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Abstract

Business/policy decisions are often based on evidence from randomized experiments

and observational studies. In this article we propose an empirical framework to estimate

the value of evidence-based decision making (EBDM) and the return on the investment

in statistical precision.

1. Introduction

Many organizations use randomized experiments and observational studies to improve their

decision making. For example, Gupta et al. (2019) write “Together [Airbnb, Amazon, Book-

ing.com, Facebook, Google, LinkedIn, Lyft, Microsoft, Netflix, Twitter, Uber, Yandex, and

Stanford University] have tested more than one hundred thousand experiment treatments

last year.” The fact that so many organizations conduct so many experiments suggests that

data evidence provides a value for guiding business/policy decisions. However, we are un-

aware of the existence of empirical tools that organizations can use to assess the value of

their EBDM practices. In the absence of such tools, it is difficult to assess whether too much

experimentation is being done, or too little, whether experiments are too large or too small,

and whether the right experiments are done. Part of the challenge in evaluating the value of

EBDM is that it requires a description of the role of evidence in the business/policy decision

We are grateful to Brad Efron for making a subset of the Cochrane data available to us.
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process. In other words, it requires assumptions on what organizations will do with and

without various amounts of evidence that they can choose to generate at some cost.

In this article, we propose an empirical Bayes estimator of the value of EBDM. We study

the problem of a decision maker deciding whether to adopt a particular policy intervention.

We use the term “agent” to refer to the decision maker, and “policy”, “intervention” and

“treatment” interchangeably to refer to the policy intervention under scrutiny. The agent

can implement the intervention based on prior information or gather additional information

at some cost, for example, by running an experimental or observational evaluation of the

effect of the intervention. At the stage where the decision maker decides to implement the

intervention or not, she does so to maximize her utility given the available information. We

derive expressions for the value of the additional information and show how to estimate this

value using meta data on estimates of the effects of business/policy interventions and their

standard errors.

Our framework allows decision makers to assess the value of experimental and nonex-

perimental studies, and how this value changes with the precision of the studies. Currently,

many organizations decide on the precision of their studies based on power calculations,

which do not take into account the cost and benefits of EBDM.

2. The value of EBDM

We use the notation X „ pθ, σ2q to indicate that the random variable X has mean θ and vari-

ance σ2. We use X „ Npθ, σ2q to indicate that the distribution of X is Gaussian with mean

and variance pθ, σ2q. We use fXp¨q for the density of a random variable, X, and fX|W p¨|wq

for the conditional density of X given W “ w. ϕp¨q and Φp¨q are the probability density

function and the cumulative distribution function of the standard Gaussian distribution.

2.1. Setup

Consider the problem of a decision maker who has to choose whether to adopt a particular

policy on a population of units. The per-unit payoff of the policy, τ , follows a distribution

with probability density function fτ p¨q and mean µ. We assume that the agent has risk-
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neutral preferences. As a result, in the absence of additional information, the agent launches

the policy as long as the expected payoff from launching is positive,

µ ´ cL ą 0,

where cL is the cost of launching per-unit. The expected value of this decision is maxtµ ´

cL, 0u.

Suppose, however, that the agent can choose to obtain additional information on the

policy payoff, at some cost. In particular, the agent can obtain a signal, pτ , with distribution

pτ | τ „ Npτ, σ2
q, (1)

at cost cF ` cpσ2q, with cF ě 0, cp¨q ě 0 and c1p¨q ď 0. This aspect of the model aims to

capture information obtained from studies that estimate policy effects based on experimen-

tal or observational data. The constant cF reflects the fixed cost of a data-driven policy

evaluation, and the function cp¨q measures the costs of precision, which depends in part on

the sample size of the study. The restriction on the derivative of cp¨q conveys the notion that

more precise information is weakly more costly.

The Gaussianity assumption on the distribution of pτ | τ is motivated by approximate

Gaussianity of the large sample distributions of many commonly used estimators of treatment

effects. After observing the signal pτ , the expected payoff of the policy is

Erτ |pτ “ ts “

ż

ufτ |pτ pu|tqdu

“

ż

u

σ
ϕppt ´ uq{σqfτ puqdu

ż

1

σ
ϕppt ´ uq{σqfτ puqdu

.

In this case, the agent launches the policy if

Erτ |pτ s ´ cL ą 0.

For any scalar, x, let Ip0,8qpxq be the function that takes value one if x is greater than

zero and value zero otherwise. The expected payoff with EBDM is

V pσ2
q “ E

“

pτ ´ cLqIp0,8qpErτ |pτ s ´ cLq
‰
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“ E
“

Ip0,8qpErτ |pτ s ´ cLqErτ ´ cL|pτ s
‰

“ E
“

Ip0,8qpErτ |pτ s ´ cLqpErτ |pτ s ´ cLq
‰

“ E rmax tErτ |pτ s ´ cL, 0us .

Let

V p8q “ maxtµ ´ cL, 0u,

which is the expected payoff under no additional information besides the information in the

distribution of τ . Because maxtx, 0u is a convex function of x, Jensen’s Inequality implies,

V pσ2
q ě maxtµ ´ cL, 0u “ V p8q.

The value of EBDM is the difference in expected payoffs V pσ2q and V p8q, which is nonneg-

ative, minus the cost of acquiring the information, which is generally positive:

VoEpσ2
q “ V pσ2

q ´ V p8q ´ pcF ` cpσ2
qq.

A second version of VoE, which we term VoID is obtained when, in the absence of additional

information about the effect of the intervention, the intervention is always deployed:

VoIDpσ2
q “ V pσ2

q ´ pµ ´ cLq ´ pcF ` cpσ2
qq.

VoIDpσ2q is motivated by settings with ex-ante (pre-evaluation) ambiguity on the distribution

of τ , and agents who have a bias for action in the presence of such ambiguity.

2.2. A motivating example

A common instance of the setting described above is one where the decision maker obtains

experimental evidence on the effect of the policy. Consider an experiment with N units:

i “ 1, . . . , N . The experimenter assigns N1 units at random to treatment and the remaining

N0 “ N ´ N1 to control. If unit i is treated, an outcome is drawn

Yip1q „ pθ1, σ
2
1q.
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If unit i is untreated, the outcome is drawn

Yip0q „ pθ0, σ
2
0q.

Let Wi be an indicator of treatment for unit i. We observe Yi “ Yip1qWi ` Yip0qp1 ´ Wiq.

The average effect of the treatment is

τ “ θ1 ´ θ0.

A simple estimator of τ is the difference in mean outcomes between treated and nontreated,

τ̂ “
1

N1

N
ÿ

i“1

WiYi ´
1

N0

N
ÿ

i“1

p1 ´ WiqYi.

Then, for large N0 and N1, equation (1) holds approximately, with

σ2
“

σ2
1

N1

`
σ2
0

N0

.

In some settings, researchers favor treatment effect parameters free of units of measure-

ment, such as lift τ “ pθ1 ´ θ0q{θ0. Let

pτ “

1

N1

N
ÿ

i“1

WiYi ´
1

N0

N
ÿ

i“1

p1 ´ WiqYi

1

N0

N
ÿ

i“1

p1 ´ WiqYi

.

Then, for large N0 and N1, equation (1) holds with

σ2
“

1

θ20

ˆ

σ2
1

N1

` p1 ` τq
2 σ

2
0

N0

˙

.

For values of the lift parameters close to zero, as is common in some online experimentation

settings, we can approximate

σ2
«

1

θ20

ˆ

σ2
1

N1

`
σ2
0

N0

˙

.

2.3. A Gaussian distribution for τ

In this section, we obtain simple closed-form formulas for the case when the distribution of

τ can be approximated with a Gaussian distribution,

τ „ Npµ, γ2
q. (2)
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While equation (1) is supported by the Central Limit Theorem for large sample studies,

equation (2) imposes two important restrictions. First, τ is Gaussian. Second, this distribu-

tion is independent of σ2. The first is a strong parametric restriction. Gaussianity of τ could

be a suitable approximation in some settings, but not in others. The second restriction could

be violated, for example, if experimenters have some additional information about τ for each

treatment, and adapt the power of their experimental or observational studies accordingly

through the choice of sample size. We dispose of these two restrictions later in the article.

We adopt them in this section, however, to obtain closed-form formulas for the value of

EBDM.

If equations (1) and (2) hold, the marginal distribution of pτ is pτ „ Npµ, γ2 ` σ2q. The

posterior for τ is given by

τ | pτ „ N

ˆ

µ{γ2 ` τ̂{σ2

1{γ2 ` 1{σ2
,

1

1{γ2 ` 1{σ2

˙

.

The expected payoff with EBDM is

V pσ2
q “ E

„

max

"

µ{γ2 ` pτ{σ2

1{γ2 ` 1{σ2
´ cL, 0

*ȷ

.

Let

Z “
µ{γ2 ` pτ{σ2

1{γ2 ` 1{σ2
´ cL.

Recall that the marginal distribution of pτ is Gaussian with mean µ and variance γ2 `σ2. As

a result,

Z „ N

ˆ

µ ´ cL,
γ4

γ2 ` σ2

˙

. (3)

Now, V pσ2q is the the first moment of the Gaussian distribution in (3) censored from below

at zero,

V pσ2
q “ pµ ´ cLqΦ

˜

µ ´ cL

γ2{
a

γ2 ` σ2

¸

`
γ2

a

γ2 ` σ2
ϕ

˜

µ ´ cL

γ2{
a

γ2 ` σ2

¸

. (4)

V pσ2q is decreasing in σ2 and increasing in γ2 (see appendix). This conforms to our intuition

that higher precision of the signal pτ |τ and higher uncertainty regarding τ increase the payoff

from EBDM.
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Notice that

lim
σ2Ñ8

V pσ2
q “ maxtµ ´ cL, 0u “ V p8q

and

lim
σ2Ñ0

V pσ2
q “ pµ ´ cLqΦ

ˆ

µ ´ cL
γ

˙

` γϕ

ˆ

µ ´ cL
γ

˙

.

As σ2 Ñ 8, we lose any additional information about the value of τ beyond its distribution,

and V pσ2q converges to V p8q. As σ2 Ñ 0, we learn the value of τ . In this case, V pσ2q

converges to Ermaxtτ ´ cL, 0us, the mean of the distribution of τ ´ cL censored at zero.

So far, we have treated σ2 as a constant. We now allow σ2 to have a non-degenerate

distribution, independent of τ . In this case, the average payoff of EBDM is

V “ E
”

maxtE
“

τ |pτ , σ
‰

´ cL, 0u

ı

“ E
”

E
“

maxtErτ |pτ , σs ´ cL, 0u|σ
‰

ı

“ E

«

pµ ´ cLqΦ

˜

µ ´ cL

γ2{
a

γ2 ` σ2

¸

`
γ2

a

γ2 ` σ2
ϕ

˜

µ ´ cL

γ2{
a

γ2 ` σ2

¸ff

. (5)

2.4. A Gaussian mixture distribution for τ

In section 4 we use a Gaussian mixture distribution of τ to evaluate the effects of ... Suppose

τ follows a mixture of k Gaussian distributions with parameters pµ1, γ
2
1q, . . . , pµk, γ

2
kq, and

mixture probabilities p1, . . . , pk. Let pτ “ τ ` ε, where ε is independent Gaussian noise with

variance σ2. Conditional on τ „ Npµj, γ
2
j q, we have

Erτ |pτ , τ „ Npµj, γ
2
j qs “

µj{γ
2
j ` pτ{σ2

1{γ2
j ` 1{σ2

.

As a result,

Erτ |pτ s “

k
ÿ

j“1

Erτ |pτ , τ „ Npµk, γ
2
j qsPrpτ „ Npµj, γ

2
j q|pτq

“

k
ÿ

j“1

ˆ

µj{γ
2
j ` pτ{σ2

1{γ2
j ` 1{σ2

˙

1
b

γ2
j ` σ2

ϕ

¨

˝

pτ ´ µj
b

γ2
j ` σ2

˛

‚pj

k
ÿ

j“1

1
b

γ2
j ` σ2

ϕ

¨

˝

pτ ´ µj
b

γ2
j ` σ2

˛

‚pj

. (6)
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Figure 1: Distribution of estimated treatment effects in the Cochrane data

3. Empirical Bayes estimation

In this section, we consider a setting with multiple realizations from the distribution of

pτ, σ, pτ , pσq, where only pτ and pσ are observed. In this setting, ppτ , pσq are estimates and the

corresponding standard errors for a set of policy evaluations in the data set. We consider

the homoskedastic case, with σ2 constant, and the heteroskedastic case with varpσ2q ą 0.

In all our calculations we approximate the per-unit launch cost as cL « 0. Alternatively we

can think of the τ as capturing the net benefits of the treatment after taking out the launch

cost.

We illustrate these calculations using a subset of the Cochrane database (Cochrane Col-

laboration, 2002; Starr et al., 2009) containing information on 8821 randomized experiments.

For each experiment we observe the point estimate, pτ , as well as the standard error of pτ ,

which can be seen as an estimate of σ. We use the Cochrane dataset as a benchmark, with-

out attempting to interpret the magnitude or direction of the resulting estimates. Figure

1 shows the distribution of pτ across the experiments in the dataset. The average value of

pτ is ´0.1421 with range r´8.4763, 7.1663s. Standard errors have mean 0.7471 and range

r0.0099, 2.1232s.
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3.1. Parametric empirical Bayes

In this section, we adopt a Gaussian specification for the distribution of τ . Because pτ is

unbiased, we can estimate µ—the mean of the distribution of τ—as the mean of pτ across

evaluations. To estimate γ2—the variance of the distribution of τ—we deconvolute the

distribution of pτ as follows. By the Total Law of Variance,

varppτq “ Ervarppτ |τqs ` varpErpτ |τ sq.

Unbiasedness of pτ conditional on τ implies

γ2
“ varpτq

“ varpErpτ |τ sq

“ varppτq ´ Ervarppτ |τqs.

As a result, we define pγ2 as the difference between the variance pτ across experiments in the

data minus the mean of the squares of the standard errors. This estimator is not guaranteed

to be positive. In the Cochrane dataset, pγ2 “ 1.6677 ´ 0.7641 “ 0.9036.

3.1.1. Homoskedastic case

For the homoskedastic case, we estimate σ2 as the average of the squares of the standard

deviations of pτ across studies. In the Cochrane data, this estimate is 0.7641. Plugging in

this value in (4) along with estimates of µ and γ2, we obtain V p0.7641q “ 0.2138.

3.1.2. Heteroskedastic case

We now relax the assumption that σ2 is constant. It can be shown (see appendix) that

V pσ2q is convex. Then, by Jensen’s Inequality, V pErσ2sq ď ErV pσ2qs. This result implies

that the assumption of homoskedasticity may lead to underestimation of the average payoff

when σ2 is not constant. Under heteroskedasticity, we evaluate the expression in (5) plugging

in study-specific estimates of σ2. Relative to the calculations in the previous section, now

the value of experimentation is computed for each value of σ2 and then integrated over the

distribution of σ2. An estimator of V based on a set of policy estimates can be calculated
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in two steps: (i) use the square of the standard error of pτ to approximate σ2, and estimate

the value of each study separately, and (ii) take the average over all studies in the sample.

Doing this for the Cochrane data, we obtain V “ 0.2351.

3.2. Nonparametric empirical Bayes

We now relax the parametric restriction τ „ Npµ, γ2q of section 3.1 and consider a nonpara-

metric distribution.

3.2.1. Homoskedastic case

Suppose we have τ{σ|σ „ Gσ, where Gσ is some unspecified distribution. Then,

pτ{σ
ˇ

ˇτ{σ, σ „ Npτ{σ, 1q.

Therefore, the marginal density of pτ{σ is

fτ̂{σpzq “

ż
ˆ

ż

ϕpz ´ tqdGsptq

˙

dP psq,

where P is the distribution of σ. If τ{σ|σ „ G, independent of σ (a very strong assumption),

then

fτ̂{σpzq “

ż

ϕpz ´ tqdGptq,

and the distributionG can be estimated via nonparametric empirical Bayes methods (NPEB).

Suppose we have n experiments, indexed i “ 1, . . . , n. Following Jiang and Zhang (2009),

we can estimate G as

max
GPG

n
ÿ

i“1

log

ż

ϕppτ{σ ´ tqdGptq. (7)

Jiang and Zhang (2009) uses fixed-point methods to solve the nonparametric maximum

likelihood problem in (7). The solution is computed over a grid u1, . . . , um representing

points of mass of G, with respective probabilities, pf1, . . . , pfm. Notice that,

Erτ{σ|τ̂{σ “ z, σ “ ss “

ż

t ϕpz ´ tqdGptq
ż

ϕpz ´ tqdGptq

.
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Table 1: Expected payoff of EBDM

empirical Bayes

distribution of τ : true value parametric nonparametric

Gaussian
expected payoff
95% interval

0.3970 0.3970 0.3970
r0.3429, 0.4510s r0.3423, 0.4517s

mixture
expected payoff
95% interval

0.3225 0.3942 0.3227
r0.3168, 0.4717s r0.2685, 0.3768s

The sample analog of Erτ |τ̂{σ “ z, σ “ ss is

σi

m
ÿ

j“1

ujϕppτi{σi ´ ujq
pfj

m
ÿ

j“1

ϕppτi{σi ´ ujq
pfj

.

Koenker and Mizera (2014) propose an algorithm to solve (7) based on convex optimization

procedures. For the Cocharne data set, using the standard errors of the estimates to approx-

imate σ1, . . . , σn and the algorithm in Koenker and Mizera (2014) to estimate G, we obtain

the estimate pV “ 0.2226.

3.2.2. Heteroskedastic case

We relax the strong assumption that τ{σ is independent of σ by dividing the support of σ

into 5 intervals and doing the NPEB calculations of the previous section interval by interval.

Applying this method to the Cochrane data set, we obtain the estimate pV “ 0.2897.

4. Simulations

We consider two data generating processes (DGP). In DGP1, the parameters τ have a

standard Gaussian distribution τ „ Np0, 1q, so the parametric empirical Bayes model of

section 2.3 applies. In DGP2, the parameters τ follow the mixture distribution as in section
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2.4. In particular, in DGP2,

τ „

$

&

%

Np´5, 1{2q with prob. 0.01,
Np0, 1{2q with prob. 0.98,
Np5, 1{2q with prob. 0.01.

DGP1 and DGP2 both produce a distribution of τ with mean zero and variance one. We

generate pτ as pτ “ τ ` σu, where u is independent standard Gaussian and σ “ 0.1. To

calculate the expected payoff of EBDM, we consider the case of cL “ 0.

We run 1000 simulations for DGP1 and DGP2 with n “ 500. Equation (4) with µ “ 0,

γ2 “ 1, σ “ 0.1, and cL “ 0 gives the true expected payoff of EBDM under DGP1. To

calculate the true expected payoff of EBDM under DGP2, we first use equation (6) to

compute Erτ |pτ s over the nˆ 1000 “ 500, 000 realizations of pτ in the simulations, and report

the average of maxtErτ |pτ s, 0u. In each of the simulations, we calculate parametric and

nonparametric empirical Bayes estimates of the average payoff of EBDM. The parametric

empirical Bayes estimator is the sample analog of equation (5). This estimator is valid

only under the assumption that the true distribution of τ is Gaussian. The nonparametric

empirical Bayes estimator is as in section 3.2.1. For the simulations in this section, we treat

σ as known.

Table 1 reports the true values of the expected payoff of EBDM along with means and

95% intervals for the distribution of the estimates across simulations. When the distribution

of τ is Gaussian, the distribution of the parametric and nonparametric empirical Bayes

estimates across simulations are both centered at the true value of the expected EBDM

payoff. Moreover, there is no evidence of substantial gains from knowledge of the parametric

form of the distribution of τ . The 95% interval for the nonparametric estimator is only 1.1%

wider than the interval for the parametric estimator.

For the case when the distribution of τ is a mixture, the results for parametric estimator

reveal a clear bias, while the distribution of the nonparametric estimator remains centered

at the true value of the expected payoff. Moreover, the 95% interval for the nonparametric

estimator is 30.1% narrower than the interval for the parametric estimator.
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Table 2: Results for the Cochrane data

Distribution of pτ :
pµ “ ´0.1421

Value of EBDM:
parametric nonparametric

homoskedastic heteroskedastic

VoE
estimate

95% interval
0.2351 0.2226 0.2055

r0.2164, 0.2537s r0.2060, 0.2392s r0.1890, 0.2220s

VoID
estimate

95% interval
0.3772 0.3647 0.3477

r0.3572, 0.3972s r0.3443, 0.3852s r0.3267, 0.3686s

5. Application to the Cochrane dataset

Table 2 collects parametric and nonparametric empirical Bayes estimates of the value of

EBDM in the Cochrane data. For the parametric case, Table 2 reports estimates computed

under heteroskedasticity. For the nonparametric case, Table 2 reports estimates computed

under homoskedasticity (varpσ2q “ 0) and under heteroskedasticity (varpσ2q ą 0). Below

each of the estimates of the value of EBDM, Table 2 reports 95% intervals computed over

1000 bootstrap draws from the distribution of ppτ , pσ2q in the data. In our calculations, we

impose cL ` cF ` cpσ2q “ 0. The average value of pτ across experiments in the Cochrane data

is -0.1421 and the variance of pτ across experiments is 1.6677. Because pτ has a negative mean

and a variance that is large relative to the mean, this is a setting where we expect to have

substantial gains from EBDM. Indeed, both the parametric and the nonparametric empirical

Bayes estimates show positive values of about twice the magnitude of pµ. For this applica-

tion, parametric empirical Bayes and nonparametric empirical Bayes under homoskedasticity

produce similar estimates. Allowing for heteroskedasticity decreases the magnitudes of non-

parametric empirical Bayes estimates by 7.7% for the case of VoE and 4.7 for the case of

VoID.
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6. Estimation of counterfactual EBDM values

This section provides estimates of the value of EBDM under alternative levels of statistical

precision. That is, we estimate how the value of EBDM would change as a result of a change

in σ2. In the resulting counterfactuals, the variance of the estimators is equal to the variance

estimates for pτ1, . . . , pτn in the original sample multiplied by λ. That is, λ “ 0.5 represents

a counterfactual scenario where the variances of the estimators are 50% smaller than the

variance estimates in the original sample, while for λ “ 1.5 the variances of the estimators

are 50% larger than in the original sample.

For simplicity, we consider only counterfactual scenarios such that τ is independent of

estimation variance, σ2, and estimate the value of EBDM using the parametric empirical

Bayes estimator of section 3.1. It is conceptually straightforward to extend our procedure

to more general settings (e.g., by modeling the dependence between τ and σ2 and/or using

nonparametric empirical Bayes estimators).

For each estimate, i “ 1, . . . , n, in our sample we draw a value from the empirical Bayes

estimate of the distribution of τ . Let τ˚
1 , . . . , τ

˚
n be the resulting values for the draws. Next,

for i “ 1, . . . , n, we obtain pτ˚
i “ τ˚

i `σ˚
i Ui, where U1, . . . , Un are independent draws from the

standard Gaussian distribution, and σ˚
i “

?
λpσi. We use the new sample ppτ˚

1 , pσ˚
1 q, . . . , ppτ˚

n , pσ˚
nq

to compute an estimate of the value of EBDM. We repeat this procedure multiple times to

obtain the distribution of EBDM-value estimates for a particular value of λ. The average of

this distribution is our estimate of the value of EBDM under variance modification factor λ.

For the parametric empirical Bayes case, this average can also be computed directly using a

empirical counterpart of equation (5) that applies the variance modification factor λ to σ2.

Figure 2 reports the results obtained from applying the procedure describe above to the

Cochrane data. The solid line represents the value of EBDM as a function of the variance

modification factor, λ. The shaded area represents 95% intervals from the distribution of

EBDM estimates. An investment that reduces estimation variance by half (about a 29.3%

decrease in standard errors) leads to an increase in the value of EBDM by 11.6%, from 0.2351

to 0.2623. Conversely, an increase in estimation variance by half (about a 22.5% increase in

14



Figure 2: Counterfactual values of EBDM

0 0.5 1 1.5 2.5
0.18

0.2161

0.2351

0.2623

0.34

standard errors) decreases the value of EBDM by 8.1%, from 0.2351 to 0.2161.

Appendix

The derivative of V pσ2q with respect to σ2 is

BV pσ2q

Bσ2
“ ´

γ2

2pγ2 ` σ2q3{2
ϕ

˜

µ ´ cL

γ2{
a

γ2 ` σ2

¸

ď 0.

This conforms to our intuition that more experimental precision should increase the value of ex-
perimentation.

The derivative of V pσ2q with respect to γ2 is

BV pσ2q

Bγ2
“

γ2 ` 2σ2

2pγ2 ` σ2q3{2
ϕ

˜

µ ´ cL

γ2{
a

γ2 ` σ2

¸

ě 0.

This conforms to our intuition that more concentrated priors should reduce the value of experi-
mentation.

The second derivative of V pσ2q with respect to σ2 is

B2V pσ2q

Bσ2Bσ2
“

3γ4 ` pµ ´ cLq2pγ2 ` σ2q

4γ2pγ2 ` σ2q5{2
ϕ

˜

µ ´ cL

γ2{
a

γ2 ` σ2

¸

ě 0.

Now, Jensen’s Inequality implies V pErσ2sq ď ErV pσ2qs.
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