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1 Introduction
Many personal and policy decisions turn on perceptions of school quality. Families

choose schools and neighborhoods by balancing perceived school effectiveness

against other factors, like housing costs and commute times. Questions of school

quality also drive high-stakes policy decisions related to school closures, restructur-

ing, and expansion. In response to the demand for quality information, achievement-

based measures of public school effectiveness have proliferated. Such measures

include “school report cards” distributed by some states and districts, as well as

school quality ratings published by private organizations like GreatSchools.org.

How should school quality be measured? This chapter reviews econometric strat-

egies for estimating school effectiveness, defined as the causal effect of attending a par-

ticular school or set of similar schools (like charter schools) on student outcomes. Efforts

to gauge school quality must confront the fundamental challenge of selection bias:

school-to-school comparisons can reflect student ability and family background asmuch

as or more than school effectiveness. Economists have devised an array of solutions to

this problem; increasingly, these empirical strategies use elements of randomness in

modern school assignment schemes to devise convincing natural experiments.

Our review begins with the relatively straightforward matter of how to gauge the

effectiveness of a single school or school sector that offers seats by lottery. For instance,

Angrist et al. (2010) study effects of the first Knowledge is Power Program (KIPP)

charter school in New England. In principle, lotteries for seats at a single oversub-

scribed charter school identify the causal effects of attendance at this school. This iden-

tification strategy is implemented using the (perhaps conditionally) randomized offer of

seats at the school in question as an instrumental variable (IV) for school attendance.

Although conceptually straightforward, complications arise in implementing

school-lottery IV, even when focusing on a single school or sector. Our discussion

of single-lottery IV covers problems related to covariates, waiting lists, and the
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delays between random assignment, school enrollment, and measurement of out-

comes. We also discuss the regression-discontinuity (RD) analog of single-school

lotteries where students are admitted according to whether a test score clears a cutoff.

A leading example here is a selective-enrollment “exam” school like those studied in

Abdulkadiro�glu et al. (2014). Finally, the single-school IV setting is used to review

methods for the estimation of school effects on test score distributions, as in Angrist

et al. (2016a).

Of course, many questions of school quality involve more than one sector or

school. An analyst aspiring to measure multiple causal effects must establish a com-

mon counterfactual to ensure the estimates are true apples-to-apples comparisons.

The identification of multischool and multisector models is facilitated by centralized

school assignment, as in the Boston, Denver, New Orleans, and New York City

school districts (to name a few). Centralized assignment schemes randomly assign

seats at most schools in the centralized district. But random assignment in such dis-

tricts is conditional: different students are assigned seats at a given school at different

rates determined by preferences and priorities. Abdulkadiro�glu et al. (2017) and

Abdulkadiro�glu et al. (2022) derive the assignment probabilities arising in a central-

ized match and show how the vector of assignment rates lays the foundation for

causal inference with multiple sectors or schools. We synthesize and illustrate

practical lessons from this work.

Interest in school effectiveness predates the advent of centralized assignment.

Conventional value-added models (VAMs) gauge school effectiveness using regres-

sion to control for lagged outcomes and other covariates. Because VAM estimates

for individual schools tend to be noisy, economists have long deployed empirical

Bayes (EB) methods to reduce sampling variance.a More recently, Angrist et al.

(2016b, 2017, 2021) develop a suite of EB methods designed for models using

centralized assignment to measure school effectiveness. These methods aim to

balance the relative precision of conventionalVAMswith the bias reduction andmodel

validation afforded by centralized assignment. New VAM models and methods are

illustrated here with applications to schools in Massachusetts, Denver, and New York

City. As in Angrist et al. (2021), these applications show how centralized assignment

can shed light on school effectiveness even for schools where no seats are randomly

assigned.

The chapter is organized as follows. Section 2 reviews the basic IV framework as

it applies to quality measures for a single school or sector. Section 3 extends the

decentralized lottery framework to cover models with heterogeneous school effects,

measures of effectiveness for sectors and years, and identification strategies using

RD-style seat assignment. Section 4 discusses the use of centralized assignment

to estimate the quality of multiple sectors. A leading example here is an analysis

of different types of charter schools. Section 5 discusses regression-controlled

aRaudenbush and Bryk (1986) are the first to apply EB methods in this context.
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VAM estimation, outlines an EB framework for the analysis of individual school

quality using centralized assignment, and shows how quasi-experimental variation

can be used to validate and improve on conventional VAMs. We conclude by

highlighting remaining challenges and research frontiers in the measurement of

school effectiveness.

2 School lottery basics
2.1 Single-school effects
A large and expanding empirical literature uses randomized admission lotteries to

gauge the effects of K-12 schools on academic outcomes in the United States.

Examples include studies of charter schools (Abdulkadiro�glu et al., 2011; Angrist

et al., 2010, 2012, 2013, 2016a; Clark et al., 2015; Cohodes et al., 2021; Davis

and Heller, 2019; Dobbie and Fryer, 2011, 2013, 2015; Hoxby and Murarka,

2009; Setren, 2021), school vouchers (Abdulkadiro�glu et al., 2018; Chingos and

Peterson, 2015; Mills and Wolf, 2017), small schools (Bloom and Unterman,

2014), magnet schools (Engberg et al., 2014), boarding schools (Curto and Fryer,

2014), and aspects of school choice (Cullen et al., 2006; Deming, 2011, 2014;

Deming et al., 2014; Hastings et al., 2009).b We begin by reviewing econometric

methods for the simplest question this work considers, that of the effectiveness of

a single school.

Consider the effects of attendance at a charter school in the KIPP network. KIPP

is emblematic of the No Excuses approach to public education, a widely replicated

urban charter model that features a long school day, an extended school year, selec-

tive teacher hiring, extensive data-driven feedback for teachers, student behavior

norms, and a focus on traditional reading and math skills. Not long ago, there was

only one KIPP school in New England—a middle school in Lynn, MA. How good

is KIPP Lynn? Angrist et al. (2010, 2012) gauge KIPP Lynn effectiveness using data

on KIPP lottery applicants.

The lottery strategy uses IV to identify the causal effect of a Bernoulli treatment,

Di, indicating KIPP enrollment for student i. Let Yi(1) denote this student’s potential
6th grade achievement level if she attends KIPP Lynn, and let Yi(0) denote her

achievement otherwise. Observed outcome, Yi, is one or the other of these two

potential outcomes depending on Di:

Yi ¼DiYið1Þ+ ð1�DiÞYið0Þ
¼ Yið0Þ+ ðYið1Þ�Yið0ÞÞDi:

bOutside the United States, lottery-based school evaluations include Angrist et al. (2002), Lee et al.

(2014), Zhang (2016), Behaghel et al. (2017), Lee and Nakazawa (2022), Oosterbeek et al. (2023),

and Romero and Singh (2021).
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To focus on the problem of selection bias, we start by assuming a constant causal

effect, Yi(1) � Y (0) ¼ β, for all i. Under constant effects, observed outcomes can

be described by writing:

Yi ¼ μ + βDi + εi, (1)

where μ ≡ E[Yi(0)] and εi ¼ Yi(0) � μ. The term εi can be thought of as a composite

measure of student ability, family background, and motivation for schoolwork.

We call this “ability” for short.

The core challenge in estimating β comes from the fact that ability and KIPP

attendance are likely correlated. KIPP students may be especially motivated or come

from more educated families than the typical urban student. If so, the causal param-

eter β in Eq. (1) is unlikely to coincide with the slope coefficient in a regression of Yi
on Di or, equivalently, the difference in conditional means of Yi with Di switched

on and off. Selection bias likely causes comparisons of mean achievement by KIPP

enrollment status to exceed β:

E½Yi|Di ¼ 1� � E½Yi|Di ¼ 0� ¼ β + E½εi|Di ¼ 1� � E½εi|Di ¼ 0�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Selection bias

> β:

Multivariate regression estimates that control for family background and pre-

application (i.e., lagged) achievement reduce, but do not necessarily eliminate, this

sort of selection bias.

IV using randomized admission lotteries addresses the challenge of selection

bias. Suppose n applicants apply for m < n 6th grade seats at KIPP. Let dummy

variable Zi indicate applicants offered a seat. We assume that Zi is determined in

a manner both fair and consequential. Formally, this means

Assumption 1A. Lottery offers are independent of student ability: εi ?? Zi.

Assumption 1B. Lottery winners are more likely to enroll than losers:

E[DijZi ¼ 1] > E[DijZi ¼ 0].

Assumption 1A is plausible because lottery offers are randomly assigned and so

independent of student ability, though 1A also requires offers be unrelated to

outcomes through channels other than charter attendance. The latter requirement

is an exclusion restriction. Assumption 1B is plausible when schools are oversub-

scribed so that lottery losers find it harder than winners to obtain a seat.

This pair of assumptions makes Zi a valid instrument for Di in Eq. (1). Since the

instrument here is Bernoulli, the IV estimand is a Wald (1940)-type ratio of differ-

ences in means:

βIV ≡ E½Yi|Zi ¼ 1� � E½Yi|Zi ¼ 0�
E½Di|Zi ¼ 1� � E½Di|Zi ¼ 0� ¼ β: (2)

Identification of β results from the fact that Assumption 1A implies E[εjZi] ¼ 0,

while Assumption 1B ensures the denominator of (2) is nonzero.
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The numerator and denominator of (2) can be computed as the slope coefficients

from bivariate regressions of achievement and charter attendance on Zi:

Yi ¼ γ + ρZi + ui, (3)

Di ¼ ψ + πZi + vi: (4)

The first of these equations is the IV reduced form, while the second is the corre-

sponding first stage. We sometimes use these terms to refer to ρ and π, rather than
the equations containing them. Eq. (2) shows that βIV ¼ ρ/π, the ratio of reduced

form to first stage.

2.2 Control for assignment risk and covariates
Admissions lotteries are typically run every year. Most schools run separate lotteries

for different entry grades and for siblings of students already enrolled, among other

special groups. Such multilottery scenarios can be seen as a naturally occurring

analog of the stratified randomized controlled trials (RCTs) used to gauge drug

efficacy. In a stratified RCT, where subjects are treated at different rates in different

strata, treatment assignment is independent of potential outcomes only within strata.

The signal feature distinguishing lottery strata is the conditional probability of an

offer, a probability we call assignment risk. For instance, assignment risk among ap-

plicants might be 0.9 when a school first opens and demand is weak. But assignment

risk might decline to 0.5 or less in later years if demand grows. Likewise, siblings are

typically offered seats at a much higher rate than nonsiblings in a given year. A group

of students with the same assignment risk is said to constitute a risk set. Differences
in assignment risk are a possible source of selection bias even in a stratified RCT.

We therefore control for assignment risk in all but the simplest, single-stratum,

lottery-based research designs.

Within risk sets, the single-lottery IV framework applies. Let Ri � f1,…,Kg
encode the identity of applicant i’s risk set, with dummies Rik¼ 1{Ri¼ k} indicating
i is in the kth set. The conditional Wald estimand for applicants in risk set k is:

βIV,k ≡
E½YijZi ¼ 1,Ri ¼ k� � E½YijZi ¼ 0,Ri ¼ k�
E½DijZi ¼ 1,Ri ¼ k� � E½DijZi ¼ 0,Ri ¼ k� : (5)

If Assumptions 1A and 1B hold conditional on Ri ¼ k, then βIV,k captures the causal
effect of charter attendance for applicants in this group. In practice, risk-set-specific

estimates based on the sample analog of βIV,k are likely to be noisy. But we can

aggregate these conditional estimates into a single, more precise, summary estimate.

A two-stage least squares (2SLS) estimator with a full set of risk set controls

conveniently aggregates the set of βIV,k in a single weighted average. Augmenting

causal model (1) and first-stage equation (4) with risk set controls leads to a 2SLS

setup described by:
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Yi ¼ βDi +
XK
k¼1

δkRik + ηi, (6)

Di ¼ πZi +
XK
k¼1

τkRik + υi: (7)

Parameters δk in the risk-controlled causal model, (6), can be viewed as coefficients

from a regression of μ + εi in (1) on the set of Rik, with associated residual ηi.
First-stage Eq. (7) likewise controls for risk by including the Rik as regressors

(as a rule, a 2SLS first stage includes the controls appearing in the causal model with

which it’s associated).

2SLS uses the first-stage fitted values generated by (7) to instrument Di in (6).c

Kolesár (2013) shows that this 2SLS estimand, characterized by a dummy endoge-

nous variable with saturated control for discrete covariates, captures a weighted

average of within-risk-set IV coefficients that can be written:

β2SLS ¼
XK
k¼1

ωkπkpkð1� pkÞX
l
ωlπlplð1� plÞ

� �
βIV,k: (8)

Here, ωk ¼ Pr[Rik ¼ 1] is the share of applicants in risk set k; πk ¼ E[DijZi ¼ 1,

Rik ¼ 1] � E[DijZi ¼ 0, Rik ¼ 1] is the first stage for these applicants; and pk ¼
Pr[Zi ¼ 1jRik ¼ 1], so pk(1 � pk) is the conditional offer variance. The weights

on each βIV,k are nonnegative if Assumption 1B holds for each lottery so that πk > 0

for all k. This weighting scheme enhances precision by putting more weight on

strata with more students, stronger first stages, and more instrument variation.d

An alternative 2SLS estimator adds interactions between the offer instrument and

risk set dummies to the list of excluded instruments, leading to an overidentified

model with a fully saturated first stage.e 2SLS with a saturated first stage generates

a weighted average that replaces πk with π2k in (8), as detailed in Angrist and Imbens

(1995). Under constant effects and homoskedasticity of the residuals in (6),

2SLS estimates of this overidentified model are efficient in the sense of yielding

cThe reduced-form equation for this system can be written:

Yi ¼ ρZi +
XK
k¼1

γkRik + ξi,

where the γk are reduced-form risk-set effects. Because this model is just-identified (i.e., the number of

instruments equals the number of variables to be instrumented), 2SLS coincides with an indirect least

squares estimator that divides OLS estimates of reduced-form coefficient ρ by estimates of the corre-

sponding first-stage coefficient, π, in (7).
dGoldsmith-Pinkham et al. (2022) study the efficiency of such regression-based weighting schemes.
eThis first stage is saturated because it includes a parameter for each value of E[Di|Zi, Ri].
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the (asymptotically) most precise estimate that can be computed given the informa-

tion at hand. On the other hand, 2SLS estimates of heavily overidentified models are

likely to reflect more finite-sample bias than estimates of just-identified models

(Andrews et al., 2019; Angrist and Kolesár, 2023).

2.2.1 Covariate control
Beyond risk set controls, 2SLS estimators for school quality often incorporate

additional covariates describing students’ background. Although not required to

eliminate selection bias, nonrisk covariates typically increase the precision of

2SLS estimates. A 2SLS setup with covariates is described by:

Yi ¼ βDi +
XK
k¼1

δkRik + X0
iλ + ηi, (9)

Di ¼ πZi +
XK
k¼1

τkRik + X0
iψ + υi: (10)

Covariate vector Xi might include applicant demographic characteristics like race,

sex, and free-lunch status, as well as baseline test scores measured prior to the lottery

in which the applicant participates.

Assuming lottery offers are randomly assigned within risk sets, Zi and Xi are

uncorrelated conditional on assignment risk. This implies the coefficient on Xi

should be zero in a regression of Zi on risk set dummies and Xi. Controlling for

Xi therefore leaves the 2SLS estimand unchanged. This fact is a version of the

Frisch–Waugh–Lovell regression-anatomy theorem for 2SLS. To the extent that

controlling for Xi reduces the residual variance of outcomes, however, 2SLS esti-

mates of models with Xi included can be expected to be more precise than estimates

of models with Xi omitted (see, e.g., Angrist and Pischke, 2009).

2.2.2 Multiple schools in a single sector
Importantly, the risk set idea extends to analyses of sectors covering more than one

school. Suppose the city of Lynn has two KIPP middle schools, KIPP A and KIPP B.

Applicants for 5th grade seats may apply to one or both of these charter schools. In a

multischool/single-sector analysis, applicants are coded as having attended KIPP if

they enroll in either school; no attempt is made to identify causal effects of KIPP

A and B separately. In a single-sector analysis, we pursue a common KIPP treatment

effect. Moreover, in this example, the KIPP effect in Lynn is also a charter-school

sector effect since the city of Lynn has no non-KIPP charters.

Multischool scenarios open the door to alternative IV strategies. We might, for

example, use two offer dummies as instruments with one for each school. With only

one endogenous variable indicating any KIPP attendance, 2SLS estimates are over-

identified by two instruments. Each instrument in this case generates distinct

assignment risk. Often, however, a just-identified single-instrument estimator is
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appealing—both for pedagogical reasons and because heavily overidentified esti-

mates (in more elaborate real-world applications) suffer greater finite-sample bias.

The typical just-identified setup uses a single any-offer instrument. With two

schools, the any-offer instrument indicates applicants receiving offers from one or

both schools; assignment risk is the probability of the union of the two underlying

offer events. If, for instance, the A and B lotteries are independent, and if applicant

i has risk pi(A) at school A and pi(B) at school B, then the risk of a KIPP offer is

pi(A) + pi(B)� pi(A)pi(B). Applicants who apply to only one or the other school have
either pi(A) ¼ 0 or pi(B) ¼ 0. When assignment risk takes on three values, there are

three risk sets. Section 2.3 illustrates this scenario in an analysis of Massachusetts

urban charter schools.

2.3 Massachusetts urban charter effects
An investigation ofMassachusetts urban charter middle school effects highlights key

elements of a basic lottery analysis of school effectiveness. The sample used for this

purpose is that analyzed in Angrist et al. (2013). The 2SLS setup here includes both

risk set controls and baseline (nonrisk) covariates. Risk set controls consist of indi-

cators for all combinations of charter schools applied to, separately by application

year. The treatment effect of interest is the effect of attending one of Massachusetts’

urban charter middle schools, mostly in Boston. This investigation compares schools

in the urban charter sector to all other public schools, both traditional and charter.

Table 1 reports summary statistics for this sample. Column (2) displays baseline

(4th grade) characteristics for 6038 students applying for 5th- or 6th-grade entry

between 2002 and 2011 at one of 9 urban charters with available lottery records.

Table 1 Balance and attrition for Massachusetts urban charter lotteries.

Means

MA urban
students

MA urban
applicants Balance coefficient

(1) (2) (3)

A. Balance

Female 0.484 0.498 0.002

(0.017)

Black 0.201 0.479 �0.011

(0.015)

Hispanic 0.321 0.244 0.026

(0.014)

Asian 0.072 0.017 0.001

(0.005)

White 0.375 0.204 �0.007

(0.012)
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The lottery sample keeps only the earliest recorded application year for each student

and excludes applicants receiving guaranteed seats (e.g., applicants with enrolled

siblings), resulting in a set of students subject to random lottery admission. For

comparison, characteristics of the fullMassachusetts urban school district population

over the same period are displayed in column (1).

The summary statistics show some notable differences between lottery applicants

and the broader student population. In particular, lottery applicants are more likely

to be Black, are less likely to be classified as English language learners, and have

somewhat higher baseline test scores. While both groups are below the state average

in 4th grade, charter applicants have math and English scores roughly 0.1 standard

deviations (σ) higher than the urban average (here all test scores are normalized to

mean zero and standard deviation one in each grade and year for the state of

Massachusetts). These differences illustrate the potential for selection into charter

attendance, highlighting the value of lottery-based experiments.

Table 1 Balance and attrition for Massachusetts urban charter
lotteries.—cont’d

Means

MA urban
students

MA urban
applicants Balance coefficient

(1) (2) (3)

Special education 0.200 0.176 �0.005

(0.013)

English language learner 0.161 0.103 0.003

(0.010)

Subsidized lunch status 0.688 0.688 0.008

(0.015)

Baseline math score �0.416 �0.336 �0.020

(0.033)

Baseline English score �0.454 �0.359 0.002

(0.035)

Joint p-value 0.694

B. Attrition

Has outcome score 0.702 0.801 0.012

(0.010)

Observations 234,793 6038 6038

Note: Columns (1) and (2) of this table report means of baseline characteristics and an attrition indicator
(a dummy for having an outcome test score) for students in Massachusetts urban school districts and
urban charter lottery applicants, respectively. Column (3) reports coefficients from regressions of
covariates on charter offer dummies, controlling for lottery risk set indicators. Robust standard errors are
reported in parentheses. The joint p-value is from a test of the hypothesis that all baseline characteristics
are balanced by lottery offer status.
The sample used here is that analyzed in Angrist, J.D., Walters, C.R., Pathak., P. A., 2013. Explaining
charter school effectiveness. Am. Econ. J. Appl. Econ. 5 (4), 1–27.
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2.3.1 Balance and attrition
Two empirical checks probe the validity of the assumptions underlying a lottery-

based analysis of school effectiveness. The first is a covariate balance check: with

random lottery offers, baseline characteristics of lottery winners and losers should

be similar. Column (3) of Table 1 displays coefficients from regressions of 4th grade

characteristics on a lottery offer dummy, defined as an indicator equal to one if a

student receives an offer from any charter school, controlling for assignment risk.

Students are coded as offered if they received either an offer on lottery day or a later

offer while on a waiting list. Distinctions between these offer types are discussed in

Section 3.4.

Balance coefficient estimates, reported in column (3) of Table 1, show differ-

ences between winners and losers that are uniformly small and statistically insignif-

icant, consistent with random assignment of charter offers within risk sets. A joint

test of the null hypothesis that all characteristics are balanced fails to reject at con-

ventional levels (p ¼ 0.69), similarly building empirical support for Assumption 1A

within risk sets.

Even where offers are randomly assigned, a lottery analysis can be compromised

by nonrandom differences in the likelihood of sample attrition for winners and losers.

For example, some students may exit the public school system when not offered a

charter seat, but attend a charter when offered the opportunity to do so. Such selective

attrition can change the composition of lottery winners and losers remaining in the

public system, potentially generating selection bias. It’s therefore worth examining

differences in follow-up rates between lottery winners and losers. Selection bias is

unlikely to be a problem when follow-up rates for these two groups are similar

(Lee, 2009).

The bottom of Table 1 reports the coefficient from a regression of an indicator for

outcome test score availability in the first postlottery year on an offer indicator, in a

model with risk set controls. The overall follow-up rate in the Angrist et al. (2013)

sample is 80.1%, with little difference in follow-up between winners and losers. This

suggests attrition is not a major concern in this case. Engberg et al. (2014) and

Abdulkadiro�glu et al. (2018) discuss bounds on school lottery treatment effects in

cases where differential attrition is worrying.

2.3.2 2SLS Estimates
A well-documented 2SLS analysis reports first-stage estimates as well as 2SLS

estimates of the causal effect of interest. The ingredients of a basic charter lottery

analysis are laid out in Table 2. The treatment variable here is an indicator for charter

attendance in the school year beginning in the fall of the year an application was

submitted; the outcome is from tests taken at year’s end (in 5th or 6th grade). Results

in the table are from models that include risk set dummies, student demographic

characteristics, and baseline (4th grade) math and English scores.

Boston charter offers boost charter enrollment rates by nearly 60% points, a

large first-stage estimate that can be seen in the first pair of columns in Table 2.

Although unsurprising, this result establishes the validity of first-stage Assumption
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1B within risk sets. 2SLS estimates, reported in the first row of column (2) in the

table, show charter attendance boosts math scores by an impressive 0.45σ. Non-
charter students in this sample score 0.32σ below the state mean. One year in a

Boston charter is therefore predicted to boost math achievement to a level above

the state average. A corresponding ordinary least squares (OLS) estimate,

displayed in column (1), produces a charter coefficient of 0.33σ. Evidently, despite
concerns of positive selection bias, the OLS coefficient understates the causal

effect of charter attendance. One possible explanation for this is treatment effect

heterogeneity, an issue we turn to next.

3 Lottery IV: Implementation details and extensions
3.1 Heterogeneous effects
The causal model motivating Table 2 specifies a constant causal effect of charter

attendance, at least within lottery risk sets. In practice, of course, charter effects

may differ for different applicants. Individually varying charter effects are defined

Table 2 2SLS estimates for Massachusetts urban charter schools.

Treatment variable

Attendance indicator Years attended

OLS 2SLS OLS 2SLS OLS 2SLS

(1) (2) (3) (4) (5) (6)

Math score effects 0.329 0.454 0.407 0.579 0.236 0.314

(0.020) (0.039) (0.019) (0.038) (0.009) (0.020)

First stage 0.567 0.551 1.017

(0.015) (0.015) (0.030)

Noncharter outcome mean �0.320 �0.268 �0.268

Number of applicants 4281 4590 4590

Sample coverage Application Year All Years All years

Sample size 4281 11,458 11,458

Note: This table reports OLS and 2SLS estimates of the effect of Boston charter middle school
attendance on math test scores for applicants to urban charter schools in Massachusetts, as well as
first-stage estimates. Columns (1) and (2) define treatment as an indicator for enrolling in a charter school
in the academic year following application and restrict the sample to test score outcomes from this year.
Columns (3) and (4) use the same treatment definition but pool postlottery test scores for grades 4
through 8. Columns (5) and (6) use the full sample but define treatment as the number of years spent in a
charter school by the outcome grade. All models control for lottery risk set indicators and student gender,
race, special education, English language learner, subsidized lunch status, and grade and year
indicators. Columns (1) and (2) report robust standard errors in parentheses. Standard errors are
clustered by student in columns (3)–(6).
The sample used here is that analyzed in Angrist, J.D., Walters, C.R., Pathak., P. A., 2013. Explaining
charter school effectiveness. Am. Econ. J. Appl. Econ. 5 (4), 1–27.
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by potential outcomes: βi ¼ Yi(1) � Yi(0). Different students may likewise respond

differently to the offer of a charter seat. A heterogeneous first stage can be described

by a set of potential treatments, Di(1) and Di(0), indicating i’s charter enrollment

status when Zi ¼ 1 and Zi ¼ 0, respectively.

In a world of heterogeneous potential outcomes, IV captures causal effects on

charter lottery compliers. This is formalized by the local average treatment effects

(LATE) interpretation of the Wald estimand. Specifically, Imbens and Angrist

(1994) and Angrist et al. (1996) show:

βIV ¼ E½Yið1Þ � Yið0ÞjDið1Þ > Dið0Þ�:
This result is derived assuming independence, exclusion, the existence of a first

stage, and monotonicity, defined as follows:

Assumption 2A. Independence/exclusion: (Yi(1), Yi(0), Di(1), Di(0)) ?? Zi.

Assumption 2B. First stage: E[DijZi ¼ 1] > E[DijZi ¼ 0].

Assumption 2C. Monotonicity: Di(1) � Di(0) 8i.

Assumption 2A adapts Assumption 1A to the heterogeneous treatment effects

framework, while Assumption 2B aligns with Assumption 1B.f The novel require-

ment here is Assumption 2C, which says that the lottery offer instrument must

weakly increase charter enrollment for all students (not just on average). This mono-

tonicity restriction seems reasonable, since it is hard to imagine a scenario in which

lottery wins make attendance less likely.

The LATE Theorem partitions the population of charter applicants. “Never-

takers” are students who decline to attend charter schools even when offered

so that Di(1) ¼ Di(0) ¼ 0. This group might include students whose lottery

participation is due to the enthusiasm of a parent rather than their own.

“Always-takers” are students who attend charter even without an offer so that

Di(1) ¼ Di(0) ¼ 1. Students in this category might apply repeatedly or otherwise

find a way in. Charter lottery “compliers” are those who attend if and only if

they receive offers, implying that Di(1) > Di(0) (i.e., Di(1) ¼ 1 and Di(0) ¼ 0).

The LATE Theorem implies that βIV delivers the average causal effect of charter

attendance for compliers. With multiple lotteries, Eq. (8) implies that 2SLS with

risk set controls identifies a weighted average of lottery-specific LATEs. Estimates

like those in Table 2 should therefore be interpreted as measuring causal effects for

applicants induced to attend charter schools by randomized offers. These effects

may be higher or lower than the overall average effect of charters, depending on

how compliers compare to others.

fAssumption 2A combines independence and exclusion, distinct assumptions in the LATE framework.
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3.2 Characterizing compliers
3.2.1 Complier covariate means
Who are charter lottery compliers? Remarkably, while individual compliers are

not coded as such in any data set (since we never see Di(1) and Di(0) for the same

student i), complier characteristics can be described. Tools for this are detailed in

Abadie (2002, 2003).

Complier analyses build on the fact that, by virtue of Assumption 2C, the pop-

ulation contributing to an IV analysis contains only always-takers, never-takers,

and compliers. Moreover, unlike compliers, some always- and never-takers are

identifiable: students with Di ¼ 0 and Zi ¼ 1 must be never-takers, while those with

Di ¼ 1 and Zi ¼ 0 must be always-takers. The other two combinations of Di and Zi
involve mixtures of compliers and these other groups: the population withDi¼ Zi¼ 1

is a mixture of always-takers and compliers, while the group with Di ¼ Zi ¼ 0 is a

mixture of never-takers and compliers. The relative sizes of the three groups are iden-

tified, since the never-taker share is given by the fraction of offers that are declined,

the always-taker share is given by the fraction of nonoffered students that attend

charters, and the complier share equals the size of the first stage. We can therefore

back out characteristics of lottery compliers from the mixture distributions combined

with the observed information about always- and never-takers.

Abadie (2002) implements this logic with a simple 2SLS procedure for charac-

terizing compliers, described by:

gðXi, YiÞ � 1fDi ¼ dg ¼ ψd + γd1fDi ¼ dg + vid, (11)

1fDi ¼ dg ¼ ϕd + πdZi + eid, d � f0, 1g: (12)

Here g(Xi, Yi) is any function of student baseline characteristics Xi and postlottery

outcomes Yi. Setting d ¼ 1 in (11) and (12) means that we are using Zi as an instru-

ment forDi in an IV procedure with g(Xi, Yi) multiplied byDi as the outcome. Setting

d¼ 0 means we use Zi to instrument (1� Di) in an equation with g(Xi, Yi)(1� Di) as

the outcome. Under Assumptions 2A, 2B, and 2C (and the maintained assumption

that Zi is independent of Xi), Abadie (2002) shows that these IV procedures recover

characteristics of treated and untreated compliers:

γd ¼ E½gðXi, YiðdÞÞjDið1Þ > Dið0Þ�, d � f0, 1g:
This result has a number of useful implications. First, by setting g(Xi, Yi)¼ Xi, we

obtain the average of any predetermined covariate Xi for lottery compliers, facilitat-

ing comparisons of complier characteristics with those of other groups. Note that

since Xi is unaffected by the charter treatment, coefficients γ1 and γ0 should be equal.
Complier characteristics can be summarized by reporting an estimate of either

parameter or an average of the two estimates. It is straightforward to show that

the difference between these two estimates is proportional to the difference in Xi

by offer status used as a balance check in Table 1. We can therefore think of such

balance checks as checking covariate balance across treatment and control groups

in the RCT for compliers induced by a lottery with partial compliance.
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Table 3 reports compliance-group conditional means for the Angrist et al. (2013)

Massachusetts urban charter applicant sample. Columns (1) and (2) show the two

available estimates of complier means in the untreated and treated states for a list

of baseline characteristics. These results come from 2SLS estimation of (11) and

(12) augmented with additive risk set controls; analogous to Eq. (8), the resulting

estimates are weighted averages of risk set-specific complier means. As expected

given the balance checks in Table 1, the treated and untreated complier estimates

are very similar for all characteristics. Column (3) shows a more efficient single

estimate of each complier mean, constructed by stacking the data for the two systems

Table 3 Characteristics of lottery complier groups at Massachusetts urban
charter schools.

Compliers
Always-
takers

Never-
takersUntreated Treated Pooled

(1) (2) (3) (4) (5)

Female 0.506 0.510 0.508 0.539 0.463

(0.023) (0.021) (0.016) (0.024) (0.017)

Black 0.401 0.380 0.390 0.623 0.490

(0.022) (0.021) (0.016) (0.023) (0.017)

Hispanic 0.250 0.300 0.275 0.183 0.228

(0.02) (0.018) (0.013) (0.019) (0.014)

Asian 0.022 0.024 0.023 0.004 0.024

(0.007) (0.005) (0.004) (0.003) (0.005)

White 0.229 0.216 0.223 0.154 0.215

(0.018) (0.016) (0.012) (0.016) (0.014)

Special education 0.190 0.181 0.186 0.158 0.177

(0.018) (0.016) (0.012) (0.018) (0.013)

English language learner 0.143 0.148 0.145 0.054 0.088

(0.015) (0.013) (0.010) (0.011) (0.010)

Subsidized lunch 0.689 0.705 0.697 0.698 0.666

(0.021) (0.019) (0.014) (0.022) (0.016)

Baseline math score �0.274 �0.312 �0.293 �0.394 �0.301

(0.047) (0.041) (0.032) (0.045) (0.036)

Baseline English score �0.352 �0.349 �0.350 �0.362 �0.299

(0.050) (0.043) (0.033) (0.046) (0.038)

Share of sample 0.546 0.197 0.257

Note: This table reports estimates of average baseline characteristics of compliers, always-takers, and
never-takers among lottery applicants to urban charter schools in Massachusetts. Means are computed
as described in Section 3.2. Robust standard errors are reported in parentheses.
The sample used here is that analyzed in Angrist, J.D., Walters, C.R., Pathak., P. A., 2013. Explaining
charter school effectiveness. Am. Econ. J. Appl. Econ. 5 (4), 1–27.
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in (11) and (12) and conducting 2SLS estimation imposing a common coefficient γ
across equations, clustering standard errors by student.

Columns (4) and (5) of Table 3 present mean characteristics for always- and

never-takers for the purposes of comparison with the compliers. As noted above,

characteristics of these groups can be computed based on the (Di ¼ 1, Zi ¼ 0)

and (Di ¼ 0, Zi ¼ 1) cells of data, respectively. For comparability with the 2SLS

weighting used to compute complier means, we estimate always-taker means by

regressing XiDi(1� Zi) on Di(1� Zi) with additive risk set controls, and we estimate

never-taker means by regressing Xi(1 � Di)Zi on (1 � Di)Zi with risk set controls.

These procedures automate aggregation across risk sets with regression-based

weights, as with the IV estimands in columns (1)–(3).
The comparisons in Table 3 reveal differences between behavioral response types

for Massachusetts urban charter lotteries. Compliers are less likely to be Black and

more likely to be White or Hispanic than always- or never-takers and are more likely

to be classified as English language learners. Always-takers are the lowest-achieving

group as measured by baseline test scores. As discussed further in Section 3.7,

complier characteristics provide a partial guide to the external validity of a set of

lottery-based IV estimates.

3.2.2 Complier potential outcome distributions
A second application of the Abadie (2002) method produces marginal potential out-

come distributions for compliers.g By setting g(Xi, Yi)¼ Yi and d¼ 1 in Eqs. (11) and

(12), we obtain an IV coefficient γ1 equal to the complier average of the charter out-

come Yi(1). Similarly, setting g(Xi, Yi)¼ Yi and d¼ 0 gives a γ0 equal to the complier

mean of the noncharter outcome Yi(0). This demonstrates that the levels of mean

potential outcomes are identified for compliers, not just the difference between them

(i.e., the LATE). These mean potential outcomes can be compared to the mean Yi(0)
for never-takers and mean Yi(1) for always-takers, which are directly observed. Such
comparisons serve as the basis for tests for selection into treatment (Angrist, 2004),

and as inputs into parametric modeling approaches that extrapolate from LATE

to predict other treatment effect parameters (Brinch et al., 2017; Kline and

Walters, 2019).

In fact, the full marginal distributions of both potential outcomes are identified

for compliers—not just the means. By setting g(Xi, Yi) ¼ 1{Yi � y} for a constant y
and each value of d, we obtain the complier cumulative distribution functions of Yi(1)
and Yi(0) evaluated at y.h This in turn implies that quantile treatment effects (QTEs)

gThe joint distribution of complier potential outcomes (Yi(1),Yi(0)) is generally not identified. Frandsen
and Lefgren (2021) show how bounds on this joint distribution can nevertheless be formed using char-

ter lotteries.
hComplier potential outcome CDFs obtained this way need not be weakly increasing. Decreasing CDFs

signal a violation of the underlying independence, exclusion, or monotonicity assumptions. Huber and

Mellace (2015) and Kitagawa (2015) use this idea to test instrument validity.
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are identified for compliers. Complier QTEs can be computed either by inverting

the complier CDFs or via weighted quantile regression, an approach detailed in

Abadie et al. (2002).

Density plots can be easier to interpret than a plot of CDFs. Complier densities at

a point y can be estimated by setting gðXi,YiÞ ¼ 1
h K

Yi�y
h

� �
in Eq. (11), where K(�) is a

symmetric kernel function maximized at zero and h is a bandwidth that shrinks to

zero asymptotically. Estimating Eqs. (11) and (12) with this choice of g(�) produces
estimates of complier potential outcome densities evaluated at y. In an application to
private school voucher lotteries, Abdulkadiro�glu et al. (2018) propose a bandwidth

selection procedure that adapts Silverman’s (1986) rule-of-thumb approach to yield a

bandwidth appropriate for complier density estimation.i

Fig. 1 reports potential outcome densities for the Angrist et al. (2013) Massachu-

setts urban charter applicant sample. A notable result in Angrist et al. (2013) is that

urban charters generate much larger test score gains for non-White students than for

White students, reducing racial achievement gaps. Fig. 1 reports complier math score

densities separately for White and Black students, with the density of Yi(0) on the left
and Yi(1) on the right. These results come from 2SLS estimation of Eqs. (11) and (12)

with risk set controls added to each equation. By Eq. (8), the estimates capture

weighted averages of within-risk-set complier densities. Panel A shows densities

of baseline scores from the year prior to the lottery. As expected, score distributions

are similar for treated and control compliers at baseline. The densities of baseline

scores for Black students are shifted left relative to those of White students, indicat-

ing a large racial achievement gap. A bootstrap Kolmogorov–Smirnov (KS) test

rejects racial equality of baseline score distributions for both untreated and treated

compliers (p < 0.01).j

Panel B in Fig. 1 suggests that urban charter attendance eliminates the racial

achievement gap for lottery compliers. The treated densities on the right reveal a

marked convergence of the Black distribution toward the White distribution after

the lottery; the two distributions are virtually indistinguishable by 7th grade. The

KS test fails to reject equality of Yi(1) distributions for Black and White compliers

(p ¼ 0.94) in this grade. In contrast, the distributions on the left show a persistent

achievement gap for compliers randomized into traditional public schools. The

racial gap in Yi(0) distributions in 7th grade is similar to the gap at baseline, and racial

equality of the nontreated outcome distributions is rejected (p < 0.01).

iSilverman’s rule-of-thumb for a Gaussian kernel K(�) sets h ¼ 1.06 � N�1/5σ, where N is the sample

size and σ is the standard deviation of the outcome. Abdulkadiro�glu et al. (2018) plug in consistent

estimates of these quantities for compliers, estimating the number of compliers as the first stage times

the total sample size and the first two moments of complier potential outcomes by setting g(Xi, Yi)¼ Yi
and gðXi,YiÞ ¼ Y2

i , in Eq. (11).
jSee the figure notes for details on this testing procedure.
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FIG. 1

See figure legend on next page.
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3.3 Multiple years
The analysis above is limited to outcomes in a single postlottery grade, with a treat-

ment variable that measures school attendance in the year following the lottery.

Postapplication outcomes for multiple grades can be pooled, possibly boosting

precision. A 2SLS setup that stacks grades can be described by:

Yig ¼ βDig +
XK
k¼1

δkRik + X0
igλ + ηig, (13)

Dig ¼ πZi +
XK
k¼1

τkRik + X0
igψ + υig, (14)

where Yig is student i’s outcome in grade g and covariate vector Xig includes grade

and calendar year effects along with other baseline characteristics. Since assignment

risk is fixed for a given student regardless of grade observed, risk controls needn’t

vary by grade.

Multigrade models typically introduce a grade-varying treatment to reflect expo-

sure to schools or sectors of interest. The Abdulkadiro�glu et al. (2011) and Angrist

et al. (2013) charter-school studies implement this. Specifically, endogenous vari-

ableDig is defined as years enrolled in charter between the lottery and grade in which

an outcome is observed. This adjusts for differences in exposure due to reapplication

or dropout, assuming that total time enrolled in a charter satisfies the relevant exclu-

sion restriction. We assume away, for instance, differences in timing details such as

which particular grades were attended at a charter. Provided charter enrollment

duration mediates charter offer effects, the 2SLS estimand in Eq. (13) captures an

average causal response (ACR) of the sort defined in Angrist and Imbens (1995).

ACR generalizes LATE to the case of treatments with variable intensity. In this case,

the ACR measures a weighted average of per-year impacts of school attendance for

students whose enrollment choices are shifted by the lottery offer.

FIG. 1—Cont’d Math score complier distributions for applicants to Massachusetts urban

charters. (A) Before application (4th grade scores); (B) After application (6th and 7th grade

scores). Note: This figure plots estimated distributions of untreated (Yi(0)) and treated (Yi(1))

potential outcomes for Black and White lottery compliers in the urban charter applicant

sample. Distributions are estimated as described in Section 3.2, using the rule-of-thumb

bandwidth described in Footnote i. Vertical lines showmean potential outcomes separately by

race. p-values for testing the equality of White and Black distributions in each panel come

from a weighted bootstrap procedure using the maximum absolute Black–White distance in

estimated complier CDFs as the test statistic. CDFs in each bootstrap iteration are computed

by estimating Eq. (11) by 2SLS with g(Xi, Yi) ¼ 1{Yi � y} for a grid of points y, weighting

observations with iid exponential weights.

The sample used here is that analyzed in Angrist, J.D., Walters, C.R., Pathak., P. A., 2013. Explaining charter

school effectiveness. Am. Econ. J. Appl. Econ. 5 (4), 1–27.
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Estimates generated by a stacked multigrade setup for Massachusetts urban char-

ter applicants appear in columns (3)–(6) of Table 2. These estimates were computed

by adding postlottery outcomes through 8th grade to the first-year sample. The es-

timates in column (4) use the same dummy endogenous variable as the single-year

analysis. The 2SLS estimate of 0.58σ exceeds that in column (2), but the magnitude

of this estimate is complicated by the fact that applicants experience up to four years

of charter attendance. The estimates in column (6) were computed using years of

exposure as the endogenous variable. The first stage for this specification is slightly

greater than one, while the resulting ACR estimate is 0.31σ, implying—on average

across grades and lotteries—each year of charter enrollment boosts math scores by

roughly one-third of a standard deviation for compliers. As in the single-grade anal-

ysis, OLS estimates in columns (3) and (5) are positive but smaller than correspond-

ing 2SLS estimates, suggesting a modest downward bias in regression-adjusted

comparisons of charter and noncharter students.

3.4 Coding lottery offer instruments
Lottery-admitting schools often make a first round of initial offers, with students not

initially offered a seat placed on a waiting list with students ordered by lottery num-

ber. As some initial offers are declined, offers are made down the waiting list. Infor-

mation on initial and waitlist offers can be used to construct multiple instruments

for charter enrollment.

A natural two-instrument strategy combines an initial offer dummy with a

dummy indicating waitlist offers using 2SLS. Since take-up for initial and waitlist

offers may differ (if, for example, waitlisted students enroll elsewhere before receiv-

ing an offer), overidentified 2SLS may generate more precise estimates than a

just-identified model using a single-offer dummy. The Abdulkadiro�glu et al.

(2011) analysis of Boston charter schools shows modest efficiency gains from a

two-instrument setup. It’s worth noting, however, that the LATE interpretation of

overidentified 2SLS estimates requires a stronger monotonicity assumption than that

typically invoked with single-instrument IV (Mogstad et al., 2021).

de Chaisemartin and Behaghel (2020) discuss the use of waitlist instruments in

settings with few students per lottery. When schools target class size, instruments

constructed from waitlist offers in lotteries with few applicants can be correlated

with potential outcomes. This problem arises from the fact that with a class size

target, the last student who receives an offer must be a complier, resulting in over-

representation of compliers among offered students. de Chaisemartin and Behaghel

(2020) propose a weighted IV estimator that ameliorates the bias in IV estimates

using waitlist offers. Initial offer instruments also circumvent this problem by using

a predetermined offer cutoff that does not depend on take-up.

In principle, data on randomly ordered lottery lists can be used to construct more

precise estimates while avoiding the use of realized waitlist offers. Let Li denote
the order assigned to applicant i in a charter lottery, where applicants are randomly

ordered from f1,…, �Lg. An initial offer instrument is an indicator for Li below a fixed

cutoff C. More generally, the efficient function of Li to use as instrument is the
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expected charter enrollment rate at each lottery number, which can be computed

given a model for offer take-up. Suppose, for instance, that a school plans to make

offers until it enrolls a class size of C students, that offer take-up is independent

across students, and that there are no always-takers. Then, the total number of offers

equals C plus a negative binomial random variable with C successes and success

probability equal to the offer take-up rate, π. This implies the likelihood that a student

at lottery list position Li ¼ ‘ ultimately enrolls in this charter school is:

Pr½Di ¼ 1jLi ¼ ‘� ¼ π � 1� 1f‘ > Cg 1�

Z π

0

u‘�C�1ð1� uÞC�1du� ð‘� 1Þ!
ð‘� C� 1Þ!ðC� 1Þ!

0
BB@

1
CCA

2
664

3
775:

This formula reveals that a student with Li�C is assured of getting an offer, in which

case the probability of attendance is the compliance rate π; for students with Li > C,
the second factor captures the probability that at least one seat remains to be offered

at their position on the waitlist. We have yet to see this optimal IV approach applied

to lottery quasi-experiments. In practice, problems with the use of waitlist offers are

likely to matter little when lottery sizes are large.

3.5 Multisector models
The lottery framework extends to models and methods that capture multiple sector

effects in one go. We might be interested, for example, in distinguishing the effects

of KIPP charter schools from those of schools belonging to other networks. After

introducing the multisector framework, Section 4 outlines methods that exploit central-

ized, algorithmic assignment for identification and estimation of sector effects.

Section 5 extends this with an overviewof value-addedmodels that allowdistinct causal

effects for each of many schools, without regard to sector. While similar in broad

strokes, each area of analysis raises unique conceptual and implementation challenges.

3.5.1 Counterfactual destinies for lottery compliers
The analysis of urban charters sketched in Section 2.3 raises an important conceptual

question: “compared to what?” Among applicants to schools in a particular charter

sector, lottery losers might attend traditional public schools, charters belonging to

another sector, or one of a number of exam schools, to name a few alternative sectors.

It’s helpful, therefore, to characterize the distribution of enrollment across sectors to

be compared. As in Abdulkadiro�glu et al. (2014) and Chabrier et al. (2016), we refer
to this as the distribution of counterfactual destinies.k

Data from the Cohodes et al. (2021) study of new and veteran charter schools in

Boston illustrate the destinies idea. This analysis estimates and compares effects of

newly opened charters (in the wake of a 2010 ballot initiative lifting the Boston char-

ter cap) with effects of older schools. In Massachusetts charter school vernacular,

only “proven providers” are permitted to open a new school; new schools associated

kKline and Walters (2016) and Feller et al. (2016) analyze counterfactual destinies in the context of

early childhood programs.
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with these are called “expansion campuses” in the study. The analysis here also

considers the effects of other charters, unaffected by expansion, and pilot schools,

another autonomous Boston school model.l

Table 4 summarizes counterfactual destinies for compliers among applicants in

the postreform period. These estimates are computed via 2SLS estimation of Eqs.

(11) and (12) with d ¼ 0. Estimates are computed separately for applicants to each

charter type, coding Zi andDi based on offers and enrollment at that charter type, and

setting g(�) equal to an indicator for an enrollment in a specific sector (controlling for

risk sets, as always). Column (1) shows that while 53% of compliers who do not

receive a lottery offer at parent campuses attend traditional public schools, another

27% enroll at expansion campuses. Similarly, among compliers in lotteries for other

charters (neither parents nor expansions), 23% of lottery losers end up enrolled at an

expansion charter. In contrast, column (3) shows few untreated compliers in expan-

sion charter lotteries enroll in other charter types, so the counterfactual for this group

is composed primarily of BPS district schools (either traditional public schools or

pilots). These results thus establish the importance of understanding the composition

of the counterfactual for interpreting lottery results at each charter type.

Table 4 Counterfactual school destinies for Boston charter compliers.

Target sector

Proven providers Expansion charters Other charters

Z 5 0 Z 5 1 Z 5 0 Z 5 1 Z 5 0 Z 5 1

Destiny (1) (2) (3) (4) (5) (6)

Proven providers 1.000 �0.052 0.000

(0.038) (0.024)

Expansion charters 0.269 1.000 0.231

(0.046) (0.034)

Other charters 0.008 0.047 1.000

(0.026) (0.026)

Traditional publics 0.528 0.694 0.529

(0.058) (0.058) (0.042)

Pilots 0.180 0.174 0.118

(0.041) (0.041) (0.023)

Note: This table reports the share of untreated (Z¼ 0) and treated (Z¼ 1) compliers enrolled at particular
fallback school types among applicants to Boston charter school lotteries. Destinies labeled at left are
sectors enrolling treated and untreated compliers. Robust standard errors are reported in parentheses.
The sample used here is that analyzed in Cohodes, S.R., Setren, E.M., Walters, C.R., 2021. Can
successful schools replicate? Scaling up Boston’s charter school sector. Am. Econ. J. Econ. Policy
13 (1), 138–167. https://doi.org/10.1257/pol.20190259.

lMore specifically, the 2010 initiative allowed existing charter schools which met the definition of a

proven provider to apply to increase their maximum enrollment. Schools which were granted increases

may or may not have opened additional campuses, depending on current facility capacity.
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3.5.2 Multisector 2SLS
The counterfactual attendance patterns documented in Table 4 motivate an analysis

of multiple school sectors in a unified framework, rather than contrasting single sec-

tors against a composite counterfactual as in Section 2.3. We initially approach this

with a constant-effects causal model that describes the consequences of attending

one of several different school types.

Suppose each student in a district attends a school in one of S sectors numbered

from 0 to S, with sector 0 representing traditional public schools. We define a

mutually exclusive and exhaustive set of dummy variables to represent enrollment

in each sector, with Dis � {0, 1} indicating attendance in sector s and
PS

s¼0Dis ¼ 1

for each student. A causal model with sector-specific effects is then given by:

Yi ¼ μ +
XS
s¼1

βsDis + εi:

The parameter βs measures the effect of attending a school in sector s relative to the
omitted sector of traditional public schools. As before, εi represents unobserved

student heterogeneity that may be related to sector enrollment choices.

Now suppose we have a set of lotteries for enrollment in each sector. As in

Section 2, assume there are K mutually exclusive lottery groups and let Rik ¼ 1 in-

dicate that student i participates in lottery k. These lottery groups should be viewed as
corresponding to all combinations of school-specific lotteries that a student might

enter. Let Zis denote an indicator equal to one if student i receives at least one offer
from a school in sector s. Note that when students can apply to multiple lotteries,

the Zis are not necessarily mutually exclusive, as students may receive offers from

multiple sectors. Extending Eqs. (9) and (10) to the multisector setting results in

the following system of equations with multiple endogenous variables:

Yi ¼
XS
s¼1

βsDis +
XK
k¼1

δkRik + X0
iλ+ ηi, (15)

Dis ¼
XS
m¼1

πmsZim +
XK
k¼1

τksRik + X0
iψ s + υis, s � f1,…,Sg: (16)

Paralleling Section 2, the δk and λ in (15) can be seen as coefficients from a projection

of μ + εi on risk set indicators and covariates, while the first-stage equations defined
in (16) are projections of the sector attendance indicators on lottery offers along with

risk sets and covariates. 2SLS estimation proceeds by fitting each first-stage equation

by OLS and then running (15) by OLS after substituting in first-stage predicted

values D̂is . By a simple extension of the above, this 2SLS procedure will recover

consistent estimates of the sector effects βs, provided the offers Zis are independent
of ability ηiwithin risk sets and induce sufficient attendance variation for each sector.
It is straightforward to extend this setup to stack outcomes across multiple grades

as in Section 3.3.

Table 5 reproduces Cohodes et al.’s (2021) estimates of the effects of several

Boston charter school types on math scores. This analysis treats parent campuses,
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Table 5 Multisector 2SLS estimates for Boston Charter Schools.

Before charter expansion After charter expansion

Estimates Estimates

Noncharter
mean

Proven
providers

Other
charters

Noncharter
mean

Proven
providers

Expansion
charters

Other
charters

(1) (2) (3) (4) (5) (6) (7)

Math Score 0.117 0.320 0.183 �0.074 0.365 0.326 0.193

(0.037) (0.026) (0.070) (0.074) (0.055)

First stage

Immediate offer 1.304 1.554 0.795 0.659 0.930

(0.067) (0.047) (0.054) (0.046) (0.052)

Waitlist offer 1.027 0.984 0.400 0.348 0.853

(0.050) (0.061) (0.048) (0.041) (0.071)

Notes: This table reports first-stage effects of charter lottery offers on years of enrollment in charter schools and 2SLS estimates of the effects of charter school
attendance on math test scores for multiple types of Boston charter middle schools. The sample stacks postlottery test scores in grades five through eight. The
endogenous variables are counts of years spent in the different charter types (preexpansion proven providers, preexpansion other charters, postexpansion proven
providers, expansion schools, and postexpansion other charters). The instruments are immediate and waitlist lottery offer dummies for each school type. Immediate
offer equals one for applicants offered seats on the day of the lottery. Waitlist offer equals one for applicants offered seats from thewaitlist. Controls include lottery risk
sets, as well as gender, race, ethnicity, a female-minority interaction, special education, English language learner, subsidized lunch status, and grade and year
indicators. Standard errors, clustered by student, are reported in parentheses.
The estimates reported here are drawn from Cohodes, S.R., Setren, E.M., Walters, C.R., 2021. Can successful schools replicate? Scaling up Boston’s charter
school sector. Am. Econ. J. Econ. Policy 13 (1), 138–167. https://doi.org/10.1257/pol.20190259.
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expansion campuses, and other nonexpansion charters as separate sectors, and also

distinguishes between attendance before and after the expansion reform. Following

the approach described in Section 3.3, the analysis stacks scores from all observed

postlottery grades for lottery applicants, and codes the endogenous variables Dis as

the number of years spent in each sector. The instruments are indicators for initial

and waitlist offers to each sector type, as described in Section 3.4, and the model

controls for risk set indicators for the intersection of all school-by-year-specific

admission lotteries.

2SLS estimates of this multisector model show substantial treatment effects of

attendance at both parent and expansion campuses on the order of one-third of a

standard deviation per year. The effects of parent campuses are similar before

and after the expansion reform, suggesting that parent schools’ effectiveness

was not diluted by expansion to new locations. Effects of other nonexpansion

charters are positive but smaller than those of the parents selected for expansion,

indicating that the state of Massachusetts designated more effective schools for

expansion. The inclusion of each of these charter types in a single 2SLS model

means we can interpret the impact of each as relative to the same traditional Boston

public schools benchmark.

Two additional features of this multisector approach are of note. First, multisector

models like (15) generally rely on the assumption of constant effects of each sector

across students. The LATE result of Imbens and Angrist (1994) does not apply to

models with multiple endogenous variables, and in general a causal interpretation

of 2SLS estimates from such models requires strong restrictions on either effect het-

erogeneity or behavioral responses to the instruments (Behaghel et al., 2013; Bhuller

and Sigstad, 2022; Kirkeboen et al., 2016). Second, and similarly, the multisector

model described here treats all schools within the same sector as equally effective.

Heterogeneity in school quality within sectors complicates the interpretation of the

estimates and creates the potential for exclusion restriction violations. For example, a

student who switches from one expansion charter to another in response to a change

in lottery offers experiences no change in the endogenous variables in Eq. (15), but

may experience a change in scores if the two schools are of differing quality, thereby

violating exclusion. Note that this sort of exclusion violation is a potential issue even

for single-sector evaluations that code treatment as attendance at any charter in the

sector, including charters without lotteries.

These issues motivate models capturing individual school value-added. The

challenges arising in such models are addressed in Section 5.

3.6 Admission discontinuities as local lotteries
School effectiveness research can leverage discontinuities in admissions rules based

on admission tests or other criteria. For example, highly selective exam schools in

Boston, New York, and elsewhere require an admission test and admit students with

a high enough score. Lotteries can be seen as a special case of this sort of admission
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rule. When the admission score is not randomly assigned, students above and below

the admission threshold are not immediately comparable. This problem is solved

with regression discontinuity (RD) methods that focus on students close to cutoffs,

assuming those just above and just below are similar.m

RD methods are introduced here by returning to the potential outcomes model of

Section 3.1, this time describing the effects of exam school attendance. Let Yi(1) and
Yi(0) denote student i’s outcomes if she attends an exam school or a traditional public

school, and let Di(1) and Di(0) represent i’s attendance choices with and without an

exam school admission offer. Instead of being randomly assigned as in the charter

lottery context, the exam offer Zi is assigned based on a cutoff c in an observed

test score Ti:

Zi ¼ 1fTi � cg:
We suppose that potential outcomes satisfy the following assumptions:

Assumption 3A. Mean potential outcomes are smooth across the threshold:

lim
t!c�E[Yi(d)jTi ¼ t] ¼ lim

t!c+
E[Yi(d)jTi ¼ t]

and

lim
t!c�E[Di(z)jTi ¼ t] ¼ lim

t!c+
E[Di(z)jTi ¼ t] for (d, z) �{0, 1}2.

Assumption 3B. Crossing the threshold increases enrollment: lim
t!c+

E[DijTi ¼ t] >
lim
t!c�E[DijTi ¼ t].

Assumption 3C. Local monotonicity: Pr[Di(1) � Di(0)jTi ¼ c] ¼ 1.

These three assumptions are local versions of Assumptions 2A, 2B, and 2C,

applying only to students with scores in a neighborhood of the admission threshold.

The smoothness condition in Assumption 3A requires that students cannot precisely

manipulate their scores in relation to the threshold so that those just above and just

below are similar in expectation. Under these conditions, we can think of the admis-

sion threshold as defining a local randomized lottery for students with Ti close to

c and apply the lottery-based methods introduced earlier to this subpopulation. This

idea is in keeping with recent work analyzing RD designs as local randomized trials

(Cattaneo et al., 2016).

mFor other examples of evaluations of education programs derived from admission cutoffs, see

Hoekstra (2009), Zimmerman (2014), Card and Giuliano (2016), Kirkeboen et al. (2016), Dustan

et al. (2017), Heinesen (2018), Hastings et al. (2014), Zimmerman (2019), Anelli (2020), Sekhri

(2020), Jia and Li (2021), Bleemer and Mehta (2022), Beuermann and Jackson (2022), and de

Roux and Riehl (2022).
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Under Assumptions 3A, 3B, 3C, a local version of the Wald ratio identifies the

LATE for compliers at the admission threshold. Specifically, we have

βRD ≡
lim
t!c+

E½YijTi ¼ t� � lim
t!c�E½YijTi ¼ t�

lim
t!c+

E½DijTi ¼ t� � lim
t!c�E½DijTi ¼ t� ¼ E½Yið1Þ � Yið0ÞjDið1Þ > Dið0Þ, Ti ¼ c�:

This expression can be seen as using the threshold indicator Zi as an instrument for

exam school enrollment Di in the neighborhood of the threshold c.
Empirical implementation of the admission discontinuity design adapts the basic

lottery 2SLS approach of Section 2 to the local lottery experiment.n Here, risk control

involves the admission test score, Ti, known in RD vernacular as a running variable.
Applicants with running variable values far from the cutoff have degenerate risk:

they are either treated or not with probability one. Applicants with running variable

values close to the cutoff may or may not clear it.

The simplest risk control strategy in this setting is parametric: polynomial func-

tions of the running variable included as covariates adjust for the relationship

between running variables and outcomes in the absence of treatment. In practice,

however, a nonparametric strategy that looks only at applicants near the relevant

cutoffs is often more convincing. Formal motivation for the local or nonparametric

approach comes from the fact that, in a limiting sense made precise in Abdulkadiro�glu
et al. (2022), the limiting probability of being offered a seat equals one-half in a

shrinking bandwidth around the cutoff.

Parametric and nonparametric RD estimation strategies can be described by the

following 2SLS setup:

Yi ¼ μ + βDi + ð1� ZiÞf ðTi � c; δ0Þ + Zi f ðTi � c; δ1Þ + ηi, (17)

Di ¼ ψ + πZi + ð1� ZiÞf ðTi � c; τ0Þ + Zi f ðTi � c; τ1Þ + υi: (18)

These equations replace the risk set indicators in (6) and (7) with a smooth function

of the running variable f(t; δ) with parameter δ, satisfying f(0; δ) ¼ 0. In practice,

this function is typically a polynomial so that f ðt; δÞ ¼PK
k¼1δkt

k . The parameters

determining the polynomial coefficients are allowed to differ on each side of the

threshold and in the first- and second-stage equations.

Parametric RD strategies use all or most of the sample of interest to compute

2SLS estimates of this model, usually with flexible running variable controls.

Nonparametric RD downweights or removes observations farther from the cutoff

and uses a less flexible running variable control (typically linear). The latter

requires a choice of bandwidth to determine the sample size and weights to use

nRD-2SLS strategies, where cutoff clearance is used as an instrument for treatment exposure or inten-

sity, are sometimes said to be fuzzy RD designs. In fuzzy RD, treatment depends on cutoff clearance

plus other unobserved factors. This contrasts with sharp RD designs, where treatment is determined by

cutoff clearance alone.
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in nonparametric estimation. The problem of how best to choose the bandwidth

has stimulated substantial and ongoing theoretical work (see, e.g., Imbens and

Kalyanaraman, 2011 and Calonico et al., 2014).

Fig. 2, taken from Abdulkadiro�glu et al. (2014), plots RD first-stage and reduced-

form relations for New York City’s (NYC) highly selective exam schools. Panel

A shows NYC exam school enrollment rates for applicants to three exam schools,

Brooklyn Tech, Bronx Science, and Stuyvesant, as a function of the distance of a

student’s admission score to each school’s admission cutoff. The figure reveals large

jumps in enrollment across the cutoff, indicating a strong first stage for exam school

attendance. Panel B shows corresponding reduced-form impacts on Regents math

standardized test scores. Regents scores are smooth through exam school admission

cutoffs, revealing that exam school attendance has no impact on test scores for com-

pliers. These zero impacts occur in spite of enormous differences in the level of

achievement between exam and traditional public schools. This illustrates the power

of discontinuity-based experiments to distinguish causal effects from selection bias.

3.7 External validity
The results of this section demonstrate that lottery-based research designs identify

average treatment effects for compliers, a well-defined and interpretable subpopula-

tion. Lottery-based estimates are also relevant for evaluating certain policy reforms.

Kline and Walters (2016) show that, absent externalities and spillovers, the LATE is

the policy-relevant parameter for a marginal increase in the number of available seats

among lottery applicants. It is often of interest to ask whether the external validity of

the lottery LATE extends to other subpopulations or policy changes. At least four

forms of external validity are worth considering.o

First, among lottery applicants, effects for lottery compliers may differ from

effects for always- and never-takers. While treatment effects for these other groups

of applicants are not identified, the methods of Section 3.2 can be used to assess

whether their observed characteristics or levels of potential outcomes differ from

those of compliers. This kind of analysis provides a sense of whether compliers

are representative of the full population of applicants. It’s worth noting that in many

school lotteries always-takers may be rare or absent, since it may be difficult for

students to enroll in a school without receiving an offer. With such one-sided

noncompliance LATE is equal to the effect of treatment on the treated (TOT)

among applicants, a traditional target parameter in the program evaluation literature

(Bloom, 1984).

Second, effects for lottery applicants may differ from effects for students who

choose not to apply to the lottery. Table 1 showed that characteristics of applicants

and nonapplicants differ in the Massachusetts urban charter example, suggesting that

oSee List (2021) and List et al. (2021) for related discussion of external validity and scaling of

education programs.
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A

B

FIG. 2

First stage and reduced form for NYC exam school effects. (A) Enrollment at any NYC exam

school; (B) Math scores. Note: (A) NYC exam school enrollment rates for applicants to

three exam schools, Brooklyn Tech, Bronx Science, and Stuyvesant, as a function of the

distance of a student’s admission score to each school’s admission cutoff. (B) Corresponding

reduced-form impacts on Regents math standardized test scores.

This figure is derived from those in Abdulkadiro�glu, A., Angrist, J., Pathak, P., 2014. The elite illusion:

achievement effects at Boston and New York Exam Schools. Econometrica 82 (1), 137–196. https://doi.org/

10.3982/ECTA10266.
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treatment effects may differ as well. To extrapolate to the population of nonappli-

cants, it is useful to leverage other sorts of experiments that shift the composition

of the lottery applicant pool. In one such application to Boston charter schools,

Walters (2018) combines instruments based on distance to charter schools with ran-

domized lotteries in a generalized Roy model framework (Eisenhauer et al., 2015;

Roy, 1951). Intuitively, since students in the immediate neighborhood of a charter

school are more likely to apply, those who apply from close by are less selected than

those who apply from far away. Under the assumption that distance is as good as

randomly assigned conditional on other observed characteristics, variation in the

lottery LATE by distance can therefore be used to tease out the relationship between

the propensity to apply and treatment effects. The results of Walters (2018) suggest

that charter applicants are negatively selected on achievement gains so that treatment

effects may be even larger if charter schooling is expanded to new populations.

Consistent with this finding, Cohodes et al. (2021) show that Boston charters con-

tinued to produce large achievement gains after a reform that resulted in an applicant

pool more representative of Boston as a whole. Along similar lines, Abdulkadiro�glu
et al. (2016) combine lottery records with an alternative research design based on

charter takeovers of traditional public schools to show similar effects for lottery

applicants and students “grandfathered” into charter schools.

Third, schools where lottery records are available may differ from nonlottery

schools. For example, popular schools with more applicants than seats may be more

effective than less popular schools, or schools with the administrative capacity to

retain organized lottery records may be more effective.p Nonexperimental estimates

reported in Abdulkadiro�glu et al. (2011) and Angrist et al. (2013) suggest that over-

subscribed charter schools in Massachusetts are more effective than schools without

lotteries, and Baude et al. (2020) show that more effective charter schools gain

market share over time in Texas. On the other hand, Abdulkadiro�glu et al. (2018)

report that private schools with declining enrollment are more likely to opt into a

lotteried voucher program, and Abdulkadiro�glu et al. (2020) show that school pop-

ularity is weakly related to school effectiveness among New York City high schools.

Abdulkadiro�glu et al. (2014) and Dobbie and Fryer (2014) show limited effects of

highly-sought-after exam schools in Boston and New York. It’s therefore not clear

that we should expect oversubscribed schools to be more effective in general.

Finally, the presence of lotteried school choice programs in education markets

may generate spillover effects on students in other schools through competition or

other channels. In this case, lotteries can measure internally valid partial equilibrium

impacts on applicants but may miss broader general equilibrium effects. Identifying

such spillover effects generally requires alternative research designs derived from

variation in market structure rather than variation in enrollment opportunities at

the student level. Examples of studies in this mold include Figlio and Hart

(2014), Gilraine et al. (2021), and Campos and Kearns (2023).

pThis idea is a version of the “site selection bias” studied by Allcott (2015).
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4 Centralized assignment
4.1 Deferred acceptance with single tie-breaking
Many urban school districts implement district-wide choice using algorithms for

centralized assignment.q Like the decentralized school admissions lotteries dis-

cussed above, many centralized assignment systems incorporate an element of

randomness to break ties between students with otherwise identical match criteria.

Unlike simple school lotteries, however, the nature of the underlying risk sets in a

centralized match is typically shrouded by a seemingly elaborate iterative process.

Abdulkadiro�glu et al. (2017) and Abdulkadiro�glu et al. (2022) show how to isolate

the random variation in centralized assignment algorithms and how to use this

variation to estimate causal effects.

The celebrated Gale and Shapley (1962) deferred acceptance (DA) algorithm is

widely used for school assignment.r To sketch this mechanism, consider a set of N
applicants (indexed by i) applying to a set of J schools (indexed by j) with fixed

capacities. Applicants submit rank-ordered lists of preferences over schools, defin-

ing a set of partial preference orderings denoted by �i. Applicants are also given

priorities at each school (e.g., those with an enrolled sibling may be highest priority,

for instance, followed by applicants who live nearby), denoted by ϕij�f1,…,P,∞g
where ϕij < ϕkj means school j prioritizes applicant i over applicant k. The appli-

cant’s type is defined as θi ¼ (�i, ϕi), where ϕi ¼ ðϕi1,…,ϕiJÞ collects her priorities
over all schools; types are collected in θ ¼ ðθ1,…, θNÞ. Since priorities are coarse

(i.e., there are fewer priority categories than students), student types are further

augmented with a set of random tie-breaking numbers g ¼ ðg1,…, gNÞ with

gi|θ 	 U(0, 1). Each student’s augmented priority is given by ~ϕij ¼ ϕij + gi . The
DA mechanism takes as inputs (g, θ) and computes student assignments using

the following algorithm:

• Step 0: Each applicant applies to her most preferred school according to�i. Each

school ranks these applicants by the augmented priority ~ϕij and provisionally

admits the highest-ranked applicants up to its capacity. All other applicants are

rejected.

• Step k> 0: Each applicant rejected in step k� 1 applies to her next most preferred

school. Each school ranks (by ~ϕij) these new applicants along with applicants it

admitted in step k � 1. From this pool, each school provisionally admits the

highest-ranked applicants up to capacity, rejecting the rest.

qCities with centralized school assignment systems include Baltimore, Boston, Cambridge Massachu-

setts, Camden New Jersey, Chicago, Denver, Indianapolis, Minneapolis, Newark, NewYork City, New

Orleans, Oakland, San Francisco, Seattle, Tulsa, and Washington, DC. Centralized assignment is also

widespread and growing globally, with 51 countries using it at either the primary or secondary level as

of 2020 (see https://www.ccas-project.org/).
rThe economic field of market design encompasses the study and use of matching tools like Gale–
Shapley. Abdulkadiro�glu and Andersson (2022) review the market design approach to school choice.
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DA terminates when there are no new applicants, returning a set of assignments,

Z ¼ ðZi,…,ZNÞ, where Zi ¼ j indicates assignment of student i to school j.s

At a high level, the DAmechanismwith single tie-breaking yields a functionM(�)
from the set of capacities, student types, and lottery numbers to the set of school

assignments:M(g, θ)¼ Z. As with the simple lottery instruments above, the central-

ized assignments Zi are likely affected by the random variation in g: students with
lower g are more likely to be assigned to a preferable school, all else equal. But

unlike simple lotteries there is now a complex translation of this randomness into

assignments, M(�, θ), which depends on the full vector of nonrandom student types.

Students with higher priorities and/or certain preferences are more likely to be

assigned to certain schools, regardless of the tie-breaker they draw. Conditional

on applicant type, school offers are ignorable: DA’s equal-treatment-of-equals

property ensures applicants with the same θi have identical school assignment prob-

abilities. As Abdulkadiro�glu et al. (2017) show, however, in large districts such con-
ditioning is impractical since there are almost as many types as students. DA in a

high-dimensional scenario generates little useful variation conditional on type.

The Abdulkadiro�glu et al. (2017) solution to this problem leverages the

Rosenbaum and Rubin (1983) propensity score, defined as the strata-conditional

probability of treatment in a stratified RCT. In a DA match with lottery tie-breaking,

treatments are indicated by dummies Zij ¼ 1{Zi ¼ j}. The relevant propensity scores
are the set of probabilities pij ≡ E(Zij|θ), each a scalar function of the high-

dimensional list of student preferences and priorities. The Rosenbaum and Rubin

(1983) propensity-score theorem implies that in an experiment that randomizes treat-

ment conditional on θ, control for pij eliminates any omitted variables bias arising

from the relationship between θ and potential outcomes. In other words, the set of

pij can be used to identify the risk sets induced by centralized assignment.

4.2 Theoretical and simulated propensity scores
In general, the DA propensity score is an unknown function of type. But

Abdulkadiro�glu et al. (2017) derive a large-market approximations to the DA pro-

pensity score that’s easily computed given data on student preferences and priorities.

Specifically, Abdulkadiro�glu et al. (2017) derive formulas for centralized assign-

ment propensity scores in a continuum economywith a unit mass of students applying

to a finite number of schools. Scores for the continuum economy, which are easily

computed, approximate finite-market scores remarkably well and are typically

accurate enough to support using Zij to estimate causal effects.

The large-market approximation works by defining school-specific cutoffs, de-

fined as the last lottery number seated at each school. In the continuum economy,

sThe DA assignment is stable in the sense of there being no pair of matched students and schools which

would prefer to swap assignments (a “blocking pair”). When students can rank all schools DA is also

strategy-proof, in that students have nothing to gain from misreporting their preferences. See Roth and

Sotomayor (1990) for a review of these and related concepts.
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cutoffs are nonrandom, so each applicant’s assignment rate is determined solely by

the relevant cutoffs (determined by his or her priorities) and by tie-breaker variation

around cutoffs. Applicant assignments conditional on type are independent of one

another, a further simplification. The resulting large-market DA propensity score

partitions applicants into three groups at each school: applicants who are always,

never, and conditionally seated at the school, depending on where their priority

for seats falls relative to the school’s priority cutoff.t

The main payoff to the large-market score is dimension reduction: even in a

match with thousands of types, large-market scores are determined by the (relatively)

coarse set of school cutoffs. The large-market score also has the side-benefit of dis-

tinguishing different sources of centralized assignment risk. Causal effects can, for

instance, be estimated separately for conditionally seated applicants and for always

seated applicants. Differences in causal effects for these groups can sometimes be

linked to economic models of school choice, such as Roy-style selection-on-gains.

Abdulkadiro�glu et al. (2017) show that the formulas identifying these different popu-

lations apply to other centralized mechanisms, such as random serial dictatorship,

and can be extended to DA with multiple tie-breaking (i.e., different lottery numbers

at different schools) and the immediate acceptance mechanism (sometimes known

as the “Boston mechanism”). Propensity scores for a larger class of stochastic

mechanisms satisfying the equal-treatment-of-equals (ETE) property can be simu-

lated by redrawing the random tie-breaking numbers many times and computing,

separately for each applicant, the share of simulations in which the applicant is

assigned to a given school. These simulated scores obviate the need for a large-

market approximation.

Some centralized assignment schemes, such as those used for Boston and

New York City exam schools and New York City screened schools, employ nonlot-

tery tie-breakers such as test scores instead of, or alongside, lottery numbers.

Abdulkadiro�glu et al. (2022) show how nonrandom screening can be combined with

lottery variation in a unified local DA score approach. Local scores are again derived
in a large-market model, with a continuum of applicants and a set of continuously

distributed tie-breakers. As before, the large-market model allows a partition of

student types into those who are always, never, and conditionally seated and yields

simple, coarse formulas for assignment risk.u This framework generalizes RD-style

identification strategies to settings with multiple treatments and running variables.

Further extensions of the Abdulkadiro�glu et al. (2017) approach to causal infer-

ence in centralized assignment systems come from Borusyak and Hull (2023), who

show how the propensity score solution can apply to any variable Zi¼Mi(g,w) which
combines exogenous shocks g (e.g., random tie-breakers) and nonrandom data

tFor never seated applicants pij¼ 0, while for always seated applicants pij equals the probability that i is
not assigned a school she prefers to j. For conditionally seated applicants, pij is the probability i clears
the cutoff at j and does no better than j. Abdulkadiro�glu et al. (2017) show how the latter two prob-

abilities, and thus pij, are determined by large-market cutoffs for the set of schools in i’s rank-order list.
uSee Section 4.2 of Abdulkadiro�glu et al. (2022) for precise definitions and formulas.

32 Methods for measuring school effectiveness

ARTICLE IN PRESS



w (e.g., applicant preferences and priorities) according to known formulas Mi(�)
(e.g., the DA mechanism).v As we discuss further below, controlling for μi ¼
E[Mi(g, w)|w], which averages Zi over the exogenous shocks holding other compo-

nents fixed, is sufficient to eliminate selection bias in comparisons of individuals

assigned different values of Zi. This generalizes the propensity score approach to set-
tings with multivalued or continuous treatments. Importantly, this result holds even

when Zi is not generated from a mechanism satisfying the ETE property, or indeed

outside of the case where Zi indicates a centralized school assignment. Borusyak

and Hull (2023) compute μi by repeatedly drawing g and averaging the resulting

Zi over draws, holding fixed the nonrandom w. While potentially computationally

demanding, this simulation procedure yields a general recipe for extracting useful

variation from a complex (but known) assignment scheme.

DA also generates a variety of other ad hoc instruments, with simpler propensity

scores. One is a dummy for whether an applicant is offered a seat at their first-choice

school. This first-choice assignment dummy is randomly assigned conditional

on first-choice preference and priority risk sets, which may be simply controlled

for. Alternatively, qualification instruments indicate whether gi is better than the

worst lottery number offered a seat (controlling for the set of schools ranked).

Although valid, first-choice and qualification instruments are likely to leave much

useful assignment variation on the table (Narita, 2021); we illustrate this phenome-

non below.w

4.3 Estimation with score controls
Once computed, centralized assignment propensity scores can be used in a variety

of ways to estimate school effectiveness. Abadie (2003), for example, proposes

estimators for LATEs and related parameters that inversely weight by instrument

propensity scores. Propensity score matching, as proposed by Rosenbaum and

Rubin (1983), is another option. As always, however, when doing IV, 2SLS is best.

For a given school j, consider second and first stages given by:

Yi ¼ βDi +X
0
iλ+ ηi, (19)

Di ¼ π ~Zij + X0
iψ + υi, (20)

vBorusyak and Hull (2023) also discuss local solutions, in which g is viewed as random within a user-

specified bandwidth.
wExamples of the first-choice IV in centralized assignment mechanisms include Deming (2011),

Abdulkadiro�glu et al. (2013), Deming et al. (2014), and Hastings et al. (2009). Examples of the qual-

ification IV include Dobbie and Fryer (2014), Lucas and Mbiti (2014), and Pop-Eleches and Urquiola

(2013). First-choice instruments have also been used with decentralized assignment mechanisms

(Abdulkadiro�glu et al., 2011; Cullen et al., 2006; Dobbie and Fryer, 2011; Hoxby et al., 2009).
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where hereDi indicates enrollment in some school j, Xi is a vector of predetermined

controls, and ~Zi ¼ Zij � pij subtracts propensity score pij from offer indicator

Zij. Borusyak and Hull (2023) show how such specifications identify weighted

averages of conditional-on-type IV coefficients. In particular, the IV estimand is

given by:

βIV ¼
Z

wIVðtÞβIVðtÞdFθðtÞ, (21)

where Fθ(�) gives the distribution of types θi and

βIVðtÞ ¼
E½YijZij ¼ 1, θi ¼ t� � E½YijZij ¼ 0, θi ¼ t�
E½DijZij ¼ 1, θi ¼ t� � E½DijZij ¼ 0, θi ¼ t�

is the Wald estimand for students of type θi¼ t. Analogous to the weighting function
in (8), the weights wIV(t) in (21) integrate to 1 and are proportional to the share of

students of type θi ¼ t, the conditional-on-type assignment variance Var(Zij|θi ¼ t),
and the conditional first stage E[DijZij ¼ 1, θi ¼ t] � E[DijZij ¼ 0, θi ¼ t]. βIV in

(19) is therefore a weighted-average of LATEs when conditional-on-type analogs

of Assumptions 2A and 2C hold.

Eqs. (19) and (20) generalize the risk-set-controlled IV specification (6) and (7)

for a high-dimensional type vector θi, controlling for the propensity score pij rather
than a multitude of risk set indicators. It’s noteworthy that the 2SLS estimand is

unchanged when pij is included in the control vector Xi and ~Zij is replaced with

the unadjusted offer Zij. This observation follows from the Frisch–Waugh–Lovell
regression-anatomy theorem: the residual from regressing Zij on pij and Xi is ~Zi ¼
Zij � pij, since pij ¼ E[Zij|θi] predicts Zij with a coefficient of one and all other pre-

determined variables in Xi are independent of Zij controlling for pij. Thus, we obtain
(21) by subtracting pij or by controlling for pij.

x

As with Eq. (8), linear adjustment for pij contributes to precision by efficiently

aggregating all conditionally random variation in centralized assignment schemes.

The weights wIV(t) discard applicants who are always or never assigned to j regard-
less of the random tie-breaker, while putting more weight on types where assignment

and nonassignment are equally likely. Further precision gains can be achieved by

adding predetermined controls that predict residual outcome variation. Controlling

xAn additional application of the Frisch–Waugh–Lovell theorem shows that 2SLS estimation of the

risk-set-controlled model (6) and (7) is equivalent to controlling for the empirical propensity score cal-

culated as the mean offer rate within each risk set. Control for the theoretical score generated by the

assignment mechanism makes estimation feasible when nonparametrically estimating the score for

each risk set is not feasible.
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for pij instead of recentering Zij can thus lead to smaller standard errors in practice.

Abdulkadiro�glu et al. (2017) go a step further by controlling for indicators for

each value of the propensity score as well as student demographics and lagged

achievement measures.

Centralized school offers and propensity scores can serve as the building blocks

for empirical examinations of the effectiveness of school sectors (such as charters)

and the effect of assignment to schools with different characteristics (such as those

with high district ratings or with certain peer characteristics). Formally, let Cj denote

a characteristic of school j, and let z(i) and d(i) denote the indices of student i’s
assigned and enrolled schools. Consider the instrumentCz(i )¼

P
jCjZij and treatment

Cd(i ) ¼
P

jCjDij measuring, respectively, the characteristic of the assigned and

enrolled schools. WithCj indicating charter schools, for example,Cz(i ) is an indicator

for being assigned to a charter whileCd(i ) indicates charter enrollment. The Borusyak

and Hull (2023) characterization extends to IV estimators which instrument Cd(i )

with Cz(i ) while controlling for
P

jCjpij: an average of school characteristics

weighted by the assignment propensity scores.y For examining charter school effec-

tiveness, this would mean controlling for the total risk of assignment to charters. We

return to other school characteristic IVs in the next section.

Table 6 illustrates the role played by centralized assignment propensity scores

through an analysis of charter effects in Denver Public Schools (the sample used here

is from Abdulkadiro�glu et al., 2017). Column (1) shows a precise 0.42σ charter

attendance effect on math test scores, estimated by 2SLS with a charter offer instru-

ment controlling flexibly for the simulated charter propensity score and other base-

line demographics.z The remaining columns show similar but less precise estimates

obtained from cruder instruments: an indicator for first-choice charter assignment in

column (2) and an indicator for qualification for any-charter assignment in column

(3), both controlling for the appropriate preference-based risk sets. These alternative

strategies discard some of the random variation in charter assignment generated by

the mechanism and therefore produce less precise estimates, as reflected in the

second-stage standard errors. The second-to-last row of Table 6 demonstrates that

sample sizes for the first-choice and qualification approaches would need to increase

by factors of 1.6 and 3.5 to match the precision of the risk-controlled centralized

assignment IV strategy.

yAs before, this specification identifies the same coefficient as the IV procedure which instruments

with the adjusted
P

jCj(Zij � pij). Predetermined controls can be included in either regression to in-

crease precision.
zThe sample includes applicants for grades 4–10 in the 2011–2012 and 2012–2013 school years. See

Tables 6 and 9 of Abdulkadiro�glu et al. (2017) for more details.
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5 VAM for individual schools
For many high-stakes decisions, knowing the effectiveness of a broad school sector

(such as charters vs. traditional public schools) is insufficient. Parents wish to know

which schools, in particular, deliver the most learning for their children. Policy-

makers likewise may rely on individual school effectiveness measures when decid-

ing whether to close, restructure, or expand schools in their district (Abdulkadiro�glu
et al., 2016; Cohodes et al., 2021; Rockoff and Turner, 2010). This demand for school

effectiveness data is reflected in a recent proliferation of publicly available measures.

The 2015 Every Student Succeeds Act, for example, mandated all US states to adopt

elementary andmiddle school accountability systems that include public measures of

average student achievement and growth. Private companies such as US News and

World Report and GreatSchools.org, meanwhile, produce massively popular school

ratings that are often featured prominently on real estate sites like Zillow and Redfin.

Such ratings appear to affect families’ choices of where to live, as well as where

to enroll their children (Bergman and Hill, 2018; Hasan and Kumar, 2019).

Virtually all public and commercial school performance measures are derived

from observational comparisons: typically, average test score levels or growth

Table 6 Alternative IV strategies for Denver charter effects.

Instruments

Offer First-choice Qualification

(1) (2) (3)

Math score 0.417 0.515 0.379

(0.050) (0.064) (0.092)

First stage 0.443 0.347 0.457

(0.024) (0.022) (0.021)

Risk controls DA Score First-choice risk sets Preference risk sets

Equivalent sample
increase vs column (1)

1.64 3.46

Observations 2099 2222 3502

Note: This table reports IV estimates of the effects of charter school attendance for students in Denver
using strategies based on centralized school assignment. The first row compares alternative 2SLS
estimates of charter attendance effects on math scores. The second row reports the corresponding
first-stage estimates. Estimates in column (1) were computed by instrumenting charter attendance with
centralized assignment to a charter school, controlling for percentiles of the simulated charter
assignment propensity score and other baseline covariates. Estimates in column (2) were computed
by instrumenting charter attendance with a charter first-choice assignment instrument, controlling for
first-choice fixed effects and other baseline covariates. Estimates in column (3) were computed by
instrumenting charter attendance with a charter qualification instrument, controlling for preference fixed
effects and other baseline covariates. The fourth row reports the sample size increase needed to achieve
a precision gain equivalent to the gain from using the any-charter offer instrument. Robust standard
errors are reported in parentheses.
The estimates reported here are drawn from Abdulkadiro�glu, A., Angrist, J.D., Narita, Y., Pathak, P.A.,
2017. Research design meets market design: using centralized assignment for impact evaluation.
Econometrica 85 (5), 1373–1432. https://doi.org/10.3982/ECTA13925.
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among a school’s enrolled students, sometimes adjusted for differences in observed

student demographics. Such levels and growth measures closely resemble the obser-

vational value-added models (VAMs) that have long been considered and debated

for ranking teachers and schools (e.g., Chetty et al., 2014a; Deming, 2014; Kane

and Staiger, 2008; Rothstein, 2010).aa The selection-on-observables assumption

which underlies such VAMs reflects a different approach to removing selection bias

than the lottery and discontinuity-based identification strategies from above. Yet a

recent literature, starting with Angrist et al. (2016b, 2017), shows how such

quasi-experimental variation can be incorporated in the school VAM agenda, yield-

ing more reliable estimates of individual school effectiveness while grappling with

certain fundamental issues with obtaining such fine-grained causal estimates.

In this section, we first overview the basic logic of observational school VAMs

and empirical Bayes methods that are commonly applied to value-added estimates.

Next, we discuss how the key identifying assumptions of observational VAMs can be

tested with school lotteries. We then describe ways such variation can be further used

to improve observational models by partially correcting for selection bias when the

identifying assumptions are found to be violated.

5.1 Estimating observational VAMs
The starting point for conventional school value-added estimation is a constant-

effects model along the lines of those considered earlier, now extended to allow each

school to have a distinct causal effect. Consider a setting with schools indexed by

j ¼ 1,…, J, each with its own causal value-added, βj, measuring the effect of atten-

dance at j on outcome Yi. Assuming value-added is measured relative to a reference

school with mean outcome μ, observed outcomes can be written:

Yi ¼ μ +
XJ
j¼1

βjDij + εi: (22)

As before, Dij �{0, 1} indexes the enrollment of student i in school j and εi captures
other determinants of achievement.ab

Value-added parameters βj can be estimated by a combination of regression con-

trols and outcome-differencing strategies. Regressing εi on a vector of covariates Xi,

including student demographics and lagged test scores, yields an augmented causal

model:

aaObservational examinations of school effectiveness can be traced at least as far back as to the

Coleman (1966) report, which famously showed in cross-sectional regressions that the fraction of var-

iance in student achievement attributable to educational inputs was small relative to the contribution of

family background. Suffice to say the long observational and quasi-experimental literatures that

followed paint a more nuanced picture.
abFormally, Eq. (22) derives from an additively separable potential outcomes model, Yi( j)¼ μ + βj + εi,
which implies causal effects Yi( j) � Yi(k) ¼ βj � βk are constant across students.
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Yi ¼
XJ
j¼1

βjDij + X0
iλ + ηi: (23)

The key selection-on-observables assumption underlying VAM estimation is that E
[Dijηi] ¼ 0 for each j. In other words, the component of student ability that is unex-

plained by Xi must be uncorrelated with school enrollment. Under selection-on-

observables, an OLS regression recovers the parameters of Eq. (23).

This framework nests several types of school quality measures. The simplest

levelsmeasures effectively set Xi equal to only a constant, thereby measuring school

quality as the average achievement level of enrolled students. Estimates from levels

models will be biased when schools enroll students with systematically different

unadjusted ability εi, as seems likely since schools are not randomly assigned. More

sophisticated VAMs account for observable differences in demographics and lagged

test scores by including these controls in Xi. In this case, the selection-on-observables

assumption requires that there is no systematic selection into school enrollment

among students with the same characteristics and past achievement.

An alternative approach to adjusting for lagged achievement is a gainsmodel that

first-differences contemporaneous and past test scores to remove time-invariant un-

observables. If we let ΔYi ¼ Yig � Yi(g�1) denote the change in student achievement

relative to an earlier grade, the gains model is given by:

ΔYi ¼ μ +
XJ
j¼1

βjDij + Δεi, (24)

where Δεi ¼ εi � Yi(g�1). Here, the relevant identification assumption requires

that potential outcome trends are parallel across schools, i.e., E[Δεi|Dij ¼ 1] ¼ E
[Δεi|Dik ¼ 1] for all j 6¼ k so that a linear regression of ΔYi on the Dij recovers the

value-added parameters βj. The regression adjustment and outcome differencing in

Eqs. (23) and (24) can further be combined by adding additional demographic controls

to the gains regression.

5.2 Empirical Bayes methods
5.2.1 EB Shrinkage under normality
OLS estimation of VAM models like (23) and (24) yields a set of school-specific

value-added estimates β̂j.
ac One key question, which we turn to in the next section,

is whether the identifying assumptions underlying these observational VAM

acIn some applications, researchers instead estimate value-added by first regressing Yi on Xi, then com-

puting school averages of the resulting residuals. This approach generates the same estimates as OLS

estimation of (23) in large samples if school enrollment is independent of the controls Xi, but generally

yields asymptotically different estimates if enrollment is correlated with the controls. Since the inclu-

sion of Xi is typically motivated by concerns about selection bias, it seems preferable when possible to

use the OLS estimates which do not impose this independence assumption.
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procedures hold such that β̂j gives an unbiased estimate of the causal parameter βj
from Eq. (22). Setting aside this question for the moment, another perhaps equally

important one is whether β̂j is estimated precisely enough to be useful for decision-

making even when these identifying assumptions hold. Compared to the sector-wide

effect estimates discussed in Section 3, single-school VAM estimates are likely to

involve substantial sampling error, particularly for small or new schools with

relatively few student observations.

Empirical Bayes (EB) analysis offers a strategy to moderate sampling variance in

individual estimates of β̂j. The EB approach treats the school value-added parameters

βj as draws from a distribution of school quality, typically assumed to be normal. EB

estimates of the hyperparameters that characterize this distribution are derived from
the estimated β̂j ’s. This estimated distribution generates posterior predictions for

individual school quality. The EB approach uses the full set of VAM estimates to

reduce sampling variance in individual school quality estimates, accepting bias in

the posterior estimates in exchange (Efron, 2010; Morris, 1983; Raudenbush and

Bryk, 1986).

By way of illustration, suppose β̂j is an unbiased and normally-distributed esti-

mate of βj with known variance equal to its squared standard error s2j . This normality

assumption can be viewed as an asymptotic approximation with a growing number

of students per school. Next, suppose the latent parameters βj are themselves drawn

randomly from a distribution Gβ defined in the population of schools. Assume for

the moment that Gβ is a normal distribution and independent of sampling variance

s2j across schools. This yields the following hierarchical model:

β̂jjβj, s2j 	 Nðβj, s2j Þ, (25)

βjjs2j 	 Nðμβ, σ2βÞ: (26)

This model has two hyperparameters, μβ and σ2β.
ad Method of moments estimates of

these hyperparameters are given by

μ̂β ¼ 1

J

XJ
j¼1

β̂j, (27)

σ̂2β ¼
1

J

XJ
j¼1

½ðβ̂j � μ̂βÞ
2 � s2j �: (28)

The variance estimator here subtracts s2j in (28) as a bias correction: the uncorrected

sample variance of β̂j ’s is inflated by sampling variance.ae Maximum likelihood

applied to the school-levelmodel (25) and (26), or a full parametric specification start-

ing with distributional assumptions for the residual in model (23) for individual out-

comes, offers more elaborate alternatives to the simple method of moments approach.

adGiven the model in (22), the mean μβ captures mean school quality relative to an omitted category.
aeKline et al. (2020) outline general methods for bias-corrected estimation of variance components.
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The final step in EB estimation constructs posteriors for the quality of each

school. Given the model in (25) and (26), the posterior distribution for βj is given
by βjjβ̂j, s2j 	 Nðβ*j ,V*

j Þ where

β*j ¼
σ2β

σ2β + s2j

 !
β̂j +

s2j
σ2β + s2j

 !
μβ, (29)

and V*
j ¼

s2j σ
2
β

σ2β + s2j
: Eq. (29) shows that the posterior mean β*j is a weighted average of

the unbiased estimate β̂j and the prior mean μβ. The weight on β̂j approaches one as

its sampling variance s2j approaches zero. By shrinking the noisy unbiased estimate

toward the prior mean in proportion to its sampling error, the posterior mean reduces

variance, with more shrinkage for schools with noisier estimates. An empirical Bayes

posterior mean β̂
*
j plugs the estimated hyperparameters μ̂β and σ̂2β into (29).

5.2.2 When to shrink?
Whether the shrunk EB posterior mean should be preferred to the noisier but unbiased

estimate β̂j depends on the goals of the analyst. To see this, note that conditional on the
true value-added of school j, the mean squared error (MSE) of the two estimates is:af

E½ðβ̂j � βjÞ
2jβj, s2j � ¼ s2j ,

E½ðβ⁎j � βjÞ2jβj, s2j � ¼
σ2β

σ2β + s2j

 !2

s2j +
s2j

σ2β + s2j

 !2

βj � μβ
� �2

:
(30)

If we are only interested in one specific school, this conditional MSE formula shows

it’s not clear which of the two estimators is better; shrinkage reduces variance but

may lead to substantial bias if the school is very different from average (as reflected

in the second term in Eq. 30). On the other hand, if we are interested in evaluating

many schools, the relevant notion of MSE integrates over the distribution of βj:

E½ðβ̂j � βjÞ
2js2j � ¼ s2j ,

E½ðβ*j � βjÞ
2js2j � ¼

σ2β
σ2β + s2j

 !
s2j :

(31)

This formula shows that in an unconditional sense the posterior mean has unambig-

uously lower MSE than the unbiased estimate β̂j.
ag In fact, by standard properties of

afThe MSE formula for the posterior mean ignores estimation error in the hyperparameters. See Morris

(1983) and Armstrong et al. (2022) for discussion of approaches that incorporate estimation error in the

prior distribution.
agThis observation is closely related to the classic James and Stein (1961) result that OLS is inadmis-

sible and dominated by shrinkage-based estimators when estimating three or more parameters under

quadratic loss.
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conditional mean functions, the posterior mean has lowest MSE of all functions of

ðβ̂j, s2j Þunder the model. EB methods are therefore useful when we want an estimator

that performs well on average across all schools.

Once EB posterior distributions have been calculated, they can be used for sev-

eral purposes.ah First, as shown in Eq. (31), EB shrinkage yields a set of estimates

with low average MSE across schools. Second, shrinkage corrects measurement

error in models that treat school value-added as a regressor. Putting the unbiased

but noisy estimate β̂j on the right-hand side of a regression results in attenuation bias
toward zero due to classical measurement error; the posterior mean introduces non-

classical measurement error that corrects this so that a regression with β*j on the right
yields the same coefficient as using the true βj. This correction is closely related to

traditional errors-in-variables regression, which similarly corrects for measurement

error using an estimated signal-to-noise ratio but typically uses a common shrinkage

factor for all observations (Draper and Smith, 1998).ai

Third, EB posterior distributions can be used for making decisions about individ-

ual schools. For this purpose, the right feature of the posterior to use will depend on

the decision-maker’s loss function, and in general it may be optimal to use func-

tionals other than the posterior mean. For example, a district policymaker might

be interested in closing all schools below a quality threshold �β and view each

mistaken closure as equally costly, in which case it is optimal to make decisions

based on the posterior probability that βj is less than �β (given by Φ
�β�β⁎jffiffiffiffi

V⁎
j

p
� 	

in the

parametric normal/normal model). Recent work by Gu and Koenker (2023) discusses

EB methods for ranking and tail selection decisions.

5.2.3 EB extensions
The simple EB framework sketched here is usefully extended by adding covariates

that predict school quality and by allowing a more flexible form for the prior distri-

bution. It’s useful in some cases to have βjjs2j ,Cj 	 NðC0
jμ, σ

2
βÞ given a list of school

characteristics, Cj, such as school sectors. The resulting EB posterior mean shrinks

β̂j toward an estimated linear index C0
jμ̂ (estimable from a regression of β̂j on Cj)

rather than a constant. It is straightforward to also allow σ2β to depend on school

characteristics.

In the same spirit, normality of (26) might be replaced by a more general model

for Gβ. The linear shrinkage estimator derived under normality has desirable prop-

erties regardless. In particular, β*j coincides with the fitted value from a linear

ahAnalysts sometimes report the variance of posterior mean estimates as a summary of the dispersion in

value-added. Such a procedure can yield misleading results because the distribution of posterior means

is by construction underdispersed relative to the underlying distribution of latent parameters (formally,

Varðβ*j Þ < σ2β < Varðβ̂jÞ). For the purpose of understanding the variance of value-added, the hyper-

parameter estimate σ̂2β is more useful.
aiNote that since classical measurement error on the left does not cause bias, putting β*j rather than β̂j on
the left-hand side of a regression causes bias rather than correcting it.
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regression of βj on β̂j, so it can be interpreted as a best linear predictor of value-added
regardless of the mixing distribution. It may nonetheless be of interest to estimate a

more flexible Gβ to obtain a more complete picture of the shape of the school quality

distribution and form improved posteriors. Methods for this purpose include the

Kiefer and Wolfowitz (1956) nonparametric maximum likelihood estimator

(NPMLE; see also Robbins, 1956 and Koenker and Mizera, 2014) and the

exponential family deconvolution estimator proposed by Efron (2016). Gilraine

et al. (2020) apply the NPMLE approach to estimation of teacher value-added

distributions.aj

In some other cases, it’s useful to allow βj and s2j to be correlated. For example, it

could be that newer or smaller schools are less effective, in which case schools with

more students (and therefore lower s2j ) would tend to have higher βj. A simple strat-

egy here treats s2j as a covariate in the conditional distribution of Gβ; the NPMLE

estimator can also be applied to estimate an unrestricted bivariate distribution of

βj and s2j . An alternative approach is to apply a variance-stabilizing transform to

the β̂j’s that results in approximately constant sampling variance before estimating

the prior distribution (see, e.g., Brown, 2008). Since the empirical literature on

school quality using EB methods to date has typically relied on normality and inde-

pendence assumptions, the practical relevance of relaxing these assumptions is

unclear.

5.3 Testing VAM validity with lotteries
Of course, a precise but highly biased estimate of posterior of school value-added is

likely to be as problematic as an extremely noisy estimate. We next consider the use

of quasi-experimental school assignment variation to test for selection bias in obser-

vational VAMs. The key assumption of an observational VAM is selection-on-

observables: conditional on a set of included controls Xi, school enrollment is as good

as randomly assigned. This assumption can be tested with the help of a regression

of the form:

Yi ¼
X
j

αjDij + X0
iμ + νi, (32)

where Xi is the vector of controls in the causal model (23). This regression model

differs from (23) only in that it is defined as a regression and so may have parameters

different from those in the causal model. The error term in this model, νi, therefore
differs from the random part of potential outcomes, ηi.

Under selection-on-observables, the parameters of the causal model (23) and the

regression (32) coincide so that αj ¼ βj for all schools j. Moreover, the regression

residual coincides with residual ability: νi ¼ ηi. Student ability should, in turn, be

ajSee Kline and Walters (2021) and Kline et al. (2021) for other recent applications of nonparametric

EB methods outside of education.
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unrelated to any randomness in school offers for the same reasons underlying

Assumption 1A. Thus, a consequence of selection-on-observables is orthogonality

of OLS residuals with (adjusted) assignment indicators.

E½ðZi‘ � pi‘Þνi� ¼ 0, (33)

for potentially multiple schools ‘ ¼ 1,…,L. Here, we are using the assignment pro-

pensity scores pi‘ to address any nonrandomness in offers, as in the centralized

assignment scenario of Section 4, but the same logic can be applied to decentralized

lotteries by adjusting for risk set fixed effects, as in Sections 2 and 3.

A test of (33) is obtained by regressing the residuals from regression model (32)

on the set of instruments, Zi‘ � pi‘. Test rejections are symptomatic of selection bias

in the observational VAM coefficients: i.e., νi 6¼ ηi such that αj 6¼ βj for some or all

schools j. Angrist et al. (2016b) show how this procedure can be viewed as a

Lagrange multiplier (LM) test of the L orthogonality restrictions, which impose

the joint null hypothesis of VAM validity and conditionally independent school

assignment.

An omnibus test of (33) can be decomposed into two conceptually distinct tests:

one capturing the extent towhich the observationalVAMcoefficientsαj predict school
effectiveness βj on average, and one capturing how any selection bias bj ≡ αj � βj
varies across schools. Formally, consider a test statistic constructed based on an

assumption of homoskedastic νi:

T̂ ¼ ðY � ŶÞ0PZðY � ŶÞ
σ̂2ν

,

where Y is an N � 1 vector of the achievement outcome, Ŷ is an N � 1 vector of

regression fitted values from estimating Eq. (32), σ̂2
ν ¼ðY� ŶÞ0ðY� ŶÞ=N estimates

the variance of νi, and PZ is the projection matrix for the adjusted offers Zi‘ � pi‘.
ak

This is a joint test of significance of the regression of VAM residuals ν̂i ¼ Yi� Ŷi on

Zi‘ � pi‘:

ν̂i ¼ ψ0 +
X
‘

ψ ‘ðZi‘ � pi‘Þ + ui,

where the null of ψ1…,ψL ¼ 0 is imposed to compute the residual variance. Angrist

et al. (2016b) show this test statistic can be rewritten as the sum of two terms:

T̂ ¼ ðφ̂� 1Þ2

σ̂2νðŶ
0
PZŶÞ

�1
+

ðY � φ̂ŶÞ0PZðY � φ̂ŶÞ
σ̂2ν

, (34)

akFormally, PZ ¼ Z(Z0Z)�1Z0 where Z is a N � L matrix stacking observations of the adjusted assign-

ments Zi‘ � pi‘.
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where φ̂ ¼ ðŶ0
PZŶÞ

�1
Ŷ
0
PZY is the 2SLS coefficient estimate that uses all Zi‘ � pi‘ to

instrument Ŷi in an equation for Yi. Since these adjusted offers are by design

uncorrelated with student demographics or lagged test scores, φ̂ can be seen to

estimate the second-stage equation

Yi ¼ τ0 + φαdðiÞ + X0
iτ + ηi, (35)

where αd(i) ¼
P

j αjDij denotes the observational VAM coefficient of i’s enrolled
school.

The second-stage parameter φ is sometimes referred to as a “forecast coefficient,”

when versions of Eq. (35), fit with quasi-experimental variation, are used to assess the

on-average predictive validity of observational quality measures αj—whether for

teachers, schools, or more recently outside of education (e.g., Abaluck et al., 2021;

Chetty and Hendren, 2018; Chetty et al., 2014a; Deming, 2014). The typical null hy-

pothesis is thatφ¼ 1,meaning that a one-unit increase in αd(i) translates into a one-unit
increase in Yi. Deviations from this predictive relationship indicate “forecast bias.” The

first term of the Angrist et al. (2016b) test statistic decomposition (34) is therefore a

Wald statistic for the null of no forecast bias. The second term is the Sargan (1958)

statistic for an LM test of the overidentifying restrictions in 2SLS estimation of Eq.

(35). Intuitively, this term checks whether the VAM coefficients are equally predictive

within each lottery quasi-experiment. The omnibus test of VAM validity T̂ checking

the L restrictions (33) combines a single test of forecast bias with L � 1 additional

restrictions coming from various school-specific admissions lotteries.

Table 7 illustrates these tests for Boston middle schools using the sample of

students and lotteries analyzed in Angrist et al. (2017). The first row reports forecast

coefficients from 2SLS models instrumenting VAM predictions α̂dðiÞ with charter

school lottery offers and first-choice centralized assignments, controlling for the

necessary risk set fixed effects and additional baseline covariates. Column (1) shows

results for an uncontrolled VAM which simply compares average 6th grade math

achievement across schools adjusting for year effects. The lagged score model in

column (2) further adjusts for student demographics and lagged (5th grade) achieve-

ment, while the gains model in column (3) replaces the outcome with the difference

in achievement and lagged achievement, maintaining the demographic covariates.

The test results reveal that VAM models adjusting for lagged achievement are

much less biased than the naive uncontrolled specification. The 2SLS forecast

coefficient estimate for the uncontrolled model is only 0.40, indicating substantial

forecast bias in comparisons of unadjusted achievement levels across schools. In

contrast, the lagged score specification generates a forecast coefficient of 0.86 that

is only marginally statistically different from one (p ¼ 0.07). The corresponding

estimate for the gains model equals 0.95, and the null hypothesis of no forecast bias

in the gains model cannot be rejected at conventional levels (p¼ 0.55). This minimal

forecast bias reflects a common finding in the literatures on teacher and school value-

added: approaches that adjust for past achievement eliminate much of the selection

bias in comparisons across classrooms and schools so that on average estimates from

a well-controlled VAM provide reasonably reliable estimates of causal effects on

student test scores (Angrist et al., 2017; Chetty et al., 2014a).
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Despite this minimal forecast bias, the final row of the table shows that the om-

nibus test of all restrictions rejects decisively for all three models. The rejection is

driven primarily by failure of the 2SLS overidentifying restrictions: even though the

gains model predicts student outcomes well on average, this predictive validity is

poor for some of the L school-specific lotteries. Test results for the more sophisti-

cated VAMs in columns (2) and (3) are depicted graphically in Fig. 3, which gives

a “visual IV” representation of the 2SLS estimates. Specifically, for each of the

Angrist et al. (2017) school lotteries we plot the reduced-form effect of assignment

on 6th grade math scores Yi against the first-stage effect of assignment on estimated

observational value-added α̂dðiÞ. The slopes of the weighted lines-of-best-fit through
these points correspond to the forecast coefficient estimates φ̂ from the table, and we

plot the benchmark 45-degree line for reference. As we’ve seen, the gains model

brings these two lines closer together, reflecting minimal forecast bias. But several

lottery points are far from these lines, suggesting nonzero selection bias across

schools (colored points are statistically significantly far from this line at the

10% level).

Table 7 VAM bias tests for Boston schools.

Value-added model

Uncontrolled Lagged score Gains

(1) (2) (3)

Forecast coefficient 0.396 0.864 0.950

(0.056) (0.075) (0.084)

p-values:

Forecast bias <0.001 0.071 0.554

Overidentification <0.001 0.003 0.006

Omnibus <0.001 <0.001 <0.001

Note: This table reports the results of tests for bias in conventional VAMs
using 6th grade math scores for students in Boston. The uncontrolled model
includes only year-of-test indicators as controls. The lagged score VAM
includes cubic polynomials in baseline math and ELA scores, along with
indicators for application year, sex, race, subsidized lunch, special education,
English language learner status, and counts of baseline absences and
suspensions. The gains VAMdrops the lagged score controls and uses score
growth from baseline as the outcome. Forecast coefficients are from IV
regressions of test scores on fitted values from conventional VAMs,
instrumenting fitted values with lottery offer indicators. The IV models are
estimated via an asymptotically efficient GMM procedure and control for
assignment strata fixed effects, demographic variables, and lagged scores.
The forecast bias test checks whether the forecast coefficient equals 1, and
the overidentification test checks the IV model’s overidentifying restrictions.
The omnibus test combines forecast bias and overidentifying restrictions.
Standard errors are reported in parentheses.
The estimates reported in columns (2) and (3) are drawn from
Angrist, J., Hull, P., Pathak, P., Walters, C., 2017. Leveraging lotteries for
school value-added: testing and estimation. Q. J. Econ. 132 (2), 871–919;
those reported in column (1) come from a re-analysis of the same sample.
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A. Lagged score

FIG. 3

Visual IV tests for VAM bias. (A) Lagged score; (B) Gains. Note: This figure plots lottery

reduced-form estimates against value-added first stages from 28 middle school admission

lotteries. Outcomes are standardized 6th grade math test scores. Schools are categorized

as belonging to the charter, pilot, and traditional public sector. Filled markers indicate

reduced-form and first-stage estimates that are significantly different from each other at the

10% level. The solid lines have slopes equal to the forecast coefficients in Table 7,

while dashed lines indicate the 45-degree line.

This figure is taken from Angrist, J., Hull, P., Pathak, P., Walters, C., 2017. Leveraging lotteries for school value-

added: testing and estimation. Q. J. Econ. 132 (2), 871–919.
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5.4 Bias-correction with lotteries
5.4.1 Combining OLS and IV estimates
Given test rejections like in Table 7, a natural question is whether quasi-experimental

admissions variation can be used to reduce the apparent selection bias in observa-

tional VAMs. In a setting where both lottery-based and observational VAM esti-

mates of school quality are available, there is a tradeoff between using biased

(but precise) observational estimates and unbiased (but noisy) lottery estimates.

We next sketch a potential solution to this tradeoff by extending the empirical Bayes

framework of Section 5.2.

Suppose we have a set of potentially biased observational OLS VAM estimates

from Eq. (23) satisfying:

α̂jjβj, bj, s2j,α 	 Nðβj + bj, s
2
j,αÞ: (36)

As before, parameter βj gives the true quality of school j, s2j,α is the squared

standard error of the OLS estimate α̂j, and the normality assumption is an asymptotic

approximation with many students per school. Now, however, the estimator may be

biased—represented by the school-specific parameter bj. A rejection of the lottery-

based omnibus test in Section 5.3 indicates that bj 6¼ 0 for some or all schools.

Suppose in addition to the α̂j estimates we have a quasi-experimental VAM

estimate β̂j for each school. For example, these estimates might come from instrument-

ing the Dij indicators in Eq. (23) with risk-adjusted offer instruments Zij � pij as
described in Section 4. The lottery estimates are assumed to be consistent and asymp-

totically normal estimates of the true VAM parameters:

β̂jjβj, bj, s2j,β 	 Nðβj, s2j,βÞ: (37)

We generally expect s2j,β to be larger than s2j,α since IV is less precise than OLS.al

Finally, we extend the hierarchical model (26) to allow for a bivariate distribution

of school quality and selection bias across schools. Letting Θj ≡ (βj + bj, βj)0 denote
the 2 � 1 vector of observational VAM and causal parameters for school j, write:

ΘjjSj 	 NðμΘ,ΣΘÞ: (38)

ThematrixΣΘ describes the joint distribution of causal effectiveness and selection bias

across schools. The matrix Sj has the sampling variances s2j,α and s2j,β on the diagonal

and the sampling covariance of theOLSand IVestimates off the diagonal.When bj¼ 0

and the OLS residual νi is homoskedastic, this covariance equals s2j,α (Hausman, 1978).

Under the model described by (36), (37), and (38), the posterior mean for Θj

conditional on the observed estimates Θ̂j ¼ ðα̂j, β̂jÞ
0
is given by

Θ⁎
j ≡ E½ΘjjΘ̂j, Sj� ¼ Σ�1

Θ + S�1
j


 ��1

S�1
j Θ̂j + Σ�1

Θ + S�1
j


 ��1

Σ�1
Θ μΘ: (39)

alNote that this would be guaranteed under the classical assumptions of the Gauss–Markov model.
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The second element of Θ*
j is the posterior mean for βj using both the OLS and

IV estimates of school quality, which is a linear combination of the two estimates

and the prior mean.am

Following the EB approach of Section 5.2, the “hybrid” value-added posterior

means in (39) can be approximated by estimating hyperparameters μΘ and ΣΘ, based

on the observed joint distribution of OLS and IV estimates and their sampling var-

iances and covariances, and then plugging these hyperparameter estimates into

Eq. (39). By the above Hausman (1978) logic on Sj, it can be shown that when the ob-
servational VAM is close to unbiased (V ar(bj)
 0) and the errors are homoskedastic

noweight is placed on the IV estimates andwe return to the conventional EB shrinkage

formula (29) applied to the OLS α̂j estimates. At the opposite extreme, when selection

bias is bad enough to make the observational VAM estimates useless (i.e., Var(bj)
!∞), no weight is placed on α̂j and we arrive at a conventional EB shrinkage formula

for the quasi-experimental estimates β̂j. In intermediate cases, the hybrid posterior op-

timally trades off bias and variance between the two sets of value-added estimates.

5.4.2 Bias-correction with undersubscription: IV VAM
In practice, a lottery-based estimate β̂jmay not be available for every school. In cen-

tralized assignment systems, for example, there are typically some schools that lack

quasi-experimental variation in assignment. This is a problem of undersubscription,
formalized as Zij � pij ¼ 0 for all students i at some school j. Applicants who are

assigned to such schools (Zij ¼ 1) never face any risk of nonassignment (pij ¼ 1),

perhaps because the school faces weak demand and so has no need for lottery-based

rationing, while all other students are never assigned (Zij¼ pij¼ 0).With Zij� pij¼ 0

for all students, assignment at this school cannot instrument for school enrollment;

given undersubscription, therefore, we have fewer instruments than endogenous

variables in Eq. (23) and cannot use 2SLS to estimate the βj’s or apply the hybrid

posterior formula (39).

An instrumental variables value-added model (IV VAM) approach, introduced in

Angrist et al. (2021), offers a solution to the undersubscription problem.an IV VAM

sidesteps underidentification of the βj’s with a model relating value-added to a lower-

dimensional set of school characteristics, estimated by IV. This approach starts with

a hypothetical school-level projection of value-added βj on a K � 1 vector of school

characteristics Mj:

βj ¼ M0
jφ + νj: (40)

Eq. (40) is a between-school model of the sort often used in hierarchical linear

models for school effects (Raudenbush and Bryk, 1986). The characteristics Mj

amSee Angrist et al. (2017) for expressions for the weights on the two estimates in special cases. Chetty

and Hendren (2018) use a similar approach to compute EB estimates of neighborhood effects combin-

ing observational and quasi-experimental variation.
anThe IV VAM method simplifies and generalizes a parametric approach to hybrid estimation with

undersubscription explored in Angrist et al. (2017).
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might include an OLS value-added coefficient αj as well as other school attributes
like sector or demographics. Coefficient vector φ captures the systematic relation-

ship between these predictors and causal school quality. Residual νj, defined so that
E[Mjνj] ¼ 0, reflects variation in school quality not explained by Mj. Hyperpara-

meter σ2ν ≡ VarðνjÞ summarizes the extent of such residual variation.

Plugging the school-level projection (40) into the student-level causal model (22)

yields:

Yi ¼ τ0 + M0
dðiÞφ + εi + νdðiÞ, (41)

where Md(i ) ¼
P

j MjDij is the vector of characteristics for student i’s enrolled

school. The first step of IV VAM is to estimate Eq. (41) by 2SLS, instrumenting

Md(i ) with a vector of risk-adjusted offers for L oversubscribed schools, ~Zi ¼
ðZi1 � pi1,…,ZiL � piLÞ.

This 2SLS procedure generalizes the testing approach introduced in Section 5.3.

When Md(i ) consists only of an OLS school value-added estimate α̂dðiÞ , the 2SLS

estimate φ̂ checks for forecast bias in the underlying OLS model, while the accom-

panying overidentification test assesses variation in the predictive value of OLS

across lotteries. In more general cases, the 2SLS forecast coefficient describes the

relationship between school characteristics Mj and value-added, and the overidenti-

fication test statistic can be used to construct an estimate of σ2ν (which should be zero
ifMj includes an unbiased OLS coefficient). The mechanics of the IV VAM estima-

tion procedure and its connection to VAM specification tests are detailed further

in Angrist et al. (2021).ao

The second step of IV VAM constructs minimum MSE predictions of individual

school quality given all available information, including the school characteristicsMj

and estimates from the available lottery quasi-experiments. Let ρ̂ denote the L � 1

vector of coefficients from a regression of Yi on the risk-adjusted offer vector ~Zi, and

let Vρ denote the sampling covariance matrix of ρ̂. The J � 1 vector of IV VAM

posteriors is given by:

β* ¼ Π0ðΠΠ0 + Vρ=σ
2
νÞ

�1
ρ̂ + IJ � Π0ðΠΠ0 + Vρ=σ

2
νÞ

�1Π
h i

Mφ: (42)

Here M is a J � K matrix collecting characteristics Mj for all schools, IJ is the J � J
identity matrix, and Π is an L � J matrix of first-stage coefficients from regressions

of each of the J school attendance indicators, Dij, on ~Zi. In a special case with no

undersubscription (L ¼ J) and Mj equal to an OLS value-added coefficient, this

formula collapses to the bivariate shrinkage formula (39).ap With undersubscription,

IV VAM posteriors combine a value-added forecast M0
jφ for each school with

aoIn cases where Var(νj) 6¼0, the exclusion restriction underlying 2SLS estimation of (41) requires

school offers to be uncorrelated with residual school quality νd(i ), which is not guaranteed by indepen-
dence of offers and potential outcomes. As detailed in Angrist et al. (2021), this makes IV VAM a

special case of the “many invalid instruments” framework of Kolesár et al. (2015).
apSee the Appendix to Angrist et al. (2021) for the details of this equivalence.
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reduced-form offer effects ρ̂ , accounting for offer compliance via the first-stage

matrix Π. An EB implementation plugs OLS estimates of Π and Vρ into (42) along

with 2SLS estimates of φ and σ2ν, obtained from the first step of IV VAM.

5.5 Risk-controlled value-added models (RC VAM)
An alternative strategy for using centralized assignment variation to estimate school

value-added is the risk-controlled value-added model (RC VAM) of Angrist et al.

(2021). This approach starts with the observation that assignment systems like the

DA mechanism in Section 4 generate rich data on student preferences and priorities

which may account for much of the nonrandom sorting across schools. RC VAM

uses this data to bolster the selection-on-observables assumption in conventional

VAM estimation, by adding functions of the assignment propensity scores pij to
the control vector Xi in regression (32). In other words, instead of using centralized

assignment information to generate instruments for school assignment, RC VAM

uses this information to construct new control variables that help to mitigate selec-

tion bias in observational models.aq

The selection-on-observables assumption underlying an RC VAM model

with risk controls echoes that invoked in studies of college quality by Dale and

Krueger (2002, 2014) and Mountjoy and Hickman (2021). These studies control

for a student’s college application portfolio and admissions offers to estimate the

returns to enrollment at particular colleges, assuming that offer take-up decisions

are as good as random. Similarly, RCVAM requires noncompliance with centralized

assignment admission offers to be as good as random conditional on assignment

risk and other observables. This connection is formalized in the following result

of Angrist et al. (2021):

εi ??Dijðpi,Xi,ZiÞ ¼) εi ??Dijðpi,XiÞ, (43)

where Di � f1,…, Jg is the school attended by student i, Zi � f1,…, Jg is i’s school
assignment, pi ¼ ðpi1,…, piJÞ is the vector of propensity scores for all schools, and

εi is the student ability term from model (22). This result shows that if school enroll-

ment is independent of ability among students with the same assignment risk,

covariates, and offers, then enrollment is also independent of ability conditional

on just risk and covariates—since offers are random conditional on risk, it is not nec-

essary to control for offers once we’ve conditioned on the assignment propensity

score. Knowledge of the propensity score therefore allows us to use the conditional

randomness of offers to test the RC VAM selection-on-observables assumption

(the right-hand side of (43)) rather than controlling directly for admission offers,

even while motivating the RC VAM strategy by a Dale and Krueger-style assump-

tion of random noncompliance with offers (the left-hand side of (43)).

Tests of the RC VAM identifying assumption for NYC middle and high schools

appear in Fig. 4. The results show that RC VAM estimates of NYC middle and high

aqAbdulkadiro�glu et al. (2020) develop a related control-function approach that controls for preferences
derived from random utility discrete-choice models fit to students’ rank-ordered preference lists.
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FIG. 4

Visual IV tests for VAM bias. (A) Middle schools; (B) High schools.Note: This figure plots reduced-form estimates against value-added first stages

from each of 20 bins of school assignment indicators for NYC middle and high school samples. Outcomes are 6th grade math New York State

Assessment scores for middle schools, and SAT math scores for high schools. Assignments are binned by ventile of the estimated

conventional VAM. Filled markers indicate reduced-form and first-stage estimates that are significantly different from each other at the 10% level.

The solid lines have slopes equal to the forecast coefficients in Table 2 of Angrist et al. (2021), while dashed lines indicate the 45-degree line.

This figure is taken from Angrist, J.D., Hull, P.D., Pathak, P.A., Walters, C.R., 2021. Credible school value-added with undersubscribed school lotteries. Rev. Econ. Stat.,

Forthcoming. https://doi.org/10.1162/rest_a_01149.
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school quality are virtually unbiased, using the sample of Angrist et al. (2021) and

same visual IV testing procedure as in Fig. 3.ar The first column of both panels shows

again that uncontrolled VAMs, which effectively compare achievement levels, badly

fail to predict the reduced-form effects of centralized school assignment. Remark-

ably, the second column shows that most of this selection bias is removed by adding

assignment risk controls; when conventional VAM controls (demographics and

lagged test scores) are further added, the forecast coefficient is indistinguishable

from one with all points tightly clustered around the 45-degree line. The omnibus

test p-value for the middle and high school RCVAMs are 0.21 and 0.79, respectively.

The seeming lack of omitted variables bias is especially impressive for high schools,

where the NYC outcome (SAT scores) comes from a different test than the lagged

score controls and thus may be more prone to omitted variables bias (a point made in

a different context by Chetty et al., 2014b). These results suggest that using infor-

mation on assignment risk from centralized assignment systems is a promising

strategy for mitigating selection bias in school VAMs.

6 Conclusion: What next for school quality measurement?
The increasing use of centralized assignment systems in American school districts

offers new opportunities to apply the methods outlined in this chapter. Policymakers’

and parents’ growing demand for reliable measures of school effectiveness will

likewise fuel such analysis. We conclude with a brief look at new directions this work

might take.

Most of the research reviewed here focuses on achievement-based measures of

school quality. Recent years have seen growing interest in school effects on out-

comes other than student achievement. Early efforts in this direction include explo-

rations of school effects on noncognitive outcomes like absences, suspensions, and

socioemotional development, as well as longer-run outcomes like educational attain-

ment, crime, political participation, employment, and earnings (Abdulkadiro�glu et al.,
2020; Angrist et al., 2016a; Beuermann et al., 2023; Cohodes and Feigenbaum, 2023;

Deming, 2011; Deming et al., 2014; Dobbie and Fryer, 2015, 2020; Jackson et al.,

2020). The links between achievement-based and alternative measures of value-added

constitute an important area for future research. Longer-term outcomes also raise

new econometric issues, since the lagged-controls strategy used for conventional

achievement-based VAMs is unavailable for something like earnings. Lottery-based

methods may therefore be especially important when looking at longer-term effects.

The individual-school value-added models discussed in Section 5 posit a single

causal effect of each school common to all students. In practice, school value-added

arSince there are many admissions instruments in NYC, Angrist et al. (2021) group them into 20 bins on

the basis of the school’s observational VAM estimate. Angrist et al. (2021) also find RC VAM to be

virtually unbiased in a sample of Denver middle schools.
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may be heterogeneous—for example, a school’s effect might be different for those

attending in different years, or for students with different levels of preparation. And

urban charter schools seem especially beneficial for students with low baseline test

scores (Angrist et al., 2012; Chabrier et al., 2016; Frandsen and Lefgren, 2021).

Match effects of this sort create new methodological challenges. In particular, recent

work by Goldsmith-Pinkham et al. (2022) highlights problems with regression-based

approaches in settings with many treatments and heterogeneous effects; match

effects also complicate the interpretation of lottery-based tests for VAM validity,

since these are sensitive to differences between LATEs and other treatment effect

parameters in addition to selection bias. This suggests a role for more flexible,

possibly nonparametric models beyond the linear 2SLS workhorse.

A third research frontier combines the school quality measurement tools dis-

cussed here with preference data generated by centralized assignment in an effort

to understand the interplay between school choice and school effectiveness. Evi-

dence on whether households choose schools based on causal impacts on student out-

comes is mixed: Rothstein (2006) and Abdulkadiro�glu et al. (2020) argue that school
choice depends more on peer achievement than on causal school effects. Other work,

however, suggests logistical barriers and seemingly complex or opaque choice sys-

tems prevent some households from selecting the most effective schools for their

children (Bergman et al., 2020; Kapor et al., 2020; Walters, 2018). A better under-

standing of these issues should have the double payoff of improving both school

accountability measures and educational outcomes.

Acknowledgments
We thank Sarah Cohodes, Parag Pathak, and research staff at the Massachusetts Department of

Elementary and Secondary Education for helpful comments. Jerray Chang, Nidhaan Jain,

Russell Legate-Yang, and Hellary Zhang provided excellent research assistance.

References
Abadie,A.,2002.Bootstrap tests fordistributional treatmenteffects in instrumentalvariablemodels.

J. Am. Stat. Assoc. 97 (457), 284–292. https://doi.org/10.1198/016214502753479419.
Abadie, A., 2003. Semiparametric instrumental variable estimation of treatment response

models. J. Econ. 113, 231–263. https://doi.org/10.1016/S0304-4076(02)00201-4.
Abadie, A., Angrist, J., Imbens, G., 2002. Instrumental variables estimates of the effect of

subsidized training on the quantiles of trainee earnings. Econometrica 70 (1), 91–117.
https://doi.org/10.1111/1468-0262.00270.

Abaluck, J., Bravo, M.M.C., Hull, P., Starc, A., 2021. Mortality effects and choice across

private health insurance plans. Q. J. Econ. 136, 1557–1610. https://doi.org/10.1093/qje/
qjab017.

Abdulkadiro�glu, A., Angrist, J., Pathak, P., 2014. The elite illusion: achievement effects at

Boston and New York Exam Schools. Econometrica 82 (1), 137–196. https://doi.org/
10.3982/ECTA10266.

53References

ARTICLE IN PRESS

https://doi.org/10.1198/016214502753479419
https://doi.org/10.1016/S0304-4076(02)00201-4
https://doi.org/10.1111/1468-0262.00270
https://doi.org/10.1093/qje/qjab017
https://doi.org/10.1093/qje/qjab017
https://doi.org/10.3982/ECTA10266
https://doi.org/10.3982/ECTA10266


Abdulkadiro�glu, A., Andersson, T., 2022. School choice. NBER Working Paper 29822.

https://doi.org/10.3386/w29822.

Abdulkadiro�glu, A., Angrist, J.D., Dynarski, S., Kane, T.J., Pathak, P.A., 2011. Accountability
and flexibility in public schools: evidence from Boston’s charters and pilots. Q. J. Econ.

126 (2), 699–748. https://doi.org/10.1093/qje/qjr017.
Abdulkadiro�glu, A., Hu, W., Pathak, P., 2013. Small high schools and student achievement:

lottery-based evidence fromNewYork City. NBERWorking Paper 19576. https://doi.org/

10.3386/w19576.

Abdulkadiro�glu, A., Angrist, J.D., Hull, P.D., Pathak, P.A., 2016. Charters without lotteries:
testing takeovers in NewOrleans and Boston. Am. Econ. Rev. 106 (7), 1878–1920. https://
doi.org/10.1257/aer.20150479.

Abdulkadiro�glu, A., Angrist, J.D., Narita, Y., Pathak, P.A., 2017. Research design meets mar-

ket design: using centralized assignment for impact evaluation. Econometrica 85 (5),

1373–1432. https://doi.org/10.3982/ECTA13925.
Abdulkadiro�glu, A., Pathak, P.A., Walters, C.R., 2018. Free to choose: can school choice

reduce student achievement? Am. Econ. J. Appl. Econ. 10 (1), 175–206. https://doi.org/
10.1257/app.20160634.

Abdulkadiro�glu, A., Pathak, P.A., Schellenberg, J., Walters, C.R., 2020. Do parents value school

effectiveness? Am. Econ. Rev. 110 (5), 1502–1539. https://doi.org/10.1257/aer.20172040.
Abdulkadı̇ro�glu, A., Angrist, J.D., Narita, Y., Pathak, P., 2022. Breaking ties: regression dis-

continuity design meets market design. Econometrica 90 (1), 117–151. https://doi.org/10.
3982/ECTA17125.

Allcott, H., 2015. Site selection bias in program evaluation. Q. J. Econ. 130 (3), 1117–1165.
https://doi.org/10.1093/qje/qjv015.

Andrews, I., Stock, J.H., Sun, L., 2019.Weak instruments in instrumental variables regression:

theory and practice. Annu. Rev. Econ. 11 (1), 727–753. https://doi.org/10.1146/annurev-
economics-080218-025643.

Anelli, M., 2020. The returns to elite university education: a quasi-experimental analysis. J.

Eur. Econ. Assoc. 18 (6), 2824–2868. https://doi.org/10.1093/jeea/jvz070.
Angrist, J.D., 2004. Treatment effect heterogeneity in theory and practice. Econ. J. 114 (494),

C52–C83. http://www.jstor.org/stable/3590307.
Angrist, J.D., Imbens, G.W., 1995. Two-stage least squares estimation of average causal ef-

fects in models with variable treatment intensity. J. Am. Stat. Assoc. 90 (430), 431–442.
http://www.jstor.org/stable/2291054.

Angrist, J.D., Imbens, G.W., Rubin, D.B., 1996. Identification of causal effects using instru-

mental variables. J. Am. Stat. Assoc. 91 (434), 444–455.
Angrist, J., Bettinger, E., Bloom, E., King, E., Kremer, M., 2002. Vouchers for private school-

ing in Colombia: evidence from a randomized natural experiment. Am. Econ. Rev. 92 (5),

1535–1558. https://doi.org/10.1257/000282802762024629.
Angrist, J.D., Dynarski, S.M., Kane, T.J., Pathak, P.A., Walters, C.R., 2010. Inputs and

impacts in charter schools: KIPP Lynn. Am. Econ. Rev. Papers Proc. 100 (2), 239–243.
Angrist, J.D., Dynarski, S.M., Kane, T.J., Pathak, P.A., Walters, C.R., 2012. Who benefits

from KIPP? J. Policy Anal. Manage. 31 (4), 837–860.
Angrist, J., Kolesár, M., 2023. One instrument to rule them all: the bias and coverage of just-ID

IV. J. Econom. https://doi.org/10.1016/j.jeconom.2022.12.012.

Angrist, J.D., Pischke, J.-S., 2009. Mostly Harmless Econometrics: An Empiricist’s Compan-

ion. Princeton University Press.

Angrist, J.D., Pathak., P. A.,Walters, C.R., 2013. Explaining charter school effectiveness. Am.

Econ. J. Appl. Econ. 5 (4), 1–27. https://doi.org/10.1257/app.5.4.1.

54 Methods for measuring school effectiveness

ARTICLE IN PRESS

https://doi.org/10.3386/w29822
https://doi.org/10.1093/qje/qjr017
https://doi.org/10.3386/w19576
https://doi.org/10.3386/w19576
https://doi.org/10.1257/aer.20150479
https://doi.org/10.1257/aer.20150479
https://doi.org/10.3982/ECTA13925
https://www.jstor.org/stable/26528373
https://www.jstor.org/stable/26528373
https://doi.org/10.1257/aer.20172040
https://doi.org/10.3982/ECTA17125
https://doi.org/10.3982/ECTA17125
https://doi.org/10.1093/qje/qjv015
https://doi.org/10.1146/annurev-economics-080218-025643
https://doi.org/10.1146/annurev-economics-080218-025643
https://doi.org/10.1093/jeea/jvz070
http://www.jstor.org/stable/3590307
http://www.jstor.org/stable/2291054
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0105
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0105
https://doi.org/10.1257/000282802762024629
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0115
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0115
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0120
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0120
https://doi.org/10.1016/j.jeconom.2022.12.012
http://refhub.elsevier.com/S1574-0692(23)00015-6/optge95LI5X3P
http://refhub.elsevier.com/S1574-0692(23)00015-6/optge95LI5X3P
https://doi.org/10.1257/app.5.4.1


Angrist, J.D., Cohodes, S.R., Dynarski, S.M., Pathak, P.A., Walters, C.R., 2016a. Stand and

deliver: effects of Boston’s charter high schools on college preparation, entry, and choice.

J. Labor Econ. 34 (2), 275–318.
Angrist, J.D., Hull, P.D., Pathak, P.A., Walters, C.R., 2016b. Interpreting tests of school VAM

validity. Am. Econ. Rev. Papers Proc. 106 (5), 388–392.
Angrist, J., Hull, P., Pathak, P., Walters, C., 2017. Leveraging lotteries for school value-added:

testing and estimation. Q. J. Econ. 132 (2), 871–919.
Angrist, J.D., Hull, P.D., Pathak, P.A., Walters, C.R., 2021. Credible school value-added with

undersubscribed school lotteries. Rev. Econ. Stat. Forthcoming https://doi.org/10.1162/

rest_a_01149. Forthcoming.

Armstrong, T.B., Kolesár, M., Plagborg-Møller, M., 2022. Robust empirical Bayes confidence

intervals. Econometrica 90 (1), 2567–2602. https://doi.org/10.3982/ECTA18597.
Baude, P.L., Casey, M., Hanushek, E.A., Phelan, G.R., Rivkin, S.G., 2020. The evolution

of charter school quality. Economica 87 (345), 158–189. https://doi.org/10.1111/

ecca.12299.

Behaghel, L., Cr�epon, B., Gurgand, M., 2013. Robustness of the encouragement design in a

two-treatment randomized control trial. Institute for the Study of Labor (IZA) Discussion

Paper 7447.

Behaghel, L., de Chaisemartin, C., Gurgand, M., 2017. Ready for boarding? The effects of a

boarding school for disadvantaged students. Am. Econ. J. Appl. Econ. 9 (1), 140–164.
https://doi.org/10.1257/app.20150090.

Bergman, P., Hill, M.J., 2018. The effects of making performance information public: regres-

sion discontinuity evidence from Los Angeles teachers. Econ. Educ. Rev. 66, 104–113.
https://doi.org/10.1016/j.econedurev.2018.07.005.

Bergman, P., Chan, E.W., Kapor, A., 2020. Housing search frictions: evidence from detailed

search data and a field experiment. NBERWorking Paper 27209. https://doi.org/10.3386/

w27209.

Beuermann, D.W., Jackson, C.K., 2022. The short- and long-run effects of attending the

schools that parents prefer. J. Hum. Resour. 57 (3), 725–746. https://doi.org/10.3368/
jhr.57.3.1019-10535R1.

Beuermann, D., Jackson, C.K., Navarro-Sola, L., Pardo, F., 2023. What is a good school, and

can parents tell? Evidence on the multidimensionality of school output. Rev. Econ. Stud.

90 (1), 65–101. https://doi.org/10.1093/restud/rdac025.
Bhuller, M., Sigstad, H., 2022. 2SLS with multiple treatments. arXiv:2205.07836.

Bleemer, Z., Mehta, A., 2022. Will studying economics make you rich? A regression discon-

tinuity analysis of the returns to college major. Am. Econ. J. Appl. Econ. 14 (2), 1–22.
https://doi.org/10.1257/app.20200447.

Bloom, H.S., 1984. Accounting for no-shows in experimental evaluation designs. Eval. Rev. 8

(2), 225–246. https://doi.org/10.1177/0193841X8400800205.
Bloom, H.S., Unterman, R., 2014. Can small high schools of choice improve educational pros-

pects for disadvantaged students? J. Policy Anal. Manage. 33 (2), 290–319. https://doi.org/
10.1002/pam.21748.

Borusyak, K., Hull, P., 2023. Non-random exposure to exogenous shocks. Econometrica.

Forthcoming.

Brinch, C.N., Mogstad, M., Wiswall, M., 2017. Beyond LATE with a discrete instrument. J.

Polit. Econ. 125 (4), 985–1039. https://doi.org/10.1086/692712.
Brown, L.D., 2008. In-season prediction of batting averages: a field test of empirical Bayes

and Bayes methodologies. Ann. Appl. Stat. 2 (1), 113–152. https://doi.org/10.1214/07-
AOAS138.

55References

ARTICLE IN PRESS

http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0130
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0130
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0130
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0135
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0135
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0140
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0140
https://doi.org/10.1162/rest_a_01149
https://doi.org/10.1162/rest_a_01149
https://doi.org/10.3982/ECTA18597
https://doi.org/10.1111/ecca.12299
https://doi.org/10.1111/ecca.12299
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0160
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0160
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0160
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0160
https://doi.org/10.1257/app.20150090
https://doi.org/10.1016/j.econedurev.2018.07.005
https://doi.org/10.3386/w27209
https://doi.org/10.3386/w27209
https://doi.org/10.3368/jhr.57.3.1019-10535R1
https://doi.org/10.3368/jhr.57.3.1019-10535R1
https://doi.org/10.1093/restud/rdac025
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0190
https://doi.org/10.1257/app.20200447
https://doi.org/10.1177/0193841X8400800205
https://doi.org/10.1002/pam.21748
https://doi.org/10.1002/pam.21748
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0210
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0210
https://doi.org/10.1086/692712
http://www.jstor.org/stable/30244180
http://www.jstor.org/stable/30244180


Calonico, S., Cattaneo, M.D., Titiunik, R., 2014. Robust nonparametric confidence intervals

for regression-discontinuity designs. Econometrica 82 (6), 2295–2326. https://doi.org/
10.3982/ECTA11757.

Campos, C.Q., Kearns, C., 2023. The impact of public school choice: evidence from Los

Angeles’ Zones of Choice. SSRN Working Paper 3830628. https://doi.org/10.2139/

ssrn.3830628.

Card, D., Giuliano, L., 2016. Can tracking raise the test scores of high-ability minority stu-

dents? Am. Econ. Rev. 106 (10), 2783–2816. https://doi.org/10.1257/aer.20150484.
Cattaneo, M.D., Titiunik, R., Vazquez-Bare, G., 2016. Inference in regression discontinuity

designs under local randomization. Stata J. 16 (2), 331–367. https://doi.org/10.1177/
1536867X1601600205.

Chabrier, J., Cohodes, S., Oreopoulos, P., 2016. What can we learn from charter school lot-

teries? J. Econ. Perspect. 30 (3), 57–84. https://doi.org/10.1257/jep.30.3.57.
Chetty, R., Hendren, N., 2018. The impacts of neighborhoods on intergenerational mobility I:

childhood exposure effects. Q. J. Econ. 133, 1107–1162. https://doi.org/10.1093/qje/
qjy007.

Chetty, R., Friedman, J.N., Rockoff, J.E., 2014a. Measuring the impact of teachers I: evalu-

ating bias in teacher value-added estimates. Am. Econ. Rev. 104 (9), 2593. 2563. https://

doi.org/10.1257/aer.104.9.2593.

Chetty, R., Friedman, J.N., Rockoff, J.E., 2014b. Measuring the impact of teachers II: teacher

value-added and student outcomes in adulthood. Am. Econ. Rev. 104 (9), 2633–2679.
https://doi.org/10.1257/aer.104.9.2633.

Chingos, M.M., Peterson, P.E., 2015. Experimentally estimated impacts of school vouchers on

college enrollment and degree attainment. J. Public Econ. 122, 1–12. https://doi.org/
10.1016/j.jpubeco.2014.11.013.

Clark, M.A., Gleason, P.M., Tuttle, C.C., Silverberg, M.K., 2015. Do charter schools improve

student achievement? Educ. Evavl. Policy Anal. 37 (4), 419–436. https://doi.org/10.
3102/0162373714558292.

Cohodes, S., Feigenbaum, J.J., 2023. Why does education increase voting? Evidence from

Boston’s charter schools. NBER Working Paper 29308. https://doi.org/10.3386/w29308.

Cohodes, S.R., Setren, E.M.,Walters, C.R., 2021. Can successful schools replicate? Scaling up

Boston’s charter school sector. Am. Econ. J. Econ. Policy 13 (1), 138–167. https://doi.org/
10.1257/pol.20190259.

Coleman, J.S., 1966. Equality of Educational Opportunity. U.S. Department of Health, Edu-

cation, and Welfare, Office of Education.

Cullen, J.B., Jacob, B.A., Levitt, S.D., 2006. The effect of school choice on participants: ev-

idence from randomized lotteries. Econometrica 74 (5), 1191–1230. https://doi.org/10.
1111/j.1468-0262.2006.00702.x.

Curto, V.E., Fryer, R.G., 2014. The potential of urban boarding schools for the poor: evidence

from SEED. J. Labor Econ. 32 (1), 65–93. https://doi.org/10.1086/671798.
Dale, S.B., Krueger, A.B., 2002. Estimating the payoff to attending a more selective college:

an application of selection on observables and unobservables. Q. J. Econ. 117 (4),

1491–1527. https://doi.org/10.1162/003355302320935089.
Dale, S.B., Krueger, A.B., 2014. Estimating the effects of college characteristics over the ca-

reer using administrative earnings data. J. Hum. Resour. 49 (2), 323–358. https://doi.org/
10.3368/jhr.49.2.323.

Davis, M., Heller, B., 2019. No excuses charter schools and college enrollment: new evidence

from a high school network in Chicago. Educ. Finance Policy 14 (3), 414–440. https://doi.
org/10.1162/edfp_a_00244.

56 Methods for measuring school effectiveness

ARTICLE IN PRESS

https://doi.org/10.3982/ECTA11757
https://doi.org/10.3982/ECTA11757
https://doi.org/10.2139/ssrn.3830628
https://doi.org/10.2139/ssrn.3830628
https://doi.org/10.1257/aer.20150484
https://doi.org/10.1177/1536867X1601600205
https://doi.org/10.1177/1536867X1601600205
https://doi.org/10.1257/jep.30.3.57
https://doi.org/10.1093/qje/qjy007
https://doi.org/10.1093/qje/qjy007
https://doi.org/10.1257/aer.104.9.2593
https://doi.org/10.1257/aer.104.9.2593
https://doi.org/10.1257/aer.104.9.2633
https://doi.org/10.1016/j.jpubeco.2014.11.013
https://doi.org/10.1016/j.jpubeco.2014.11.013
http://www.jstor.org/stable/43773520
http://www.jstor.org/stable/43773520
https://doi.org/10.3386/w29308
https://doi.org/10.1257/pol.20190259
https://doi.org/10.1257/pol.20190259
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0285
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0285
https://doi.org/10.1111/j.1468-0262.2006.00702.x
https://doi.org/10.1111/j.1468-0262.2006.00702.x
https://doi.org/10.1086/671798
https://doi.org/10.1162/003355302320935089
https://doi.org/10.3368/jhr.49.2.323
https://doi.org/10.3368/jhr.49.2.323
https://doi.org/10.1162/edfp_a_00244
https://doi.org/10.1162/edfp_a_00244


de Chaisemartin, C., Behaghel, L., 2020. Estimating the effect of treatments allocated by

randomized waiting lists. Econometrica 88 (4), 1453–1477. https://doi.org/10.3982/

ECTA16032.

de Roux, N., Riehl, E., 2022. Do college students benefit from placement into higher-achieving

classes? J. Public Econ. 210, 104669. https://doi.org/10.1016/j.jpubeco.2022.104669.

Deming, D.J., 2011. Better schools, less crime? Q. J. Econ. 126 (4), 2063–2115. https://doi.
org/10.1093/qje/qjr036.

Deming, D., 2014. Using school choice lotteries to test measures of school effectiveness. Am.

Econ. Rev. Papers Proc. 104 (5), 406–411. https://doi.org/10.1257/aer.104.5.406.
Deming, D.J., Hastings, J.S., Kane, T.J., Staiger, D.O., 2014. School choice, school quality,

and postsecondary attainment. Am. Econ. Rev. 104 (3), 991–1013. https://doi.org/

10.1257/aer.104.3.991.

Dobbie, W., Fryer, R.G., 2011. Are high-quality schools enough to increase achievement

among the poor? Evidence from the Harlem children’s zone. Am. Econ. J. Appl. Econ.

3 (3), 158–187. https://doi.org/10.1257/app.3.3.158.
Dobbie, W., Fryer, R.G., 2013. Getting beneath the veil of effective schools: evidence

from New York City. Am. Econ. J. Appl. Econ. 5 (4), 28–60. https://doi.org/10.1257/
app.5.4.28.

Dobbie, W., Fryer, R., 2014. The impact of attending a school with high-achieving peers:

evidence from the New York City Exam Schools. Am. Econ. J. Appl. Econ. 6 (3),

58–75. https://doi.org/10.1257/app.6.3.58.
Dobbie, W., Fryer, R.G., 2015. The medium-term impacts of high-achieving charter schools.

J. Polit. Econ. 123 (5), 985–1037. https://doi.org/10.1086/682718.
Dobbie, W., Fryer, R.G., 2020. Charter schools and labor market outcomes. J. Labor Econ.

38 (4), 915–957. https://doi.org/10.1086/706534.
Draper, N., Smith, H., 1998. Applied regression analysis. Series in Probability and Statistics,

third ed. Wiley. https://doi.org/10.1002/9781118625590.

Dustan, A., de Janvry, A., Sadoulet, E., 2017. Flourish or fail? The risky reward of elite high

school admission in Mexico City. J. Hum. Resour. 52 (3), 756–799.
Efron, B., 2010. Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing and

Prediction. vol. 1 Cambridge University Press. https://doi.org/10.1017/CBO9780511761362.

Efron, B., 2016. Empirical Bayes deconvolution estimates. Biometrika 103 (1), 1–20. https://
doi.org/10.1093/biomet/asv068.

Eisenhauer, P., Heckman, J.J., Vytlacil, E., 2015. The generalized Roy model and the cost-

benefit analysis of social programs. J. Polit. Econ. 123 (2), 413–443. https://doi.org/
10.1086/679498.

Engberg, J., Epple, D., Imbrogno, J., Sieg, H., Zimmer, R., 2014. Evaluating education pro-

grams that have lotteried admission and selective attrition. J. Labor Econ. 32 (1), 27–63.
https://doi.org/10.1086/671797.

Feller, A., Grindal, T., Miratrix, L., Page, L.C., 2016. Compared to what? Variation in the

impacts of early childhood education by alternative care type. Ann. Appl. Stat. 10 (3),

1245–1285. https://doi.org/10.1214/16-AOAS910.
Figlio, D., Hart, C.M.D., 2014. Competitive effects of means-tested school vouchers. Am.

Econ. J. Appl. Econ. 6 (1), 133–156. https://doi.org/10.1257/app.6.1.133.
Frandsen, B.R., Lefgren, L.J., 2021. Partial identification of the distribution of treatment

effects with an application to the Knowledge is Power Program (KIPP). Quant. Econ.

12 (1), 143–171. https://doi.org/10.3982/QE1273.
Gale, D., Shapley, L.S., 1962. College admissions and the stability of marriage. Am. Math.

Mon. 69 (1), 9–15. https://doi.org/10.2307/2312726.

57References

ARTICLE IN PRESS

https://doi.org/10.3982/ECTA16032
https://doi.org/10.3982/ECTA16032
https://doi.org/10.1016/j.jpubeco.2022.104669
https://doi.org/10.1093/qje/qjr036
https://doi.org/10.1093/qje/qjr036
https://doi.org/10.1257/aer.104.5.406
https://doi.org/10.1257/aer.104.3.991
https://doi.org/10.1257/aer.104.3.991
https://doi.org/10.1257/app.3.3.158
https://doi.org/10.1257/app.5.4.28
https://doi.org/10.1257/app.5.4.28
https://doi.org/10.1257/app.6.3.58
https://doi.org/10.1086/682718
https://doi.org/10.1086/706534
https://doi.org/10.1002/9781118625590
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0370
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0370
https://doi.org/10.1017/CBO9780511761362
https://doi.org/10.1093/biomet/asv068
https://doi.org/10.1093/biomet/asv068
https://doi.org/10.1086/679498
https://doi.org/10.1086/679498
https://doi.org/10.1086/671797
https://doi.org/10.1214/16-AOAS910
https://doi.org/10.1257/app.6.1.133
https://doi.org/10.3982/QE1273
https://doi.org/10.2307/2312726


Gilraine, M., Gu, J., McMillan, R., 2020. A new method for estimating teacher value-added.

NBER Working Paper 27094. https://doi.org/10.3386/w27094.

Gilraine, M., Petronijevic, U., Singleton, J.D., 2021. Horizontal differentiation and the policy

effect of charter schools. American Econ. J. Econ. Policy 13 (3), 239–276. https://doi.org/
10.1257/pol.20200531.

Goldsmith-Pinkham, P., Hull, P., Kolesár, M., 2022. Contamination bias in linear regressions.

NBER Working Paper 30108. https://doi.org/10.3386/w30108.

Gu, J., Koenker, R., 2023. Invidious comparisons: ranking and selection as compound

decisions. Econometrica 91 (1), 1–41. https://doi.org/10.3982/ECTA19304.
Hasan, S., Kumar, A., 2019. Digitization and divergence: online school ratings and segregation

in America. SSRN Working Paper 3265316. https://doi.org/10.2139/ssrn.3265316.

Hastings, J.S., Kane, T.J., Staiger, D.O., 2009. Heterogeneous preferences and the efficacy of

public school choice. Working Paper, Yale University.

Hastings, J.S., Neilson, C.A., Zimmerman, S.D., 2014. Are some degrees worth more than

others? Evidence from college admission cutoffs in Chile. NBER Working Paper

19241. https://doi.org/10.3386/w19241.

Hausman, J.A., 1978. Specification tests in econometrics. Econometrica 46 (6), 1251–1271.
https://doi.org/10.2307/1913827.

Heinesen, E., 2018. Admission to higher education programmes and student educational out-

comes and earnings-evidence from Denmark. Econ. Educ. Rev. 63, 1–19. https://doi.org/
10.1016/j.econedurev.2018.01.002.

Hoekstra, M., 2009. The effect of attending the flagship state university on earnings: a discon-

tinuity-based approach. Rev. Econ. Stat. 91 (4), 717–724. https://doi.org/10.1162/rest.91.
4.717.

Hoxby, C.M., Murarka, S., 2009. Charter schools in NewYork City: who enrolls and how they

affect their students’ achievement. NBER Working Paper 14852. https://doi.org/10.3386/

w14852.

Hoxby, C.M., Murarka, S., Kang, J., 2009. How New York City’s charter schools affect

achievement. New York City Charter Schools Evaluation Project 2nd Report.

Huber, M., Mellace, G., 2015. Testing instrument validity for LATE identification based on

inequality moment constraints. Rev. Econ. Stat. 97 (2), 398–411. https://doi.org/10.1162/
REST_a_00450.

Imbens, G.W., Angrist, J.D., 1994. Identification and estimation of local average treatment

effects. Econometrica 62 (2), 467–475. https://doi.org/10.2307/2951620.
Imbens, G., Kalyanaraman, K., 2011. Optimal bandwidth choice for the regression disconti-

nuity estimator. Rev. Econ. Stud. 79 (3), 933–959. https://doi.org/10.1093/restud/rdr043.
Jackson, C.K., Porter, S.C., Easton, J.Q., Blanchard, A., Kiguel, S., 2020. School effects on

socioemotional development, school-based arrests, and educational attainment. Am. Econ.

Rev. Insights 2 (4), 491–508. https://doi.org/10.1257/aeri.20200029.
James, W., Stein, C., 1961. Estimation with quadratic loss. In: Proceedings of the Fourth

Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 361–379.
Jia, R., Li, H., 2021. Just above the exam cutoff score: elite college admission and wages in

China. J. Public Econ. 196, 104371. https://doi.org/10.1016/j.jpubeco.2021.104371.

Kane, T.J., Staiger, D.O., 2008. Estimating teacher impacts on student achievement: an exper-

imental evaluation. NBER Working Paper 14607. https://doi.org/10.3386/w14607.

Kapor, A.J., Neilson, C.A., Zimmerman, S.D., 2020. Heterogeneous beliefs and school choice

mechanisms. Am. Econ. Rev. 110 (5), 1274–1315. https://doi.org/10.1257/aer.20170129.
Kiefer, J., Wolfowitz, J., 1956. Consistency of the maximum likelihood estimator in the pres-

ence of infinitely many incidental parameters. Ann. Math. Stat. 27 (4), 887–906. https://
doi.org/10.1214/aoms/1177728066.

58 Methods for measuring school effectiveness

ARTICLE IN PRESS

https://doi.org/10.3386/w27094
https://doi.org/10.1257/pol.20200531
https://doi.org/10.1257/pol.20200531
https://doi.org/10.3386/w30108
https://doi.org/10.3982/ECTA19304
https://doi.org/10.2139/ssrn.3265316
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0440
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0440
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0445
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0445
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0445
https://doi.org/10.2307/1913827
https://doi.org/10.1016/j.econedurev.2018.01.002
https://doi.org/10.1016/j.econedurev.2018.01.002
https://doi.org/10.1162/rest.91.4.717
https://doi.org/10.1162/rest.91.4.717
https://doi.org/10.3386/w14852
https://doi.org/10.3386/w14852
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0470
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0470
https://doi.org/10.1162/REST_a_00450
https://doi.org/10.1162/REST_a_00450
https://doi.org/10.2307/2951620
https://doi.org/10.1093/restud/rdr043
https://doi.org/10.1257/aeri.20200029
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0495
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0495
https://doi.org/10.1016/j.jpubeco.2021.104371
https://doi.org/10.3386/w14607
https://doi.org/10.1257/aer.20170129
https://doi.org/10.1214/aoms/1177728066
https://doi.org/10.1214/aoms/1177728066


Kirkeboen, L.J., Leuven, E., Mogstad, M., 2016. Field of study, earnings, and self-selection.

The Q. J. Econ. 131 (3), 1057–1111. https://doi.org/10.1093/qje/qjw019.
Kitagawa, T., 2015. A test for instrument validity. Econometrica 83 (5), 2043–2063. https://

doi.org/10.3982/ECTA11974.

Kline, P., Walters, C.R., 2016. Evaluating public programs with close substitutes: the case of

Head Start. Q. J. Econ. 131 (4), 1795–1848. https://doi.org/10.1093/qje/qjw027.
Kline, P., Walters, C.R., 2019. On Heckits, LATE, and numerical equivalence. Econometrica

87 (2), 677–696. https://doi.org/10.3982/ECTA15444.
Kline, P.M., Walters, C.R., 2021. Reasonable doubt: experimental detection of job-level

employment discrimination. Econometrica 89 (2), 765–792. https://doi.org/10.3982/

ECTA17489.

Kline, P., Saggio, R., Sølvsten, M., 2020. Leave-out estimation of variance components.

Econometrica 88 (5), 1859–1898. https://doi.org/10.3982/ECTA16410.
Kline, P.M., Rose, E.K., Walters, C.R., 2021. Systemic discrimination among large US

employers. Q. J. Econ. 137 (4), 1963–2036. https://doi.org/10.1093/qje/qjac024.
Koenker, R., Mizera, I., 2014. Convex optimization, shape constraints, compound decisions,

and empirical Bayes rules. J. Am. Stat. Assoc. 109 (506), 674–685. https://doi.org/10.
1080/01621459.2013.869224.

Kolesár, M., 2013. Estimation in an instrumental variables model with treatment effect het-

erogeneity. Working Paper.

Kolesár, M., Chetty, R., Friedman, J., Glaeser, E., Imbens, G.W., 2015. Identification and in-

ference with many invalid instruments. J. Bus. Econ. Stat. 33 (4), 474–484. https://doi.org/
10.1080/07350015.2014.978175.

Lee, D.S., 2009. Training, wages, and sample selection: estimating sharp bounds on treatment

effects. Rev. Econ. Stud. 76 (3), 1071–1102. https://doi.org/10.1111/j.1467-937X.2009.
00536.x.

Lee, Y., Nakazawa, N., 2022. Does single-sex schooling help or hurt labor market outcomes?

Evidence from a natural experiment in South Korea. J. Pub. Econ. 214, 104729. https://doi.

org/10.1016/j.jpubeco.2022.104729.

Lee, S., Niederle, M., Kang, N., 2014. Do single-sex schools make girls more competitive?

Econ. Lett. 124 (3), 474–477. https://doi.org/10.1016/j.econlet.2014.07.001.
List, J.A., 2021. The Voltage Effect: How to Make Good Ideas Great and Great Ideas Scale.

Penguin.

List, J.A., Suskind, D., Supplee, L.H., 2021. The Scale-Up Effect in Early Childhood and Public

Policy: Why Interventions Lose Impact at Scale and What We Can Do About It. Routledge.

Lucas, A., Mbiti, I., 2014. Effects of school quality on student achievement: discontinuity ev-

idence from Kenya. Am. Econ. J. Appl. Econ. 6 (3), 234–263. https://doi.org/10.1257/app.
6.3.234.

Mills, J.N., Wolf, P.J., 2017. Vouchers in the Bayou: the effects of the Louisiana scholarship

program on student achievement after 2 years. Educ. Evavl. Policy Anal. 39 (3), 464–484.
https://doi.org/10.3102/0162373717693108.

Mogstad, M., Torgovitsky, A., Walters, C.R., 2021. The causal interpretation of two-stage

least squares with multiple instrumental variables. Am. Econ. Rev. 111 (11), 3663–3698.
https://doi.org/10.1257/aer.20190221.

Morris, C.N., 1983. Parametric empirical Bayes inference: theory and applications. J. Am.

Stat. Assoc. 78 (381), 47–55.
Mountjoy, J., Hickman, B., 2021. The returns to college(s): relative value-added and match ef-

fects in higher education. NBER Working Paper 29276. https://doi.org/10.3386/w29276.

Narita, Y., 2021. A theory of quasi-experimental evaluation of school quality. Manag. Sci.

67 (8), 4982–5010. https://doi.org/10.1287/mnsc.2020.3742.

59References

ARTICLE IN PRESS

https://doi.org/10.1093/qje/qjw019
https://doi.org/10.3982/ECTA11974
https://doi.org/10.3982/ECTA11974
https://doi.org/10.1093/qje/qjw027
https://doi.org/10.3982/ECTA15444
https://doi.org/10.3982/ECTA17489
https://doi.org/10.3982/ECTA17489
https://doi.org/10.3982/ECTA16410
https://doi.org/10.1093/qje/qjac024
https://doi.org/10.1080/01621459.2013.869224
https://doi.org/10.1080/01621459.2013.869224
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0560
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0560
https://doi.org/10.1080/07350015.2014.978175
https://doi.org/10.1080/07350015.2014.978175
https://doi.org/10.1111/j.1467-937X.2009.00536.x
https://doi.org/10.1111/j.1467-937X.2009.00536.x
https://doi.org/10.1016/j.jpubeco.2022.104729
https://doi.org/10.1016/j.jpubeco.2022.104729
https://doi.org/10.1016/j.econlet.2014.07.001
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0585
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0585
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0590
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0590
https://doi.org/10.1257/app.6.3.234
https://doi.org/10.1257/app.6.3.234
https://doi.org/10.3102/0162373717693108
https://doi.org/10.1257/aer.20190221
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0610
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0610
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0615
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0615
https://doi.org/10.1287/mnsc.2020.3742


Oosterbeek, H., Ruijs, N., de Wolf, I., 2023. Heterogeneous effects of comprehensive vs.

single-track academic schools: evidence from admission lotteries. Econ. Ed. Rev. 93,

102363. https://doi.org/10.1016/j.econedurev.2023.102363.

Pop-Eleches, C., Urquiola, M., 2013. Going to a better school: effects and behavioral

responses. Am. Econ. Rev. 103 (4), 1289–1324. https://doi.org/10.1257/aer.103.4.1289.
Raudenbush, S., Bryk, A.S., 1986. A hierarchical model for studying school effects. Sociol.

Educ. 59 (1), 1–17. https://doi.org/10.2307/2112482.
Robbins, H., 1956. An empirical Bayes approach to statistics. In: Proceedings of the Third

Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contribu-

tions to the Theory of Statistics, vol. 3.1, pp. 157–163.
Rockoff, J., Turner, L.J., 2010. Short-run impacts of accountability on school quality. Am.

Econ. J. Econ. Policy 2 (4), 119–147. https://doi.org/10.1257/pol.2.4.119.
Romero, M., Singh, A., 2021. The incidence of affirmative action: evidence from quotas in

private schools in India. RISE Working Paper 22/088.

Rosenbaum, P.R., Rubin, D.B., 1983. The central role of the propensity score in observational

studies for causal effects. Biometrika 70 (1), 41–55. https://doi.org/10.1093/biomet/70.1.41.

Roth, A.E., Sotomayor, M.A.O., 1990. Two-Sided Matching: A Study in Game-Theoretic

Modeling and Analysis. Econometric Society Monographs.

Rothstein, J.M., 2006. Good principals or good peers? Parental valuation of school character-

istics, Tiebout equilibrium, and the incentive effects of competition among jurisdictions.

Am. Econ. Rev. 96 (4), 1333–1350. https://doi.org/10.1257/aer.96.4.1333.
Rothstein, J., 2010. Teacher quality in educational production: tracking, decay, and student

achievement. Q. J. Econ. 125 (1), 175–214. https://doi.org/10.1162/qjec.2010.125.1.175.
Roy, A.D., 1951. Some thoughts on the distribution of earnings. Oxford Econ. Papers 3 (2),

135–146. https://doi.org/10.1093/oxfordjournals.oep.a041827.
Sargan, J.D., 1958. The estimation of economic relationships using instrumental variables.

Econometrica 26 (3), 393–415. https://doi.org/10.2307/1907619.
Sekhri, S., 2020. Prestige matters: wage premium and value addition in elite colleges. Am.

Econ. J. Appl. Econ. 12 (3), 207–225. https://doi.org/10.1257/app.20140105.
Setren, E., 2021. Targeted vs. general education investments evidence from special education

and English language learners in Boston charter schools. J. Hum. Resour. 56 (4),

1073–1112. https://doi.org/10.3368/jhr.56.4.0219-10040R2.
Silverman, B.W., 1986. Density Estimation for Statistics and Data Analysis. Chapman and Hall.

Wald, A., 1940. The fitting of straight lines if both variables are subject to error. Ann. Math.

Stat. 11 (3), 284–300. http://doi.org/10.1214/aoms/1177731868.

Walters, C.R., 2018. The demand for effective charter schools. J. Polit. Econ. 126 (6),

2179–2223. https://doi.org/10.1086/699980.
Zhang, H., 2016. Identification of treatment effects under imperfect matching with an appli-

cation to Chinese elite schools. J. Pub. Econ. 142, 56–82. https://doi.org/10.1016/j.

jpubeco.2016.03.004.

Zimmerman, S.D., 2014. The returns to college admission for academically marginal students.

J. Labor Econ. 32 (4), 711–754. https://doi.org/10.1086/676661.
Zimmerman, S.D., 2019. Elite colleges and upward mobility to top jobs and top incomes. Am.

Econ. Rev. 109 (1), 1–47. https://doi.org/10.1257/aer.20171019.

60 Methods for measuring school effectiveness

ARTICLE IN PRESS

https://doi.org/10.1016/j.econedurev.2023.102363
https://doi.org/10.1257/aer.103.4.1289
http://www.jstor.org/stable/2112482
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0640
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0640
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0640
https://doi.org/10.1257/pol.2.4.119
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0650
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0650
https://doi.org/10.1093/biomet/70.1.41
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0660
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0660
https://doi.org/10.1257/aer.96.4.1333
https://doi.org/10.1162/qjec.2010.125.1.175
http://www.jstor.org/stable/2662082
https://doi.org/10.2307/1907619
https://doi.org/10.1257/app.20140105
https://doi.org/10.3368/jhr.56.4.0219-10040R2
http://refhub.elsevier.com/S1574-0692(23)00015-6/rf0700
http://www.jstor.org/stable/2235677
https://doi.org/10.1086/699980
https://doi.org/10.1016/j.jpubeco.2016.03.004
https://doi.org/10.1016/j.jpubeco.2016.03.004
https://doi.org/10.1086/676661
https://doi.org/10.1257/aer.20171019

	Methods for measuring school effectiveness
	Introduction
	School lottery basics
	Single-school effects
	Control for assignment risk and covariates
	Covariate control
	Multiple schools in a single sector

	Massachusetts urban charter effects
	Balance and attrition
	2SLS Estimates


	Lottery IV: Implementation details and extensions
	Heterogeneous effects
	Characterizing compliers
	Complier covariate means
	Complier potential outcome distributions

	Multiple years
	Coding lottery offer instruments
	Multisector models
	Counterfactual destinies for lottery compliers
	Multisector 2SLS

	Admission discontinuities as local lotteries
	External validity

	Centralized assignment
	Deferred acceptance with single tie-breaking
	Theoretical and simulated propensity scores
	Estimation with score controls

	VAM for individual schools
	Estimating observational VAMs
	Empirical Bayes methods
	EB Shrinkage under normality
	When to shrink?
	EB extensions

	Testing VAM validity with lotteries
	Bias-correction with lotteries
	Combining OLS and IV estimates
	Bias-correction with undersubscription: IV VAM

	Risk-controlled value-added models (RC VAM)

	Conclusion: What next for school quality measurement?
	Acknowledgments
	References




