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Abstract

We study how discounting and monitoring jointly determine whether cooperation

is possible in repeated games with imperfect (public or private) monitoring. Our main

result provides a simple bound on the strength of players’ incentives as a function

of discounting, monitoring precision, and on-path payoff variance. We show that the

bound is tight in the low-discounting/low-monitoring double limit, by establishing a

public-monitoring folk theorem where the discount factor and the monitoring structure

can vary simultaneously.
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1 Introduction

Supporting non-static Nash outcomes in long-run relationships requires two ingredients.

Players’actions must be monitored, so that future play can depend on current behavior.

And players must be patient, so that variation in future play can provide incentives. The

current paper asks how to measure these ingredients, and how much of each is required.

We find that if the ratio of the discount rate and the “detectability”of deviations is large,

then all repeated-game Nash outcomes are static ε-correlated equilibria (Theorem 1); and if

the ratio of discounting and detectability is small, then, under public monitoring, all payoff

vectors that Pareto-dominate static Nash payoffs can be attained as perfect equilibria in the

repeated game (Theorem 2).

Our paper is in the tradition of the folk theorem for repeated games with public mon-

itoring (Fudenberg, Levine, and Maskin, 1994; henceforth FLM), but Theorem 1 allows

arbitrary (possibly private) monitoring, and both Theorems 1 and 2 concern the tradeoff be-

tween discounting and monitoring precision, rather than the classical limit where discounting

vanishes for fixed monitoring. A similar tradeoff between discounting and monitoring arises

in repeated games with frequent actions (Abreu, Milgrom, and Pearce, 1991; Sannikov and

Skrzypacz, 2010; henceforth SS), but we do not parameterize the game by an underlying

continuous-time signal process, and instead view the frequent-action limit as a particular

instance of a low-discounting/low-monitoring double limit. Our results do have implications

for games with frequent actions, as well as other applications. These include games with

many players, where a large population of players are monitored by a noisy aggregate signal;

and the question of the rate of convergence of the equilibrium payoff set as discounting and

monitoring vary. We discuss these applications at the end of the paper and pursue them

further in companion papers (Sugaya and Wolitzky, 2023a,b).

Our negative result (Theorem 1) involves some new ideas. First, we focus on overall mon-

itoring precision, rather than how signals are distributed among the players. Specifically, we

consider the blind game ΓB associated to any repeated game Γ, where the signals that were

observed by the players in Γ are instead observed by a neutral mediator. We interpret ΓB

as the repeated game where society has the same amount of information as in Γ, but this
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information is distributed so as to support a maximally wide range of equilibrium outcomes.

Theorem 1 provides a necessary condition for cooperation in ΓB. A fortiori, the same con-

dition applies for Γ itself, as well as for any other repeated game where the same signals are

distributed differently– that is, for any repeated game with the same blind game.

Second, we measure the average strength of a player’s incentives over all histories that

arise in the course of the game. This notion is captured by a player’s maximum deviation gain

at the occupation measure over actions induced by an equilibrium. Here our approach con-

trasts with earlier work that analyzes incentives history-by-history (e.g., Fudenberg, Levine,

and Pesendorfer, 1998; al-Najjar and Smorodinsky, 2000, 2001; Awaya and Krishna, 2016,

2019). It yields sharper results, because sometimes an equilibrium can be constructed that

provides strong incentives at a particular history by letting continuation play depend dispro-

portionately on behavior at that history, but such a construction necessarily provides weaker

incentives at other histories.

Third, we measure the detectability of a deviation by the χ2-divergence– the variance of

the likelihood ratio difference– of the signal distribution under the deviation from that under

equilibrium play. The χ2-divergence is a standard measure of statistical distance.1 As we

explain in Section 2, this measure enters the analysis because supporting effi cient payoffs in

repeated games requires minimizing the variance of continuation payoffs subject to incentive

constraints, and this minimum variance is inversely proportional to the χ2-divergence.

In total, Theorem 1 may be summarized as stating that, for any repeated game Γ, any

Nash equilibrium outcome in the associated blind game ΓB, and any possible deviation by

any player, we have

deviation gain ≤
√

δ

1− δ (detectability) (payoff variance),

where the deviation gain, detectability (measured by χ2-divergence), and payoff variance are

all assessed at the equilibrium occupation measure. The proof relies on a simple but novel

1Several other standard measures (e.g., total variation distance, Kullback-Leibler divergence) are equiva-
lent to χ2-divergence up to a constant under a non-moving support assumption, and hence are equally valid
for characterizing the tradeoff between discounting and monitoring in the low-discounting/low-monitoring
double limit. However, our proofs and intuition rely on χ2-divergence, and our non-asymptotic results are
strongest under this measure. See footnote 11 for details on this point.
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variance decomposition argument. The idea is that, if deviating from non-static Nash play is

unprofitable, then signals must vary significantly with actions, and continuation payoffs must

vary significantly with signals; and, moreover, this payoff variation must arrive relatively

quickly due to discounting. Theorem 1 shows that recursively decomposing continuation

payoffs across periods tightly bounds the strength of players’incentives.2

Our positive result (Theorem 2) is a partial converse to Theorem 1. It shows that, under

public monitoring, the tradeoff between discounting and monitoring expressed in Theorem 1

is tight up to constant factors in the low-discounting/low-monitoring double limit. Theorem

2 is an extension of the folk theorems of FLM, Kandori and Matsushima (1998; henceforth

KM), and SS. It generalizes FLM and KM by letting discounting and monitoring vary simul-

taneously, and it generalizes SS by considering the general low-discounting/low-monitoring

double limit, rather than parameterizing monitoring by an underlying continuous-time signal

process.3 A limitation of Theorem 2 is that it assumes that monitoring has a product struc-

ture. This assumption facilitates an easy comparison with Theorem 1, but it is overly strong

from the perspective of prior work such as FLM, KM, and SS. However, we prove Theorem

2 as a corollary of a more general result, Theorem 3, which we present in the appendix, and

which does not assume product structure monitoring.

The tradeoff we find between discounting and monitoring has a clear interpretation.

In probability theory, the sum of the conditional variances of a martingale’s increments is

often a useful measure of the “intrinsic time”experienced by the martingale (Dubins and

Savage, 1965; Freedman, 1975). Analogously, our results show precisely that repeated-game

equilibrium play is approximately myopic if players are impatient, and a folk theorem holds

if players are patient, where patience is measured relative to the intrinsic time experienced

by a martingale with likelihood ratio difference increments, rather than calendar time.

2We emphasize that this bound applies for any repeated-game Nash equilibrium, regardless of whether
monitoring is public or private, despite the well-known fact that the equilibrium payoff set with private
strategies or monitoring generally lacks a tractable recursive structure (Kandori, 2002).

3We also allow any number of players, while SS consider two-player games.
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2 Preliminaries

The Repeated Game. We consider discounted repeated games with imperfect monitoring.

A stage game G = (I, A, u) consists of a finite set of players I = {1, . . . , N}, a finite

product set of actions A = ×i∈IAi, and a payoff function ui : A → R for each i ∈ I. Let

ū > 0 denote an upper bound on the range and magnitude of any player’s stage-game payoff:

e.g., take ū = maxi,a 2 |ui (a)|. We denote a (possibly correlated) distribution over action

profiles by α ∈ ∆ (A), and denote the set of such distributions resulting from independent

mixing by ∆∗ (A) = ×i∈I∆ (Ai). For any action profile distribution α ∈ ∆ (A), we let

ui (α) := Ea∼α [ui (a)] and Vi (α) := Vara∼α (ui (a)) denote the mean and variance of player

i’s payoff under α.

Amonitoring structure (Y, p) consists of a finite product set of possible signal realizations

Y = ×i∈IYi and a family of conditional probability distributions p (y|a), which we assume

have common support Ȳ ⊆ Y : that is, for each y, a, we have p (y|a) > 0 iff y ∈ Ȳ . This

non-moving support assumption excludes perfect monitoring (where yi = a with probability

1 for all i). Throughout, whenever we take a sum over signals y, this sum should be read as

being taken over Ȳ rather than Y , so that 0-probability signal profiles are excluded.

A repeated game Γ = (G, Y, p, δ) is described by a stage game, a monitoring structure,

and a discount factor δ ∈ (0, 1). In each period t = 1, 2, . . ., (i) the players take actions

(ai)i, (ii) the signal y = (yi)i is drawn according to p ((yi)i | (ai)i), and (iii) each player i

observes yi. Players remember their own past actions, so a history for player i takes the

form hti = (ai,t′ , yi,t′)
t−1
t′=1, and a strategy σi for player i maps histories h

t
i to distributions over

actions ai,t. Players maximize discounted expected payoffs with discount factor δ.

An outcome µ of the repeated game is a distribution over infinite paths of actions and

signals, (A× Y )∞. Each strategy profile σ induces a unique outcome µ.

The monitoring structure is said to be public if yi = yj for all y ∈ Ȳ , i, j ∈ I. When con-

sidering public monitoring, we omit the player subscript on y. In addition, public monitoring

has a product structure if there exist sets (Y i)i∈I and conditional probability distributions

(pi (·|ai))i∈I on (Y i)i∈I such that Y = ×i∈IY i and p (y|a) =
∏

i∈I p
i (yi|ai) for all y ∈ Y, a ∈ A.

Thus, with public, product structure monitoring, yi is a conditionally independent signal of
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player i’s action ai (not to be confused with the signal observed by player i under a general

monitoring structure, which is denoted by yi).

The Blind Game. For any repeated game Γ, the set of outcomes µ that are induced

by any Nash equilibrium σ (or moreover by any communication equilibrium, as in Forges,

1986) is smaller than the set of outcomes that are induced by a Nash equilibrium in the

corresponding blind game. The blind game, which we denote by ΓB, is a variant of Γ where

(i) the players have access to a neutral mediator, (ii) at the beginning of each period, the

mediator privately recommends an action ri ∈ Ai to each player i, and (iii) at the end of

each period, the mediator observes the signal y (which continues to be drawn according

to p ((yi)i | (ai)i)), while the players observe nothing. Players remember their own past

actions, while the mediator does not observe the players’actions. Thus, a history for player

i in the blind repeated game ΓB (just before taking her period-t action) takes the form

hti =
(
(ri,t′ , ai,t′)

t−1
t′=1 , ri,t

)
, and a history for the mediator (just before making the period-t

recommendations) takes the form ht0 =
(
(ri,t′)i , (yi,t′)i

)t−1

t′=1
. A strategy σi for player i maps

histories hti to distributions over actions ai,t; a strategy σ0 for the mediator maps histories

ht0 to distributions over recommendation profiles (ri,t)i. By standard arguments (similar to

Forges, 1986), any outcome µ that is induced by a Nash or communication equilibrium in Γ

or ΓB is also induced by a Nash equilibrium in ΓB where the players are obedient : i.e., they

follow the mediator’s recommendations on path. Our necessary conditions for cooperation

(Theorem 1) apply for ΓB, and hence apply a fortiori for Γ.4

Occupation Measures. Given an outcome µ, let αµt ∈ ∆ (A) denote the marginal

distribution of period-t action profiles under µ, and define αµ ∈ ∆ (A), the occupation

measure over action profiles induced by µ, by

αµ (a) = (1− δ)
∞∑
t=1

δt−1αµt (a) for all a ∈ A.

The occupation measure αµ describes the “discounted expected fraction of periods”where

4A special type of blind game arises in Sugaya and Wolitzky (2017). There, we consider games with
universal monitoring, which are blind games ΓB where the underlying game Γ has perfect monitoring.
Universal monitoring supports the widest range of equilibrium outcomes among all monitoring structures.
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each action profile is played in the course of the repeated game. Note that the payoffs under

an outcome µ are determined by the occupation measure αµ, as

(1− δ)
∑
t

δt−1
∑
a

αµt (a)u (a) =
∑
a

(1− δ)
∑
t

δt−1αµt (a)u (a) =
∑
a

αµ (a)u (a) = u (αµ) .

In other words, the occupation measure is a suffi cient statistic for the players’payoffs.

Manipulations. A manipulation for a player i is a mapping si : Ai → ∆ (Ai). The

interpretation is that when player i is recommended action ai, she instead plays si (ai).

The gain from a manipulation si at an action profile distribution α ∈ ∆ (A) is

gi (si, α) =
∑
a

α (a) (ui (si (ai) , a−i)− ui (a)) .

For any ε > 0, an action profile distribution α is a static ε-correlated equilibrium if gi (si, α) ≤

ε for all i and si.

For any α ∈ ∆ (A), let p (y|α) =
∑

a α (a) p (y|a). We define the detectability of a

manipulation si at an action profile distribution α as

χ2
i (si, α) =

∑
a,y

α (a) p (y|a)

(
p (y|a)− p (y|si (ai) , a−i)

p (y|a)

)2

.

When α (a) = 1 for some a ∈ A, this is the χ2-divergence of the probability distribu-

tion p (·|si (ai) , a−i) from the distribution p (·|a). (The definition extends linearly for non-

degenerate α.) The χ2-divergence is a standard measure of statistical distance. Note that it

is well-defined by our non-moving support assumption.5

We emphasize that manipulations, gain, and detectability are all “static” concepts, in

that they are defined relative to a single action profile distribution and (for detectability) a

single draw from the monitoring structure.

Remark 1 Why does χ2-divergence arise in our analysis? The χ2-divergence equals the vari-

ance of the likelihood ratio difference between p (·|a) and p (·|si (ai) , a−i). The likelihood ratio
5Recall that we have also assumed that Y is finite. Theorem 1 goes through when Y is infinite, provided

that χ2i (si, α) is finite for all i, si, α.
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difference (p (y|a)− p (y|ãi, a−i)) /p (y|a) determines the “strength of incentives”provided by

rewards or punishments that are conditioned on the arrival of signal y (Mirrlees, 1975; Holm-

ström, 1979). Since the expected likelihood ratio difference∑
y p (y|a) ((p (y|a)− p (y|ãi, a−i)) /p (y|a)) equals 0, the likelihood ratio difference is “often

large”– so the signal is a useful basis for incentives– if and only if its variance is large.

More concretely, χ2-divergence arises in Theorem 1 by applying the Cauchy-Schwarz in-

equality to an expression similar to

∑
y

(p (y|a)− p (y|si (ai) , a−i))wi (y)

=
∑
y

p (y|a)

(
p (y|a)− p (y|si (ai) , a−i)

p (y|a)

)
(wi (y)− E [wi (ỹ)]) ,

where wi (y) denotes player i’s continuation payoff following signal y. This expression is

the loss in player i’s expected continuation payoff when she manipulates according to si at

action profile a. For the inner product 〈X, Y 〉a =
∑

y p (y|a)X (y)Y (y), Cauchy-Schwarz

upper-bounds this loss by √
χ2
i (si, a) Var (wi (y)).

Thus, χ2-divergence and continuation payoff variance must both be large to deter manipula-

tions.

Conversely, χ2-divergence arises in Theorem 2 because the smallest χ2-divergence χ2
i (si, a)

among manipulations si that always disobey the recommendation ai is equal to the amount

of slack in a standard statistical identifiability condition for the folk theorem with imperfect

public monitoring.6

An intuition for why Theorems 1 and 2 are near-converses is that Cauchy-Schwarz is tight

when the likelihood ratio differences (p (y|a)− p (y|si (ai) , a−i)) /p (y|a) and the continuation

payoffs wi (y) are co-linear, and making these quantities co-linear minimizes continuation

6See Lemma 3 in Appendix A for a formal statement.
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payoff variance subject to incentive compatibility. That is, the solution to the program

min
wi:Ȳ→R

∑
y

p (y|a) (wi (y)− E [wi (ỹ)])2

s.t.
∑
y

(p (y|a)− p (y|si (ai) , a−i))wi (y) ≥ 1− δ
δ

(ui (si (ai) , a−i)− ui (a))

is given by

wi (y)−E [wi (ỹ)] =
1

χ2
i (si, ai)

×1− δ
δ

(ui (si (ai) , a−i)− ui (a))×p (y|a)− p (y|a′i, a−i)
p (y|a)

for all y.

Moreover, the minimum continuation payoff variance is inversely proportional to the χ2-

divergence:

∑
y

p (y|a) (wi (y)− E [wi (ỹ)])2 =
1

χ2
i (si, ai)

×
(

1− δ
δ

(ui (si (ai) , a−i)− ui (a))

)2

. (1)

In turn, minimizing continuation payoff variance maximizes effi ciency when continuation

payoff movements are small and are approximately confined to the boundary of a smooth set

of payoffs, which is the most effi cient way to provide incentives in repeated games with public

monitoring (FLM; Sannikov, 2007).7

3 Bounding Equilibrium Incentives

Our main result bounds a player’s gain from a manipulation as a function of the discount

factor, the detectability of the manipulation, and the variance of the player’s payoff, where

gain, detectability, and variance are all assessed at the equilibrium occupation measure. As

a consequence, every repeated-game equilibrium occupation measure is a static ε-correlated

equilibrium, and every repeated-game equilibrium payoff vector is a static ε-correlated equi-

7The χ2-divergence is closely related to the Fisher information. If ai were a continuous variable, the

Fisher information would be defined as
∑

y p (y|a)
(

∂
∂ai

p (y|ai, a−i) /p (y|a)
)2
, which is a local χ2-divergence.

Fisher information arises in moral hazard problems with quadratic utility (Jewitt, Kadan, and Swinkels,
2008; Hébert, 2018) or frequent actions (Sadzik and Stacchetti, 2015), as well as in some career concerns
models (Dewatripont, Jewitt, and Tirole, 1999), because these problems likewise involve minimizing the
variance of rewards subject to incentive compatibility.
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librium payoff vector, for ε > 0 given by the bound.

Theorem 1 For any Nash equilibrium outcome µ in ΓB, any player i, and any manipulation

si, we have

gi (si, α
µ) ≤

√
δ

1− δχ
2
i (si, αµ)Vi (αµ). (2)

In particular, αµ is a static ε-correlated equilibrium (and hence payoffs under µ are static

ε-correlated equilibrium payoffs), for

ε = max
i,si

√
δ

1− δχ
2
i (si, αµ)Vi (αµ).

Theorem 1 precludes cooperation when players are too impatient, monitoring is too im-

precise, or on-path payoff variance is too small. It permits cooperation if δ → 1 for any fixed

positive detectability, consistent with standard imperfect-monitoring folk theorems (e.g.,

FLM). It also permits cooperation with vanishing on-path payoff variance if detectability is

high enough, consistent with standard perfect-monitoring folk theorems (which we admit as

a limit case). We emphasize that the theorem covers all Nash equilibria, whether signals are

observed publicly or privately, by either the players or a mediator.8

Theorem 1 implies that cooperation is impossible if detectability is much smaller than

discounting. We record this implication as a corollary.

Corollary 1 For any stage game G and any ε > 0, there exists k > 0 such that the following

holds:

For any monitoring structure (Y, p), any discount factor δ satisfying

maxi,si,a χ
2
i (si, a)

1− δ < k, (3)

and any Nash equilibrium outcome µ in the repeated game Γ = (G, Y, p, δ) (or in the blind

game ΓB), the induced occupation measure over actions αµ is a static ε-correlated equilibrium.

An important feature of Theorem 1 is that the deviation gain is bounded by a multiple of

(1− δ)−1/2, rather than (1− δ)−1. This is somewhat surprising, as continuation payoffs are
8In fact, the proof of Theorem 1 establishes that inequality (2) holds for any strategy profile where player

i best-responds to her opponents’strategies, whether or not this profile is a Nash equilibrium.
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weighted by (1− δ)−1, and it is essential for characterizing the asymptotic tradeoff between

discounting and monitoring (e.g., for establishing Corollary 1). The key idea behind this

property is bounding incentives on average, not at each history. In particular, the proof

of Theorem 1 shows that if (2) is violated, then there exists a period t such that it is

profitable for player i to follow the equilibrium until period t and then manipulate according

to si. However, this deviation may be profitable only for certain choices of t– it may be

unprofitable for a period t that gets disproportionate weight in determining continuation

payoffs. Put differently, an incentive bound of order (1− δ)−1 results when no restrictions

are placed on continuation payoffs beyond feasibility, while we instead recursively bound the

variance of continuation payoffs, which yields an incentive bound of order (1− δ)−1/2.

Remark 2 Prior results that bound incentives in repeated games as a function of discounting

and monitoring precision do so history-by-history, and hence obtain bounds of order (1− δ)−1

(e.g., Fudenberg, Levine, and Pesendorfer, 1998, Proposition 1; al-Najjar and Smorodinsky,

2001, Theorem 1; Pai, Roth, and Ullman, 2017, Theorem 3.1). Awaya and Krishna (2016,

2019) derive a bound based on deterring a permanent deviation to a fixed action, which is also

of order (1− δ)−1.9 In our own prior work, (Sugaya and Wolitzky, 2017, 2018), we derived

bounds that hold independently of monitoring precision; these are again of order (1− δ)−1.

We illustrate Theorem 1 with an example.

Example 1 (Prisoner’s Dilemma with Binary Product Structure Monitoring) Consider

the prisoner’s dilemma with payoff matrix

C D

C 1, 1 −1, 2

D 2,−1 0, 0

and symmetric product structure monitoring with precision π ∈ (1/2, 1), so that Y =

9See, e.g., Awaya and Krishna (2019, Proposition 4.1). Unlike our bound, their bound for each player i
depends only on the marginal of p on Y−i, so our bound and theirs are non-nested. Their bound is tighter
for monitoring structures where the impact of a player’s action on the distribution of y is much greater than
its impact on the distribution of y−i. Such monitoring structures play an important role in their analysis.
It may be possible to use our techniques to improve their bound; this is left for future research.
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{C,D}×{C,D}, where each signal component equals the corresponding player’s action with

probability π, independently across players.

We bound the equilibrium probability of cooperation by applying (2) for the manipulation

that always defects. For any equilibrium outcome µ , the gain from this deviation evaluated

at the occupation measure αµ equals αµCC +αµCD, while its detectability evaluated at α
µ equals

(αµCC + αµCD)

(
π

(
π − (1− π)

π

)2

+ (1− π)

(
(1− π)− π

1− π

)2
)

+ (αµDC + αµDD) (0)

= (αµCC + αµCD)
(2π − 1)2

π (1− π)
.

Thus, (2) gives

αµCC + αµCD ≤
δ

1− δ
(2π − 1)2

π (1− π)
V1 (αµ) , (4)

where V1 (αµ) = αµCC + 4αµDC + αµCD − (αµCC + 2αµDC − α
µ
CD)2.

Inequality (4) can be further simplified to bound the players’average equilibrium payoff,

w := (u1 (αµ) + u2 (αµ)) /2. Note that w ≤ (1 + αµCC) /2 and, for a given value for αµCC,

mini Vi (α
µ) is maximized by taking αCD = αDC = (1− αµCC) /2, which gives Vi (αµ) =

(5/2) (1− αµCC)− (1/4) (1− αµCC)2 ≤ (5/2) (1− αµCC). Inequality (4) now implies that

αµCC ≤
5

2

δ

1− δ
(2π − 1)2

π (1− π)
(1− αµCC) =⇒ αµCC ≤ max

{
1− 2

5

1− δ
δ

π (1− π)

(2π − 1)2 , 0

}
.

We thus obtain the payoff bound

w ≤ max

{
1

2
, 1− 1

5

1− δ
δ

π (1− π)

(2π − 1)2

}
. (5)

In Section 4, we quantify the tightness of this bound in the frequent-action limit where the

prisoner’s dilemma converges to Sannikov’s (2007) continuous-time partnership game, where

each player controls the drift of a Brownian motion.

There are three steps in the proof of Theorem 1. First, if manipulating according to si is

unprofitable in period t, then the conditional variance of player i’s period-t+ 1 continuation

payoff must be suffi ciently large compared to (1− δ)2 times the ratio of the (squared) gain
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from this manipulation in period t and the detectability of this manipulation in period t

(equation (8) below). Second, applying this lower bound on conditional variance recursively

using the law of total variance, we show that a discounted sum of the variances of player i’s

stage-game payoffs (times 1 − δ) must exceed a discounted sum of the conditional variance

bounds (equation (9), which obtains after canceling a 1 − δ term). Finally, by Jensen’s

inequality, this inequality relating a discounted sum of payoffvariances and a discounted sum

of ratios of the deviation gain and detectability of si in each period implies a corresponding

inequality relating the payoff variance and the ratio of the deviation gain and detectability

of si evaluated at the equilibrium occupation measure, which simplifies to (2).

We also mention a tighter (but more complicated) bound than that given in Theorem

1, which applies for any communication equilibrium outcome µ in Γ, but not necessarily for

any equilibrium outcome in ΓB. This is the bound that results when the mediator must

rely on self-reported signals, so that detectability is now measured with respect to a player’s

opponents’signals and her own self-report. Specifically, a manipulation for player i would

now consist of a pair (si, ρi), where si : Ai → ∆ (Ai) describes the mixed action si (ai) taken

by player i when she is recommended ai, and ρi : Ai × Ai × Yi → Yi describes the signal

ρi (ai, âi, yi) reported by player i when she is recommended ai, takes âi, and observes yi. One

can then define the gain from a manipulation (si, ρi) as above (noting that this depends only

on si), and define the detectability of a manipulation (si, ρi) at an action profile distribution

α as

χ̃2
i (si, ρi, α) =

∑
a,y

α (a) p (y|a)

(
p (y|a)−

∑
âi,y′i

si (ai) [âi] p (y′i, y−i|âi, a−i) ρi (ai, âi, y′i) [yi]

p (y|a)

)2

.

Note that

χ2
i (si, α) ≥ χ̃2

i (si, α) := min
ρi

χ̃2
i (si, ρi, α) for all i, si, α,

as this inequality holds with equality when ρi (ai, âi, yi) = yi for all ai, âi, yi. Theorem 1 holds

for any communication equilibrium outcome µ in Γ with χ̃2
i (si, α

µ) in place of χ2
i (si, α

µ), by

essentially the same proof.

12



3.1 Proof of Theorem 1

We first introduce some notation. Given a path of action profiles a∞ = (a1, a2, . . .), let

uti = ui (a
t), and denote player i’s continuation payoff at the beginning of period t by

wti = (1− δ)
∞∑
t′=t

δt
′−tut

′

i .

Denote a history of actions and signals at the beginning of period t by ht = (at, yt).

Fix a Nash equilibrium outcome µ in ΓB, a player i, and a manipulation si. Let H t

denote the set of period-t histories ht that are reached with positive probability under µ,

and define a H t-measurable random variable W t
i : H t → R by W t

i (ht) = E [wti|ht] for all

ht ∈ H t. By the law of total variance (e.g., Billingsley, 1995, Problem 34.10(b)), we have

Var
(
W t+1
i

)
= Var

(
E
[
W t+1
i |ht

])
+ E

[
Var

(
W t+1
i |ht

)]
. (6)

Similarly, define U t
i : H t → R by U t

i (ht) = E [uti|ht] for all ht ∈ H t.

In what follows, we suppress the dependence of gi (si, α) and χ2
i (si, α) on si.

Lemma 1 For each period t, we have

Var
(
E
[
W t+1
i |ht

])
≥ 1

δ
Var

(
W t
i

)
− 1− δ

δ
Var

(
U t
i

)
and (7)

E
[
Var(W t+1

i |ht)
]
≥

(
1− δ
δ

)2
gi (α

µ
t )2

χ2
i (αµt )

, (8)

where in (8) we follow the convention 0/0 = 0. In particular, (8) implies that χ2
i (αµt ) =

0 =⇒ gi (α
µ
t ) = 0.

Proof. For (7), since wti = (1− δ)uti + δwt+1
i , for every history ht ∈ H t we have

W t
i

(
ht
)

= (1− δ)U t
i

(
ht
)

+ δE
[
W t+1
i |ht

]
.

Therefore,

Var
(
W t
i

)
= Var

(
(1− δ)U t

i + δE
[
W t+1
i |ht

])
≤ (1− δ) Var

(
U t
i

)
+ δVar

(
E
[
W t+1
i |ht

])
.

13



Dividing by δ and rearranging yields (7).

For (8), let µ (ht, a) denote the probability that history ht is reached in period t and then

action profile a is played. Since µ is an (obedient) equilibrium outcome, we have

1− δ
δ

gi (α
µ
t ) ≤

∑
ht,a,y

µ
(
ht, a

)
(p (y|a)− p (y|si (ai) , a−i))W t+1

i

(
ht, a, y

)
.

This holds because, if she follows the equilibrium until period t and then manipulates accord-

ing to si– which is a feasible deviant strategy, albeit perhaps not an optimal one– player i can

guarantee an expected continuation payoff of
∑

ht,a,y µ (ht, a) p (y|si (ai) , a−i)W t+1
i (ht, a, y)

by following the mediator’s recommendations from period t + 1 onward. (In other words,

in the continuation game player i plays as if her period-t action were ai rather than si (ai).

This continuation play may not be optimal, but we are only giving a necessary condition.)

Therefore,

1− δ
δ

gi (α
µ
t ) ≤

∑
ht,a,y

µ
(
ht, a

)
(p (y|a)− p (y|si (ai) , a−i))W t+1

i

(
ht, a, y

)
=

∑
ht,a,y

µ
(
ht, a

)
p (y|a)

(
p (y|a)− p (y|si (ai) , a−i)

p (y|a)

)(
W t+1
i

(
ht, a, y

)
− E

[
W t+1
i |ht

])

≤

√∑
ht,a,y µ (ht, a) p (y|a)

(
p(y|a)−p(y|si(ai),a−i)

p(y|a)

)2

×
√∑

ht,a,y µ (ht, a) p (y|a)
(
W t+1
i (ht, a, y)− E

[
W t+1
i |ht

])2

=
√
χ2
i (αµt )E

[
Var

(
W t+1
i |ht

)]
,

where the second inequality follows from Cauchy-Schwarz. Finally, if χ2
i (αµt ) > 0 then

squaring both sides and rearranging yields (8); if instead χ2
i (αµt ) = 0 then we have gi (α

µ
t ) =

0, and (8) reduces to E
[
Var(W t+1

i |ht)
]
≥ 0, which holds as variance is non-negative.

(The different orders in 1− δ in (7) and (8) are important and can be given an intuitive

explanation. In (7), Var (U t
i ) is weighted by 1−δ because current-period payoffs have weight

1− δ, and variance is maximized when current payoffs and continuation payoffs are perfectly

correlated, in which case the weight comes out of variance linearly. In (8), gi (α
µ
t )2 /χ2

i (αµt )

is weighted by (1− δ)2 because we bound the current-period deviation gain (1− δ) gi (αµt )

14



by Cauchy-Schwarz and square both sides of the resulting inequality.)

By (6), (7), and (8), for each period t, we have

Var
(
W t+1
i

)
≥ 1

δ
Var

(
W t
i

)
− 1− δ

δ
Var

(
U t
i

)
+

(
1− δ
δ

)2
gi (α

µ
t )2

χ2
i (αµt )

.

Recursively applying this inequality and using Var (W 1
i ) = 0, for each T ∈ N we have

δTVar
(
W T+1
i

)
≥ (1− δ)

T∑
t=1

δt−1

(
1− δ
δ

gi (α
µ
t )2

χ2
i (αµt )

− Var
(
U t
i

))
.

As payoffs are bounded, the left-hand side of this inequality converges to 0 as T →∞, while

(since χ2
i (αµt ) is also bounded) the right-hand side converges to

(1− δ)
∑
t

δt−1

(
1− δ
δ

gi (α
µ
t )2

χ2
i (αµt )

− Var
(
U t
i

))
.

Therefore,

δ
∑
t

δt−1Var
(
U t
i

)
≥ (1− δ)

∑
t

δt−1 gi (α
µ
t )2

χ2
i (αµt )

. (9)

At this point we are almost done, because inequality (9) actually implies the desired

inequality, (2). This observation relies on the following lemma.

Lemma 2 Let ∆+ (A) = {α ∈ ∆ (A) : ∀i, χ2
i (α) = 0 ⇒ gi (α) = 0}. The function

fi : ∆+ (A)→ R+ defined by

fi (α) =
gi (α)2

χ2
i (α)

for all α ∈ ∆ (A) ,

with convention 0/0 = 0, is convex.

Proof. Fix any α, α′ ∈ ∆+ (A) and β ∈ [0, 1], and let

a = gi (α) , b = χ2
i (α) , c = gi (α

′) , d = χ2
i (α′) .

15



By linearity of gi and χ2
i , we have

βfi (α) + (1− β) fi (α
′)− fi (βα + (1− β)α′) = β

a2

b
+ (1− β)

c2

d
− (βa+ (1− β) c)2

βb+ (1− β) d
≥ 0,

so fi is convex. To see why the last inequality holds, note that if b = 0 then a = a2/b = 0

(by α ∈ ∆+ (A) and the 0/0 = 0 convention), so the inequality is trivial, and similarly if

d = 0. If instead b and d are both strictly positive, then we have

β
a2

b
+ (1− β)

c2

d
− (βa+ (1− β) c)2

βb+ (1− β) d
=
β (1− β) (ad− bc)2

(βb+ (1− β) d) bd
≥ 0.

We also use the fact that

δ

1− δVi (α
µ) =

δ

1− δ
∑
a

(1− δ)
∑
t

δt−1αµt (a) (ui (a)− ui (αµ))2

= δ
∑
t

δt−1
∑
a

αµt (a) (ui (a)− ui (αµ))2

≥ δ
∑
t

δt−1
∑
a

αµt (a) (ui (a)− ui (αµt ))2

= δ
∑
t

δt−1Var
(
uti
)
≥ δ

∑
t

δt−1Var
(
U t
i

)
,

where the first inequality follows because E
[
(X − x)2] ≥ E [(X − E [X])2] for any random

variable X and number x, and the second inequality follows from the law of total variance.

By (9), we thus have

δ

1− δVi (α
µ) ≥ (1− δ)

∑
t

δt−1 gi (α
µ
t )2

χ2
i (αµt )

≥
(
(1− δ)

∑
t δ

t−1gi (α
µ
t )
)2

(1− δ)
∑

t δ
t−1χ2

i (αµt )
=
gi (α

µ)2

χ2
i (αµ)

,

where the second inequality follows from Lemma 2 and Jensen’s inequality. Rearranging and

taking square roots yields (2).
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4 Tightness of the Bound

We now show that the bound derived in Theorem 1 is tight up to constant factors in the

low-discounting/low-monitoring double limit. We establish this result for public, product

structure monitoring. We then discuss extensions to more general monitoring structures.

The bound in Theorem 1 applies for any Nash equilibrium. For a converse result estab-

lishing the possibility of cooperation (a folk theorem), a more restrictive solution concept is

preferable. Since our folk theorem assumes public monitoring, we use the standard solution

concept for such games: perfect public equilibrium (PPE), which is a strategy profile that

forms a Nash equilibrium conditional on any public history ht = (yt′)
t−1
t′=1. For any stage

game G, public monitoring structure (Y, p), and discount factor δ, we denote the set of PPE

payoff vectors in the repeated game Γ = (G, Y, p, δ) by E (Γ).10

For any stage game G, let F = co
(
{u (a)}a∈A

)
⊆ RN denote the set of feasible payoffs,

and let F ∗ ⊆ F denote the set of feasible payoffs that weakly Pareto-dominate a convex

combination of static Nash payoffs: that is, v ∈ F ∗ if v ∈ F and there exist a collection of

static Nash equilibria (αn) and non-negative weights (βn) such that v ≥
∑

n βnu (αn) and∑
n βn = 1. Our folk theorem gives conditions under which E (Γ) covers almost all of F ∗,

excepting points very close to the boundary. We make the standard assumption that the

“target”payoff set (in our case F ∗) is full dimensional: dimF ∗ = N .

Theorem 2 For any stage game G satisfying dimF ∗ = N and any ε > 0, there exists k > 0

such that the following holds:

For any public, product monitoring structure (Y, p) and any discount factor δ satisfying

mini,si,a:si(ai)[ai]=0 χ
2
i (si, a)

1− δ > k and (10)

p (y|a)

1− δ > k for all y, a, (11)

and for any v ∈ intF ∗ such that the Euclidean distance between v and the boundary of F ∗ is

10While in general PPE is a strict refinement of Nash equilibrium, the two concepts are outcome-equivalent
for public, product-structure monitoring with non-moving support (Fudenberg and Levine, 1994, Theorem
5.2; KM, Lemma 2). Thus, the distinction between Nash and PPE is actually immaterial for Theorem 2,
although it matters for the more general Theorem 3, presented in the appendix.
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greater than ε, we have v ∈ E (G, Y, p, δ).

We compare Corollary 1 and Theorem 2. Heuristically, Corollary 1 says that for any

repeated game, cooperation is impossible if detectability is much smaller than discounting;

and Theorem 2 says that for any repeated game with public, product structure monitoring

that satisfies a full-dimensionality condition on payoffs, cooperation is possible if detectability

is much larger than discounting. Note that the constant k differs between the two results:

k must be taken to be suffi ciently small in Corollary 1 and suffi ciently large in Theorem 2.

Thus, the right-hand sides of (3) and (10) differ by a constant factor, which depends on G

and ε, but not on δ or (Y, p).11

Two further points bear emphasis. First, the premise of Corollary 1 is that detectability

is small for any recommended action profile a and any manipulation si, while the premise

of Theorem 2 is that detectability is large for any recommended action profile a and any

manipulation si that always disobeys the recommendation ai. (Compare the left-hand sides

of (3) and (10).) Without the latter requirement, Theorem 2 would be vacuous, because

detectability is always small for a manipulation that rarely disobeys the recommendation.

Second, Theorem 2 additionally requires that no signal is exceedingly rare relative to the

discount rate (equation (11)). We explain the role of this requirement shortly.

Theorem 2 can also be compared to the classical folk theorems of FLM and KM. The key

difference with these results is that Theorem 2 lets the discount factor and the monitoring

structure vary simultaneously, while classical folk theorems fix the monitoring structure

and show that cooperation is possible when the discount factor is high enough. Formally,

the difference is that in Theorem 2 the constant k is uniform over monitoring structures

(Y, p) satisfying equations (10) and (11), while classical folk theorems show only that for

each monitoring structure (Y, p) that satisfies certain identifiability conditions, there exists

a suffi ciently high k (or equivalently a suffi ciently high δ) that supports cooperation.12

11If the hypothesis that p (y|a) / (1− δ) > k in Theorem 2 is strengthened to a uniform lower bound
on p (y|a) (independent of δ), then χ2-divergence can be replaced with various other divergences in the
statement of Theorem 2, as these divergences are all equivalent up to constant factors when probabilities are
bounded away from zero. For example, if p (y|a) ≥ ε for all y, a, then the total variation distance TV satisfies
χ2 ≥ 4TV 2 ≥ εχ2, and the Kullback-Leibler divergence KL satisfies χ2 ≥ 2εKL ≥ ε2χ2. For inequalities
implying these bounds and many more, see, e.g., Sason and Verdú (2016).
12FLM and KM do not assume product structure monitoring, FLM’s folk theorem (e.g., their Theorem 6.1)
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Theorem 2 is also related to SS’s folk theorem for repeated games with frequent actions

(their Theorem 2). SS consider a model where signals are parameterized by an underlying

continuous-time Lévy process (a sum of Brownian and Poisson signals), and players interact

every ∆ units of time, with real-time discount rate r (so δ = e−r∆, and hence 1− δ ≈ r∆).

SS prove a folk theorem for the double limit where ∆→ 0 and r → 0. To compare with our

results, observe that for Brownian signals (with the space of signal realizations partitioned

into arbitrary fixed intervals) we have

(p (y|a)− p (y|a′i, a−i))
2

p (y|a)
≈ ∆

1
= ∆ and p (y|a) ≈ 1,

and for Poisson signals we have

(p (y|a)− p (y|a′i, a−i))
2

p (y|a)
≈ ∆2

∆
= ∆ and p (y|a) ≈ ∆.

Hence, under SS’s information structure, equations (10) and (11) both reduce to

r <
1

k
.

Theorem 2 therefore implies SS’s result, up to some minor differences.13 Relative to their

result, the main novelty is dispensing with parameterization by an underlying Lévy process.

That is, Theorem 2 is a general folk theorem for discrete-time repeated games in the low-

discounting/low-monitoring double limit, which implies the folk theorem for repeated games

with frequent actions (which assumes an underlying continuous-time parameterization) as

a special case. Another significant difference is that SS assume that N = 2: this assump-

tion seems important for their proof, which relies on parameterizing the boundary of the

equilibrium payoff set as a 1-dimensional curve.14

imposes identifiability conditions only at certain action profiles, and KM’s folk theorem (their Theorem 1)
is a minmax threat folk theorem. (FLM also proved a minmax folk theorem under additional assumptions.)
Our theorem can be extended in these regards, as we discuss below.
13SS prove a pure-strategy minmax-threat folk theorem (rather than a Nash-threat folk theorem)

and do not assume product structure monitoring; however, they assume bounded likelihood ratios
p (y|a′i, a−i) /p (y|a). Our Theorem 3 likewise does not assume product structure monitoring, and under
bounded likelihood ratios it can be adapted to give a pure-strategy minmax-threat folk theorem.
14We also mention Fudenberg and Levine (2007), who establish (in)effi ciency results in a frequent-action
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We preview the key ideas of the proof of Theorem 2. We prove Theorem 2 as a corol-

lary of the more general Theorem 3, which we state in the appendix. Theorem 3 is more

general than Theorem 2 because it requires only a version of KM’s “pairwise identifiability”

condition, rather than product structure monitoring.15 The proof of Theorem 3 builds on

FLM, KM, and SS. Similarly to FLM and KM, the goal is to show that for any v ∈ intF ∗,

a suffi ciently small ball B around v is self-generating (cf. Definition 1 in Appendix A). In

the δ → 1 limit considered by FLM and KM, this follows because payoff vectors in B can

be enforced with continuation payoff movements of magnitude O (1− δ), so since the set B

is smooth, taking continuation payoffs to lie on translated tangent hyperplanes in B results

in a vanishing effi ciency loss. In contrast, when discounting and monitoring vary together,

equation (10) implies that payoff vectors in B can be enforced with continuation payoffs of

variance o (1− δ), while equation (11) additionally implies that continuation payoff move-

ments can be taken to have magnitude o (1) (but not necessarily O (1− δ)): this follows

because the solution to the variance-minimization program in Remark 1, (1), is o (1− δ)

when δ → 1 faster than χ2
i (si, ai) → 0, and implies that wi (y) − E [wi (ỹ)] = o (1) for all

y when p (y|a) > 1 − δ and δ → 1 faster than χ2
i (si, ai) → 0. A key lemma (Lemma 6)

shows that under these conditions, requiring continuation payoffs to lie in B again results in

a vanishing effi ciency loss. The intuition is that larger continuation payoffmovements within

B entail greater ineffi ciency; but since the continuation payoff variance is small, these large

movements are infrequent enough that the ex ante expected ineffi ciency is small.

Comparing equations (3) and (10) shows that the tradeoff between dectectability and

discounting expressed in Theorem 1 is tight up to a constant factor (i.e., the difference in

the constant k in the two equations) in the low-discounting/low-monitoring double limit.

One may wonder how much slack the constant factor is hiding. This is a tricky question

game with one patient player and a myopic opponent, in contrast to SS’s model with two patient players, or
our model with N patient players.
15However, Theorem 3 is not immediately comparable to Corollary 1, which is why we relegate it to the

appendix. While Theorem 3 is more general than Theorem 2, it still assumes pairwise identifiability rather
than “individual identifiability.” (See Appendix A for the definitions of these terms.) We conjecture that
Theorem 3 remains valid under individual identifiability for public monitoring or for private monitoring in
the presence of a mediator, but proving either of these results would involve complications similar to those
in the literature on the folk theorem with private monitoring (e.g., Sugaya, 2022). These complications are
orthogonal to the current paper’s focus on monitoring precision, and would necessitate a much longer proof.
This conjecture is thus left for future research.
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to answer in general, because the calculations involved in proving Theorem 2 are somewhat

intricate. However, we can give a clear answer for a frequent-action version of the prisoner’s

dilemma considered in Example 1.

Example 2 (Prisoner’s Dilemma Redux) Consider again Example 1, now parameter-

ized by a triple (∆, r, π), where ∆ > 0, r > 0, and π ∈ (1/2, 1). The payoff matrix is as in

Example 1. The discount factor is δ = e−r∆. Monitoring is public with a symmetric product

structure, where Y i = {−1, 1} and

pi
(
1|ai
)

=

 1
2

+
(
π − 1

2

)√
∆/γ if ai = C,

1
2
−
(
π − 1

2

)√
∆/γ if ai = D,

where γ := 4π (1− π). We let the players access a public randomization device.

With this parameterization, as ∆→ 0 the process

X i
τ =

√
γ∆

bτ/∆c∑
t=1

yit

converges in distribution to a Brownian motion with drift 2π − 1 (resp., − (2π − 1)) when

aiτ = C (resp., D) and variance γ.16 Thus, for small ∆ the game is almost the same as the

continuous-time partnership game studied by Sannikov (2007).

For any∆, the detectability χ2 of a manipulation that always disobeys the recommendation

equals
(2π − 1)2 ∆

π (1− π)−
(
π − 1

2

)2
∆
.

Thus, for suffi ciently small ∆,

χ2

1− δ =
1

e−r∆
(2π − 1)2 ∆

π (1− π)−
(
π − 1

2

)2
∆
≈ 1

r

(2π − 1)2

π (1− π)
.

For any suffi ciently small ∆ and any ε ≤ 1/2, inequality (5) derived in Section 3 now implies

16This follows from the functional central limit theorem (e.g., Billingsley, 1995, Theorem 37.8).
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that, for the players to attain an average equilibrium payoff of w = 1− ε, we must have

χ2

1− δ ≥
1

5ε
. (12)

At the same time, by adapting the proof of Theorem 2, we can establish the following result.17

Proposition 1 For any suffi ciently small ∆ and any ε ≤ 54
23
− 6

23

√
58 ≈ .361, if

χ2

1− δ ≥
1(

18
√

10
125
− 4

25

)
ε2
≈ 1

0.295ε2
, (13)

then there exists a PPE with payoff vector (1− ε, 1− ε).

The constants on the right-hand sides of inequalities (12) and (13) correspond to the

required values of k in Corollary 1 and Theorem 2, respectively, so the ratio of these con-

stants quantifies the constant-factor slack between our necessary and suffi cient conditions

for cooperation. Observe that there are two sources of slack: an absolute constant factor of

5/0.295, and a factor of ε (the distance between the target payoff vector (1− ε, 1− ε) and

the effi cient payoff vector (1, 1)). Some absolute constant-factor slack is to be expected, since

(12) comes from a general theorem (Theorem 1) that does not make use of the structure

of the prisoner’s dilemma stage game or symmetric product structure monitoring. On the

other hand, the ε-factor slack arises because Theorem 1 tightly characterizes the relationship

between discounting and monitoring, but not the relationship between these variables and the

distance to the boundary of the feasible payoff set. We derive tighter results on the rate of

convergence to the boundary of the feasible payoff set in a companion paper (Sugaya and

Wolitzky, 2023b).

5 Discussion

This paper has established general results on the tradeoffbetween discounting and monitoring

for supporting cooperation in repeated games. We conclude by discussing some applications.
17A similar result can be obtained by applying Sannikov’s characterization of the set of PPE payoffs in

the continuous-time limit game (his Theorem 2). However, it is not straightforward to show that this set
approximates the PPE payoff set in the discrete-time game.
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We have already mentioned implications of our results for repeated games with frequent

actions, where the interaction frequency 1/∆ goes to infinity while the real-time discount

rate r is fixed, and signals are parameterized by an underlying continuous-time stochastic

process. This “frequent action limit”is a particular low-discounting/low-monitoring double

limit where discounting and monitoring vanish at the same rate, which corresponds to the

edge case in between our necessary and suffi cient conditions for cooperation. This edge

case is interesting and important, but it is also somewhat special and detail-dependent.18

When specialized to frequent-action games where both ∆→ 0 and r → 0, our folk theorem

generalizes that of Sannikov and Skrzypacz (2010) to games with more than two players.

Another type of low-discounting/low-monitoring double limit arises in large-population

repeated games, where many patient players are monitored by a noisy aggregate signal, which

provides little information about each individual player’s action. This type of model was

studied by Green (1980) and Sabourian (1990) under a continuity condition on the mapping

from action profiles to signals, and by Fudenberg, Levine, and Pesendorfer (1998) and al-

Najjar and Smorodinsky (2000, 2001) under the assumption that each player’s action is hit by

independent, individual-level noise. In a companion paper (Sugaya and Wolitzky, 2023a), we

derive necessary and suffi cient conditions for cooperation in large-population repeated games

with individual-level noise, as a function of the population size, the discount factor, and the

channel capacity (the maximum expected entropy reduction) of the monitoring structure.

These results extend those in the current paper by introducing individual-level noise and

letting the stage game– and in particular the number of players– vary together with the

discount factor and the monitoring structure.

Our negative result (Theorem 1) can be extended to show that for any fixed imperfect

monitoring structure, the Nash equilibrium payoff set cannot converge to the boundary

of the feasible payoff set at a rate faster than (1− δ)1/2+ε for any ε > 0. Since the rate of

convergence of the PPE payoffset with imperfect public monitoring is known to be (1− δ)1/2,

this result shows that allowing private strategies and monitoring cannot significantly increase

18Sadzik and Stacchetti (2015) study the frequent action limit of repeated principal-agent problems with
one-dimensional actions and concave preferences, where the signal process converges to a Brownian motion.
Our results cover repeated principal-agent problems, and complement Sadzik and Stacchetti’s by providing
necessary and suffi cient conditions for cooperation for more general games and monitoring structures.
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the rate of convergence, which resolves in the negative a question posed by Hörner and

Takahashi (2016). Moreover, by accounting for monitoring precision as well as discounting,

this bound can be refined to show that the distance between the equilibrium payoff set and

the boundary of the feasible payoff set must exceed ((1− δ) /maxi,si,a χ
2
i (si, a))

1/2+ε. This is

another result where the relevant timescale is the intrinsic time experienced by a martingale

with likelihood ratio difference increments, rather than calendar time. We present these

results in a second companion paper (Sugaya and Wolitzky, 2023b).

Appendix

A Proof of Theorem 2

We prove Theorem 2 as a corollary of a more general result, Theorem 3. In this appendix,

we assume either product structure monitoring or the genericity condition that each player

has a strict incentive to follow an action profile that maximizes her own payoff.

Assumption 1 Monitoring is public, and one of the following holds:

1. Monitoring has a product structure.

2. For each player i, there exists an action profile ai ∈ argmaxa∈A ui (a) satisfying

ui (a
i) > ui

(
ai, a

i
−i
)
for all ai 6= aii.

We introduce some notation. For each i and a, let

Pi (a) =
⋃
a′i 6=ai

(
p (y|a′i, a−i)
p (y|a)

)
y∈Ȳ

.

That is, Pi (a) is the set of vectors of likelihood ratios that can arise when player i deviates

from ai while the remaining players take a−i. Also, for each a, define the inner product 〈·, ·〉a
on R|Ȳ | by

〈p̃, q̃〉a =
∑
y

p (y|a) p̃ (y) q̃ (y) for all p̃, q̃ ∈ R|Ȳ |,

and let ‖·‖a denote the associated norm. Let 1 denote the vector of 1’s in R|Ȳ |.
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For any η ∈ [0, 1], we say that monitoring satisfies η-individual identifiability if for any

action profile a and player i, the following two conditions hold:

1. There exists a vector z ∈ R|Ȳ | such that ‖z‖a = 1 and

〈z,1〉a > 〈z, p〉a + η for all a and p ∈ Pi (a) . (14)

2. We have

p (y|a) > η2 for all y ∈ Ȳ . (15)

Intuitively, (14) says that the vector of likelihood ratios under equilibrium play is suffi -

ciently different from the corresponding vector under any deviation by player i. When η = 0,

η-individual identifiability is weaker than FLM’s individual full rank condition. Note that

if η-individual identifiability holds under product structure monitoring, then for any action

profile a and player i, there exists a unit vector z ∈ R|Ȳ | that satisfies (14) and (15) as well

as

z
(
yi, y−i

)
= z

(
yi, ỹ−i

)
for all yi, y−i, ỹ−i. (16)

For any η ∈ [0, 1], we say that monitoring satisfies η-pairwise identifiability if for any

action profile a and any pair of distinct players i and j, the following three conditions hold:

1. There exists a vector z ∈ R|Ȳ | such that ‖z‖a = 1 and

〈z,1〉a > 〈z, p〉a + η for all p ∈ Pi (a) ∪ Pj (a) . (17)

2. There exists a vector z ∈ R|Ȳ | such that ‖z‖a = 1 and

〈
z, pi

〉
a
− η > 〈z,1〉a >

〈
z, pj

〉
a

+ η for all pi ∈ Pi (a) and pj ∈ Pj (a) . (18)

3. (15) holds.

Intuitively, (17) says that the vector of likelihood ratios under equilibrium play is suf-

ficiently different from the corresponding vector under any deviation by player i or j, and
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(18) says that the vector of likelihood ratios under any deviation by i is suffi ciently different

from the vector under any deviation by j. When η = 0, η-individual identifiability coincides

with KM’s assumptions (A2) and (A3), which are weaker than FLM’s pairwise full rank

condition.19 In general, η-pairwise identifiability says that KM’s assumptions hold with η

slack.

η-pairwise identifiability implies η-individual identifiability. Conversely, under prod-

uct structure monitoring, η-individual identifiability implies (η/2)-pairwise identifiability

(Lemma 4).

Theorem 2 follows easily from the following result, which is a generalization of the folk

theorems of FLM, KM, and SS.20

Theorem 3 Assume that dimF ∗ = N and Assumption 1 holds. For any v ∈ intF ∗, there

exists c > 0 such that, for any η > 0, any monitoring structure (Y, p) that satisfies η-pairwise

identifiability, and any δ > 1− cη2, we have v ∈ E (G, Y, p, δ).

To prove Theorem 2 from Theorem 3, we use two simple lemmas.

Lemma 3 For any action profile a and player i, the following are equivalent:

1. There exists a vector z ∈ R|Ȳ | satisfying ‖z‖a = 1 and (14).

2. minsi:si(ai)[ai]=0 χ
2
i (si, a) > η2.

Proof. By the separating hyperplane theorem, the former condition is equivalent to

minp̃∈co(Pi(a)) ‖1− p̃‖a > η, or equivalently

min
p̃∈co(Pi(a))

√√√√∑
y

p (y|a)

(
p (y|a)− p̃ (y)

p (y|a)

)2

> η.

The result follows because

min
si:si(ai)[ai]=0

χ2
i (si, a) = min

p̃∈co(Pi(a))

∑
y

p (y|a)

(
p (y|a)− p̃ (y)

p (y|a)

)2

.

19When η = 0, (17) coincides with KM’s assumption (A2), and (18) coincides with KM’s assumption (A3).
20To prove Theorem 2, it suffi ces to prove Theorem 3 under Assumption 1.1. However, Assumption 1.1 is

unduly restrictive and the proof of Theorem 3 under Assumption 1.2 is almost identical, so we include it for
completeness.
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Remark 3 When χ2
i (si, a) > η2 for all si such that si (ai) [ai] = 0, the vector

z =
1− p̂√

minsi:si(ai)[ai]=0 χ
2
i (si, a)

,

where p̂ ∈ arg minp̃∈co(Pi(a)) ‖1− p̃‖a, satisfies ‖z‖a = 1 and (14). Note that this vector is

co-linear with the vector of likelihood ratio differences ((p (y|a)− p̂ (y)) /p (y|a))y∈Ȳ .

Lemma 4 If a product monitoring structure satisfies η-individual identifiability, then it sat-

isfies (η/2)-pairwise identifiability.

Proof. Under product structure monitoring and η-individual identifiability, for any action

profile a and any pair of distinct players i and j, there exist unit vectors zi and zj that

satisfy (14) and (16). Define z := (zi + zj) / ‖zi + zj‖a. For any pj ∈ Pj (a), let a′j ∈ Aj

satisfy pj =
(
p
(
y|a′j, a−j

)
/p (y|a)

)
y∈Ȳ . Note that, for any ȳ

−i,

〈
z, p (a)− pj

〉
a

=
1

‖zi + zj‖a

(∑
y

zi (y)
(
p (y|a)− p

(
y|a′j, a−j

))
+
〈
zj, p (a)− pj

〉
a

)

=
1

‖zi + zj‖a

 ∑
yi z

i (yi, ȳ−i)
∑

y−i

(
p (yi, y−i|a)− p

(
yi, y−i|a′j, a−j

))
+ 〈zj, p (a)− pj〉a


=

1

‖zi + zj‖a

〈
zj, p (a)− pj

〉
a
.

where the second line follows by (16), and the third line follows because
∑

y−i p (yi, y−i|a) =∑
y−i p

(
yi, y−i|a′j, a−j

)
under product structure monitoring. Thus, since ‖zi + zj‖a ≤ 2, the

vector z satisfies (17) with η/2 in place of η. Similarly, the vector (−zi + zj) / ‖−zi + zj‖a
satisfies (18) with η/2 in place of η.

Proof of Theorem 2. Fix c such that the conclusion of Theorem 3 holds, fix any ĉ < c, and

let k = 4/ĉ. By Lemma 3, (10) and (11) imply 2
√

(1− δ) /ĉ-individual identifiability. Since

monitoring has a product structure, Lemma 4 now implies that η-pairwise identifiability

holds for η =
√

(1− δ) /ĉ, and δ = 1− ĉη2 > 1− cη2. Then v ∈ E (G, Y, p, δ) by Theorem 3.

To complete the proof, it remains to show that the constant c in the statement of Theorem

3 can be chosen uniformly for all payoff vectors v at distance at least ε from the boundary
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of F ∗. This last claim follows immediately from the proof of Theorem 3, where the constant

c is explicitly constructed as a function of the distance between v and the boundary of F ∗.

A.1 Proof of Theorem 3

Fix v ∈ intF ∗. If Assumption 1.1 holds, let εu =∞ and fix ai ∈ argmaxa∈A ui (a) arbitrarily.

If Assumption 1.2 holds, let εu > 0 be such that, for each player i, there exists an action

profile ai ∈ argmaxa∈A ui (a) satisfying ui (ai) ≥ ui
(
ai, a

i
−i
)

+ εu for all ai 6= aii. (If both

assumptions hold, either definition works.)

Let εv > 0 denote the Euclidean distance between v and the boundary of F ∗, let ε =

min {εu, εv, ū/4} ∈ (0, ū), and let û = ū + ε. Let B = {v′ : d (v, v′) ≤ ε/2}, the closed

ball of radius ε/2 centered at v. We will find c > 0 such that if (Y, p) satisfies η-pairwise

identifiability and δ > 1− cη2, then B ⊆ E (G, Y, p, δ), and hence v ∈ E (G, Y, p, δ).

The following definition and lemma are due to Abreu, Pearce, and Stacchetti (1990).

Definition 1 A bounded set W ⊆ RN is self-generating if for all v̂ ∈ W , there exist α ∈

∆∗ (A) and w : Ȳ → RN satisfying

1. Promise keeping (PK): v̂ = (1− δ)u (α) + δ
∑

y p (y|α)w (y).

2. Incentive compatibility (IC): supp (αi) ⊆ argmaxai (1− δ)ui (ai, α−i)+δ
∑

y p (y|ai, α−i)wi (y)

for all i.

3. Self-generation (SG): w (y) ∈ W for all y.

When (PK), (IC), and (SG) hold, we say that the pair (α,w) decomposes v̂ on W .

Lemma 5 Any bounded, self-generating set W is contained in E (Γ).

Our key lemma (Lemma 6) will provide a suffi cient condition for B to be self-generating,

and hence contained in E (Γ). It is based on the following definition, where ‖·‖ denotes the

Euclidean norm in RN , Λ = {λ ∈ RN : ‖λ‖ = 1}, and for each λ ∈ Λ, ‖λ+‖ =
√∑

λn>0 (λn)2

and ‖λ−‖ =
√∑

λn<0 (λn)2.

28



Definition 2 The maximum score in direction λ ∈ Λ with reward bound X > 0 is defined

as

k (λ,X) := sup
α∈∆∗(A),x:Ȳ→RN

λ ·
(
u (α) +

∑
y

p (y|α)x (y)

)

subject to

1. Incentive compatibility with ε slack (ICε): For each player i, either (i) ui (α) ≥

ui (ai, α−i) for all ai and
∑

y:x(y)=x p (y|a) =
∑

y:x(y)=x p (y|a′i, a−i) for all x ∈ RN ,

a, and a′i, or (ii) for all ai /∈ supp (αi),

ui (α) +
∑
y

p (y|α)xi (y) ≥ ui (ai, α−i) +
∑
y

p (y|ai, α−i)xi (y) + ε1 {λi ≥ 0} .

2. Half-space decomposability with reward bound X (HSX):

λ · x (y) ≤ 0 and

∥∥∥x (y)−
∑

y′ p (y′|α)x (y′)
∥∥∥

‖λ+‖
≤ Xū for all y, and

∑
y p (y|α)

∥∥∥x (y)−
∑

y′ p (y′|α)x (y′)
∥∥∥2

‖λ+‖2 ≤ Xū2.

The following is our key lemma:21

Lemma 6 If there exists X > 0 such that

k (λ,X) ≥ max
v′∈B

λ · v′ + ε

4
for all λ ∈ Λ, and (19)

max {X,N} ≤ δ

1− δ
ε2

212ū2
, (20)

then B is self-generating.

Proof. See Appendix A.2.
21If ε = 0 and X = ∞ then k (λ,X) equals k∗ (λ), the maximum score in direction λ as defined by

Fudenberg and Levine (1994). Fudenberg and Levine showed that B is self-generating for all suffi ciently
high δ if k∗ (λ) ≥ maxv′∈B λ · v′ for all λ. Lemma 6 extends their result to show that B is self-generating for
a given value of δ if k (λ,X) ≥ maxv′∈B λ · v′ + ε/4 for all λ, where the magnitude and the variance of the
normalized rewards x (y) are bounded by a constant multiple of (1− δ)−1.
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To complete the proof, we find c > 0 such that if (Y, p) satisfies η-pairwise identifiability

and δ > 1− cη2, then there exists X > 0 that satisfies (19) and (20). To define c and X, we

first introduce one more constant, denoted λ ∈ (0, 1), which we will use to partition the set

of directions λ ∈ Λ in a manner similar to FLM and KM.

For any λ ∈ Λ, let i (λ) ∈ argmaxn∈I λn denote a player with the highest Pareto weight

under λ (choosing arbitrarily in case of a tie); let m (λ) = λi(λ) = maxn λn denote the

corresponding Pareto weight; and let M (λ) = maxn6=i |λn| denote the highest Pareto weight

in absolute value terms of any player other than i (λ).

Lemma 7 Let λ > 0 satisfy

Nūmax

{
λ,

1−
√

1−Nλ2√
1−Nλ2

}
≤ ε

4
. (21)

1. For all λ ∈ Λ, if m (λ) ≥M (λ) /λ, then λ · u
(
ai(λ)

)
≥ maxv′∈B λ · v′ + ε/4.

2. For all λ ∈ Λ, if m (λ) ≤ λ, then there exists a static Nash equilibrium αNE such that

λ · u
(
αNE

)
≥ maxv′∈B λ · v′ + ε/4.

Proof. See Appendix A.3

Now we fix the constants

X̄ =
4N2û2

λ4ū2
and c =

λ4ε2

213N2û2
. (22)

Lemma 8 If η < 1 and δ > 1− cη2, then

max

{
X̄

η2
, N

}
<

δ

1− δ
ε2

212ū2
.

Proof. Note that c < 1/2 and hence δ > 1/2, as ε < ū, λ < 1, and N ≥ 1. Hence, we

have δ > 1 − cη2 > 1 − c > 1 − λ4ε2

213N2û2
, and so X̄

η2
< X̄c

1−δ = ε2

(1−δ)213ū2 < δε2

(1−δ)212ū2 and

N < ε2

(1−δ)213ū2 <
δε2

(1−δ)212ū2 .

We henceforth assume that (Y, p) satisfies η-pairwise identifiability and δ > 1− cη2. By

Lemmas 6 and 8, to complete the proof it suffi ces to show that k
(
λ, X̄/η2

)
≥ maxv′∈B λ ·

v′ + ε/4 for all λ ∈ Λ.
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We first observe that for each pair of players i 6= j and each action profile a, we can define

rewards
(
xj,−i (y; a)

)
y∈Ȳ and

(
xj,+i (y; a)

)
y∈Ȳ with mean 0 and variance at most û2/η2 that

induce player i to take ai when her opponents take a−i; and that have the property that for

player j, taking aj maximizes the expectation of x
j,−
i (y; a) and minimizes the expectation

of xj,+i (y; a), for each y. This is a direct implication of η-pairwise identifiability.

Lemma 9 For each pair of players i 6= j and action profile a ∈ A, there exist
(
xj,ζi (y; a)

)
y∈Ȳ ,ζ∈{−1,+1}

such that, for each ζ ∈ {−1,+1}, we have

∑
y

p (y|a)xj,ζi (y; a) = 0, (23)∑
y

p (y|a′i, a−i)x
j,ζ
i (y; a) ≤ −û for all a′i 6= ai, (24)

ζ ×
∑
y

p
(
y|a′j, a−j

)
xj,ζi (y; a) ≥ 0 for all a′j 6= aj, and (25)

∑
y

p (y|a)xj,ζi (y; a)2 ≤ û2

η2
. (26)

Moreover, if Assumption 1.1 holds then xj,ζi (·; a) can be taken to depend only on yi.

Proof. Fix any i, j, and a. We first construct
(
xj,−1
i (y; a)

)
y∈Ȳ . Let z ∈ R

|Ȳ | satisfy ‖z‖a = 1

and (17). By the definitions of 〈·, ·〉a, Pi, and Pj, we have

∑
y

(p (y|a)− p (y|a′i, a−i)) z (y) ≥ η for all a′i 6= ai, and∑
y

(
p (y|a)− p

(
y|a′j, a−j

))
z (y) ≥ η for all a′j 6= aj.

Defining

xj,−1
i (y; a) =

û

η

(
z (y)−

∑
ỹ

p (ỹ|a) z (ỹ)

)
for all y,
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conditions (23)—(25) hold by construction, and condition (26) holds because

∑
y

p (y|a)
(
xj,−1
i (y; a)

)2
=

û2

η2

∑
y

p (y|a)

(
z (y)−

∑
ỹ

p (ỹ|a) z (ỹ)

)2

≤ û2

η2

∑
y

p (y|a) z (y)2 =
û2

η2
.

To construct
(
xj,+1
i (y; a)

)
y∈Ȳ , let z ∈ R

|Ȳ | satisfy ‖z‖a = 1 and (18), and proceed as in

the construction of
(
xj,−1
i (y; a)

)
y∈Ȳ .

Under product structure monitoring, by (14) and (16), there exists xi such that
∑

y p (y|a)xi (y; a) =

0,
∑

y p (y|a′i, a−i)xi (y; a) ≤ −û for all a′i 6= ai,
∑

y p (y|a)xi (y; a)2 ≤ û2/η2, and xi (yi, y−i; a) =

xi (yi, ỹ−i; a) for all yi, y−i, ỹ−i, a. Defining xj,−1
i (y; a) = xj,+1

i (y; a) = xi (y; a) also satisfies

(25) for each ζ, since the distribution of yi (and hence xi) is independent of a−i.

Finally, we show that k
(
λ, X̄/η2

)
≥ maxv′∈B λ · v′ + ε/4 for all λ ∈ Λ. We partition Λ

into three cases: (1) λ < m (λ) < M (λ) /λ; (2) m (λ) ≥M (λ) /λ; and (3) m (λ) ≤ λ.

Case 1: λ < m (λ) < M (λ) /λ. Fix any aλ ∈ argmaxa λ · u (a). Fix i = i (λ), and fix

some j 6= i such that λi/ |λj| < 1/λ. For each y, define x (y) = (xn (y))n∈I by

xn (y) =


x
j,sign(λjλi)
i

(
y; aλ

)
−
∑

n′ 6=i
λn′
λi
x
i,sign(λiλn′ )
n′

(
y; aλ

)
if n = i,

x
i,sign(λiλj)
j

(
y; aλ

)
− λi

λj
x
j,sign(λjλi)
i

(
y; aλ

)
if n = j,

x
i,sign(λiλn)
n

(
y; aλ

)
if n 6= i, j,

where sign (β) = −1 for β ≤ 0 and sign (β) = +1 for β > 0. Note that λ · x (y) = 0 ∀y, and

hence λ ·
(
u
(
aλ
)

+
∑

y p
(
y|aλ

)
x (y)

)
= λ · u

(
aλ
)
≥ maxv′∈B λ · v′ + ε/4. Moreover, (ICε)

holds because, for each player, (24) and (25) imply that the expected loss in continuation

payoff from deviating is at least û, which exceeds the maximum difference between any two

stage game payoffs by at least ε. Finally, for (HSX/η2), by |λn| /λi ≤ 1/λ ∀n, λi/ |λj| ≤ 1/λ,

(23), and (26), we have

∥∥∥∥∥x (y)−
∑
ỹ

p
(
ỹ|aλ

)
x (ỹ)

∥∥∥∥∥
2

≤ û2

η2

(1−
∑
n 6=i

λn/λi

)2

+ (1− λi/λj)2 +N − 2


︸ ︷︷ ︸

≤(1+(N−1)/λ)2+(1+1/λ)2+N−2

≤ 4N2û2

η2λ2 .
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Hence, (HSX/η2) holds, because we have∥∥∥x (y)−
∑

ỹ p
(
ỹ|aλ

)
x (ỹ)

∥∥∥
‖λ+‖

≤ 2Nû

η2λ2 =

√
X̄

η2
ū ≤ X̄

η2
ū, (27)

and, since ‖λ+‖2 ≥ λ2
i ≥ λ2, we have

∑
y

p
(
y|aλ

) ∥∥∥x (y)−
∑

ỹ p
(
ỹ|aλ

)
x (ỹ)

∥∥∥2

‖λ+‖2 ≤ 4N2û2

η2λ4 =
X̄

η2
ū2.

Case 2: m (λ) ≥ M (λ) /λ. Fix i = i (λ) and let α = ai. For each y, define x (y) =

(xn (y))n∈I by

xn (y) =

 −
∑

n′ 6=i
λn′
λi
x
i,sign(λiλn′ )
n′ (y; ai) if n = i,

x
i,sign(λiλn)
n (y; ai) if n 6= i.

Note that λ ·x (y) = 0 ∀y, and hence λ ·
(
u (ai) +

∑
y p (y|ai)x (y)

)
= λ ·u (ai) ≥ maxv′∈B λ ·

v′ + ε/4, by Lemma 7.1. We verify (ICε) and (HSX/η2).

For (ICε), for player i, note that
∑

y p (y|ai)xi (y) = 0 by (24), and
∑

y p
(
y|ai, ai−i

)
xi (y) ≤

0 ∀ai 6= aii by (25). If Assumption 1.1 holds, then xi (y) depends only on (yn)n6=i, so (ICε)(i)

holds. If Assumption 1.2 holds, then ui (ai) − ui
(
ai, a

i
−i
)
≥ ε ∀ai 6= aii, so (ICε)(ii) holds.

Next, for any player n 6= i, (24) implies that the expected loss in continuation payoff from

deviating is at least û, which exceeds the maximum difference between any two stage game

payoffs by at least ε.

For (HSX/η2), by |λn| /λi ≤M (λ) /m (λ) ≤ λ ∀n, (23), and (26), we have

∥∥∥∥∥x (y)−
∑
ỹ

p
(
ỹ|ai

)
x (ỹ)

∥∥∥∥∥
2

≤ û2

η2

(∑
n6=i

λn/λi

)2

+N − 1


︸ ︷︷ ︸

≤ N2û2

η2λ4 .

≤(N−1)2λ2+N−1

Hence, (HSX/η2) holds, because we have (27) with ai in place of aλ, and, since ‖λ+‖ ≥

1−Nλ ≥ 1− ε/2ū ≥ 1/2 (arguing as in Case 1 of the proof of Lemma 7 and applying (21)),
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we have ∑
y

p (y|ai)
∥∥∥x (y)−

∑
ỹ p (ỹ|ai)x (ỹ)

∥∥∥2

‖λ+‖2 ≤ 4N2û2

η2λ4 =
X̄

η2
ū2.

Case 3: m (λ) ≤ λ. For αNE satisfying Lemma 7.2, taking α = αNE and x (y) = 0 ∀y

attains a score greater than maxv′∈B λ · v′ + ε/4 and trivially satisfies (ICε) and (HSX/η2).

A.2 Proof of Lemma 6

To show that B is self-generating, it suffi ces to show that the extreme points of any ball

B′ ⊆ B of radius ε/4 are decomposable on B′.

Lemma 10 Suppose that for any ball B′ ⊆ B with radius ε/4 and any direction λ ∈ Λ, the

point v̂ = argmaxv′∈B′ λ · v′ is decomposable on B′. Then B is self-generating.

Proof. Fix any v0 ∈ B. Since the radius of B is ε/2, there exists a ball B′ ⊆ B with

radius ε/4 such that v0 lies on the boundary of B′. There then exists a direction λ0 such

that v0 = argmaxv′∈B′ λ0 · v′. By hypothesis, v0 is decomposable on B′. Since B′ ⊆ B, this

implies that v0 is decomposable on B. Hence, B is self-generating.

We thus fix a ball B′ ⊆ B with radius ε/4 and a direction λ ∈ Λ, and let v̂ =

argmaxv′∈B′ λ · v′. We construct (α,w) that decompose v̂ on B′.

Since k (λ,X) ≥ maxv′∈B λ · v′ + ε/4 by hypothesis, there exist α and x : Ȳ → RN that

satisfy (ICε), (HSX), and

λ ·
(
u (α) +

∑
y

p (y|α)x (y)

)
≥ max

v′∈B
λ · v′ + ε/5 ≥ max

v′∈B′
λ · v′ + ε/5. (28)

Fix any such α and x. Define

Xy =

∥∥∥x (y)−
∑

y′ p (y′|α)x (y′)
∥∥∥2

‖λ+‖2 ū2
.
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Note that, by (HSX) and (20), we have

1− δ
δ

√
Xyū =

1− δ
δ

∥∥∥x (y)−
∑

y′ p (y′|α)x (y′)
∥∥∥

‖λ+‖
≤ 1− δ

δ
Xū ≤ ε

64
, and (29)

1− δ
δ

∑
y

p (y|α)Xyū
2 ≤ 1− δ

δ
Xū2 ≤ ε2

640
. (30)

To construct w, let

ξi (y) = −64λiXyū
2

ε
1 {λi ≥ 0} for all i, y, (31)

and let ξ (y) = (ξi (y))i∈I . Note that ξi (y) ≤ 0 for all i, y. Finally, for each y, let

w (y) = v̂+
1− δ
δ

(
v̂ − u (α) + x (y)−

∑
y′

p (y′|α)x (y′)

)
+

(
1− δ
δ

)2
(
ξ (y)−

∑
y′

p (y′|α) ξ (y′)

)
.

We show that (α,w) decomposes v̂ on B′ by verifying in turn (PK), (IC), and (SG) (with

W = B′).

(PK): This holds by construction: we have
∑

y p (y|α)w (y) = (1/δ) (v̂ − (1− δ)u (α)),

and hence (1− δ)u (α) + δ
∑

y p (y|α)w (y) = v̂.

(IC): Setting aside the constant terms in w (y), we see that an action ai maximizes

(1− δ)ui (ai, α−i)+δ
∑

y p (y|ai, α−i)wi (y) iff it maximizes ui (ai, α−i)+
∑

y p (y|ai, α−i)
(
xi (y) + 1−δ

δ
ξi (y)

)
.

If
∑

y:x(y)=x p (y|ãi, a−i) is independent of ãi, then the distribution of ξi (y) is independent of

ãi, and hence (ICε)(i) implies (IC). Otherwise, (ICε)(ii) holds, and hence (IC) holds because,

for all ai /∈ suppαi we have

ui (α) +
∑
y

p (y|α)

(
xi (y) +

1− δ
δ

ξi (y)

)
− ui (ai, α−i)−

∑
y

p (y|ai, α−i)
(
xi (y) +

1− δ
δ

ξi (y)

)
≥ ε1 {λi ≥ 0}+

∑
y

p (y|α)
1− δ
δ

ξi (y) by (ICε) and ξi (y) ≤ 0 ∀y

≥ 1 {λi ≥ 0}
(
ε− 64λi

ε

1− δ
δ

∑
y

p (y|α)Xyū
2

)
by (31)

≥ 0 by (30) and λi ≤ 1.
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(SG): We start with a standard geometric observation.

Lemma 11 For each w ∈ RN , we have w ∈ B′ if λ · (v̂ − w) ≥ 0 and

‖v̂ − w‖ ≤
√
ε

4
λ · (v̂ − w). (32)

Proof. (32) implies that λ · (v̂ − w) ≤
√

ε
4
λ · (v̂ − w), and hence 0 ≤ λ · (v̂ − w) ≤ ε

4
. Let

x := v̂ − w − λ · (v̂ − w)λ. Since ‖x‖2 = ‖v̂ − w‖2 − (λ · (v̂ − w))2 ≤ ‖v̂ − w‖2, (32) implies

that ‖x‖2 ≤ ε
4
λ · (v̂ − w). Denote the center of B′ by o = v̂ − ε

4
λ. We have

‖w − o‖ = ‖w − o+ x− x‖ = ‖v̂ − o− (λ · (v̂ − w))λ− x‖ = ‖(λ · (w − o))λ− x‖

=

√
‖λ · (w − o)λ‖2 + ‖x‖2 ≤

√
ε

4
λ · (w − o) +

ε

4
λ · (v̂ − w) =

ε

4
,

where the third equality is by v̂−o−(λ · v̂)λ = ε
4
λ−
(
λ ·
(
o+ ε

4
λ
))
λ = − (λ · o)λ, the fourth

equality is by λ · x = 0, the inequality is by λ · (w − o) = λ · (v̂ − o)− λ (v̂ − w) ∈
[
0, ε

4

]
and

‖x‖2 ≤ ε
4
λ · (v̂ − w), and the final equality is by λ · (v̂ − o) = ε

4
. Hence, w ∈ B′.

We thus show that, for each y, w (y) satisfies λ · (v̂ − w (y)) ≥ 0 and (32). Note that

v̂ − w (y) =
1− δ
δ

∆ (y)−
(

1− δ
δ

)2

ξ (y) +

(
1− δ
δ

)2∑
y′

p (y′|α) ξ (y′) ,

where ∆ (y) = u (α)− v̂+
∑

y′ p (y′|α)x (y′)−x (y). By (HSX) and (28), we have λ ·∆ (y) ≥
1−δ
δ

ε
5
and

‖∆ (y)‖ ≤ ‖u (α)− v̂‖+

∥∥∥∥∥∑
y′

p (y′|α)x (y′)− x (y)

∥∥∥∥∥ ≤ √Nū+ ‖λ+‖
√
Xyū.

By (HSX) and the definition of ξ (cf. (31)),

−λ · ξ (y) ≥ ‖λ+‖2 64Xy

ε
ū2, ‖ξ (y)‖ ≤ ‖λ+‖

64Xy

ε
ū2, and∥∥∥∥∥∑

y′

p (y′|α) ξ (y′)

∥∥∥∥∥ =

∥∥∥∥∥
(
λi1 {λi ≥ 0}

64
∑

y p (y|α)Xyū
2

ε

)
i

∥∥∥∥∥ ≤ ‖λ+‖
64

ε

∑
y

p (y|α)Xyū
2.
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Therefore,

λ · (v̂ − w (y)) =
1− δ
δ

λ ·∆ (y)−
(

1− δ
δ

)2

λ · ξ (y) +

(
1− δ
δ

)2

λ ·
(∑

y′

p (y′|α) ξ (y′)

)

≥ 1− δ
δ

ε

5
+

(
1− δ
δ

)2

‖λ+‖2 64Xyū
2

ε
−
(

1− δ
δ

)2

‖λ+‖
64

ε

∑
y

p (y|α)Xyū
2

≥ 1− δ
δ

ε

10
+

(
1− δ
δ

)2

‖λ+‖2 64Xyū
2

ε
≥ 0, (33)

where the last line follows since ‖λ+‖ ≤ 1 and (30) imply that 1−δ
δ
‖λ+‖ 64

ε

∑
y p (y|α)Xyū

2 ≤
ε
10
. Thus, we have

√
ε

4
λ · (v̂ − w (y)) ≥ 4

1− δ
δ

max

{√
1

640

δ

1− δ ε, ‖λ+‖
√
Xyū

}
.

Similarly, we have

‖v̂ − w (y)‖ ≤ 1− δ
δ
‖∆ (y)‖+

(
1− δ
δ

)2

‖ξ (y)‖+

(
1− δ
δ

)2 ∥∥∥∑y′ p (y′|α) ξ (y′)
∥∥∥

≤ 1− δ
δ

(√
Nū+ ‖λ+‖

√
Xyū

)
+

(
1− δ
δ

)2

‖λ+‖
64Xy

ε
ū2 +

(
1− δ
δ

)2

‖λ+‖
64

ε

∑
y

p (y|α)Xyū
2

≤ 2
1− δ
δ

(√
N + ‖λ+‖

√
Xy

)
ū ≤ 4

1− δ
δ

max
{√

Nū, ‖λ+‖
√
Xyū

}
, (34)

where the third inequality follows since ‖λ+‖ ≤ 1 and (30) imply that 1−δ
δ

64
ε

∑
y p (y|α)Xyū

2 ≤
1
10
ε ≤ ū, and (29) implies that 1−δ

δ

64Xy
ε
ū2 ≤

√
Xyū.

Comparing (33) and (34), we see that w (y) satisfies (32) whenever
√
Nū ≤

√
1

640
δ

1−δε,

which holds by (20).

A.3 Proof of Lemma 7

Case 1: m (λ) ≥ M (λ) /λ. Let i = i (λ). Since m (λ) ≤ 1 and |λn| ≤ M (λ) ≤ m (λ)λ

∀n 6= i, we have |λn| ≤ λ ∀n 6= i, and hence |λi| ≥ 1 − Nλ (since ‖λ‖ = 1). Since λi =

m (λ) ≥M (λ) /λ > 0, we have λi ≥ 1−Nλ. Since 2 |ui (a)| ≤ ū ∀i, a, we have, for all v′ ∈ F ∗

and λ ∈ Λ, |(λ− ei) · v′| ≤
∑

n |λn − ei,n| ū/2 ≤ ((N − 1)λ+ |(1−Nλ)− 1|) ū/2 ≤ Nλū.
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Therefore, for ai ∈ arg maxa∈A ei · u (a), we have λ · u (ai) ≥ ei · u (ai)−Nλū ≥ maxv′∈F ∗ ei ·

v′ − Nλū ≥ maxv′∈F ∗ λ · v′ − 2Nλū ≥ maxv′∈B λ · v′ + ε/2 − 2Nλū ≥ maxv′∈B λ · v′ + ε/4,

where the last inequality is by (21).

Case 2: m (λ) ≤ λ. Let λ′n = min {λn, 0} / ‖λ−‖ and let λ′ = (λ′n)n∈I ∈ Λ. We claim

that
∑

n |λ
′
n − λn| ≤ ε/2ū. To see this, note that if λn ≥ 0 then |λn| ≤ λ, and hence

|λ′n − λn| = |0− λn| = |λn| ≤ λ. If instead λn ≤ 0, then

|λ′n − λn| =
∣∣∣∣λn − ‖λ−‖λn‖λ−‖

∣∣∣∣ ≤ 1− ‖λ−‖
‖λ−‖

≤ 1−
√

1−Nλ2√
1−Nλ2

,

where the first inequality follows because |λn| ≤ 1, and the second inequality follows because,

since
∑

n′ (λn′)
2 = 1 and λn ≤ m (λ) ≤ λ ∀n, we have ‖λ−‖ =

∑
n′:λn′<0 (λn′)

2 ≥ 1 − Nλ2.

In total, we have

∑
n

|λ′n − λn| ≤ N max

{
λ,

1−
√

1−Nλ2√
1−Nλ2

}
≤ ε

2ū
by (21).

Since λ′ ≤ 0, by definition of F ∗ there exists a static Nash equilibrium αNE such that

λ′·u
(
αNE

)
≥ maxv′∈F ∗ λ

′·v′. Since
∑

n |λ
′
n − λn| ≤ ε/2ū, 2 |ui (a)| ≤ ū ∀i, a, and the distance

from B to the boundary of F ∗ is greater than ε/2, we have λ ·u
(
αNE

)
≥ λ′ ·u

(
αNE

)
−ε/4 ≥

maxv′∈F ∗ λ
′ · v′ − ε/4 ≥ maxv′∈B λ

′ · v′ + ε/4, as desired.

B Proof of Proposition 1

We start by deriving a suffi cient condition to self-generate the convex hull of the union of a

ball B centered on the 45◦ line and the mutual defection payoff (0, 0).22 For any compact

set of payoffs V ⊆ F ∗, we define the minimum ineffi ciency of V as

ρ (V ) = min
λ∈Λ+

max
v∈F ∗

min
v′∈V

λ · (v − v′) , where

Λ+ =

{
λ ∈ Λ : (0, 0) 6∈ arg max

v∈F ∗
min
v′∈V

λ · (v − v′)
}
.

22A heuristic motivation for this proof approach is that the set of PPE payoffs in the continuous-time
limit game has a shape that resembles the convex hull of the union of a ball centered on the 45◦ line and
the mutual defection payoff. Compare Figure 1 below and Figure 2 of Sannikov (2007).
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That is, ρ (V ) is the minimum distance between the boundaries of V and F ∗ in any direction

λ, excluding directions where the minimizing boundary point of V is the mutual defection

payoff (0, 0). Also, for any ball B ⊆ F ∗ with center o = (vo, vo) lying on the 45-degree line

and curvature κ, let ψ denote the slope of a tangent line to B passing through (0, 0), which

is given by

ψ =
v2
oκ

2 −
√

2v2
oκ

2 − 1

v2
oκ

2 − 1
. (35)

Note that B ⊆ F ∗ implies v2
oκ

2 ≥ 1, with strict inequality if B ∩ ∂F ∗ = ∅. See Figure 1.

Figure 1: Self-generating the set B0. The set B is the ball centered at o passing through v1 and
v2. The set B0 is the convex hull of the union of B and the point (0, 0). To self-generate ∂B0,
both players cooperate to generate points on the blue portion of the bondary (Region 0), one player
cooperates to generate points on the green portions (Regions 1 and 2), and the players randomize
between v1 or v2 and mutual defection to generate points on the red portion (Region 3).

Lemma 12 Let B ⊆ F ∗ be a ball with center o = (vo, vo) and curvature κ, and let B0 =

co ((0, 0) ∪B). If
1

r

(2π − 1)2

π (1− π)
>

κ

2ρ (B0) min
{
ψ2, 4

25

} , (36)

then B0 is self-generating for all suffi ciently small ∆.
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Proof. Let `1 and `2 denote the tangent lines to B passing through (0, 0), and let v1 and v2

denote the corresponding tangency points on ∂B, with v1
1 < v1

2. (See Figure 1.) Note that

ψ is the slope of `2.23

We divide the boundary of B0 into four regions. Region 0 is the set of v ∈ ∂B0 where the

outward unit normal vector λ (v) = (λ1, λ2) at v satisfies λ1 > 0, λ2 > 0, and λ1/λ2 ∈ [1/2, 2].

For i ∈ {1, 2}, Region i is the set of v ∈ ∂B0 where (λ1, λ2) satisfies −1/ψ ≤ λi/λj ≤ 1/2

and λj > 0. (Throughout, i and j denote distinct players.) Region 3 is the rest of ∂B0.

For v ∈ ∂B0, let a (v) = (C,C) for v in Region 0, (ai (v) , aj (v)) = (C,D) for v in Region

i, and a (v) = (D,D) for v in Region 3. Note that a (v) ∈ arg maxa∈A minv∈B0 λ · (u (a)− v),

and a (v) is the unique maximizer unless v is the boundary of two regions. By the definition

of ρ (B0), for each v in Region 0, 1, or 2, we have

λ (v) · (u (a (v))− v) ≥ ρ
(
B0
)
. (37)

Since public randomization is available, it suffi ces to show that for suffi cient small ∆,

each v ∈ ∂B0 is decomposable on B0. We prove this for v ∈ ∂B0 in each of the four regions

in turn. We require some notation: first, let

βi
(
yi
)

=
1
2
−
(
π − 1

2

)√
∆/γ

(2π − 1)
√

∆/γ
1
{
yi = 1

}
−

1
2

+
(
π − 1

2

)√
∆/γ

(2π − 1)
√

∆/γ
1
{
yi = −1

}
.

We will use βi (y
i) as a “reward function”to induce player i to take C: in particular, we will

use the properties

E
[
βi
(
yi
)
|C, aj

]
− E

[
βi
(
yi
)
|D, aj

]
= 1 for all aj, and E

[
βi
(
yi
)
|C,C

]
= 0.

Second, we fix ε̂ > 0 such that (the existence follows from (36))

r
π (1− π)

(2π − 1)2 (1 + ε̂)2 <
2ρ (B0) min

{
ψ2, 4

25

}
κ

. (38)

23Equation (35) for ψ is derived by solving the equations
∥∥v2 − o∥∥ = 1/κ and

(
v2 − o

)
· v2 = 0 for

v2 =
(
v21 , v

2
2

)
, and taking ψ = v22/v

2
1 .
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Region 0: Fix v ∈ ∂B0 in Region 0. We implement a = (C,C). Let λ be the outward

unit normal vector of ∂B0 at v. Define x (y) such that

xi (y) = (1 + ε̂) βi
(
yi
)
− λj
λi

(1 + ε̂) βj
(
yj
)
for each i.

Since v is in Region 0, we have |λ1/λ2| ∈ [1/2, 2], which together with ‖λ‖ = 1 implies that
1
λ21

+ 1
λ22
≤ 25

4
. Thus, we have

ui (a) + E [xi (y) |a] = 0, (39)

ui (a) + E [xi (y) |a]− ui (a′i)− E [xi (y) |a′i, aj] ≥ ε̂ for a′i 6= ai, (40)

lim
∆→0

E
[
‖x (y)‖2 |a

]
− E

[
‖x (y)‖2 |a′i, aj

]
= − (1 + ε̂)2 , (41)

lim
∆→0

1− δ
δ
E
[
‖x (y)‖2 |a

]
=

(
1

λ2
1

+
1

λ2
2

)
r
π (1− π)

(2π − 1)2 (1 + ε̂)2 ≤ 25

4
r
π (1− π)

(2π − 1)2 (1 + ε̂)2 ,(42)

max
y

√
1− δ
δ
‖x (y)‖ ≤

√
1− δ
δ

√
1

λ2
1

+
1

λ2
2

(1 + ε̂)

1−
√

∆/γ

2
+ π
√

∆/γ

(2π − 1)
√

∆/γ
= O (1) . (43)

The above limits are all uniform in λ, since λ1, λ2 ≥ 1/4 in Region 0.

Define continuation payoffs

w (y) = v +
1− δ
δ

(v − u (a) + x (y))− κ

2

(
1− δ
δ

)2 (
‖x (y)‖2 − E

[
‖x (y)‖2 |a

])
λ.

With these continuation payoffs, (PK) holds because, since E [x (y) |a] = 0, we have

(1− δ)u (a) + δE [w (y) |a] = v +
1− δ
δ
E [x (y) |a] = v.

(IC) holds because

(1− δ)
(
u (a) +

δ

1− δE [w (y) |a]− u (a′i, aj) +
δ

1− δE [w (y) |a′i, aj]
)

= (1− δ)
(
ε̂+

κ

2

1− δ
δ

(
E
[
‖x (y)‖2 |a

]
− E

[
‖x (y)‖2 |a′i, aj

]))
,
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and, by (41),

lim
∆→0

1− δ
δ

(
E
[
‖x (y)‖2 |a

]
− E

[
‖x (y)‖2 |a′i, aj

])
= 0.

Moreover, this convergence is uniform over v in Region 0, as λi is bounded away from 0 in

Region 0. Thus, for suffi ciently small ∆, (IC) holds. Finally, by the Pythagorean theorem,

(SG) holds if

(
(λ2,−λ1)> · (v − w (y))

)2

≤
(

1

κ

)2

−
(

1

κ
− λ · (v − w (y))

)2

for all y.

Substituting w (y) and simplifying terms, this inequality is equivalent to

1− δ
δ

(
(λ2,−λ1)> · (u (a)− v)

)2

− 2
(

(λ2,−λ1)> · (u (a)− v)
) 1− δ

δ
‖x (y)‖

≤ 2

κ
λ · (u (a)− v)−

(
1− δ
δ

)
E
[
‖x (y)‖2 |CC

]
−
(√

1− δ
δ

λ · (u (a)− v)− κ

2

(
1− δ
δ

) 3
2

E
[
‖x (y)‖2 |CC

]
+
κ

2

(
1− δ
δ

) 3
2

‖x (y)‖2

)2

.

By (42) and (43), all terms in the first and last lines converge to 0 uniformly in ∆. Hence,

by (42), for small ∆ this inequality is implied by

2λ · (u (a)− v)− κr25

4

π (1− π)

(2π − 1)2 (1 + ε̂)2 > 0.

Since (37) implies λ · (u (a)− v) ≥ ρ (B0), this inequality follows from (38).

Region i ∈ {1, 2}: Fix v ∈ ∂B0 in Region i. We implement (ai, aj) = (C,D). With λ

defined as above, we have |λj| ≥ ψ. Define

xi (y) = (1 + ε̂) βi
(
yi
)
, xj (y) = − (1 + ε̂)

λi
λj
βi
(
yi
)
, and

w (y) = v +
1− δ
δ

(v − u (a) + x (y))− κ

2

(
1− δ
δ

)2 (
‖x (y)‖2 − E

[
‖x (y)‖2 |a

])
λ.

Note that only player i is incentivized by continuation payoffs. The rest of the proof is the

same as in Region 0, except for the following: For (IC) for player j, player j has a strict

incentive to take D because the distribution of any function of x (y) is independent of her
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action. For (SG), we have

lim
∆→0

1− δ
δ
E
[
‖x (y)‖2 |a

]
=

1

λ2
j

r
π (1− π)

(2π − 1)2 (1 + ε̂)2 ≤ 1

ψ2 r
π (1− π)

(2π − 1)2 (1 + ε̂)2 ,

so the argument is as in the Region 0 case with ψ2 in place of 4/25.

Region 3: Each v ∈ ∂B0 in Region 3 is a convex combination of (0, 0) and either v1

or v2. The point (0, 0) is a static Nash payoff and hence is trivially decomposable on B0,

and we have seen that each vi is decomposable on B0, since vi is in Region i. Hence, each

v ∈ ∂B0 in Region 3 is decomposable on B0 given public randomization.

Proof of Proposition 1: Take B with center (1− 3ε/2, 1− 3ε/2) and curvature
√

2/ε.

Note that (1− ε, 1− ε) ∈ ∂B. Elementary calculations (given below) yield ψ ≥ 2/5 and

ρ (B0) =
(

9
10

√
5− 1√

2

)
ε. Hence, if (13) holds then so does (36), so by Lemma 12 B0 is

self-generating, and thus (1− ε, 1− ε) ∈ E.

The required calculations are as follows: By definition of ψ, we have

ψ =
(2− 3ε)2 − 4ε

√
1− 3ε+ 2ε2

4− 12ε+ 7ε2
.

This expression equals 2/5 when ε = 54
23
− 6

23

√
58, and it is decreasing in ε for ε ∈

(
0, 54

23
− 6

23

√
58
)
.

Hence, ψ ≥ 2/5 iff ε ≤ 54
23
− 6

23

√
58.

Next, note that for each λ ∈ Λ+, there exists v ∈ ∂B0 in Region 0, 1, or 2 such that

λ is the outward unit normal vector at v. Note that ‖(−1, 2)− v1‖ = ‖(2,−1)− v2‖ ≥ 1,

which is greater than
(

9
10

√
5− 1√

2

)
ε when ε ≤ 54

23
− 6

23

√
58. Thus, to show that ρ (B0) =(

9
10

√
5− 1√

2

)
ε, it suffi ces to show that the distance d from o to the line ` with equation

y = (3− x) /2 (i.e., the line through (−1, 2) and (1, 1)) is 9
10

√
5ε as the radius of B0 is ε/

√
2).

To see this, note that the vector (1, 2) /
√

5 is normal to `, so the point z ∈ ` that minimizes

the distance to o is z = o+ d (1, 2) /
√

5. At the same time, since z ∈ `, we have

1− 3

2
ε+

2d√
5

=
1

2

(
3−

(
1− 3

2
ε+

d√
5

))
.

Solving for d gives d = 9
10

√
5ε, as desired.
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