss func-
tion L if, for all ® € O and all priors 7(6*) with support O, there exists a Bayes decision
rule that depends on the data only through (¢, h(-)I{- € ©}).

Priors () such that £*(6*) depends on the data only through (¢, /(6)) are invariance-
compatible for any (A, L). For unrestricted action spaces and loss functions, the converse
(up to scale) holds as well.

THEOREM 6: A prior () is invariance-compatible for all (A, L) pairs if and only if, for
any 6 € Oy, the integrated likelihood £*(6), defined in equation (6) in the main text, depends
on the data only through (&, h(0)), up to scale.

For Gaussian process priors on w, £*(6) corresponds to a Gaussian likelihood for & with
mean equal to the best linear predictor based on /4(-). In this case, there is no scope for
a data-dependent constant of proportionality, and 7r(w) is invariance-compatible if and
only if £*(0) depends on the data only through (¢, 4(6)).

PROOF OF THEOREM 6: The “if” part of the statement is immediate. For “only if,” first
consider the case where ® = {0, 0,}, A=1{ay, a,}, and

l; if6=80;, and a+#a,forje{l,?2},

L(a, 0)= ;
(a, 6) 0 otherwise,
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so an incorrect decision incurs a loss /;. Bayes decision rules must take

. E*(e]) 127(02)

B 8y ™ o)’

. E*(@l) _ lz’l'T(Oz)

ac {{1,2} if (6 = 1177(91)’
. E*(gl) lz’lT(Oz)

2 =) < L)’

for almost every realization of the data. Thus, we see that the optimal action depends on
the data only through (&, 2(6,), h(6,)) for all values of /;, [, if and only if the integrated
likelihood ratio £*(6,)/¢*(6,) depends on the data only through (&, h(6,), h(6,)).

Since we can repeat this argument for all 6;, 6, € ©y, we conclude that for 7 () to be
invariance-compatible, it must be the case that, for all 6;, 6, € ©,,

e(6)
e (6,)

for some function 7. This implies that for all 6,, 6,, 6; € ©,,

(& 1(6,), h(65); 01, 05)
(&€, 1(6), h(6,); 05, 0,)

7‘(5, h(@l), h(92)§ 01, 92),

F(&, h(61), h(6,); 61, 6,) =

Hence, the right-hand side does not depend on the value of /(65), and in particular is the
same as if 4(6;) = 0. For a fixed value 0 € 0, define r(&, h(6,), 6,) =7(&, h(6,),0; 04, 6),
and note that

€ (62)
C(0)) = ————71(& h(61), 61),
(61) (€, h(6), 02)7(5 (61), 61)
where the right-side cannot depend on 6,. Thus, £*(6) (&, h(6), 6). Q.E.D.

APPENDIX C: PROPERTIES OF BAYES AND QUASI-BAYES RULES

Admissibility of Proportional Prior Rules

In finite-dimensional settings (specifically, settings where the covariance function X has
a finite number of nonzero eigenvalues), choosing () = A%, implies that 77(w) has support
‘H,. In infinite-dimensional settings, by contrast, 7(u) assigns probability zero to H,—
see Section 3.1 of Berlinet and Thomas-Agnan (2004). It may not therefore be obvious
that the resulting Bayes decision rules are admissible.

This section shows that admissibility continues to hold under a weak continuity condi-
tion. Specifically, for || - || the Euclidian norm, let ||u . = SUPyeo, |£(6)]l be the sup norm,

and define ﬂﬂ as the closure of H, under || - ||«. For a metric dy on ©,, define
d((0, m), (6, 1)) = do(6,0) + | — '],

on O, x H,. Let S be the class of decision rules whose risk functions E, ,[L(s(g), 0)] are
continuous with respect to d.
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THEOREM 7: For @ (0, u) = mw(0)7 (), where m(0) has support © and w(u) corre-
sponds to u ~ GP(0, AZ) with A > 0, any decision rule s, € S with

/ Ev,u[L(52(). 6)] dm(0, ) = min / Eo [L(s(2). 0)]dm(6.)  (18)
is admissible relative to S and parameter space Oy x H,,.

PROOF OF THEOREM 7: Suppose there exists § € S that dominates s,. Since § domi-
nates s,,, and the risk function is continuous, the set

((6,1) €0 x T, Eg,[L(s(2). 6)] ~ Ex [L(5(e). 6)] > 0] (19)
is nonempty and open, while the set
((0. 1) € © x T, : By [L(52(8). 0)] ~ Enn[L (5(9). 0)] < 0} 20)

is empty. By Lemma 5.1 in Van der Vaart and Van Zanten (2008), 7(x) has sup-
port H,. From the definition of d, (6, u) must therefore assign positive mass to
(19). Since (20) is empty, this implies that [ E, ,[L(s.(g), 0)]dm(6, n) strictly exceeds
[ Eq,[L(5(g), 6)]dm(6, u). We have obtained a contradiction with (18). Q.E.D.

Limit-of-Bayes

We obtain the quasi-posterior of Chernozhukov and Hong (2003) as the limit of a se-
quence of posteriors for proper priors. Here, we show that under the conditions sim-
ilar to Theorem 2, quasi-Bayes decision rules are likewise the pointwise limit of the
corresponding Bayes decision rules, and that the same holds for their risk functions.
To state this result, consider any sequence of finite values A, — oo as r — oo, define
(0, u) = w(6)m, () to be the corresponding sequence of priors, and let s,, be the cor-
responding sequence of Bayes decision rules,

/ L(a, 0)¢*(6) d(6)
S (g) € argmin

o [aedne)

= argmin/L(a, 0)¢:(0)dm(6),

acA

and s, (g) the quasi-Bayes decision rule.

THEOREM 8: Suppose that A is compact and convex, that L(a, 6) is uniformly bounded
as well as continuous and strictly convex in a for every 6, and that 2.(0, 6) is everywhere full
rank. Then s, (g) — s (g) for every g and

Eou[L(57,(8), 0)] = Eou[L(57.(8), 0)] foreach (6, ) € Oy x H,. (21)

PROOF OF THEOREM 8: Recall that ¢7(6) = |A,(6)72 - exp(—Lu,(8)'A,(8)'u.(8)),
where u,(0) = 75¢(0)7'8(0) + & A(0) = 25 [w(0)Z(0, O[Y(O) '] +
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rlArVar(f). Since the minimum eigenvalue of X (6, 6) is bounded away from zero by

compactness of 0, and g(-) is bounded, we have

60> .0 = [0)|-[20,0)] " -exp(~35(02(0,0) '5(0))
uniformly on ©,. Since the loss function is bounded,

/L(a, 0):(0)dm(6) — /L(a, 0)¢: (6)dm(6) uniformly on A,

which, since the loss is strictly convex, implies that s, (g) — $...(g). Finally, (21) follows
from another application of the dominated convergence theorem. Q.E.D.

APPENDIX D: SIMULATION DESIGN AND ADDITIONAL RESULTS
Simulation Design

This section describes the simulation design used to produce Figure 2 in Section 2.1.
We base our simulations on the Graddy (1995) data. In particular, for our data-calibrated
simulations, we:

1. Estimate 6 using continuously updating GMM.

2. Draw (W, Y, Z) from the empirical distribution, and generate new outcomes Y* by
adding normal noise with standard deviation equal to one-tenth that of Y, that is,
Y*=Y + & with e ~ N (0, s Var(Y)).

3. Use exponential tilting to find weights ; on the observations {W,, Y;, Z;} in the orig-
inal sample such that the quantile IV moments, evaluated with the observations con-
structed in step 2, hold exactly at .

4. Draw samples {W, Y*, Z} with sampling weights w; as in step 3, and outcomes Y* as
in step 2.

This construction ensures that (i) Y is continuously distributed, as necessary for condi-
tional quantiles to be uniquely defined, and (ii) the (over-identified) GMM moments hold
exactly at the value 6 estimated on the original data. Denote the resulting distribution by
P

To construct the distribution P,, we take the distribution P* and, as described in
Section 2, multiply all entries of Z but the constant by a mean-zero (specifically,
Rademacher) random variable. This construction ensures that P, dominates P* and, as
discussed in the text, that 6* is set-identified under P,. To construct P, ;, we draw from

a mixture between Py and P*, with weight /X on P*. Hence, for the original sample
size (n =111), P, ; = P*, while as n — oo, P, ; converges to P,. In particular, P,  sat-
isfies equation (2) for f Z_}; — 1. Finally, to compute GMM estimates in each draw

of simulated data, we run an MCMC algorithm (specifically slice sampling), and report
the parameter values yielding the minimal objective function value encountered as our
estimate.

Additional Empirical Results

Figure 6 plots the 95% conditional confidence set formed by inverting our weighted
average power optimal tests, along with the 95% highest posterior density set. The condi-
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FIGURE 6.—Quasi-Bayes 95% highest posterior density set, and 95% conditional frequentist confidence set,
for 7 =0.75 based on Graddy (1995) data.

tional confidence sets do have asymptotically correct frequentist coverage and use quasi-
posterior only to form a powerful test statistics. The 95% highest posterior density set
does not have frequentist guarantees and is a Bayesian object. In this application, the two
sets have a quite similar shape, but the confidence set is slightly smaller, covering 4.74%
of the parameter space as compared to 4.82% for the highest posterior density set.

Figure 7 plots the small-sample distribution of the GMM estimate for the median, 7 =
0.5, and weak- and large-sample asymptotic distributions. We again see that the weak-
asymptotic approximation appears substantially more accurate.
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FIGURE 7.—Finite-sample distribution of GMM estimator in simulations calibrated to Graddy (1995) data,
along with weak- and strong-asymptotic large-sample distributions. Based on 1000 simulation draws.
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