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Abstract

This Supplementary Appendix contains additional results concerning the interpretation of
our conditional critical values, the bounded completeness of our sufficient statistics, the deriva-
tion of the conditioning process hp(-) in homoscedastic linear IV, the power of tests in a simple
Gaussian model, the power of the conditional QLR tests in linear IV with non-homoscedastic
errors, proofs of asymptotic results stated in the paper, a theoretical analysis and additional
simulation results for the quantile IV model, and additional results for Stock and Wright (2000)’s
setting.

Key words: weak identification, similar test, conditional inference

First draft: September 2014. This draft: February, 2016.

S1 Interpretation of conditional critical values

The are many ways to represent a given test using data-dependent critical values. In
particular, for any statistic S(gr) such that the test that rejects when S(gr) > 0 has
correct size, the test that rejects when the statistic R = R(gr, ) exceeds the random
critical value R — S(gr) has correct size as well, and indeed will be the same test in that
it rejects for precisely the same realizations of the data. The goal of this section is to
point out the sense in which the test that rejects when R > ¢, (hr), for ¢, (hr) the critical
value we propose, is naturally connected to the test statistic R. An interesting corollary
of this result is that this test can be viewed as a best approximation (within the class of
size-a conditionally similar tests) to any test based on R that uses a fixed critical value.

Let ¢, denote the class of size-a tests of Hy : my (6y) = 0 which are conditionally

similar given hp. For a given realization of the data a test in this class rejects the null with
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probability ¢ € [0, 1], while also satisfying the conditional size restriction E[¢|hr] =

under any my € M,.3

Lemma S1.1 Suppose that the conditional distribution of R given hr is almost surely
continuous. For any non-decreasing function F (-) and any mp € Mg the test ¢ =

I{R > ¢, (hr)} solves the problem

max F [QNSF (R)} : (1)

QBE(I)C,(X

If F (+) is strictly increasing then ¢ is the almost-everywhere unique solution, in the sense
that any other test ¢ solving optimization problem (1) above is equal to ¢ with probability

one.

Proof: Let f(hr) = F(cq (hr)). Note that for any (potentially randomized) test ¢ €

[0, 1] the following inequality holds almost surely:

(¢ — @) (F(R) — f (hr)) > 0.

Indeed, if F(R) > f (hy) then R > ¢, (hy), and thus ¢ = 1 > ¢, and if F(R) < f (hy),
then R < ¢, (hr) and thus ¢ =0 < gzg As a result,

0< B|(6=@)F(R) - f(hr)] =

— B[/ (hr) (E |8lhr| = Elolhr])| + EloF(R)] - E6F(R))

If ¢ € ¢, then the first term equals zero, and we have E[¢F(R)] < E[¢F(R)].
To establish the second statement of the Lemma, assume that q~5 € ®¢, is such that

E[¢F(R)] = E[¢F(R)]. Then

E (6= 3)(F(R) — f (hr))] = 0.

The integral of an almost-surely-non-negative function is equal to zero only if the function

itself is equal to zero almost surely. We assumed that the conditional distribution of R

3We may equally well define gg € {0,1} to be a realized outcome of the test, which may depend on
an auxiliary randomization as in the paper. This distinction is unimportant for Lemma S1.1, though we
use outcome notation for Corollary S1.1.



given hp is almost surely continuous and F' is strictly increasing. Thus the probability
of the event {F(R) = f (hy)} is zero, so ¢ = ¢ almost surely. [J

Lemma S1.1 establishes that the test ¢ can be interpreted as a maximizer of E [¢F (R)]
over the class of conditionally similar tests for any distribution consistent with the null
and any non-decreasing function F'. This property makes precise the sense in which ¢ is
the conditionally similar test most associated with large values of R. Note further that
if the family of distributions for Az (-) consistent with the null is complete, so that all
similar tests are conditionally similar, then the conclusion of Lemma S1.1 continues to
hold when we replace ®¢, with ®g,, the class of level-a similar tests.

A particularly interesting consequence of Lemma S1.1 is to relate the test ¢ to the
test ¢* = [{R > ¢*} which is also based on R but, unlike ¢, uses a fixed critical value.

In particular:

Corollary S1.1 If the conditional distribution of R given hr is almost surely continuous,
then for any mp € My the test ¢ solves

win £[(5-0) 2)

¢E<I)C,cx

where for a randomized test ¢ we use the final outcome in evaluating (2).

Proof: As noted in e.g. Section 3.5 of Lehmann and Romano, any randomized test
é(gT) based on gy can be represened as a non-randomized test gE(gT, U) based on gy and
a uniform random variable U independent of the data. Using this representation, note

" E {(& - cb*ﬂ = E|0| - 28 6] + B[o].

Conditional similarity of ¢ at level o implies that E [qg] = a, while ' [¢*] is unaffected
by the choice of ¢. Thus, equation (2) is equivalent to

max F [g{ﬁ(ﬁ*} .

J)E(I)C,a

Since ¢* = I{R > ¢*}, the result follows immediately from Lemma S1.1. OJ
Thus, if one would like to use a test ¢* but for its lack of size control, our approach

yields the conditionally similar test that best approximates ¢* under any distribution



consistent with the null. Thus, analogous to the size-correction approaches discussed
in the literature on non-standard tests (e.g. D. Andrews and Guggenberger (2009)), it
seems reasonable to interpret ¢ as a size-corrected version of ¢* or, alternatively, as the
best “conditional-similarity-corrected” version of ¢*, where the best is taken to mean
minimizing squared approximation error under to any distribution consistent with the

null.

S2 Boundedly complete families

Conditional similarity of a test is a very strong restriction that can be hard to justify
because it significantly reduces the class of possible tests. If, however, one wishes to create
a similar test (a test that has exactly correct rejection probability under the null for all
values of the nuisance parameter), all similar tests will automatically be conditionally
similar for a given sufficient statistic if the family of distributions for that sufficient

statistic under the null is boundedly complete.

Definition 1 The family of distributions P for a statistic h (or a o-field o(h)) is called
boundedly complete if for all bounded o (h)-measurable functions f (h), the property that
Ep[f (h)] =0 for all P € P implies that f (h) = 0 almost surely for all P € P.

Lemma S2.1 (Lehmann and Romano (2005)) If the family of distributions for the suf-
ficient statistic h under the null is boundedly complete, then all similar tests of Hy : m €
M are conditionally similar given h. In particular, any random variable ¢ with values

in [0, 1] satisfying the similarity condition:
Epl¢p] = « for any P € Py
also satisfies the conditional similarity condition
Eplp | h] = « a.s. for any P € P,.

Consider the exact Gaussian problem discussed in Section 3.2 of the paper in which
we observe the process g(6) = m(0) + G(0) for an unknown deterministic mean function
m(-) € M and a mean-zero Gaussian process G(-) with known covariance Y(6,0) =

EG(0)G(6)'. We again assume that M is the set of potential mean functions, which is
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in general infinite-dimensional, and wish to test the hypothesis Hy : m(6y) = 0. Let M,
be the subset of M containing all functions m satisfying m(6y) = 0. Let Py be the set
of distributions for g corresponding to mean functions in M. Define h(-) = H(g,X) as
in equation (3) from the paper. As shown in Lemma 1 of the paper, h is a sufficient
statistic for m € M.

If the parameter space for 6 is finite (© = {6y, 61, ...,0,}) the conditions for bounded
completeness are well known and easy to check. In particular, in this case our problem re-
duces to that of observing a k(n + 1)-dimensional Gaussian vector g = (g(6p)’, ..., 9(6,)")
with unknown mean (0, m} = m(60,),...,m), = m(6,)’)’ and known covariance. If the set
M of possible values for the nuisance parameter (m/,...,m, )" contains a rectangle with
a non-empty interior then the family of distributions for h under the null is boundedly
complete, and all similar tests are conditionally similar given h. To generalize this state-

ment to an infinite-dimensional nuisance parameter we can use Lemma 3.3 of Janssen

and Ostrovski (2005) to obtain a sufficient condition for completeness.

Lemma S2.2 (Janssen and Ostrovski (2005)) Consider an increasing sequence M,, C
M, of subsets of the parameter space and let P, = {Pn,m € M,} be an increasing set
of families of distributions with Py = U, P,. Let A, denote an increasing sequence of
o-algebras with Ay, = U, A,,. Assume that for each n € N the o-algebra A,, is sufficient
for m € M,, while P, is boundedly complete for A,. Assume that A is sufficient for
Py and that for any P € Py there exists P, € Py, such that P is absolutely continuous
with respect to Py. Then Py is boundedly complete for As.

Consider the exact Gaussian problem and assume that the covariance function (-, )
is continuous while © is a separable metric space. Consider the corresponding process

h(-), which has mean m(-) and covariance function (-, ):
(0, 61) = (6, 61) — 3(6, 60)S(00, 60) " S(0o, 61).

Note that (6, 0) = 0 for all §. Let H be a Hilbert space with reproducing kernel (-, -).

This is defined as the closure of the set of functions ¢(-) = >°7 | a;%(-,0;) with respect

to the inner product

n m

(05), ) BiS(,50))n = Z ; 3i%(0;, 5:)-

j=1 i=1

(]
2
Mh
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Assume that My C H. This assumption can be justified using Theorem 57 of Berlinet and
Thomas-Agnan (2004), which states that two Gaussian processes with common covari-
ance function X and potentially different mean functions mx () and my (-) are mutually

absolutely continuous if and only if mxy — my € H.

Theorem S2.1 Consider the exact Gaussian problem. Assume the covariance function
(-, ) is continuous, and © is a separable metric space. Assume that My C H, where H
is a Hilbert space with reproducing kernel $(-,-), and (¢j)32, is a basis in H. Assume that
for any n there exists an n-dimensional closed rectangle B, with a non-empty interior
such that for any a = (au,...,an) € B, we have Y7 aj¢; € Mo. Then h is boundedly

complete for Py.

Proof of Theorem S2.1. Given the assumptions, the Hilbert space H is separa-
ble. Without loss of generality we can assume that ¢; is an orthonormal basis in H.
According to Theorem 14 in Berlinet and Thomas-Agnan (2004) we have (6y,6,) =
> ey 9(01)p(02)". For any m € Mo C Hp we have
m(0) = (m, d;)ued;(0) =D a;6;(6).
=1 j=1

Consider the canonical congruence v, which is a one-to-one correspondence between the
space H and the L? closure of the space of linear combinations of the process h(6) —m(0)
(we refer the interested reader to Berlinet and Thomas-Agnan (2004) for details). A
key property of the canonical congruence is that ¢(3(-,0)) = h(6) — m(f) for all 6. Let
& = ¥(¢;) be the random variables corresponding to the basis functions, which are in-
dependent (for different i), standard normal variables since E(¢(¢;)(¢;)) = (¢i, ¢j)n =

I{i = j}. There exists a canonical expansion of the mean-zero process h(-) — m(-):
h(O) = m(0) = (2 0) = 3 65(0)¢;
j=1

Observing the process h(-) is therefore equivalent to observing the sequence of random

variables

Y = (h, ¢j)n = (m, dj)n + &



Denote by M,, a subset of M, consisting of functions m(-) such that (m,¢;) = 0 for
all j > n, thus m(0) = >°7_, a;¢;(0) for m € M,,. Notice that for m € M,, we have
Y; =a;+¢ for j <nandY; =¢ for j > n. To apply Lemma S2.2 we can take A,
to be the o-algebra generated by variables Y7, ...,Y,. Note that A, is sufficient for P,,.

Our assumption about rectangular B,, ensures that P, is complete for A,. All the other

conditions of Lemma S2.2 are satisfied, so the result follows. [J

S3 Homoscedastic Linear IV

Let us consider Example 2 from the paper with the additional assumption of homoscedas-
tic errors. The moment condition considered is gr(0) = \/LTZ’(Y — D0), where Y and D
are T' x 1 and T x p matrices of endogenous variables, Z is a T' X k non-random matrix
of instruments, and 6 is a p x 1 parameter of interest. Let ) be the (p+ 1) x (p + 1)

covariance matrix of the reduced form errors, which are assumed to be homoscedastic.

Then X(6,600) = +2'Z(1, —0")Q(1, —6;)". As a result we have

(L, ~0)21, ~0p)
(17 —96)9(1’ _96),9T(90).

hr(0) = gr(0) —

Below we prove that

1 / ! —1 96
O T e gy AP, ) PO

where B is a full rank p x p matrix. Thus hz(6) is linear in 6, so conditioning on hr(-)
/

is equivalent to conditioning on the k X p matrix [Z'Y, Z'D]| Q! 0 , which is the T

I

p
statistic of Moreira (2003).

Proof of statement (3): Plugging gr(6) into the formula for hp:

hr(6) ! [Z'Y, 7' D) R P
T = )
VT (1, =0)(1, —6)’ Oy — 0 00, — 0,0 0,
1 0 x 1
= / —(2'Y,Z'D) Q :
\/T(la —0)Q2(1, =0, —x a6y — Opa’ o



w w

w QQ
and {2y is p X p. Consider the last three terms in the previous formula:

for 8 = 0y + x. We decompose () as (2 = , where w is a scalar, w is p x 1,

0 ' w w 1

—x  x6) — Oya' w —0b,

2w — 2'Qs0,

—wx + zw'0y + z0{w — x0,Qa0y — oz’ w + Opx’ Qa0

(w' — 6p82)
= x.
[(211)/9() — W — 96@290)[13 — Qow/ + 009692]
Next, note that
w' — 0,8, _ o A B
(2’(1]/00 — W — 969290)117 — Gow’ + 909692 ]p
To prove this statement, it suffices to note that
Q w' — 0,2 0,B

(QU}/QO — W — 969200)11, — (%w’ + 009692 B
for
B = ww' — wb)Qy + 2wy — w — 022600)Qs — Qabow’ + Q26006,Qs.

All that remains is to show that B is full rank. To this end, note that
B=yy — (¥ 'y — (w— w5 w)Q

for y = w — 250y. Thus B is symmetric. We show that —B is positive-definite and thus

is full rank. First, note that for any p x 1 vector a we have

a (yy — (% 'y)0) a <0

as follows from the Cauchy-Schwarz inequality applied to vectors Q'/2a and Q~/2y. Thus



—yy’ + (y'Qy'y)Qy is a positive semi-definite matrix. We also note that w — w'Q, w is

strictly positive by the positive definiteness of €. Indeed,

(1, —w'Qyh) =w—w'Q w > 0.

Thus, B is full rank.

S4 Power considerations

In this section we provide derivations for statements made in Section 3.4 of the paper,
as well as an extension to a case with multiple alternatives. The setting considered in
Section 3.4 can be described as follows. We observe two k-dimensional random vectors
§ = gr(0o) and n = gr(0"):

(&, 1) ~ N((p', X, %),

Yn X

where the 2k x 2k- covariance matrix Y = N known, while the means p
o1 oo

and A are unknown and satisfy the restriction ||u| - ||A|| = 0. We wish to test the null

Hy : = 0,) € R¥ against the alternative H; : u # 0, A = 0.

S4.1 Tests based on £ alone

We derive the power envelope for tests based only on ¢ by finding the optimal test against
a specific alternative p (noting that under this restriction we can ignore the parameter \,
since it affects only the distribution of 7). By the Neyman-Pearson lemma, the optimal
test rejects when &1 — (€ — p)'S (€ — p) exceeds its 1 — a-quantile under x4 = 0 or,

equivalently, when

EE /A WELR 1> 21a, (4)

where z;_, is the 1 — a-quantile of the standard normal distribution. As is immediately
clear this most powerful test is one-sided and is biased as a test of the hypothesis Hj :
= 0 against Hy : p # 0. The power of this test (evaluated using the true p) yields

power envelope PE-1 in the paper.



To construct the power envelope for the class of unbiased tests based on &, consider the
sub-problem which assumes the direction of ;1 known, that is, u o< p* for a known vector
1*. In this sub-problem the only unknown parameter is the coefficient of proportionality

between u and u*, which can be written as a = p/S p* (S )

, and the testing
problem (based on &) becomes Hy : a = 0 against Hy : a # 0. A sufficient statistic for
the unknown parameter a is (u*S ") L€ ~ N(a, 1/ (S 1*)). The uniformly
most powerful unbiased test in this sub-problem rejects if the square of the statistic in
equation (4) above exceeds the 1 — a-quantile of the x? distribution. It is easy to see
that this test is unbiased for the initial problem of testing Hy : © =0 vs Hy : p # 0 as
well, and as such provides the best unbiased test against alternative p. By changing the
value of © we can construct the power envelope, labeled PE-2 in the paper, for the class
of unbiased tests based on £ alone.

Note that the optimal unbiased test depends in a significant way on the alternative
tested, and thus there is no uniformly most powerful unbiased test. In practice it is
difficult to choose the particular alternative on which to focus, and for a given choice of
1 the tests above will have very low level power against some alternatives. Kleibergen’s K
test can be viewed as a plug-in version of the optimal unbiased test with an orthogonalized
derivative estimator substituting for u. As noted in I. Andrews (2015), this derivative
estimator may perform quite well for alternatives close to the null but its performance
can deteriorate against more distant alternatives. Further, as noted in Section 3.5 of
the paper, replacing p by a derivative estimator seems to make sense when the unknown
function my(-) is approximately linear in #, but may not work as well when my(+) is
substantially nonlinear.

Another way of eliminating the dependence of the optimal test on p is to consider
only tests invariant to a full-rank k& x k linear transformation of the data, noting that this
transformation preserves both the null and alternative. One can easily see that a maximal
invariant under this transformation is the S statistic £’X7}'¢ and that the uniformly most
powerful invariant test rejects when S is large. Thus, the S (or Anderson-Rubin) test
is the uniformly most powerful invariant test based on £ alone, and its power function

yields power envelope PE-3.
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S4.1.1 Power Bound for Tests in Previous Literature

In the paper we note that the power envelope PE-2 for unbiased tests based on & gives an
upper bound on the power of most of the tests studied in the previous weak identification
literature, including the S, K, JK, and GMM-M tests of Kleibergen (2005). The power
envelope PE-2 likewise bounds the power of the CLC tests studied by I. Andrews (2015),
and (in the linear IV model) of the SU tests studied by Moreira and Moreira (2015).
This follows from the fact that all of these tests satisfy a version of the SU condition of
Moreira and Moreira (2015).

Specifically, consider tests ¢ which depend on the data only through gr (6y) and Dr,
where consistent with the exact Gaussian model studied in Section 3 of the paper we
assume that gr (6y) ~ N (1,2 (60,6p)) and Dy ~ N (pup, Xp) . Once we restrict attention
to (g7 (0o) , Dr), Dr is sufficient for pp and all the tests discussed above are conditionally
similar given Dy in that

By [¢|Dr = d] = a (5)

for almost every d. These tests further satisfy the restriction
Ey—o [¢gr (00) |Dr = d] =0 (6)

for almost every d. Conditions (5) and (6) together are sufficient for the SU condition of
Moreira and Moreira (2015).

As noted in the supplement to I. Andrews (2015), a sufficient condition for condition
(6) is that ¢ (gr (6o),Dr) = ¢ (—gr (0o), Dr), which holds for all the tests discussed
above save for the SU tests of Moreira and Moreira (2015), which instead impose restric-
tion (6) by construction. Given equations (5) and (6), however, standard arguments imply
that the most powerful test against alternative u rejects when (N’E (60,600) " g7 (00))2 is
large, and thus coincides with the test used to construct PE-2, which in the linear IV
model also coincides with the power envelope for SU tests derived in Moreira and Moreira

(2015).

S4.2 Tests based on ¢ and 7

Assume that under the null the parameter )\ can take any value in some k-dimensional

rectangle (which implies that similar tests must be conditionally similar given h). If we

11



let p, = —Yy X1 and denote the variance of h by ¥, then following Montiel Olea

(2013) we know that the point-optimal similar test against p will reject when

exp(—(€§ = )20 (€ = p) — (h — )55 (B — )
eXp(_flzﬁl )

exceeds its 1 — a quantile under the null conditional on h. However, we can see that
once we condition on A, the only random component of the ratio is £&. Moreover, for
fixed h this statistic is a strictly increasing function of ¢’} . Thus, the test will reject
when ¢S exceeds its 1 — a conditional quantile under the null. However, &'y is
independent of h, so we obtain that the most powerful similar test against u based on
(&,7m) is the same as the most powerful test based on ¢ alone, described in equation (4).

It is without loss of generality to normalize >1; = Yoo = I. Under this normalization

the conditional pQLR test rejects the null when

§'¢€ —n'n > ca(h), where h =n— ¥y

In what follows we discuss optimality properties of the conditional pQLR test in two
cases: first, under the assumption that the covariance matrix ¥ of variables (§,n) =
(97(60), g7r(6%)") can be written as the Kronecker product of a 2 x 2 matrix with a k x k

matrix, and then in the general case.

S4.2.1 Kronecker structure case

In this section we show that under the Kronecker structure assumption discussed in the
paper, which imposes that Y91 = pl, for |p| < 1, and thus that h = n—p&, the conditional
pQLR test is the uniformly most powerful invariant similar test based on £ and 7 and is
unbiased.

First, note that the testing problem is invariant to rotations of £ and 7. Specifically,

for F' a k x k orthonormal matrix (F'F = I,),

((FE), (Fn)') ~ N((Fu)', (FA)), %),

and the null hypothesis is unchanged. A test ¢(&,n) is said to be invariant if for any
orthonormal F' we have ¢(F¢, Fn) = ¢(&,n). The power function S(u) of an invariant

12



test ¢ satisfies
B(Fp) = B(p) = B(|ull)-

Consider an arbitrary weighting function m(x) on the set of alternatives. Then the

weighted average power (WAP) of the invariant test ¢ is

/B(M)W(u)duz OOO/ N B(p)m(p)dpdr =

- /O"O 7 qu W(M)du} = /0 o {qm /u:x du} "

e
= 91

that for any invariant test, WAP with respect to m is the same as WAP with respect to

where ¢(z) . Let us define a new weighting function 7(u) = ¢(||p||). We see

.

Now let us find the invariant similar test with the highest WAP for an arbitrary
weight 7(u). By the argument above this test also maximizes WAP for weight 7(u). We
construct the WAP optimal similar test with respect to 7 (without assuming invariance).

According to the results in Montiel Olea (2013), this test will reject when

—1
N I, ply
[ 7(p)exp ¢ —=1/2(6" — i/, n) (& —u',n') pdu
ply 1y

exp{—3&¢}

> cq(h),

where the conditional critical value c,(h) is chosen to control size conditionally on h.

Given the symmetry of 7(u) = q(||u]), this is equivalent to

Jo~a(@) [ —e xp {—ﬁ”é‘ ] %n’n} ddz
exp{—3¢'¢}

> co(h).

Letting u = £ — pn, the optimal test rejects when

/

exp { ~ s llull® = d'n }
exp{—3&¢}

G(u > Ca(h),

where



We can see that function G(u) depends on w only through ||u||. So, the optimal test

statistic has the form

Gllulhexp { 5o - €9}

and the test has to control size conditionally on h. We can notice that conditional on A

the statistic

21D
[ull* = 1l& = p(h + pO)|I* = (1 — ) ((1 — pP)EE— 200 + 1p— p2)

is a positive affine transformation of the statistic
€ —nn=¢€— (h+pt)(h+p§) = (1 - p*)E'& — 2ph'¢ — I'h.

We arrive at the following conclusions:

1. The WAP optimal test statistic with respect to 7(u) is invariant to transformation
of (§,m) to (F¢, Fn) (or, equivalently, transformation of (¢,h) to (F¢, Fh)) and
the conditional critical value function ¢, (h) is likewise invariant. Thus, the WAP
optimal similar test with respect to 7(u) is automatically invariant, and thus is the

WAP optimal invariant similar test against both 7(u) and 7(u).

2. Conditional on h the WAP optimal test statistic depends on data only through

]

3. Since G(u) is increasing in ||u||, the WAP optimal invariant similar test rejects the
null for large values of ||u|| no matter what the weight functions 7 or 7 are. Thus

it is uniformly most powerful in the class of invariant similar tests.
4. This optimal test is the conditional pQLR test.

5. The S test belongs to the class of the invariant similar tests, as such its power is

weakly dominated by the power of the conditional pQLR test at all points.

6. Since the S test is unbiased, we conclude that the conditional pQLR is unbiased as

well.

While we have derived this optimality result directly from the form of the weighted

average power optimal similar tests for this problem, note that under the restrictions

14



considered here (using only the values on the moment process at two points, and the
Kronecker product structure for X), the testing problem here is equivalent to the problem
of testing one structural parameter value against another in linear IV with homoscedastic
errors. Thus, the optimality of the pQLR test can instead be derived as a special case of

Corollary 1 in Mills et al. (2014).

S4.2.2 General case

We next relax the Kronecker structure assumption and consider the general case, where
Y91 is not necessarily proportional to the identity matrix. In this context we show that
the conditional pQLR test is WAP optimal within the class of similar tests for a particular
class of weight functions.

We consider a weight function 7(u) with the property that 7(u) = (1) for all p and
i such that @/ (I — X1930) i = p/ (I — X12321) . The corresponding WAP optimal

similar test rejects when

—1
I, Yo
() expq —5(& — i, n') (& =, pdu
dor Iy

(h
exp{—3&¢} > calh)

or, equivalently,

fﬂ(ﬂ) €xp {—%(f o 2127])/(1 - 212221)_1(5 - M Z1277) - %77/77} dp >

exp{—3¢'¢} Colh).

Letting u = £ — X191, the WAP optimal test rejects when

T e

co(h
exp{—3&'¢} > calh)

for

/ — 1 / —
G(U) = /W(:u) exp {U (1 - ZJ12221) 1,U - 5# (1 - 212221) 1/1} dpJ

Note that for the weight function we consider, the function G(u) depends on u only
through /(1 — X19391) 'u = |Ju|)3%,,. Indeed, consider the scalar product (v,w)s,, =
V(1 — 21535 ) tw and the group of orthonormal matrices with respect to this scalar

product, namely all matrices F such that F(1 — X535) ' F = (1 — $193%,)"". Then
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for any @ such that /(1 — X1535,) " tu = @/(1 — X153%,) "4, we have that there exists a
matrix F' from this group such that v = F'u. Thus in the formula for G(@) we can change
the integration from p to F'u, and obtain that G(@) is equal to G(u).

Thus far we have shown that the optimal WAP similar test with respect to weight 7

rejects when

Gl exp {3l fexo { =5 0n - €61} > catt)

where the function G depends on 7 and the test is conditionally similar given h.
Finally, we note that for a given h the statistic [jul|3,, is equal to &€ — n'n plus a

constant depending only on h. Indeed;

ull3,, = (€ = S12(h + 2218)) (I — L12521) (€ — S12(h + T2:1§))

=¢'(I — $12%91)§ — 2h'E € + W'Yy (1 — 212221)_1212h

and
¢ —nn=E6¢ = (h+ 308 (h+X2&) = (I — L1939 )E — 20801 & — I'h.

Thus, we see that the two statistics differ by a summand that depends only on h. Thus,
the WAP optimal test rejects when G(||u||s,,) is large. Since G(||u||s,,) is increasing in

|u||s,,, this implies that the conditional WAP test is equal to the conditional pQLR test.

S4.3 Extension to multiple alternatives

In the simulations discussed in Section 3.4 of the paper, we consider the problem of
testing the null that the true parameter value is 6, against the alternative that it is 6*.
In applications, however, we are typically interested in the composite alternative that
0 # 0y and so use the QLR or other tests rather than the pQLR test. To explore the
effect of testing against such alternatives, in this section we consider a generalization of
the stylized model studied in Section 3.4 of the paper which adds additional points to
the parameter space.

Specifically, we consider a case where the GMM parameter space is finite, Oy =

{6p,01, ...,0n} . As in Section 3.4 we consider k£ = 5 moments. Since the GMM parameter
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space is finite, observing the process gr (-) reduces to observing

gr (90) H 2 (90, 90) 2 (90, 91) by (90, QN)
gr (91) N Al 2 (91, 90) X (91, 91) DY (917 9N)
gr (On) AN Y (On,6h) X(On,01) -+ X(On,0n)

To obtain a simple parametrization for the covariance structure, we consider the case

with
¥ (60,00) X (00,61) -+ X (6o,0n) Lp - p
2(91,00) 2(01,91) 2(01,91\;) P 1 .- P
Y (On,00) X(On,01) -+ X(On,0n) pp -1

Without futher loss of generality consider p = ||ulle; and A\; = || \;]|e1, for e; the first
standard basis vector. Under the null we have that ||u|| = 0, while under the alternative
correct specification of the model implies that [\, [|[\i]| = 0. Since alternatives 6, ..., Oy
play a symmetric role here, we focus on the case where 6; is the true parameter value, so
under the alternative we have ||[A;|| = 0. For simplicity we impose that Ao = ... = An.
We ultimately obtain a problem indexed by two known parameters (the number of
alternatives IV, and the correlation p) and two unknown parameters (u; and Ay ;). For
our power simulations, we consider N € {2,3,4,5,10,20}, p € {0.3,0.5,0.9,0.99}, and
take both p; and Ay to vary over the grid {—6,—5.7,...,5.7,6}. Asin the paper we study
power envelopes PE-1 and PE-2, as well as the power of the S and pQLR tests. Unlike
Section 3.4 of the paper we consider the conditional QLR test, based on the statistic

g1 (00) 2 (60, 60) " gr (60) — iE{I}liHN} g7 (0,) S (0:,0:) " gr (6:).

Since the space of unknown alternatives is now two-dimensional it becomes more difficult
to plot the results. Instead, for each (IV, p) pair we consider the largest amount by which
the power of each test falls short of the power of each of the other tests, as well as

the average rejection probability with respect to uniform weights on each point of the

(,ul, >\N,1) gI‘ld
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The results of this exercise, based on 10,000 simulation draws, are reported in Tables
1-6. As these results make clear, even as we add more points to the parameter space the
QLR test performs very well (and, indeed, outperforms the power envelope PE-2 over
much of the parameter space) when p is large. For N > 2, however, this dominance is no
longer uniform over the parameter space for (uy, Ay 1), and there are some alternatives
where the power of QLR falls below PE-2. Unsurprisingly, the power of the conditional
QLR test is typically (though not everywhere) exceeded by that of the pQLR test. More
surprisingly, the power of the QLR test sometimes falls below that of the S test, albeit
only by a small amount. In all of the simulation designs we consider the average power
of the QLR test (averaged over all alternatives considered) exceeds the power of the S

test, and the degree of out-performance is increasing in p.

S5 The conditional QLR test in linear IV

Our results apply to linear IV with both homoscedastic and non-homoscedastic (het-
eroscedastic, serially correlated, or clustered) errors. As discussed in Section 3.3 of the
paper, the linear-in-parameters structure of the IV moment condition means that con-
ditioning on hz () in linear IV with homoscedastic errors is equivalent to conditioning
on Moreira (2003)’s T statistic, so in that case our conditioning coincides with that of
Moreira (2003) and the conditional QLR test becomes Moreira’s CLR test. The con-
ditioning process hr () in the linear IV model remains linear in the parameter 6 even
when errors are non-homoscedastic, however, and conditioning on hz (-) is more gen-
erally equivalent to conditioning on its Jacobian at ;. As noted in Section 3.3, this
Jacobian is the negative of Kleibergen (2005)’s conditioning statistic Dy. Thus, in linear
IV with non-homoscedastic errors conditioning on hy (-) is equivalent to conditioning on
Kleibergen’s Dy.

One implication of this equivalence is that the conditioning statistic introduced in
Kleibergen (2005) is already enough to allow the use of conditional QLR tests in non-
homoscedastic IV. This fact does not appear to have been noted in the previous literature,
nor does the performance of the conditional QLR test in non-homoscedastic models
appear to have been explored. Thus, while the results of our paper are not needed to allow
the use of conditional QLR tests in a non-homoscedastic IV setting, for completeness we

compare the performance of the conditional QLR test to alternative procedures that
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have been proposed for the linear IV model with non-homoscedastic errors. A further
reason this comparison may be of interest is that, as noted by a referee, unlike in general
nonlinear GMM models the QLR statistic is a true likelihood ratio statistic in linear IV
with non-homoscedastic Gaussian errors.*

To asses the performance of the QLR test we compare it to the AR test and the K and
GMM-M tests of Kleibergen (2005). We also include the power function of the infeasible
“oracle” pQLR test which tests the null against the true alternative at each point. All
the tests considered control size and, indeed, are conditionally similar given Kleibergen
(2005)’s conditioning statistic Dp. To calculate the QLR statistic we minimize the GMM
objective via grid search. To check that this grid search does not affect the performance
of the QLR test, in unreported results we simulate the performance of an infeasible QLR
test which tunes the grid used in optimization based on the unknown data generating
process, and find results nearly identical to those reported here. Critical values for both
the QLR and pQLR tests are obtained using 1,000 simulation draws.

We adopt the simulation design of I. Andrews (2015), which is calibrated to data used
by Yogo (2004) to study the effect of weak instruments on estimation of the elasticity
of intertemporal substitution in a linear Euler Equation model. Yogo uses data from
eleven different countries and considers multiple specifications, taking either the risk free
interest rate or an equity return to be the endogenous regressor. As noted by Moreira
and Moreira (2015) the instruments are more strongly correlated with the risk free rate
than with the equity return, and there is a correspondingly more severe weak instruments
problem when we use equity returns as the endogenous regressor. Since we are interested
in behavior for a range of different identification scenarios we follow I. Andrews (2015) and
calibrate our simulations to specifications which use the risk free rate as the endogenous
regressor.

Figures 1-3 plot simulated power, based on 5,000 simulation draws, for all the tests we
consider. Notably, the QLR test is more powerful than the GMM-M test against many
(though not all) alternatives, and avoids the declines in power which affect the GMM-M
test in some specifications (for example the calibrations to data from Japan and the UK).

While there are some simulation designs, for example the calibration to German data,

4Kleibergen (2007) shows that the Anderson-Rubin statistic in non-homoscedastic instrumental vari-
ables models with Gaussian errors and known variance can be interpreted as a concentrated likelihood,
from which the interpretation of the QLR statistic as a likelihood ratio statistic follows immediately.
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where the QLR test has less power against some alternatives than do the other feasible
tests considered and also displays a small level of bias, there are other cases, for example
the calibration to US data, where the power of the QLR test exceeds that of the other
feasible tests considered.

The power of the oracle pQLR test typically exceeds that of the other tests consid-
ered. Even in well-identified models we would expect this to be the case, since under
strong instrument asymptotics one can show that the pQLR test will be (locally asymp-
totically) equivalent to a one-sided t-test, while the other tests considered will be locally
asymptotically equivalent to a two-sided t-test. While the power of the pQLR test need
not exceed that of the QLR test in general, we find that its power is indeed higher in
these simulations.

I. Andrews (2015) and Moreira and Moreira (2015) have recently used the additional
structure imposed by the linear IV model to propose tests for the non-homoscedastic IV
setting motivated by optimality considerations. Results comparing the performance of
these tests to the QLR test are reported in a note on I. Andrews’s website, and will be
incorporated into the next revision of I. Andrews (2015). There, one can see that the
QLR test is competitive with these tests, in the sense that its power neither uniformly

dominates, nor is uniformly dominated by, these alternative procedures.

S6 Proofs of results stated in the paper

Proof of Lemma 2 of the paper. Consider a k x 1 vector &, a k-dimensional function
h(-) of the g-dimensional argument 6 satisfying h(fy) = 0, and a covariance function
%(+, ) satisfying Assumption 2 of the paper. Let ¥y = 3(0,0), Xy = 3(0,6y), V(0) =
(6, 00)3(0p, 60) . Recall the definition of the QLR statistic:

R(&h(-), 2(-,)) = €% '€ — inf (A(0) + V(0)¢) 34" (h(0) + V(0)€) . (7)

We now restrict our attention to those values of ¢ and ¥ for which ¢’Y;'¢ < C for a fixed

constant C' > 0.
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If the optimum in equation (7) is attained® at point 6*, then
1 * * * * Iy — * * IN—
5 1R (67) + V(8 JEIIP < (A(87) + V(07)€) By ((67) + V(67)€) < €57€ < C.

Consider some &, 3 and two functions hy and hy that satisfy our assumptions. For function

h; let the optimum in equation (7) be achieved at 6;. Then
|R(§7 hh Z) - R(£7 h27 Z>|

< max |(h(0) + V(0)§)Zg" (ha(0) + V(0)8) — (ha(0) + V(6)§)S5 " (ha(0) + V(6)8)]

T 0c{61,02}

T 0€{61,02}

Here we used that ||S,"| < A.

A similar statement holds for 8 = 6,. Thus

For 0 = 0, we have

hi(0) + ha(0)

5 < VAC +d(hy, hs).

V)| < (o) + VOl +

hi(0) — ha(6) H
2

RS 1, D) = B(E b, 2)| < 2d(hn, ho) (VAC + d(hn, o) ) ®)

Equation (8) implies that R(&, h,Y) is Lipschitz in h. Indeed, for all Ay and hs such
that d(hy, hy) < A2 we have

|R(€7 hla E) - R(ga th E)| < 25‘3/2(\/6 + l)d(hh hQ)
For all ¢ such that ¢'Y;¢ < C we have 0 < R(€,hy, X)) < O, thus

|R(€,h1, %) — R(E, hy, X)| < 20 < 2CA2d(hy, hy)

5In cases where the optimum cannot be attained we consider §* such that the function at this point
is within § > 0 of the infimum. We can choose ¢ based on the bound we wish to obtain. In such cases
all inequalities must be corrected by an additional § term.
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for all d(hy, hy) > A/2. Thus, R(, h, ) is Lipschitz for all h.
We can similarly show that R is Lipschitz in & for £%;'¢ < C. Fix h, Y and consider

&1 and &. Again let the corresponding optima be achieved at #;. Then

|R(€17 hv E) - R(ﬁ?a ha Z)|

§1+ &
2

< (6 +&'5i 6 - &)+ s 2| (0) + V(0

) SV (0)(6 — &)
&E+E
2

A& — &l
< 2VAC||&1 — &| + 2 (VAC + N12VO) & — &,

0e{61,02}

< 2\/EH§1 — &+ max 2 Hh(@) + V()

where between the second and third lines we used the fact that
1S5 Vol = 1252060, 00) 25| < 125750 < A

Finally, let us prove that R is Lipschitz with respect to X. Fix &, h and consider two
covariance functions »; and 5. Again let the corresponding optima be achieved at 6,

and 65. Then

|R<€7 h7 E1) - R(f, ha 22)‘ < ‘5/21_,(1)(2170 - 2270)22_,[%5‘

s |(h(6) + Va(0)6)' S (A(9) + Vi(6)E) — (h(6) + Va(8)6) S35 (h(6) + Va(0)E)]

The first term on the right-hand side is bounded by A\3Cd(3;,%;). Consider now the

second term on the right-hand side for 6 = ;. It is no greater than

|(h(0) + Vi(0)€) D1 5(B10 — o) X5, (h(0) + Vi(0)E))|

4o ' (h<9> " ws) £50(Vi(8) = Va(8))¢

< NC|S10 — Sapll + 2X [|R(0) + VI(O)E [[Vi(0) — Va(0) ] [|€]]
+2|€'(Vi(0) — Va(0)) S5 5(V1(0) — Va(0))€|
< NCO||S1,9 — Dol + 2X°C|V1(6) — Va(0)]| + 2X°C||VA(6) — Va(6) ||,
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A similar argument applies for § = #,. Now note that

Vi (8) = Va(O) | = [|%1(6, 00) 15 — Ea(6, 60) 25|
<1108, 00) — 220, 00) [ 1570l + [1Z2(6, 60) [1 21,0 — S0
< 2X\d(%1, 23)

and [|X19 — Xop| < d(X1,33). By arguments like those used to establish the Lipschitz

property in h above, this implies that R is Lipschitz in ». [J

Proof of Theorem 3 of the paper. We first verify Assumption 1.

gr(8) —mr(8) = g% (B(6),0) — m¥ (B(), )
a)
P (Bo

(B(6).0) - G (8(0),9))
= G (8(0),0) + Mr(O)VT(3(0) - B9)) + (GFY <B<9>, 0) = GP(5(0),0)) +r2(6),

rr(0) = m$& (B(9),8) —m (B(9),8) — Mr(O)VT(B(6) — 5(8)).

Take an arbitrarily small € > 0. By Assumption 6 there exist constants C' > 0 and 6 > 0

such that for all large 7' the event

A= {ﬁsup 1B(6) — B()|| < C and sup sup |G (8,0) — G (B3(6),0)| < }
7]

g |B-B(0)|<é

occurs with high probability, P {A} > 1 — e. For all realizations of the event A for large

enough 7" we therefore have that
sup G4 (3(0).0) — 61 (8(0).0) | < =

At the same time for all realizations in A, Assumption 9 implies that for large enough T
(such that dr > C') we have that supy ||rr(0)] < e.

Now let us take any functional f € BLy, which is defined on a set of k-dimensional
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functions of #. For realizations that belong to the event A we have

| (ar®) = mr(0)) - 1 (G5 (8(6),0) + A (O)VT(B0) - 5)) ) |
< suprr(0)]| +sup |G (B(0).0) ~ G (80).0)| <2 (9)

But for any realization that does not belong to the event A, the left-hand side of equation

(9) is bounded by 2. Thus

|25 (9r(0) = me(0) = Ef (G(8(0),0) + Me(0)VT(B(0) - 50)) ) |

< 2eP(A) 4+ 2P( not A) < 4e.

Finally we notice that according to Assumption 6, process GEFL) (B(6), 0)+Mr(0)VT(3(6)—
£(0)) uniformly converges to a mean zero Gaussian process with the covariance function
specified in Theorem 3 of the paper so long as M7(#) is uniformly bounded, which is
assumed in Assumption 9. Thus Assumption 1 follows.

Next we check that Assumption 2 holds for the covariance function stated in Theorem

3 of the paper.

)\mm(2<8 9)) — inf x/(IkaMT(Q))EL<ﬂ(0)"976(0)’0)(]167MT(Q))/‘T

> inf x/(lknMT(Q»ZL(B(e)?e?ﬁ(@)v9)(1167MT(Q))/x inf H(Ik’MT(9))/xH2

~ aeRk (g, M (6))" ]| aCRk v
g YEBO).0.56).0)y L+ Mr(6)Mr(6))

T yeRktp y'y zERF r'r

TS

Similarly

(I, Mr(0))%1(5(0), 0, 5(0), 0) Ik, M (0))"x

)\max(z(070)) = Sup

zERk 'z
< sup x/(]/ﬁ MT(0)>ZL(B<0)7 0, 6(9)7 f)(llm MT(Q))/x sup H (Ik7 MT(G))/‘TW
zeR" 1(7k, M ()| zeR" o'
/ / !
< aup VSOO)L050.0y et MrO)M(E))r
yERk+P vy zERF LT

<A1+ sup 1 M7(0)]1%)

where we use the Frobenius norm for the potentially non-square matrix Mrp.

Finally, we check that the estimator of the covariance function provided in Theorem
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3 is uniformly consistent.

sup [£(6,61) = (6, 6|
S Seuep (Iku MT<9)) (iL(6(0>7 6)7 B(91)7 91) - EL(ﬁ(9)7 9’ ﬂ(el)v 91)) (Ik7 MT(QI)),

+sup || (0, Mr(0) — Mr(8))S(B(), 8, B(6:), 1) (I, Mr(6:))'

0,61

+ sup
0,01

<(1 +sup I\MT(Q)H)Qséuep IZL(8(8), 6, B(61),61) — S1(B(6). 6, B(61),6)]|

(I, M (8))SL(B(8), 8, B(61),61)(0, My (6:) — My (6y))

+250p [52(5,0, 8, 0)(1+sup M (0)] + sup | FT¢(6) — M ) ) sup [ 72(6) ~ M 0)]

Assumption 9 implies that the last term uniformly converges to zero. We also notice that

for supy H\/T(E(H) — ﬁ(G))H < dr we have

891419p ”iL(g(@)? 07 3(91)7 91) - EL(B(8)7 Q? 5(01)7 01)”

< sup [|Z0(8.0,51,61) — (8,6, 51,601)]

B,0,81,61

+sup sup sup HEL(ﬁaeaﬁlael) - EL<5(9)7975(91)791)“ (10)
001 18-p(0)1< 2% 181-BOVII<

Since dp — oo while \(S/_TT — 0, Assumption 6 implies that sup, H\/T(B(@) - B(@))H < ir
holds with probability approaching one, while Assumption 7 implies that the last term in
equation (10) converges uniformly to zero. Finally, the first term on the right hand side
of equation (10) converges uniformly to zero due to Assumption 8. Putting everything

together we conclude that the estimator S satisfies Assumption 3. [J

S7 Quantile IV regression

S7.1 Mean function for quantile IV

This section derives the mean function my(-) for Example 3 in the paper. Suppose
we observe i.i.d. data consisting of an outcome variable Y;, an almost-surely positive
endogenous regressor [;, and instruments Z;. For U, a zero-median shock independent

of Z;, suppose Y; follows Y; = vD; + (D; + 1)U;. These variables obey the Quantile IV
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model of Chernozhukov and Hansen (2005) for all quantiles, and satisfy
E[(I{Y, — 6,D, < 0} — 1/2) Z] = 0

for 8y = v, so we can use this moment condition for inference. This moment restriction
holds for arbitrary joint distributions of (Dy, Z;, U;) provided that U; and Z; are indepen-
dent and U; has median zero. However, different distributions produce different mean
functions.

Counsider a weakly identified example with Z; = \/LTF(Z;“) + (1 - \%)m and D, =
exp{Z; — U}, where Z;, Uy, n; are mutually independent and EF(Z}) = En, = 0. We
use the \/LT scaling to ensure only a weak relationship between the instruments Z; and
the endogenous regressor D;. Since we consider a simplified model with no intercept, we
impose FZ, = 0 to avoid drawing identifying power from a misspecified intercept under
0 # 0y. Sections 5.1 and 6.1 of the paper consider the more general (and realistic) case,

which treats the intercept as a nuisance parameter.

Note that

m(0y + 6) = VTE [ZJ{—6D, + (D, + 1)U, < 0}]

=mmzm4m+m~nwsmw¢ﬂu§%wmwﬁm+wﬁnmgw

— E[F(Z){—~6D, + (D, + )U, < 0}] = E [F(Zt*)n { w*gig;,);)wt < 5H |

Function f(z) = (1 4 be®)x is monotonically increasing for each b > 0 and thus has an

inverse, so for any y there is a solution to equation (1+be®)x = y. Denoting this solution

by x(y,b),

I { Dz, U) + YU < 6} =H{(1+e %" U <6} ={U < x(6,e%7)}.

D(Z*,U)
So we have
m(0y+3) = E [F(Z*)]I { (D(f;(’z(i? ;)DU < 5}]
=E [F(Z*)E (11 { (D(Z*(’Z[Q ;)1)[] < 5}‘ Z)} = E[F(Z*)Fy(z(s,e7))],

where Fy(+) is the cdf of U. Depending on F' and the marginal distributions of U and Z*
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one can get a wide variety of mean functions in this setting, many of which are highly

non-linear.

S7.2 Asymptotics for quantile IV

Lemma S7.1 For the quantile IV model, Assumption 10 from the paper implies the
validity of Assumptions 6-9 and thus implies that Theorem & holds for the concentrated

moment function in this contet.

Proof of Lemma S7.1. Here as in the paper we use the notation £,(5,0) = Y; — D,0 —
C;p and €,(0) = €:(5(0),0). Let us also introduce ¢, (u) = 7 — I{u < 0}.
According to Proposition 1 of Chernozhukov and Hansen (2008), Assumption 10 guar-

antees that
_ L1l
VT(B(6) - B(6)) = —J(6)" o g - (24(0))Ct + 0p(1),

where the 0,(1) term is uniform in 6.

Consider the process

97 (8.0) = Egy(8.0) | _ 1 Z b (1(8,0))Z: — Er(c1(5,9)) Z
VI(5(6) ~ 56) = — T (0)0, (=:(0))Cy

Angrist, Chernozhukov and Fernandez-Val (2006) establish a functional central limit
theorem for this process. In particular, they argue that the function class {I{Y — D'0 —
C'B}} is a VC subgraph class and thus is bounded Donsker. Consequently {I{Y — D’0 —
C'B}(Z,C)} is Donsker with square-integrable envelope function 2(||Z]| + ||C||). This
implies equicontinuity of the above process which, together with the finite-dimensional
Central Limit Theorem, establishes Assumption 6.

The first part of Assumption 7 bounds the eigenvalues of the matrix

El¢.(e(0))°Z22'] — El-(e(0)) 2] E[6-(c(0)) 2" El¢-((0))*ZC"]
El¢.(e(6))*CZ'] El¢.(e(0))*CC]

Since ¢.(£(0)) is a binary variable taking values 7 and —(1 — 7), the required bounds

trivially follow from Assumption 10 (i). The second part of Assumption 7, namely the
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continuity of ¥, in 8 along 3(#), comes from the fact that

E(‘(b‘r(gt(ﬁue)) - (b"r(gt(e))‘ | C? Z)
< E(I{le(0)] < [C7(B = BO)I} | C, Z) < const|CI|[|3 = BO)],

where we used Assumption 10 (ii).
The validity of Assumption 8 — the uniform consistency of the estimator S — follows
from standard consistency arguments.

Finally, we examine Assumption 9. We have m;L)(ﬁ, 0) = E[¢p,(e(B,0))Z'] . Consider

_oam(8,0)

Mr(0) 93

ls=p0)= E [f-9)(0)CZ"],

which is bounded due to Assumption 10 (i) and (ii). Assumption 10 also implies that
m(TL)(ﬁ,H) has a uniformly bounded second derivative in  along (6). Thus, Taylor
expansion implies the validity of the first part of Assumption 9 (linearizability of mgpL)).
Uniform consistency of the estimator ]\//TT(H) follows by standard arguments for kernel

estimators. [

S7.3 Additional Quantile IV Simulation Results

This section reports additional simulation results for the quantile IV simulation designs
discussed in the paper. In particular, it gives simulated size for all tests considered and
power under additional parameter values. We first report results for £ = 10 instruments

(as in the paper), and then report results for & = 5 instruments.

S7.3.1 Results for £ = 10 Instruments

Simulated Size. Tables 7 and 8 report the simulated size of AR, K, JK, GMM-M,
and QLR tests for a variety of parameter values in the symmetric and asymmetric sim-
ulation designs respectively. Note that we do not report size for the pQLR test since
the simulations consider the infeasible pQLR test which tests 6, against the true value
0 at each point. The pQLR statistic for testing 6, against 6, is identically zero. For
ease of reading, however, the power plots below and in the paper set the rejection prob-
ability of the pQLR test to 5% at the null §,. Note, further, that there is an implicit

restriction on possible values of ps and 7mg due to the fact that the covariance matrix

37



ps 0.25 0.5 0.9
TS 0.05{ 01 | 015 | 02 | 005 01 |015 | 02 | 0.05 ] 0.1
AR 5.9% | 5.8% | 5.1% | 5.0% | 5.6% | 5.5% | 5.6% | 5.7% | 5.4% | 6.4%
K 6.7% | 6.0% | 6.1% | 7.0% | 5.4% | 5.9% | 6.0% | 6.3% | 9.3% | 7.2%
JK 6.5% | 5.6% | 5.8% | 6.1% | 5.3% | 5.7% | 5.7% | 6.0% | 9.0% | 7.0%
GMM-M | 5.7% | 6.0% | 5.5% | 6.2% | 5.5% | 5.2% | 5.6% | 5.9% | 5.9% | 6.4%
QLR 5.0% | 5.8% | 5.8% | 5.4% | 5.0% | 5.5% | 6.0% | 5.4% | 5.4% | 5.7%

Table 7: Simulated size of nominal 5% tests in symmetric quantile IV simulation design with ten instru-
ments and 1,000 observations. Based on 2,500 simulation replications and 1,000 draws of conditional

critical values.

PA 0.25 0.5 0.9
TA 0.05{ 01 | 015 | 02 | 005 0.1 |015 | 0.2 | 0.05 ] 0.1
AR 4.6% | 4.7% | 4.5% | 5.0% | 5.3% | 3.9% | 3.9% | 3.8% | 4.9% | 4.7%
K 4.9% | 6.5% | 6.7% | 6.6% | 4.8% | 5.7% | 6.4% | 6.7% | 6.1% | 5.3%
JK 4.5% | 5.6% | 6.5% | 5.8% | 4.4% | 5.2% | 5.4% | 5.9% | 5.2% | 5.0%
GMM-M | 4.6% | 5.9% | 6.5% | 6.7% | 4.9% | 5.5% | 5.1% | 6.8% | 4.6% | 4.9%
QLR 5.5% | 5.2% | 5.5% | 5.8% | 6.6% | 5.9% | 5.2% | 4.8% | 4.4% | 4.3%

Table 8: Simulated size of nominal 5% tests in asymmetric quantle IV simulation design with ten instru-
ments and 1,000 observations. Based on 2,500 simulation replications and 1,000 draws of conditional

critical values.

of (€v.ts€pts €21 b5 s E200.4) MUSE positive semi-definite, which precludes consideration of
mg = 0.15 and mg = 0.2 when ps = 0.9. Likewise, when p4 = 0.9 we cannot consider
74 = 0.6 and 74 = 0.8.

As these tables make clear, all tests considered have simulated size within 5% of their
nominal size over the designs considered. The largest deviations of simulated size from
nominal size arise for the K and JK tests in the symmetric design with pg = 0.9. While
these deviations are still not large, one might wonder to what extent power comparisons
across tests would change if we took these distortions into account. To investigate this
question we calculated size-corrected power curves, and found them qualitatively very

similar to the raw results. These results are available upon request.

Power Simulations Figures 4-6 plot power curves for symmetric simulation designs
as described in the paper, while Figures 7-9 do the same for asymmetric simulation
designs. For completeness these plots repeat some of the results reported in the paper,
while in each case also reporting results for designs with instruments stronger than the
cases considered in the text. As expected given the local asymptotic efficiency of the
K, GMM-M, and QLR tests in the well-identified case, when we increase the strength of

the instruments the power curves for these tests tend to converge. From a theoretical
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ps 0.25 0.5 0.9
TS 0.05{ 01 | 015 | 02 | 005 01 |015 | 02 | 0.05 ] 0.1
AR 4.9% | 51% | 5.0% | 4.8% | 4.8% | 5.2% | 5.1% | 5.0% | 5.5% | 5.2%
K 4.6% | 41% | 4.2% | 4.4% | 5.1% | 4.2% | 4.1% | 4.2% | 6.2% | 4.9%
JK 5.0% | 4.6% | 4.5% | 4.7% | 5.1% | 4.4% | 4.2% | 4.3% | 6.7% | 5.4%
GMM-M | 4.7% | 4.7% | 4.7% | 4.5% | 4.9% | 4.7% | 4.4% | 4.3% | 5.6% | 4.9%
QLR 4.4% | 4.1% | 4.0% | 3.6% | 4.3% | 4.0% | 4.0% | 4.0% | 4.6% | 4.8%

Table 9: Simulated size of nominal 5% tests in symmetric quantile IV simulation design with five instru-
ments and 1,000 observations. Based on 2,500 simulation replications and 1,000 draws of conditional
critical values.

perspective, note that the AR and JK tests are locally asymptotically inefficient in the
well-identified case (though the degree of inefliciency for the JK test is small), while the
pQLR test is locally asymptotically equivalent to a one-sided test in this case. Thus the

pQLR power envelope considered here does not converge to the power functions of the

other tests considered when we increase the strength of the instruments.

S7.3.2 Results for £ = 5 Instruments

The results reported above and in the paper all focus on designs with £ = 10 instruments.
To examine the effect of changing the number of instruments, here we report results where
we reduce the number of instruments to £ = 5 while holding the other parameters con-
stant. This change has a different effect in the symmetric and asymmetric simulation
designs. In the symmetric designs the instruments are independent and equally infor-
mative about the endogenous regressor, and reducing the number of instruments leads
to a decline in power for all tests considered. By contrast, in the asymmetric simulation
design reducing the number of polynomials considered increases the power of many tests,
suggesting that the sixth to tenth order polynomials included in the simulation design

with k£ = 10 were not particularly informative.

Simulated Size Tables 9 and 10 report the simulated size of all tests considered under
the symmetric and asymmetric simulation designs, respectively. We find that all tests
have simulated size reasonably close to nominal size. In particular, unlike in the design

with k£ = 10 the simulated size of the K and JK tests never exceeds 7%.

Power Simulations Figures 10-12 report power curves for the symmetric simulation

designs with five instruments, while Figures 13-15 report results for the asymmetric
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PA 0.25 0.5 0.9
TA 0.05{ 01 | 015 | 02 | 005 01 |015 | 02 | 0.05 ] 0.1
AR 4.4% | 4.4% | 3.8% | 4.0% | 3.9% | 3.9% | 3.7% | 4.1% | 4.3% | 3.8%
K 5.2% | 4.9% | 4.6% | 4.4% | 4.2% | 4.8% | 5.0% | 5.5% | 4.9% | 5.5%
JK 4.7% | 4.8% | 4.6% | 4.1% | 4.2% | 4.5% | 52% | 5.2% | 4.5% | 5.3%
GMM-M | 3.7% | 44% | 4.2% | 4.1% | 4.1% | 4.4% | 5.0% | 5.7% | 4.7% | 5.2%
QLR 4.1% | 4.0% | 3.6% | 4.0% | 4.4% | 3.9% | 3.8% | 4.1% | 4.0% | 4.3%

Table 10: Simulated size of nominal 5% tests in asymmetric quantle IV simulation design with five in-
struments and 1,000 observations. Based on 2,500 simulation replications and 1,000 draws of conditional
critical values.

simulation designs. Relative to designs with ten instruments, we see that the tests have
substantially less power in the symmetric designs, but similar or higher power in the
asymmetric simulation designs. As noted above, this stems from the fact that the number
of instruments plays a different role in the symmetric and asymmetric designs, with each
instrument bringing equal and independent information in the symmetric design but
not in the asymmetric design. Qualitatively the results are quite similar to those in
the ten instrument case: the AR test is inefficient in strongly identified case, while it
performs reasonably well in weakly identified cases. The K and JK suffer power declines
at distant alternatives in weakly identified cases, as well as substantial power losses in the
asymmetric simulation design when the derivative of the moments is not a reliable guide
to behavior under the alternative. The GMM-M test in general shows stable performance,
though in most cases its power is exceeded by that of the conditional QLR test, which

seems to be a desirable option among those considered.

S8 Stock and Wright setting

In this section, we demonstrate that the results of Section 5 of the paper can also be
applied to the weak GMM models studied in Stock and Wright (2000) when the nuisance
parameter is strongly identified and the parameter under test is weakly identified. Assume
that we again begin with a moment function g}SW) whose mean function can be written

as

Eg™(8,0) = m$™(8,0) = VTma(8) + ma(3,0),
for (5,0) € B x ©. We impose the following assumptions:

SW1 ¢¥™(8,6) — m$™)(8,6) = GSY)(B,6) uniformly over Py where GE™)(3,6) is a
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Gaussian process with mean zero and covariance function 5W)(3,0, 8,,0;). Fur-

ther, G")(3,0) is uniformly equicontinuous and uniformly bounded over P.

SW2 Assumption 2 holds for X5W) (1, 4)1), ¢ = (0, B). Further, X(W) (1), 1)) is uniformly

continuous in 1, ¥; uniformly over Py.
SW3 We have an estimator (") for S(W) which satisfies Assumption 3.

SW4 my(By) = 0 for an interior point Sy € B, and for all 6 > 0 there exists ¢ > 0 such
that [[m(B)|| < € implies ||3 — Bo|| < d for all P € P,.

SW5 my(+) is continuously differentiable, and

omi(B)| ) [ 0ma(8) ]
i (( op ’5=50> (WL:%)) g 1/C

for some positive constant ¢ and all P € P,. Likewise, the maximal eigenvalue

of the above matrix is uniformly bounded above by ¢. msy(f3,60) is continuously

differentiable, and ms (6o, By) = 0. Further, both my(5,0) and %ZO’B) s are
=Bo
uniformly bounded over 3, 6, and P,.

SW6 \/LT (%g(TSW) (8,0) — %m(TSW) (ﬁ,@)) —, 0 uniformly in (8, 6) and uniformly over

Po.

We consider a sequence of (possibly parameter- and data-dependent) weighting ma-
trices Wy (3, 6) which we will assume converge uniformly in probability to some positive-
definite limit W (3, 0) which may depend on P but is uniformly bounded and positive-
definite over P,. For example, we might take Wr(3,6) = S™)(8,6,3,0)!. We will
also assume that %WT(B, 6) is uniformly O,(1). Given these weighting matrices, define

Br(0) to be the pseudo-true value of 5 given 6 in the sample of size 71"
Br(0) = argmin m&™W(8,0YW (8,0)mt")(8,0).

It is important to note that if 6 # 6, in general we have a misspecified moment condition
model for 3, in the sense that there does not exist a value of 5 such that the initial moment
conditions are satisfied. The fact that the model is misspecified leads to a pseudo-true

value fr(0) which depends on the choice of weighting matrix W and on the sample size.
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However, the mis-specification in this setting is mild (uniformly of order \/LT)’ with the
result that Sr(0) converges to 5y at rate \/LT uniformly in 6 uniformly over P.

We estimate the structural nuisance parameter by
A . (8 s
B(6) = argmin g™ (8,0 W (8, 0)95”™ (5, 0).

The assumptions above guarantee that \/T(B(@) —Br(0)) converges to a Gaussian process.

Once we plug in the estimator of the nuisance parameter, the effective dimension of

the process g(TSW) (3(9), 0) is reduced by the dimension of 3, which is p. To avoid degener-

acy we consider the linearly transformed moment condition g(TL) (8,0) = (R g(TSW)(ﬁ ,0),

R ) (sW)
where R* is a full-rank kx (k—p) dimensional matrix orthogonal to R = \/LT %8—;6’90) :
B=H(60)

We argue that the transformed grEpL) together with the nuisance parameter estimator sat-
isfy Assumptions 6-9 of the paper. The argument is straightforward, so for brevity we

merely sketch it here.

dm1(B) ’
98 lp=p,’

Standard arguments show that uniformly over 6, for R =

VT(B(0) - r(9))

— (R'W(B,60)R)" RW (8, 6,) (g;?m(@(e), 8) — mE™(5(9), 9)) +0,(1).

Assumption SW6, together with the consistency of B (0y), implies the uniform consistency

of R. Together with Assumption SW5, this implies that we can take R* to be uniformly

consistent for a full-rank k x (k—p) matrix R+ orthogonal to R. The continuous mapping

theorem and Assumption SW1 then imply that if we replace the R+ in the definition of
(L

g7 ) with R*, the error from this substitution is uniformly negligible.

This substitution results in the moment function
(R 800, 30)) = (R) (8™ (8,000)) + RVT(3(0) = B(0)) ) + 0,(1).
Since R’ R+ = 0 we obtain that

a(0) = (RY) g™ (8(0).0) + 0,(1)
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and thus that Assumption 6 holds. Assumption 7 follows from SW2, while Assumption

, : 1y 1 omP"(8,6)
8 follows from SW3. Finally, taking Mr(0) = (R*) —=="L 22

75 73 , Assumption 9

B=8(0)
can be shown to follow from SW5 and SWE6.
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