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1 Introduction

Social media has become an important source of information for citizens around the world. Leading

up to the 2016 US presidential election, 14% of Americans indicated social media as their primary

source of news (Allcott and Gentzkow (2017)), and by 2019, over 70% of Americans reported receiving

at least some of their news from social media (Levy (2021)). At the same time, there is growing concern

about misinformation on social media platforms, including made-up news stories about US political

candidates, misleading Brexit reports, and photoshopped images during the Indian national elections,

just to name a few.1 Recent evidence suggests that misinformation on social media has impacted

critical decisions such as vaccinations against COVID-19 (Pennycook et al. (2018); Pennycook et al.

(2020b)).

Although there is no consensus on what promotes the spread of falsehoods and misleading content

on social media, two sets of factors have been emphasized. The first is the presence of echo chambers,

which arise when users communicate and share content with like-minded individuals (Sunstein

(2018); Lazer et al. (2018)). Törnberg (2018) and Vicario et al. (2016) show that echo chambers

reinforce existing political viewpoints and tend to propagate misinformation. Social media allows

individual users to choose who and what they listen to much more than traditional media, and thus

echo chambers may be an unavoidable side effect of online interactions. There is also evidence that

echo chambers are a result of “filter bubbles” that platform algorithms create by promoting content

from like-minded users (see Pariser (2011) and Levy (2021) on Facebook). The second factor is the

general political polarization in many countries, and especially the United States,2 and there is some

preliminary evidence that polarization has contributed to selective exposure to questionable content

on social media as well (Guess et al. (2018)). Despite the importance of these issues, we do not currently

have a framework to understand how online interactions impact the spread of misinformation and

what factors shape incentives for sharing low-reliability content.

In this paper, we develop a parsimonious model of online sharing behavior in the presence of

misinformation, and as a first step, we focus on the behavior of fully Bayesian agents.3 Our model

is inhabited by a set of N social media users. Each agent (user) has a prior about the state of the

world (“ideological bias”), and is connected to the rest of the users via a network, which is shaped by

the algorithms of the social media platform. A news article, defined by an underlying type (truthful

or containing misinformation), a message (right-wing or left-wing), and a level of reliability (which

determines the likelihood of misinformation), is then seeded at one of the users. The message and

the level of reliability of the article are common knowledge, while whether it is truthful or contains

misinformation is unobserved, and agents form beliefs about this component.4

1For example, see https://www.snopes.com/fact-check/mass-shootings-under-trump/ and Greene et al. (2021);
Garimella and Eckles (2020).

2While there has been some debate about whether polarization has been mainly among politicians (see Fiorina et al.
(2008) and Prior (2013)), there is considerable evidence that polarization has also risen among the general public (see Pew
Research Center (2014) and Abramowitz (2010)).

3Cognitive biases appear to play a major role in social media interactions, for example, via the “confirmation bias” (see,
e.g., Buchanan (2020) and Pennycook and Rand (2019)) or emotional outrage. Nevertheless, our Bayesian benchmark already
generates a number of empirically-relevant results, and incorporating realistic behavioral biases into this framework is an
important next step.

4Our focus in this paper is on misinformation, interpreted as items containing misleading information or arguments that
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Given these beliefs, the agent in question decides whether to ignore, dislike, or share the news

article. If it is shared, the article moves from the agent sequentially to her connections on social media,

who are then faced with the same choices. If the article is ignored or disliked, it does not get past

the user. We assume that agents receive utility when their shared content is re-shared and incur a

cost when it is disliked. The former aspect captures the role of positive engagement in social media,

while the latter represents the reputation loss from being called out for sharing content containing

misinformation. Agents additionally receive utility from calling out (“disliking”) items that they believe

contain misinformation.

We characterize the Bayesian-Nash equilibria of this sequential game. Equilibria exist and are in

cutoff strategies—a user shares any item that she believes is truthful with a high probability and dislikes

articles that she believes to contain falsehoods. Items with intermediate beliefs are ignored. Beliefs

about the truthfulness of articles are formed on the basis of the article’s reliability and message, and

agents’ ideology (prior). We first establish that our game exhibits strategic complementarities: when

others are more likely to share an item, each agent also becomes more likely to do so. As a result,

we show that the set of equilibria forms a lattice, with well-defined most-sharing and least-sharing

equilibria. All else equal, low-reliability articles are shared less, while articles that are “sensational”

(either because they have provocative content or have broad appeal for other reasons) are shared more.

We then turn our attention to the platform’s algorithm design choices. We assume that platforms

determine the sharing network of users in order to maximize engagement (which serves to increase

revenues from advertisements).5 Under this assumption, we first establish that the platform always

selects a sharing network from a class of island networks, characterized by a partition of agents into

distinct islands and two parameters, the probabilities of content being shared within an island and

between islands. When islands contain like-minded agents, the gap between these two parameters

defines the extent of homophily—the degree to which content is shared between users with similar

ideologies.

Our main result shows that, in the presence of low-reliability articles (which are likely to contain

misinformation), the engagement-maximizing algorithm choice is to induce maximal homophily. In

contrast, with high-reliability articles, the platform prefers no homophily and maximal connectivity.

This bifurcated pattern of algorithmic choices reflects a fundamental non-monotonicity in our model.

All else equal, high homophily reduces the viral spread of articles and thus user engagement.

Counteracting this, however, high homophily enables low-reliability content to escape scrutiny,

because it is being shared among like-minded individuals who are predisposed to agree with its

message and thus are likely to share it themselves and unlikely to dislike it. In contrast, low-reliability

content is likely to receive dislikes and less likely to be shared in ideologically-diverse networks. This

can influence (a subset of) the public. Articles containing misinformation are in practice much more numerous than those
that can be classified as “fake news”, which explicitly propagate demonstrably false information (e.g., Egelhofer and Lecheler
(2019), Allen et al. (2020), Guess et al. (2019), Grinberg et al. (2019)). For example, according to this definition a news item
that favorably describes a report denying climate change, without putting this in the context of hundreds of other reports
reaching the opposite conclusion or mentioning the criticisms that it has received from experts, contains misinformation.

5In practice, one’s network on social media sites is formed both by their friends and acquaintances who have also
joined the same platform, and the algorithmic choices of the platform that promote and make visible different users and
posts. The sharing network should thus be interpreted as how (mis)information can potentially spread from platform
recommendations.
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non-monotonicity implies that, faced with low-reliability articles, the platform prefers to form filter

bubbles: in these circumstances, echo chambers are attractive for platforms precisely because they

create an environment in which it is safe for low-reliability content to spread. Consequently, filter

bubbles and viral spread without counter-attitudinal voices become more prevalent when the relevant

content is more likely to contain misinformation.

Equally concerning are the comparative statics of filter bubbles. We show that platforms are

more likely to favor filter bubbles when society is politically polarized and articles are more divisive

(generating greater disagreement among agents with different ideologies). The intuition for this

comparative static is related to the logic of filter bubbles: with greater political polarization and

divisiveness, low-reliability content is more likely to be disliked and stop spreading in ideologically-

diverse networks, making platforms opt for echo chambers.

If platform algorithms are propagating misinformation, can public policy discourage this type of

behavior?6 In the last part of the paper, we show that the answer is yes, but with some caveats. We

define a social welfare metric related to information acquisition—the average distance between user

beliefs and the true state—and establish that this is related to the spread of low-reliability content. We

then discuss four different types of regulatory policies, and in each case, we show how they may reduce

misinformation but also point out the possibility that, if they are not designed well, they can backfire

and exacerbate the problem.

First, we look at potential censorship of articles identified by a regulator as likely containing

misinformation. While censorship can help reduce the viral spread of misinformation, it also generates

an “implied truth” effect (Pennycook et al. (2020a)) that contributes to the spread of questionable

content that escapes censorship. Second, we discuss regulations that force platforms to reveal the

provenance of articles, making it easier for users to identify falsehoods (e.g., claims originating from

less reputable sources, such as InfoWars). Though generally useful and sometimes more powerful

than censorship, provenance regulation can also backfire due to a related implied truth effect, but

this time because individuals rely on other users’ verification of the content before them. Third, we

discuss “performance targets”, where the regulator places limits on the amount of misinformation

that circulates on the platform. Such targets tend to better align platform and regulator preferences,

but unless platforms are appropriately monitored and penalized for violations, strict targets can

exacerbate the spread of misinformation. Lastly, we show how regulation of platform algorithms can

reduce misinformation, but the non-monotone effects of homophily imply that such regulations need

to be finely calibrated.

Related Literature. Our paper builds on a growing body of work that studies the emergence and

spread misinformation. In addition to the literature mentioned previously, several other papers in

this literature are related to our findings.

Much previous work has focused on the susceptibility of boundedly-rational agents to engage with

6As of August 2021, federal law in the United States protects social media platforms from being held responsible for
content posted by its users, even if the platform determines how this content is recommended and shared (see Section 230
of the Communications Decency Act of 1996, discussed by https://hbr.org/2021/08/its-time-to-update-section-230).
Many policy debates in the United States have revolved around potential amendments to Section 230, largely motivated by
legislation in Europe, such as the Online Safety Bill in the United Kingdom .
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misinformation. In Acemoglu et al. (2010) and Acemoglu et al. (2013), the existence of persuasive

agents can impede information aggregation and enable misinformed beliefs to survive, and sometimes

even become dominant, in the population (these works in turn build on prior models of learning

with boundedly-rational agents, such as Bala and Goyal (1998) and Golub and Jackson (2010)). In

Mostagir et al. (2022) and Mostagir and Siderius (2023), a principal who wants to persuade agents of an

incorrect belief can distort the learning process by leveraging social connections and echo chambers

to propagate misinformation. Similarly, models of misinformation “contagion”—without Bayesian

agents or strategic decisions—have been studied in Budak et al. (2011), Nguyen et al. (2012), and

Törnberg (2018). Our work is distinguished by its focus on strategic behavior by Bayesian agents and

algorithmic choices of engagement-maximizing platforms, which are not featured in these papers.

There is a growing literature on information design by platforms, building for the most part on the

concept of Bayesian persuasion (Kamenica and Gentzkow (2011) and Kamenica (2019)). Candogan

and Drakopoulos (2020) study how a platform with private knowledge of content’s accuracy should

optimally signal to rational users whether to engage with this content, while Chen and Papanastasiou

(2021) and Keppo et al. (2022) consider more manipulative actions by platforms, including strategic

seeding of information or “cheap talk” signals about quality. Relatedly, Allcott and Gentzkow (2017)

study the incentives of certain outlets to present misleading news, while Gentzkow and Shapiro (2006),

Hsu et al. (2020) and Allon et al. (2021) explore other strategic reasons for media bias. Our paper

contributes to this literature by highlighting the role of ideological leaning, strategic sharing decisions,

homophily, and most importantly, the design of social media algorithms by platforms.

The most closely related work to ours is Papanastasiou (2020). Papanastasiou (2020) studies

a model where agents hold heterogenous ideological beliefs, and digest and share a news article

sequentially. There are three critical differences between his model and ours, however. First,

Papanastasiou (2020) focuses on costly inspection, which makes sharing decisions strategic substitutes

in his model (see also related work Merlino et al. (2023)). In contrast, our focus on share and dislike

decisions by other agents leads to strategic complementarities, as individuals care about the reaction

of their social network.7 All of our results and formal analysis turn on strategic complementarities.

Second, and relatedly, echo chambers play no role in Papanastasiou (2020).8 Third, our analysis of

algorithmic design choices for maximizing engagement and its implications for the spread of low-

reliability content has no counterpart in Papanastasiou (2020) or any other work in this area we are

aware of.9

Finally, our work shares some similarities with Kranton and McAdams (2022) and Mostagir and

Siderius (2022a,b) in studying the influence of misinformation in networks. In Kranton and McAdams

7Our reading of the evidence is that strategic complementarities are more relevant for social media behavior than
strategic substitutabilities. For example, Eckles et al. (2016) find evidence that feedback or “encouragement” from peers
about Facebook posts have contributed significantly to future behavior and posting. See also Taylor and Eckles (2018), Aral
and Dhillon (2018), and the detailed discussion in Frenkel and Kang (2021).

8As already noted, echo chambers appear central to the spread of misinformation in practice. See, for example, Lee et al.
(2011), Törnberg (2018), Centola (2010), and Centola and Macy (2007).

9Papanastasiou (2020) also discusses platform incentives, but assumes that the platform is interested in limiting
misinformation. Our reading of the evidence in this instance, too, favors our interpretation, where platforms such as
Facebook are (or at the very least used to be before regulatory pressure mounted) fairly indifferent to the presence of
misinformation but strongly prioritize engagement maximization.
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(2022), social connectivity determines the equilibrium production of misinformation from content

creators, but they do not consider platforms’ algorithm choices and policy responses. Mostagir and

Siderius (2022a,b) are subsequent to this paper, and also discuss some of the regulatory questions

surrounding misinformation. In any case, the focus of those papers is limited to various behavioral

learning rules agents adopt, with no strategic behavior from users and platforms, and thus has little

overlap with the insights our model generates.

The rest of the paper is organized as follows. The next section introduces our basic environment

and describes the information structure and payoffs. Section 3 characterizes the (Bayesian-Nash)

equilibria of this model and provides some basic comparative static results. Section 4 considers the

algorithmic choices of the platform through an endogenously-chosen sharing network that aims to

maximize engagement. Section 5 discusses a range of regulations aimed at containing misinformation.

Section 6 concludes, while all proofs are provided in Appendix A. Appendixes B and C, which contain

additional results and microfoundations for some of the assumptions in the text, are available online.

2 Model

There is an underlying state of the world θ ∈ {L,R}, for example, corresponding to whether the left-

wing or the right-wing candidate is more qualified for political office. Agents have heterogeneous prior

(ideological) beliefs about θ, and agent i’s prior that θ = R is denoted by bi with an ex ante distribution

Hi(·), which may or may not be the same across agents.

Sharing Network. We assume there are N agents in the population, who share a news item according

to a sharing network defined by a matrix P of link probabilities, with pij denoting the probability that

agent i has a link to agent j. We define agent i’s (realized) neighborhoodNi as the set of agents attached

to her with an outgoing link (and |Ni| as its size). As discussed in the Introduction, the platform’s

algorithms for promoting content fully determine this sharing network. The news item in question

could be an article or a post by one of the users, and throughout we refer to it as an “article”.

Misinformation and News Generation. Each article has a three-dimensional type (r,m, ν). Here, r ∈
[0, 1] indicates the reliability of the news, and m ∈ {L,R} is the message, which corresponds to the

article’s viewpoint, for example, whether it argues for a left-wing or right-wing idea. Finally, ν is the

article’s veracity, which can either be T , to indicate the article is truthful, orM, to indicate the article

contains misinformation (as defined in footnote 4).

We assume that, at the beginning of the game, the type vector (r, ν,m) of the article is sampled from

the following process:

(i) The article has some given reliability score r ∈ [0, 1].

(ii) The veracity of the article is drawn as ν = T (contains truthful content) with probability φ(r) or

as ν = M (contains misinformation) with probability 1 − φ(r). We assume that φ is increasing

and differentiable in r, and satisfies φ(0) = 0 and φ(1) = 1, so that the least reliable article
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always contains misinformation, and as the degree of reliability increases, the likelihood of

misinformation monotonically declines and reaches zero.

(iii) If ν = T (the article is truthful), then its message is generated as m = θ with probability p > 1/2.

Conversely, if ν =M (the article contains misinformation), then its message is generated asm = θ

with probability q ≤ 1/2 and is weakly anti-correlated with the truth.

While m and r are common knowledge (for example, the message m is directly observed and

reliability depends on certain commonly-observed characteristics such as source and headline), the

third dimension, ν, is unknown to all agents. We assume that agents update their beliefs about ν using

Bayes’s rule given there prior about θ and the observables (r,m) of the article.

Social Media Behavior. Upon receipt of the article, an agent i can take one of three actions ai ∈
{S, I,D}, as described below:

(i) Share (S): The agent decides to share the article and passes it onto others after her.

(ii) Ignore (I): The agent decides to ignore the article and does not engage with it.

(iii) Dislike (D): The agent decides to dislike the article, which means expressing disagreement with

the content contained in it (e.g., call it out as misinformation).

Although there are some differences in nomenclature across real social media platforms, online

interactions on many platforms can broadly fit within this paradigm.10

Timing. Time is discrete t = 1, 2, . . .. The article diffuses throughout the network as agents receive

the article and then decide whether to share, ignore, or dislike it. At time t = 1, we assume that some

initial seed agent receives the article. If the article is shared by agent i, it is passed to all j ∈ Ni. If

the article is ignored by her, it does not propagate past agent i (but may still propagate along other

diffusion paths). If the article is disliked by agent i, the agent j who shared the article with i receives

negative peer feedback (getting “called out”), as we describe below.

Payoffs. Let us denotes the number of shares after i by Si = |{j ∈ Ni : aj = S}| and dislikes after i as

Di = |{j ∈ Ni : aj = D}|. Agent i’s utility can then be written as

Ui =


0, if ai = I
ũ · 1ν=M − c̃, if ai = D
u · 1ν=T − c · 1ν=M + κ · Si − d ·Di, if ai = S

(1)

where 1 is the indicator function (equal to 1 if true and 0 otherwise). Here, ũ, c̃, u, c, κ and d are strictly

positive parameters, which we discuss below.

10For example, several social media platforms actually have an explicit “Share” button (e.g., Facebook/TikTok/Instagram),
and others have an implicit way to Share (e.g., “Crossposting” on Reddit or “Retweeting” on Twitter). Actions similar to our
“Dislike” are available to users by selecting a negative reaction (pressing the “downvote” button on Reddit or YouTube) or
leaving a disparaging comment on Facebook.
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(i) We normalize payoffs following ignore, I , to Ui = 0.

(ii) Payoffs from dislike, D, depend on whether the article contains misinformation. We assume, in

particular, that disliking has a cost of c̃ > 0, regardless of whether the article is truthful (because

of, say, the effort required to actively call out misinformation). In addition, disliking an article

containing misinformation has a benefit of ũ > c̃, because individuals like calling out misleading

articles but not truthful ones.

(iii) Following a decision to share, S, an agent receives utility from two sources. First, agents receive

utility from sharing truthful content, but incur a cost from sharing misinformation. This explains

the first component of utility following S, U (1)
i = u ·1ν=T −c ·1ν=M. Second, agents enjoy positive

feedback from their peers (such as likes, or in our setting re-shares), but are negatively affected by

dislikes. This is represented by the second component of utility U (2)
i = κ · Si − d ·Di.11 The total

utility for agent i’s sharing action is the sum of these two components, U (1)
i + U

(2)
i .

Information Structure and Solution Concept. Both the stochastic network P and the distributions

{Hi}Ni=1 of beliefs in the population are common knowledge, but the realized links and beliefs of other

agents are not known with certainty. We focus on Bayesian-Nash equilibria, and refer to these as

“equilibria” for short.12

To eliminate trivial and unrealistic equilibria, we assume κ is upper bounded by κ̄ = (cc̃ − u(ũ −
c̃))/ũN . This assumption guarantees that there is never an equilibrium where every agent always

shares all articles. It also eliminates equilibria where agents may share and dislike, but never ignore.

Discussion — The basic assumptions introduced above are consistent with salient patterns of behavior

and information structure in social media. As documented in studies such as Pennycook et al. (2021),

users want to share content that they believe does not contain misinformation. Second, while users

derive value from peer encouragement and re-shares on social media (Eckles et al. (2016)), they

also suffer reputational costs when they get called out for sharing misinformation (see, for example,

evidence from Facebook in Altay et al. (2020)). Finally, social media users often engage in criticisms

of available content and inform others about misinformation (see, for example, Kim et al. (2020) for

evidence in the context of 2018 midterm elections).

11The terms κ · Si and d · Di could be replaced by arbitrary functions ϕS(κ, Si) and ϕD(d,Di) with (weakly) increasing
differences. This generalization would enable us to incorporate a more extensive set of social interactions. For example,
an additive constant κ would mean that there is a higher propensity to share all else equal. These modifications lead to an
essentially identical analysis and we do not pursue them here to prevent the notation from getting more complex.

We could also allow the share utility from peer reactions, U (2)
i , to depend on the article’s veracity as well. For example, the

functional form Ũ
(2)
i = πi · κ ·Si − (1− πi) · d ·Di (where πi is the posterior belief of agent i that the article is truthful) would

maintain strategic complementarity, but would reward (resp. punish) the agent for reshares (resp. dislikes) only if the article
was truthful (resp. contains misinformation). Our results apply identically under this alternative formulation as well.

12Observe that the sharing process is Markovian and does not depend on the history of an article’s spread (in contrast
to models such as Papanastasiou (2020)). Specifically, sharing decisions depend only on the characteristics of the article
(reliability and message), the network structure, and the belief distributions. Because our results do not depend on other
aspects of agents’ beliefs about sharing history, nor do agents maximizing expected utility need to observe the realized
subsequent actions from others on the platform, our model is applicable to behavior on most social media platforms, such
as Facebook, Twitter, and Instagram.
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3 Social Media Equilibria

In this section, we characterize the structure of equilibria for any sharing network structure P. Without

loss of generality, we fix the article’s message as m = R and reliability r for the remainder of the paper.

Cutoff Strategies and Strategic Complementarities. When agent i receives an article with reliability r

and message m = R, she updates her (ex post) belief, πi, that the article is truthful according to Bayes’

rule:

πi =
(pbi + (1− p)(1− bi))φ(r)

(qbi + (1− q)(1− bi))(1− φ(r)) + (pbi + (1− p)(1− bi))φ(r)
. (2)

Clearly, πi is increasing in bi since an agent is more likely to believe in an article’s veracity when its

message agrees with her prior. Moreover, πi is increasing in r, as the agent updates more on the basis

of more reliable articles.

We can also see that the payoff to sharing (S) increases in πi, since the first component of utility,

U
(1)
i , is increasing in πi (as the individual would like to share truthful articles), whileU (2)

i is independent

of πi. With a similar reasoning, the payoff to disliking (D) is decreasing in πi, whereas the payoff to

ignoring (I) is independent of πi. This monotone behavior of payoffs will lead to simple best-response

decision rules, as we explain next.

We say that agent i employs a cutoff strategy if there exists b∗i (r) and b∗∗i (r) such that agent i chooses

S when bi > b∗∗i (r), chooses I when b∗i (r) < bi < b∗∗i (r), and chooses D when bi < b∗i (r). Cutoff

strategies in our context imply that agents who strongly agree with an article tend to share it, agents

who strongly disagree with it tend to choose dislike, and those with intermediate beliefs typically

ignore the article. We will see in the next theorem that all equilibria are in cutoff strategies. This means,

in particular, that an equilibrium can be summarized by cutoff vectors (b∗,b∗∗) = (b∗1, b
∗∗
1 , . . . , b

∗
N , b

∗∗
N ).

The social media game additionally exhibits strategic complementarities. To see this, observe that

when others share more—meaning that b∗∗i (weakly) decreases for all i—the second component of

utility,U (2)
j , increases for each agent j, and this raises the overall utility of sharing and encourages more

sharing. Similarly, when others reduce their likelihood of disliking—meaning that now b∗i (weakly)

decreases for all i—this reduces the likely cost of sharing misinformation by mistake, which also raises

U
(2)
j . Strategic complementarities capture an important dimension of social media interactions: utility

feedback from others’ behavior tends to encourage agents to cohere with those behaviors.

Equilibrium Structure. Our next result characterit’sizes the set of equilibria.

Theorem 1.

(i) There exists a Bayesian-Nash equilibrium;

(ii) All equilibria are in cutoff strategies;

(iii) The set of cutoffs (b∗,b∗∗) forms a lattice, and thus there exists a least-sharing and most-sharing

equilibrium.

Moreover, greater r, greater κ, or smaller d decrease the extremal equilibria (in the lattice order) and

all agents share with higher probability.
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Theorem 1 shows that, despite equilibrium multiplicity, there are two focal equilibria on which we

can concentrate: the equilibrium with the smallest vector of cutoffs (most-sharing equilibrium) and

the equilibrium with the largest vector of cutoffs (least-sharing equilibrium). Moreover, comparative

statics with respect to r, κ, and d are intuitive. The reliability parameter r is linked to the likelihood of

online misinformation and thus our results imply that, all else equal, less reliable articles spread less

virally (this also clarifies that virality of misinformation is not a mechanical result in our model). The

parameter κ captures how sensational the article is: higher κ implies that agents receive greater social

utility from sharing, including greater value from future shares, because these shares are associated

with others paying more attention to the relevant posts (see Footnote 11 for a general discussion).

Finally, the parameter d proxies for the importance of reputational concerns. Higher d means that

dislikes are more damaging, which corresponds to the agent being more concerned about receiving

negative reactions (e.g., loss in reputation, see Online Appendix B for details).

Empirical Mapping — Although stylized, our model’s comparative statics are in line with a

growing empirical literature on social media and misinformation. Our predictions are consistent

with Pennycook and Rand (2019), who document that attentive social media users, regardless of

partisanship, do not typically share low-reliability content such as those from Breitbart or Infowars.

Despite this observation, other works such as Vosoughi et al. (2018) document that misinformation

spreads farther, faster, deeper and more broadly than truthful news on social media. Our results

suggest that this may be because there is a set of articles with low r and high κ, which become viral

despite their low reliability. This also coheres with the findings in the literature: Molina et al. (2021)

and Kozyreva et al. (2020) observe that sensational content is often low-reliability, and Grinberg et al.

(2019) establish that once the effects of sensational news items are controlled for, misinformation does

not spread farther or faster than truthful content.

4 Platform Design and Filter Bubbles

Platform’s Problem. The platform’s profit objective is to maximize user engagement, defined as the

expected fraction of agents in the network who share the article, and throughout we focus on the most-

sharing equilibrium.13

The platform chooses how content is shared across users. That is, for each article, the platform not

only picks a seed agent at t = 1 to whom it recommends this article, but also chooses the sharing

network—the matrix of link probabilities P. The platform’s choice of P can be interpreted as its

13This objective is rooted in the business model of media sites, like Facebook, which primarily rely on advertising
revenue and depend on user engagement in order to be able to present digital ads (see https://www.washingtonpost.

com/technology/interactive/2021/how-facebook-algorithm-works/). For example, 85% of Facebook’s total revenue in
2011 was from advertising, and from 2017-2019, around 98% was (see Andrews (2012) and https://www.nasdaq.com/

articles/what-facebooks-revenue-breakdown-2019-03-28-0). Although other online interactions, such as dwelling or
clicking on content, involve some amount of “user engagement”, within our model sharing appears as the best proxy for user
engagement.

One implication of our assumptions is that platform does not directly care about whether the content is truthful or
contains misinformation. This can be interpreted as the objective of social media platforms before the more recent public
backlash over misinformation. If the platform faces potential penalties from public backlash or regulators for spreading
misinformation, its objective function will change, as we explore in greater detail in Section 5.
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“algorithm” to determine how users are exposed to content circulating in the social media site. While

the platform has freedom to choose any sharing network is desires, this algorithm choice is assumed

to be common knowledge.14

We assume there is a collection of social media users with beliefs distributed according to a

distribution H . The platform can identify communities of users according to prior ideological

beliefs, for example, based on content previously shared or affiliations with ideological groups. In

particular, each user is binned into one of k communities, with each community ` having a belief

distribution H` with support over [b`, b`+1], and where 1 ≥ b(1) > b(2) > · · · > b(k) > b(k+1) ≥ 0

(with at least one left-wing and one right-wing community). The size of these bins may depend on

the platform’s microtargeting technology at identifying users’ ideological beliefs (see, for example,

Papakyriakopoulos et al. (2018)). Formally, we let ε ≡ max` (b`+1 − b`), with the interpretation that

lower values of ε correspond to better platform capabilities for identifying ideology.

Optimality of Island Networks. Let us define the class of island networks (or equivalently, the

stochastic block model), which are lower-dimensional than general networks we have considered so

far. In an island network, agents are partitioned into k blocks of size N1, N2, . . . , Nk, called islands

each with constant (but not necessarily equal) share of the population N . Each agent i has a type

`i ∈ {1, . . . , k} corresponding to which island she is in. Link probabilities are then given by pij = ps > 0

if `i = `j and pij = pd if `i 6= `j , with ps ≥ pd. Our next result shows that profit-maximizing sharing

algorithms for the platform are within the class of island networks.

Lemma 1. There exists ε̄ > 0 such that for ε < ε̄, the profit-maximizing sharing network always has an

island structure. That is, in the profit-maximizing sharing network there exists a partition of all users

into k ≥ 2 islands such that agents on the same island are connected with probability ps > 0 and agents

on different islands are connected with probability pd ≤ ps.

Lemma 1 establishes that platform profit incentives lead to a type of “assortative matching”

according to ideology or, simply, to homophily: the sharing network induces an individual to interact

more frequently with others that have common characteristics as herself.

Homophily Comparative Statics. To understand how homophily affects user engagement, we first

study comparative statics with respect to an arbitrary, exogenously-given island network. For our next

result, we suppose that there are k islands of agents, where within-island link probabilities are given

by ps and across-island link probabilities are given by pd. Moreover, we assume the prior distribution

for agents on the same island ` is the same, denoted by H`, and each island ` has distribution H` with

support on [b(`), b(`+1)], where 1 ≥ b(1) > b(2) > . . . > b(k) > b(k+1) ≥ 0.15 This implies that lower-

indexed islands have stronger right-wing beliefs. We say that an island network with (ps, pd) has greater

14This assumption is made under the interpretation that the platform’s choice of sharing network dictates how content
and (mis)information propagate online (and is not necessarily tied to any underlying social network). Note further that
P varies at the article-level, as Facebook’s algorithms may induce different sharing networks depending on features of the
article such as topic, latent positions of the viewers, action rate on the article, and so on (see Eckles (2022) and https:

//about.fb.com/news/2021/01/how-does-news-feed-predict-what-you-want-to-see/ ).
15This assumption is adopted for simplicity. Our results generalize if we instead assume that these distributions are ranked

in terms of first-order stochastic dominance: H1 �FOSD H2 �FOSD · · · �FOSD Hk. However, this generalization requires
considerably more formalism and notation, motivating our focus on disjoint supports.
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homophily than an island network with (p′s, p
′
d) if the expected degrees (expected connections) of all

agents remains constant, but where ps > p′s and pd < p′d.16

Theorem 2. There exist 0 < r < r̄ < 1 such that:

(a) if r < r, greater homophily increases user engagement;

(b) if r > r̄, greater homophily decreases user engagement.

Theorem 2 establishes an inherent non-monotonicity from homophily. With high homophily, users

know that they are mostly sharing with other like-minded people, who will also be inclined to share

this content. This creates a type of echo chamber: the likelihood of being called out for spreading

misinformation is now lower, making users “less disciplined” or more likely to share—which we call

the “discipline effect”. At the same time, high homophily makes it more probable that an article will

circulate among the same group of like-minded users and reduces the likelihood that it will reach

other communities—which we refer to as the “circulation effect”. Theorem 2 thus establishes that the

“discipline effect” is stronger for low-reliability content likely to contain misinformation, whereas the

“circulation effect” is stronger for more reliable content.

Comparative Statics: Divisiveness and Polarization. We now provide an additional comparative static

with respect to polarization. For this result, we focus on the case of two islands, a left-wing and a right-

wing one with prior distributions HL and HR, respectively. Moreover, we suppose that there is disjoint

support of prior beliefs across communities. Formally, we assume HR has support on [bR, b̄R] and HL

has support on [bL, b̄L], with b̄L < 1/2 < bR.

We say content with parameters (p′, q′) is more divisive than content with parameters (p, q) if p ≥ p′

and q ≤ q′. Divisive content has a message that is more tethered to the true state θ when it is

truthful, and more likely to argue against θ if it is misinformation. As a result, it tends to generate

more disagreement among ideologically diverse people; for a fixed-reliability article, if bi < 1/2 (resp.

bi > 1/2) then πi is lower (resp. higher) for more divisive content. In our case, we think of state

θ as related to political ideology (with apolitical content having little divisiveness). We say H2 is

more polarized than H1 if it satisfies the following single crossing property: H−1
2 (α) − H−1

1 (α) is a

nondecreasing function in α, crossing zero at α∗ = 1/2 with H1(1/2) = H2(1/2) = 1/2. An increase

in polarization results in a “stretching” of the belief distribution around the most moderate user (i.e.,

b = 1/2) while preserving an equal distribution of left-wing and right-wing agents.

The next result studies how political divisiveness and polarization impact social media behavior

and the spread of misinformation, as a function of the homophily in the sharing network.

Proposition 1. There exist r∗ ∈ (0, 1) and p∗ ∈ (0, 1) such that:

(a) if r < r∗ and ps/pd > p∗, then greater divisiveness and/or greater polarization lead to greater user

engagement;

16Higher network density (greater expected degrees) can be responsible for increases in user engagement solely due to
an increase in the potential for more re-shares (through the strategic complementarity channel). Thus, when studying the
effects of homophily, we hold network density fixed.
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(b) If r > r∗ and ps/pd < p∗, then greater divisiveness and/or greater polarization lead to less user

engagement.

Proposition 1 is complementary to Theorem 2. When the content in question has high reliability

(r > r∗) and homophily is limited, more divisive content or greater polarization tends to reduce

user engagement, because in a well-connected, non-homophilic network, controversial articles will

solicit a wide range of reactions, disciplining those tempted to share misinformation. In contrast,

when the article in question has low reliability and there is significant homophily, there are again echo

chamber-like effects. More divisive content generates more divergent behavior from individuals with

different ideologies, and greater polarization means there are sharper differences in terms of these

ideologies. Thus, Proposition 1 shows that echo chambers matter especially for divisive content and

with polarized beliefs.

Platform’s Sharing Network: Filter Bubbles. Special cases of the island network structure are: (i)

an island model that has maximal homophily, where ps > 0 but pd = 0 (and thus there is extreme

ideological segregation on the network); and (ii) an island model with maximal connectivity, where

ps = pd = 1 (and there is minimal homophily and no segregation by ideology). We next show that

when the platform is allowed to design any sharing network P, its profit-maximizing choice will be

one of these two special networks.

Theorem 3. There exists ε̄ > 0 such that if ε < ε̄, the platform’s profit-maximizing sharing network has

k = 2 islands and is determined by a reliability threshold rP ∈ (0, 1) such that:

(i) if r < rP , the platform’s profit-maximizing sharing network has maximal homophily;

(ii) if r > rP , the platform’s profit-maximizing sharing network has maximal connectivity;

Moreover, the reliability threshold rP increases as divisiveness and/or polarization increases.

Part (i) of the theorem shows that when articles are mostly unreliable—and likely to contain

misinformation—the platform creates an extreme filter bubble by designing its algorithms to achieve

a sharing network with the greatest homophily. In contrast, part (ii) demonstrates that when articles

have higher reliability, the platform refrains from introducing algorithmic homophily. This result

highlights an important channel via which misinformation spreads: it is precisely when articles are

likely to contain misinformation that the platform seeks to maximize engagement by creating echo

chambers, or filter bubbles, where these articles spread virally within like-minded communities. Put

differently, with low reliability content, neither the platform nor users are disciplined about sharing

misinformation, and so these news items spread virtually uninhibited.

The intuition for Theorem 3 lies in balancing the discipline and circulation effects from Theorem 2.

As Figure 1 indicates, the platform chooses the number and composition of different islands, so that

it achieves as much circulation as possible, while limiting the discipline effect. When r > rP , this

leads to maximal connectivity, because the discipline effect becomes moot for these high-reliability

articles and the platform opts for the network structure that maximizes circulation. When r < rP , the
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discipline effect is limited by placing users that are most ideologically opposed to and thus least likely

to share the article in question into a separate island. The remaining agents are placed on their own

island and are more likely to share without the disciplining role that interactions with ideologically-

opposed users induces.

It is worth noting that this theorem builds on but strengthens Theorem 2, where the effects of

homophily are ambiguous for articles with intermediate reliability (r ∈ (r, r̄)). In contrast, Theorem 3

gives a sharp characterization of the platform’s algorithm depending simply on whether r is above or

below the threshold value rP .

Figure 1. Platform Filter Bubble: The Profit-Maximizing Sharing Network.
In the case where r < rP , the platform’s algorithm separates users into two islands. Those ideologically opposed to the article

in question are placed on the left island. Those who are more favorably disposed to the article are placed on the right island

and are disconnected from the left island, and thus can share without the disciplining influence of the reactions from those

with different beliefs. Theorem 3 shows that this network structure maximizes user engagement among all possible sharing

networks.

We also note that the threshold rP parameterizes the extent of filter bubbles on the platform.

Specifically, the most extreme left-wing agent will be exposed to all m = L articles, regardless of their

reliability, but only see right-wing articles with reliability r ≥ rP . Similarly, the most extreme right-

wing agent will see all m = R articles, but only m = L articles with r ≥ rP . Moreover, due to same

effects as in Proposition 1, as message divisiveness and belief polarization increase, the platform rP

rises and selects more aggressive filter bubbles.

Remark — This last observation generalizes to cases where the platform has less precise microtargeting

technology, albeit in a less sharp way than the result presented in Theorem 3. For example, for higher

values of ε (ε > ε̄), balancing the discipline and circulation effects may require the platform to set

pd ∈ (0, 1). However, the platform still typically induces echo chamber-like environments to generate

the viral spread of low-reliability content (pd < ps).

5 Regulation

Our analysis so far raises the question of what types of regulations might counter user engagement

with misinformation and platform choices leading to excessive ideological homophily. We now briefly

discuss four distinct types of regulations that have been suggested in this context: (1) censorship

or tagging of misinformation; (2) regulations that force platforms to reveal articles’ provenance; (3)

performance targets that require the platform to keep misinformation below a given threshold; and,
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(4) network regulations, restricting the extent of ideological homophily or segregation introduced by

platform algorithms intended to maximize engagement. We consider the effects of these policies when

the platform can optimally choose the sharing network in response to public policy.

We assume that the regulator’s welfare objective is related to misinformation and learning, and to

analyze this problem formally, we consider the updating of users’ beliefs about the state θ. Specifically,

we suppose that users who receive the platform’s article update their prior beliefs bi about θ to b̂i

using Bayes’s rule. Users who do not receive the article allocate their attention off social media, to

an offline content providing an i.i.d. binary signal si ∈ {L,R} for agent i, whereby si = θ with

probability z ∈ (1/2, 1). Agents who engage with the offline content similarly update their beliefs

bi using Bayes’s rule.17 Given these beliefs, we take the exact welfare metric to be to minimize the

expected average distance of agents’ posteriors from the true state,− 1
N

∑N
i=1 |b̂i − 1θ=R|. In evaluating

this expectation, we assume that the regulator is ex ante uncertain about and has a uniform prior

over the true state θ. We say a policy is more effective than another policy (or no policy) if it improves

welfare, and is most effective if it is more effective than any other feasible policy. While the platform

is interested in maximizing user engagement, as defined in Section 4, we demonstrate in Appendix A

that the regulator’s welfare measure depends on content virality or “total reach”, defined as the fraction

of agents in the network who receive the article.

Throughout, we fix the article’s reliability r and signal probabilities (p, q), with q = 1/2, which

implies that misinformation is just noise. This assumption is adopted for convenience and can be

relaxed, so long as an article containing misinformation does not provide a strong signal arguing for

the opposite of its message. Under this assumption, we obtain the following intermediate result.

Lemma 2. There exists rR > 0 such that:

(i) if r < rR, then welfare decreases whenever content virality increases;

(ii) if r > rR, then welfare increases whenever content virality increases.

Lemma 2 forms the backbone of our public policy analysis. When low-reliability content (r < rR)

circulates on the platform, welfare decreases because agents’ attention is drawn to this content, which

provides them little useful information. Hence, in this case there is a major divergence between

the objectives of the regulator and the platform. On the other hand, with higher-reliability content

(r > rR), the regulator’s incentives are aligned with the platform’s, because individuals obtain useful

information from the article on the platform. This observation implies that the main goal of the

regulator will be to correct platform incentives to promote low-reliability content, especially when

it tends to be sensational and associated with filter bubble algorithms.

For the remainder of this section, we assume that the most-sharing equilibrium before the

regulation entails some agents sharing and some agents not sharing (i.e., b∗ 6= 0 and b∗∗ 6= 1).

17We did not introduce this updating problem until now, because it has no impact on user and platform strategies.
Instead, the updating process only influences the regulator’s welfare metric.

In this context, one subtle issue relates to whether the users draw an inference from the lack of online content. In this
section, we assume that they do not, and we show in Online Appendix C that the same results as in this section apply even
when they draw such inferences.
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This allows for the possibility that regulation might backfire and increase the virality of low-reliability

content, or potentially help by reducing the virality of such content.

Censorship. We first consider a “content moderation” policy where the regulator can directly censor

misinformation that appears on the platform (or alternatively, “tag” such misinformation as in Clayton

et al. (2020)). Formally, we model this as the regulator being able to adopt a policy that removes at

most δ ∈ (0, 1) fraction of the content containing misinformation (with each piece of misinformation

removed with probability δ).18 In other words, the regulator selects δ∗ ≤ δ, with δ∗ proportion of

misinformation removed at t = 0, before it is observed by any of the users.

Proposition 2. There exist 0 < r∗R ≤ rR and 0 < δ1 < δ2 < δ3 < 1 such that:

(a) if r > r∗R, then δ∗ = δ is the most effective policy;

(b) if r < r∗R and δ ∈ (0, δ1) ∪ (δ3, 1), then δ∗ = δ is the most effective policy;

(c) if r < r∗R and δ ∈ (δ1, δ2), the most effective policy sets δ∗ < δ.

To understand this result, note that censorship has a two-pronged effect. On the one hand, it

removes misinformation from circulation and prevents its potential to spread on the platform. On

the other hand, it generates an “implied truth” effect for uncensored articles: users believe, correctly,

that articles are more likely to be truthful when there is censorship of misinformation (as empirically

documented in Pennycook et al. (2020a)). In this case, the platform might naturally expand its

recommendation filter bubble to generate more engagement, increasing the virality of any remaining

misinformation. In some cases, this latter effect may more than offset any gains from the detection

and elimination of misinformation.

In part (a), we are in the regime of Lemma 2(ii), where the incentives of all players (users, the

platform, and the regulator) are aligned: the implied truth effect increases sharing, which increases

the reach of the platform’s sharing network, which necessarily improves welfare. When content is

high-reliability and unlikely to contain misinformation, more censorship is a more effective policy.

This may at first appear paradoxical: more aggressive censorship policies are only guaranteed to be

welfare-improving when the article is already sufficiently likely to be truthful.

However, with low-reliability content likely to contain misinformation, instead we lie in the regime

of Lemma 2(i), where there are non-monotone welfare implications from additional censorship. In

part (b), the implied truth effect is not sufficiently powerful, and as a result, both limited (small δ) and

highly effective (large δ) censorship lead to better outcomes. Consequently, the policymaker should

always censor as much as technologically feasible. In the small δ regime, the sharing network chosen

by the platform remains constant and the censorship helps remove a fraction of the misinformation.

In the large δ regime, censorship can remove most of the misinformation, which is the most effective

policy in any sharing network, including the one selected by the platform. In the intermediate

18We think of δ as being a technology parameter related to how effective the regulator is in identifying misinformation.
The assumption that the regulator may make type-I errors but not type-II errors (truthful articles are never misidentified,
but misinformation is identified with some probability less than one) is adopted for simplicity.
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censorship regime, however, more censorship might exacerbate the spread of misinformation. As we

illustrate in the following example, intermediate censorship may create such a serious backlash that it

exacerbates the spread of misinformation relative to no censorship.

Example 1. There are two islands, one containing N/2 left-wing agents with belief bL = 1/4, and the

other N/2 right-wing agents with belief bR = 3/4. Let us consider an article with a reliability score

indicating it is equally likely to contain misinformation or to be truthful (φ is the identity and r = 1/3),

but where truthful content is perfectly informative about the state θ (p = 1). We assume the offline

content is only partially informative of θ (z = 4/5), which admits 0 < r∗R = 2/5 < rR = 3/5. This puts

us in regime (i) of Lemma 2 or parts (b) and (c) of Proposition 2, where content virality reduces welfare.

We assume that u = c = 1 and κ = 1/2N so the payoff from sharing for agent i is given by Ui =

(2πi − 1) + (Si −Di)/2N , where πi is agent i’s posterior belief that the article is truthful conditional on

reliability and message m = R. We assume ũ = 1 and c̃ = 2/3.

With no censorship policy (δ = 0), the optimal platform sharing network is given by Figure 2a,

where the algorithm applies a filter bubble to the right-wing island, shielding the left-wing island from

receiving the content. The article spreads amongN/2 proportion of the population. Once a censorship

policy is adopted, the implied truth effect will replace φ(r) with φ̃(r) = φ(r)
φ(r)+(1−δ)(1−φ(r)) , leading to a

higher value for πi on both the left and right-wing islands. Consider three separate regimes:

1. Limited censorship: With limited censorship (δ < 1/4), the optimal platform sharing network

remains the same as in Figure 2a. However, the virality of content declines to (1 − δ)N/2 < N/2,

and thus welfare improves.

2. Intermediate censorship: With a more aggressive censorship policy (1/4 < δ < 1/2), the optimal

platform sharing network switches to the one shown in Figure 2b (maximal connectivity), but

still does not remove most of the misinformation. In response, the platform selects a more

expansive sharing network because, in the presence of censorship, users correctly believe that

any given content is less likely to contain misinformation. In particular, in this case, the platform

moves the network from maximal homophy to maximal connectivity. The resulting virality of

misinformation then becomes (1 − δ)N , which is greater than N/2 for all 1/4 < δ < 1/2. In this

range, censorship is worse than no censorship policy at all.

(a) Little censorship. (b) More censorship.

Figure 2. Optimal Platform Sharing Networks for Example 1 under Censorship Policies.
An intermediate censorship policy generates an “implied truth” effect for misinformation that remains undetected, making

all agents more likely to share. In response, the platform increases the connectivity of the network. This increases the virality

of content that is likely to contain misinformation and, perhaps counterintuitively, negatively affects welfare despite some

of the misinformation being removed.
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3. Highly effective censorship: With a censorship policy that can detect most misinformation (1/2 <

δ < 1), the policy reduces misinformation, even though the platform again adjusts its algorithms

in response to censorship, increasing the virality of undetected misinformation.

Provenance. Next, we consider a policy that requires the platform to reveal the original context or

provenance of a piece of content. For example, provenance may point users to a peer-reviewed medical

study or the full discourse from which a quote was pulled. Such a policy allows users to “fact-check”

social media content easily and quickly.

We model a provenance policy by allowing users to fact-check the article before making their

share and dislike decisions. We assume that revealing provenance allows each agent to identify

misinformation with (independent) probability up to ρ ∈ (0, 1); a truthful article is never misidentified

as misinformation. Hence, the platform can set ρ∗ ≤ ρ with more impactful provenance policies

allowing for a greater fraction of users to identify misinformation.

Proposition 3. There exist 0 < r̃R ≤ rR and 0 < ρ1 < ρ2 < ρ3 ≤ δ3 < 1 such that:

(a) if r > r̃R, then ρ∗ = ρ is the most effective policy;

(b) if r < r̃R and ρ ∈ (0, ρ1) ∪ (ρ3, 1), then ρ∗ = ρ is the most effective policy;

(c) if r < r̃R and ρ ∈ (ρ1, ρ2), then ρ∗ < ρ is the most effective policy.

Moreover, for every δ ∈ (δ3, 1), a censorship policy with technology δ is less effective than a provenance

policy with technology ρ = δ.

The result is similar to Proposition 2: soft and strong provenance policies are always effective,

but moderate provenance policies can exacerbate the spread of misinformation. In this case, soft

provenance policies are closely related to accuracy nudging interventions, where users are prompted

to think carefully about the accuracy of content before sharing. See Pennycook et al. (2021) and

Pennycook et al. (2020b) on such policies and their impact on the spread of misinformation.

The proposition also establishes that provenance policies are in some sense more effective than

censorship policies when implemented well. Decentralized fact-checking reduces the likelihood of

type-I errors (misidentifying misinformation as truthful) that can result in large share cascades similar

to those in Example 1. Because multiple users are independently assessing veracity through the

provenance channel, misinformation will tend to be stopped as it is checked along various paths in

the sharing network. Strategic complementarities further amplify this effect: because users are aware

that the provenance policy may allow others to identify misinformation, they are also more cautious

themselves in sharing low-reliability content. That being said, provenance policies are not always

superior to censorship policies, as illustrated by the following example.

Example 2. Consider the setting of Example 1, where the profit-maximizing sharing network for the

platform with no provenance policy is again given by Figure 3a, and a censorship policy of δ = 3/16

is more effective than no policy because δ < 1/4. Note that r < r̃R < rR, so greater content virality

reduces welfare.

17



(a) Little provenance. (b) More provenance.

Figure 3. Optimal Platform Sharing Networks for Example 2 under Provenance Policies.
Intermediate levels of provenance policy make users detect some misinformation, but also makes them more likely to share

undetected misinformation. In response, the platform increases the level of connectivity of the network, contributing to

more viral content likely to contain misinformation.

Now consider a provenance policy with ρ = 3/16 ∈ (ρ1, ρ2). Then, the following sharing network

increases engagement relative to the network in Figure 3a: agent 1 is connected to agent 2, who is

connected to a clique of the otherN−2 agents, as shown in Figure 3b. This sharing network is not in the

class of island networks we have focused on so far. In terms of Proposition 3, when ρ ∈ (0, ρ1) ∪ (ρ3, 1),

the platform’s choices lie within the class of island networks, but not necessarily when we are outside

of this range.

For all agents i ∈ {3, . . . , N}, conditional on the article reaching them, their belief φ̃(r) about the

article’s veracity is greater than under censorship (with δ = 3/16), since two independent fact-checks

with ρ = 3/16 each have not detected it as misinformation. As a result, all agents in the clique of

Figure 3b will share the article, because they know that it has been fact-checked twice. Expected user

engagement with this article in this case is (1 − ρ) + (1 − ρ)2 + (1 − ρ)3(N − 2) > N/2, for ρ = 3/16.

Consequently, the provenance policy with ρ = 3/16 is worse than no policy at all, which is in turn worse

than a censorship policy with δ = 3/16.

This example illuminates the potential weakness of provenance policies: when imperfectly

implemented, they may be less robust than censorship. Because users presume others before them

have fact-checked, analogously to the literature on informational cascades (e.g., Banerjee (1992),

Bikhchandani et al. (2021), and Chen and Papanastasiou (2021)), they do not make independent

judgments based on the reliability of the content and “follow the herd”.

Performance Targets. Another possible regulation, which has recently been proposed by social media

platforms (see Bickert (2020)), is to set performance targets that limit the amount of misinformation.

A performance target transfers the responsibility of content moderation to the platform and

simultaneously gives it some leeway to have “bad” content on their site, so long as this is below the

specified target. In essence, the platform can discard content identified as misinformation by not

recommending it to any user, and in doing so, forfeits any potential engagement this content may

have had with the users. But the ability of the regulator to monitor the platform’s content moderation

is imperfect.

Specifically, we assume the regulator sets a performance target of λ, which requires the proportion
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of misinformation shares (to total shares) on the platform to fall below λ.19 The regulator enforces

this performance target by auditing the platform and sampling the content to verify that it meets the

required standard. Formally, we assume that the regulator has an auditing technology α ∈ (0, 1), which

represents the probability of detecting that the platform has violated its performance target, and if

detected, the platform incurs a costC due to regulatory fines. Moreover, we assume that the platform’s

unconstrained profit-maximizing sharing network does not satisfy this performance target.

Our next result establishes how stricter performance targets affect the spread of misinformation:

Proposition 4. There exists a performance target λ∗ ∈ (0, 1) such that:

(a) if λ > λ∗, a stricter performance target (lower λ) is more effective;

(b) if λ < λ∗, a stricter performance target (lower λ) is less effective than λ∗.

This result establishes that when performance targets are lax, making them stricter (reducing

λ) always improves welfare by reducing the spread of misinformation. In this region, when held

more accountable, the platform removes some of the misinformation in circulation, foregoing the

engagement that these contents would have generated. As a result, lower targets align regulator and

platform incentives to remove less reliable content.

However, with stricter targets, the incentives of the regulator and platform diverge. In particular,

for targets stricter than λ∗, the platform needs to remove more and more content, with an increasingly

larger sacrifice in engagement. In this case, the platform may prefer to violate the performance target

and this implies that the tightening of the performance target actually backfires.

This analysis also implies that stricter performance targets need to be combined with adequate

auditing for violation. This simple observation goes against the view that harsher punishments should

be imposed when the platform fails to meet low targets (because there would be little excuse for

violating them), and weaker punishments may be called for with higher targets, because the platform

may fail to meet them even when it tries. Instead, our analysis clarifies that stricter penalties may be

necessary for stricter performance targets.

Network Regulations. As we saw in Lemma 1, when unregulated, the platform chooses an island

model with parameters (ps, pd). Here, we consider limits on the ideological homophily induced by

the platform’s algorithm. Suppose the regulator can set a homophily standard p∗, based on the ratio

between within-island links to across-island links, forcing the platform to choose ps/pd ≤ p∗.20 When

r > rR, the regulator and platform have aligned incentives in the choice of sharing network, so the

regulator should abstain from imposing any regulation. However, for less reliable articles, we establish

the following result.

19This metric for performance comes from Facebook’s own statements on platform standards: “Regulators could say that
internet platforms must publish annual data on the ‘prevalence’ of content that violates their policies, and that companies
must make reasonable efforts to ensure that the prevalence of violating content remains below some standard threshold”
(from Bickert (2020)), with the definition of prevalence being: “We care most about how often content that violates our
standards is actually seen relative to the total amount of times any content is seen on Facebook” (from https://about.fb.

com/news/2019/05/measuring-prevalence/).
20There are several suggestions in the literature on how this class of policies can be implemented in practice. See, for

example, Yeung and Lodge (2019), Yeung (2018) and Cen and Shah (2021)).
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Proposition 5. Suppose that r < rR. There exists γ < ∞ such that for any p∗ ≥ γ, if the regulator

imposes a homophily standard p∗, then the platform’s sharing network becomes the island model with

ps/pd ≤ p∗, and welfare improves.

The regulator can thus reduce misinformation by imposing a homophily standard on the sharing

network of the platform. This standard prevents the type of extreme homophily we saw in

Theorem 3(a) and forces the platform to choose an algorithm that shares content across ideological

groups. This policy is related to the “ideological segregation standard” proposed in Sunstein (2018),

which aims to prevent content being curated specifically to the ideology of a specific group of users.

In our model, such standards break up echo chambers and ensure that ideologically-diverse users

interact more often, which limits the spread of misinformation. However, Proposition 5 also highlights

that the standards need to be well-calibrated to the types of ideological divides in the user community

and the degree of reliability of the relevant content.

6 Conclusion

This paper develops a simple model of the spread of misinformation over social media platforms. A

group of Bayesian agents with heterogeneous priors receive and share news items (articles) according

to a stochastic sharing network, determined by the social media platform. Articles may be truthful and

informative about an underlying state, or may contain misinformation, making them (weakly) anti-

correlated with the state. Upon receiving an article, an agent can decide to share it with others, ignore

it, or call out another agent for propagating misinformation (“dislike”). Misinformation spreads when

agents share articles expecting positive social media feedback and little negative reactions.

Though simple and parsimonious, the model encapsulates several rich strategic interactions.

Agents receive utility from sharing truthful articles and not misinformation, but also enjoy peer

engagement with shared content. The ideological congruence between an agent and those in her

sharing network, which we capture with the notion of homophily, is critical for sharing decisions.

Individuals are more likely to dissent against articles that disagree with their prior beliefs, so an agent

will be more cautious in sharing articles that disagree with the views of those in her sharing network.

Our framework enables a tractable study of platform incentives in designing algorithms that

determine who shares with whom. To do this, we assume that the platform aims to maximize user

engagement (which is a good approximation to the objectives of major social media platforms such

as Facebook or Twitter). Our main result is a striking one. When an article is highly reliable, the

platform chooses a sharing network with minimal homophily to maximize the spread and appeal of the

content throughout the user community. In contrast to this case, when the relevant articles have lower

reliability, the platform chooses a network with maximal homophily and recommends articles to users

with aligned beliefs. These articles then spread rapidly in the “filter bubble” the platform’s algorithms

have created—because now ideologically like-minded individuals know that they are unlikely to be

caught sharing misinformation in their echo chambers.

We also study regulations aimed at improving the welfare of platform users. Content moderation,

for example censoring low-reliability articles, can remove some misinformation. However, it also
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creates a (Bayesian) “false sense of security” and make agents more confident in the quality of

remaining items. Similarly, revealing the provenance of a news item (for example, providing full

context for a quote or clearer sources) can be useful, because this additional information allows

users to more easily fact-check the content for veracity. However, this intervention can backfire, too,

because it generates a type of information cascade: each agent expects others to have fact-checked

and becomes more lax in his or her inspection. Performance targets that require platforms to remove a

certain fraction of posts with misinformation are generally effective, but can backfire when demanding

targets induce the platform to deviate from the targets, with the hope of not being detected. Finally,

we show that regulation of platform algorithms, for example, in the form of ideological segregation

standards, can be a powerful tool against filter bubbles and misinformation, but need to be well-

calibrated.

Our framework was purposefully chosen to be simple and several generalizations would be

interesting to consider in future work. Most importantly, our assumption that agents are Bayesian

rational should be viewed as a useful benchmark. In our setting, it brought out certain new strategic

forces—highlighting how social media actions exhibit strategic complementarities and how the degree

of homophily alters agents’ strategic behavior. Although various behavioral biases and psychological

factors appear to be important in social media behavior, we believe that the economic forces we have

identified in this paper will continue to apply in the presence of most of these effects, and our Bayesian

benchmark enables us to isolate these forces in a transparent manner. Nevertheless, it remains true

that misinformation can be more damaging when agents are boundedly rational, and incorporating

such considerations is an important direction for future research. Interesting questions that emerge in

this case relate to whether the platform, in addition to designing algorithms that create filter bubbles,

may choose strategies that exploit the cognitive limitations of users.

Other theoretical generalizations that might be interesting to consider include extensions to

repeated interactions with incomplete information, which could be used to study how agents update

their initial political views over time. When there is limited misinformation, agents will gradually learn

the true state. In contrast, when there is a significant probability of misinformation, agents will be

uncertain about how to interpret articles that disagree with their priors and this may place an upper

bound on the speed and possibility of learning (see Acemoglu et al. (2016)).

Despite its simplicity, our model makes several new empirical predictions, most notably related to

the non-monotonic effects of homophily and polarization and to platform incentives and algorithmic

decisions. Investigating these predictions empirically as well as generating new stylized facts about

patterns of these information cascades on social media, is another important area for future research.
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Eckles, Dean, René F. Kizilcec, and Eytan Bakshy (2016), “Estimating peer effects in networks with peer
encouragement designs.” Proceedings of the National Academy of Sciences, 113, 7316–7322.

Egelhofer, Jana Laura and Sophie Lecheler (2019), “Fake news as a two-dimensional phenomenon: a
framework and research agenda.” Annals of the International Communication Association, 43, 97–
116.

Fiorina, Morris P., Samuel A. Abrams, and Jeremy C. Pope (2008), “Polarization in the American Public:
Misconceptions and Misreadings.” The Journal of Politics, 70, 556–560.

Frenkel, Sheera and Cecilia Kang (2021), An ugly truth: Inside Facebook’s battle for domination.
Hachette UK.

Garimella, Kiran and Dean Eckles (2020), “Images and misinformation in political groups: Evidence
from whatsapp in india.” arXiv preprint arXiv:2005.09784.

Gentzkow, Matthew and Jesse M. Shapiro (2006), “Media Bias and Reputation.” Journal of Political
Economy, 114, 280–316.

Golub, Benjamin and Matthew O Jackson (2010), “Naive learning in social networks and the wisdom
of crowds.” American Economic Journal: Microeconomics, 2, 112–149.

Greene, Ciara M, Robert A Nash, and Gillian Murphy (2021), “Misremembering brexit: Partisan bias
and individual predictors of false memories for fake news stories among brexit voters.” Memory, 29,
587–604.

Grinberg, Nir, Kenneth Joseph, Lisa Friedland, Briony Swire-Thompson, and David Lazer (2019), “Fake
news on Twitter during the 2016 U.S. presidential election.” Science, 363, 374–378.

Guess, Andrew, Jonathan Nagler, and Joshua Tucker (2019), “Less than you think: Prevalence and
predictors of fake news dissemination on Facebook.” Science Advances, 5.

23



Guess, Andrew, Brendan Nyhan, and Jason Reifler (2018), “Selective exposure to misinformation:
Evidence from the consumption of fake news during the 2016 US presidential campaign.” European
Research Council, 9, 4.

Hsu, Chin-Chia, Amir Ajorlou, and Ali Jadbabaie (2020), “News Sharing, Persuasion, and Spread of
Misinformation on Social Networks.” SSRN Scholarly Paper ID 3391585.

Kamenica, Emir (2019), “Bayesian Persuasion and Information Design.” Annual Review of Economics,
11, 249–272.

Kamenica, Emir and Matthew Gentzkow (2011), “Bayesian Persuasion.” American Economic Review,
101, 2590–2615.

Keppo, Jussi, Michael Jong Kim, and Xinyuan Zhang (2022), “Learning manipulation through
information dissemination.” Operations Research, 70, 3490–3510.

Kim, Antino, Patricia L Moravec, and Alan R Dennis (2019), “Combating fake news on social media
with source ratings: The effects of user and expert reputation ratings.” Journal of Management
Information Systems, 36, 931–968.

Kim, Dam Hee, S. Mo Jones-Jang, and Kate Kenski (2020), “Why Do People Share Political Information
on Social Media?” Digital Journalism, 0, 1–18.

Kozyreva, Anastasia, Stephan Lewandowsky, and Ralph Hertwig (2020), “Citizens Versus the Internet:
Confronting Digital Challenges With Cognitive Tools.” Psychological Science in the Public Interest, 21,
103–156.

Kranton, Rachel and David McAdams (2022), “Social connectedness and the market for information.”
Technical report, Working Paper.

Lazer, David MJ, Matthew A. Baum, Yochai Benkler, Adam J. Berinsky, Kelly M. Greenhill, Filippo
Menczer, Miriam J. Metzger, Brendan Nyhan, Gordon Pennycook, and David Rothschild (2018), “The
science of fake news.” Science, 359, 1094–1096.

Lee, Chei Sian, Long Ma, and Dion Hoe-Lian Goh (2011), “Why Do People Share News in Social Media?”
In Active Media Technology, Lecture Notes in Computer Science, 129–140, Springer.

Levy, Ro’ee (2021), “Social Media, News Consumption, and Polarization: Evidence from a Field
Experiment.” American Economic Review, 111, 831–870.

Merlino, Luca P, Paolo Pin, and Nicole Tabasso (2023), “Debunking rumors in networks.” American
Economic Journal: Microeconomics, 15, 467–496.

Molina, Maria D., S. Shyam Sundar, Thai Le, and Dongwon Lee (2021), ““Fake News” Is Not Simply
False Information: A Concept Explication and Taxonomy of Online Content.” American Behavioral
Scientist, 65, 180–212.

Mostagir, Mohamed, Asuman Ozdaglar, and James Siderius (2022), “When is society susceptible to
manipulation?” Management Science, 68, 7153–7175.

Mostagir, Mohamed and James Siderius (2022a), “Learning in a post-truth world.” Management
Science, 68, 2860–2868.

24



Mostagir, Mohamed and James Siderius (2022b), “When do misinformation policies (not) work?”
Technical report, Working paper.

Mostagir, Mohamed and James Siderius (2023), “Social inequality and the spread of misinformation.”
Management Science, 69, 968–995.

Nguyen, Nam P., Guanhua Yan, My T. Thai, and Stephan Eidenbenz (2012), “Containment of
misinformation spread in online social networks.” In Proceedings of the 4th Annual ACM Web Science
Conference, WebSci ’12, 213–222.

Papakyriakopoulos, Orestis, Simon Hegelich, Morteza Shahrezaye, and Juan Carlos Medina Serrano
(2018), “Social media and microtargeting: Political data processing and the consequences for
Germany.” Big Data & Society, 5.

Papanastasiou, Yiangos (2020), “Fake News Propagation and Detection: A Sequential Model.”
Management Science, 66, 1826–1846.

Pariser, E. (2011), The Filter Bubble: What The Internet Is Hiding From You. Penguin Books Limited.

Pennycook, Gordon, Adam Bear, Evan T. Collins, and David G. Rand (2020a), “The Implied Truth Effect:
Attaching Warnings to a Subset of Fake News Headlines Increases Perceived Accuracy of Headlines
Without Warnings.” Management Science, 66, 4944–4957.

Pennycook, Gordon, Tyrone D. Cannon, and David G. Rand (2018), “Prior exposure increases perceived
accuracy of fake news.” Journal of Experimental Psychology. General, 147, 1865–1880.

Pennycook, Gordon, Ziv Epstein, Mohsen Mosleh, Antonio A. Arechar, Dean Eckles, and David G. Rand
(2021), “Shifting attention to accuracy can reduce misinformation online.” Nature, 592, 590–595.

Pennycook, Gordon, Jonathon McPhetres, Yunhao Zhang, Jackson G. Lu, and David G. Rand (2020b),
“Fighting COVID-19 Misinformation on Social Media: Experimental Evidence for a Scalable
Accuracy-Nudge Intervention.” Psychological Science, 31, 770–780.

Pennycook, Gordon and David G. Rand (2019), “Lazy, not biased: Susceptibility to partisan fake news
is better explained by lack of reasoning than by motivated reasoning.” Cognition, 188, 39–50.

Pew Research Center (2014), “Political Polarization in the American Public.”

Prior, Markus (2013), “Media and Political Polarization.” Annual Review of Political Science, 16, 101–
127.

Stein, Jonas, Vincenz Frey, and Arnout van de Rijt (2023), “Realtime user ratings as a strategy for
combatting misinformation: an experimental study.” Scientific reports, 13, 1626.

Sunstein, Cass R. (2018), #Republic: Divided Democracy in the Age of Social Media.

Tarski, Alfred (1955), “A lattice-theoretical fixpoint theorem and its applications.” Pacific Journal of
Mathematics, 5, 285–309.

Taylor, Sean J. and Dean Eckles (2018), “Randomized Experiments to Detect and Estimate Social
Influence in Networks.” In Complex Spreading Phenomena in Social Systems: Influence and
Contagion in Real-World Social Networks, Computational Social Sciences, 289–322.

25



Topkis, Donald M. (1998), Supermodularity and Complementarity, first edition edition.

Törnberg, Petter (2018), “Echo chambers and viral misinformation: Modeling fake news as complex
contagion.” PLOS ONE, 13.

Vicario, Michela Del, Alessandro Bessi, Fabiana Zollo, Fabio Petroni, Antonio Scala, Guido Caldarelli,
H. Eugene Stanley, and Walter Quattrociocchi (2016), “The spreading of misinformation online.”
Proceedings of the National Academy of Sciences, 113, 554–559.

Vosoughi, Soroush, Deb Roy, and Sinan Aral (2018), “The spread of true and false news online.” Science,
359, 1146–1151.

Yeung, Karen (2018), “Algorithmic regulation: A critical interrogation.” Regulation & Governance, 12,
505–523.

Yeung, Karen and Martin Lodge (2019), Algorithmic regulation. Oxford University Press.

26



A Proofs

A.1 Auxiliary Lemmas

We define a (mixed-strategy) strategy σi for agent i to be a map from priors bi to elements of the simplex

∆({D, I,S}). In others words, σi specifies for each ideological prior bi of agent i the probability that

she will play each of the three actions, D, I, and S. We let σ−i denote the (vector of) strategies of all

agents other than agent i.

Lemma A.1. Given any set of strategies σ−i, agent i’s best response is a cutoff strategy with cutoffs (b∗i , b
∗∗
i )

such that if bi < b∗i agent i dislikes (D), if b∗i < bi < b∗∗i agent i ignores (I), and if bi > b∗i agent i shares

(S).

Proof of Lemma A.1. When agent i receives an article, she forms (ex-post) belief πi about the article’s

veracity which depends only on the observables (r,m). By Bayes’ rule:

πi ≡ P[ν = T |, r,m = R] =
P[m = R | r, ν = T ]P[ν = T | r]

P[m = R | r, ν =M]P[ν =M| r] + P[m = R | r, ν = T ]P[ν = T | r]
.

By the law of total probability, we have:

P[m = R | r, ν = T ] = P[m = R | ν = T ] = P[m = R | θ = R, ν = T ]P[θ = R] + P[m = R | θ = L, ν = T ]P[θ = L]

= pbi + (1− p)(1− bi) ;

P[m = R | r, ν =M] = P[m = R | ν =M] = P[m = R | θ = R, ν =M]P[θ = R] + P[m = R | θ = L, ν =M]P[θ = L]

= qbi + (1− q)(1− bi) .

Putting these together we obtain equation (2). Moreover, πi is monotone in bi since

∂πi
∂bi

=
(1− φ(r))φ(r)(p− q)

(1− bi + q(1− φ(r))(2bi − 1)− p(φ(r)− 2φ(r)bi))2
> 0.

Note that Ui(I) and Ui(D) is independent of σ−i, and in particular D is a better response to I if and

only if πi < (ũ − c̃)/ũ. Because πi is monotone in bi, this implies there exists some b̃ where D is a

better response to I if and only if bi < b̃ (where b̃ = 1 if disliking dominates ignoring and b̃ = 0 if

ignoring dominates disliking). Next, recall that the payoff to sharing is Ui(S) = U
(1)
i + U

(2)
i , where

U
(1)
i = u1ν=T − c1ν=M and U (2)

i = κSi − dDi. Observe that, as before, U (1)
i is independent of σ−i and

has expected payoff (u+ c)πi− c, which is monotonically increasing in πi. Moreover, EP,σ−i [κSi− dDi]

does not depend on bi. Because πi is monotone in bi, we see that Ui(S) is increasing in bi, Ui(I) is

constant in bi (it is always zero), and Ui(D) is decreasing in bi (it is equal to ũ(1− πi)− c̃). This implies

that either (i) ignoring dominates sharing, (ii) sharing dominates ignoring, or (iii) Ui(S) = 0 for some

prior b′:

(i) If ignoring dominates sharing, we set (b∗i , b
∗∗
i ) = (b̃, 1).

(ii) If sharing dominates ignoring, then either sharing dominates disliking (in which case set (b∗i , b
∗
i ) =

(0, 0)), disliking dominates sharing (in which case we set (b∗i , b
∗∗
i ) = (1, 1)), or there exists some
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prior b′′ where Ui(S) = Ui(D) (in which case set (b∗i , b
∗∗
i ) = (b′′, b′′)).

(iii) Otherwise, if b̃ < b′, set (b∗i , b
∗∗
i ) = (b̃, b′); however, if b̃ ≥ b′, then we set (b∗i , b

∗∗
i ) = (b′, b′).

An immediate consequence of Lemma A.1 is that any Bayesian-Nash equilibrium must be in cutoff

strategies. Hence, we can limit our attention to cutoff strategies (b∗i , b
∗∗
i ) for every agent i, which can be

represented as (b∗,b∗∗) in vector notation. This is a partially-ordered set according to the component-

wise order�. Hence, the cutoff space B = [0, 1]2N forms a complete lattice. Note that for any collection

of cutoffs {(b∗,(1),b∗∗,(1)), (b∗,(2),b∗∗,(2)), . . . , } in the cutoff space, there is a greatest lower bound given

by the component-wise infimum and a least upper bound given by the component-wise supremum.

Next, we define a map ψ : B → B that maps cutoffs (b∗,b∗∗) to best-response cutoffs

(b∗,BR,b∗∗,BR). This map is well-defined because (i) H is a continuous distribution, so strategies at

the cutoffs are immaterial; and (ii) by Lemma A.1, for any set of strategies σ−i (including the cutoff

strategies given by (b∗,b∗∗)), all agents’ best responses are in cutoff form.

Lemma A.2. The map ψ preserves the component-wise order�.

Proof of Lemma A.2. Consider some (b̂∗, b̂∗∗) � (b∗,b∗∗). Fixing an article with observables (r,m),
Ui(D), Ui(I) and U (1)

i are independent of (b̂∗, b̂∗∗) and (b∗,b∗∗). However, for U (2)
i we have:

EP,(b̂∗,b̂∗∗)[κSi − dDi] =

N∑
j=1

pij

(
κP(b̂∗,b̂∗∗)[aj = S]− dP(b̂∗,b̂∗∗)[aj = D]

)
=

N∑
j=1

pij

(
κPH [bj > b̂∗∗j ]− dPH [bj < b̂∗j ]

)

≤
N∑
j=1

pij
(
κPH [bj > b∗∗j ]− dPH [bj < b∗j ]

)
= EP,(b̃∗,b̃∗∗)[κSi − dDi] .

As a result, U (b̂∗,b̂∗∗)
i (S) ≤ U

(b∗,b∗∗)
i (S). As in Lemma A.1, we define b̃ as the prior where Ui(D) = 0 if

such a b̃ exists, otherwise let b̃ = 0 if ignoring dominates disliking and b̃ = 1 if disliking dominates

ignoring. Observe that b̃ is the same for both (b̂∗, b̂∗∗) and (b∗,b∗∗). We have three cases for

the best-response cutoffs (b∗,BR,b∗∗,BR) given other agents’ cutoffs (b∗,b∗∗) (which we compare to

(b̂∗,BR, b̂∗∗,BR) given other agents’ cutoffs (b̂∗, b̂∗∗)):

(i) Ignoring dominates sharing for agent i (for given cutoffs (b∗,b∗∗)). Then by virtue of

U
(b̂∗,b̂∗∗)
i (S) ≤ U

(b∗,b∗∗)
i (S), ignoring dominates sharing with (b̂∗, b̂∗∗) as well. Thus,

(b∗,BRi , b∗∗,BRi ) = (b̂∗,BRi , b̂∗∗,BRi ) = (b̃, 1).

(ii) Sharing dominates ignoring for agent i (for given cutoffs (b∗,b∗∗)). Then either sharing dominates

disliking (in which case (b∗,BRi , b∗∗,BRi ) = (0, 0) � (b̂∗,BRi , b̂∗∗,BRi ) trivially), or there exists some

prior b′′ where U
(b∗,b∗∗)
i (S) = Ui(D) denoted by b′′ and (b∗,BRi , b∗∗,BRi ) = (b′′, b′′). Moreover,

because U (b̂∗,b̂∗∗)
i (S) ≤ U

(b∗,b∗∗)
i (S) = Ui(D) at prior b′′, for an agent with prior b′′, playing D is

a (weakly) better response than sharing when other agents play according to cutoffs (b̂∗, b̂∗∗). By

monotonicity of Ui(S) and Ui(D) in prior bi, this implies that b∗∗,BRi ≤ b̂∗∗,BRi . If ignoring is never

a best response when (b̂∗, b̂∗∗), then b̂∗,BRi = b̂∗∗,BRi . Otherwise, b̂∗,BRi = b̃ ≥ b∗∗,BRi = b∗,BRi .
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(iii) U (b∗,b∗∗)
i (S) = 0 for some prior b′ for agent i. Then U

(b̂∗,b̂∗∗)
i (S) ≤ U

(b∗,b∗∗)
i (S) = 0 implies that

for an agent with prior b′ playing I is a (weakly) better response than sharing when other agents

play according to (b̂∗, b̂∗∗). By monotonicity of Ui(S) in prior bi, this implies that b∗∗,BRi ≤ b̂∗∗,BRi .

If b̃ < b′, then b∗,BRi = b̂∗,BRi = b̃; otherwise, if b̃ ≥ b′, b∗,BRi = b∗∗,BRi = b′ ≤ b̂∗,BRi .

This establishes that (b̂∗,BRi , b̂∗∗,BRi ) � (b∗,BRi ,b∗∗,BRi ), so the order� is preserved by ψ.

Lemma A.3. An increase in polarization of beliefs can be constructed via the following process: take

every belief bi and either (i) add some εi > 0 to bi if bi > 1/2, or (ii) subtract some εi > 0 to bi if bi < 1/2.

Proof of Lemma A.3. Let H2 be more polarized than H1. For part (i), note that H1(b1i ) = α > 1/2,

so by single-crossing at H−1
1 (1/2) = H−1

2 (1/2), we know that H−1
2 (α) − H−1

1 (α) > 0. Thus, for some

b2i > b1i , we have H−1
2 (α) = b2i , or in other words, H2(b2i ) = α. Setting εi = b2i − b1i > 0 in this fashion

for all bi > 1/2 accomplishes claim (i). For part (ii), note that H1(b1i ) = α < 1/2, so by single-crossing

at H−1
1 (1/2) = H−1

2 (1/2), we know that H−1
2 (α) − H−1

1 (α) < 0. Thus, for some b2i < b1i , we have

H−1
2 (α1) = b2i , or in other words, H2(b2i ) = α. Setting εi = b1i − b2i > 0 in this fashion for all bi < 1/2

accomplishes claim (ii).

Lemma A.4. If κ ≤ κ̄ ≡ (cc̃− u(ũ− c̃))/(ũN), then for any agent i:

(i) If b∗i > 0 and b∗∗i < 1, then b∗∗i > b∗i ;

(ii) For all b̄ < 1, there exists r̃ > 0 such that agent i playsD in any equilibrium for an article with r < r̃

and on any sharing network P, provided that bi < b̄.

Proof of Lemma A.4. For part (i), by way of contradiction suppose that b∗i = b∗∗i . Then for an agent with

prior b∗i (and corresponding ex-post belief π∗i that the article is truthful), it must be the case that:

ũ(1− πi)− c̃ = uπi − c(1− πi) + E[κSi − dDi] ≥ 0 .

Re-arranging we get that πi = ũ−c̃+c−E[κSi−dDi]
ũ+u+c . Substituting into the payoff for actionD, we see that:

Ui(D) = ũ

(
u+ c̃+ E[κSi − dDi]

ũ+ u+ c

)
− c̃ ≤ ũ

(
u+ c̃+ κN

ũ+ u+ c

)
− c̃ < ũ

(
u+ c̃+ κ̄N

ũ+ u+ c

)
− c̃ ≤ 0 .

By assumption, Ui(S) = Ui(D) < 0, but since Ui(I) = 0, ignoring is the best response at prior b∗i , which

is a contradiction.

For part (ii), notice by equation (2), for a fixed b < 1, as r → 0, πi → 0, and therefore:

Ui(S) = uπi − c(1− πi) + E[κSi − dDi] < uπi − c(1− πi) + κ̄N ≤ uπi − c(1− πi) +
c

N
N

r→0
= −c+ c = 0 .

where the last inequality follows from the observation that:

κ̄ ≡ cc̃− u(ũ− c̃)
ũN

<
cc̃

ũN
<

c

N
,
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because ũ > c̃. Thus, as r → 0, ignoring is a better response than sharing. But note that Ui(D) =

ũ(1 − πi) − c̃
r→0
= ũ − c̃ > 0, so as r → 0, disliking is a better response than ignoring. As a result,

disliking is a best response for any fixed b < 1 as r → 0. The claim in (ii) thus follows from continuity

of equation (2).

Lemma A.5. All equilibria are semi-symmetric in an island network. In other words, for every

equilibrium, there exist {(b∗` , b∗∗` )}k`=1 such that b∗i = b∗`i and b∗∗i = b∗∗`i i in island `.

Proof of Lemma A.5. To obtain a contradiction, suppose that there exists an agent i and an agent j with

`i = `j but either (i) b∗i 6= b∗j or (ii) b∗∗i 6= b∗∗j .

Without loss of generality, suppose that b∗i < b∗j . By way of contradiction suppose b∗∗i > b∗i , and

consider priors b̃ ∈ (b∗i ,min{b∗j , b∗∗i }) where agent iwould ignore but agent j with that same prior would

dislike. However, both agents with prior b̃ receive payoff ũ(1 − π(b̃)) − c̃ from disliking and payoff of 0

from ignoring. Thus, one of them must not be playing a best response. This establishes that b∗∗i = b∗i .

Thus, when agents i and j both have some prior b′ ∈ (b∗i , b
∗
j ), agent i shares and agent j dislikes. By

symmetry of agent i and j’s network positions, it is clear that for agent i and agent j with prior b′ that

Uj(S)− Ui(S) = ps(κ+ d). Similarly, Uj(D)− Ui(D) = 0. But in this case,

[Uj(S)− Ui(S)]− [Uj(D)− Ui(D)] = [Uj(S)− Uj(D)] + [Ui(D)− Ui(S)] = ps(κ+ d) > 0 .

This implies that either [Uj(S)−Uj(D)] > 0 or [Ui(D)−Ui(S)] > 0 (or both). This yields a contradiction

because at prior b′, it is supposed to be a best response for agent j to play D and a best response for

agent i to play S. Thus, b∗i = b∗j .

Without loss of generality, suppose that b∗∗i < b∗∗j . If b∗∗i ≤ b∗j , then for priors b′′ ∈ (b∗∗i , b
∗
j ), agent i

shares and agent j dislikes. Via the same reasoning as in the previous paragraph, this is a contradiction,

so b∗j < b∗∗i < b∗∗j . Let us consider some prior b̂ ∈ (b∗∗i , b
∗∗
j ), where agent i shares and agent j ignores. By

symmetry of agent i and j’s network positions, it is clear that for agent i and agent j with prior b̂ that

Uj(S)− Ui(S) = psκ. Similarly, Uj(I)− Ui(I) = 0. Then notice that:

[Uj(S)− Ui(S)]− [Uj(I)− Ui(I)] = [Uj(S)− Uj(I)] + [Ui(I)− Ui(S)] = psκ > 0 .

This implies that either [Uj(S) − Uj(I)] > 0 or [Ui(I) − Ui(S)] > 0 (or both). However, this is a

contradiction because at prior b′, it is supposed to be a best response for agent j to play I and a best

response for agent i to play S. Thus, b∗∗i = b∗∗j .

A.2 Proofs from Section 3

Proof of Theorem 1. Claim (ii) follows directly from Lemma A.1 and establishes that the Bayesian-Nash

equilibria are the fixed points of the map ψ. Clearly the cutoff space B is convex and compact (it

is defined by [0, 1]2N ). To see that ψ is continuous, notice that for ψ : (b∗,b∗∗) 7→ (b∗,BR,b∗∗,BR),

EP,(b∗,b∗∗)[U
(2)
i ] is continuous because H is continuous (and Ui(D), Ui(I), and U

(1)
i do not depend
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on (b∗,b∗∗)). Moreover, by the same reasoning as in Lemma A.2, UP,(b∗,b∗∗)
i (S) and U

P,(b∗,b∗∗)
i (S) −

Ui(D) are monotone and continuous. Because these expressions are continuous in (b∗,b∗∗), the

corresponding best-response cutoffs, (b∗,BR,b∗∗,BR) are also continuous in (b∗,b∗∗). By Brouwer’s

fixed-point theorem, there exists a Bayesian-Nash equilibrium, proving (i).

Finally, noting that the cutoff space B is a complete lattice and ψ preserves the component-

wise order � (by Lemma A.2), Tarski’s fixed-point theorem establishes that the set of equilibrium

cutoffs forms a lattice (see Tarski (1955)). By definition of a lattice order, there exists a least-sharing

equilibrium (largest b∗∗) and a most-sharing equilibrium (smallest b∗∗). This completes the proof of

(i)-(iii) for Theorem 1.

For the comparative statics, recall that πi is given by equation (2) and provides the (ex-post) belief

of the article’s veracity conditional on observables (r,m). Also observe that:

∂πi
∂r

=
(1− bi + p(2bi − 1))(1− bi + q(2bi − 1))

(1− bi + q(1− φ(r))(2bi − 1)− p(φ(r)− 2φ(r)bi))2
φ′(r) .

Because φ′(r) > 0, it is clear that when bi > 1/2, ∂πi/∂r > 0. When bi < 1/2, 1 − bi + p(2bi − 1) is

minimized when p = 1, in which case it is equal to bi ≥ 0 (and with this inequality strict whenever

p < 1). Similarly, when bi < 1/2, 1− bi + q(2bi − 1) is minimized when q = 1/2, in which case it is equal

to 1/2 > 0. Thus, ∂πi/∂r > 0 for all bi.

We next prove that the social media game is supermodular and has increasing differences in

reliability. Note that for all r′ ≥ r:

[
Ui(S, r′)− Ui(I, r′)

]
− [Ui(S, r)− Ui(I, r)] = Ui(S, r′)− Ui(S, r) = U

(1)
i (r′)− U (1)

i (r) = (u+ c)(πi(r
′)− πi(r)),

which is non-negative via the above observation that ∂πi
∂r > 0. Similarly, for all r′ ≥ r:

[
Ui(S, r′)− Ui(D, r′)

]
− [Ui(S, r)− Ui(D, r)] =

[
Ui(S, r′)− Ui(S, r)

]
+
[
Ui(D, r′)− Ui(D, r)

]
= (u+ c)(πi(r

′)− πi(r)) + ũ(πi(r
′)− πi(r)) ,

which is non-negative via the same observation. Finally, for all r′ ≥ r:

[
Ui(I, r′)− Ui(D, r′)

]
− [Ui(I, r)− Ui(D, r)] = Ui(D, r′)− Ui(D, r) = ũ(πi(r

′)− πi(r)) ,

which, again, is non-negative. Thus, via Topkis’s monotone comparative statics theorem (see Topkis

(1998)), there is uniformly more sharing.

Similarly, the social media game is supermodular and has increasing differences in sensationalism

and (the negative of) reputational concerns. To see this, note for all κ′ ≥ κ and d′ ≤ d:

[
Ui(S, κ′, d′)− Ui(I, κ′, d′)

]
− [Ui(S, κ, d)− Ui(I, κ, d)] = U

(2)
i (κ′, d′)− U (2)

i (κ′, d′) = (κ′ − κ)Si + (d− d′)Di
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which is non-negative. Moreover, note that comparing S and D is identical to comparing S and I
because parameters (κ, d) affect both I andD identically (they only factor into the payoff of action S).

For this same reason, we note that [Ui(I, κ′, d′)− Ui(D, κ′, d′)]− [Ui(I, κ, d)− Ui(D, κ, d)] = 0. Thus, via

Topkis’s theorem, there is uniformly more sharing.

A.3 Proofs from Section 4

Proof of Lemma 1. We prove the stronger claim, which is the first half of Theorem 3 (excluding the

comparative statics). First, let us define σ̄P to be the most-sharing equilibrium under a given sharing

network P, and Pεσ̄P
to be the probability measure over action set {D, I,S}, given microtargeting

technology ε > 0 and the most-sharing equilibrium induced on network P. The proof is constructed

in five parts:

(i) Consider the sets Aε = {i : ∃P′ s.t. Pεσ̄P′
[ai = S] > 0} (the set of agents who share with positive

probability under some sharing network) andAcε = {i : ∀P′ , Pεσ̄P′
[ai = S] = 0} (the set of agents

who share with probability 0 under all sharing networks), withAε ∪ Acε spanning the entire set of

agents in the network.21 We show there exists ε̄ > 0 such that for all ε < ε̄, the sharing network

P∗ε constructed by setting pij = 1 for all i, j ∈ Aε and pij = 0 otherwise, satisfies Pεσ̄P∗ε
[ai =

S] · Pεσ̄P∗ε
[ai = D] = 0 for all agents i ∈ Aε. For parts (ii)-(v), we will fix some ε < ε̄ and suppress

the dependence on ε for simplicity of notation.

(ii) Let us define the complete sharing network as P◦ ≡ 1N×N − I. We show that if Pσ̄P◦ [ai = D] = 0

for all agents i, then user engagement is highest under P◦, i.e., maxi∗ Eσ̄P◦ [Si∗ ] ≥ maxi∗ Eσ̄P′ [Si∗ ]

(where Si∗ is the number of shares conditional on seed i∗), for any other arbitrary sharing network

P′. In other words, P◦ is the profit-maximizing sharing network.

(iii) We show that if Pσ̄P◦ [ai = D] > 0 for some agent i, thenAc is non-empty.

(iv) We show that when Ac is non-empty, then the platform’s profit-maximizing sharing network is

P∗, which sets pij = 1 for all i, j ∈ A and pij = 0 otherwise.

(v) We show there exists some rP ∈ (0, 1) such that Pσ̄P◦ [ai = D] = 0 for all i if and only if r >

rP . Moreover, a profit-maximizing sharing network takes the form of Theorem 3(ii) in case (ii)

described above when r > rP , and the form of Theorem 3(i) in case (iv) described above when

r < rP , completing the proof.

Proof of Claim (i): Let us partition the agents into the set of “active agents,”Aε = {i : ∃P′ s.t. Pεσ̄P′
[ai =

S] > 0}, and the set of “inactive agents,” Acε = {i : ∀P′ , Pεσ̄P′
[ai = S] = 0}. As before, we define the

sharing network P∗ε as setting pij = 1 for all agents i, j ∈ A and setting pij = 0 for all other agents. Note

21Note that these sets are indexed by ε because the probability of an agent’s action depends on the platform’s targeting
technology ε > 0, which allows the platform to assess agent i’s prior bi up to ±ε.
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that for any agent i ∈ A, her equilibrium strategy is identical to her strategy in a complete network on

|A| agents, which means by Lemma A.5, that all agents i ∈ A employ the same cutoffs (b∗ε, b
∗∗
ε ) in the

most-sharing equilibrium under sharing network P∗.

Consider ε = 0, which occurs when the platform technology endows it with perfect knowledge of

each agent’s bi. Note that P0
σ̄P∗0

[ai = ·] ∈ {0, 1} because each agent’s action is known with certainty.

There are three cases to consider.

1. b∗0 = 0, so P0
σ̄P∗0

[ai = D] = 0 for all i. There are two subcases. If b∗∗0 = 0 also, then Ac0 = ∅
and because Acε ⊂ Ac (the inactive set monotonically decreases in ε), we know that Acε = ∅ and

Pεσ̄P∗ε
[ai = D] = 0 for all i. If b∗∗0 > 0, then set ε < ε̄ ≡ b∗∗0 /4. Note that while Aε (and Acε) may

change, no agent with belief bi ≤ b∗∗0 − ε is in Aε, and all agents in Aε\A0 choose ignore with

probability 1, which does not affect the payoffs of any agents. Thus, b∗ε = b∗0 and b∗∗ε = b∗∗0 , and so

for all i ∈ Aε, we also obtain that Pεσ̄P∗ε
[ai = D] = 0.

2. b∗∗0 = 1, so P0
σ̄P∗0

[ai = S] = 0 for all i. Then A0 = ∅. However, this immediately implies that

Aε = ∅ for any ε > 0 as no agent would share in any sharing network P′ (by definition of Aε).

Therefore, independent of ε > 0, we have for all P′ that Pεσ̄P′ε
[ai = S] = 0 for all agents i.

3. b∗0, b
∗∗
0 ∈ (0, 1). By Lemma A.4(i), this implies that b∗0 < b∗∗0 . Take ε < ε̄ ≡ (b∗∗0 − b∗0)/4. Identical to

case (1), no agents with bi ≤ b∗∗0 − εwill be inAε, and all agents inAε\Awill ignore, implying that

b∗ε = b∗0 and b∗∗ε = b∗∗0 , so for all i ∈ Aε, we obtain Pεσ̄P∗ε
[ai = D] = 0.

Taking ε̄ for the appropriate case (or ε̄ = 1 in case (2)), we see that for all ε < ε̄, we have Pεσ̄P∗ε
[ai =

S] · Pεσ̄P∗ε
[ai = D] = 0 for all agents i ∈ Aε, establishing the claim.

Proof of Claim (ii): Suppose under the complete sharing network P◦, we have Pσ̄P◦ [ai = D] = 0 for

all agents i. We focus on a modified social media game that only allows agents to ignore (I) or share

(S). Notice this necessarily (weakly) increases user engagement for any sharing network P′ — because

Ui(S) weakly increases for all agents i with no dislike action, Topkis’s theorem guarantees a higher

probability of sharing for all agents in equilibrium, which implies an increase in user engagement. At

the same time, this does not increase user engagement for the complete sharing network P◦, because

no agent dislikes in the equilibrium of the original game (by assumption), so would choose the same

actions (either I or S) in the modified game. Thus, a sufficient condition to prove claim (i) is to show

that P◦ maximizes user engagement among all other networks P′ for modified game.

Let B̂ ⊂ [0, 1]2N = {(b′,b◦) |b◦ � b′} denote the partial cutoff space where the second dimension

has lower cutoffs (uniformly more sharing) than the first dimension (in the component-wise lattice

order). We will define the map ψ : B̂ → B̂ to be the one that maps an arbitrary fixed set of cutoff

strategies (b′,b◦) to best-response cutoff strategies (bBR
′
,bBR◦), given the current strategy being

played is (b′,b◦) under the sharing networks (P′,P◦), respectively.

First, we show this map is well-defined. To do this, we just need to guarantee that indeed b◦ �
b′ =⇒ bBR◦ � bBR

′
under the mapping ψ. This is immediate by letting U◦j (S) be the utility for agent j
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from sharing under the complete network and U ′j(S) the utility from sharing under P′. Then,

U◦j (S)− U ′j(S) = κ
∑
j̃ 6=j

p′
jj̃

(H(b∗∗
′

j̃
)−H(b∗∗◦

j̃
)) + (1− p′

jj̃
)(1−H(b∗∗◦

j̃
)) ≥ 0 .

Thus, an agent shares under P′ (and b′) only if she shares under P◦ (and b◦) and indeed bBR◦ � bBR
′

must hold. This shows ψ is well-defined.

Consequently, by Tarski’s fixed point theorem (leveraging Lemma A.2), the set of fixed points of

ψ form a lattice in B̂. Moreover, we note that every fixed point of ψ represents one Bayesian-Nash

equilibrium (BNE) on sharing network P◦ and one BNE on sharing network P′. Moreover, for every

BNE, b∗∗
′
, on sharing network P′, there is a fixed point of ψ of the form (b∗∗◦,b∗∗

′
), where b∗∗◦ is

simultaneously a BNE of P◦. In particular, note we can pick the most-sharing BNE b∗∗
′

for network

P′, and because ψ maps into B̂, we must have that b∗∗◦ � b∗∗
′

for the most-sharing equilibrium in P◦

relative to the most-sharing equilibrium in P′.

Finally, it is easy to see this implies that P◦ induces more user engagement than P′ given

equilibrium strategies satisfy b∗∗◦ � b∗∗
′

in the most-sharing equilibrium. For every prior realization

and seed agent i∗, Si∗ is larger in the complete sharing network P◦ than in any other sharing network

P′ (and thus in expectation it is also higher). This can be seen by considering every possible diffusion

path from seed agent i∗ through intermediate agents j1, j2, . . . , jz eventually reaching target agent j.

The probability of a share (and a link) between js and js+1 is 1−H(b∗∗◦js ) inP◦ and and pjsjs+1(1−H(b∗∗
′

js
))

in P′, which is less for every link. Thus, P◦ maximizes user engagement (and is the profit-maximizing

sharing network).

Proof of Claim (iii): Next, we consider the case where the complete sharing network P◦ induces most-

sharing equilibrium cutoffs (b∗, b∗∗), but where b∗ > 0 (by our assumption that there exists an agent i

such that Pσ̄P◦ [ai = D] > 0). To prove thatAc 6= ∅, we show that there must exist an open interval (0, b̄)

with b̄ > 0 where agents with priors bi ∈ (0, b̄) will never share, regardless of the sharing network P′.

To show this, we argue by contradiction that there cannot exist a sharing network P′ where all agents

either share or ignore, i.e., where the equilibrium cutoffs are determined solely by b∗∗
′

(and b∗
′

= 0).

Because the platform’s choice set of sharing networks is compact, this guarantees that b∗ is bounded

away from 0 under any selection of P ∈ [0, 1]N×N .

Let us consider the same mapping ψ from the proof of Claim (ii); note that in general, the fixed

points of this map are not equilibria, because we are restricting b∗ = 0, but action D may be a best

response for some agents under a given fixed point (0,b∗∗) of ψ. However, we know the most-sharing

fixed point (lowest b∗∗
′
) is, in fact, an equilibrium in sharing network P′, by assumption. We can

also show that the most-sharing fixed point from ψ for sharing network P◦ is an equilibrium using

Topkis’s theorem: under strategy profile (0,b∗∗
′
), we have U◦j (I) − U ′j(I) = U◦j (D) − U ′j(D) = 0, but

U◦j (S)−U ′j(S) = κ
∑

j̃ 6=j(1−pjj̃)(1−H(b∗∗
′

j̃
)) ≥ 0. Therefore, in the most-sharing equilibrium, we must

have b∗◦ � 0, implying b∗◦ = 0. Finally, as with Claim (i), because ψ maps into B̂, the most-sharing
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equilibrium under P◦ involves b∗∗◦ � b∗∗
′
. This yields a contradiction, so in factAc 6= ∅.

Proof of Claim (iv): Let Ac 6= ∅ and consider the sharing network P∗ that sets pij = 1 for all i, j ∈ A
and sets pij = 0 otherwise. We can, without loss of generality, assume thatA 6= ∅; otherwise no agent

shares under any sharing network, and user engagement is zero for all P′ (including P∗), making it a

trivial optimum (which is non-unique) for profit maximization. Note that by construction, agents in

Ac share under no sharing network P′, so fully disconnecting them from the seed agent i∗ ∈ A cannot

increase user engagement under any other arbitrary sharing network P′. At the same time, if all agents

i ∈ A never choose dislike, i.e., Pσ̄P∗ [ai = D] = 0, it must be true that setting pij = 1 for all i, j is profit-

maximizing because of Claim (ii). Thus, we can assume that Pσ̄P∗ [ai∗ = D] > 0 for some agent i∗ ∈ A.

We will derive a contradiction.

By definition of A, there must exist some sharing network P̃ where Pσ̄P̃
[ai∗ = S] > 0 (and it is

without loss to assume P̃ is defined only on agents in A). Suppose we amend the payoff of agents

such that di∗ = 0 for agent i∗ (i.e., dislikes do not penalize i∗’s utility). From Topkis’s theorem, it must

be the case that Pσ̄P̃
[ai∗ = S] > 0. Moreover, sharing utility is only monotonically increasing in i∗’s

neighborhood, so under this utility transformation, it must necessarily be the case that Pσ̄P∗ [ai∗ =

S] > 0. Applying Claim (i) again, this means that given di∗ = 0, Pσ̄P∗ [ai∗ = D] = 0.

We repeat this process for all such i∗ of the original game on P∗. This yields a network P∗ of

a modified game where all agents elect Pσ̄P∗ [ai∗ = D] = 0. This is an equilibrium of the original

game, because in equilibrium, no agent dislikes with positive probability. In fact, the most-sharing

equilibrium must have (b∗,b∗∗) � (b̃∗, b̃∗∗) for any other equilibrium (b̃∗, b̃∗∗). Because an equilibrium

exists where b̃∗ = 0, this must be the same for the most-sharing equilibrium. This is a contradiction,

and so in fact P∗ is the profit-maximizing sharing network.

Proof of Claim (v): When r = 1, an all-share equilibrium exists because the article contains

misinformation with probability 0, so in particular, PσP◦ [ai = D] = 0, for all i. When r = 0, Lemma A.4

guarantees that there exists some agent i with PσP◦ [ai = D] > 0. By the monotone comparative statics

of Theorem 1, sharing is monotone in reliability, as is the payoff to disliking, so by continuity (and IVT)

there exists some cutoff rP ∈ (0, 1) such that for r > rP , the complete sharing network admits only

shares and ignores (i.e., satisfies PσP◦ [ai = D] = 0, ∀ i), whereas when r < rP , some agent dislikes with

positive probability.

When r > rP , the network has maximal connectivity as in Theorem 3(ii) with ps = pd = 1. Whenr <

rP , we can form a network with maximal homophily and (ps, pd) = (1, 0), which has the same user

engagement as P∗. For this, we can construct two islands, one of which consists of agents in A and

one of which consists of agents in Ac 6= ∅ (by Claim (iii)). Within island links are ps = 1, but the

network is fully disconnected between islands, with pd = 0. This is the same sharing network as in P∗

for agents in A, and because the article reaches agents in Ac with probability 0, the user engagement

is the same.
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Proof of Theorem 2. For part (a), let us consider belief b(2) < 1 and a reliability threshold r such that for

all P, all agents with b < b(2) choose D in every equilibrium (including the most-sharing equilibrium)

whenever the article has reliability r < r. Such an r exists by Lemma A.4(ii). Thus, for all r < r, every

agent on an island ` ≥ 2 dislikes in the most-sharing equilibrium, regardless of P.

Next, we consider an increase in homophily (while holding expected degree on every island fixed).

By our choice of r, all agents on islands ` ≥ 2 still dislike in the most-sharing equilibrium whenever r <

r. We can thus consider the social media game that only involves island 1, treating islands 2 through k

as automata that always dislike. Before the shift in homophily, consider the equilibrium cutoffs (b∗1, b
∗∗
1 )

for island 1 in the most-sharing equilibrium (the same for all agents on island 1, per Lemma A.5) and

let B1 denote the modified cutoff space defined by all cutoffs (b̂∗1, b̂
∗∗
1 ) � (b∗1, b

∗∗
1 ). Finally we define a

map ϕ : B1 → B1 that maps cutoffs in B1, (b̂∗1, b̂
∗∗
1 ), to best-response cutoffs (b̂∗,BR1 , b̂∗∗,BR1 ), given that

agents on island 1 play according (b̂∗1, b̂
∗∗
1 ). By the arguments in Lemma A.2, ϕ preserves � and B1 is a

complete lattice, provided that the map ϕ is well-defined in that it always maps to an element in B1.

To establish this, consider the utility U1(S) of sharing on island 1 with homophily parameters

(ps, pd), holding fixed the cutoff strategy (b̂∗1, b̂
∗∗
1 ) and the expected degree on island 1, ζ. Thus, we

can write pd = (ζ −N1ps)/(N −N1) and observe then that

U1(S) = U
(1)
1 + κN1ps(1−H(b̂∗∗1 ))− d

(
N1psH(b̂∗1) +

ζ −N1ps
N −N1

· (N −N1)

)
,

and in particular, ∂U1(S)/∂ps = κN1(1−H(b̂∗∗1 )) +dN1(1−H(b̂∗)) > 0. Therefore, if we compare utility

U ′1(S) after the increase in homophily toU1(S) before the increase in homophily (leaving (b̂1, b̂
∗∗
1 ) fixed),

we see that U ′1(S) ≥ U1(S). Hence, ϕ necessarily maps any cutoffs in B1 into B1. Applying Tarski’s

fixed-point theorem, the set of fixed points (and thus Bayesian-Nash equilibria) form a lattice within

the space of cutoffs B1. Moreover, there is a most-sharing equilibrium in B1, which is also the most-

sharing equilibrium in B. We denote this equilibrium by (b∗
′

1 , b
∗∗′
1 ) and note that (b∗

′
1 , b

∗∗′
1 ) � (b∗1, b

∗∗
1 )

(because it lies in B1). In particular, this means b∗∗
′

1 ≤ b∗∗1 , and more agents share on island 1 in the

most-sharing equilibrium following the rise in homophily.

To measure the change in user engagement, we first observe that the seed agent i∗ (that maximizes

E[Si∗ ]) is chosen from the agents on island 1. We consider the user engagement of the article when

agents on island 1 share with probability 1 − H(b∗∗1 ) under the stronger homophily structure (p′s, p
′
d)

versus (ps, pd) (and all other agents kill the article). This is sufficient to show that user engagement

increases following the increase in homophily, because engagement with b∗∗
′

1 < b∗∗1 (but the same

network P) is strictly higher, given that agents on island 1 share more often, that is, (1 − H(b∗∗
′
) >

1−H(b∗∗)).

We consider the diffusion process of an article on the (p′s, p
′
d) network that starts with an agent on

island 1. Let us define a path of the diffusion process to be a chain i∗ → i1 → i2 → . . .→ iz representing

a sequence of agents who receive the article in this process, with i∗ being the seed agent, i1 through

iz−1 all being agents who shared it, and agent iz being an agent who either ignored or disliked the
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article. There may be many such paths for the diffusion of the article (by assumption, all agents with

the possible exception of agent iz must be on island 1).

For each path, we define an alternative path (generated randomly) as follows. For any links to

agents other than to agent iz (i.e., links within island 1), with probability (p′s − ps)/p′s, the link instead

goes to one of islands 2, . . . , k (chosen in proportion to their population) and otherwise remains the

same. Applying this to all paths, we define an isomorphic diffusion process to one on a sharing

network with weaker homophily parameters (ps, pd). However, note that the length of every path

cannot increase following this transformation. Because any transition to islands 2, . . . , k is necessarily

the end of the path, paths can only shorten. Moreover, the number of paths must weakly decrease. As

a result, the fraction of agents who receive the article, Si∗ , must be lower, and user engagement is less

under the (ps, pd) sharing network. This establishes part (a).

For part (b), we first note that there exists r̄ such that the most-sharing equilibrium when r > r̄

is all-share (b∗∗` = 0 for all islands `) regardless of P. Notice that equation (2) is minimized when

bi = 0, and in particular, for all agents i (regardless of their prior) πi ≥ (1−p)φ(r)
(1−q)(1−φ(r))+(1−p)φ(r) . Then,

letting π̄ = max
{

c
u+c ,

ũ−c̃
ũ

}
< 1, we note that whenever r ≥ φ−1

(
(1−q)π̄

(p−q)π̄+(1−p)

)
≡ r̄ ∈ (0, 1), πi ≥ π̄.

Of course, when all other agents (other than i) share and r > r̄, Ui(S) ≥ uπi − c(1 − πi) ≥ 0 and

Ui(D) = ũ(1− πi)− c̃ ≤ 0, so ai = S is a best response for agent i. Thus, the most-sharing equilibrium

is all-share (because it is an equilibrium and no other strategy profile can have more sharing).

Observe that when r > r̄, user engagement is the expected size of the connected component

(formed by P) containing the seed agent i∗. Regardless of the homophily parameters, the seed agent i∗

will be chosen from the largest island (call this island `∗). This is immediate from the fact that all agents

share in equilibrium, agents on island `∗ have the most connections to any other arbitrary island `′ (in

expectation), and are connected to all agents on their own island.

Lastly, we note that the probability that island ` has any connections to island `′ is given by p̃`,`′ =

1 − (1 − pd)
N`N

′
` before the decrease in homophily and p̃′`,`′ = 1 − (1 − p′d)

N`N
′
` after the decrease in

homophily, with p̃′`,`′ > p̃`,`′ for all pairs of islands (`, `′) because p′d > pd. Using the same terminology

as in the argument for part (a), we map the diffusion paths of an article under the less homophilic

sharing network with (p′s, p
′
d). Consider cycles between islands `∗ → `1 → `2 . . . → `z, where `z is the

same island as one of `∗, `1, . . . , `z (in which case, no additional engagement is obtained thereafter the

article returns to island `z). Before the decrease in homophily (where pd < p′d), we can construct an

isomorphic diffusion process where an article remains within the same island (instead of switching to

a different one) with probability (p′d − pd)/pd. By construction of the cycle, whenever such an event

occurs, the cycle becomes complete and the islands reached thereafter in the (p′s, p
′
d) sharing network

are not (for that given cycle). Measuring across all cycles that occur in the (p′s, p
′
d) model, (weakly)

more islands are reached than under the more homophilic (ps, pd) model. Consequently, engagement

is higher under the (p′s, p
′
d) sharing network than with the (ps, pd) sharing network, which has more

homophily. This establishes part (b).
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Proof of Proposition 1. Let us define r∗ as

r∗ ≡ φ−1

(
max

{
(1− q)(ũ− c̃)

(p− q)(ũ− c̃) + (1− p)ũ
,

c

u+ c

})
∈ (0, 1) .

For part (a), first consider the case of r < r∗ and pd = 0 (by continuity, the result extends to the case

of sufficiently large ps/pd). In the most-sharing equilibrium, the seed agent most conducive to the

article’s spread is on the right-wing island, and given that pd = 0, the equilibrium on the left-wing

island is immaterial to total user engagement. Let us denote the right-wing island cutoffs by (b∗R, b
∗∗
R ).

Similar to the proof of Theorem 2(a), we define a cutoff space BR such that (b̂∗R, b̂
∗∗
R ) ∈ BR if and only if

(b̂∗R, b̂
∗∗
R ) � (b∗R, b

∗∗
R ). Similarly, we define the map ϕ : BR → BR which maps an arbitrary cutoff (b̂∗R, b̂

∗∗
R )

to best-response cutoffs (b̂∗,BRR , b̂∗∗,BRR ). To show the map is well-defined, consider UR(S) before the

increase in divisiveness or polarization and U ′R(S) after the increase in divisiveness or polarization.

Because the network structure is fixed, note that U (2)
R (S) = U

(2)′

R (S) when the cutoffs (b̂∗R, b̂
∗∗
R ) are taken

as given, so the differenceU ′R(S)−UR(S) depends only on the difference betweenU (1)
R (S) andU (1)′

R (S).

Specifically, the difference in share payoff depends only on the change in πi following the increase in

divisiveness or polarization. Moreover,

∂πi
∂p

=
(2bi − 1)(1− φ(r))φ(r)(1− q − bi(1− 2q))

(bi(2pφ(r) + 2q(1− φ(r))− 1)− pφ(r)− q(1− φ(r)) + 1)2
> 0 ;

∂πi
∂q

=
(2bi − 1)(1− φ(r))φ(r)(1− p+ bi(2p− 1))

((2bi − 1)φ(r)(p− q) + 2biq − bi − q + 1)2
> 0 ,

whenever bi > 1/2. Likewise, as we showed in Lemma A.1, ∂πi/∂bi > 0 for all bi and greater polarization

increases ideological priors for agents with bi > 1/2 (by Lemma A.3). By virtue of bR > 1/2, we observe

that U (1)′

R (S) > U
(1)
R (S), and so U ′R(S) > UR(S). Thus, as in the proof of Theorem 2(a), ϕ is well-

defined. Applying the Tarski fixed-point theorem, we find that the most-sharing equilibrium leads to

more sharing in the right-wing island. Because the network structure P remains constant and there is

a uniform shift in sharing, user engagement increases.

For part (b), consider r ≥ r∗. Note that for r ≥ r∗, ignoring is a better response to disliking for any agent,

regardless of prior and sharing is a better response to ignoring for all bi > 1/2. The former follows from

noting πi ≥ ũ−c̃
ũ for an agent with prior bi = 0 and the latter from noting πi ≥ c

u+c for agents with

bi > 1/2 and observing that disliking is a dominated strategy. Therefore, the right-wing island always

shares, whereas the left-wing island has equilibrium cutoffs (0, b∗∗L ). Using the same approach as in

part (a), it is enough to show that UL(S) increases following a decrease in divisiveness or polarization.

Furthermore, for bi < 1/2, we see that ∂πi/∂p < 0 and ∂πi/∂q < 0, and by Lemma A.3, decreasing

polarization means that all agents on the left-wing island also have an increase in bi. Thus, there is

more sharing in the most-sharing equilibrium following a decrease in divisiveness or polarization. By

strategic complementarity, the right-wing island remains at all-share, and sharing uniformly increases

(and so does engagement, naturally).
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Proof of Theorem 3. Given the proof of Lemma 1, all that remains is to prove the comparative statics in

the second half of Theorem 3. Note by Theorem 3 that an agent i with prior bi = b(k+1) is indifferent

between ignoring and disliking when r = rP (but strictly prefers to either share or ignore for all r >

rP ), so rP increases if and only if this agent (strictly) prefers to dislike following a shift in parameters.

Because b(k+1) < 1/2, an increase in polarization means that agent i’s prior decreases (see Lemma A.3),

and given that ∂πi/∂bi > 0 (see Lemma A.1), πi decreases for this agent. Therefore, Ui(D) increases

but Ui(I) remains the same, so agent i (strictly) prefers to dislike. Similarly, because ∂πi/∂p < 0 and

∂πi/∂q < 0 for bi < 1/2 (see Proposition 1), πi decreases for this agent (making ai = D a best response).

In both cases, we see that rP increases.

A.4 Proofs from Section 5

Proof of Lemma 2. Let us call the “effective signal strength” of an article with reliability r, ζ ≡ pφ(r) +

(1 − φ(r))/2 (corresponding to the probability that the message argues for θ). Note that the offline

content has an effective signal strength of z. We show that welfare improves when the effective signal

strength of the article increases. The claim of Lemma 2 then follows from noting the effective signal

strength is monotonically increasing in r, so there is either (i) a unique crossing point rR ∈ (0, 1) where

pφ(rR) + (1 − φ(rR))/2 = z, or (ii) pφ(r) + (1 − φ(r))/2 < z for all r ∈ (0, 1), in which case the result

holds by setting rR = 1.

A straightforward application of Bayes’s rule shows that when agent i engages with the platform’s

article, then:

b̂i =

πi
pbi

pbi+(1−p)(1−bi) + (1− πi)bi , if m = R

πi
(1−p)bi

(1−p)bi+p(1−bi) + (1− πi)bi , if m = L.
(3)

When θ = R, then

b̂i − bi = ζ

(
πi

pbi
pbi + (1− p)(1− bi)

+ (1− πi)bi
)

+ (1− ζ)

(
πi

(1− p)bi
(1− p)bi + p(1− bi)

+ (1− πi)bi
)
− bi

and when θ = L, then

bi − b̂i = bi − (1− ζ)

(
πi

pbi
pbi + (1− p)(1− bi)

+ (1− πi)bi
)
− ζ

(
πi

(1− p)bi
(1− p)bi + p(1− bi)

+ (1− πi)bi
)

Summing these (and dropping the platform’s prior of 1/2 for each of the two possible states), we see

that welfareWi of agent i is proportional to:

Wi ∝ ζ
(

pbi
pbi + (1− p)(1− bi)

− (1− p)bi
(1− p)bi + p(1− bi)

)
+ (1− ζ)

(
(1− p)bi

(1− p)bi + p(1− bi)
− pbi
pbi + (1− p)(1− bi)

)

Observe that pbi
pbi+(1−p)(1−bi) >

(1−p)bi
(1−p)bi+p(1−bi) because p > 1/2, and so welfare for agent i is increasing in

ζ (becauseWi is the convex combination of a positive and negative term).

Lastly, note that if user engagement increases, via Theorem 3 we must in fact have a stronger
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relationship when the platform can choose the sharing network P: if E is the set of engaged agents

(those who share) before and E ′ is the set of engaged agents after, then E ⊂ E ′. Thus, summing (or

averaging) over the individual welfare of all agents yields the result.

Proof of Proposition 2. For part (a), take the smallest value of r (in the infimum sense) such that δ∗ = δ is

the most effective policy for all δ ∈ [0, 1] (such a value must exist because r = 1 satisfies this property).

Call this value r̂. If r̂ < rR, set r∗R to r̂ (in which case (a) holds by construction). If r̂ > rR, then set

r∗R = rR. Note by Theorem 3, virality is always increasing in r, and by Lemma 2 we know that welfare

is increasing in virality whenever r > rR. Moreover, because the regulator only makes type-I errors

(it only ever removes misinformation which is welfare-reducing relative to the offline content), it is

necessarily the case that δ∗ = δ is the most effective policy whenever r < rR.

For parts (b) and (c), consider the profit-maximizing sharing network before any censorship policy

is enacted (δ = 0). By Theorem 3 and the assumption that b∗ 6= 0 and b∗∗ 6= 1, it must be the case the

profit-maximizing sharing network has maximal homophily with two islands, one with the optimal

seed agent (island A) and one without it (island B). By construction of the profit-maximizing sharing

network, no agent on island B would share if connected fully to island A or under any other sharing

network configuration (see the proof of Lemma 1). We will let V (δ) denote the virality of content

when censorship policy δ is applied, conditional on the content not being censored (with total virality

including censorship given by (1− δ(1− φ(r)))V (δ)).

For part (b), first consider any agent j residing on island B. Because the platform approximates

the belief distribution H by a generic multinomial distribution,22 it must be the case that Uj(S) <

max{Uj(I), Uj(D)} under any sharing network configuration for agent j. Hence, there exists some

δ > 0 such that substituting φ(r) with φ̃(r, δ) = φ(r)
φ(r)+(1−δ)(1−φ(r)) for all δ ∈ (0, δ) achieves both:

(i) leaving the profit-maximizing sharing network for the platform unchanged, because the strict

inequality above still holds under any chosen sharing network and (ii) φ−1(φ̃(r, δ)) < rR, so its virality

is welfare-reducing by Lemma 2. The former implies that V (0) = V (δ) for all δ ∈ (0, δ), and at the same

time, we have that (1 − δ(1 − φ(r)))V (δ) < V (δ) = V (0) for all δ in this range (because the platform

makes no type-II errors). Moreover, the content circulating under censorship policy δ ∈ (0, δ̄) has

higher “effective” reliability φ̃(r, δ), so is welfare-improving. Therefore, the policy for δ∗ ∈ (0, δ) is more

effective than δ∗ = 0, and in fact higher values of δ∗ ∈ (0, δ) are more effective.

Next, we note that φ̃(r, δ) = φ(r)
φ(r)+(1−δ)(1−φ(r)) = 1 when δ = 1. It is immediate then that for

sufficiently high values of δ, the profit-maximizing sharing network has maximal connectivity, all

agents share in equilibrium, and φ−1(φ̃(r, δ)) > rR. Let us consider δ̄ which is the smallest value (in

the infimum sense) such that the profit-maximizing sharing network has maximal connectivity (note

that δ̄ < 1). We know that V (δ) = N for all δ ∈ (δ̄, 1) by construction. Moreover, because the platform

22Formally, given that the platform has microtargeting technology ε > 0, the optimally chosen sharing network (for
the platform) with prior distribution H is equivalent to the platform’s optimally chosen sharing network for a multinomial
distribution consisting of a number of atoms chosen “generically” (each atom chosen at random from an interval of size ε)
in each of the prior regions [b(k), b(k+1)], as described in Section 4.
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never makes type-II errors, higher values of δ remove misinformation articles only (which by Lemma 2

is welfare-improving) and increase the “effective” reliability of remaining articles (which by Lemma 2

is also welfare-improving). Moreover, the virality of such articles that satisfy Lemma 2(ii) is maximized

at V (δ) = N , so any δ∗ = δ when δ ∈ (δ̄, 1) is more effective than any other policy with δ∗ < δ.

Finally, for part (c), let us construct 0 < δ1 < δ2 < δ3 < 1 when r < r∗R to conclude. We can assign

δ3 = δ̄ from the previous paragraph. Let us take δ1 to be the largest value of δ (in the supremum sense)

such that δ∗ = δ is the most effective policy for all δ ∈ (0, δ1). By construction of r∗R, we know that

that such a δ1 exists and it is strictly less than δ̄. By the same reasoning as before, because the platform

approximates H as a multinomial distribution, there always exists an open interval (δ1, δ̂) where the

virality of content satisfies V (δ) ≥ V (δ1) + 1/N and φ−1(φ̃(r, δ)) < rR for all δ ∈ (δ1, δ̂). At the same

time, we know that for all δ ∈ (δ1,min{δ̂, (1− δ1NV (δ1)(1− φ(r)))/((NV (δ1) + 1)(1− φ(r)))}), we have

(1 − δ(1 − φ(r)))V (δ) ≥ (1 − δ1(1 − φ(r)))V (δ1), so the total virality of content is lower under δ1 than

under any larger δ ∈ (δ1, δ̃) where δ̃ ≡ min{δ̂, (1 − δ1NV (δ1)(1 − φ(r)))/((NV (δ1) + 1)(1 − φ(r)))}.
Because there is a discontinuity in the neighborhood of δ1 in virality, taking δ2 to be sufficiently close

to δ1 allows φ̃(r, δ1) ≈ φ̃(r, δ2) but where V (δ2) ≥ V (δ1) + 1/N . By Lemma 2(i), we see that the δ∗ = δ1

policy is more effective than any δ∗ ∈ (δ1, δ2), and so in particular some δ∗ < δ is most effective.

Proof of Proposition 3. We take a similar approach as in the proof of Proposition 2. For part (a), observe

by Lemma A.4 that no agent who fact-checks (through the provenance channel) and finds an article to

contain misinformation, chooses to share it (regardless of the sharing network). The construction of

r̃R then follows exactly as in the proof of Proposition 2. We will let V (ρ) denote the virality of content

with provenance policy ρ is applied, conditional on the content not being fact-checked by any agent

in the sharing network.

For parts (b) and (c), once again consider islands A and B which are guaranteed by Theorem 3

before any provenance policy has been enacted (ρ = 0) and note thatUj(S) < max{Uj(I), Uj(D)} for all

agents j on island B regardless of the sharing network chosen. With the introduction of a provenance

policy, however, the profit-maximizing sharing network may not take the form of Theorem 3. Despite

this, we can still upper bound the ex-ante likelihood of an article being truthful by φ(r)
φ(r)+(1−ρ)N (1−φ(r))

,

which holds independent of the sharing network chosen. Once again, for small enough ρ > 0 the strict

inequality Uj(S) < max{Uj(I), Uj(D)}will still hold in any sharing network for all agents j on island B,

and the profit-maximizing sharing network will be the same as ρ = 0 for all ρ ∈ (0, ρ). This implies that

V (0) = V (ρ) for all ρ ∈ (0, ρ), and the argument then follows identically as in the proof of Proposition 2.

At the same time, we can lower bound the ex-ante likelihood of an article being truthful by
φ(r)

φ(r)+(1−ρ)(1−φ(r)) , which is equal to 1 when ρ = 1. Thus, note that for sufficiently high values of ρ, the

profit-maximizing sharing network will fit the form of Theorem 3 with a maximally connected network

because all agents share in equilibrium achieving maximal virality (and where φ(r)
φ(r)+(1−ρ)(1−φ(r)) > rR).

Once again, let us consider ρ̄ which is the smallest value (in the infimum sense) such that the profit-
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maximizing sharing network has maximal connectivity (with ρ̄ < 1).23 The rest of the argument follows

similarly as in the proof of Proposition 2, because agents never make type-II errors and therefore

only choose to not share if the content contains misinformation with probability 1, which is welfare-

improving by Lemma 2. The construction of 0 < ρ1 < ρ2 < ρ3 < 1 then also follows exactly in the same

way as from the last paragraph in Proposition 2.

Finally, we show that ρ3 ≤ δ3 and in this region the provenance policy is more effective than

censorship. Recall that δ3 was chosen such that it is the minimum value of δ where the profit-

maximizing sharing network is maximally connected, and for ρ = δ3, it must also be maximally

connected, because the perceived ex-ante likelihood of truth is lower bounded by φ(r)
φ(r)+(1−ρ)(1−φ(r)) ,

which is the ex-ante likelihood of truth for a censorship policy where δ = ρ. Under the provenance

policy, truthful content has at least weakly higher “effective” reliability (φ̃(r, ·)) so necessarily leads to

higher virality, which is welfare-improving by Lemma 2. At the same time, misinformation is detected

with probability δ under the censorship policy but detected with probability 1 − (1 − ρ)N > ρ. Thus,

ρ3 ≤ δ3 and ρ = δ is a more effective policy in this parameter region.

Proof of Proposition 4. By Lemma 2, the regulator always prefers a lower performance target

conditional on the platform actually choosing to abide by it. If the platform removes ψ fraction of

misinformation, then its performance metric is given by

(1− ψ)V (ψ)(1− φ(r))

(1− ψ)V (ψ)(1− φ(r)) + V (ψ)φ(r)
=

(1− ψ)(1− φ(r))

(1− ψ)(1− φ(r)) + φ(r)

where V (ψ) is the content virality when the platform removes ψ fraction of misinformation and

optimally chooses the sharing network, but notice that V (ψ) does not affect the performance metric.

If the platform hits the performance target λ, then it chooses ψ according to ψ = 1−λ−φ(r)
(1−λ)(1−φ(r)) .

Observe that ψ is monotonically decreasing in λ, with the strictest target (λ = 0) yielding ψ = 1 and the

loosest target (λ = 1 − φ(r)) yielding ψ = 0. The payoff from hitting the performance target exactly is

given by Π = V (ψ)φ(r)/(1−λ) whereas the payoff from not hitting it is Π′ = (1−α)V (ψ∗)−αC, whereψ∗

is the self-imposed target by the platform that maximizes engagement, i.e., ψ∗ = arg maxψ V (ψ) < 1 by

nature of φ(r) not exceeding the platform’s profit. For any ψ < ψ∗, the platform meets the performance

target. For any ψ > ψ∗, we can define V ∗(ψ) = maxψ′≥ψ V (ψ), which is a monotonically decreasing

function in ψ. Thus, the platform compares Π = V ∗(ψ)φ(r)/(1−λ) with a constant Π′ = (1−α)V (ψ∗)−
αC. Note that Π is monotonically increasing in λ: 1/(1−λ) is increasing in λ, and V ∗(ψ) is decreasing in

ψ, and therefore increasing in λ. Thus, there exists some cutoff λ∗ such that when λ > λ∗, Π > Π′, but

when λ < λ∗, Π < Π′. Because the platform never makes type-II errors (only certain misinformation

is removed), parts (a) and (b) follow by noting that virality of misinformation is proportional to V (ψ)

where ψ is chosen by the platform.

23In contrast to the censorship case, it is now less obvious that such a ρ̄ is well-defined because the profit-maximizing
sharing network does not necessarily satisfy Theorem 3. However, it is never the case that there exist ρ′ < ρ′′ < ρ′′′ where
the profit-maximizing sharing network is not maximally connected when ρ′ and ρ′′′ but is maximally connected when ρ′′. It
is immediate to show that if maximally connected is profit-maximizing for ρ′′, it must be profit-maximizing for ρ′′′ as well.
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Proof of Proposition 5. The network regulation does not bind for an article with r > rP , so we need

only consider r < rP . Take some agent i with prior bi ∈ (b̄, b̄ + η) in a small neighborhood η > 0 of b̄

(where b̄ is the same b̄ constructed in Theorem 3 Claim (iii)). Following the same line of reasoning as in

Theorem 2(a), agents with priors in this interval elect to ignore instead of share following the network

regulation (and when η is sufficiently small), and this necessarily reduces the virality of low-reliability

content (r < rP ), showing (ii) via Lemma 2. To prove (i), we note that agents in this neighborhood

around b̄ also do not share in the most-sharing equilibrium under any sharing network P′ (following

the network regulation), per the construction of b̄ in Theorem 3. Therefore, the platform cannot

generate additional engagement by departing from the class of island models (specifically, two-island

models) while maintaining ps/pd ≤ p∗.
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Online Appendix (not for publication)

B Endogenous Reputation Loss

We have so far assumed that each agent cares about getting called out for sharing potential

misinformation, in the form of exogenous punishments for each dislike she receives. In this section,

we show that this formulation can be microfounded by an endogenous reputational concern. Our

modeling approach most closely reflects a social media environment where users’ reputations are

affected by those in her sharing network (all those who viewed the content shared by the agent through

the platform’s recommendations). This is consistent with many platforms that allow scrutiny for shares

(e.g., negative comments) to be posted publicly or where users/sources are labeled with crowdsourced

reputability scores and sometimes even banned altogether (see Stein et al. (2023) and Kim et al. (2019)).

Suppose that at t = 0, every agent is born as either careless or normal. The careless type is

behavioral and shares every article, whereas a normal user is a fully rational agent as in Section 2.

The user is born careless with probability µ > 0 which is i.i.d. across all agents and immutable. For

each dislike agent i receives, there is some probability ζ > 0 that the share by agent i receives public

scrutiny and it becomes common knowledge to the population that i shared the article. Conditional on

such a broadcast, the population updates its beliefs µ to µ̂i about the likelihood that agent i is actually

the careless type.

We assume each agent i intrinsically values 1−µ̂i, the public belief that she is not a careless user, for

example, because this might affect their other social relations or economic prospects. We can represent

the strength of this concern (relative to other sources of utility) with a parameter like d in Section 2. For

example, a doctor may place much more weight on reputation than a social media troll trying to “stir

the pot.”

When there is no public broadcast about agent i, we have µ̂i ≤ µi. In contrast, when there is a

broadcast about i’s share, µ̂i > µi, and this increase is larger for articles with lower reliability. This

reasoning therefore introduces an endogenous reputational concern originating from dislikes that

the agent receives. Specifically, it is straightforward to see that the agent’s utility will now include

a term ψD(d,Di) = d∆µ̂i(1 − (1 − ζ)Di), where ∆µ̂i is the difference between i’s reputation after a

public broadcast of her share and i’s reputation without a broadcast, and ψD(d,Di) exhibits increasing

differences. By the same observation as in footnote 11, all of our results apply without modification.

C Ideological Belief Updating from Absent Platform Content

Suppose that the model of Section 2 is embedded in a continuous-time setting in which social media

articles arrive following a Poisson rate, and once they arrive, their reliability, message, and veracity,

(r,m, ν), are drawn from a distribution G. Once an article arrives, the platform chooses the sharing

network as in Section 4. We assume that users do not observe the arrival of the article and the sharing

network is common knowledge among those who receive the article in some form, while those who

never receive an article do not observe the sharing network (and thus remain unaware that an article

44



may have arrived).

The regulator cares about beliefs concerning a significant collective action event, which arrives

randomly according to another Poisson process with arrival rate χ. For example, such an event might

correspond to the release of a vaccine to the general public following a pandemic, and the decision for

each agent would be whether to get vaccinated. While the arrival of this decision time is random (some

uncertainty about when the vaccine will be available), the realized arrival is common knowledge. There

may be multiple articles on social media, although we assume each of these articles is signaling about a

different underlying state, so that users do not learn from multiple articles about the state the regulator

cares about. As in Section 5, the regulator’s welfare objective is to minimize the expected average

distance of beliefs from the underlying state associated with this collective choice, and we denote this

state by θ, as in the text.

There is a Poisson arrival of an article about θ at rate ηθ. We assume platform users do not

consume offline content ordinarily, but wait for online content to arrive. If an agent has received a

recommended platform article by the decision date, she consumes this and uses it to form her belief

about θ using Bayes’ rule. However, when the collective decision event takes place, any user who has

not received online content relevant for this decision instead turns to the offline news item, which

produces a signal per Section 5. In this modified environment, we show the following.

Claim 1. Lemma 2 and all of the results in Section 5 hold as χ→∞ and ηθ remains fixed.

This result thus establishes that all the results in Section 5 hold even when we allow users to update

their beliefs from the lack of online content, provided that we consider a very likely important event,

about which the regulator cares.

Proof of Claim 1. Let T > 0 denote the realized time of the collective action event and let ζi(T )

represent the probability that agent i does not see an online article from the platform, conditional

on the platform having an article to recommend before time T . This probability is clearly bounded

between 0 and 1. The inference problem of the agents who receive the online article is exactly the

same as before, and given in equation (3). Agents who do not receive the online article believe that an

article arrived before time T but was not recommended via the platform’s algorithm with probability

ζi(T )(1− exp(−ηθT ))

ζi(T )(1− exp(−ηθT )) + exp(−ηθT )
.

Given this, they would change their prior bi to some belief b̃i, where |b̃i − bi| ≤ 1 as noted above. The

expected change in welfare from the change in agent i’s belief (from bi to b̃i) is thus upper bounded by

1

N

ζi(T )(1− exp(−ηθT ))

ζi(T )(1− exp(−ηθT )) + exp(−ηθT )
.

This expression converges almost surely to 0 as χ → ∞ because T converges almost surely to 0 as

χ→∞. This establishes that Lemma 2 and all of the results in Section 5 follow, as claimed.
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