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Abstract

This Supplementary Appendix contains supplementary material and proofs for the paper �A

Geometric Approach to Nonlinear Econometric Models,� by Isaiah Andrews and Anna Miku-

sheva. Section S1 introduces geometric concepts used in the proofs. Sections S2 and S3 prove

Theorems 1 and 2 of the paper, respectively. Section S4 proves Lemma 2 from the paper and

gives a related uniform asymptotic result. Section S5 proves Lemma 3 and shows that tests

which both minimize critical values over subsets of parameters and restrict attention to curva-

ture on a �nite ball continue to control size. Section S6 proves Lemma 1 from the paper. Section

S7 shows that models which are weakly identi�ed in the sense of Stock and Wright (2000) imply

nonlinear null hypothesis manifolds. Section S8 shows how non-linearity arises from weak iden-

ti�cation in an analytic DSGE example. Numerical examples applying our approach to DSGE

and New Keynesian Phillips Curve models may be found in the working paper version, available

on Anna Mikusheva's website.3

First draft: May 29, 2012 This draft: November, 2015.

S1 Geometric Concepts

In this paper we focus on regular manifolds embedded in k-dimensional Euclidean space. A

subset S ⊂ Rk is called a p-dimensional regular manifold if for each point q ∈ S there exists

a neighborhood V in Rk and a twice-continuously-di�erentiable map x : Ũ → V
∩
S from an

open set Ũ ⊂ Rp onto V
∩
S ⊂ Rk such that (i) x is a homeomorphism, which is to say it has

a continuous inverse and (ii) the Jacobian dxq has full rank. A mapping x which satis�es these

conditions is called a parametrization or a system of local coordinates, while the set V
∩
S is

called a coordinate neighborhood.

Note that the manifold S is de�ned as a set, rather than as a map. In keeping with this spirit,

many of the statements below will be invariant to parametrization. We begin by developing some

geometrical concepts for the special case of a regular 1-dimensional manifold, also known as a
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curve. In particular, let S be a curve given by γ : (t0, t1) → Rk where γ is twice continuously

di�erentiable and (t0, t1) is an interval in R. Let γ̇(t) and γ̈(t) denote the �rst and second

derivatives of γ with respect to t. Let (γ̈(t))⊥ be the part of γ̈(t) orthogonal to γ̇(t), then

the curvature at q = γ(t) is de�ned as κq(S) =
∥(γ̈(t))⊥∥
∥γ̇(t)∥2 . One can show that this de�nition

of curvature is invariant to parametrization. The curvature measures how quickly the curve S

deviates from its tangent line local to q, and the scaling is such that a circle of radius C has

curvature 1/C at all points.

These concepts can all be extended to general regular manifolds. Fixing a p-dimensional

manifold S, for any curve γ : (−ε, ε) → S on S which passes through the point q = γ(0) ∈ S, the

vector γ̇(0) is called a tangent vector to S at q. For x a system of local coordinates at q, the set

of all tangent vectors to S at q coincides with the linear space spanned by the Jacobian dxq and

is called the tangent space to S at q (denoted Tq(S)). While we have de�ned the tangent space

using the local coordinates x, as one would expect Tq(S) is independent of the parametrization.

To calculate the curvature at q, consider a curve γ : (−ε, ε) → S which lies in S and passes

through q = γ(0). Taking T⊥
q to be the k − p-dimensional linear space orthogonal to Tq(S),

de�ne

κq(γ, S) =

∥∥(γ̈(0))⊥∥∥
∥γ̇(0)∥2

,

where (W )⊥ stands for the projection of W onto the space T⊥
q . One can show that κq(γ, S)

depends on the curve γ only through γ̇(0), so for two curves γ and γ∗ in S with γ(0) = γ∗(0) = q

and γ̇(0) = γ̇∗(0) we have κq(γ, S) = κq(γ
∗, S). We can also show that for any X ∈ Tq(S) one

can �nd a curve γ in S with property that γ(0) = q and γ̇(0) = X. The measure of curvature

we consider is

κq(S) = sup
X∈Tq(S),γ̇(0)=X

κq(γ, S) = sup
X∈Tq(S),γ̇(0)=X

∥∥(γ̈(0))⊥∥∥
∥γ̇(0)∥2

.

This measure of curvature is closely related to the Second Fundamental Tensor (we refer the

interested reader to Kobayashi and Nomizu (1969, v.2, ch. 7)), and is equal to the maximal cur-

vature over all geodesics passing through the point q. As with the curvature measure discussed

for curves, κq(S) is invariant to the parametrization. Also analogous to the 1-dimensional case,

if S is a p-dimensional sphere of radius C then for each q ∈ S we have κq(S) = 1/C. Finally, if

S is a linear subspace its curvature is zero at all points.

How to calculate curvature in practice. Let S be a p-dimensional manifold in Rk,

and let x be a local parametrization at a point q, q = x(y∗). Denote the derivatives of x at

q by vi =
∂x
∂yi

(y∗). By the de�nition of a local parametrization, we know that the Jacobian

Z = (v1, ..., vp) is full rank, so the tangent space Tq(S) = span{v1, ..., vp} is p-dimensional.
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As before, for any vector W ∈ Rk let W⊥ denote the part of W orthogonal to Tq(S), that

is, W⊥ = NZW = (I − Z(Z ′Z)−1Z ′)W . Finally, denote the p2 vectors of second derivatives

Vij =
∂2

∂yi∂yj
x(y∗). The curvature can then be written as

κq(S) = sup
u=(u1,..,up)∈Rp

∥
∑p

i=1 uivi∥=1

∥∥∥∥∥∥
p∑

i,j=1

uiujV
⊥
ij

∥∥∥∥∥∥ = sup
(w1,...,wp)∈Rp

∥∥∥∑p
i,j=1wiwjV

⊥
ij

∥∥∥
∥
∑p

i=1wivi∥
2 .

S2 Proof of Theorem 1 of the paper

The proof is based on the following lemma:

Lemma S1 Assume the curve γ(s) : [0, b] → DC ⊂ Rk is parameterized by arc length and

that its curvature κ(s) = ∥γ̈(s)∥ ≤ 1
C for all points s. Assume that γ(0) = 0 and γ̇(0) =

v ∈ span{e1, ..., ep}, where e1, ..., ep are �rst p basis vectors. Then the curve γ(s) is contained

in the set Mv ∩DC , where

Mv = {x : ⟨x, v⟩2 + (C − ∥x− ⟨x, v⟩v∥)2 ≥ C2}. (S1)

Proof of Lemma S2. Consider the curve de�ned by β(s) = γ̇(s), the �rst derivative of γ.

Since the curve γ is parameterized by arc length ∥β(s)∥ = ∥γ̇(s)∥ = 1 and the new curve β lies

on the unit sphere Sph = {x ∈ Rk : ∥x∥ = 1}, with β(0) = v. Let t ≤ π
2C and t ≤ b. Consider

the arc length of the restriction of the curve β to the interval [0, t]:

length(t) =

∫ t

0
∥β̇(s)∥ds =

∫ t

0
∥γ̈(s)∥ds =

∫ t

0
κ(s)ds ≤ t

C
.

This implies that the geodesic (a curve of a shortest length) on the sphere Sph connecting β(0)

and β(t) has length less than or equal to t
C or, equivalently, that the angle between vectors

β(0) = v and β(t) is less than or equal to t
C . Hence

⟨v, β(t)⟩ = ⟨v, γ̇(t)⟩ ≥ cos(
t

C
). (S2)

Since γ(s) is parameterized by arc length, from inequality (S2) we have:

∥γ̇(t)− ⟨v, γ̇(t)⟩v∥ ≤ | sin( t
C
)|. (S3)
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This, in turn, implies that

∥γ(t)− ⟨v, γ(t)⟩v∥ = ∥
∫ t

0
(γ̇(s)− ⟨v, γ̇(s)⟩v)ds∥ ≤

≤
∫ t

0
∥γ̇(s)− ⟨v, γ̇(s)⟩v∥ds ≤

∫ t

0
sin(

s

C
)ds = C − C cos(

t

C
)

Inequality (S2) also implies that

⟨v, γ(t)⟩ ≥
∫ t

0
cos(

s

C
)ds = C sin(

t

C
). (S4)

Combing these results yields

⟨v, γ(t)⟩2 + (C − ∥γ(t)− ⟨v, γ(t)⟩v∥)2 ≥ C2

for all t ≤ π
2C. Notice that (S4) implies that for τ = π

2C we have ⟨v, γ(τ)⟩ ≥ C and thus for

the �rst p coordinates of γ(τ), which we denote γ(1)(τ), we have ∥γ(1)(τ)∥ ≥ C so the curve is

leaving or has already left the cylinder DC and thus b ≤ π
2C. This concludes the proof of the

lemma. �

Proof of statement (a) of Theorem 1. First, let us show that

∪
v∈T0(S)
∥v∥=1

Mv = {∥x(1)∥2 + (C − ∥x(2)∥)2 ≥ C2} = M, (S5)

where Mv is de�ned in (S1), M is de�ned in equation (5) of the paper and T0(S) is the tangent

space to S at zero and is spanned by �rst p basis vectors. Indeed, the set on the left hand side

consists of points x for which there exists a vector v ∈ span{e1, ..., ep}, ∥v∥ = 1, such that

⟨x, v⟩2 + (C − ∥x− ⟨x, v⟩v∥)2 ≥ C2. (S6)

For each x let us �nd the maximum of the expression on left-hand side of inequality (S6) over

v ∈ T0(S), ∥v∥ = 1 :

⟨x, v⟩2 + (C − ∥x− ⟨x, v⟩v∥)2 =

= ⟨x, v⟩2 + C2 + ∥x∥2 − ⟨x, v⟩2 − 2C∥x− ⟨x, v⟩v∥ =

= C2 + ∥x∥2 − 2C∥x− ⟨x, v⟩v∥

where we used that ∥x−⟨x, v⟩v∥2 = ∥x∥2−⟨x, v⟩2. We see that maximizing the left-hand side of
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(S6) over v ∈ span{e1, ..., ep}, ∥v∥ = 1 is equivalent to minimizing ∥x− ⟨x, v⟩v∥. The minimum

is achieved at the projection of x onto T0(S) = span{e1, ..., ep}, that is, v = 1
∥x(1)∥(x

(1), 0, ..., 0),

where x(1) ∈ Rp consists of the �rst p components of x. As a result, the maximum of the

left-hand side of (S6) equals

C2 + ∥x∥2 − 2C∥x(2)∥ = ∥x(1)∥2 + (C − ∥x(2)∥)2.

This proves statement (S5).

Now assume that statement (a) of Theorem 1 is incorrect and there exists a point q ∈ SC

with q /∈ M. Take a geodesic (a curve of the shortest distance lying in SC) γ(s) connecting q

and 0 lying in SC , where such a curve exists since SC is a connected manifold. Parameterize this

curve by arc length. The curve γ(s) is a geodesic in S if and only if at any point q = γ(t) the

second derivative γ̈(t) is perpendicular to Tq(S) (see Spivak (1999) for discussion of geodesics,

v.3, p.3). As a result, the curvature of the geodesic γ at each point q = γ(t) is equal to κq(X,S)

(where X = γ̇(t)), and thus it is less than 1
C . Denote the tangent to this curve at 0 by v ∈ T0(S).

Applying Lemma S2 we obtain that the curve belongs toMv∩DC and thus belongs to M
∩
DC .

We have arrived at a contradiction. �

Proof of statement (c) of Theorem 1. Let

f(u) = ρ2(ξ,Nu) = min
x(1)∈Rp,z∈R+

∥x(1)∥2+(C−z)2=C2

∥ξ(1) − x(1)∥2 + ∥ξ(2) − zu∥2.

We need to �nd the maximizer of f(u) subject to the constraint ∥u∥ = 1. To di�erentiate f(u)

we use the �envelope theorem� that allows one to di�erentiate a function which is the optimum

of a constrained optimization problem and yields df(u)
du = −2(ξ(2) − zu). Hence, the �rst-order

condition for �nding ũ implies that u is proportional to ξ(2). The sign is a re�ection of the fact

that we search for a max rather than a min. �

Proof of statement (b) of Theorem 1. For a given point ξ ∈ Rk �nd the sphere

Nũ furthest from ξ, where ũ is described in Theorem 1 (c), and the point τ ∈ Nũ such that

ρ(ξ,Nũ) = ρ(ξ, τ). Consider the k−p dimensional linear space Rτ = {x ∈ Rk : x(1) = τ (1)} that

restricts the �rst p components of x to coincide with the �rst p components of τ . We prove two

statements: �rst, that all points in the intersection Rτ
∩

M
∩
DC are no further from ξ than τ ;

and second, that this intersection Rτ
∩
M
∩
DC contains at least one point from S. Together,

these two statements imply that ρ(ξ, S) ≤ ρ(ξ, τ).
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The intersection of the three sets Rτ
∩
M
∩
DC can be written as follows:

Rτ
∩

M
∩
DC = {x = (τ (1), x(2)) ∈ DC : ∥τ (1)∥2 + (C − ∥x(2)∥)2 ≥ C2} =

=

{
x = (τ (1), x(2)) : ∥x(2)∥ ≤ C −

√
C2 − ∥τ (1)∥2

}
.

Now let us show that for each x ∈ Rτ
∩

M
∩
DC we have ρ(ξ, x) ≤ ρ(ξ, τ). Indeed, one can

solve the constrained maximization problem

ρ(ξ, x)2 = ∥ξ(1) − τ (1)∥2 + ∥ξ(2) − x(2)∥2 → max s.t. x ∈ Rτ
∩

M
∩
DC .

From the �rst-order condition for this problem one can see that the maximum is achieved at

x(2) proportional to ξ(2). We recall that τ ∈ Nũ and by statement (c) τ (2) is proportional to

ξ(2). Further inspection reveals that the maximum is achieved at x = τ . Hence, all points lying

in the intersection Rτ
∩

M
∩
DC have distance to ξ less or equal than ρ(ξ,Nũ).

To complete the proof we need only show that Rτ
∩

M
∩
DC contains at least one point

from the manifold S. Recall that from the de�nition of τ ∈ Nũ it follows that ∥τ (1)∥ ≤ C. Then

Assumption 1 guarantees that the intersection of SC with Rτ is non-empty, while statement (a)

of Theorem 1 implies that SC ⊆ M
∩
DC . �

Proof of statement (d) of Theorem 1. Note that since ũ is proportional to ξ(2) by

statement (c), both ξ and Nũ belong to the same p + 1-dimensional linear sub-space Lũ =

{x : x = (x(1),−zũ), x(1) ∈ Rp, z ∈ R}. Let us restrict our attention to this subspace only.

Let (x(1), z) be the coordinate system in this sub-space, so ξ corresponds to ξ̃ = (ξ(1), ∥ξ(2)∥),

and Nũ corresponds to the sphere NC = {x = (x(1), z) ∈ Rp+1 : ∥x(1)∥2 + (C + z)2 = C2}.

The distance on Lũ implied by the distance in Rk is the usual Euclidean metric, which we

denote by ρ̃. So far, we proved that ρ(ξ,Nũ) = ρ̃(ξ̃, NC). By invariance of the distance to

orthonormal transformations of �rst p components we have ρ̃(ξ̃, NC) = ρ̃(ξ∗, NC), where ξ∗ =

(∥ξ(1)∥, 0, ..., 0, ∥ξ(2)∥) ∈ Rp+1. From this it is easy to see that

ρ(ξ,Nũ) = ρ2(η,N
C
2 ),

where η = (∥ξ(1)∥, ∥ξ(2)∥) ∈ R2, NC
2 = {(z1, z2) ∈ R2 : z21 +(C+z2)

2 = C2}, and ρ2 is Euclidian

distance in R2. It then follows that if ξ ∼ N(0, Ik) then components of η have independent
√
χ2
p

and
√
χ2
k−p distributions, respectively. �
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S3 Proof of Theorem 2 from the paper

The procedure described in Section 2.4 of the paper guarantees that �nite-sample size is con-

trolled when the reduced-form parameter estimates are normally distributed with a known

covariance matrix. In this section we prove Theorem 2 in the paper, which asserts that the pro-

cedure is asymptotically correct uniformly over a large set of models on which the reduced-form

parameter estimator is uniformly asymptotically Gaussian. For ease of reference we re-state

much of the discussion of Section 3.1 of the paper.

We de�ne a model to be a set consisting of the true value of the k-dimensional reduced-form

parameter θ0, the data generating process Fn consistent with θ0, and a link function connecting

the structural and reduced form parameters, or more generally a manifold S̃n describing the null

hypothesis H0 : θ0 ∈ S̃n. We assume that the null holds. We allow the data generating process

Fn and the structural model S̃n to change with the sample size n; this accommodates sequences

of link functions such as those which arise under drifting asymptotic embeddings, for example

the weak identi�cation embeddings of D. Andrews and Cheng (2012) and Stock and Wright

(2000). It also allows us to model the case when the researcher tries to �t a more complicated

or nonlinear model when she has a larger sample. Let us have an estimator, θ̂n, which will be

asymptotically normal with asymptotic covariance matrix Σ = Σ(Fn). Let Σ̂n be an estimator

for Σ. We consider the set of possible models M = {M : M = (θ0, {Fn}∞n=1, {S̃n}∞n=1)} and

impose the following assumption.

Assumption 2

(i)
√
nΣ−1/2(θ̂n − θ0) ⇒ N(0, Ik) uniformly over M;

(ii) Σ̂n − Σ →p 0 uniformly over M;

(iii) The maximal and minimal eigenvalues of Σ are bounded above and away from zero uni-

formly over M;

(iv) For each n and manifold Sn = {x =
√
nΣ−1/2(y − θ0), y ∈ S̃n}, the manifold Sn satis�es

Assumption 1 for C = Cn = 1/ supq∈Sn
κq(Sn).

Assumption 2(i) and (ii) require that the reduced-form parameter estimates are uniformly

asymptotically normal with a uniformly consistently estimable covariance matrix. This assump-

tion holds quite generally for many standard reduced-from estimators, such as OLS estimates

and sample covariances, over large classes of models. Care is needed when using parameter

estimates from ARMA models, however, as these models can su�er from near-root cancellation,

leading to non-standard large-sample behavior (see D. Andrews and Cheng (2012)). Assumption
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2(iii) uniformly bounds the eigenvalues of the asymptotic covariance matrix above and below,

and will generally follow from a uniform bound on the moments of the data generating process.

Finally, Assumption 2(iv) is the natural extension of Assumption 1 to allow for sequences of

di�erent manifolds. For implicitly de�ned manifolds, this will again follow from Lemma 1.

Description of the procedure. Let us introduce a manifold Ŝn = {
√
nΣ̂

−1/2
n (x−θ0) : x ∈ S̃n},

which di�ers from Sn in using an estimator Σ̂n in place of Σ. Let Ĉn = 1/(sup
q∈Ŝn

κq(Ŝn)). Our

main test uses the statistic nmin
θ∈S̃n

(θ̂n−θ)′Σ̂−1
n (θ̂n−θ) along with critical value F1−α(Ĉn, k, p),

where we denote by F1−α(C, k, p) the (1 − α)-quantile of the random variable ψC discussed in

Section 2.3.

Theorem 2 If Assumption 2 holds, then the testing procedure described above has uniform

asymptotic size α:

lim
n→∞

sup
M∈M

P

{
n min
θ∈S̃n

(θ̂n − θ)′Σ̂−1
n (θ̂n − θ) > F1−α(Ĉn, k, p)

}
≤ α.

This result establishes the uniform asymptotic validity of our test allowing for arbitrarily

nonlinear (or linear) behavior in the sequence of null hypothesis manifolds S̃n. In particular,

if curvature arises from weak identi�cation this result allows for arbitrarily weakly or strongly

identi�ed sequences. The key to this result is that our critical values re�ect the curvature

of the null hypothesis manifold measured relative to the uncertainty about the reduced form

parameters for each sample size.

Proof of Theorem 2. Assume that ξ ∼ N(0, Ik). Our main theorem states:

P
{
ρ2(ξ, S) > F1−α(C, k, p)

}
≤ α,

uniformly (over M) for all sets S = Sn if C = Cn is such that the assumptions of Theorem 1 of

the paper hold, that is the maximal curvature of Sn is less than 1/Cn and Assumption 1 is true.

For the rest of the proof we suppress the index n for notational simplicity in Sn, S̃n and Ŝn

and the corresponding C's. Let ξn =
√
nΣ̂

−1/2
n (θ̂n − θ0). We note that the statistic of interest

can be written as nmin
θ∈S̃(θ̂n − θ)′Σ̂−1

n (θ̂n − θ) = ρ2(ξn, Ŝ). Assumption 2 (i) - (iii) imply that

ξn ⇒ N(0, Ik) uniformly over M.

This weak convergence can be metrized by Prokhorov's metric. Let βn ≥ 0 be Prokhorov's

distance between the distributions of random variables ξ and ξn, where all terms are implicitly

indexed by model M . According to Dudley's (1968) result we can construct a probability space

and two random variables ξ̃n and ξ̃ with the same marginal distributions as ξn and ξ such that

P
{
∥ξ̃ − ξ̃n∥ > βn

}
≤ βn. From now on for simplicity of notation we will drop tildes and assume
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that ξn and ξ satisfy this condition. Thus we have:

P

{
ρ(ξn, Ŝ) > F

1
2
1−α(Ĉ, k, p)

}
≤

≤ P

{
ρ(ξ, Ŝ) > F

1
2
1−α(Ĉ, k, p)− βn

}
+ P {∥ξ − ξn∥ > βn} , (S7)

where we used that |ρ(ξn, Ŝ)− ρ(ξ, Ŝ)| ≤ ∥ξn − ξ∥. The second term on the right hand side in

(S7) does not exceed βn, and βn converges to zero uniformly over set of models M.

Let C = 1/(supq∈S κq(S)), and note that Assumption 1 from the paper holds for this value

of C and the manifold S. Fix some small ε > 0. We can notice that:

P

{
ρ(ξ, Ŝ) > F

1
2
1−α(Ĉ, k, p)− βn

}
≤ P{|ρ(ξ, Ŝ)− ρ(ξ, S)| > ε}+

+ P

{
ρ(ξ, S) > F

1
2
1−α(C, k, p)− 2ε− βn

}
+

+ P

{
|F

1
2
1−α(Ĉ, k, p)− F

1
2
1−α(C, k, p)| > ε

}
, (S8)

Below we show that the �rst and third terms on the right hand side of equation (S8) are

asymptotically negligible uniformly over M, while by choosing small ε we can bound the second

term from above by a number arbitrarily close to α.

For the �rst term, note that the manifold Ŝ = {Ax : x ∈ S} for matrix A = Σ̂
−1/2
n Σ1/2. Let

∥X∥ denote the matrix norm of a square matrix X (that is, the maximal eigenvalue in absolute

value). Below we show that

|ρ(ξ, Ŝ)− ρ(ξ, S)| ≤ 2∥ξ∥max{∥I −A∥, ∥I −A−1∥}. (S9)

Indeed, consider �rst the case when ρ(ξ, Ŝ) ≥ ρ(ξ, S), and assume that ρ(ξ, S) = ρ(ξ, x) for a

point x ∈ S. Then Ax ∈ Ŝ, and ρ(ξ, Ŝ) ≤ ρ(ξ, Ax). This implies that

0 ≤ ρ(ξ, Ŝ)− ρ(ξ, S) ≤ ρ(ξ, Ax)− ρ(ξ, x) ≤

≤ ρ(x,Ax) ≤ ∥I −A∥ · ∥x∥

Next, we notice that since 0 ∈ S, ∥x∥ ≤ ∥ξ∥+ ρ(ξ, x) ≤ 2∥ξ∥. The case when ρ(ξ, Ŝ) < ρ(ξ, S)

can be considered analogously. This establishes the validity of inequality (S9). Since ∥ξ∥2

is distributed as χ2
k, and according to Assumptions 2 (ii)-(iii) the two maximal eigenvalues in

equation (S9) converge to zero uniformly, we can see that the �rst term in (S8) is asymptotically

small uniformly over M.
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For the second term, our main theorem guarantees that

P

{
ρ(ξ, S) > F

1
2
1−α(C, k, p)− 2ε− βn

}
≤ P

{
ψ

1
2
C > F

1
2
1−α(C, k, p)− 2ε− βn

}
, (S10)

where ψC = ρ22(η,N
C
2 ), for η a random vector with two independent coordinates distributed as(√

χ2
p,
√
χ2
k−p

)
and NC

2 a circle of radius C with center at point (0,−C), while ρ2 is a Euclidean

distance in R2. First notice that function f(x,C) = ρ2(x,N
C
2 ) for x ∈ R2 is continuous in x

uniformly over all values of C, indeed, |ρ2(x,NC
2 )−ρ2(y,NC

2 )| ≤ ρ2(x, y). Since η is continuously

distributed with bounded pdf and the variable ψC has a pdf which is bounded above uniformly

over C, this means that by choosing small enough ε and βn we can make the right hand side in

equation (S10) arbitrarily close to α.

It is easy to see that the function ρ2(x,N
C
2 ) is uniformly continuous in C. Thus F1−α(C, k, p),

the (1 − α)-quantile of random variable ψC , is continuous in C uniformly over all values of C.

As C → ∞ the (1 − α)−quantile F1−α(C, k, p) converges to the (1 − α)-quantile of a χ2
k−p

distribution, which can be called F1−α(∞, k, p). For any small ε > 0 there exists a constant c

such that for any C > c we have |F
1
2
1−α(C, k, p)− F

1
2
1−α(∞, k, p)| < ε.

What we are left to show is that (i) Ĉ →p C uniformly over the subset of models M for

which C < c(1+ ε) and (ii) for any probability arbitrarily close to one there exists a sample size

such that for all models in M with C > c(1 + ε) we have Ĉ > c with at least this probability.

First we examine the asymptotic relationship between C and Ĉ. Let us consider a point

q ∈ S and curvature κq(S) =
∥∥∥∑p

i,j=1 uiujV
⊥
ij

∥∥∥, where (u1, ..., up) is the optimizer from formula

(4) in the paper with the condition ∥
∑p

i=1 uivi∥ = 1. By Theorem 6.4 in chapter III of Kobayashi

and Nomizu (1963), there exists a unique geodesic γ(t) ∈ S de�ned for t in an open neighborhood

of zero with initial conditions: γ(0) = q and γ̇(0) =
∑p

i=1 uivi ∈ Tq(S). In particular, the fact

that γ(t) is a geodesic curve on S means that γ̈(0) =
∑p

i,j=1 uiujVij is perpendicular to tangent

space Tq(S) spanned by Z = (v1, ..., vp). This implies that κq(S) = ∥γ̈(0)∥ = ∥NZ γ̈(0)∥ and

∥γ̇(0)∥ = 1.

Let us consider a curve γ̂(t) = Aγ(t) and notice that this curve lies on manifold Ŝ and passes

through the point q̂ = Aq ∈ Ŝ. Let Z be the set of vectors spanning the tangent space Tq(S),

then AZ spans Tq̂(Ŝ).

From formula (4) of the paper we can see that

κq̂(Ŝ) ≥

∥∥∥NAZ
d2γ̂(0)
dt2

∥∥∥∥∥∥dγ̂(0)dt

∥∥∥2 =
∥NAZAγ̈(0)∥
∥Aγ̇(0)∥2

,

as the left-hand-side expression is the maximum of the right-hand-side expression taken over all

10



possible curves in Ŝ passing through q̂.

Let us consider the following sequence of inequalities:

κq(S) = ∥γ̈(0)∥ = ∥NZ γ̈(0)∥ ≤ ∥(NAZA−NZ)γ̈(0)∥+ ∥NAZAγ̈(0)∥ ≤

≤ ∥NAZA−NZ∥∥γ̈(0)∥+ κq̂(Ŝ)∥Aγ̇(0)∥2. (S11)

We can notice that ∥Aγ̇(0)∥ ≤ ∥A∥ since ∥γ̇(0)∥ = 1. Finally, notice that

NAZA−NZ = A−AZ(Z ′A2Z)−1Z ′A2 − I + Z(Z ′Z)−1Z =

= (A− I) + (I −A)Z(Z ′Z)−1Z +AZ(Z ′Z)−1Z(I −A2)+

+AZ(Z ′Z)−1Z ′(A2 − I)Z(Z ′A2Z)−1Z ′A2

where we use A2 to denote A′A. Recall that A→p I uniformly over M, thus ∥NAZA−NZ∥ ≤

C∥I −A∥ with probability approaching one uniformly over M, where C is a constant that does

not depend on M . Putting this reasoning together with inequality (S11) we obtain that with

probability tending to one uniformly over M

κq(S) ≤ C∥I −A∥κq(S) + κq̂(Ŝ)∥A∥2, (S12)

or

κq(S)− κq̂(Ŝ) ≤ C∥I −A∥κq(S) + κq̂(Ŝ)(∥A∥2 − 1).

Symmetric reasoning reversing the roles of the �hatted� and �non-hatted� variables yields

κq̂(Ŝ) ≤ C∥I −A−1∥κq̂(Ŝ) + κq(S)∥A−1∥2,

which implies that

κq̂(Ŝ)− κq(S) ≤ C∥I −A−1∥κq̂(Ŝ) + κq(S)(∥A−1∥2 − 1),

and

κq̂(Ŝ) ≤
1

1− C∥I −A−1∥
κq(S)∥A−1∥2.

Since A →p I uniformly over M, we get that for any �nite constant K, |κq̂(Ŝ) − κq(S)| →p 0

uniformly over all points q ∈ S such that κq(S) ≤ K and uniformly over the set of models M.

What we have just shown is that for any �xed constants K1 and K2 and ε > 0 we have that

|Ĉ − C| →p 0 uniformly over all models in M with K1 < C < K2 and P{Ĉ > K2(1− ε)} → 1

11



uniformly over all models in M with C > K2. Inequality (S12) also implies that if C < K1,

that is if there exists a point q ∈ S with κq(S) > 1/K1, then κq̂(Ŝ) is also large and for any ε

there is a sample size that guarantees Ĉ < K1(1 + ε) with high probability for all such models

uniformly over M. Thus we have that (i) Ĉ →p C uniformly over the subset of models M for

which C < c(1+ ε) and (ii) for any probability arbitrarily close to one there exists a sample size

such that for all models in M with C > c(1 + ε) we have Ĉ > c with at least this probability.

This concludes the proof of Theorem 2.

S4 Proof of Lemma 2 and a Related Asymptotic Result

In this section we establish two results related to the modi�cation described in Section 4.1. First

we prove Lemma 2, establishing the validity of the modi�ed procedure which calculates curvature

on a �nite ball around the reduced-form parameter estimate in the exact normal model. Second,

we show that this procedure has correct uniform asymptotic size under assumptions as in Section

3.1.

S4.1 Proof of Lemma 2

Proof of Lemma 2. Let ξ = Σ−1/2(θ̂ − θ0) ∼ N(0, Ik) and S = {Σ−1/2(θ − θ0), θ ∈ H0} ⊂

Rk. Let ψC(ξ,R) be de�ned as

ψC(ξ,R) =

 ρ2(ξ,Nũ), if ∥ξ∥ ≤ R;

∥ξ∥2, if ∥ξ∥ > R,

where Nũ = {x ∈ Rk : x = (x(1), zũ), x(1) ∈ Rp, z ∈ R+, ∥x(1)∥2 + (C − z)2 = C2}, ũ =

− 1
∥ξ(2)∥ξ

(2). Random variable ψC(ξ,R) has the same distribution as ψC(R) de�ned in formula

(8) in the paper but is de�ned on a di�erent probability space, as ψC(R) is written in terms

of the random vector η ∈ R2 described in Theorem 1 (d). Consider the infeasible test φ which

rejects (φ = 1) if and only if ψC∧R(ξ,R) ≥ F1−α(C ∧ R,R, k, p). The size is Eφ(ξ) = α, so

since P{χ2
k ≥ R2} < α we know that φ rejects for all realizations of ξ where ∥ξ∥ > R as

∥ξ∥ ≥ ρ(ξ,Nũ). This test is infeasible, however, since we do not know the true value of θ0 and

hence cannot calculate ξ. The (feasible) test described in Lemma 2 is

φ̃ =

 1, if MD ≥ F1−α(C
∗
R, R, k, p);

0, otherwise.

12



We claim that φ̃ ≤ φ almost surely (realization-by-realization). To show that this is the case,

assume that φ̃ = 1. If at the same time ∥ξ∥ > R then φ = 1, so the claim holds. If, on the

other hand, ∥ξ∥ ≤ R, then the cylinder D̃R(x0) around x0 = Σ−1/2θ0 lies inside of the ball B∗

of radius (1 +
√
2)R around x̂ = x0 + ξ, and thus

C∗
R =

(
min

q∈S∗ ∩
B∗

1/κq(S
∗)

)
∧R ≤

(
min

q∈S∗ ∩
D̃R(x0)

1/κq(S
∗)

)
∧R ≤ C. (S13)

Indeed, to justify the last inequality, consider the two cases R ≤ C and R > C. In the �rst case

C∗
R ≤ R ≤ C, while in the second case min

q∈S∗ ∩
D̃R(x0)

1/κq(S
∗) ≤ C.

Note that the function F1−α(c,R, k, p) is decreasing in c, and hence F1−α(C ∧R,R, k, p) ≤

F1−α(C
∗
R, R, k, p). Further, all the assumptions of Theorem 1 are satis�ed so MD = ρ2(ξ, S) ≤

ρ2(ξ,Nũ) ≤ ψC∧R(ξ,R). Combining these results we obtain that

F1−α(C ∧R,R, k, p) ≤ F1−α(C
∗
R, R, k, p) ≤MD = ρ2(ξ, S) ≤ ψC∧R(ξ,R),

and thus φ = 1. Hence whenever φ̃ = 1, we get that φ = 1 as well, so φ̃ ≤ φ as we wanted to

show, and the size of the feasible test φ̃ is bounded above by α, completing the proof. �

S4.2 Asymptotic result

Consider a set of models M, a reduced-form parameter estimator θ̂n and covariance estimator

Σ̂n satisfying Assumption 2 in the paper, which is re-stated in Section S3 above. For any R such

that R2 > χ2
k,1−α, let B̃R = {x : ∥x− Σ̂

− 1
2

n θ̂n∥ ≤
(
1 +

√
2
)
R} be the ball of radius

(
1 +

√
2
)
R

around the reduced-form parameter estimate. Let

C̃R =


R ∧

[
1/

(
max

q̃∈Σ̂
− 1

2
n S̃n

∩
B̃R

κq̃(Σ̂
− 1

2
n S̃)

)]
, if Σ̂

− 1
2

n S̃n
∩
B̃R ̸= ∅;

0, if Σ̂
− 1

2
n S̃n

∩
B̃R = ∅.

The modi�ed version of our test uses the statistic nmin
θ∈S̃n

(θ̂n − θ)′Σ̂−1
n (θ̂n − θ) along with

critical value F1−α(C̃R, R, k, p), where we denote by F1−α(CR, R, k, p) the (1 − α)-quantile of

the random variable ψC(R).

Theorem S1 Under Assumption 2 with C in part (iv) replaced by Cn ∧R

where Cn = 1/ supq∈Sn∩DR(0) κq(Sn), the testing procedure described above has uniform asymp-

totic size α:

lim sup
n→∞

sup
M∈M

P

{
n min
θ∈S̃n

(θ̂n − θ)′Σ̂−1
n (θ̂n − θ) > F1−α(C̃R, R, k, p)

}
≤ α

13



Proof of Theorem S1. The proof of this Theorem combines the proofs of Theorem 2 and

Lemma 2. For the remainder of the proof we suppress the index n for notational simplicity in

Sn, S̃n and Ŝn and the corresponding C's.

We �rst restate the de�nition of C∗
R:

C∗
R =

 R ∧
[
1/
(
maxq∗∈S∗ ∩

B∗
R
κq∗(S

∗)
)]
, if S∗∩B∗

R ̸= ∅;

0, if S∗∩B∗
R = ∅.

where B∗
R = {x : ∥x− ξ∥ ≤ (1+

√
2)R}. The quantity C∗

R di�ers from C̃R in two respects: �rst,

it relates to the curvature of S∗ = Σ−1/2S̃, while C̃R is connected to the curvature of Σ̂
−1/2
n S̃;

second the maximal curvature is found over the ball B∗
R which is centered at ξ, while B̃R is a

ball around Σ̂
−1/2
n θ̂n. Lemma 2 in the paper states that for any r > χ2

1−α,k and any manifold S

such that the assumptions of Lemma 2 hold we have

P{ρ2(ξ, S) > F1−α(C
∗
r , r, k, p)} ≤ α. (S14)

We proceeding along the same lines as the proof of Theorem 2 to obtain the following inequality

which holds for any r > χ2
1−α,k:

P

{
ρ(ξn, Ŝ) > F

1
2
1−α(C̃R, R, k, p)

}
≤

≤ P

{
ρ(ξ, S) > F

1
2
1−α(C

∗
r , r, k, p)− 2ε− βn

}
+

+ P{|ρ(ξ, Ŝ)− ρ(ξ, S)| > ε}+ P {∥ξ − ξn∥ > βn}+

+ P

{
F

1
2
1−α(C̃R, R, k, p) < F

1
2
1−α(C

∗
r , r, k, p)− ε

}
. (S15)

As we argued in the proof of Theorem 2 the second and the third terms in (S15) are uni-

formly asymptotically negligible. Due to statement (S14) and the fact that ψC(r) has uniformly

bounded density, the �rst term in (S15) can be made uniformly asymptotically bounded by any

value larger than α by way of choosing small ε > 0, since βn → 0 uniformly over M. We are

left only to prove that for some choice of r the last term in (S15) is uniformly asymptotically

negligible. We choose r = (1− δ)R for small δ > 0.

First, we note that the distribution of random variable ψC(R), which is de�ned in equation

(8) in the paper, is uniformly continuous in R, thus we can always choose δ small enough that

supC |F1−α(C,R, k, p)− F1−α(C, r, k, p)| < ε/2. It is then enough to show that

lim
n→∞

sup
M

P

{
F

1
2
1−α(C̃R, R, k, p) < F

1
2
1−α(C

∗
r , R, k, p)− ε/2

}
= 0.
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Given the monotonicity of F1−α(C,R, k, p) it is enough to show that for any ε2 > 0 (where we

choose δ above so that δ < ε2/R) we have C̃R ≤ C∗
r + ε2 with probability arbitrarily close to 1

uniformly over M in large samples.

Let q̃ = Aq∗, where A = Σ̂
−1/2
n Σ1/2. Note that q∗ ∈ S∗ is equivalent to q̃ ∈ Σ̂

−1/2
n S̃. Now

let q̃ ∈ B̃R, again de�ned as ∥q̃− Σ̂
−1/2
n θ̂n∥ ≤ (1 +

√
2)R. We have that q̃− Σ̂

−1/2
n θ̂ = Aq∗ − ξn.

Given that A uniformly converges to I and ξ − ξn uniformly converges to zero, we have that

AB∗
r ⊂ B̃R with probability arbitrarily close to 1 in large samples, which in turn implies

max
q̃∈Σ̂

− 1
2

n S̃
∩
B̃R

κq̃(Σ̂
− 1

2
n S̃) ≥ max

q̃∈Σ̂
− 1

2
n S̃

∩
AB∗

r

κq̃(Σ̂
− 1

2
n S̃). (S16)

In the proof of Theorem 2 we showed that for q∗ ∈ S∗ and q̃ = Aq∗ ∈ Σ̂
−1/2
n S̃ we have that

|κq∗(S∗)−κq̃(Σ̂
−1/2
n S̃)| converges to zero uniformly over points q∗ at which curvature is below a

�xed constant and over M. Hence, asymptotically (for any ε3 > 0) with probability arbitrarily

close to 1 we have.

max
q̃∈Σ̂

− 1
2

n S̃
∩
AB∗

r

κq̃(Σ̂
− 1

2
n S̃) ≥ max

q∗∈S∗ ∩
B∗

r

κq̃(S
∗)− ε3

Joining this last inequality with (S16) and the de�nitions of C∗
R and C̃R, we arrive to the

conclusion that for any positive ε2 and any probability arbitrarily close to 1, there exists a

sample size such that C̃R ≤ C∗
r + ε2 holds with at least this probability uniformly over M. This

concludes the proof of Theorem S1.

S5 Proof of Lemma 3

For ease of reference, we repeat some de�nitions from Section 4.2 of the paper. For J be a

subset of indexes {1, ..., p}, let βJ denote the corresponding elements of β, and let β−J denote

the remaining elements. Let U−J and UJ(β−J) denote {β−J : ∃βJ ∈ R|J | s.t. (βJ , β−J) ∈ U}

and {βJ ∈ R|J | : (βJ , β−J) ∈ U)}, respectively. Let J be a collection of subsets J .

Lemma 3 Assume that θ̂ ∼ N(θ0,Σ), and that S∗ =
{
Σ−1/2θ(β), β ∈ Rp

}
⊆ Rk is a

manifold passing through θ0. For J ∈ J and β−J ∈ U−J consider the |J |-dimensional sub-

manifold

S∗(β−J) = {Σ−1/2θ(βJ , β−J), βJ ∈ UJ(β−J)}.

For q ∈ S∗(β−J) let κq(S
∗(β−J)) be the curvature of the |J |-dimensional sub-manifold S∗(β−J).

De�ne

C∗
J = inf

β−J∈U−J

inf
q∈S∗(β−J )

1

κq(S∗(β−J))
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to be the inverse of the maximal curvature with respect to sub-parameter βJ only, where the

maximum is taken over all |J |-dimensional sub-manifolds S(β−J). Assume that for β−J,0 the

true value of β−J , S(β−J,0) =
{
x− Σ− 1

2 θ0 : x ∈ S∗(β−J,0)
}
satis�es Assumption 1 with C = C∗

J .

Then the test which rejects the null if and only if MD > F1−α(C
∗
J , k, |J |) has size at most α.

In fact, we can minimize the critical values over J , and the test which rejects if and only if

MD > minJ∈J F1−α(C
∗
J , k, |J |) has size at most α.

Critical values F1−α(C
∗
J , k, |J |) may be smaller than those based on the full parameter vector

due to smaller curvature, or larger since |J | ≤ p. Note, however, that so long as J includes

the full set of indices {1, ..., p}, minimizing critical values over J can only decrease our critical

values relative to the baseline procedure. Moreover, this modi�cation may be freely combined

with that in the previous section, allowing us to simultaneously restrict attention to a �nite ball

around θ̂ and calculate curvature over only a subset of parameters.

To formalize this statement, for J ∈ J we recall the following notation from Section 4.3 of

the text:

ZJ(β) = Σ− 1
2
∂

∂βJ
θ(β), VJ,ij(β) = Σ− 1

2
∂2

∂βi∂βj
θ(β),

V ⊥
J,ij(β) =(I − ZJ(β)(ZJ(β)

′ZJ(β))
−1ZJ(β)

′)VJ,ij(β) = NZJ (β)VJ,ij ,

where i, j ∈ J . The inverse of the maximal curvature over subset J and ball BR(x̂) = {x :

∥x− Σ− 1
2 θ̂∥ ≤ (1 +

√
2)R} is

C∗
J,R = inf

β∈U :Σ− 1
2 θ(β)∈BR(x̂)

inf
(w1,...,w|J|)∈R|J|

∥ZJ(β)w∥2∥∥∥∑|J |
i,j=1wiwjV

⊥
ij (β)

∥∥∥ .
Lemma 3 follows from the following Lemma, setting R = ∞.

Lemma S2 Assume that θ̂ ∼ N(θ0,Σ), and that S∗ =
{
Σ−1/2θ(β), β ∈ Rp

}
⊆ Rk is a

manifold passing through θ0. Let S∗(β−J) and C∗
J,R be de�ned as above. If for all J ∈ J we

have that S∗(β−J,0) satis�es Assumption 1 for CJ ∧ R with CJ as de�ned below, then the test

which rejects if and only if

MD > min
J∈J

F1−α(C
∗
J,R, R, k, |J |)

has size not exceeding α.

Proof of Lemma S2 Let S = {Σ−1/2(θ(β) − θ0), β ∈ U} ⊆ Rk be the infeasible manifold

passing through zero. Assume that β0 is such that θ(β0) = θ0.

Let us take any J ∈ J and consider a |J |-dimensional sub-manifold

SJ = {Σ−1/2(θ(βJ , β−J,0)− θ0), βJ ∈ UJ(β−J,0)},
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where β−J,0 denotes the elements of the true structural parameter β0 corresponding to indices

not in set J . Let T0(SJ) be the tangent space to the manifold SJ at zero, and let T⊥
0 (SJ) be

the orthogonal complement to this space. For each R > 0 let us de�ne the cylinder DJ,R as a

set of points whose orthogonal projections to T0(SJ) and T
⊥
0 (SJ) both have length at most R.

De�ne CJ as CJ = 1/ supq∈SJ∩DJ,R
κq(SJ).

De�ne J̌ ∈ argminJ∈J F1−α(CJ ∧ R,R, k, |J |), where J̌ may be selected arbitrarily when

the argmin is non-unique, and let Č = CJ̌ ∧R. Note that neither J̌ or Č are random. The value

F1−α(Č, R, k, |J̌ |) is an infeasible critical value which would control the size of the corresponding

minimum distance test. Indeed, all the assumptions of Theorem 1 are satis�ed and we have that

almost surely

MD = ρ2(ξ, S) ≤ ρ2(ξ, SJ̌) ≤ ρ2(ξ,NJ̌ ,ũ) ≤ ψJ̌ ,Č(ξ,R).

The �rst inequality comes from the fact that the distance to a manifold (a set) cannot be smaller

than the distance to a sub-manifold (a subset). The second inequality is the result of Theorem

1 applied to sub-manifold SJ̌ , and the last comes de�ning

ψJ̌ ,C(ξ,R) =

 ρ2(ξ,NJ̌ ,ũ), if ∥ξ∥ ≤ R;

∥ξ∥2, if ∥ξ∥ > R,

where NJ,ũ is de�ned analogously to set N in Theorem 1 (b) and (c), re-de�ning x(1) and x(2)

as projections on T0(SJ̌) and T
⊥
0 (SJ̌) respectively.

The infeasibility of the critical value F1−α(Č, R, k, |J̌ |) comes from the fact that Č as well as

CJ 's have been calculated using infeasible (and non-random) manifold S. The remainder of the

argument proceeds much as the proof of Lemma 2. In particular we notice that if realization

of random variable ξ is such that ∥ξ∥ > R then the infeasible test rejects anyway. If instead

∥ξ∥ ≤ R, then the feasible critical value is almost surely (weakly) larger then the infeasible one:

min
J∈J

F1−α(C
∗
J,R, R, k, |J |) ≥ min

J∈J
F1−α(CJ ∧R,R, k, |J |) = F1−α(Č, R, k, |J̌ |).

Indeed, repeating the proof of Lemma 2 for each J ∈ J we get an analog of formula (S13):

C∗
J,R ≤ CJ ∧R, and thus due to monotonicity

F1−α(C
∗
J,R, R, k, |J |) ≥ F1−α(CJ ∧R,R, k, |J |),

which implies the required statement. �
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S6 Proof of Lemma 1

Lemma 1 Let the p-dimensional manifold S in Rk be de�ned by S =
{
x ∈ Rk, g (x) = 0

}
for

a continuously di�erentiable function g : Rk → Rk−p. Assume that zero belongs to S, and

in particular that g(0k) = 0. For some C > 0 let SC denote the connected component of S

intersected with DC which contains zero. Assume that ∂
∂x′ g (x) is full rank for all x ∈ SC . If

the maximal curvature over SC is not larger than 1/C, then Assumption 1 stated in the paper

holds. In particular if T0 (SC) is spanned by the �rst p basis vectors then for any y(1) ∈ Rp with

∥y(1)∥ < C there exists a point x ∈ SC with x(1) = y(1).

Proof of Lemma 1 Note that the implicit function theorem implies that SC is a p−dime-

nsional regular manifold. Further, S is complete by the continuity of g. Without loss of gen-

erality we assume that T0 (S) is spanned by the �rst p basis vectors. To prove Lemma 1, we

proceed by induction on the dimension p of the manifold.

Initial Step: p = 1 In this case the manifold S is a curve. According to the Hopf-Reinow

Theorem (see e.g. Section 8.2, Theorem 5 in Bishop and Crittenden, 2001), any complete

manifold is geodesically complete and, in particular, any geodesic curve that belongs to S can

be inde�nitely extended. Let γ (t) ∈ S be a geodesic parameterized by arc length with γ(0) = 0

and t ∈ [0,∞). Denote by v = γ̇(0) the tangent vector at zero, which is equal the �rst unit vector

(1, 0, .., 0) up to sign. The proof of Lemma S2 implies that for t ≤ π
2
C such that γ (s) ∈ SC

∀s ≤ t, we have ⟨v, γ (t)⟩ ≥ C sin
(
t
C

)
. Thus, we know that for some t̃ ≤ π

2C,
⟨
v, γ

(
t̃
)⟩

≥ C.

Notice that ⟨v, γ (t)⟩ is a continuous function of t and ⟨v, γ (0)⟩ = 0. The intermediate value

theorem gives us that for any y(1) ∈ [0, C] , there exists a t∗ ∈
[
0, t̃
]
such that the �rst coordinate

of γ(t∗) is ⟨v, γ (t∗)⟩ = y(1). Thus, there exists a point x ∈ SC with x(1) = y(1), and the result

of Lemma 1 holds for p = 1.

Induction Step: Suppose that the conclusion of Lemma 1 holds for all p ≤ p∗ − 1. Here we

prove that it holds for p = p∗ as well when k is held �xed and k > p∗.

Consider some y(1) ∈ Rp∗ with ∥y(1)∥ < C, and note that y =
((
y(1)
)′
,0k−p∗

)′
∈ T0 (SC) .

Let v ∈ T0 (SC) be some unit vector such that v′y = 0. De�ne new function ǧ : Rk → Rk−p∗+1

as ǧ (x) =
(
g (x)′ , v′x

)′
, and consider an new manifold Š =

{
x ∈ Rk, ǧ (x) = 0

}
. Below we check

that ŠC , the connected part of the new manifold laying strictly inside DC , is a regular p∗ − 1

dimensional manifold. In particular, Lemma S3 below states that for any x ∈ SC vector v is

not perpendicular to the tangent space Tx(SC). Since the Jacobian of g at a point x forms a

basis of the space T⊥
x (SC) orthogonal to the tangent space Tx(SC), this statement implies that
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the Jacobian of ǧ(x) is full rank at all x ∈ SC . Thus, by the implicit function theorem ŠC is a

regular p∗ − 1 dimensional manifold, satisfying the rank condition stated in Lemma 1.

From the de�nition of curvature, it is easy to see that the maximal curvature of ŠC is less

than or equal to 1
C . Consequently ŠC is a p∗ − 1-dimensional manifold which satis�es all the

conditions of Lemma 1. By the de�nition of ǧ, y ∈ T0
(
ŠC
)
. Thus, by the inductive assumption

there exists some x ∈ ŠC such that x(1) = y(1). Since ŠC ⊂ SC , we have found an x ∈ SC such

that x(1) = y(1). Thus, Lemma 1 is proved.

Lemma S3 Under the Assumptions of Lemma 1, for any v ∈ T0 (SC) with ∥v∥ = 1 and for any

x ∈ SC , we have that v /∈ T⊥
x (SC) where T⊥

x (SC) is the linear space orthogonal to the tangent

space Tx(SC).

Proof of Lemma S3 Let γ : [0, t̄] → SC be a geodesic parameterized by arc-length con-

necting the points 0k and x: γ (0) = 0, γ (t̄) = x with t̄ ≤ π
2C. Note that we can take t̄ ≤ π

2C

since (a) we know that there exists a geodesic in SC connecting 0k and x and (b) from the proof

of Lemma S1 we know we can travel at most arc-length π
2C along any geodesic from 0k before

exiting the interior of DC . The idea of the proof is to choose a unit length vector in the space

Tx(SC) and, by considering parallel transport of v along the curve γ, to prove that this vector

cannot be perpendicular to v. As such v cannot lie in the space orthogonal to Tx(SC).

Let V (t) : [0, t̄] → Rk denote the (unique) parallel transport (or translation) of vector v

along curve γ. V satis�es the conditions V (0) = v, V (t) ∈ Tγ(t)(SC) and

∇γ̇(t)V (t) ≡ 0,

where ∇γ̇(t) denotes covariant di�erentiation in the direction γ̇ (t). The concepts of parallel

transport and covariant di�erentiation are discussed in most textbooks on Di�erential Geometry,

see for example Bishop and Crittenden (2001, ch.5).

Let II (v, w) be the second fundamental tensor (see Kobayashi and Nomizu (1969, v. 2, ch.

7)), then we have:

d

dt
V (t) = ∇γ̇(t)V (t) + II (γ̇ (t) , V (t)) = II (γ̇ (t) , V (t)) .

Here the regular derivative d
dt is decomposed into the covariate derivative (which belongs to the

tangent space) and the part orthogonal to the tangent space, which by de�nition is the second

fundamental form. The covariate derivative is zero since V is a parallel transport.
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Next, note that for any two vectors w, u ∈ Tx(SC) of unit length (∥w∥ = ∥u∥ = 1) we have

∥II(w, u)∥ ≤ κx(SC) ≤
1

C
. (S17)

Indeed, the second fundamental form is a bilinear transformation from Tx(SC) × Tx(SC) to

T⊥
x (SC). Let n = 1

∥II(w,u)∥II(w, u) and the consider bilinear form h : Tx(SC) × Tx(SC) → R

de�ned by h(v1, v2) = ⟨II(v1, v2), n⟩. Any bilinear form is diagonalizable, so let v∗ be the unit

eigenvector corresponding to the largest eigenvalue. Then:

∥II(w, u)∥ = h(w, u) ≤ h(v∗, v∗) = ⟨II(v∗, v∗), n⟩ ≤

≤ ∥II(v∗, v∗)∥ = κx(v
∗, SC) ≤ κx(SC),

where κx(v
∗, SC) is de�ned in equation (4) of the paper.

By the de�nition of parallel transport ∥V (t) ∥ ≡ 1, so as we vary t, V (t) traces out a

curve on the unit sphere Sph =
{
x ∈ Rk : ∥x∥ = 1

}
. Similar to the proof of Lemma S1, we can

consider the arc-length of the curve V restricted to the interval [0, t] ,

length (t) =

∫ t

0
∥II (γ̇ (s) , V (s)) ∥ds ≤

∫ t

0

1

C
ds =

t

C

where the inequality follows from (S17) applied to the vectors γ̇(t) and V (t) (both belong to

Tγ(t)(SC)) and the assumption that maximal curvature does not exceed 1
C . Thus, the angle

between V (0) and V (t) is less than or equal to t
C , and

⟨V (0) , V (t̄)⟩ ≥ cos(
t̄

C
).

Thus, for any t̄ ∈
[
0, π2C

)
, ⟨v, V (t̄)⟩ = ⟨V (0) , V (t̄)⟩ > 0. Since V (t̄) ∈ Tx(SC), however, this

immediately implies that v /∈ T⊥
x , as we wanted to show. �

S7 Weak Identi�cation and Nonlinearity

In this section we note that sequences of models which are weakly identi�ed in the sense of Stock

and Wright (2000) generate asymptotically nonlinear null hypothesis manifolds. It is important

to emphasize that this discussion is solely for motivation and that the validity of our method

does not rely on the Stock and Wright (2000) embedding.

Consider a GMM model in which the moment function is additively separable in the data.

In particular, assume that we observe a sample {xi} of size n consisting of identically and
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independently distributed observations such that

E(h(xi)− θ(λ, β)) = 0 for λ = λ0, β = β0.

Here θ0 = Eh(xi) is a k-dimensional reduced-form parameter, while λ and β are pλ × 1 and

pβ × 1 vectors respectively, with pλ+ pβ ≤ k. Assume that (λ0, β0) is the unique point at which

the moment condition is satis�ed, so the model is point identi�ed. As in Stock and Wright

(2000), we allow the function θ(λ, β) to change as the sample size grows. In particular, let

θ(λ, β) = θn(λ, β) = M̃(λ) +
1√
n
M∗(λ, β),

where M̃(λ) and M∗(λ, β) are �xed twice-continuously-di�erentiable functions with full-rank

Jacobians. Stock and Wright (2000) labeled λ as strongly identi�ed and β as weakly identi�ed,

because information about β does not accumulate as the sample size grows.

Suppose we are interested in testing hypotheses about the structural parameters λ and β.

Consider �rst the problem of testing the hypothesisH0 : β = β0 with strongly identi�ed nuisance

parameter λ. The appropriate minimum distance test statistic is

MD(β0) = min
λ
n

(
1

n

∑
i

h(xi)− θn(λ, β0)

)′

Σ−1

(
1

n

∑
i

h(xi)− θn(λ, β0)

)
,

where Σ is the covariance matrix of random vector h(xi) (which we take to be nonsingular) or

a consistent estimate thereof. Under the null MD(β0) ⇒ χ2
k−pλ . Interested readers may �nd

a full proof of this result in Stock and Wright (2000): here, we instead show that this testing

problem is asymptotically equivalent to a testing problem with linear S.

De�ne ξn =
√
nΣ−1/2( 1n

∑
i h(xi) − θn(λ0, β0)). By the central limit theorem, ξn ⇒ ξ ∼

N(0, Ik). Let the manifold Sn be the image of the function

mn(λ) =
√
nΣ−1/2(θn(λ, β0)− θn(λ0, β0)) =

=
√
nΣ−1/2(M̃(λ)− M̃(λ0)) + Σ−1/2(M∗(λ, β0)−M∗(λ0, β0)) =

=
√
nΣ−1/2(M̃(λ)− M̃(λ0)) +O(||λ− λ0||).

Then MD(β0) = ρ2(ξn, Sn). Under standard conditions for global identi�cation, the value of

M̃(λ) is in a small neighborhood of M̃(λ0) only if λ is close to λ0. Under such conditions one

can easily show that the range of values of λ such that mn(λ) ∈ Sn
∩

B is of order 1/
√
n for any

bounded set B containing zero. Consequently, Taylor approximation shows that the intersection
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Sn
∩

B converges to the intersection of B with the pλ-dimensional linear sub-space S spanned

by the columns of the Jacobian of M̃(λ) at point λ0. Informally, we may say that due to the

factor
√
n in the equation for mn, as the sample size increases we zoom in on an in�nitesimal

neighborhood of the true value λ0 of the strongly identi�ed nuisance parameter. Any regular

manifold, however, is arbitrarily well approximated by its tangent space on an in�nitesimal

neighborhood of a regular point. As a result, it is easy to show that ρ2(ξn, Sn) ⇒ ρ2(ξ, S) ∼

χ2
k−pλ .

Tests for hypotheses with weakly identi�ed nuisance parameters behave quite di�erently. In

particular, the curvature of a null hypothesis with a weakly identi�ed nuisance parameter does

not in general vanish asymptotically. To illustrate this point, assume that the hypothesis of

interest is H0 : λ = λ0, so that β is a weakly identi�ed nuisance parameter (one could equally

well consider cases where the parameters of interest and nuisance parameter both contain a

mix of weakly and strongly identi�ed components: this will somewhat complicate the analysis,

but will in general lead to similar conclusions). Again, we consider the appropriate minimum

distance statistic:

MD(λ0) = min
β
n

(
1

n

∑
i

h(xi)− θn(λ0, β)

)′

Σ−1

(
1

n

∑
i

h(xi)− θn(λ0, β)

)
.

De�ne ξn =
√
nΣ−1/2( 1n

∑
i h(xi)− θn(λ0, β0)) as before and let Sn be the image of

mn(β) =
√
nΣ−1/2(θn(λ0, β)− θn(λ0, β0)) = Σ−1/2(M∗(λ0, β)−M∗(λ0, β0)).

By construction, Sn is a pβ-dimensional manifold in k-dimensional Euclidean space. In contrast

to the strongly identi�ed case, however, here Sn does not change with the sample size so we

may denote it by S. Hence, if Sn is nonlinear for a given sample size, it remains nonlinear in

the limit. As a result, we have that

MD(λ0) = ρ2(ξn, S) ⇒ ρ2(ξ, S),

where ξ ∼ N(0, Ik) and S is a pβ-dimensional manifold but is not in general a linear sub-space.

S8 DSGE Example

This section studies a highly stylized DSGE example which, unlike most DSGE models used in

practice, is analytically tractable. Using this model we show that insu�ciently rich dynamics for

unobserved processes give rise to weak identi�cation. We consider minimum-distance inference
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based on matching the auto-covariances θ of the observed series. We show that the link function

has the asymptotic representation

θn(β) = m(β1) +
1√
n
m̃(β1, β2) +O

(
1

n

)
.

where β1 and β2 are four- and two-dimensional transformations of the structural parameter,

respectively. Thus, the structural parameter β2 has only a small e�ect on the reduced-form pa-

rameter θ, and is weakly identi�ed in the sense of Stock and Wright (2000) and thus impossible

to estimate consistently. It is important to note that we do not assume this asymptotic repre-

sentation, but rather derive it as a consequence of the drifting-parameter asymptotics. The key

consequence from our perspective is that we can asymptotically linearize the link function with

respect to β1, but the non-linearity in β2 remains important even in large samples, rendering

classical approaches to inference inapplicable.

Assume we observe data on in�ation πt and a measure of real activity xt for periods t =

1, ..., n. Suppose the dynamics of the data are described by the following small-scale model

based on Clarida, Gali and Gertler (1999):


bEtπt+1 + κxt − πt + εt = 0,

−[rt − Etπt+1 − ρ∆at] + Etxt+1 − xt = 0,

λrt−1 + (1− λ)ϕππt + (1− λ)ϕxxt + ut = rt,

(S18)

The �rst equation is a Phillips curve, the second is a linearized Euler equation and the third is

a monetary policy rule. We assume that the interest rate rt is not observed. The unobserved

exogenous shocks ∆at and ut are generated by the following law:

∆at = ρ∆at−1 + εa,t; ut = δut−1 + εu,t; (S19)

(εt, εa,t, εu,t)
′ ∼ iidN(0,Σ);Σ = diag(σ2, σ2a, σ

2
u).

This is a small scale DSGE model and contains elements of many more sophisticated models

used in practice. To solve the model analytically we make several further assumptions, taking

λ = 0, ϕx = 0, ϕπ = 1
b and σ2 = 0. The model then has six unknown scalar parameters:

(b, κ, ρ, δ, σ2u, σ
2
a). Under these assumptions the model (S18) is solved in Andrews and Mikusheva

(2014a). The solution can be written as

 xt = B1ut +B2ρ∆at;

πt =
κ

1−δbB1ut +
κ

1−ρbB2ρ∆at,
(S20)
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where B1 = − b
b+κ−δb and B2 =

b
b+κ−ρb .

Andrews and Mikusheva (2014a) shows that if the persistence of two shocks is equal, δ = ρ,

then the model is underidenti�ed and only four-dimensional function of the initial parameters

can be uncovered from data. If δ = ρ + γ√
n
then the model is weakly identi�ed, where the

concept of weak identi�cation is the same as in D. Andrews and Cheng (2012).

Speci�cations for shock dynamics in macroeconomic models are often ad-hoc. At the same

time, identi�cation of structural parameters often requires that the dynamics of the data be

su�ciently rich, which cannot be guaranteed a priori. As in the model (S18), insu�ciently rich

dynamics may lead to identi�cation failure for structural parameters. As we show in Andrews

and Mikusheva (2014b) for sample sizes typical in macroeconomic research a di�erence of 0.2

or less between ρ and δ leads to unreliable performance for conventional asymptotics in the

model (S18). To study the consequences of weak identi�cation, we consider a drifting sequence

of parameter values, δn = ρ+ γ√
n
for bounded γ. De�ne:

At =
b

b+ κ− ρb
ρ∆at and Ut = − b

b+ κ− δb
ut,

and α = κ
1−ρb , µ = γb

1−ρb . Then (S20) can be re-written as

 xt = At + Ut;

πt = αAt +
α

1− µ√
n

Ut,

where At and Ut are independent AR(1) processes with autoregressive coe�cients ρ and ρ+ γ√
n
,

respectively. For analytic tractability we re-parameterize from the initial β = (b, κ, ρ, γ, σ2u, σ
2
a)

to β̃ = (ρ, γ, α, µ,Σa,Σu), where Σa = V ar(At) =
(

b
b+κ−ρb

)2
ρ2

1−ρ2σ
2
a, Σu = V ar(Ut) =(

b
b+κ−δb

)2
1

1−δ2σ
2
u. This re-parametrization is one-to-one if 0 < ρ, δ, b < 1, γ ̸= 0.

We study inference based on matching the contemporaneous covariances and �rst-order

auto-covariances of (xt, πt). We choose the reduced-form parameter θ in such a way that its

estimator θ̂ is consistent and
√
n-asymptotically normal. Note that for reasonable estimators for

the variance of θ̂ our measure of curvature and our proposed critical values are all invariant to

linear transformations of the reduced-form parameters. Further, note that while for any sample

size the covariance matrix for the natural autocovariance estimator is full rank almost-surely,

it is degenerate in the limit. To simplify the analysis we eliminate this degeneracy by taking a
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linear transformation of the reduced-form parameters, and in particular de�ne α = α0+
ψ√
n
and

yt =
√
n(πt − α0xt) = ψAt + Ut

√
n

α0 +
ψ√
n

1− µ√
n

− α0

 =

= ψAt + Ut

(
ψ

1− µ√
n

+
α0µ

1− µ√
n

)
.

By the invariance of the minimum-distance test (using conventional autocovariance estimators)

to linear transformation of the reduced-form parameters, the �nite-sample distribution of the

test derived using the linearly transformed moment condition is the same as that of the original

minimum-distance statistic. This transformation is made purely to simplify the derivations, and

the fact that the transformation depends on the true parameter value α0 is irrelevant. Following

this transformation, we can see that the minimum distance statistic depends on the moments:

θn =



V ar(xt)

V ar(yt)

cov(xt, yt)

cov(xt, xt−1)

cov(yt, yt−1)

cov(xt, yt−1)


=



Σa +Σu

ψ2Σa +

(
ψ

1− µ√
n

+ α0µ
1− µ√

n

)2

Σu

ψΣa +

(
ψ

1− µ√
n

+ α0µ
1− µ√

n

)
Σu

ρΣa + (ρ+ γ√
n
)Σu

ψ2ρΣa +

(
ψ

1− µ√
n

+ α0µ
1− µ√

n

)2

(ρ+ γ√
n
)Σu

ψρΣa +

(
ψ

1− µ√
n

+ α0µ
1− µ√

n

)
(ρ+ γ√

n
)Σu


One can easily check that the natural estimate of θn by the corresponding sample averages is

consistent and
√
n-asymptotically normal with a consistently estimable covariance matrix under

mild parameter restrictions (e.g. ruling out unit roots). Further, the asymptotic variance matrix

is bounded and positive de�nite provided we bound Σa and Σu above and below. Under these

conditions one can show that for any sequence of constants cn → ∞,

inf
∥β̃∥≥cn

(θ̂n − θn(β̃))
′Σ̂(θ̂n − θn(β̃)) →p ∞.

Thus, to study the asymptotic behavior of minimum distance statistics it su�ces to restrict

attention to β̃ lying in bounded neighborhoods.

The link function between the reduced-form parameter θn and the structural parameters

β = (b, κ, ρ, γ, σ2u, σ
2
a) depends strongly only on a four-dimensional function of β, while the

dependence on the other two directions is weak. To be exact, there exists a re-parametrization

(β1, β2) such that β1 and β2 are four- and two-dimensional functions of β, respectively, and the
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structural model implies:

θn(β) = m(β1) +
1√
n
m̃(β1, β2) +O(1/n). (S21)

Link functions of this form are often described as the Stock and Wright (2000) embedding. It

is important to note, however, that we do not assume this embedding but rather �nd that it

emerges naturally from the drifting parameter framework.

To establish (S21) note that

θn = m(β̃) +
1√
n
m̃(β̃) +O(1/n),

uniformly over bounded neighborhoods, where

m(β̃) =



Σa +Σu

ψ2Σa + (ψ + α0µ)
2Σu

ψΣa + (ψ + α0µ)Σu

ρ(Σa +Σu)

ρ(ψ2Σa + (ψ + α0µ)
2Σu)

ρ(ψΣa + (ψ + α0µ)Σu)


; m̃(β̃) =



0

2(ψ + α0µ)
2µΣu

(ψ + α0µ)µΣu

γΣu

(ψ + α0µ)
2Σu(γ + 2ρµ)

(ψ + α0µ)Σu(γ + ρµ)


It is easy to see that m(β̃) depends only on a 4-dimensional function of β̃: β1 = (ρ, S =

Σa + Σu, Z = ψ2Σa+(ψ+α0µ)2Σu

Σa+Σu
,W = ψΣa+(ψ+α0µ)Σu

Σa+Σu
). This picks out the "strongly identi�ed"

directions in the parameter space: note that we can obtain
√
n consistent estimates of these

parameters. However, there is a two-dimensional surface in the parameter space along which

we can vary the parameters while a�ecting only m̃. We will parameterize this surface in terms

of β2, and show that the manifold obtained from m̃(β1, β2) for �xed β1 and di�erent values of

β2 is non-linear.

Note that the function m does not depend on γ, so we can take this to be one of the

parameters in β2. The other parameter can be chosen as ς = α0µ
Σu

Σa+Σu
. In particular, the

re-parametrization from (ψ, ρ, γ, µ,Σa,Σu) to (ρ, S, Z,W, γ, ς) is one-to-one, but the m function

depends only on the �rst four parameters of the latter parametrization. From the de�nition of

W we have ψ =W − ς. From the de�nition of Z

ψ2 + 2ςψ + α0µς = Z, or µ =
Z −W 2 + ς2

ςα0
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and �nally from the de�nition of ς

Σu = S
ς

α0µ
= S

ς2

Z −W 2 + ς2

and Σa = S − Σu.

Re-writing m̃ using the new parametrization, we obtain

m̃(β̃) =



0

2S(Z−W
2+Wς)2

α0ς

S(Z−W 2+Wς)
α0

γS ς2

Z−W 2+ς2

S (Z−W 2+ςW )2

Z−W 2+ς2

(
γ + 2ρZ−W

2+ς2

ςα0

)
S (Z−W 2+ςW )ς

Z−W 2+ς2

(
γ + 2ρZ−W

2+ς2

ςα0

)


For �xed ρ, S, Z,W the two dimensional manifold obtained by allowing γ, ς to vary is non-linear.

Changes in β2 = (γ, ς) produce changes in θn of magnitude comparable to the standard

deviation of θ̂, which makes it impossible consistently estimate β2, while β1 can be estimated

precisely in large samples. In the literature it is common to call the parameter β1 �strongly

identi�ed� in this setting, while β2 is called �weakly identi�ed.� The key fact for us is that as

the sample size increases we can linearize link function with respect to β1 with asymptotically

negligible error while the same is not true for β2. This can be viewed as a re�ection of the

fact that the minimum-distance estimator of β1 is close to the true parameter value asymptot-

ically, and thus we can guarantee that the remainder term in a �rst-order Taylor expansion is

asymptotically negligible. By contrast, the minimum-distance estimator of β2 is not consistent

for β2, making Taylor approximation inaccurate. Thus, minimum-distance statistics for testing

hypotheses concerning a subset of β1 or the hypothesis of correct speci�cation of the DSGE

model will have non-standard asymptotic distributions.

This example also highlights some features of the weak identi�cation embeddings currently

studied in the literature. In the present context we can label particular functions of the parame-

ters (β1 and β2) as �strongly� and �weakly� identi�ed, respectively, but these functions relate to

the original structural parameters in rather complicated ways. The �strength of identi�cation�,

or more precisely the quality of conventional asymptotic approximations, depends heavily on

the speci�c hypothesis tested. Further, existing weak identi�cation approximations are silent

about what sample size is needed to guarantee a given accuracy for conventional asymptotic

approximations, even when we know that the limiting distribution of a test is standard. Finally,

we can see that even in this simple highly stylized model, deriving the weakly and strongly
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identi�ed directions in the parameter space is messy, and such derivations will be di�cult if not

impossible in richer, more empirically relevant models.
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