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Abstract

This Supplementary Appendix contains additional results concerning the interpretation of

our conditional critical values, the bounded completeness of our su�cient statistics, the deriva-

tion of the conditioning process hT (·) in homoscedastic linear IV, the power of tests in a simple

Gaussian model, the power of the conditional QLR tests in linear IV with non-homoscedastic

errors, proofs of asymptotic results stated in the paper, a theoretical analysis and additional

simulation results for the quantile IV model, and additional results for Stock and Wright (2000)'s

setting.
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S1 Interpretation of conditional critical values

The are many ways to represent a given test using data-dependent critical values. In

particular, for any statistic S(gT ) such that the test that rejects when S(gT ) > 0 has

correct size, the test that rejects when the statistic R = R(gT ,Σ) exceeds the random

critical value R− S(gT ) has correct size as well, and indeed will be the same test in that

it rejects for precisely the same realizations of the data. The goal of this section is to

point out the sense in which the test that rejects when R > cα(hT ), for cα(hT ) the critical

value we propose, is naturally connected to the test statistic R. An interesting corollary

of this result is that this test can be viewed as a best approximation (within the class of

size-α conditionally similar tests) to any test based on R that uses a �xed critical value.

Let ΦC,α denote the class of size-α tests of H0 : mT (θ0) = 0 which are conditionally

similar given hT . For a given realization of the data a test in this class rejects the null with
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probability φ̃ ∈ [0, 1], while also satisfying the conditional size restriction E[φ̃|hT ] = α

under any mT ∈M0.
3

Lemma S1.1 Suppose that the conditional distribution of R given hT is almost surely

continuous. For any non-decreasing function F (·) and any mT ∈ M0 the test φ =

I {R > cα (hT )} solves the problem

max
φ̃∈ΦC,α

E
[
φ̃F (R)

]
. (1)

If F (·) is strictly increasing then φ is the almost-everywhere unique solution, in the sense

that any other test φ̃ solving optimization problem (1) above is equal to φ with probability

one.

Proof: Let f(hT ) = F (cα (hT )). Note that for any (potentially randomized) test φ̃ ∈

[0, 1] the following inequality holds almost surely:

(φ− φ̃)(F (R)− f (hT )) ≥ 0.

Indeed, if F (R) > f (hT ) then R > cα (hT ), and thus φ = 1 ≥ φ̃, and if F (R) < f (hT ),

then R < cα (hT ) and thus φ = 0 ≤ φ̃. As a result,

0 ≤ E
[
(φ− φ̃)(F (R)− f (hT ))

]
=

= E
[
f (hT )

(
E
[
φ̃|hT

]
− E [φ|hT ]

)]
+ E[φF (R)]− E[φ̃F (R)].

If φ̃ ∈ ΦC,α then the �rst term equals zero, and we have E[φ̃F (R)] ≤ E[φF (R)].

To establish the second statement of the Lemma, assume that φ̃ ∈ ΦC,α is such that

E[φ̃F (R)] = E[φF (R)]. Then

E
[
(φ− φ̃)(F (R)− f (hT ))

]
= 0.

The integral of an almost-surely-non-negative function is equal to zero only if the function

itself is equal to zero almost surely. We assumed that the conditional distribution of R

3We may equally well de�ne φ̃ ∈ {0, 1} to be a realized outcome of the test, which may depend on
an auxiliary randomization as in the paper. This distinction is unimportant for Lemma S1.1, though we
use outcome notation for Corollary S1.1.
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given hT is almost surely continuous and F is strictly increasing. Thus the probability

of the event {F (R) = f (hT )} is zero, so φ = φ̃ almost surely. �

Lemma S1.1 establishes that the test φ can be interpreted as a maximizer of E [φF (R)]

over the class of conditionally similar tests for any distribution consistent with the null

and any non-decreasing function F . This property makes precise the sense in which φ is

the conditionally similar test most associated with large values of R. Note further that

if the family of distributions for hT (·) consistent with the null is complete, so that all

similar tests are conditionally similar, then the conclusion of Lemma S1.1 continues to

hold when we replace ΦC,α with ΦS,α, the class of level-α similar tests.

A particularly interesting consequence of Lemma S1.1 is to relate the test φ to the

test φ∗ = I {R > c∗} which is also based on R but, unlike φ, uses a �xed critical value.

In particular:

Corollary S1.1 If the conditional distribution of R given hT is almost surely continuous,

then for any mT ∈M0 the test φ solves

min
φ̃∈ΦC,α

E

[(
φ̃− φ∗

)2
]

(2)

where for a randomized test φ̃ we use the �nal outcome in evaluating (2).

Proof: As noted in e.g. Section 3.5 of Lehmann and Romano, any randomized test

φ̃(gT ) based on gT can be represened as a non-randomized test φ̃(gT , U) based on gT and

a uniform random variable U independent of the data. Using this representation, note

that

E

[(
φ̃− φ∗

)2
]

= E
[
φ̃
]
− 2E

[
φ̃φ∗
]

+ E [φ∗] .

Conditional similarity of φ̃ at level α implies that E
[
φ̃
]

= α, while E [φ∗] is una�ected

by the choice of φ̃. Thus, equation (2) is equivalent to

max
φ̃∈ΦC,α

E
[
φ̃φ∗
]
.

Since φ∗ = I {R > c∗}, the result follows immediately from Lemma S1.1. �

Thus, if one would like to use a test φ∗ but for its lack of size control, our approach

yields the conditionally similar test that best approximates φ∗ under any distribution
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consistent with the null. Thus, analogous to the size-correction approaches discussed

in the literature on non-standard tests (e.g. D. Andrews and Guggenberger (2009)), it

seems reasonable to interpret φ as a size-corrected version of φ∗ or, alternatively, as the

best �conditional-similarity-corrected� version of φ∗, where the best is taken to mean

minimizing squared approximation error under to any distribution consistent with the

null.

S2 Boundedly complete families

Conditional similarity of a test is a very strong restriction that can be hard to justify

because it signi�cantly reduces the class of possible tests. If, however, one wishes to create

a similar test (a test that has exactly correct rejection probability under the null for all

values of the nuisance parameter), all similar tests will automatically be conditionally

similar for a given su�cient statistic if the family of distributions for that su�cient

statistic under the null is boundedly complete.

De�nition 1 The family of distributions P for a statistic h (or a σ-�eld σ(h)) is called

boundedly complete if for all bounded σ (h)-measurable functions f (h), the property that

EP [f (h)] = 0 for all P ∈ P implies that f (h) = 0 almost surely for all P ∈ P.

Lemma S2.1 (Lehmann and Romano (2005)) If the family of distributions for the suf-

�cient statistic h under the null is boundedly complete, then all similar tests of H0 : m ∈

M0 are conditionally similar given h. In particular, any random variable φ with values

in [0, 1] satisfying the similarity condition:

EP [φ] = α for any P ∈ P0

also satis�es the conditional similarity condition

EP [φ | h] = α a.s. for any P ∈ P0.

Consider the exact Gaussian problem discussed in Section 3.2 of the paper in which

we observe the process g(θ) = m(θ) +G(θ) for an unknown deterministic mean function

m(·) ∈ M and a mean-zero Gaussian process G(·) with known covariance Σ(θ, θ̃) =

EG(θ)G(θ̃)′. We again assume thatM is the set of potential mean functions, which is
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in general in�nite-dimensional, and wish to test the hypothesis H0 : m(θ0) = 0. LetM0

be the subset of M containing all functions m satisfying m(θ0) = 0. Let P0 be the set

of distributions for g corresponding to mean functions inM0. De�ne h(·) = H(g,Σ) as

in equation (3) from the paper. As shown in Lemma 1 of the paper, h is a su�cient

statistic for m ∈M0.

If the parameter space for θ is �nite (Θ = {θ0, θ1, ..., θn}) the conditions for bounded

completeness are well known and easy to check. In particular, in this case our problem re-

duces to that of observing a k(n+ 1)-dimensional Gaussian vector g = (g(θ0)′, ..., g(θn)′)′

with unknown mean (0,m′1 = m(θ1)′, ...,m′n = m(θn)′)′ and known covariance. If the set

M of possible values for the nuisance parameter (m′1, ...,m
′
n)′ contains a rectangle with

a non-empty interior then the family of distributions for h under the null is boundedly

complete, and all similar tests are conditionally similar given h. To generalize this state-

ment to an in�nite-dimensional nuisance parameter we can use Lemma 3.3 of Janssen

and Ostrovski (2005) to obtain a su�cient condition for completeness.

Lemma S2.2 (Janssen and Ostrovski (2005)) Consider an increasing sequence Mn ⊆

M0 of subsets of the parameter space and let Pn = {Pm,m ∈ Mn} be an increasing set

of families of distributions with P∞ = ∪nPn. Let An denote an increasing sequence of

σ-algebras with A∞ = ∪nAn. Assume that for each n ∈ N the σ-algebra An is su�cient

for m ∈ Mn while Pn is boundedly complete for An. Assume that A∞ is su�cient for

P0 and that for any P ∈ P0 there exists P1 ∈ P∞ such that P is absolutely continuous

with respect to P1. Then P0 is boundedly complete for A∞.

Consider the exact Gaussian problem and assume that the covariance function Σ(·, ·)

is continuous while Θ is a separable metric space. Consider the corresponding process

h(·), which has mean m(·) and covariance function Σ̃(·, ·):

Σ̃(θ, θ1) = Σ(θ, θ1)− Σ(θ, θ0)Σ(θ0, θ0)−1Σ(θ0, θ1).

Note that Σ̃(θ0, θ) = 0 for all θ. Let H be a Hilbert space with reproducing kernel Σ̃(·, ·).

This is de�ned as the closure of the set of functions φ(·) =
∑n

j=1 αjΣ̃(·, θj) with respect

to the inner product

〈
n∑
j=1

αjΣ̃(·, θj),
m∑
i=1

βiΣ̃(·, si)〉H =
∑
i,j

αjβiΣ̃(θj, si).
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Assume thatM0 ⊆ H. This assumption can be justi�ed using Theorem 57 of Berlinet and

Thomas-Agnan (2004), which states that two Gaussian processes with common covari-

ance function Σ and potentially di�erent mean functions mX(·) and mY (·) are mutually

absolutely continuous if and only if mX −mY ∈ H.

Theorem S2.1 Consider the exact Gaussian problem. Assume the covariance function

Σ(·, ·) is continuous, and Θ is a separable metric space. Assume thatM0 ⊆ H, where H

is a Hilbert space with reproducing kernel Σ̃(·, ·), and (φj)
∞
j=1 is a basis in H. Assume that

for any n there exists an n-dimensional closed rectangle Bn with a non-empty interior

such that for any α = (α1, ..., αn) ∈ Bn we have
∑n

j=1 αjφj ∈ M0. Then h is boundedly

complete for P0.

Proof of Theorem S2.1. Given the assumptions, the Hilbert space H is separa-

ble. Without loss of generality we can assume that φj is an orthonormal basis in H.

According to Theorem 14 in Berlinet and Thomas-Agnan (2004) we have Σ̃(θ1, θ2) =∑∞
j=1 φj(θ1)φj(θ2)′. For any m ∈M0 ⊆ HR we have

m(θ) =
∞∑
j=1

〈m,φj〉Hφj(θ) =
∞∑
j=1

ajφj(θ).

Consider the canonical congruence ψ, which is a one-to-one correspondence between the

space H and the L2 closure of the space of linear combinations of the process h(θ)−m(θ)

(we refer the interested reader to Berlinet and Thomas-Agnan (2004) for details). A

key property of the canonical congruence is that ψ(Σ̃(·, θ)) = h(θ)−m(θ) for all θ. Let

ξi = ψ(φi) be the random variables corresponding to the basis functions, which are in-

dependent (for di�erent i), standard normal variables since E(ψ(φi)ψ(φj)) = 〈φi, φj〉H =

I{i = j}. There exists a canonical expansion of the mean-zero process h(·)−m(·):

h(θ)−m(θ) = ψ(Σ̃(·, θ)) =
∞∑
j=1

φj(θ)ξj.

Observing the process h(·) is therefore equivalent to observing the sequence of random

variables

Yj = 〈h, φj〉H = 〈m,φj〉H + ξj.
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Denote by Mn a subset of M0 consisting of functions m(·) such that 〈m,φj〉 = 0 for

all j > n, thus m(θ) =
∑n

j=1 ajφj(θ) for m ∈ Mn. Notice that for m ∈ Mn we have

Yj = aj + ξj for j ≤ n and Yj = ξj for j > n. To apply Lemma S2.2 we can take An
to be the σ-algebra generated by variables Y1, ..., Yn. Note that An is su�cient for Pn.

Our assumption about rectangular Bn ensures that Pn is complete for An. All the other

conditions of Lemma S2.2 are satis�ed, so the result follows. �

S3 Homoscedastic Linear IV

Let us consider Example 2 from the paper with the additional assumption of homoscedas-

tic errors. The moment condition considered is gT (θ) = 1√
T
Z ′(Y −Dθ), where Y and D

are T × 1 and T × p matrices of endogenous variables, Z is a T × k non-random matrix

of instruments, and θ is a p × 1 parameter of interest. Let Ω be the (p + 1) × (p + 1)

covariance matrix of the reduced form errors, which are assumed to be homoscedastic.

Then Σ(θ, θ0) = 1
T
Z ′Z(1,−θ′)Ω(1,−θ′0)′. As a result we have

hT (θ) = gT (θ)− (1,−θ′)Ω(1,−θ′0)′

(1,−θ′0)Ω(1,−θ′0)′
gT (θ0).

Below we prove that

hT (θ) =
1√

T (1,−θ′0)Ω(1,−θ′0)′
[Z ′Y, Z ′D] Ω−1

 θ′0

Ip

B(θ − θ0), (3)

where B is a full rank p × p matrix. Thus hT (θ) is linear in θ, so conditioning on hT (·)

is equivalent to conditioning on the k× p matrix [Z ′Y, Z ′D] Ω−1

 θ′0

Ip

, which is the T

statistic of Moreira (2003).

Proof of statement (3): Plugging gT (θ) into the formula for hT :

hT (θ) =
1√

T (1,−θ′0)Ω(1,−θ′0)′
[Z ′Y, Z ′D]

 0 θ′ − θ′0
θ0 − θ θθ′0 − θ0θ

′

Ω

 1

−θ0


=

1√
T (1,−θ′0)Ω(1,−θ′0)′

[Z ′Y, Z ′D]

 0 x′

−x xθ′0 − θ0x
′

Ω

 1

−θ0

 ,
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for θ = θ0 + x. We decompose Ω as Ω =

 ω w′

w Ω2

, where ω is a scalar, w is p × 1,

and Ω2 is p× p. Consider the last three terms in the previous formula: 0 x′

−x xθ′0 − θ0x
′

 ω w′

w Ω2

 1

−θ0



=

 x′w − x′Ω2θ0

−ωx+ xw′θ0 + xθ′0w − xθ′0Ω2θ0 − θ0x
′w + θ0x

′Ω2θ0


=

 (w′ − θ′0Ω2)

[(2w′θ0 − ω − θ′0Ω2θ0)Ip − θ0w
′ + θ0θ

′
0Ω2]

x.

Next, note that w′ − θ′0Ω2

(2w′θ0 − ω − θ′0Ω2θ0)Ip − θ0w
′ + θ0θ

′
0Ω2

 = Ω−1

 θ′0

Ip

B.

To prove this statement, it su�ces to note that

Ω

 w′ − θ′0Ω2

(2w′θ0 − ω − θ′0Ω2θ0)Ip − θ0w
′ + θ0θ

′
0Ω2

 =

 θ′0B

B


for

B = ww′ − wθ′0Ω2 + (2w′θ0 − ω − θ′0Ω2θ0)Ω2 − Ω2θ0w
′ + Ω2θ0θ

′
0Ω2.

All that remains is to show that B is full rank. To this end, note that

B = yy′ − (y′Ω−1
2 y)Ω2 − (ω − w′Ω−1

2 w)Ω2

for y = w − Ω2θ0. Thus B is symmetric. We show that −B is positive-de�nite and thus

is full rank. First, note that for any p× 1 vector a we have

a′
(
yy′ − (y′Ω−1

2 y)Ω2

)
a ≤ 0

as follows from the Cauchy-Schwarz inequality applied to vectors Ω1/2a and Ω−1/2y. Thus
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−yy′ + (y′Ω−1
2 y)Ω2 is a positive semi-de�nite matrix. We also note that ω − w′Ω−1

2 w is

strictly positive by the positive de�niteness of Ω. Indeed,

(1,−w′Ω−1
2 )

 ω w′

w Ω2

 1

−Ω−1
2 w

 = ω − w′Ω−1
2 w > 0.

Thus, B is full rank.

S4 Power considerations

In this section we provide derivations for statements made in Section 3.4 of the paper,

as well as an extension to a case with multiple alternatives. The setting considered in

Section 3.4 can be described as follows. We observe two k-dimensional random vectors

ξ = gT (θ0) and η = gT (θ∗):

(ξ′, η′)′ ∼ N((µ′, λ′)′,Σ),

where the 2k × 2k- covariance matrix Σ =

 Σ11 Σ12

Σ21 Σ22

 is known, while the means µ

and λ are unknown and satisfy the restriction ‖µ‖ · ‖λ‖ = 0. We wish to test the null

H0 : µ = 0, λ ∈ Rk against the alternative H1 : µ 6= 0, λ = 0.

S4.1 Tests based on ξ alone

We derive the power envelope for tests based only on ξ by �nding the optimal test against

a speci�c alternative µ (noting that under this restriction we can ignore the parameter λ,

since it a�ects only the distribution of η). By the Neyman-Pearson lemma, the optimal

test rejects when ξ′Σ−1
11 ξ − (ξ − µ)′Σ−1

11 (ξ − µ) exceeds its 1− α-quantile under µ = 0 or,

equivalently, when

ξ′Σ−1
11 µ/

√
µ′Σ−1

11 µ > z1−α, (4)

where z1−α is the 1− α-quantile of the standard normal distribution. As is immediately

clear this most powerful test is one-sided and is biased as a test of the hypothesis H0 :

µ = 0 against H1 : µ 6= 0. The power of this test (evaluated using the true µ) yields

power envelope PE-1 in the paper.
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To construct the power envelope for the class of unbiased tests based on ξ, consider the

sub-problem which assumes the direction of µ known, that is, µ ∝ µ∗ for a known vector

µ∗. In this sub-problem the only unknown parameter is the coe�cient of proportionality

between µ and µ∗, which can be written as a = µ′Σ−1
11 µ

∗(µ∗′Σ−1
11 µ

∗)−1, and the testing

problem (based on ξ) becomes H0 : a = 0 against H1 : a 6= 0. A su�cient statistic for

the unknown parameter a is (µ∗′Σ−1
11 µ

∗)−1µ∗′Σ11ξ ∼ N(a, 1/(µ∗′Σ−1
11 µ

∗)). The uniformly

most powerful unbiased test in this sub-problem rejects if the square of the statistic in

equation (4) above exceeds the 1 − α-quantile of the χ2
1 distribution. It is easy to see

that this test is unbiased for the initial problem of testing H0 : µ = 0 vs H1 : µ 6= 0 as

well, and as such provides the best unbiased test against alternative µ. By changing the

value of µ we can construct the power envelope, labeled PE-2 in the paper, for the class

of unbiased tests based on ξ alone.

Note that the optimal unbiased test depends in a signi�cant way on the alternative

tested, and thus there is no uniformly most powerful unbiased test. In practice it is

di�cult to choose the particular alternative on which to focus, and for a given choice of

µ the tests above will have very low level power against some alternatives. Kleibergen's K

test can be viewed as a plug-in version of the optimal unbiased test with an orthogonalized

derivative estimator substituting for µ. As noted in I. Andrews (2015), this derivative

estimator may perform quite well for alternatives close to the null but its performance

can deteriorate against more distant alternatives. Further, as noted in Section 3.5 of

the paper, replacing µ by a derivative estimator seems to make sense when the unknown

function mT (·) is approximately linear in θ, but may not work as well when mT (·) is

substantially nonlinear.

Another way of eliminating the dependence of the optimal test on µ is to consider

only tests invariant to a full-rank k×k linear transformation of the data, noting that this

transformation preserves both the null and alternative. One can easily see that a maximal

invariant under this transformation is the S statistic ξ′Σ−1
11 ξ and that the uniformly most

powerful invariant test rejects when S is large. Thus, the S (or Anderson-Rubin) test

is the uniformly most powerful invariant test based on ξ alone, and its power function

yields power envelope PE-3.
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S4.1.1 Power Bound for Tests in Previous Literature

In the paper we note that the power envelope PE-2 for unbiased tests based on ξ gives an

upper bound on the power of most of the tests studied in the previous weak identi�cation

literature, including the S, K, JK, and GMM-M tests of Kleibergen (2005). The power

envelope PE-2 likewise bounds the power of the CLC tests studied by I. Andrews (2015),

and (in the linear IV model) of the SU tests studied by Moreira and Moreira (2015).

This follows from the fact that all of these tests satisfy a version of the SU condition of

Moreira and Moreira (2015).

Speci�cally, consider tests φ which depend on the data only through gT (θ0) and DT ,

where consistent with the exact Gaussian model studied in Section 3 of the paper we

assume that gT (θ0) ∼ N (µ,Σ (θ0, θ0)) and DT ∼ N (µD,ΣD) . Once we restrict attention

to (gT (θ0) , DT ), DT is su�cient for µD and all the tests discussed above are conditionally

similar given DT in that

Eµ=0 [φ|DT = d] = α (5)

for almost every d. These tests further satisfy the restriction

Eµ=0 [φgT (θ0) |DT = d] = 0 (6)

for almost every d. Conditions (5) and (6) together are su�cient for the SU condition of

Moreira and Moreira (2015).

As noted in the supplement to I. Andrews (2015), a su�cient condition for condition

(6) is that φ (gT (θ0) , DT ) = φ (−gT (θ0) , DT ), which holds for all the tests discussed

above save for the SU tests of Moreira and Moreira (2015), which instead impose restric-

tion (6) by construction. Given equations (5) and (6), however, standard arguments imply

that the most powerful test against alternative µ rejects when
(
µ′Σ (θ0, θ0)−1 gT (θ0)

)2
is

large, and thus coincides with the test used to construct PE-2, which in the linear IV

model also coincides with the power envelope for SU tests derived in Moreira and Moreira

(2015).

S4.2 Tests based on ξ and η

Assume that under the null the parameter λ can take any value in some k-dimensional

rectangle (which implies that similar tests must be conditionally similar given h). If we
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let µh = −Σ21Σ−1
11 µ and denote the variance of h by Σh, then following Montiel Olea

(2013) we know that the point-optimal similar test against µ will reject when

exp(−(ξ − µ)′Σ−1
11 (ξ − µ)− (h− µh)′Σ−1

h (h− µh))
exp(−ξ′Σ−1

11 ξ)

exceeds its 1 − α quantile under the null conditional on h. However, we can see that

once we condition on h, the only random component of the ratio is ξ. Moreover, for

�xed h this statistic is a strictly increasing function of ξ′Σ−1
11 µ. Thus, the test will reject

when ξ′Σ−1
11 µ exceeds its 1 − α conditional quantile under the null. However, ξ′Σ−1

11 µ is

independent of h, so we obtain that the most powerful similar test against µ based on

(ξ, η) is the same as the most powerful test based on ξ alone, described in equation (4).

It is without loss of generality to normalize Σ11 = Σ22 = Ik. Under this normalization

the conditional pQLR test rejects the null when

ξ′ξ − η′η > cα(h), where h = η − Σ21ξ.

In what follows we discuss optimality properties of the conditional pQLR test in two

cases: �rst, under the assumption that the covariance matrix Σ of variables (ξ, η) =

(gT (θ0)′, gT (θ∗)′)′ can be written as the Kronecker product of a 2× 2 matrix with a k× k

matrix, and then in the general case.

S4.2.1 Kronecker structure case

In this section we show that under the Kronecker structure assumption discussed in the

paper, which imposes that Σ21 = ρIk for |ρ| < 1, and thus that h = η−ρξ, the conditional

pQLR test is the uniformly most powerful invariant similar test based on ξ and η and is

unbiased.

First, note that the testing problem is invariant to rotations of ξ and η. Speci�cally,

for F a k × k orthonormal matrix (F ′F = Ik),

((Fξ)′, (Fη)′)′ ∼ N(((Fµ)′, (Fλ)′)′,Σ),

and the null hypothesis is unchanged. A test φ(ξ, η) is said to be invariant if for any

orthonormal F we have φ(Fξ, Fη) = φ(ξ, η). The power function β(µ) of an invariant

12



test φ satis�es

β(Fµ) = β(µ) = β(‖µ‖).

Consider an arbitrary weighting function π(µ) on the set of alternatives. Then the

weighted average power (WAP) of the invariant test φ is

∫
β(µ)π(µ)dµ =

∫ ∞
0

∫
‖µ‖=x

β(µ)π(µ)dµdx =

=

∫ ∞
0

β(x)

[∫
‖µ‖=x

π(µ)dµ

]
dx =

∫ ∞
0

β(x)

[
q(x)

∫
‖µ‖=x

dµ

]
dx,

where q(x) =
∫
‖µ‖=x π(µ)dµ∫
‖µ‖=x dµ

. Let us de�ne a new weighting function π̃(µ) = q(‖µ‖). We see

that for any invariant test, WAP with respect to π is the same as WAP with respect to

π̃.

Now let us �nd the invariant similar test with the highest WAP for an arbitrary

weight π(µ). By the argument above this test also maximizes WAP for weight π̃(µ). We

construct the WAP optimal similar test with respect to π̃ (without assuming invariance).

According to the results in Montiel Olea (2013), this test will reject when

∫
π̃(µ) exp

−1/2(ξ′ − µ′, η′)

 Ik ρIk

ρIk Ik

−1

(ξ′ − µ′, η′)′
 dµ

exp{−1
2
ξ′ξ}

> cα(h),

where the conditional critical value cα(h) is chosen to control size conditionally on h.

Given the symmetry of π̃(µ) = q(‖µ‖), this is equivalent to

∫∞
0
q(x)

∫
‖µ‖=x exp

{
− 1

2(1−ρ2)
‖ξ − µ− ρη‖2 − 1

2
η′η
}
dµdx

exp{−1
2
ξ′ξ}

> cα(h).

Letting u = ξ − ρη, the optimal test rejects when

G(u)
exp

{
− 1

2(1−ρ2)
‖u‖2 − 1

2
η′η
}

exp{−1
2
ξ′ξ}

> cα(h),

where

G(u) =

∫ ∞
0

q(x) exp

{
− x2

2(1− ρ2)

}∫
‖µ‖=x

exp

{
1

2(1− ρ2)
µ′u

}
dµdx.
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We can see that function G(u) depends on u only through ‖u‖. So, the optimal test

statistic has the form

G̃(‖u‖) exp

{
−1

2
(η′η − ξ′ξ)

}
and the test has to control size conditionally on h. We can notice that conditional on h

the statistic

‖u‖2 = ‖ξ − ρ(h+ ρξ)‖2 = (1− ρ2)

(
(1− ρ2)ξ′ξ − 2ρh′ξ +

ρ2h′h

1− ρ2

)

is a positive a�ne transformation of the statistic

ξ′ξ − η′η = ξ′ξ − (h+ ρξ)′(h+ ρξ) = (1− ρ2)ξ′ξ − 2ρh′ξ − h′h.

We arrive at the following conclusions:

1. The WAP optimal test statistic with respect to π̃(µ) is invariant to transformation

of (ξ, η) to (Fξ, Fη) (or, equivalently, transformation of (ξ, h) to (Fξ, Fh)) and

the conditional critical value function cα(h) is likewise invariant. Thus, the WAP

optimal similar test with respect to π̃(µ) is automatically invariant, and thus is the

WAP optimal invariant similar test against both π(µ) and π̃(µ).

2. Conditional on h the WAP optimal test statistic depends on data only through

‖u‖.

3. Since G(u) is increasing in ‖u‖, the WAP optimal invariant similar test rejects the

null for large values of ‖u‖ no matter what the weight functions π or π̃ are. Thus

it is uniformly most powerful in the class of invariant similar tests.

4. This optimal test is the conditional pQLR test.

5. The S test belongs to the class of the invariant similar tests, as such its power is

weakly dominated by the power of the conditional pQLR test at all points.

6. Since the S test is unbiased, we conclude that the conditional pQLR is unbiased as

well.

While we have derived this optimality result directly from the form of the weighted

average power optimal similar tests for this problem, note that under the restrictions
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considered here (using only the values on the moment process at two points, and the

Kronecker product structure for Σ), the testing problem here is equivalent to the problem

of testing one structural parameter value against another in linear IV with homoscedastic

errors. Thus, the optimality of the pQLR test can instead be derived as a special case of

Corollary 1 in Mills et al. (2014).

S4.2.2 General case

We next relax the Kronecker structure assumption and consider the general case, where

Σ21 is not necessarily proportional to the identity matrix. In this context we show that

the conditional pQLR test is WAP optimal within the class of similar tests for a particular

class of weight functions.

We consider a weight function π(µ) with the property that π(µ) = π(µ̃) for all µ and

µ̃ such that µ̃′(I − Σ12Σ21)−1µ̃ = µ′(I − Σ12Σ21)−1µ. The corresponding WAP optimal

similar test rejects when

∫
π(µ) exp

−1
2
(ξ′ − µ′, η′)

 Ik Σ12

Σ21 Ik

−1

(ξ′ − µ′, η′)′
 dµ

exp{−1
2
ξ′ξ}

> cα(h)

or, equivalently,∫
π(µ) exp

{
−1

2
(ξ − µ− Σ12η)′(1− Σ12Σ21)−1(ξ − µ− Σ12η)− 1

2
η′η
}
dµ

exp{−1
2
ξ′ξ}

> cα(h).

Letting u = ξ − Σ12η, the WAP optimal test rejects when

e−
1
2
u′(1−Σ12Σ21)−1u− 1

2
η′ηG(u)

exp{−1
2
ξ′ξ}

> cα(h)

for

G(u) =

∫
π(µ) exp

{
u′(1− Σ12Σ21)−1µ− 1

2
µ′(1− Σ12Σ21)−1µ

}
dµ.

Note that for the weight function we consider, the function G(u) depends on u only

through u′(1 − Σ12Σ21)−1u = ‖u‖2
Σ12

. Indeed, consider the scalar product 〈v, w〉Σ12 =

v′(1 − Σ12Σ′21)−1w and the group of orthonormal matrices with respect to this scalar

product, namely all matrices F such that F (1 − Σ12Σ′21)−1F ′ = (1 − Σ12Σ′21)−1. Then
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for any ũ such that u′(1 − Σ12Σ′21)−1u = ũ′(1 − Σ12Σ′21)−1ũ, we have that there exists a

matrix F from this group such that u = Fũ. Thus in the formula for G(ũ) we can change

the integration from µ to Fµ, and obtain that G(ũ) is equal to G(u).

Thus far we have shown that the optimal WAP similar test with respect to weight π

rejects when

G(‖u‖Σ12) exp

{
−1

2
‖u‖2

Σ12

}
exp

{
−1

2
(η′η − ξ′ξ)

}
> cα(h)

where the function G depends on π and the test is conditionally similar given h.

Finally, we note that for a given h the statistic ‖u‖2
Σ12

is equal to ξ′ξ − η′η plus a

constant depending only on h. Indeed;

‖u‖2
Σ12

= (ξ − Σ12(h+ Σ21ξ))
′(I − Σ12Σ21)−1(ξ − Σ12(h+ Σ21ξ))

= ξ′(I − Σ12Σ21)ξ − 2h′Σ21ξ + h′Σ21(I − Σ12Σ21)−1Σ12h

and

ξ′ξ − η′η = ξ′ξ − (h+ Σ21ξ)
′(h+ Σ21ξ) = ξ′(I − Σ12Σ21)ξ − 2h′Σ21ξ − h′h.

Thus, we see that the two statistics di�er by a summand that depends only on h. Thus,

the WAP optimal test rejects when G(‖u‖Σ12) is large. Since G(‖u‖Σ12) is increasing in

‖u‖Σ12 , this implies that the conditional WAP test is equal to the conditional pQLR test.

S4.3 Extension to multiple alternatives

In the simulations discussed in Section 3.4 of the paper, we consider the problem of

testing the null that the true parameter value is θ0 against the alternative that it is θ∗.

In applications, however, we are typically interested in the composite alternative that

θ 6= θ0 and so use the QLR or other tests rather than the pQLR test. To explore the

e�ect of testing against such alternatives, in this section we consider a generalization of

the stylized model studied in Section 3.4 of the paper which adds additional points to

the parameter space.

Speci�cally, we consider a case where the GMM parameter space is �nite, ΘN =

{θ0, θ1, ..., θN} . As in Section 3.4 we consider k = 5 moments. Since the GMM parameter
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space is �nite, observing the process gT (·) reduces to observing


gT (θ0)

gT (θ1)
...

gT (θN)

 ∼ N




µ

λ1

...

λN

 ,


Σ (θ0, θ0) Σ (θ0, θ1) · · · Σ (θ0, θN)

Σ (θ1, θ0) Σ (θ1, θ1) · · · Σ (θ1, θN)
...

...
. . .

...

Σ (θN , θ0) Σ (θN , θ1) · · · Σ (θN , θN)



 .

To obtain a simple parametrization for the covariance structure, we consider the case

with 
Σ (θ0, θ0) Σ (θ0, θ1) · · · Σ (θ0, θN)

Σ (θ1, θ0) Σ (θ1, θ1) · · · Σ (θ1, θN)
...

...
. . .

...

Σ (θN , θ0) Σ (θN , θ1) · · · Σ (θN , θN)

 =


1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...

ρ ρ · · · 1

⊗ Ik.

Without futher loss of generality consider µ = ‖µ‖e1 and λi = ‖λi‖e1, for e1 the �rst

standard basis vector. Under the null we have that ‖µ‖ = 0, while under the alternative

correct speci�cation of the model implies that
∏N

i=1 ‖λi‖ = 0. Since alternatives θ1, ..., θN

play a symmetric role here, we focus on the case where θ1 is the true parameter value, so

under the alternative we have ‖λ1‖ = 0. For simplicity we impose that λ2 = ... = λN .

We ultimately obtain a problem indexed by two known parameters (the number of

alternatives N , and the correlation ρ) and two unknown parameters (µ1 and λN,1). For

our power simulations, we consider N ∈ {2, 3, 4, 5, 10, 20}, ρ ∈ {0.3, 0.5, 0.9, 0.99}, and

take both µ1 and λN,1 to vary over the grid {−6,−5.7, ..., 5.7, 6}. As in the paper we study

power envelopes PE-1 and PE-2, as well as the power of the S and pQLR tests. Unlike

Section 3.4 of the paper we consider the conditional QLR test, based on the statistic

gT (θ0)′Σ (θ0, θ0)−1 gT (θ0)− min
i∈{1,...,N}

gT (θi)
′Σ (θi, θi)

−1 gT (θi) .

Since the space of unknown alternatives is now two-dimensional it becomes more di�cult

to plot the results. Instead, for each (N, ρ) pair we consider the largest amount by which

the power of each test falls short of the power of each of the other tests, as well as

the average rejection probability with respect to uniform weights on each point of the

(µ1, λN,1) grid.
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The results of this exercise, based on 10,000 simulation draws, are reported in Tables

1-6. As these results make clear, even as we add more points to the parameter space the

QLR test performs very well (and, indeed, outperforms the power envelope PE-2 over

much of the parameter space) when ρ is large. For N > 2, however, this dominance is no

longer uniform over the parameter space for (µ1, λN,1), and there are some alternatives

where the power of QLR falls below PE-2. Unsurprisingly, the power of the conditional

QLR test is typically (though not everywhere) exceeded by that of the pQLR test. More

surprisingly, the power of the QLR test sometimes falls below that of the S test, albeit

only by a small amount. In all of the simulation designs we consider the average power

of the QLR test (averaged over all alternatives considered) exceeds the power of the S

test, and the degree of out-performance is increasing in ρ.

S5 The conditional QLR test in linear IV

Our results apply to linear IV with both homoscedastic and non-homoscedastic (het-

eroscedastic, serially correlated, or clustered) errors. As discussed in Section 3.3 of the

paper, the linear-in-parameters structure of the IV moment condition means that con-

ditioning on hT (·) in linear IV with homoscedastic errors is equivalent to conditioning

on Moreira (2003)'s T statistic, so in that case our conditioning coincides with that of

Moreira (2003) and the conditional QLR test becomes Moreira's CLR test. The con-

ditioning process hT (·) in the linear IV model remains linear in the parameter θ even

when errors are non-homoscedastic, however, and conditioning on hT (·) is more gen-

erally equivalent to conditioning on its Jacobian at θ0. As noted in Section 3.3, this

Jacobian is the negative of Kleibergen (2005)'s conditioning statistic DT . Thus, in linear

IV with non-homoscedastic errors conditioning on hT (·) is equivalent to conditioning on

Kleibergen's DT .

One implication of this equivalence is that the conditioning statistic introduced in

Kleibergen (2005) is already enough to allow the use of conditional QLR tests in non-

homoscedastic IV. This fact does not appear to have been noted in the previous literature,

nor does the performance of the conditional QLR test in non-homoscedastic models

appear to have been explored. Thus, while the results of our paper are not needed to allow

the use of conditional QLR tests in a non-homoscedastic IV setting, for completeness we

compare the performance of the conditional QLR test to alternative procedures that
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have been proposed for the linear IV model with non-homoscedastic errors. A further

reason this comparison may be of interest is that, as noted by a referee, unlike in general

nonlinear GMM models the QLR statistic is a true likelihood ratio statistic in linear IV

with non-homoscedastic Gaussian errors.4

To asses the performance of the QLR test we compare it to the AR test and the K and

GMM-M tests of Kleibergen (2005). We also include the power function of the infeasible

�oracle� pQLR test which tests the null against the true alternative at each point. All

the tests considered control size and, indeed, are conditionally similar given Kleibergen

(2005)'s conditioning statistic DT . To calculate the QLR statistic we minimize the GMM

objective via grid search. To check that this grid search does not a�ect the performance

of the QLR test, in unreported results we simulate the performance of an infeasible QLR

test which tunes the grid used in optimization based on the unknown data generating

process, and �nd results nearly identical to those reported here. Critical values for both

the QLR and pQLR tests are obtained using 1,000 simulation draws.

We adopt the simulation design of I. Andrews (2015), which is calibrated to data used

by Yogo (2004) to study the e�ect of weak instruments on estimation of the elasticity

of intertemporal substitution in a linear Euler Equation model. Yogo uses data from

eleven di�erent countries and considers multiple speci�cations, taking either the risk free

interest rate or an equity return to be the endogenous regressor. As noted by Moreira

and Moreira (2015) the instruments are more strongly correlated with the risk free rate

than with the equity return, and there is a correspondingly more severe weak instruments

problem when we use equity returns as the endogenous regressor. Since we are interested

in behavior for a range of di�erent identi�cation scenarios we follow I. Andrews (2015) and

calibrate our simulations to speci�cations which use the risk free rate as the endogenous

regressor.

Figures 1-3 plot simulated power, based on 5,000 simulation draws, for all the tests we

consider. Notably, the QLR test is more powerful than the GMM-M test against many

(though not all) alternatives, and avoids the declines in power which a�ect the GMM-M

test in some speci�cations (for example the calibrations to data from Japan and the UK).

While there are some simulation designs, for example the calibration to German data,

4Kleibergen (2007) shows that the Anderson-Rubin statistic in non-homoscedastic instrumental vari-
ables models with Gaussian errors and known variance can be interpreted as a concentrated likelihood,
from which the interpretation of the QLR statistic as a likelihood ratio statistic follows immediately.
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where the QLR test has less power against some alternatives than do the other feasible

tests considered and also displays a small level of bias, there are other cases, for example

the calibration to US data, where the power of the QLR test exceeds that of the other

feasible tests considered.

The power of the oracle pQLR test typically exceeds that of the other tests consid-

ered. Even in well-identi�ed models we would expect this to be the case, since under

strong instrument asymptotics one can show that the pQLR test will be (locally asymp-

totically) equivalent to a one-sided t-test, while the other tests considered will be locally

asymptotically equivalent to a two-sided t-test. While the power of the pQLR test need

not exceed that of the QLR test in general, we �nd that its power is indeed higher in

these simulations.

I. Andrews (2015) and Moreira and Moreira (2015) have recently used the additional

structure imposed by the linear IV model to propose tests for the non-homoscedastic IV

setting motivated by optimality considerations. Results comparing the performance of

these tests to the QLR test are reported in a note on I. Andrews's website, and will be

incorporated into the next revision of I. Andrews (2015). There, one can see that the

QLR test is competitive with these tests, in the sense that its power neither uniformly

dominates, nor is uniformly dominated by, these alternative procedures.

S6 Proofs of results stated in the paper

Proof of Lemma 2 of the paper. Consider a k×1 vector ξ, a k-dimensional function

h(·) of the q-dimensional argument θ satisfying h(θ0) = 0, and a covariance function

Σ(·, ·) satisfying Assumption 2 of the paper. Let Σθ = Σ(θ, θ), Σ0 = Σ(θ0, θ0), V (θ) =

Σ(θ, θ0)Σ(θ0, θ0)−1. Recall the de�nition of the QLR statistic:

R(ξ, h(·),Σ(·, ·)) = ξ′Σ−1
0 ξ − inf

θ
(h(θ) + V (θ)ξ)′Σ−1

θ (h(θ) + V (θ)ξ) . (7)

We now restrict our attention to those values of ξ and Σ for which ξ′Σ−1
0 ξ ≤ C for a �xed

constant C > 0.
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If the optimum in equation (7) is attained5 at point θ∗, then

1

λ̄
‖h (θ∗) + V (θ∗)ξ‖2 ≤ (h(θ∗) + V (θ∗)ξ)′Σ−1

θ∗ (h(θ∗) + V (θ∗)ξ) ≤ ξ′Σ−1
0 ξ ≤ C.

Consider some ξ,Σ and two functions h1 and h2 that satisfy our assumptions. For function

hi let the optimum in equation (7) be achieved at θi. Then

|R(ξ, h1,Σ)−R(ξ, h2,Σ)|

≤ max
θ∈{θ1,θ2}

∣∣(h1(θ) + V (θ)ξ)′Σ−1
θ (h1(θ) + V (θ)ξ)− (h2(θ) + V (θ)ξ)′Σ−1

θ (h2(θ) + V (θ)ξ)
∣∣

= max
θ∈{θ1,θ2}

2

∣∣∣∣(h1(θ) + h2(θ)

2
+ V (θ)ξ

)′
Σ−1
θ (h2(θ)− h1(θ))

∣∣∣∣
≤ max

θ∈{θ1,θ2}
2

∥∥∥∥h1(θ) + h2(θ)

2
+ V (θ)ξ

∥∥∥∥ λ̄d(h1, h2).

Here we used that ‖Σ−1
θ ‖ ≤ λ̄.

For θ = θ1 we have∥∥∥∥h1(θ) + h2(θ)

2
+ V (θ)ξ

∥∥∥∥ ≤ ‖h1(θ) + V (θ)ξ‖+

∥∥∥∥h1(θ)− h2(θ)

2

∥∥∥∥ ≤√λ̄C + d(h1, h2).

A similar statement holds for θ = θ2. Thus

|R(ξ, h1,Σ)−R(ξ, h2,Σ)| ≤ 2λ̄d(h1, h2)
(√

λ̄C + d(h1, h2)
)
. (8)

Equation (8) implies that R(ξ, h,Σ) is Lipschitz in h. Indeed, for all h1 and h2 such

that d(h1, h2) < λ̄1/2 we have

|R(ξ, h1,Σ)−R(ξ, h2,Σ)| ≤ 2λ̄3/2(
√
C + 1)d(h1, h2).

For all ξ such that ξ′Σ−1
0 ξ ≤ C we have 0 ≤ R(ξ, h1,Σ) ≤ C, thus

|R(ξ, h1,Σ)−R(ξ, h2,Σ)| ≤ 2C ≤ 2Cλ̄−1/2d(h1, h2)

5In cases where the optimum cannot be attained we consider θ∗ such that the function at this point
is within δ > 0 of the in�mum. We can choose δ based on the bound we wish to obtain. In such cases
all inequalities must be corrected by an additional δ term.
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for all d(h1, h2) ≥ λ̄1/2. Thus, R(ξ, h,Σ) is Lipschitz for all h.

We can similarly show that R is Lipschitz in ξ for ξ′Σ−1
0 ξ < C. Fix h,Σ and consider

ξ1 and ξ2. Again let the corresponding optima be achieved at θi. Then

|R(ξ1, h,Σ)−R(ξ2, h,Σ)|

≤
∣∣(ξ1 + ξ2)′Σ−1

0 (ξ1 − ξ2)
∣∣+ max

θ∈{θ1,θ2}
2

∣∣∣∣(h(θ) + V (θ)
ξ1 + ξ2

2

)′
Σ−1
θ V (θ)(ξ1 − ξ2)

∣∣∣∣
≤ 2
√
λ̄C‖ξ1 − ξ2‖+ max

θ∈{θ1,θ2}
2

∥∥∥∥h(θ) + V (θ)
ξ1 + ξ2

2

∥∥∥∥ λ̄‖ξ1 − ξ2‖

≤ 2
√
λ̄C‖ξ1 − ξ2‖+ 2λ̄(

√
λ̄C + λ̄3/2

√
C)‖ξ1 − ξ2‖,

where between the second and third lines we used the fact that

‖Σ−1
θ Vθ‖ = ‖Σ−1

θ Σ(θ, θ0)Σ−1
0 ‖ ≤ ‖Σ

−1/2
θ Σ

−1/2
0 ‖ ≤ λ̄.

Finally, let us prove that R is Lipschitz with respect to Σ. Fix ξ, h and consider two

covariance functions Σ1 and Σ2. Again let the corresponding optima be achieved at θ1

and θ2. Then

|R(ξ, h,Σ1)−R(ξ, h,Σ2)| ≤
∣∣ξ′Σ−1

1,0(Σ1,0 − Σ2,0)Σ−1
2,0ξ
∣∣

+ max
θ∈{θ1,θ2}

∣∣(h(θ) + V1(θ)ξ)′Σ−1
1,θ (h(θ) + V1(θ)ξ)− (h(θ) + V2(θ)ξ) Σ−1

2,θ (h(θ) + V2(θ)ξ)
∣∣ .

The �rst term on the right-hand side is bounded by λ̄3Cd(Σ1,Σ2). Consider now the

second term on the right-hand side for θ = θ1. It is no greater than

∣∣(h(θ) + V1(θ)ξ)′Σ−1
1,θ(Σ1,θ − Σ2,θ)Σ

−1
2,θ (h(θ) + V1(θ)ξ)

∣∣
+2

∣∣∣∣(h(θ) +
V1(θ) + V2(θ)

2
ξ

)′
Σ−1

2,θ(V1(θ)− V2(θ))ξ

∣∣∣∣
≤ λ̄3C‖Σ1,θ − Σ2,θ‖+ 2λ̄ ‖h(θ) + V1(θ)ξ‖ ‖V1(θ)− V2(θ)‖‖ξ‖

+2
∣∣ξ′(V1(θ)− V2(θ))′Σ−1

2,θ(V1(θ)− V2(θ))ξ
∣∣

≤ λ̄3C‖Σ1,θ − Σ2,θ‖+ 2λ̄2C‖V1(θ)− V2(θ)‖+ 2λ̄2C‖V1(θ)− V2(θ)‖2.
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A similar argument applies for θ = θ2. Now note that

‖V1(θ)− V2(θ)‖ =
∥∥Σ1(θ, θ0)Σ−1

1,0 − Σ2(θ, θ0)Σ−1
2,0

∥∥
≤ ‖Σ1(θ, θ0)− Σ2(θ, θ0)‖‖Σ−1

1,0‖+ ‖Σ2(θ, θ0)‖‖Σ1,0 − Σ2,0‖

≤ 2λ̄d(Σ1,Σ2)

and ‖Σ1,θ − Σ2,θ‖ ≤ d(Σ1,Σ2). By arguments like those used to establish the Lipschitz

property in h above, this implies that R is Lipschitz in Σ. �

Proof of Theorem 3 of the paper. We �rst verify Assumption 1.

gT (θ)−mT (θ) = g
(L)
T (β̂(θ), θ)−m(L)

T (β(θ), θ)

= G
(L)
T (β(θ), θ) +

(
m

(L)
T (β̂(θ), θ)−m(L)

T (β(θ), θ)
)

+
(
G

(L)
T (β̂(θ), θ)−G(L)

T (β(θ), θ)
)

= G
(L)
T (β(θ), θ) +MT (θ)

√
T (β̂(θ)− β(θ)) +

(
G

(L)
T (β̂(θ), θ)−G(L)

T (β(θ), θ)
)

+ rT (θ),

where G
(L)
T (β, θ) = g

(L)
T (β, θ)−m(L)

T (β, θ) and

rT (θ) = m
(L)
T (β̂(θ), θ)−m(L)

T (β(θ), θ)−MT (θ)
√
T (β̂(θ)− β(θ)).

Take an arbitrarily small ε > 0. By Assumption 6 there exist constants C > 0 and δ > 0

such that for all large T the event

A =

{
√
T sup

θ
‖β̂(θ)− β(θ)‖ < C and sup

θ
sup

|β−β(θ)|≤δ
‖G(L)

T (β, θ)−G(L)
T (β(θ), θ)‖ < ε

}

occurs with high probability, P {A} > 1− ε. For all realizations of the event A for large

enough T we therefore have that

sup
θ

∥∥∥G(L)
T (β̂(θ), θ)−G(L)

T (β(θ), θ)
∥∥∥ < ε.

At the same time for all realizations in A, Assumption 9 implies that for large enough T

(such that δT > C) we have that supθ ‖rT (θ)‖ < ε.

Now let us take any functional f ∈ BL1, which is de�ned on a set of k-dimensional
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functions of θ. For realizations that belong to the event A we have

∥∥∥f (gT (θ)−mT (θ))− f
(
G

(L)
T (β(θ), θ) +MT (θ)

√
T (β̂(θ)− β(θ))

)∥∥∥
≤ sup

θ
‖rT (θ)‖+ sup

θ

∥∥∥G(L)
T (β̂(θ), θ)−G(L)

T (β(θ), θ)
∥∥∥ < 2ε. (9)

But for any realization that does not belong to the event A, the left-hand side of equation

(9) is bounded by 2. Thus

∥∥∥Ef (gT (θ)−mT (θ))− Ef
(
G

(L)
T (β(θ), θ) +MT (θ)

√
T (β̂(θ)− β(θ))

)∥∥∥
< 2εP (A) + 2P ( not A) < 4ε.

Finally we notice that according to Assumption 6, processG
(L)
T (β(θ), θ)+MT (θ)

√
T (β̂(θ)−

β(θ)) uniformly converges to a mean zero Gaussian process with the covariance function

speci�ed in Theorem 3 of the paper so long as MT (θ) is uniformly bounded, which is

assumed in Assumption 9. Thus Assumption 1 follows.

Next we check that Assumption 2 holds for the covariance function stated in Theorem

3 of the paper.

λmin(Σ(θ, θ)) = inf
x∈Rk

x′(Ik,MT (θ))ΣL(β(θ), θ, β(θ), θ)(Ik,MT (θ))′x

x′x

≥ inf
x∈Rk

x′(Ik,MT (θ))ΣL(β(θ), θ, β(θ), θ)(Ik,MT (θ))′x

‖(Ik,MT (θ))′x‖2
inf
x∈Rk

‖(Ik,MT (θ))′x‖2

x′x

≥ inf
y∈Rk+p

y′ΣL(β(θ), θ, β(θ), θ)y

y′y
inf
x∈Rk

x′(Ik +MT (θ)MT (θ)′)x

x′x
≥ 1/λ̄

Similarly

λmax(Σ(θ, θ)) = sup
x∈Rk

x′(Ik,MT (θ))ΣL(β(θ), θ, β(θ), θ)(Ik,MT (θ))′x

x′x

≤ sup
x∈Rk

x′(Ik,MT (θ))ΣL(β(θ), θ, β(θ), θ)(Ik,MT (θ))′x

‖(Ik,MT (θ))′x‖2
sup
x∈Rk

‖(Ik,MT (θ))′x‖2

x′x

≤ sup
y∈Rk+p

y′ΣL(β(θ), θ, β(θ), θ)y

y′y
sup
x∈Rk

x′(Ik +MT (θ)MT (θ)′)x

x′x

≤ λ̄(1 + sup
θ
‖MT (θ)‖2)

where we use the Frobenius norm for the potentially non-square matrix MT .

Finally, we check that the estimator of the covariance function provided in Theorem
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3 is uniformly consistent.

sup
θ,θ1

‖Σ̂(θ, θ1)− Σ(θ, θ1)‖

≤ sup
θ,θ1

∥∥∥(Ik,MT (θ))
(

Σ̂L(β(θ), θ, β(θ1), θ1)− ΣL(β(θ), θ, β(θ1), θ1)
)

(Ik,MT (θ1))′
∥∥∥

+ sup
θ,θ1

∥∥∥(0, M̂T (θ)−MT (θ))Σ̂L(β̂(θ), θ, β̂(θ1), θ1)(Ik,MT (θ1))′
∥∥∥

+ sup
θ,θ1

∥∥∥(Ik, M̂T (θ))Σ̂L(β̂(θ), θ, β̂(θ1), θ1)(0, M̂T (θ1)−MT (θ1))′
∥∥∥

≤ (1 + sup
θ
‖MT (θ)‖)2 sup

θ,θ1

‖Σ̂L(β(θ), θ, β(θ1), θ1)− ΣL(β(θ), θ, β(θ1), θ1)‖

+2 sup
β,θ
‖Σ̂L(β, θ, β, θ)‖(1 + sup

θ
‖MT (θ)‖+ sup

θ
‖M̂T (θ)−MT (θ)‖) sup

θ
‖M̂T (θ)−MT (θ)‖

Assumption 9 implies that the last term uniformly converges to zero. We also notice that

for supθ

∥∥∥√T (β̂(θ)− β(θ))
∥∥∥ ≤ δT we have

sup
θ,θ1

‖Σ̂L(β̂(θ), θ, β̂(θ1), θ1)− ΣL(β(θ), θ, β(θ1), θ1)‖

≤ sup
β,θ,β1,θ1

‖Σ̂L(β, θ, β1, θ1)− ΣL(β, θ, β1, θ1)‖

+ sup
θ,θ1

sup
‖β−β(θ)‖≤ δT√

T

sup
‖β1−β(θ1)‖≤ δT√

T

‖ΣL(β, θ, β1, θ1)− ΣL(β(θ), θ, β(θ1), θ1)‖. (10)

Since δT → ∞ while δT√
T
→ 0, Assumption 6 implies that supθ

∥∥∥√T (β̂(θ)− β(θ))
∥∥∥ ≤ δT

holds with probability approaching one, while Assumption 7 implies that the last term in

equation (10) converges uniformly to zero. Finally, the �rst term on the right hand side

of equation (10) converges uniformly to zero due to Assumption 8. Putting everything

together we conclude that the estimator Σ̂ satis�es Assumption 3. �

S7 Quantile IV regression

S7.1 Mean function for quantile IV

This section derives the mean function mT (·) for Example 3 in the paper. Suppose

we observe i.i.d. data consisting of an outcome variable Yt, an almost-surely positive

endogenous regressor Dt, and instruments Zt. For Ut a zero-median shock independent

of Zt, suppose Yt follows Yt = γDt + (Dt + 1)Ut. These variables obey the Quantile IV

34



model of Chernozhukov and Hansen (2005) for all quantiles, and satisfy

E [(I{Yt − θ0Dt ≤ 0} − 1/2)Zt] = 0

for θ0 = γ, so we can use this moment condition for inference. This moment restriction

holds for arbitrary joint distributions of (Dt, Zt, Ut) provided that Ut and Zt are indepen-

dent and Ut has median zero. However, di�erent distributions produce di�erent mean

functions.

Consider a weakly identi�ed example with Zt = 1√
T
F (Z∗t ) + (1 − 1√

T
)ηt and Dt =

exp{Z∗t − Ut}, where Z∗t , Ut, ηt are mutually independent and EF (Z∗t ) = Eηt = 0. We

use the 1√
T
scaling to ensure only a weak relationship between the instruments Zt and

the endogenous regressor Dt. Since we consider a simpli�ed model with no intercept, we

impose EZt = 0 to avoid drawing identifying power from a misspeci�ed intercept under

θ 6= θ0. Sections 5.1 and 6.1 of the paper consider the more general (and realistic) case,

which treats the intercept as a nuisance parameter.

Note that

m(θ0 + δ) =
√
TE [ZtI{−δDt + (Dt + 1)Ut ≤ 0}]

= E [F (Z∗t )I{−δDt + (Dt + 1)Ut ≤ 0}] +
√
T (1− 1√

T
)E [ηtI{−δDt + (Dt + 1)Ut ≤ 0}]

= E [F (Z∗t )I{−δDt + (Dt + 1)Ut ≤ 0}] = E

[
F (Z∗t )I

{
(Dt(Z

∗
t , Ut) + 1)Ut

Dt(Z∗t , Ut)
≤ δ

}]
.

Function f(x) = (1 + bex)x is monotonically increasing for each b > 0 and thus has an

inverse, so for any y there is a solution to equation (1+bex)x = y. Denoting this solution

by x(y, b),

I
{

(D(Z∗, U) + 1)U

D(Z∗, U)
≤ δ

}
= I{(1 + e−Z

∗
eU)U ≤ δ} = I{U ≤ x(δ, e−Z

∗
)}.

So we have

m(θ0 + δ) = E

[
F (Z∗)I

{
(D(Z∗, U) + 1)U

D(Z∗, U)
≤ δ

}]
= E

[
F (Z∗)E

(
I
{

(D(Z∗, U) + 1)U

D(Z∗, U)
≤ δ

}∣∣∣∣Z∗)] = E
[
F (Z∗)FU(x(δ, e−Z

∗
))
]
,

where FU(·) is the cdf of U . Depending on F and the marginal distributions of U and Z∗
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one can get a wide variety of mean functions in this setting, many of which are highly

non-linear.

S7.2 Asymptotics for quantile IV

Lemma S7.1 For the quantile IV model, Assumption 10 from the paper implies the

validity of Assumptions 6-9 and thus implies that Theorem 3 holds for the concentrated

moment function in this context.

Proof of Lemma S7.1. Here as in the paper we use the notation εt(β, θ) = Yt−D′tθ−

C ′tβ and εt(θ) = εt(β(θ), θ). Let us also introduce φτ (u) = τ − I{u < 0}.

According to Proposition 1 of Chernozhukov and Hansen (2008), Assumption 10 guar-

antees that

√
T (β̂(θ)− β(θ)) = −J(θ)−1 1√

T

T∑
t=1

φτ (εt(θ))Ct + op(1),

where the op(1) term is uniform in θ.

Consider the process g
(L)
T (β, θ)− Eg(L)

T (β, θ)
√
T (β̂(θ)− β(θ))

 =
1√
T

T∑
t=1

 φτ (εt(β, θ))Zt − E[φτ (εt(β, θ))Zt]

−J−1(θ)φτ (εt(θ))Ct

 .

Angrist, Chernozhukov and Fernandez-Val (2006) establish a functional central limit

theorem for this process. In particular, they argue that the function class {I{Y −D′θ −

C ′β}} is a VC subgraph class and thus is bounded Donsker. Consequently {I{Y −D′θ−

C ′β}(Z,C)} is Donsker with square-integrable envelope function 2(‖Z‖ + ‖C‖). This

implies equicontinuity of the above process which, together with the �nite-dimensional

Central Limit Theorem, establishes Assumption 6.

The �rst part of Assumption 7 bounds the eigenvalues of the matrix E[φτ (ε(θ))
2ZZ ′]− E[φτ (ε(θ))Z]E[φτ (ε(θ))Z]′ E[φτ (ε(θ))

2ZC ′]

E[φτ (ε(θ))
2CZ ′] E[φτ (ε(θ))

2CC ′]

 .

Since φτ (ε(θ)) is a binary variable taking values τ and −(1 − τ), the required bounds

trivially follow from Assumption 10 (i). The second part of Assumption 7, namely the
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continuity of ΣL in β along β(θ), comes from the fact that

E (|φτ (εt(β, θ))− φτ (εt(θ))| | C,Z)

≤ E (I{|εt(θ)| ≤ |C ′(β − β(θ))|}| | C,Z) ≤ const‖C‖‖β − β(θ)‖,

where we used Assumption 10 (ii).

The validity of Assumption 8 � the uniform consistency of the estimator Σ̂ � follows

from standard consistency arguments.

Finally, we examine Assumption 9. We have m
(L)
T (β, θ) = E [φτ (ε(β, θ))Z

′] . Consider

MT (θ) =
∂m

(L)
T (β, θ)

∂β
|β=β(θ)= E

[
fε(θ)(0)CZ ′

]
,

which is bounded due to Assumption 10 (i) and (ii). Assumption 10 also implies that

m
(L)
T (β, θ) has a uniformly bounded second derivative in β along β(θ). Thus, Taylor

expansion implies the validity of the �rst part of Assumption 9 (linearizability of m
(L)
T ).

Uniform consistency of the estimator M̂T (θ) follows by standard arguments for kernel

estimators. �

S7.3 Additional Quantile IV Simulation Results

This section reports additional simulation results for the quantile IV simulation designs

discussed in the paper. In particular, it gives simulated size for all tests considered and

power under additional parameter values. We �rst report results for k = 10 instruments

(as in the paper), and then report results for k = 5 instruments.

S7.3.1 Results for k = 10 Instruments

Simulated Size. Tables 7 and 8 report the simulated size of AR, K, JK, GMM-M,

and QLR tests for a variety of parameter values in the symmetric and asymmetric sim-

ulation designs respectively. Note that we do not report size for the pQLR test since

the simulations consider the infeasible pQLR test which tests θ0 against the true value

θ at each point. The pQLR statistic for testing θ0 against θ0 is identically zero. For

ease of reading, however, the power plots below and in the paper set the rejection prob-

ability of the pQLR test to 5% at the null θ0. Note, further, that there is an implicit

restriction on possible values of ρS and πS due to the fact that the covariance matrix
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ρS 0.25 0.5 0.9
πS 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1
AR 5.9% 5.8% 5.1% 5.0% 5.6% 5.5% 5.6% 5.7% 5.4% 6.4%
K 6.7% 6.0% 6.1% 7.0% 5.4% 5.9% 6.0% 6.3% 9.3% 7.2%
JK 6.5% 5.6% 5.8% 6.1% 5.3% 5.7% 5.7% 6.0% 9.0% 7.0%

GMM-M 5.7% 6.0% 5.5% 6.2% 5.5% 5.2% 5.6% 5.9% 5.9% 6.4%
QLR 5.0% 5.8% 5.8% 5.4% 5.0% 5.5% 6.0% 5.4% 5.4% 5.7%

Table 7: Simulated size of nominal 5% tests in symmetric quantile IV simulation design with ten instru-
ments and 1,000 observations. Based on 2,500 simulation replications and 1,000 draws of conditional
critical values.

ρA 0.25 0.5 0.9
πA 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1
AR 4.6% 4.7% 4.5% 5.0% 5.3% 3.9% 3.9% 3.8% 4.9% 4.7%
K 4.9% 6.5% 6.7% 6.6% 4.8% 5.7% 6.4% 6.7% 6.1% 5.3%
JK 4.5% 5.6% 6.5% 5.8% 4.4% 5.2% 5.4% 5.9% 5.2% 5.0%

GMM-M 4.6% 5.9% 6.5% 6.7% 4.9% 5.5% 5.1% 6.8% 4.6% 4.9%
QLR 5.5% 5.2% 5.5% 5.8% 6.6% 5.9% 5.2% 4.8% 4.4% 4.3%

Table 8: Simulated size of nominal 5% tests in asymmetric quantle IV simulation design with ten instru-
ments and 1,000 observations. Based on 2,500 simulation replications and 1,000 draws of conditional
critical values.

of (ξU,t, ξD,t, ξZ1,t, ..., ξZ10,t) must positive semi-de�nite, which precludes consideration of

πS = 0.15 and πS = 0.2 when ρS = 0.9. Likewise, when ρA = 0.9 we cannot consider

πA = 0.6 and πA = 0.8.

As these tables make clear, all tests considered have simulated size within 5% of their

nominal size over the designs considered. The largest deviations of simulated size from

nominal size arise for the K and JK tests in the symmetric design with ρS = 0.9. While

these deviations are still not large, one might wonder to what extent power comparisons

across tests would change if we took these distortions into account. To investigate this

question we calculated size-corrected power curves, and found them qualitatively very

similar to the raw results. These results are available upon request.

Power Simulations Figures 4-6 plot power curves for symmetric simulation designs

as described in the paper, while Figures 7-9 do the same for asymmetric simulation

designs. For completeness these plots repeat some of the results reported in the paper,

while in each case also reporting results for designs with instruments stronger than the

cases considered in the text. As expected given the local asymptotic e�ciency of the

K, GMM-M, and QLR tests in the well-identi�ed case, when we increase the strength of

the instruments the power curves for these tests tend to converge. From a theoretical
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ρS 0.25 0.5 0.9
πS 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1
AR 4.9% 5.1% 5.0% 4.8% 4.8% 5.2% 5.1% 5.0% 5.5% 5.2%
K 4.6% 4.1% 4.2% 4.4% 5.1% 4.2% 4.1% 4.2% 6.2% 4.9%
JK 5.0% 4.6% 4.5% 4.7% 5.1% 4.4% 4.2% 4.3% 6.7% 5.4%

GMM-M 4.7% 4.7% 4.7% 4.5% 4.9% 4.7% 4.4% 4.3% 5.6% 4.9%
QLR 4.4% 4.1% 4.0% 3.6% 4.3% 4.0% 4.0% 4.0% 4.6% 4.8%

Table 9: Simulated size of nominal 5% tests in symmetric quantile IV simulation design with �ve instru-
ments and 1,000 observations. Based on 2,500 simulation replications and 1,000 draws of conditional
critical values.

perspective, note that the AR and JK tests are locally asymptotically ine�cient in the

well-identi�ed case (though the degree of ine�ciency for the JK test is small), while the

pQLR test is locally asymptotically equivalent to a one-sided test in this case. Thus the

pQLR power envelope considered here does not converge to the power functions of the

other tests considered when we increase the strength of the instruments.

S7.3.2 Results for k = 5 Instruments

The results reported above and in the paper all focus on designs with k = 10 instruments.

To examine the e�ect of changing the number of instruments, here we report results where

we reduce the number of instruments to k = 5 while holding the other parameters con-

stant. This change has a di�erent e�ect in the symmetric and asymmetric simulation

designs. In the symmetric designs the instruments are independent and equally infor-

mative about the endogenous regressor, and reducing the number of instruments leads

to a decline in power for all tests considered. By contrast, in the asymmetric simulation

design reducing the number of polynomials considered increases the power of many tests,

suggesting that the sixth to tenth order polynomials included in the simulation design

with k = 10 were not particularly informative.

Simulated Size Tables 9 and 10 report the simulated size of all tests considered under

the symmetric and asymmetric simulation designs, respectively. We �nd that all tests

have simulated size reasonably close to nominal size. In particular, unlike in the design

with k = 10 the simulated size of the K and JK tests never exceeds 7%.

Power Simulations Figures 10-12 report power curves for the symmetric simulation

designs with �ve instruments, while Figures 13-15 report results for the asymmetric
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ρA 0.25 0.5 0.9
πA 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2 0.05 0.1
AR 4.4% 4.4% 3.8% 4.0% 3.9% 3.9% 3.7% 4.1% 4.3% 3.8%
K 5.2% 4.9% 4.6% 4.4% 4.2% 4.8% 5.0% 5.5% 4.9% 5.5%
JK 4.7% 4.8% 4.6% 4.1% 4.2% 4.5% 5.2% 5.2% 4.5% 5.3%

GMM-M 3.7% 4.4% 4.2% 4.1% 4.1% 4.4% 5.0% 5.7% 4.7% 5.2%
QLR 4.1% 4.0% 3.6% 4.0% 4.4% 3.9% 3.8% 4.1% 4.0% 4.3%

Table 10: Simulated size of nominal 5% tests in asymmetric quantle IV simulation design with �ve in-
struments and 1,000 observations. Based on 2,500 simulation replications and 1,000 draws of conditional
critical values.

simulation designs. Relative to designs with ten instruments, we see that the tests have

substantially less power in the symmetric designs, but similar or higher power in the

asymmetric simulation designs. As noted above, this stems from the fact that the number

of instruments plays a di�erent role in the symmetric and asymmetric designs, with each

instrument bringing equal and independent information in the symmetric design but

not in the asymmetric design. Qualitatively the results are quite similar to those in

the ten instrument case: the AR test is ine�cient in strongly identi�ed case, while it

performs reasonably well in weakly identi�ed cases. The K and JK su�er power declines

at distant alternatives in weakly identi�ed cases, as well as substantial power losses in the

asymmetric simulation design when the derivative of the moments is not a reliable guide

to behavior under the alternative. The GMM-M test in general shows stable performance,

though in most cases its power is exceeded by that of the conditional QLR test, which

seems to be a desirable option among those considered.

S8 Stock and Wright setting

In this section, we demonstrate that the results of Section 5 of the paper can also be

applied to the weak GMM models studied in Stock and Wright (2000) when the nuisance

parameter is strongly identi�ed and the parameter under test is weakly identi�ed. Assume

that we again begin with a moment function g
(SW )
T whose mean function can be written

as

Eg
(SW )
T (β, θ) = m

(SW )
T (β, θ) =

√
Tm1(β) +m2(β, θ),

for (β, θ) ∈ B ×Θ. We impose the following assumptions:

SW1 g
(SW )
T (β, θ)−m(SW )

T (β, θ)⇒ G(SW )(β, θ) uniformly over P0 where G(SW )(β, θ) is a

46



−
6

−
4

−
2

0
2

4
6

8
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ S
=

0.
25

, π
S
=

0.
05

θ

power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

−
2

−
1

0
1

2
3

4
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ S
=

0.
25

, π
S
=

0.
1

θ

power

 

 

A
R

K JK G
M

M
−

M
Q

LR

−
1

−
0.

5
0

0.
5

1
1.

5
2

2.
5

3
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ S
=

0.
25

, π
S
=

0.
15

θ

power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

−
0.

5
0

0.
5

1
1.

5
2

2.
5

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ S
=

0.
25

, π
S
=

0.
2

θ
power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

F
ig
u
re

1
0
:
S
im
u
la
te
d
p
ow

er
o
f
n
o
m
in
a
l
5
%

te
st
s
in

sy
m
m
et
ri
c
q
u
a
n
ti
le
IV

si
m
u
la
ti
o
n
d
es
ig
n
w
it
h
ρ
S
=

0.
2
5,

�
v
e
in
st
ru
m
en
ts

a
n
d
1
,0
0
0
o
b
se
rv
a
ti
o
n
s.

B
a
se
d
o
n

2
,5
0
0
si
m
u
la
ti
o
n
re
p
li
ca
ti
o
n
s
a
n
d
1
,0
0
0
d
ra
w
s
o
f
co
n
d
it
io
n
a
l
cr
it
ic
a
l
va
lu
es
.

47



−
6

−
4

−
2

0
2

4
6

8
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ S
=

0.
5,

 π
S
=

0.
05

θ

power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

−
2

−
1

0
1

2
3

4
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ S
=

0.
5,

 π
S
=

0.
1

θ

power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

−
1

−
0.

5
0

0.
5

1
1.

5
2

2.
5

3
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ S
=

0.
5,

 π
S
=

0.
15

θ

power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

−
0.

5
0

0.
5

1
1.

5
2

2.
5

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ S
=

0.
5,

 π
S
=

0.
2

θ
power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

F
ig
u
re

1
1
:
S
im
u
la
te
d
p
ow

er
o
f
n
o
m
in
a
l
5
%

te
st
s
in

sy
m
m
et
ri
c
q
u
a
n
ti
le
IV

si
m
u
la
ti
o
n
d
es
ig
n
w
it
h
ρ
S
=

0.
5,

�
v
e
in
st
ru
m
en
ts

a
n
d
1
,0
0
0
o
b
se
rv
a
ti
o
n
s.

B
a
se
d
o
n

2
,5
0
0
si
m
u
la
ti
o
n
re
p
li
ca
ti
o
n
s
a
n
d
1
,0
0
0
d
ra
w
s
o
f
co
n
d
it
io
n
a
l
cr
it
ic
a
l
va
lu
es
.

48



−
6

−
4

−
2

0
2

4
6

8
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ S
=

0.
9,

 π
S
=

0.
05

θ

power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

−
2

−
1

0
1

2
3

4
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ S
=

0.
9,

 π
S
=

0.
1

θ

power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

F
ig
u
re

1
2
:
S
im
u
la
te
d
p
ow

er
o
f
n
o
m
in
a
l
5
%

te
st
s
in

sy
m
m
et
ri
c
q
u
a
n
ti
le
IV

si
m
u
la
ti
o
n
d
es
ig
n
w
it
h
ρ
S
=

0.
9,

�
v
e
in
st
ru
m
en
ts

a
n
d
1
,0
0
0
o
b
se
rv
a
ti
o
n
s.

B
a
se
d
o
n

2
,5
0
0
si
m
u
la
ti
o
n
re
p
li
ca
ti
o
n
s
a
n
d
1
,0
0
0
d
ra
w
s
o
f
co
n
d
it
io
n
a
l
cr
it
ic
a
l
va
lu
es
.

49



−
6

−
4

−
2

0
2

4
6

8
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ A
=

0.
25

, π
A
=

0.
2

θ

power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

−
2

−
1

0
1

2
3

4
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ A
=

0.
25

, π
A
=

0.
4

θ

power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

−
1

−
0.

5
0

0.
5

1
1.

5
2

2.
5

3
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ A
=

0.
25

, π
A
=

0.
6

θ

power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

−
0.

5
0

0.
5

1
1.

5
2

2.
5

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ A
=

0.
25

, π
A
=

0.
8

θ
power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

F
ig
u
re

1
3
:
S
im
u
la
te
d
p
ow

er
o
f
n
o
m
in
a
l
5
%

te
st
s
in

a
sy
m
m
et
ri
c
q
u
a
n
ti
le
IV

si
m
u
la
ti
o
n
d
es
ig
n
w
it
h
ρ
A
=

0
.2
5
,
�
v
e
in
st
ru
m
en
ts

a
n
d
1
,0
0
0
o
b
se
rv
a
ti
o
n
s.

B
a
se
d
o
n

2
,5
0
0
si
m
u
la
ti
o
n
re
p
li
ca
ti
o
n
s
a
n
d
1
,0
0
0
d
ra
w
s
o
f
co
n
d
it
io
n
a
l
cr
it
ic
a
l
va
lu
es
.

50



−
6

−
4

−
2

0
2

4
6

8
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ A
=

0.
5,

 π
A
=

0.
2

θ

power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

−
2

−
1

0
1

2
3

4
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ A
=

0.
5,

 π
A
=

0.
4

θ

power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

−
1

−
0.

5
0

0.
5

1
1.

5
2

2.
5

3
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ A
=

0.
5,

 π
A
=

0.
6

θ

power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

−
0.

5
0

0.
5

1
1.

5
2

2.
5

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ A
=

0.
5,

 π
A
=

0.
8

θ
power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

F
ig
u
re

1
4
:
S
im
u
la
te
d
p
ow

er
o
f
n
o
m
in
a
l
5
%

te
st
s
in

a
sy
m
m
et
ri
c
q
u
a
n
ti
le
IV

si
m
u
la
ti
o
n
d
es
ig
n
w
it
h
ρ
A
=

0.
5,

�
v
e
in
st
ru
m
en
ts

a
n
d
1
,0
0
0
o
b
se
rv
a
ti
o
n
s.

B
a
se
d
o
n

2
,5
0
0
si
m
u
la
ti
o
n
re
p
li
ca
ti
o
n
s
a
n
d
1
,0
0
0
d
ra
w
s
o
f
co
n
d
it
io
n
a
l
cr
it
ic
a
l
va
lu
es
.

51



−
6

−
4

−
2

0
2

4
6

8
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ A
=

0.
9,

 π
A
=

0.
2

θ

power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

−
2

−
1

0
1

2
3

4
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

ρ A
=

0.
9,

 π
A
=

0.
4

θ

power

 

 

A
R

K JK G
M

M
−

M
Q

LR
pQ

LR

F
ig
u
re

1
5
:
S
im
u
la
te
d
p
ow

er
o
f
n
o
m
in
a
l
5
%

te
st
s
in

a
sy
m
m
et
ri
c
q
u
a
n
ti
le
IV

si
m
u
la
ti
o
n
d
es
ig
n
w
it
h
ρ
A
=

0.
9,

�
v
e
in
st
ru
m
en
ts

a
n
d
1
,0
0
0
o
b
se
rv
a
ti
o
n
s.

B
a
se
d
o
n

2
,5
0
0
si
m
u
la
ti
o
n
re
p
li
ca
ti
o
n
s
a
n
d
1
,0
0
0
d
ra
w
s
o
f
co
n
d
it
io
n
a
l
cr
it
ic
a
l
va
lu
es
.

52



Gaussian process with mean zero and covariance function Σ(SW )(β, θ, β1, θ1). Fur-

ther, G(SW )(β, θ) is uniformly equicontinuous and uniformly bounded over P0.

SW2 Assumption 2 holds for Σ(SW )(ψ, ψ1), ψ = (θ, β). Further, Σ(SW )(ψ, ψ1) is uniformly

continuous in ψ, ψ1 uniformly over P0.

SW3 We have an estimator Σ̂(SW ) for Σ(SW ) which satis�es Assumption 3.

SW4 m1(β0) = 0 for an interior point β0 ∈ B, and for all δ > 0 there exists ε > 0 such

that ‖m1(β)‖ < ε implies ‖β − β0‖ < δ for all P ∈ P0.

SW5 m1(·) is continuously di�erentiable, and

λmin

((
∂m1(β)

∂β

∣∣∣∣
β=β0

)′(
∂m1(β)

∂β

∣∣∣∣
β=β0

))
> 1/c̄

for some positive constant c̄ and all P ∈ P0. Likewise, the maximal eigenvalue

of the above matrix is uniformly bounded above by c̄. m2(β, θ) is continuously

di�erentiable, and m2(θ0, β0) = 0. Further, both m2(β, θ) and ∂m2(θ0,β)
∂β

∣∣∣
β=β0

are

uniformly bounded over β, θ, and P0.

SW6 1√
T

(
∂
∂β
g

(SW )
T (β, θ)− ∂

∂β
m

(SW )
T (β, θ)

)
→p 0 uniformly in (β, θ) and uniformly over

P0.

We consider a sequence of (possibly parameter- and data-dependent) weighting ma-

trices WT (β, θ) which we will assume converge uniformly in probability to some positive-

de�nite limit W (β, θ) which may depend on P but is uniformly bounded and positive-

de�nite over P0. For example, we might take WT (β, θ) = Σ̂(SW )(β, θ, β, θ)−1. We will

also assume that ∂
∂β
WT (β, θ) is uniformly Op(1). Given these weighting matrices, de�ne

βT (θ) to be the pseudo-true value of β given θ in the sample of size T :

βT (θ) = arg min
β
m

(SW )
T (β, θ)′W (β, θ)m

(SW )
T (β, θ).

It is important to note that if θ 6= θ0 in general we have a misspeci�ed moment condition

model for β, in the sense that there does not exist a value of β such that the initial moment

conditions are satis�ed. The fact that the model is misspeci�ed leads to a pseudo-true

value βT (θ) which depends on the choice of weighting matrix WT and on the sample size.
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However, the mis-speci�cation in this setting is mild (uniformly of order 1√
T
), with the

result that βT (θ) converges to β0 at rate
1√
T
uniformly in θ uniformly over P0.

We estimate the structural nuisance parameter by

β̂(θ) = arg min
β
g

(SW )
T (β, θ)′WT (β, θ)g

(SW )
T (β, θ).

The assumptions above guarantee that
√
T (β̂(θ)−βT (θ)) converges to a Gaussian process.

Once we plug in the estimator of the nuisance parameter, the e�ective dimension of

the process g
(SW )
T (β̂(θ), θ) is reduced by the dimension of β, which is p. To avoid degener-

acy we consider the linearly transformed moment condition g
(L)
T (β, θ) = (R̂⊥)′g

(SW )
T (β, θ),

where R̂⊥ is a full-rank k×(k−p) dimensional matrix orthogonal to R̂ = 1√
T

∂g
(SW )
T (β,θ0)

∂β

∣∣∣∣
β=β̂(θ0)

.

We argue that the transformed g
(L)
T together with the nuisance parameter estimator sat-

isfy Assumptions 6-9 of the paper. The argument is straightforward, so for brevity we

merely sketch it here.

Standard arguments show that uniformly over θ, for R = ∂m1(β)
∂β

∣∣∣
β=β0

,

√
T (β̂(θ)− βT (θ))

= (R′W (β, θ0)R)
−1
R′W (β, θ0)

(
g

(SW )
T (β(θ), θ)−m(SW )

T (β(θ), θ)
)

+ op(1).

Assumption SW6, together with the consistency of β̂(θ0), implies the uniform consistency

of R̂. Together with Assumption SW5, this implies that we can take R̂⊥ to be uniformly

consistent for a full-rank k×(k−p) matrix R⊥ orthogonal to R. The continuous mapping

theorem and Assumption SW1 then imply that if we replace the R̂⊥ in the de�nition of

g
(L)
T with R⊥, the error from this substitution is uniformly negligible.

This substitution results in the moment function

(
R⊥
)′
g

(SW )
T (θ, β̂(θ)) =

(
R⊥
)′ (

g
(SW )
T (β, θ(θ)) +R

√
T (β̂(θ)− β(θ))

)
+ op(1).

Since R′ R⊥ = 0 we obtain that

g
(L)
T (θ) =

(
R⊥
)′
g

(SW )
T (β(θ), θ) + op(1)
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and thus that Assumption 6 holds. Assumption 7 follows from SW2, while Assumption

8 follows from SW3. Finally, taking MT (θ) =
(
R⊥
)′ 1√

T

∂m
(SW )
T (β,θ)

∂β

∣∣∣∣
β=β(θ)

, Assumption 9

can be shown to follow from SW5 and SW6.
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