Supplementary Appendix to the Paper
A Geometric Approach to Nonlinear Econometric Models
By Isaiah Andrews' and Anna Mikusheva?
Abstract
This Supplementary Appendix contains supplementary material and proofs for the paper “A
Geometric Approach to Nonlinear Econometric Models,” by Isaiah Andrews and Anna Miku-
sheva. Section S1 introduces geometric concepts used in the proofs. Sections S2 and S3 prove
Theorems 1 and 2 of the paper, respectively. Section S4 proves Lemma 2 from the paper and
gives a related uniform asymptotic result. Section S5 proves Lemma 3 and shows that tests
which both minimize critical values over subsets of parameters and restrict attention to curva-
ture on a finite ball continue to control size. Section S6 proves Lemma 1 from the paper. Section
S7 shows that models which are weakly identified in the sense of Stock and Wright (2000) imply
nonlinear null hypothesis manifolds. Section S8 shows how non-linearity arises from weak iden-
tification in an analytic DSGE example. Numerical examples applying our approach to DSGE
and New Keynesian Phillips Curve models may be found in the working paper version, available

on Anna Mikusheva’s website.?

First draft: May 29, 2012 This draft: November, 2015.

S1 Geometric Concepts

In this paper we focus on regular manifolds embedded in k-dimensional FEuclidean space. A
subset S C R¥ is called a p-dimensional reqular manifold if for each point ¢ € S there exists
a neighborhood V in R* and a twice-continuously-differentiable map x : U — VS from an
open set U C R? onto VNS C R such that (i) x is a homeomorphism, which is to say it has
a continuous inverse and (ii) the Jacobian dx, has full rank. A mapping x which satisfies these
conditions is called a parametrization or a system of local coordinates, while the set V (S is
called a coordinate neighborhood.

Note that the manifold S is defined as a set, rather than as a map. In keeping with this spirit,
many of the statements below will be invariant to parametrization. We begin by developing some

geometrical concepts for the special case of a regular 1-dimensional manifold, also known as a
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curve. In particular, let S be a curve given by 7 : (to,t1) — R¥ where « is twice continuously
differentiable and (tg,t1) is an interval in R. Let 4(¢) and %(¢) denote the first and second
derivatives of v with respect to t. Let (5(¢))" be the part of %(¢) orthogonal to #(t), then
the curvature at ¢ = ~(t) is defined as k4(S) = Hllv( ))”2|| One can show that this definition
of curvature is invariant to parametrization. The curvature measures how quickly the curve S
deviates from its tangent line local to ¢, and the scaling is such that a circle of radius C has
curvature 1/C at all points.

These concepts can all be extended to general regular manifolds. Fixing a p-dimensional
manifold S, for any curve v : (—¢,¢) — S on S which passes through the point ¢ = v(0) € S, the
vector ¥(0) is called a tangent vector to S at q. For x a system of local coordinates at ¢, the set
of all tangent vectors to S at ¢ coincides with the linear space spanned by the Jacobian dx, and
is called the tangent space to S at ¢ (denoted T} (S)). While we have defined the tangent space
using the local coordinates x, as one would expect T, (S) is independent of the parametrization.

To calculate the curvature at g, consider a curve 7y : (—¢,e) — S which lies in S and passes
through ¢ = ~(0). Taking TqL to be the k — p-dimensional linear space orthogonal to T,(S),

define ‘ ‘ L ‘ ‘

i ( )H

where (W)L stands for the projection of W onto the space TqJ‘. One can show that r¢(y,.5)

EQ(77 S) -

depends on the curve 7 only through +(0), so for two curves v and v* in S with v(0) = ~*(0) = ¢
and 4(0) = 4*(0) we have k4(7,5) = kq(7*,5). We can also show that for any X € T,(S) one
can find a curve 7 in S with property that 7(0) = ¢ and 4(0) = X. The measure of curvature
we consider is

G-

k. (S) = sup Kq(y,S) = sup
() XeT,(S)7(0)=X (7 5) xer,(9)50)=x [7(0)[?

This measure of curvature is closely related to the Second Fundamental Tensor (we refer the
interested reader to Kobayashi and Nomizu (1969, v.2, ch. 7)), and is equal to the maximal cur-
vature over all geodesics passing through the point ¢q. As with the curvature measure discussed
for curves, kq(5) is invariant to the parametrization. Also analogous to the 1-dimensional case,
if S is a p-dimensional sphere of radius C' then for each ¢ € S we have k4(S) = 1/C. Finally, if

S is a linear subspace its curvature is zero at all points.

How to calculate curvature in practice. Let S be a p-dimensional manifold in R,
and let x be a local parametrization at a point ¢, ¢ = x(y*). Denote the derivatives of x at
q by v; = g—;‘i(y*). By the definition of a local parametrization, we know that the Jacobian

Z = (vi,...,vp) is full rank, so the tangent space T,(S) = span{vi,...,vp} is p-dimensional.



As before, for any vector W € RF let W+ denote the part of W orthogonal to T,(S), that
is, W+ = N;W = (I — Z(Z'Z)~'Z")W. Finally, denote the p? vectors of second derivatives

Vij = %;ij(y*). The curvature can then be written as

1
p N HZﬁjzl wiw; Vi
kq(S) = sup E uiu Vi |l = sup 5
P
u:(ulv“>up)€Rp i,7=1 (w1,...,wp)€RP HZz:l wZUZH
320 wivill=1

S2 Proof of Theorem 1 of the paper

The proof is based on the following lemma:

Lemma S1 Assume the curve ¥(s) : [0,b] — Do C RF is parameterized by arc length and
that its curvature k(s) = [|5(s)|| < & for all points s. Assume that v(0) = 0 and §(0) =
v € span{ei,...,ep}, where ey, ...,ep are first p basis vectors. Then the curve (s) is contained

wn the set M, N D¢, where

M, = {z: (z,0)® + (C — ||z — (z,v)v|)? > C?}. (S1)

Proof of Lemma S2. Consider the curve defined by 3(s) = (s), the first derivative of 7.
Since the curve «y is parameterized by arc length ||3(s)|| = [|7(s)|| = 1 and the new curve g lies
on the unit sphere Sph = {z € R* : ||z| = 1}, with 8(0) = v. Let t < 2C and ¢ < b. Consider

the arc length of the restriction of the curve § to the interval [0, ¢]:

Q=

tength(t) = [ 1Ads = [ 15olas = [ w(s)is <

This implies that the geodesic (a curve of a shortest length) on the sphere Sph connecting 3(0)
and ((t) has length less than or equal to % or, equivalently, that the angle between vectors

B(0) = v and fB(t) is less than or equal to 4. Hence
. t
(v, (1)) = (v,7(t)) = cos(;7)- (52)
Since (s) is parameterized by arc length, from inequality (S2) we have:
(S3)

17(t) = (v, 7)ol < ISin(é)l-



This, in turn, implies that

17 () = v, v ()0l = H/O (7(s) = (v, 3(s))v)ds|| <

t
< / 14(s) — (v, 4(s))vllds < / sin()ds = C — Ceos( )
0 0 C C
Inequality (S2) also implies that
o)z [ " cos(Z)ds = Csin() (54)
'U,’y =~ . COSs C S = 1n C .

Combing these results yields

(0,7()* + (C = Iy (t) = (v, vl > C*

for all ¢ < ZC. Notice that (S4) implies that for 7 = ZC we have (v,7y(7)) > C and thus for
the first p coordinates of v(7), which we denote 4 (7), we have ||y (7)|| > C so the curve is
leaving or has already left the cylinder D¢ and thus b < 5C. This concludes the proof of the
lemma. [J

Proof of statement (a) of Theorem 1. First, let us show that

U M= {llzV)° + (€~ [12?])* > ¢?} = M, (55)

vETH(S)
l[oll=1

where M, is defined in (S1), M is defined in equation (5) of the paper and Tp(.S) is the tangent
space to S at zero and is spanned by first p basis vectors. Indeed, the set on the left hand side

consists of points z for which there exists a vector v € span{ey, ..., ey}, ||v]| = 1, such that
(z,v)2 4+ (C — ||z — (z,v)v]))? > C2. (S6)

For each z let us find the maximum of the expression on left-hand side of inequality (S6) over

v € To(S), |jv]| =1

(2,0)2 + (C = ||z — (&, v)v[|)? =
= (@,0)° + C* + |lz||* = (z,v)* = 2C)}e — (@, v)v] =

= C? +||z])* - 2C|z — (z,v)v]|

where we used that ||z — (z,v)v||? = ||z||?> — (x,v)2. We see that maximizing the left-hand side of



(S6) over v € span{er,...,ep}, ||v]| = 1 is equivalent to minimizing ||z — (z,v)v||. The minimum
is achieved at the projection of  onto Ty(S) = span{er, ..., e,}, that is, v = m(l‘(l), 0,...,0),
where () € RP consists of the first p components of z. As a result, the maximum of the

left-hand side of (S6) equals
C? + |lal|* = 20)2®|| = O|* + (C — |l=|])?.

This proves statement (S5).

Now assume that statement (a) of Theorem 1 is incorrect and there exists a point ¢ € S¢
with ¢ ¢ M. Take a geodesic (a curve of the shortest distance lying in S¢) v(s) connecting g
and 0 lying in S¢, where such a curve exists since S¢ is a connected manifold. Parameterize this
curve by arc length. The curve (s) is a geodesic in S if and only if at any point ¢ = (¢) the
second derivative 4(t) is perpendicular to T,(S) (see Spivak (1999) for discussion of geodesics,
v.3, p-3). As a result, the curvature of the geodesic «y at each point ¢ = v(t) is equal to k4(X, S)
(where X = 4(t)), and thus it is less than &. Denote the tangent to this curve at 0 by v € Ty(5).
Applying Lemma S2 we obtain that the curve belongs to M, N D¢ and thus belongs to M (] D¢.
We have arrived at a contradiction. [J

Proof of statement (c) of Theorem 1. Let

flu) = p*(& Ny) = min 6™ — 2 M2 + 6@ — zu)®.
(D ERP 2Ry
2|2 +(C~2)?=C2

We need to find the maximizer of f(u) subject to the constraint ||u|| = 1. To differentiate f(u)
we use the “envelope theorem” that allows one to differentiate a function which is the optimum
of a constrained optimization problem and yields % = —2(¢ @) — zu). Hence, the first-order
condition for finding @ implies that u is proportional to £ ). The sign is a reflection of the fact
that we search for a max rather than a min. OJ

Proof of statement (b) of Theorem 1. For a given point ¢ € R* find the sphere
Ny furthest from &, where @ is described in Theorem 1 (c), and the point 7 € Ny such that
p(&, N3) = p(&,7). Consider the k —p dimensional linear space R, = {z € RF : () = 7(1} that
restricts the first p components of x to coincide with the first p components of 7. We prove two
statements: first, that all points in the intersection R, [ M) D¢ are no further from £ than 7;
and second, that this intersection R, [ M) D¢ contains at least one point from S. Together,
these two statements imply that p(&,.S) < p(&, 7).



The intersection of the three sets R, ()M () D¢ can be written as follows:

R (YM( Do = {z = (1, 2?) € Do+ [|rV]* + (€ = [«P))* > €%} =
B { = (®.a®): 2P < 0 - /o2 - HT@HZ}-

Now let us show that for each z € R, [YM[) D¢ we have p(§,z) < p(&,7). Indeed, one can

solve the constrained maximization problem
p(&,x)? = €W — 72 4 1@ — P2 = max st. € R, ﬂ/\/l ﬂDC.

From the first-order condition for this problem one can see that the maximum is achieved at
@ proportional to €. We recall that 7 € Ny and by statement (c) 7 is proportional to
€@ Further inspection reveals that the maximum is achieved at = 7. Hence, all points lying
in the intersection R, () M) D¢ have distance to £ less or equal than p(&, N).

To complete the proof we need only show that R, (M) D¢ contains at least one point
from the manifold S. Recall that from the definition of 7 € Ny it follows that ||7()|| < C. Then
Assumption 1 guarantees that the intersection of S¢ with R, is non-empty, while statement (a)
of Theorem 1 implies that So C M (| D¢. O

Proof of statement (d) of Theorem 1. Note that since % is proportional to &2 by
statement (c), both £ and Ny belong to the same p 4+ 1-dimensional linear sub-space Ly =
{z 2 = (W, —21),2(Y) € RP,z € R}. Let us restrict our attention to this subspace only.
Let (z(1, 2) be the coordinate system in this sub-space, so & corresponds to £ = ED1E@,
and Ny corresponds to the sphere N¢ = {z = (z(1),2) € RP*! : |22 4+ (C + 2)? = C?}.
The distance on Ly implied by the distance in R* is the usual Euclidean metric, which we
denote by p. So far, we proved that p(¢, Ny) = ﬁ(g, N¢). By invariance of the distance to
orthonormal transformations of first p components we have ﬁ({, N) = p(&*,NY), where & =

(€M, 0,...,0,[|€@]) € RPTL. From this it is easy to see that

p(&,Nz) = pa(n, NS,

where n = (€W, |1€@)||) € R?, N§ = {(21, 22) € R? : 23 + (C + 22)? = C?}, and py is Buclidian
distance in R2. It then follows that if &€ ~ N(0, I;,) then components of i have independent XI%

and X%_p distributions, respectively. [J



S3 Proof of Theorem 2 from the paper

The procedure described in Section 2.4 of the paper guarantees that finite-sample size is con-
trolled when the reduced-form parameter estimates are normally distributed with a known
covariance matrix. In this section we prove Theorem 2 in the paper, which asserts that the pro-
cedure is asymptotically correct uniformly over a large set of models on which the reduced-form
parameter estimator is uniformly asymptotically Gaussian. For ease of reference we re-state
much of the discussion of Section 3.1 of the paper.

We define a model to be a set consisting of the true value of the k-dimensional reduced-form
parameter 6y, the data generating process F}, consistent with g, and a link function connecting
the structural and reduced form parameters, or more generally a manifold Sp describing the null
hypothesis Hy : 6y € S,. We assume that the null holds. We allow the data generating process
F,, and the structural model §n to change with the sample size n; this accommodates sequences
of link functions such as those which arise under drifting asymptotic embeddings, for example
the weak identification embeddings of D. Andrews and Cheng (2012) and Stock and Wright
(2000). It also allows us to model the case when the researcher tries to fit a more complicated
or nonlinear model when she has a larger sample. Let us have an estimator, é\n, which will be
asymptotically normal with asymptotic covariance matrix ¥ = X(F,,). Let S, be an estimator
for . We consider the set of possible models M = {M : M = (0, {Fn};ﬁl,{gn}ff:l)} and
impose the following assumption.

Assumption 2
(i) VnE~Y2(6, — 6y) = N(0, 1) uniformly over M;
(ii) S, — X 5?0 uniformly over M;

(iii) The mazimal and minimal eigenvalues of 3 are bounded above and away from zero uni-

formly over M;

(iv) For each n and manifold S, = {x = \/nX~/2(y — 6y),y € gn}, the manifold S, satisfies
Assumption 1 for C = Cy, = 1/sup,eg, kq(Sn)-

Assumption 2(i) and (ii) require that the reduced-form parameter estimates are uniformly
asymptotically normal with a uniformly consistently estimable covariance matrix. This assump-
tion holds quite generally for many standard reduced-from estimators, such as OLS estimates
and sample covariances, over large classes of models. Care is needed when using parameter
estimates from ARMA models, however, as these models can suffer from near-root cancellation,

leading to non-standard large-sample behavior (see D. Andrews and Cheng (2012)). Assumption



2(iii) uniformly bounds the eigenvalues of the asymptotic covariance matrix above and below,
and will generally follow from a uniform bound on the moments of the data generating process.
Finally, Assumption 2(iv) is the natural extension of Assumption 1 to allow for sequences of
different manifolds. For implicitly defined manifolds, this will again follow from Lemma 1.
Description of the procedure. Let us introduce a manifold S, = {\/ﬁflﬁlﬂ(:v—@o) S §n},
which differs from S, in using an estimator ¥, in place of . Let C,, = 1/(supqe§n ﬁ;q(./S’\n)). Our

main test uses the statistic nmin,_z (6, —60)'S1(6,—0) along with critical value Fy_o(Ch, k, p),

0€Sn
where we denote by Fi_,(C, k,p) the (1 — a)-quantile of the random variable 1) discussed in

Section 2.3.

Theorem 2 If Assumption 2 holds, then the testing procedure described above has uniform
asymptotic size Q:

lim sup P {n min (6, — 0)'S (6, — 0) > Fi_o(Ch, k,p)} < a.
n—=00 NMe M 0eSn

This result establishes the uniform asymptotic validity of our test allowing for arbitrarily
nonlinear (or linear) behavior in the sequence of null hypothesis manifolds S,. In particular,
if curvature arises from weak identification this result allows for arbitrarily weakly or strongly
identified sequences. The key to this result is that our critical values reflect the curvature
of the null hypothesis manifold measured relative to the uncertainty about the reduced form
parameters for each sample size.

Proof of Theorem 2. Assume that £ ~ N (0, I). Our main theorem states:
P{p*(&S) > Fio(Cik,p)} <,

uniformly (over M) for all sets S = S, if C' = C,, is such that the assumptions of Theorem 1 of
the paper hold, that is the maximal curvature of S, is less than 1/C), and Assumption 1 is true.
For the rest of the proof we suppress the index n for notational simplicity in Sy, S, and §n
and the corresponding C’s. Let &, = \/ﬁiﬁlﬂ(@l — 6p). We note that the statistic of interest
55 (On — 0S40, — 0) = p*(€,, S). Assumption 2 (i) - (iii) imply that
& = N(0, Ij) uniformly over M.

can be written as nmin

This weak convergence can be metrized by Prokhorov’s metric. Let 5, > 0 be Prokhorov’s
distance between the distributions of random variables £ and &,, where all terms are implicitly
indexed by model M. According to Dudley’s (1968) result we can construct a probability space
and two random variables En and E with the same marginal distributions as &, and & such that

P {H{ — &l > Bn} < Bp. From now on for simplicity of notation we will drop tildes and assume



that &, and & satisfy this condition. Thus we have:

P {p@n,@) > Fé_a<é7k,p>} <

<P {p@, 5)> Ff (Cokup) - m} FP{E— el > B} (s7)

where we used that [p(&,, 5) — p(&, )| < ||€n — €||. The second term on the right hand side in
(S7) does not exceed f3,, and 3, converges to zero uniformly over set of models M.
Let C' = 1/(sup,eg #¢(5)), and note that Assumption 1 from the paper holds for this value

of C' and the manifold S. Fix some small € > 0. We can notice that:

P {p@, §)> Ft (ko) - Bn} < P{Io(&,5) — p(&, S)| > e} +
+ P {p(§75) > Flé—a(c7k7p) - 26 - 51’1} +

1 —~ 1
P {IFf_a(C, kop)— FE(Cokp)| > } S

Below we show that the first and third terms on the right hand side of equation (S8) are
asymptotically negligible uniformly over M, while by choosing small € we can bound the second
term from above by a number arbitrarily close to a.

For the first term, note that the manifold S = {Az : # € S} for matrix A = SR 812, Let
|| X || denote the matrix norm of a square matrix X (that is, the maximal eigenvalue in absolute

value). Below we show that
0(&,8) = p(&, )| < 2]|&]| max{||T — A, |IT — A~} (59)

Indeed, consider first the case when p(&,S) > p(€,S), and assume that p(&,S) = p(&, z) for a
point x € S. Then Ax € §, and p(&, §) < p(§, Ax). This implies that

0 < p(&,8) = pl(&, ) < p(§, Az) — p(&, ) <

< p(z, Az) < ||I — A - ||z

Next, we notice that since 0 € S, ||z|| < ||£]| + p(&, z) < 2||€||. The case when p(¢, S) < p(&, 9)
can be considered analogously. This establishes the validity of inequality (S9). Since [|£]|?
is distributed as x7, and according to Assumptions 2 (ii)-(iii) the two maximal eigenvalues in
equation (S9) converge to zero uniformly, we can see that the first term in (S8) is asymptotically

small uniformly over M.



For the second term, our main theorem guarantees that

P {p@, S) > FZ(Cyk.p) — 2 - ﬁn} <p {wé S PP (Cokyp) — 26 — ﬁn} . (S10)

where Yo = p%(n, NQC ), for n a random vector with two independent coordinates distributed as
<\/X7277 \/9?—;)) and NY a circle of radius C with center at point (0, —C), while ps is a Euclidean
distance in R?. First notice that function f(x,C) = po(x, NY) for € R? is continuous in x
uniformly over all values of C, indeed, |p2 (2, N§)—p2(y, NS)| < p2(z,y). Since n is continuously
distributed with bounded pdf and the variable ¥¢ has a pdf which is bounded above uniformly
over C', this means that by choosing small enough ¢ and 3, we can make the right hand side in
equation (S10) arbitrarily close to .

It is easy to see that the function pa(z, NS') is uniformly continuous in C. Thus Fy_(C, k, p),
the (1 — a)-quantile of random variable 1¢, is continuous in C' uniformly over all values of C.
As C — oo the (1 — a)—quantile F1_o(C,k,p) converges to the (1 — «a)-quantile of a Xifp
distribution, which can be called Fj_, (00, k,p). For any small £ > 0 there exists a constant ¢
such that for any C' > ¢ we have \Flé_a(C, k,p) — Flé_a(oo, k,p)| < e.

What we are left to show is that (i) C =P C uniformly over the subset of models M for
which C < ¢(1+¢) and (ii) for any probability arbitrarily close to one there exists a sample size
such that for all models in M with C' > ¢(1 + ¢) we have C > ¢ with at least this probability.

First we examine the asymptotic relationship between C' and C. Let us consider a point

q € S and curvature k4(S) = szg‘:l uiug Vi

, where (u1, ..., up) is the optimizer from formula
(4) in the paper with the condition ||>_F_, u;v;|| = 1. By Theorem 6.4 in chapter III of Kobayashi
and Nomizu (1963), there exists a unique geodesic () € S defined for ¢ in an open neighborhood
of zero with initial conditions: y(0) = ¢ and %(0) = Y7, u;v; € Ty(S). In particular, the fact
that v(¢) is a geodesic curve on S means that 5(0) = Zf,j:l u;u;V;; is perpendicular to tangent
space T,(S) spanned by Z = (v1,...,vp). This implies that x4(S) = ||5(0)|| = [[Nz%5(0)|| and
17(0)] = 1.

Let us consider a curve 7(t) = A~(t) and notice that this curve lies on manifold S and passes
through the point § = Ag € S. Let Z be the set of vectors spanning the tangent space T,(S),
then AZ spans TqA(:S'\).

From formula (4) of the paper we can see that

d*3(0)
Mz 2| nazaso))
‘ d?(o)Hz | A%(0)|1?
dt

as the left-hand-side expression is the maximum of the right-hand-side expression taken over all

kg(S) >

I

10



possible curves in S passing through g.

Let us counsider the following sequence of inequalities:

kq(S) = [7O0)]] = IN2FO)]| < [[(NazA = Nz)3(0)|| + [|NazAF(0)]| <

< [[NazA = Nz||[5(0)]| + rg(5)[| A7 (0)1>. (S11)
We can notice that ||A¥(0)]| < ||A]| since ||4(0)]] = 1. Finally, notice that

NazA—Ny=A—AZ(Z'A2Z2) Y Z'A2 — 1+ 2(Z'2)"' 7z =
—A-DN+T-A)Z(Z'2) 2+ AZ2(Z'2) 1 Z(I — A*)+

+AZ(Z'Z) 12 (A% — 1) Z(Z2'A%Z)~1 7' A*

where we use A% to denote A’A. Recall that A —? I uniformly over M, thus ||[NazA — Nz|| <
C||I — Al| with probability approaching one uniformly over M, where C is a constant that does
not depend on M. Putting this reasoning together with inequality (S11) we obtain that with

probability tending to one uniformly over M
kqg(S) < CIlI — Allrg(S) + rg(S)II A, (512)

or

rq(S) = rg(8) < CIIT = Allrg(S) + rg(S)(JAII* - 1).
Symmetric reasoning reversing the roles of the “hatted” and “non-hatted” variables yields
rg(S) < CIT = A7 [g(8) + rg(S) [ A7,
which implies that
rq(S) = kq(S) < CIIT = A7 |rg(S) + ro(S) (AT — 1),

and
1

(9) < 12
rg(S) < 17— alr = A,IHHq(S)llA |

Since A —P I uniformly over M, we get that for any finite constant K, \Ha(g) — Kq(S)] =P 0
uniformly over all points ¢ € S such that x,(S) < K and uniformly over the set of models M.

What we have just shown is that for any fixed constants K7 and K3 and € > 0 we have that
|C' — C| =7 0 uniformly over all models in M with K; < C' < Ky and P{C > K5(1 —¢)} — 1

11



uniformly over all models in M with C' > Kj. Inequality (S12) also implies that if C' < K7,
that is if there exists a point ¢ € S with k,(S) > 1/K;, then /qu(g) is also large and for any e
there is a sample size that guarantees C<K 1(1 + ¢) with high probability for all such models
uniformly over M. Thus we have that (i) C —P C uniformly over the subset of models M for
which C' < ¢(1+¢) and (ii) for any probability arbitrarily close to one there exists a sample size

such that for all models in M with C' > ¢(1 + ¢) we have C > ¢ with at least this probability.

This concludes the proof of Theorem 2.

S4 Proof of Lemma 2 and a Related Asymptotic Result

In this section we establish two results related to the modification described in Section 4.1. First
we prove Lemma 2, establishing the validity of the modified procedure which calculates curvature
on a finite ball around the reduced-form parameter estimate in the exact normal model. Second,
we show that this procedure has correct uniform asymptotic size under assumptions as in Section

3.1.

S4.1 Proof of Lemma 2

Proof of Lemma 2. Let £ = X720 — 6y) ~ N(0,1;) and S = {S"V/2(0 — 0y),0 € Hy} C
R*. Let ¢c (&, R) be defined as

PP(&N7), it ]lE] < R

Yo(é R) = ) .
1€, if 1€l > R,

where Ny = {z € R¥ : z = (20, 210),2(0) € RP,z € Ry,[zW|? + (C - 2)? = C?},u =
—wf(%. Random variable ¢ (&, R) has the same distribution as )¢ (R) defined in formula
(8) in the paper but is defined on a different probability space, as ¢ (R) is written in terms
of the random vector 77 € R? described in Theorem 1 (d). Consider the infeasible test ¢ which
rejects (o = 1) if and only if Yoar(&, R) > Fi1—o(C AN R, R, k,p). The size is Ep(§) = «, so
since P{x? > R?} < a we know that ¢ rejects for all realizations of ¢ where ||£]| > R as
ll€]l > p(&, N). This test is infeasible, however, since we do not know the true value of 6y and

hence cannot calculate £. The (feasible) test described in Lemma 2 is

(’p:

17 it MD 2 Fl—a(szaRvk?p);

0, otherwise.
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We claim that ¢ < ¢ almost surely (realization-by-realization). To show that this is the case,
assume that ¢ = 1. If at the same time [|£]| > R then ¢ = 1, so the claim holds. If, on the
other hand, ||| < R, then the cylinder Dy (o) around zo = %~1/26, lies inside of the ball B*
of radius (1 +v/2)R around & = xo + &, and thus

Ch = ( min 1/@(5*)) AR < min 1/kq(S*) | AR C. (S13)
geS* N B* q€S* (N Dr(zo)

Indeed, to justify the last inequality, consider the two cases R < C' and R > C'. In the first case
Ok < R < C, while in the second case minqes*nBR(m) 1/kq(S*) < C.

Note that the function Fi_(c, R, k,p) is decreasing in ¢, and hence F}_o(C A R, R, k,p) <
Fi_o(C%, R, k,p). Further, all the assumptions of Theorem 1 are satisfied so M D = p2(&,9) <
p%(&, Nz) < Yonr(€, R). Combining these results we obtain that

Fl_a(C/\ RJ R7 k;7p) S Fl—oc(C;(%Ra k)p) S MD = 02(57 S) S ¢C/\R(§7R)7

and thus ¢ = 1. Hence whenever ¢ = 1, we get that ¢ = 1 as well, so ¥ < ¢ as we wanted to

show, and the size of the feasible test ¢ is bounded above by «, completing the proof. [J

S4.2 Asymptotic result

Consider a set of models M, a reduced-form parameter estimator (/9\,1 and covariance estimator

f]n satisfying Assumption 2 in the paper, which is re-stated in Section S3 above. For any R such
~ /\_l/\

that R? > Xz,ka: let Bp = {z: ||z — £, 26,]| < (1+ v2) R} be the ball of radius (1+ v2) R

around the reduced-form parameter estimate. Let

~ R A [l/ <max~ - /ﬁg(f];ég)>] , if i;égnﬂgfg # 0;
Cr= /

The modified version of our test uses the statistic nmin, g (0, — 6)S71(8, — 6) along with

critical value Fl,a(CN'R,R,k:,p), where we denote by F1_o(Cg, R, k,p) the (1 — a)-quantile of

the random variable ¥¢(R).

Theorem S1 Under Assumption 2 with C in part (iv) replaced by Cp, A R
where C,, = 1/ SUPgeS,NDR(0) kq(Sn), the testing procedure described above has uniform asymp-

totic size «:

limsup sup P {n an(é\n - 0)’5\];1(@1 —0) > Fi_o(Cg, R, k‘,p)} <a
n—oo MeM €Sy
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Proof of Theorem S1. The proof of this Theorem combines the proofs of Theorem 2 and
Lemma 2. For the remainder of the proof we suppress the index n for notational simplicity in
S, §n and §n and the corresponding C'’s.

We first restate the definition of C:

RA {1/ <maxq*€5*mB§ mq*(S*))} , if S*N By # 0;
0, if 5% () By, = 0.

R:

where B = {z : ||z —¢|| < (1++v/2)R}. The quantity C% differs from Cr in two respects: first,
it relates to the curvature of S* = E_l/2§, while éR is connected to the curvature of 251/25;
second the maximal curvature is found over the ball Bj; which is centered at &, while ER is a
ball around f];l/zgn. Lemma 2 in the paper states that for any r > ximk and any manifold S

such that the assumptions of Lemma 2 hold we have
P{p*(,S) > Fi_a(Cl,7 k. p)} < o (S14)

We proceeding along the same lines as the proof of Theorem 2 to obtain the following inequality

which holds for any r > X%—a,k:

P{p(fn,g) > Flza(CN’R7R7k7p)} <
1
S P{p(f,S) > Flz—a(c:7r7k7p) —2e — Bn} +

+P{|p(&,8) — p(&,8)| > e} + P{||€ — &l > B} +

- 1
+P{F1_Q(C’R,R,k,p) < F? (Crr k,p) —6}. (S15)

As we argued in the proof of Theorem 2 the second and the third terms in (S15) are uni-
formly asymptotically negligible. Due to statement (S14) and the fact that ¢ (r) has uniformly
bounded density, the first term in (S15) can be made uniformly asymptotically bounded by any
value larger than « by way of choosing small € > 0, since 3, — 0 uniformly over M. We are
left only to prove that for some choice of 7 the last term in (S15) is uniformly asymptotically
negligible. We choose r = (1 — 0) R for small § > 0.

First, we note that the distribution of random variable ¥¢(R), which is defined in equation
(8) in the paper, is uniformly continuous in R, thus we can always choose ¢ small enough that
supc | Fi—a(C, R, k,p) — F1_o(C, 1, k,p)| < e/2. It is then enough to show that

1 ~ 1
lim sup P {FIQ_Q(C’R,R, k,p) < F? (Cr, R, k,p) — 6/2} =0.

n—oo M
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Given the monotonicity of Fi_,(C, R, k,p) it is enough to show that for any e > 0 (where we
choose d above so that § < e2/R) we have Cr < C} + e2 with probability arbitrarily close to 1
uniformly over M in large samples.

Let ¢ = Aqg*, where A = 251/221/2. Note that ¢* € S* is equivalent to g € i;l/zg. Now
let § € B, again defined as || — 251/267”” < (1++2)R. We have that § — S, %0 = Ag* =&,
Given that A uniformly converges to I and £ — &, uniformly converges to zero, we have that

AB; C B r with probability arbitrarily close to 1 in large samples, which in turn implies

max  kz(X, 2 S) > max kg(Zn
i o1
Gex, 2SN Br Ges, 2SN AB;

[SIE
=

S). (S16)

In the proof of Theorem 2 we showed that for ¢* € S* and ¢ = Ag¢* € §;1/2§ we have that

|kg= (S*) — /ﬁg(f);lﬂg)\ converges to zero uniformly over points ¢* at which curvature is below a
fixed constant and over M. Hence, asymptotically (for any €3 > 0) with probability arbitrarily
close to 1 we have.

e
gex, 2SN AB:

(SIS

S)> max ki(S*)—¢

)_q*eS*ﬂB;f q( ) 3
Joining this last inequality with (S16) and the definitions of C} and C~'R, we arrive to the
conclusion that for any positive €2 and any probability arbitrarily close to 1, there exists a
sample size such that Cp < C? +¢2 holds with at least this probability uniformly over M. This

concludes the proof of Theorem S1.

S5 Proof of Lemma 3

For ease of reference, we repeat some definitions from Section 4.2 of the paper. For J be a
subset of indexes {1,...,p}, let B; denote the corresponding elements of 3, and let S_; denote
the remaining elements. Let U_; and Ujy(B_;) denote {3_; : 38; € RV s.t. (8;,5_;) € U}
and {8y € RV : (85, 6_7) € U)}, respectively. Let J be a collection of subsets .J.

Lemma 3 Assume that 0 ~ N(6y,%), and that S* = {Z_l/QQ(ﬁ),ﬁ ERP} C RFisa
manifold passing through 0y. For J € J and B_j; € U_; consider the |J|-dimensional sub-

manifold

S*(By) ={%7Y?6(87,8-1), B1 € Us(B-1)}.
For q € S*(B_) let kqo(S*(B-1)) be the curvature of the |J|-dimensional sub-manifold S*(B_ 7).
Define
C7= inf inf _
T B gest B Rg(SH(B-)))
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to be the inverse of the mazximal curvature with respect to sub-parameter Sj only, where the
magzimum is taken over all |J|-dimensional sub-manifolds S(B—_y). Assume that for B_ ;o the
true value of B—j, S(B-10) = {:c — 27%00 ix € S*(B,Jp)} satisfies Assumption 1 with C = C'7.
Then the test which rejects the null if and only if MD > Fy_o(C%,k,|J|) has size at most cv.
In fact, we can minimize the critical values over J, and the test which rejects if and only if

MD > minjey F1-o(C7, k,|J|) has size at most o.

Critical values F_(C7, k, |J|) may be smaller than those based on the full parameter vector
due to smaller curvature, or larger since |J| < p. Note, however, that so long as J includes
the full set of indices {1, ..., p}, minimizing critical values over J can only decrease our critical
values relative to the baseline procedure. Moreover, this modification may be freely combined
with that in the previous section, allowing us to simultaneously restrict attention to a finite ball
around @ and calculate curvature over only a subset of parameters.

To formalize this statement, for J € J we recall the following notation from Section 4.3 of

the text:

2,0) =542 0(6), Vigg(8) == 2
! B, 0Bi0B;

Vi (B) =(I = Z;(B)(Z1(B) Z1(8)) "' Z1(B))WV1i5(B) = Nz, (8) Vs
where i,j € J. The inverse of the maximal curvature over subset J and ball Br(7) = {x :

|z — $720|| < (1+V2)R} is

0(/8)7

1ZsBwl®
[y wies Vit (8)|

Cip= inf inf
BeU:T~30(8)eBR(z) (Wir-w|s)ERII

Lemma 3 follows from the following Lemma, setting R = oo.

Lemma S2 Assume that 0 ~ N(0o,%), and that S* = {E’l/QH(ﬁ),ﬁ eERP} C RFisa
manifold passing through 6y. Let S*(B-7) and Cjr be defined as above. If for all J € J we
have that S*(B_;0) satisfies Assumption 1 for Cy; A R with Cj as defined below, then the test

which rejects if and only if
MD min F; —« C* 5 R, k?, J
> Jelj 1 ( J,R | |)

has size not exceeding o

Proof of Lemma S2 Let S = {S~Y2(0(8) — 6y),3 € U} C R* be the infeasible manifold
passing through zero. Assume that [y is such that 6(5y) = 6p.

Let us take any J € J and consider a |.J|-dimensional sub-manifold

Sy ={2"Y2(0(81,8-10) — o), 8 € Us(B-10)},
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where 3_ ;o denotes the elements of the true structural parameter By corresponding to indices
not in set J. Let Tp(S,) be the tangent space to the manifold S at zero, and let Ty (S;) be
the orthogonal complement to this space. For each R > 0 let us define the cylinder D ;g as a
set of points whose orthogonal projections to Tp(Sy) and T;-(Sy) both have length at most R.
Define C; as Cy = 1/supges,np, , Kq(S7)-

Define J € argminjecs Fi_o(Cy A R, R, k,|J|), where J may be selected arbitrarily when
the argmin is non-unique, and let C = C; A R. Note that neither J or C are random. The value
Fi_o(C, R, k,|J|) is an infeasible critical value which would control the size of the corresponding
minimum distance test. Indeed, all the assumptions of Theorem 1 are satisfied and we have that

almost surely

MD = p*(&,5) < p*(&,595) < p*(&,Njz) < ¥y a6 R).

The first inequality comes from the fact that the distance to a manifold (a set) cannot be smaller
than the distance to a sub-manifold (a subset). The second inequality is the result of Theorem

1 applied to sub-manifold S5, and the last comes defining

pz(é.aNj,ﬂ% if Hﬂ‘ < R;

U6 R) = S
lel®, it gl > R,

where Nj; is defined analogously to set N in Theorem 1 (b) and (c), re-defining (! and z(?
as projections on Tp(S7) and Ty (S ) respectively.

The infeasibility of the critical value Fy_o(C, R, k, |J|) comes from the fact that C' as well as
C'j’s have been calculated using infeasible (and non-random) manifold S. The remainder of the
argument proceeds much as the proof of Lemma 2. In particular we notice that if realization
of random variable ¢ is such that ||£|| > R then the infeasible test rejects anyway. If instead

l€]| < R, then the feasible critical value is almost surely (weakly) larger then the infeasible one:
in F_o(Cy g, R, k,|J]) > min Fi_o(Cy AR, Rk, |J|) = F1_o(C, R, k, | J]).
min I (C) g [71) 2 min Fi_a(Cy [J]) = F1-a( /1)

Indeed, repeating the proof of Lemma 2 for each J € J we get an analog of formula (S13):

C’j r < C; AR, and thus due to monotonicity
Fl—a(CiR’ R7 k? ‘JD Z Fl—a(CJ A Ra Ra k;7 |J|)7

which implies the required statement. [J
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S6 Proof of Lemma 1

Lemma 1 Let the p-dimensional manifold S in R* be defined by S = {z eR*, g(z) =0} for
a continuously differentiable function g : RF — RFP. Assume that zero belongs to S, and
in particular that g(0) = 0. For some C > 0 let S¢ denote the connected component of S
intersected with Do which contains zero. Assume that %g () is full rank for all x € Sc. If
the maximal curvature over Sc is not larger than 1/C, then Assumption 1 stated in the paper
holds. In particular if Ty (Sc) is spanned by the first p basis vectors then for any y) e RP with
lyW|| < C there exists a point x € S¢ with () = ¢,

Proof of Lemma 1 Note that the implicit function theorem implies that S¢ is a p—dime-
nsional regular manifold. Further, S is complete by the continuity of g. Without loss of gen-
erality we assume that Tp (S) is spanned by the first p basis vectors. To prove Lemma 1, we

proceed by induction on the dimension p of the manifold.

Initial Step: p =1 In this case the manifold S is a curve. According to the Hopf-Reinow
Theorem (see e.g. Section 8.2, Theorem 5 in Bishop and Crittenden, 2001), any complete
manifold is geodesically complete and, in particular, any geodesic curve that belongs to S can
be indefinitely extended. Let 7y (t) € S be a geodesic parameterized by arc length with v(0) = 0
and ¢ € [0,00). Denote by v = 4(0) the tangent vector at zero, which is equal the first unit vector
(1,0,..,0) up to sign. The proof of Lemma S2 implies that for ¢ < ZC such that v (s) € Sc
Vs < ¢, we have (v,7(t)) > Csin (§). Thus, we know that for some ¢ < ZC, (v,v (f)) > C.
Notice that (v,7 (t)) is a continuous function of ¢ and (v,7(0)) = 0. The intermediate value
theorem gives us that for any y(l) € [0,C], there exists a t* € [O,ﬂ such that the first coordinate
of y(t*) is (v, (t*)) = yM). Thus, there exists a point € S¢ with () = y(I) and the result

of Lemma 1 holds for p = 1.

Induction Step: Suppose that the conclusion of Lemma 1 holds for all p < p* — 1. Here we
prove that it holds for p = p* as well when k is held fixed and k& > p*.

Consider some y(!) € RP" with ||y™"|| < C, and note that y = ((y(l))/ , Ok_p*), € Tp (So) .
Let v € Ty (Sc) be some unit vector such that v’y = 0. Define new function § : R¥ — RF—P"+1
as g (z) = (g9(z), v’a;),, and consider an new manifold S = {z € R¥, § (z) = 0} . Below we check
that S, the connected part of the new manifold laying strictly inside D¢, is a regular p* — 1
dimensional manifold. In particular, Lemma S3 below states that for any x € S¢ vector v is
not perpendicular to the tangent space T, (Sc). Since the Jacobian of g at a point x forms a

basis of the space T;-(S¢) orthogonal to the tangent space T, (S¢), this statement implies that
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the Jacobian of g(x) is full rank at all € S¢. Thus, by the implicit function theorem Sc is a
regular p* — 1 dimensional manifold, satisfying the rank condition stated in Lemma 1.

From the definition of curvature, it is easy to see that the maximal curvature of S¢ is less
than or equal to % Consequently S¢ is a p* — 1-dimensional manifold which satisfies all the
conditions of Lemma 1. By the definition of g, y € Tp (SC) Thus, by the inductive assumption
there exists some z € S¢ such that z() = y(l). Since S C S¢, we have found an 2 € S¢ such

that (1) = y(l). Thus, Lemma 1 is proved.

Lemma S3 Under the Assumptions of Lemma 1, for any v € Ty (S¢) with ||v]| = 1 and for any
x € Sc, we have that v ¢ T;-(Sc) where T(Sc) is the linear space orthogonal to the tangent
space Ty(Sc).

Proof of Lemma S3 Let v : [0,{] — S¢ be a geodesic parameterized by arc-length con-
necting the points 0y and x: v (0) = 0, vy () = x with ¢ < ZC. Note that we can take t < ZC
since (a) we know that there exists a geodesic in S¢ connecting 0y and = and (b) from the proof
of Lemma S1 we know we can travel at most arc-length 5C along any geodesic from 0 before
exiting the interior of D¢o. The idea of the proof is to choose a unit length vector in the space
T.(Sc) and, by considering parallel transport of v along the curve ~, to prove that this vector
cannot be perpendicular to v. As such v cannot lie in the space orthogonal to T, (S¢).

Let V (¢) : [0,7] — R¥ denote the (unique) parallel transport (or translation) of vector v
along curve 7. V satisfies the conditions V' (0) = v, V(t) € T;)(Sc) and

where V) denotes covariant differentiation in the direction 7 (). The concepts of parallel
transport and covariant differentiation are discussed in most textbooks on Differential Geometry,
see for example Bishop and Crittenden (2001, ch.5).

Let 11 (v,w) be the second fundamental tensor (see Kobayashi and Nomizu (1969, v. 2, ch.

7)), then we have:

9V (1) = VoV (0 + TG (1), V (1) = IT(3 (1), V (1),

Here the regular derivative % is decomposed into the covariate derivative (which belongs to the
tangent space) and the part orthogonal to the tangent space, which by definition is the second

fundamental form. The covariate derivative is zero since V' is a parallel transport.
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Next, note that for any two vectors w,u € T,(S¢) of unit length (|lw|| = ||u|| = 1) we have

1

HII(U)7U)H < /‘336(50) < c (817)

Indeed, the second fundamental form is a bilinear transformation from T,(S¢) X T(S¢) to
TH(Sc). Let n = mfl(w,u) and the consider bilinear form h : T, (S¢) x Tx(S¢c) — R

defined by h(v1,v9) = (II(v1,v2),n). Any bilinear form is diagonalizable, so let v* be the unit

eigenvector corresponding to the largest eigenvalue. Then:

I I(w,u)|| = h(w,u) < h(v*,v") = {II(v*0v"),n) <

< I, v")]| = ka(v, So) < Ka(So),

where k. (v*, S¢) is defined in equation (4) of the paper.
By the definition of parallel transport |V (¢)|| = 1, so as we vary ¢, V (t) traces out a
curve on the unit sphere Sph = {z € R* : [|z|| = 1} . Similar to the proof of Lemma S1, we can

consider the arc-length of the curve V restricted to the interval [0, ],

t

length (t) = / MT G (s),V () [lds < / sas=

where the inequality follows from (S17) applied to the vectors 4(t) and V (¢) (both belong to
Ty (Sc)) and the assumption that maximal curvature does not exceed 5. Thus, the angle

between V (0) and V (¢) is less than or equal to &, and

V(0).V (D) = cos(5).

Thus, for any ¢ € [0,5C), (v, V (f)) = (V (0),V (£)) > 0. Since V (£) € T;(Sc), however, this

immediately implies that v ¢ T3, as we wanted to show. (J

S7 Weak Identification and Nonlinearity

In this section we note that sequences of models which are weakly identified in the sense of Stock
and Wright (2000) generate asymptotically nonlinear null hypothesis manifolds. It is important
to emphasize that this discussion is solely for motivation and that the validity of our method
does not rely on the Stock and Wright (2000) embedding.

Consider a GMM model in which the moment function is additively separable in the data.

In particular, assume that we observe a sample {z;} of size n consisting of identically and
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independently distributed observations such that
E(h(z;) —0(A,8)) =0 for A= Ao, B=fo.

Here 6y = Eh(z;) is a k-dimensional reduced-form parameter, while A\ and 8 are p, x 1 and
pp x 1 vectors respectively, with py +pg < k. Assume that (Ao, fo) is the unique point at which
the moment condition is satisfied, so the model is point identified. As in Stock and Wright

(2000), we allow the function 6(\, 8) to change as the sample size grows. In particular, let

B(, B) = Ba(\ ) = DI(N) + \}EM*(A, 8),

where M(A) and M*(), B) are fixed twice-continuously-differentiable functions with full-rank
Jacobians. Stock and Wright (2000) labeled A as strongly identified and (3 as weakly identified,
because information about 5 does not accumulate as the sample size grows.

Suppose we are interested in testing hypotheses about the structural parameters A and 5.
Consider first the problem of testing the hypothesis Hy : 5 = [y with strongly identified nuisance

parameter A\. The appropriate minimum distance test statistic is

MD(Bo) = minn [ =37 hlws) — 0a(r o) | 57 S i) — X ) )
A n n -

where ¥ is the covariance matrix of random vector h(z;) (which we take to be nonsingular) or
a consistent estimate thereof. Under the null M D(Sy) = xi_pk. Interested readers may find
a full proof of this result in Stock and Wright (2000): here, we instead show that this testing
problem is asymptotically equivalent to a testing problem with linear S.

Define &, = \/52_1/2(% > h(x;) — 0,(Xo, Bo)). By the central limit theorem, &, = § ~
N(0,Ix). Let the manifold S,, be the image of the function

mn(N) :\/7712*1/2(%()\,50) —0n(Xo, Bo)) =
=/nE V2 (M) — M(Xo)) + S™V2(M* (N, Bo) — M*(Mo, Bo)) =

=/ V2(M(A) — M(Xo)) + O(||A = Xol])-

Then M D(Bo) = p?(&n,Sn). Under standard conditions for global identification, the value of
M (M) is in a small neighborhood of M (Ao) only if X is close to A\g. Under such conditions one
can easily show that the range of values of A such that m,(\) € S, (B is of order 1/+/n for any

bounded set B containing zero. Consequently, Taylor approximation shows that the intersection
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Sp (B converges to the intersection of B with the py-dimensional linear sub-space S spanned
by the columns of the Jacobian of M (M) at point A\g. Informally, we may say that due to the
factor v/n in the equation for m,,, as the sample size increases we zoom in on an infinitesimal
neighborhood of the true value Ay of the strongly identified nuisance parameter. Any regular
manifold, however, is arbitrarily well approximated by its tangent space on an infinitesimal
neighborhood of a regular point. As a result, it is easy to show that p?(&,,S,) = p%(&,S) ~
X7 —py-

Tests for hypotheses with weakly identified nuisance parameters behave quite differently. In
particular, the curvature of a null hypothesis with a weakly identified nuisance parameter does
not in general vanish asymptotically. To illustrate this point, assume that the hypothesis of
interest is Hp : A = Ao, so that 3 is a weakly identified nuisance parameter (one could equally
well consider cases where the parameters of interest and nuisance parameter both contain a
mix of weakly and strongly identified components: this will somewhat complicate the analysis,
but will in general lead to similar conclusions). Again, we consider the appropriate minimum

distance statistic:

/
(1 (1
MD(s) = mjnn (n > () = 6a o B)) 5 (n S - enuo,ﬂ)) -
Define &, = \/772_1/2(% > h(xi) — 0,(No, Bo)) as before and let S, be the image of

M (B) = VAE V28,00, B) — 0n(No, Bo)) = S™HY2(M* (N, B) — M*(No, Bo))-

By construction, Sy, is a pg-dimensional manifold in k-dimensional Euclidean space. In contrast
to the strongly identified case, however, here S, does not change with the sample size so we
may denote it by S. Hence, if S, is nonlinear for a given sample size, it remains nonlinear in

the limit. As a result, we have that
MD(Xo) = p* (&, ) = p°(&, 5),

where £ ~ N (0, I;) and S is a pg-dimensional manifold but is not in general a linear sub-space.

S8 DSGE Example

This section studies a highly stylized DSGE example which, unlike most DSGE models used in
practice, is analytically tractable. Using this model we show that insufficiently rich dynamics for

unobserved processes give rise to weak identification. We consider minimum-distance inference
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based on matching the auto-covariances 6 of the observed series. We show that the link function

has the asymptotic representation

On(P) = m(B1) + \/1?177’0(51,52) +0 (i) .

where 81 and (9 are four- and two-dimensional transformations of the structural parameter,
respectively. Thus, the structural parameter 5o has only a small effect on the reduced-form pa-
rameter 0, and is weakly identified in the sense of Stock and Wright (2000) and thus impossible
to estimate consistently. It is important to note that we do not assume this asymptotic repre-
sentation, but rather derive it as a consequence of the drifting-parameter asymptotics. The key
consequence from our perspective is that we can asymptotically linearize the link function with
respect to f1, but the non-linearity in B2 remains important even in large samples, rendering
classical approaches to inference inapplicable.

Assume we observe data on inflation 7y and a measure of real activity x; for periods t =
1,...,mn. Suppose the dynamics of the data are described by the following small-scale model

based on Clarida, Gali and Gertler (1999):

bEimi1 + ko — w1 + 64 =0,
—[re — Eymip1 — pAay] + Eyxyy — a4 = 0, (S18)
A1+ (L= N ame + (1 — XN)daxe + up = 14,

The first equation is a Phillips curve, the second is a linearized Euler equation and the third is
a monetary policy rule. We assume that the interest rate r; is not observed. The unobserved

exogenous shocks Aa; and uy are generated by the following law:

Aa; = pAai_1 +eqp; U = OUs—1 + Eut; (S19)

(ets€atyut) ~ 1id N(0,X); X = diag(02, 02,05).

This is a small scale DSGE model and contains elements of many more sophisticated models
used in practice. To solve the model analytically we make several further assumptions, taking
A=0,0, = 0,0 = % and 02 = 0. The model then has six unknown scalar parameters:
(b, K, p, 8,02, 02). Under these assumptions the model (S18) is solved in Andrews and Mikusheva

(2014a). The solution can be written as

x¢ = Biug + BapAay; (520)

K

T = ﬁBlUt + ?MBQPAah
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where B = — g and By = pt—p.

Andrews and Mikusheva (2014a) shows that if the persistence of two shocks is equal, § = p,
then the model is underidentified and only four-dimensional function of the initial parameters
can be uncovered from data. If § = p + % then the model is weakly identified, where the
concept of weak identification is the same as in D. Andrews and Cheng (2012).

Specifications for shock dynamics in macroeconomic models are often ad-hoc. At the same
time, identification of structural parameters often requires that the dynamics of the data be
sufficiently rich, which cannot be guaranteed a priori. As in the model (S18), insufficiently rich
dynamics may lead to identification failure for structural parameters. As we show in Andrews
and Mikusheva (2014b) for sample sizes typical in macroeconomic research a difference of 0.2
or less between p and ¢ leads to unreliable performance for conventional asymptotics in the
model (S18). To study the consequences of weak identification, we consider a drifting sequence

of parameter values, §, = p + % for bounded . Define:

b b
Ay=—— pAayand Uy = —————
P R T T T e
and o = =5, 1 = 11—2)1). Then (S20) can be re-written as
xe = Ay + U

e = aAs + 5 Uy,

n

where A; and Uy are independent AR(1) processes with autoregressive coefficients p and p+ in,
respectively. For analytic tractability we re-parameterize from the initial 3 = (b, x, p,v, 02,02)
to B = (p,7, @, 1y Xa, Bu), where B, = Var(4;) = (H%Lpb)2 %0‘2, Yu = Var(Uy) =
(ﬁf ﬁag. This re-parametrization is one-to-one if 0 < p,§,b < 1, v # 0.

We study inference based on matching the contemporaneous covariances and first-order
auto-covariances of (x4, 7). We choose the reduced-form parameter € in such a way that its
estimator @ is consistent and V/n-asymptotically normal. Note that for reasonable estimators for
the variance of § our measure of curvature and our proposed critical values are all invariant to
linear transformations of the reduced-form parameters. Further, note that while for any sample

size the covariance matrix for the natural autocovariance estimator is full rank almost-surely,

it is degenerate in the limit. To simplify the analysis we eliminate this degeneracy by taking a
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linear transformation of the reduced-form parameters, and in particular define o = g+ % and

Oz()—i-%
yr = Vn(m — apxy) = YA+ Ui/n 1= Qo | =
N
ZT/JAt+Ut< QPM + 040/1#>.
[ Y
NG vn

By the invariance of the minimum-distance test (using conventional autocovariance estimators)
to linear transformation of the reduced-form parameters, the finite-sample distribution of the
test derived using the linearly transformed moment condition is the same as that of the original
minimum-distance statistic. This transformation is made purely to simplify the derivations, and
the fact that the transformation depends on the true parameter value ay is irrelevant. Following

this transformation, we can see that the minimum distance statistic depends on the moments:

Yo+ 20
Var(zy) 2
V280 + | o + 2% ) 2,
Var(y) v v
P aop
9, = cov(xt, yt) _ ¥+ -7 * ‘Oﬁ S
= —
cov(xy, xp—1) pXa + (p+ %)Zu
2
covy: Ye-1) WS+ (T + 2% ) (0 + R
(20 90-1) S
Cov(Tt, Yt—1
Up¥a+ (T +12% ) (04 Jp)%

One can easily check that the natural estimate of 6, by the corresponding sample averages is
consistent and /n-asymptotically normal with a consistently estimable covariance matrix under
mild parameter restrictions (e.g. ruling out unit roots). Further, the asymptotic variance matrix
is bounded and positive definite provided we bound 3, and ¥,, above and below. Under these

conditions one can show that for any sequence of constants ¢, — oo,

A~ o~ ~

inf (B — 00(8))'S(0n — 0n(B)) —p 00

151 =cn

Thus, to study the asymptotic behavior of minimum distance statistics it suffices to restrict
attention to /3 lying in bounded neighborhoods.

The link function between the reduced-form parameter 6, and the structural parameters
B = (b,k,p,7,02,02) depends strongly only on a four-dimensional function of 3, while the

dependence on the other two directions is weak. To be exact, there exists a re-parametrization

(51, B2) such that 1 and B2 are four- and two-dimensional functions of 3, respectively, and the
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structural model implies:

On(B8) = m(B1) + \}ﬁm(ﬁl, Ba) +O(1/n). (S21)

Link functions of this form are often described as the Stock and Wright (2000) embedding. It
is important to note, however, that we do not assume this embedding but rather find that it

emerges naturally from the drifting parameter framework.

To establish (S21) note that

0n = m(F) + %m(@) +0(1/n),

uniformly over bounded neighborhoods, where

Sy + D 0
V80 + (¢ + aop)?Sy 2(¢) + aop)? uEy
m(F) = PYEq + (Y + aop) Sy () = (¥ + aop) pXu
p(Eq + ) V2
p(V°Za + (¢ + aop)*Ly) (¢ + aop)?Su(y + 2p1)
p(VEq + (Y + aogp)Xy) (¥ + cop) Xu(y + pp)

It is easy to see that m(B) depends only on a 4-dimensional function of B: B = (p,S =

Yo+ X, Z = ’Z’QE“E(;”:SS“)QE“ W = w2“+£2b:§3”)2“). This picks out the "strongly identified"

directions in the parameter space: note that we can obtain y/n consistent estimates of these
parameters. However, there is a two-dimensional surface in the parameter space along which
we can vary the parameters while affecting only m. We will parameterize this surface in terms
of (B2, and show that the manifold obtained from m(81, 82) for fixed 1 and different values of
(B2 is non-linear.

Note that the function m does not depend on <, so we can take this to be one of the
parameters in B2. The other parameter can be chosen as ¢ = aou%. In particular, the
re-parametrization from (¢, p, v, i, Xa, X4) to (p, S, Z, W, 7,<) is one-to-one, but the m function
depends only on the first four parameters of the latter parametrization. From the definition of
W we have ¢y = W —¢. From the definition of Z
Z—W?+¢?

SQo

* + 260 + agus = Z, or =
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and finally from the definition of ¢

and X, =5 — X,.

Re-writing m using the new parametrization, we obtain

0
2S(Z—W2+Wc)2
aos
S(Z—-W?2+W5)
m(ﬂ) = aocz
VS g
(Z-W2+cW)? Z-W242
S Z?W2+§2 (’7 + 2p Sa s )
(Z-W2+sW)s Z—W?24¢2
S Z—W2+§2 (’Y + 2p Sap s )

For fixed p, S, Z, W the two dimensional manifold obtained by allowing 7, ¢ to vary is non-linear.

Changes in 2 = (7,¢) produce changes in 6, of magnitude comparable to the standard
deviation of 5, which makes it impossible consistently estimate (o, while 51 can be estimated
precisely in large samples. In the literature it is common to call the parameter 5 “strongly
identified” in this setting, while B2 is called “weakly identified.” The key fact for us is that as
the sample size increases we can linearize link function with respect to 51 with asymptotically
negligible error while the same is not true for S2. This can be viewed as a reflection of the
fact that the minimum-distance estimator of 31 is close to the true parameter value asymptot-
ically, and thus we can guarantee that the remainder term in a first-order Taylor expansion is
asymptotically negligible. By contrast, the minimum-distance estimator of £2 is not consistent
for B2, making Taylor approximation inaccurate. Thus, minimum-distance statistics for testing
hypotheses concerning a subset of 81 or the hypothesis of correct specification of the DSGE
model will have non-standard asymptotic distributions.

This example also highlights some features of the weak identification embeddings currently
studied in the literature. In the present context we can label particular functions of the parame-
ters (1 and f2) as “strongly” and “weakly” identified, respectively, but these functions relate to
the original structural parameters in rather complicated ways. The “strength of identification”,
or more precisely the quality of conventional asymptotic approximations, depends heavily on
the specific hypothesis tested. Further, existing weak identification approximations are silent
about what sample size is needed to guarantee a given accuracy for conventional asymptotic
approximations, even when we know that the limiting distribution of a test is standard. Finally,

we can see that even in this simple highly stylized model, deriving the weakly and strongly
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identified directions in the parameter space is messy, and such derivations will be difficult if not

impossible in richer, more empirically relevant models.
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