
Weak Identification with Many Instruments

Anna Mikusheva1 Liyang Sun2

1MIT
2CEMFI

April, 2023

1 / 45



Introduction

We consider IV (instrumental variable) models with many weak
instruments

Estimation with many instruments
How to determine that instruments are weak?
Weak identification robust inferences (some new results here)
Open questions
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Introduction

Example 1: Angrist and Krueger (1991)

wagei = β educationi + controls + ei ,

Instrument is quarter of birth

First stage is heterogeneous: law depends on state and birth cohort

Instruments used: QOB (× state dummy) (× year dummy)

year of birth (30)
year and state of birth (180)
year and state of birth, and their interactions (1530)

Staiger and Stock (1997)- IV may be weak

Hansen et al. (2008)- instruments are many
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Introduction

Example 2: ‘Judges design’

Bhuller, Dahl, Loken and Mogstad (JPE, 2020): “Incarceration,
Recidivism, and Employment”

recidivismi = β incarcerationi + controls + ei ,

Instruments: “judge stringency”= the average incarceration rate in
other cases a judge has handled

This is a form of JIVE with instrument-dummies for judge assignment

Sample size is roughly proportional to the number of judges
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Setup

Linear IV model with one endogenous variable:{
Yi = βXi + (δWi ) + ei
Xi = π′Zi + (γWi ) + vi

where Zi ∈ RK s.t. E[ei |Zi ,Wi ] = E[vi |Zi ,Wi ] = 0

Data is i.i.d., i = 1, ...,N

Many instruments: K → ∞ as N → ∞ (up to K = λN)

Weak instruments: π is small in some sense

For most results errors are heteroskedastic
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Outline

1 Estimation

2 Weak Identification: detection

3 Weak IV robust inferences
AR test
Other tests: LM

4 Adding covariates

5 Conclusions and Open questions
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Overview

1 Estimation

2 Weak Identification: detection

3 Weak IV robust inferences
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Estimation

Setup

Assume away covariates (we will add them in the last section){
Yi = βXi + ei
Xi = π′Zi + vi

where Zi ∈ RK s.t. E[ei |Zi ] = E[vi |Zi ] = 0

Data is i.i.d., i = 1, ...,N

For most results errors are heteroskedastic
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Estimation

TSLS

Most commonly known estimator is Two-Stage Least Squares (TSLS)

First stage- finding the optimal instrument = best predictor

X̂i = π̂Zi

Second stage: estimate structural equation using X̂i as the
instruments

Optimal instrument under homoskedasticity: E[Xi |Zi ]
(Chamberlain, 1987)

Concentration parameter π′Z ′Zπ
σ2
v

plays as effective sample size (Stock

and Yogo, 2005)
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Estimation

Estimation with Many IV

First stage: Xi = π′Zi + vi

If many regressors in the first stage, they might ‘overfit’ the noise

Estimated optimal instrument is endogenous E[X̂iei ] ̸= 0

For homoscedastic TSLS: X̂i = π′Zi + v ′Z (Z ′Z )−1Zi

E

[
1

N

N∑
i=1

X̂iei

]
= Kσev

Endogeneity is growing in K , leads to bias

Bias of the IV estimator increases with the number of moment
conditions/instruments (Bekker, 1994, Newey and Smith, 2004)
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Estimation

Estimation with Many IV

Suggestions on how to remove endogeneity:

Sample splitting (Angrist and Krueger, 1995):

split sample to halves
select/estimate optimal instrument on one half
estimate β on the other half

Jackknife (Angrist et al., 1999)

estimate optimal instrument for observation i on sample excluding i
use estimated optimal instrument
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Estimation

Estimation with Many IV

β̂TSLS − β = X ′PZ e
X ′PZX

, where PZ = Z (Z ′Z )−1Z ′

Bias comes from E[X ′PZe] = E[v ′PZe] =
∑

i PiiE[viei ] the diagonal
of the projection matrix, trace(PZ ) = K

Idea: remove the diagonal

β̂JIV =

∑
i ̸=j XiPijYj∑
i ̸=j XiPijXj

It is very close to jackknife (numerical differences are tiny)

Diagonal removal can be done to many estimators: JIVE-LIML and
JIVE-Fuller (Hausman et al., 2012), JIVE-ridge (Hansen and Kozbur,
2014)
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Estimation

Estimation with Many IV

{
Yi = βXi + ei ,
Xi = π′Zi + vi ,

TSLS is consistent when π′Z ′Zπ
K → ∞ (Chao and Swanson, 2005)

When π′Z ′Zπ√
K

→ ∞, JIVE, JIVE-Fuller and JIVE-LIML are consistent

(Hausman et al, 2012)

When π′Z ′Zπ√
K

→ ∞, JIVE, JIVE-Fuller and JIVE-LIML are

asymptotically gaussian

Wald confidence sets and t-statistics can be used
Estimation of standard errors is non-trivial (Hausman et al, 2012)
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Estimation

Estimation with Many IV: Summary

Many instruments can be hurtful if they do not extract additional
information from the first stage

Over-fitting creates a bias

One should avoid using TSLS with many instruments

Jack-knifing or diagonal removal is very fruitful idea
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Weak Identification: detection

What is Weak Identification?

If π′Z ′Zπ√
K

→ ∞, then JIVE or JIVE-LIML are consistent and

asymptotically gaussian

What if there are better estimators (work well for weaker cases)?

Negative statement: in the best possible scenario – only π and β are
unknown, if π′Z ′Zπ√

K
≍ const, there exists no asymptotically consistent

robust test (Mikusheva and Sun, 2022)

How to know in practice if π′Z ′Zπ√
K

is large enough to trust Wald

confidence sets?
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Weak Identification: detection

What is Weak Identification?

Mikusheva and Sun (2022): pre-test for weak identification

Size distortions of JIVE-Wald depend on µ2

Υ
√
K
, where

µ2 =
∑

i ̸=j Pij(π
′Zi )(π

′Zj) and Υ- measure of the first stage
uncertainty

Derived a cut-off, if µ2

Υ
√
K

is above cut-off, then JIVE- Wald test has

small size distortion
Have estimator F̃ for µ2

Υ
√
K

Got a cut-off for F̃
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Weak Identification: detection

Weak Identification: detection

Our pre-test is based on the empirical measure:

F̃ =
1

√
K
√

Υ̂

N∑
i=1

∑
j ̸=i

PijXiXj ,

here Υ̂ is an estimate of uncertainty in the first stage

If F̃ > 4.14, then the JIVE- Wald test has less than 10 % size
distortion

Suggestion: if F̃ is low, one should use “robust” tests

Stata package implementing pre-test and robust tests: manyweakiv
(beta version)
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Weak Identification: detection

Re-visiting Angrist and Krueger (1991)

Research question: returns to education. Yi is the log weekly wage,
Xi is education

Instruments: quarter of birth. Justification is related to compulsory
education laws:

180 instruments: 30 quarter and year of birth interactions (QOB-YOB)
and 150 quarter and state of birth interactions (QOB-POB)
1530 instruments: full interactions among QOB-YOB-POB

The sample contains 329,509 men born 1930-39 from the 1980 census

This paper sparked the weak IV literature. It is a running example for
multiple papers
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Weak Identification: detection

Re-visiting Angrist and Krueger (1991)

FF F̃ JIVE-Wald Robust AR Robust LM

180 instruments 2.4 13.4 [0.066,0.132] [0.008,0.201] [0.067,0.135]
1530 instruments 1.3 6.2 [0.024,0.121] [-0.047, 0.202] [0.022,0.127]

Table: Angrist and Krueger (1991) Pre-test Results

Notes: Results on pre-tests for weak identification and confidence sets for IV

specification underlying Table VII Column (6) of Angrist and Krueger (1991). The

confidence sets are constructed via analytical test inversion.
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Weak IV robust inferences AR test

Weak IV-Robust Tests: Refresher, Fixed K

Yi = βXi + ei , Zi -instrument (E[ei |Zi ] = 0)

H0 : β = β0. Define e(β0) = Y − β0X

AR (Anderson-Rubin) statistics:

e(β0)
′ZΣ−1Z ′e(β0) ∼ χ2

K

Σ is a covariance matrix of e ′Z or a good estimate of it

Size is robust to weak IV
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Weak IV robust inferences AR test

What Changes with K → ∞?

Homoskedastic AR statistics for fixed K :

1

σ2
e(β0)

′Z (Z ′Z )−1Z ′e(β0) ∼ χ2
K

χ2
K is a diverging distribution for large K

e(β0)
′PZe(β0) has a non-zero mean Ee ′PZe =

∑N
i=1 PiiEe2i

Idea: remove the diagonal
∑

i ̸=j ei (β0)Pijej(β0)

Use CLT for quadratic forms (U-statistics)
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Weak IV robust inferences AR test

AR test with many instruments

The infeasible leave-one-out AR is

AR0(β0) =
1√
KΦ0

∑
i ̸=j

ei (β0)Pijej(β0),

for Φ0 =
2
K

∑
i ̸=j P

2
ijσ

2
i σ

2
j

Under H0 : β = β0 we have AR0(β0) ⇒ N(0, 1)

Need K → ∞ for asymptotic distribution

Rejects for large values of AR

Need to estimate the variance

21 / 45



Weak IV robust inferences AR test

AR: Variance Estimation

Φ0 =
2

K

∑
i ̸=j

P2
ijσ

2
i σ

2
j

Idea 1 (Crudu et al, 2021): σ̂2
i = e2i (β0)

It gives correct size, robust toward heteroscedasticity, but power is
problematic at distant alternatives

Residualizing e(β0) with respect to Z (M = I − PZ )

σ̂2
i = (Mie(β0))

2 ,E[σ̂2
i ] ̸= σ2

i

“Cross-fit” variance estimator (Newey et al, 2018; Kline et al., 2020):

σ̂2
i =

1

1− Pii
ei (β0)Mie(β0)
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Weak IV robust inferences AR test

AR: Variance Estimation

Φ0 =
2

K

∑
i ̸=j

P2
ijσ

2
i σ

2
j

Use proxy σ̂2
i = 1

1−Pii
ei (β0)Mie(β0)

Challenge is that we need a double sum:

E [(eiMie)(ejMje)] = (MiiMjj +M2
ij )σ

2
i σ

2
j

Our suggested estimator (Mikusheva and Sun, 2022):

Φ̂2 =
2

K

∑
i ̸=j

P2
ij

MiiMjj +M2
ij

[ei (β0)Mie(β0)] [ej(β0)Mje(β0)]
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Weak IV robust inferences AR test

AR: Variance Estimation

Φ0 =
2

K

∑
i ̸=j

P2
ijσ

2
i σ

2
j

Anatolyev and Sølvsten (2020): one may get unbiased proxy for σ2
i σ

2
j

by using “leave-three-out” estimator

σ̂2
i σ

2
j = ei (β0)ej(β0)

∑
k

M̃ik,−(ij)ek(β0)[ej(β0)− Z ′
j δ̂−(ijk)]

where δ̂−(ijk) is OLS from regressing e(β0) on Z leaving three
observations (i , j , k) out

There are explicit formulas for “leave-(one/two/three)-out” available,
but numerical complexity increases
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Weak IV robust inferences AR test

Feasible AR

AR(β0) =
1√
K Φ̂

∑
i ̸=j ei (β0)Pijej(β0) rejects when AR(β0) > z1−α

Where Φ̂ can be:

Crudu et al (2021): Φ̂1 =
2
K

∑
i ̸=j P

2
ijei (β0)

2ej(β0)
2

Mikusheva and Sun (2022):

Φ̂2 =
2
K

∑
i ̸=j

P2
ij

MiiMjj+M2
ij
[ei (β0)Mie(β0)] [ej(β0)Mje(β0)]

Anatolyev and Sølvsten: Φ̂3 leave-three-out

All three Φ̂ are consistent for Φ0 under the null

Feasible tests with Φ̂2 and Φ̂3 achieve the same local power as the
infeasible AR

Feasible tests with Φ̂2 and Φ̂3 are consistent for distant alternatives

Variance estimators are ordered in terms of increasing computational
complexity
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Weak IV robust inferences AR test

Power of AR

Under the alternative β = β0 +∆

Define a leave-one-out information in the sample:

µ2 =
∑
i ̸=j

Pij(πZi )(πZj) ≍ π′Z ′Zπ

Power statement: uniformly over a set of local alternative and a
(reasonably restricted) set of µ2 :

AR(β0) ⇒ ∆2 µ2

√
KΦ0

+N (0, 1)
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Weak IV robust inferences AR test

Variance Estimator is Important
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Power curves for leave-one-out AR tests with Φ̂1 (red dash) and Φ̂2 (blue
line) and variance estimators under sparse vs. dense first stage.
Instruments are K = 40 balanced group indicators, N = 200, based on
1,000 simulations
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Weak IV robust inferences Other tests: LM

Weak IV-Robust Tests: LM

Problem: AR is not efficient if identification is strong

AR uses all instruments “equally”

LM intends to test a “powerful” combination of instruments e ′Zπ,

Idealistic LM is based on the linear combination
e ′(β0)Z π̂ = e ′(β0)PZX

Leave-one-out gives us LM1/2 ∝
∑

i ̸=j ei (β0)PijXj
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Weak IV robust inferences Other tests: LM

Robust LM

The infeasible leave-one-out LM is

LM1/2(β0) =
1√
KΨ

∑
i ̸=j

ei (β0)PijXj ,

Under H0 : β = β0 we have LM1/2(β0) ⇒ N(0, 1) as N,K → ∞
Reject when

∣∣LM1/2(β0)
∣∣ is large (two-sided test)

Need an estimator for

Ψ =
1

K

N∑
i=1

(
∑
j ̸=i

PijXj)
2σ2

i +
1

K

N∑
i=1

∑
j ̸=i

P2
ijγiγj ,

σ2
i = Ee2i , γi = E[Xiei ]
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Weak IV robust inferences Other tests: LM

LM: variance estimation

Matsushita and Otsu (2022):

Ψ̂1 =
1

K

∑
i

σ̂2
i (
∑
j ̸=i

PijXj)
2 +

1

K

∑
i

∑
j ̸=i

P2
ij γ̂i γ̂j ,

where σ̂2
i = e2i (β0) and γ̂i = Xiei (β0)

Ψ̂1 is consistent under the null (H0 : β = β0)

There is a loss of power at alternative: e(β0) ̸= ei and σ̂2
i overstate

the variance
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Weak IV robust inferences Other tests: LM

LM: variance estimation (new result)

We propose to use the ideas of double-cross-fit

Ψ̂2 =
1

K

∑
i

eiMie

Mii
(
∑
j ̸=i

PijXj)
2 +

1

K

∑
i

∑
j ̸=i

P̃2
ijXiMieXjMje

Here we use

σ̂2
i = eiMi e

Mii
– unbiased proxy for σ2

i

γ̂i = XiMie – proxy for γi

re-weighting P̃2
ij =

P2
ij

MiiMjj+M2
ij
to correct for correlation in proxies
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Weak IV robust inferences Other tests: LM

LM: variance estimation (new result)

We propose to use the ideas of double-cross-fit

Ψ̂2 =
1

K

∑
i

eiMie

Mii
(
∑
j ̸=i

PijXj)
2 +

1

K

∑
i

∑
j ̸=i

P̃2
ijXiMieXjMje

Under assumptions needed for CLT and stricter moment condition,
our estimator

Consistent under the null (when β = β0)

Consistent for local alternative (when β = β0 +∆ and ∆2 µ2

K → 0)
Inconsistent for global alternatives but still deliver consistent LM test

Leave-one-out LM with our variance estimation has the same power
curves as “infeasible” LM test
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Weak IV robust inferences Other tests: LM

Power of LM

The infeasible leave-one-out LM is

LM1/2(β0) =
1√
KΨ

∑
i ̸=j

ei (β0)PijXj

Under the alternative β = β0 +∆, we have ei (β0) = Z ′
i π∆+ ηi :

LM1/2 ⇒ ∆
µ2

√
KΨ

+N (0, 1),

uniformly over local alternatives

LM test has two-sided rejection region

As soon as µ2/
√
K → ∞, LM is consistent for fixed alternatives
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Weak IV robust inferences Other tests: LM

Variance Estimator is Important
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Power curves for leave-one-out LM with Ψ̂1 (red dash) and Ψ̂2 (blue line)
variance estimators under sparse vs. dense first stage. Instruments are
K = 40 balanced group indicators, N = 200
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Weak IV robust inferences Other tests: LM

Re-visiting Angrist and Krueger (1991)

FF F̃ JIVE-Wald Robust AR Robust LM

180 instruments 2.4 13.4 [0.066,0.132] [0.008,0.201] [0.067,0.135]
1530 instruments 1.3 6.2 [0.024,0.121] [-0.047, 0.202] [0.022,0.127]

Table: Angrist and Krueger (1991) Pre-test Results

Notes: Results on pre-tests for weak identification and confidence sets for IV

specification underlying Table VII Column (6) of Angrist and Krueger (1991). The

confidence sets are constructed via analytical test inversion.
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Weak IV robust inferences Other tests: LM

Power Trade-off

Under the alternative β = β0 +∆, we have :

LM1/2 ⇒ ∆
µ2

√
KΨ

+N (0, 1),

AR ⇒ ∆2 µ2

√
KΦ

+N (0, 1)

When µ2
√
K

→ ∞, AR and LM are asymptotically consistent for fixed

alternatives β

When µ2
√
K

→ ∞ but µ2

K → 0 local alternatives are:

for AR {∆ : ∆2µ2
√
K

≤ C} i.e. |∆| ∝
√√

K
µ2

for LM {∆ : |∆|µ2

√
K

≤ C} i.e. |∆| ∝
√
K

µ2

AR has slower speed of detection
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Weak IV robust inferences Other tests: LM

Conditional Switch Test: CLR

We may think about combining three statistics optimally
AR(β0)−∆2 µ2

√
KΦ

LM1/2(β0)−∆ µ2
√
KΨ

F̃ − µ2
√
KΥ

 ⇒ N (0,Σ) .

AR and LM are for testing β0 and F̃ for assessing the strength of
identification

Lim, Wang and Zhang (2022) - suggests an optimal combination test

Ayyar, Matsushita and Otsu (2022) - suggestions on how to build
CLR test
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Adding covariates

Adding covariates: what is the problem?

Linear IV model with one endogenous variable:{
Yi = βXi + δWi + ei ,
Xi = π′Zi + γWi + vi ,

where Zi ∈ RK s.t. E[ei |Zi ,Wi ] = E[vi |Zi ,Wi ] = 0

When there are no covariates (Wi ) the bias was removed by removing
a diagonal (JIVE)

β̂JIV =

∑
i ̸=j XiPijYj∑
i ̸=j XiPijX ′

j

=
X ′PJIVY

X ′PJIVX

we denote AJIV = {Aij · 1{i ̸= j}} for any matrix

Could we do a similar thing: partial out covariates and remove the
diagonal from PZ?
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Adding covariates

Adding covariates: what is the problem?

Let MW = I −W (W ′W )−1W ′ be partialling out operator

Y⊥ = MWY , X⊥ = MWX , Z⊥ = MWZ , P⊥ = PZ⊥ ,

Would the following estimator work?

β̂ =

∑
i ̸=j X

⊥
i P⊥

ij Y
⊥
j∑

i ̸=j X
⊥
i P⊥

ij Y
⊥
j

=
(X⊥)′P⊥

JIVY
⊥

(X⊥)′P⊥
JIVX

⊥

No. This is the same as β̂ =
X ′MWP⊥

JIVMWY

X ′MWP⊥
JIVMWX

Matrix MWP⊥
JIVMW has a non-trivial diagonal and produces bias in

the estimator
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Adding covariates

Adding covariates: what is the problem?

What if we do this in opposite order:

β̂ =
X ′(MWP⊥MW )JIVY

X ′(MWP⊥MW )JIVX

It does not work either

(MWP⊥MW )JIVW ̸= 0

it loses partialling out property
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Adding covariates

Adding covariates: estimation

Solution proposed in Chao, Swanson and Woutersen (2023): find
θ1, ..., θn and diagonal matrix Dθ:

MW (P⊥ − Dθ)MW has zero diagonal

this problem is linear and solvable for well-balanced designs

Suggested estimator

β̂ =
X ′MW (P⊥ − Dθ)MWY

X ′MW (P⊥ − Dθ)MWX

Chao, Swanson and Woutersen (2023) has proof of consistency and
asymptotic gaussianity under some assumptions
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Adding covariates

Adding covariates: robust inference (new results)

{
Yi = βXi + δWi + ei ,
Xi = π′Zi + γWi + vi ,

We can create a weak IV robust test for H0 : β = β0 using this idea

AR(β0) =
1√
KΦ

(Y − β0X )′MW (P⊥ − Dθ)MW (Y − β0X )

Under the null AR(β0) ⇒ N(0, 1), reject when AR(β0) is large
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Adding covariates

Adding covariates: robust inference (new results)

Denote Aij to be elements of MW (P⊥ − Dθ)MW , then we can use

Φ̂ =
2

K

∑
i ,j

A2
ij

MiiMjj +M2
ij

σ̂2
i σ̂

2
j

where σ̂2
i =

∑
k

Mik
Mii

(Yi − β0Xi )(Yk − β0Xk), while Mij are elements
of MZ ,W

The “naive” variance estimator is inconsistent even under the null,
since (Yi − β0Xi )

2 overstates the variance drastically (it has part
predictable by Wi )
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Conclusions and Open questions

Conclusions and Open Questions

Many instruments come with costs - one needs to find an optimal way
to combine them

Uncertainty about the first stage produces biases of TSLS

Jackknifing or deleting diagonal is productive idea for both estimation
and inference

The knife-edge case for consistency happens when π′Z ′Zπ√
K

≍ const

There is a pre-test for weak identification robust to heteroscedasticity
when K → ∞, which depends on the estimator one uses with it

Robust tests (AR and LM) use the idea of leave-one-out quadratic
forms and cross-fit variance estimation

Adding many covariates is non-trivial
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Conclusions and Open questions

Conclusions and open questions

Open question: there is a pre-test for whether one can trust
JIVE-Wald confidence set/ t-test. JIVE-LIML is more efficient
(Hausman et al, 2012), but there is no pre-test for it

Open question: there is no pre-test that accommodates many
covariates either

Open question: unclear what to do with inferences when there are
multiple endogenous variables (sub-vector inference)

Open question: many instruments framework accommodates well
heterogeneous first stage, what to do about heterogeneous structural
equation (non-parametric IV)
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