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1 Introduction

An important function of macroeconomics is to predict the consequences of changes in policy.

In this paper we revisit the role that evidence on policy shocks—that is, surprise deviations

from a prevailing rule—can play in helping macroeconomists learn about policy rule counter-

factuals. Existing work mainly uses such policy shocks in two ways. First, in what Christiano

et al. (1999) call the “Lucas program”, researchers begin by estimating the causal effects of

a policy shock in the data, then construct a micro-founded structural model that matches

these effects, and finally trust the model as a laboratory for predicting the effects of changes

in policy rules. By design, this approach yields counterfactuals that are robust to the Lucas

(1976) critique; on the other hand, the researcher needs to commit to a particular parametric

model, thus introducing concerns about model misspecification. An alternative approach,

proposed by Sims & Zha (1995), instead relies only on the estimated policy shock: in their

procedure, the economy is subjected to a new policy shock at each date t, with the shocks

chosen so that, t-by-t, the counterfactual policy rule holds.1 This strategy does not require

the researcher to commit to a particular model, but it is subject to the Lucas critique: a rule

change announced at date 0 will in general have different effects on private-sector decisions

than a sequence of surprise policy shocks at t = 0, 1, . . . .

The contribution of this paper is to propose a method that constructs policy counterfac-

tuals using empirical evidence on multiple distinct policy shocks, rather than just a single

one. Like Sims & Zha, the method does not rely on a particular parametric structural model;

at the same time, for a family of models that nests many of those popular in the Lucas pro-

gram, it yields counterfactuals that are robust to the Lucas critique. At the heart of our

methodology lies an identification result. We prove that, for a relatively general family of

macro models, the causal effects of contemporaneous as well as news shocks to a given policy

rule are sufficient to construct Lucas critique-robust counterfactuals for alternative policy

rules. The core intuition is that, by subjecting the economy to multiple distinct policy shocks

at date 0 (rather than a new value of a single shock at t = 0, 1, . . . , as done in Sims & Zha),

we are able to enforce the contemplated counterfactual policy rule not just ex post along the

equilibrium path, but also ex ante in private-sector expectations. Under our assumptions,

doing so is enough to fully sidestep the Lucas critique. While our exact identification result

1See for example Ramey (1993), Bernanke et al. (1997), Leeper & Zha (2003), Hamilton & Herrera
(2004), Uribe & Yue (2006), Degasperi et al. (2020), Eberly et al. (2020), Brunnermeier et al. (2021), and
Antolin-Diaz et al. (2021) for important applications and extensions of this method.
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requires knowledge of the causal effects of a very large number of policy shocks, our proposed

empirical method can be applied in the empirically relevant case of a researcher with access

to only a couple of distinct shocks. We demonstrate the usefulness of the proposed approach

with several applications to monetary policy rule counterfactuals.

Identification result. The first part of the paper establishes the identification result.

Our analysis builds on a general linear data-generating process, with one key added restric-

tion: policy is allowed to affect private-sector behavior only through the current and future

expected path of the policy instrument.2 For example, for monetary policy, the private sector

only cares about the expected future path of the nominal rate, and not whether this path is

the result of the systematic component of policy—i.e., the policy rule—or due to shocks to

a given rule. We consider an econometrician that lives in this economy and observes data

generated under some baseline policy rule, where that rule is subject to shocks. Using stan-

dard time-series methods, she can estimate the causal effects of these policy shocks (Ramey,

2016). She then wishes to predict how a certain historical episode would have unfolded or

how a particular shock would have propagated under some alternative policy rule.

In this setting we establish the following identification result. Suppose the econometrician

is able to estimate how contemporaneous shocks to the prevailing rule as well as news about

deviations from that rule at all future horizons affect the variables that enter her hypothesized

counterfactual rule. Then these estimates contain all the information she needs to construct

her desired counterfactual; in particular, she need not know any of the structural equations of

the underlying model, including the prevailing policy rule. Key to the proof is our assumption

on how policy is allowed to shape private-sector behavior. Since only the expected future

path of the policy instrument matters, any given rule—characterized by the instrument path

that it implies—can equivalently be synthesized by adding shocks to the baseline rule. All

that is required is that those policy shocks imply the same expected instrument path from

date-0 onwards as the counterfactual rule. Finally we show that, given a loss function, our

econometrician can leverage the same logic to also characterize optimal policy.3

How general is the setting of this identification result? Our two key model restrictions

2More precisely, the policy rule is allowed to matter only through (a) the expected path of the instru-
ment and (b) equilibrium selection. Our method will construct one valid equilibrium corresponding to the
hypothesized counterfactual rule; if this rule induces a unique equilibrium, then our method recovers it.

3To be clear, our results are silent on the mapping from observables to welfare, and so on the shape of
loss functions. Structural models are one way to arrive at such objectives. However, given that objective
functions in practice are often derived from a legislated mandate rather than economic theory (e.g., dual
mandate), we believe it is useful to have a method of calculating optimal policy for a given objective.
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are (i) linearity and (ii) the way that policy is allowed to shape private-sector behavior. We

show that (ii) is a feature shared by many business-cycle models, including those with many

frictions (e.g., Christiano et al., 2005), shocks (e.g., Smets & Wouters, 2007), and rich micro

heterogeneity (e.g., Kaplan et al., 2018). Perhaps the most popular class of structural models

violating the restriction is those with an asymmetry of information between the policymaker

and private sector (as in Lucas, 1972). In such models, private-sector agents solve a filtering

problem, and so the policy rule affects both the dynamics of the policy instrument as well

as the information contained in that policy choice; as a result, the policy instrument itself

does not afford a full characterization of the policy stance. The linearity assumption (i), on

the other hand, is not a conceptual necessity, but rather a practical one. Linearity implies

that the effects of policy changes are invariant to their size, their sign, and the state of the

economy. Given certainty equivalence, we can thus focus on expected values. As we will see,

these simplifications are crucial to connect our theory to empirical evidence. Linearity does,

of course, also impose costs: in practice, the methodology that we propose can be used to

compare different cyclical stabilization policies (e.g., Taylor rules), but it is less well-suited

to study policies that alter the steady state (e.g., changes in the inflation target).

Empirical strategy. The main challenge to operationalizing our identification result is

that empirical evidence on the causal effects of policy shocks is limited. Our theory says that

we need to select a linear combination of policy shocks at date 0 that perturbs the current

and expected future path of the policy instrument just like the contemplated counterfactual

rule. This is a daunting informational requirement: in general, to synthesize the effects of

any possible expected policy instrument path of length T (with T large in practice), we would

need access to T distinct policy shocks that each imply differentially shaped impulse response

paths of the policy instrument, thus allowing us to span all of RT . While existing empirical

evidence falls short of this ideal, recent research has however made progress on identifying

the effects of at least some distinct policy shocks with rather different implications for future

expected policy paths.4 How much can be done with this available evidence?

The idea of our empirical method is to use the available evidence on policy shock trans-

4For monetary policy, many of the different popular shock series (e.g., Romer & Romer, 2004; Gertler
& Karadi, 2015; Antoĺın-Dı́az & Rubio-Ramı́rez, 2018; Bauer & Swanson, 2022) are well-known to lead to
rather different responses of short-term rates. Other identification strategies explicitly aim to identify shocks
at different parts of the yield curve (e.g., Gürkaynak et al., 2005; Antolin-Diaz et al., 2021; Inoue & Rossi,
2021), as required by our theory. For fiscal policy, Ramey (2011) and Ramey & Zubairy (2018) estimate the
effects of short-lived as well as more persistent shocks. Mertens & Ravn (2010) and Leeper et al. (2013) are
similarly focussed on disentangling shocks with different policy instrument dynamics.
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mission to provide a best Lucas critique-robust approximation to the desired counterfactual.

Given estimates of the dynamic causal effects of a small number ns of policy shocks and

their associated policy instrument paths, we face the challenge that our identification result

cannot be applied immediately: the counterfactual policy rule needs to hold in ex post equi-

librium and ex ante expectation for a large number T of periods, but we only have access to

ns ≪ T shocks—more equations than unknowns. Our proposal is simply to choose the linear

combination of date-0 shocks that enforces the desired counterfactual rule as well as possible,

in a standard least-squares sense. Crucially, since this approach involves no ex post surprises

dated t = 1, 2, . . . , it is—under our assumptions—fully robust to Lucas critique concerns.

Whether or not this best approximation is then in fact a sufficiently accurate representation

of the desired counterfactual policy is invariably an application-dependent question.

Applications. We demonstrate the uses and limitations of our empirical method through

several examples. Our object of interest is the propagation of a contractionary investment-

specific technology shock under different monetary policy rules. As the inputs to our method,

we consider the two most popular monetary policy shock series: those of Romer & Romer

(2004) and Gertler & Karadi (2015). Importantly, these two shocks reflect different kinds of

monetary news—a relatively transitory innovation for Romer & Romer, and a much more

gradual rate change for Gertler & Karadi.

Armed with the causal effects associated with those two distinct nominal interest rate

paths, we then apply our empirical method to construct counterfactuals for alternative policy

rules that: target the output gap, enforce a Taylor-type rule, peg the nominal rate of interest,

target nominal GDP, and minimize a simple dual-mandate loss function. We find that, with

the exception of the nominal rate peg, the counterfactual rules can be enforced to quite a high

degree of accuracy. The conclusion is that, at least for our investment shock, several rather

different monetary policy counterfactuals can already be characterized quite sharply simply

by combining existing pieces of empirical evidence on monetary policy shock transmission,

without commitment to any particular parametric structural model.

Literature. Our identification result provides a bridge between the micro-founded mod-

els of the “Lucas program” (as discussed in Christiano et al., 1999) and the empirical strategy

proposed by Sims & Zha (1995). Our results reveal that, in the structural models typically

used in the Lucas program, the estimand of the econometric strategy of Sims & Zha is not

equal to the true policy rule counterfactual only because of expectational effects related to

the future conduct of policy. In theory, using multiple distinct policy shocks at date 0 (rather
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than a single one at each t ≥ 0) circumvents this problem; in practice, doing so is feasible

because a growing literature on the semi-structural identification of policy shocks provides

us with a fairly rich body of empirical evidence (see the references in Footnote 4).5

Our work also relates to other more recent contributions to counterfactual policy analysis.

Beraja (2020) similarly forms policy counterfactuals without relying on particular parametric

models. His approach relies on stronger exclusion restrictions in the non-policy block of the

economy, but given those restrictions requires less evidence on policy news shocks. Barnichon

& Mesters (2021) use policy shock impulse responses to evaluate the optimality of and then

improve upon a given policy decision. While their focus is on a single policy choice, we

instead study systematic changes in the policy rule, requiring additional assumptions on

the economic environment—our two assumptions discussed above.6 More broadly, our work

relates to the increasing popularity of a “sufficient statistics” logic for counterfactual analysis

(e.g., Chetty, 2009; Arkolakis et al., 2012; Nakamura & Steinsson, 2018). Our identification

result reveals that, across a broad class of models, the empirically estimable causal effects of

policy shocks are precisely such sufficient statistics.

Finally, to prove our identification result, we build on recent advances in solution methods

for structural macroeconomic models. At the heart of our analysis lies the fact that equilibria

in such models can be characterized by matrices of impulse response functions. As in Guren

et al. (2021) and Wolf (2020), we connect this sequence-space representation to empirically

estimable objects. In contemporaneous and independent work, De Groot et al. (2021) and

Hebden & Winker (2021) show how to use similar arguments to efficiently compute policy

counterfactuals by generating impulse responses to policy shocks from a structural model.

Our focus is not computational—we aim to calculate policy counterfactuals directly from

empirical evidence, forcing us to confront the fact that such evidence is limited.

Outline. Section 2 presents our identification result, mapping the effects of policy shocks

to counterfactuals for policy rules. Section 3 introduces our empirical methodology, and

Section 4 provides applications to monetary policy rule counterfactuals. Section 5 concludes.

5A different route is taken in Leeper & Zha (2003): these authors argue that, if the policy shocks required
to implement Sims & Zha are small enough, then it may be credible to ignore expectational effects.

6Building on our insight of the generality of the policy invariance assumption (ii), Barnichon & Mesters
(2023) assume an environment as restrictive as ours as their baseline and then consider the more general
case as an extension. Similarly related is Kocherlakota (2019), who presents a dynamic policy game in which
the policymaker can select the optimal action via regression analysis. In his setting, the policy action does
not cause the private sector to update its beliefs about the future strategy of the policymaker. Policymaker
payoffs thus only depend on the current choice and not on the future instrument paths that we emphasize.
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2 From policy shocks to policy rule counterfactuals

We begin in Section 2.1 by presenting a stylized version of our identification argument in a

simple, illustrative model. We then in Sections 2.2 to 2.5 extend the argument to a general

class of infinite-horizon models and discuss its scope and limitations.

The main identification result will be presented for a linearized perfect-foresight economy.

Due to certainty equivalence, the equilibrium dynamics of a linear model with uncertainty

coincide with the solution to such a linearized perfect-foresight environment. We thus empha-

size that all results presented below extend without any change to models with aggregate risk

solved using first-order perturbation techniques.7 In particular, the perfect-foresight tran-

sition paths that we characterize will correspond to expected transition paths—or impulse

response functions—in the analogous linearized economy with aggregate risk.

2.1 A simple example

This section presents our identification result in the context of the three-equation New Key-

nesian model (Gaĺı, 2015; Woodford, 2003). Our broader argument, of course, is that the

identification results and empirical method presented in the remainder of the paper actually

do not require knowledge of the underlying structural model; nevertheless, we find it useful

to first explain the logic of our results in a familiar setting before then generalizing it.

Model. The variables of the economy are two private-sector aggregates—output yt and

inflation πt—and a policy instrument—the nominal rate it. They are related through three

equations: an Euler equation and a Phillips curve as the private-sector block,

yt = yt+1 −
1

γ
(it − πt+1), (1)

πt = κyt + βπt+1 + (εt + θεt−1), (2)

and a simple Taylor rule as the policy rule,

it = ϕπt + ν0,t︸︷︷︸
contemp. shock

+ ν1,t−1︸ ︷︷ ︸
1-period news shock

. (3)

7For example see Fernández-Villaverde et al. (2016), Boppart et al. (2018) or Auclert et al. (2021) for a
detailed discussion of this point.
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In our perfect-foresight set-up, the private-sector equations as well as the policy rule hold

for t = 0, 1, 2, . . . . These equations feature two kinds of disturbances. First, εt is a cost-push

shock; for the illustrative analysis in this section, we find it useful to assume that it induces

a first-order moving average wedge in the Phillips curve (2), implying that the effects of the

shock will fully die out after two periods. Second, there are the policy shocks νℓ,t−ℓ; here, ν0,t

is a conventional contemporaneous policy shock, while ν1,t−1 denotes a deviation from the

policy rule at time t announced at t−1 (a 1-period “news” shock). Note that in principle (3)

could be generalized to feature a full menu of news shocks νℓ,t−ℓ for all ℓ > 0; this extension

will be important for our general analysis, but is not needed here as we will only construct

policy counterfactuals for the MA(1) shock εt. As usual, given a vector of the time-0 shocks

{ε0, ν0,0, ν1,0}, a perfect-foresight transition path—or impulse response function—consists of

the paths {yt, πt, it} such that (1) - (3) hold at all t = 0, 1, 2, . . . .

For the subsequent analysis, the key property of this simple model economy will turn

out to be that the coefficients in the two private-sector equations (1) - (2) are independent

of the policy rule—i.e., γ, κ and β are unaffected by changes in ϕ. Equivalently, private-

sector behavior is affected by policy only through the current and future values of the policy

instrument it. Our general identification analysis in Sections 2.2 to 2.5 will discuss the

generality and limitations of this crucial assumption.

Object of interest. Under the baseline policy rule, the impulse response of the economy

to a cost-push shock is given as the solution of (1) - (3) for some cost-push shock ε0 together

with νℓ,0 = 0 for ℓ = 0, 1. We wish to instead characterize the behavior of this economy in

response to ε0 not under the baseline policy rule (3), but instead under some counterfactual

policy rule of the form8

it = ϕ̃πt (4)

where ϕ̃ ̸= ϕ. Note that this thought experiment supposes that the private sector perfectly

understands the change in rule: the new relationship between i and π holds for all t ≥ 0. Our

identification result characterizes the information required to construct this counterfactual.

The identification argument. We consider an econometrician living in an economy

that satisfies (1) - (3). Using conventional semi-structural time series methods (Ramey,

2016), and with access to suitable identifying assumptions or instruments, that econometri-

8For the analysis in this section we will assume that ϕ̃ is such that a unique and determinate equilibrium
exists. Our general analysis will cover counterfactual equilibrium non-existence and indeterminacy.
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cian can in principle estimate how the macroeconomic aggregates {yt, πt, it} respond to the

cost-push shock εt as well as the policy shocks {νℓ,t−ℓ}1ℓ=0 under the baseline rule (3). Our

main identification result states that knowledge of these causal effects—and nothing else

about the structure of the economy—is sufficient to predict the counterfactual propagation

of the shock εt under the alternative rule (4). We now describe intuitively why knowledge of

these estimable causal effects is sufficient in the simple model (1) - (3), before in Sections 2.2

and 2.3 stating and proving the result for a much more general environment.

The key idea underlying our results is to choose time-0 policy shocks {ν0,0, ν1,0} to the

baseline rule in order to mimic the desired counterfactual rule. To develop the argument, note

first that, because our model has no endogenous state variables, the impulse responses to a

time-0 shock will die out after t = 1, by our MA(1) assumption. We collect the 2×1 transition

paths of {yt, πt, it} in response to a cost-push shock ε0 under the baseline rule as the vectors

{yyyϕ(ε0),πππϕ(ε0), iiiϕ(ε0)}. Similarly, contemporaneous and one-period-ahead policy shocks also

have no effects after t = 1. For ℓ ∈ {0, 1}, we collect the corresponding 2×1 impulse responses

under the baseline rule to a policy shock νℓ,0 as the vectors {θy,νℓ,ϕ, θπ,νℓ,ϕ, θi,νℓ,ϕ} × νℓ,0; e.g.,

θy,νℓ,ϕ is the 2× 1 impulse response path of y to an ℓ-period ahead shock to the baseline rule

(3). Now consider setting the two monetary policy shocks to values {ν̃0,0, ν̃1,0} so that, under

the baseline rule (3) and in response to the shock tuple {ε0, ν̃0,0, ν̃1,0}, the counterfactual rule
(4) holds at both t = 0 and t = 1 along the perfect foresight transition path; that is, we

solve the following two equations in the two unknowns {ν̃0,0, ν̃1,0}:

iiiϕ(ε0) + θi,ν0,ϕν̃0,0 + θi,ν1,ϕν̃1,0 = ϕ̃× [πππϕ(ε0) + θπ,ν0,ϕν̃0,0 + θπ,ν1,ϕν̃1,0] . (5)

The left-hand side of this equation gives us the impulse response of the interest rate following

our combination of three shocks {ε0, ν̃0,0, ν̃1,0} under the baseline rule (3), while the right-

hand side does the same for inflation, just scaled by ϕ̃. By our informational assumptions,

the econometrician can evaluate the system of equations (5) given ε0 and for any candidate

set of the two policy shocks {ν̃0,0, ν̃1,0}. Now suppose a solution {ν̃0,0, ν̃1,0} to (5) exists, and

then compute the responses of {yt, πt, it} to the shock tuple {ε0, ν̃0,0, ν̃1,0} under the baseline

policy rule.9 The content of our identification result is that those impulse responses are in

fact identical to the impulse responses to ε0 alone under the counterfactual rule (4).

The intuition underlying the identification result is straightforward. Since the private

sector’s decisions only depend on the expected path of the policy instrument (here just i0

9Our general discussion will address the question of when solutions to equations like (5) actually exist.
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and i1), it follows that it does not matter whether this path comes about due to the systematic

conduct of policy or due to policy shocks. Equation (5) leverages this logic, looking for a

combination of date-0 policy shocks that results in the counterfactual policy rule (4) holding

both at t = 0 and also in expectation at t = 1. In response to these well-chosen shocks, the

private sector behaves as if the counterfactual rule (4) had been imposed throughout.

Informational requirements & relation to Sims & Zha. Our identification result

implies that, to predict policy rule counterfactuals, the econometrician does not need to

know the structural equations of the economy; rather, all she needs are impulse responses to

policy shocks. In particular, she needs the causal effects of the policy shocks on the variables

that enter her counterfactual rule (here it and πt) and on any other outcome variables

she is interested in (e.g, yt). With those causal effects in hand, she can map outcomes

under the baseline rule—i.e., impulse responses to some non-policy shock of interest—into

counterfactual outcomes by computing impulse responses to {ν̃0,0, ν̃1,0} that solve (5).

We emphasize that this argument inherently relies on knowledge of the dynamic causal

effects of both the contemporaneous policy shock ν̃0,0 as well as the policy news shock ν̃1,0:

it is only with those two that we can actually enforce the counterfactual rule along the entire

transition path (which here consists of two time periods). The econometric method of Sims

& Zha (1995) instead supposes that the econometrician only has access to the causal effects

of one policy shock (e.g., ν0,t). With one shock it is generally not possible to enforce the

counterfactual rule contemporaneously and in expectation; instead, the proposal of Sims &

Zha is to subject the economy to an initial shock ν̃0,0 to enforce the counterfactual policy rule

at t = 0 and then another surprise contemporaneous policy shock ν̃0,1 to also enforce it at

t = 1. The key difference relative to our construction is that the private-sector block did not

at t = 0 expect the counterfactual policy rule to hold at t = 1; rather, the rule only holds at

t = 1 because of yet another surprise. In other words, under the approach of Sims & Zha, the

counterfactual policy rule only holds ex post along the equilibrium transition path, but not

in ex ante expectation. As a result, as long as policy at t = 1 matters for t = 0 decisions, the

constructed counterfactual will differ from the true counterfactual {yyyϕ̃(ε0),πππϕ̃(ε0), iiiϕ̃(ε0)}.
We will further elaborate on this connection between our identification result and the em-

pirical methodology of Sims & Zha in Section 2.4.

Discussion & outlook. The identification result sketched in this section is special in two

respects: first, it is presented within the context of a particular explicit structural model; and

second, since impulse responses to ε0 are non-zero only for two periods, the result required
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knowledge of the effects of two policy shocks (ν0,0 and ν1,0). The remainder of this section

will state and prove our main identification result in the context of a general class of infinite-

horizon models. In terms of our informational requirements, the key change will be that the

econometrician now needs to know the causal effects of all policy shocks {νℓ,0}∞ℓ=0, rather

than just the first two. The economic intuition on the other hand will be exactly the same:

the argument will work as the long as the private-sector block of the model depends on the

policy rule only through the path of the policy instrument, as was the case here.

2.2 General environment & objects of interest

We consider a linear, perfect-foresight, infinite-horizon economy. Throughout, we will use

boldface to denote time paths for t = 0, 1, 2, . . . , and all variables are expressed in deviations

from the deterministic steady state. The economy is summarized by the system

Hwwww +Hxxxx+Hzzzz +Hεεεε = 000, (6)

Axxxx+Azzzz + ννν = 000. (7)

wt and xt are nw- and nx-dimensional vectors of endogenous variables, zt is a nz-dimensional

vector of policy instruments, εt is a nε-dimensional vector of exogenous structural shocks, and

νt is an nz-dimensional vector of policy shocks.10 The distinction between w and x is that the

variables in x are observable while those in w are not; in particular, x contains the outcomes

of interest for our econometrician as well as the arguments of the counterfactual policy rule

that she contemplates.11 The linear maps {Hw,Hx,Hz,Hε} summarize the non-policy block

of the economy, yielding nw + nx restrictions for each t. Our key assumption—echoing the

model of Section 2.1—is that the maps {Hw,Hx,Hz,Hε} do not depend on the coefficients of

the policy rule {Ax,Az}; instead, policy only matters through the path of the instrument z,

with the rule (7) giving nz restrictions on the policy instruments for each t. As in our simple

example, entries of the shock vectors εεε and ννν for t > 0 should again be interpreted as news

shocks. In particular, the policy shock vector ννν collects the full menu of contemporaneous

and news shocks to the prevailing policy rule at all horizons, thus generalizing the two-shock

10The boldface vectors {www,xxx,zzz,εεε,ννν} stack the time paths for all variables (e.g., xxx = (xxx′
1, . . . ,xxx

′
nx
)′). The

linear maps {Hw,Hx,Hz,Hε} and {Ax,Az} are conformable and are all assumed to map bounded sequences
into bounded sequences.

11For expositional simplicity, we do not include www as an argument of the baseline policy rule (7), though
doing so would not pose a problem. The key restriction is that the counterfactual policy rule only features
variables observable to the econometrician.
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set-up that we considered in the simple three-equation model.

Given bounded {εεε,ννν}, an equilibrium is a set of bounded sequences {www,xxx,zzz} that solve

(6) - (7). We assume that the baseline rule {Ax,Az} is such that an equilibrium exists and

is unique for any {εεε,ννν}.

Assumption 1. The policy rule in (7) induces a unique equilibrium.

Given {εεε,ννν}, we write that unique solution as {wwwA(εεε,ννν),xxxA(εεε,ννν), zzzA(εεε,ννν)}. As in the

simple example, we often focus on impulse responses to exogenous shocks εεε when the policy

rule is followed perfectly (i.e., ννν = 000); with some slight abuse of notation we will simply

write those impulse responses as {wwwA(εεε),xxxA(εεε), zzzA(εεε)}.

Scope. Our identification results in Section 2.3 and the empirical analysis in Section 3 will

apply to any structural model that can be written in the general form (6) - (7). As empha-

sized before, in addition to linearity, the key property of this environment for our purposes

is that policy enters the non-policy block only through the path zzz of policy variables; equiv-

alently, in the linearized economy with aggregate risk, policy affects private-sector decisions

only through current and expected future z. How restrictive are those assumptions?

Our first observation is that many of the explicit, parametric structural models used for

counterfactual and optimal policy analysis in the standard Lucas-program approach fit into

our framework (6) - (7). Such models are routinely linearized, and their linear representation

features the separation between policy rule and non-policy block that our theoretical results

require. For example, the analysis in Section 2.1 has already illustrated that one particular

canonical model environment—the textbook three-equation New Keynesian model—fits into

our framework.12 By the exact same line of reasoning, even workhorse estimated business-

cycle models (e.g., Christiano et al., 2005; Smets & Wouters, 2007) as well as recent quan-

titative HANK or heterogeneous-firm models (e.g., Auclert et al., 2020; McKay & Wieland,

2021; Ottonello & Winberry, 2020) fit into our structure. For example, in HANK-type mod-

els, the Euler equation of the representative household is simply replaced by a more general

“aggregate consumption function” (e.g., Auclert et al., 2018; Wolf, 2021):

ccc = Cyyyy + Cππππ + Ciiii+ Cdεεεd

where c is consumption, y is income, π is inflation, i is the nominal rate, εd is a demand shock,

and C• are matrices of derivatives of the consumption function. Such models continue to fit

12For reference, we in Appendix A.1 write down the model (1) - (3) in the form (6) - (7).
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into our framework precisely because the derivative matrices C• depend only on the model’s

deterministic steady state, and not on policy rules that influence the economy’s fluctuations

around that steady state (e.g., a Taylor rule for nominal interest rates). We will give a

concrete numerical illustration of our identification result in the context of a quantitative

HANK-type model in Section 2.4. Finally, as we discuss in Appendix A.1, several canonical

behavioral models (e.g., Gabaix, 2020) are also consistent with our assumptions.

While thus clearly relatively general, our framework also has some important limitations.

Recall that our two key restrictions on the model are (i) linearity and (ii) the way the policy

instrument is allowed to shape private-sector behavior. The separation between policy and

non-policy block embedded in (ii) is violated in some structural models. Important examples

are environments that feature an asymmetry of information between the policymaker and

the private sector (e.g. Lucas, 1972). In such models, private-sector agents solve a filtering

problem, and in general the coefficients of the policy rule will matter for this filtering problem

both through the induced movements of the policy instrument and through the information

contained in those movements. The separation between the private-sector and policy blocks

of the model at the heart of our results will thus break down—that is, the coefficients in Hx

depend directly on the policy rule (see Appendix A.2 for a formal derivation).

As we discuss in Appendix A.8, the linearity restriction (i) on the other hand is not con-

ceptual, but practical. By linearity, the effects of policy are sign-, size-, and state-invariant.

Given certainty equivalence, we can focus on expected policy instrument paths, thus substan-

tially reducing the informational requirements of our identification results and facilitating

their empirical application.13 The costs of linearity are twofold. First, our identification re-

sults will generally not yield globally valid policy counterfactuals. Second, we will be able to

construct counterfactuals for alternative policy rules that change the policymaker’s response

to aggregate perturbations (e.g., different Taylor rules), but our results are unlikely to apply

to policies that change the model’s steady state (e.g., changes in the inflation target).

Objects of interest. As in our simple model, we wish to learn about systematic policy

rule counterfactuals. Specifically, we consider an alternative policy rule

Ãxxxx+ Ãzzzz = 000 (8)

13To be clear, what we are requiring is linearity of the non-policy block (6). Non-linearity of the policy
(e.g., due to a binding zero lower bound), on the other hand, poses no particular challenge. This point is
discussed further in Appendix A.9.
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This alternative policy rule is also assumed to induce a unique equilibrium. We will discuss

further in Section 2.3 what happens if this assumption is violated.

Assumption 2. The policy rule in (8) induces a unique equilibrium.

We emphasize that the arguments of the counterfactual policy rule are macroeconomic

observables x and z; naturally, our empirical identification result will not allow evaluation of

counterfactual rules that directly involve unobservable objects.14 Given this alternative rule

Ã, we ask: what are the dynamic response paths xxxÃ(εεε) and zzzÃ(εεε) to some given exogenous

non-policy shock path εεε?

As a special case of the general counterfactual rule (8), we will also study optimal policy

rules corresponding to a given loss function. Specifically, we consider a policymaker with a

simple exogenously given quadratic loss function of the form

L =
1

2

nx∑
i=1

λixxx
′
iWxxxi (9)

where i indexes the nx distinct (again observable) macro aggregates collected in x, λi denotes

policy weights, and W = diag(1, β, β2, · · · ) allows for discounting.15 As for our general

counterfactual rule, we assume that the optimal policy problem has a unique solution.

Assumption 3. Given any vector of exogenous shocks εεε, the problem of choosing the policy

variable zzz to minimize the loss function (9) subject to the non-policy constraint (6) has a

unique solution.

We are then interested in two questions. First, what rule is optimal for a policymaker with

preferences as in (9)? Second, given that optimal rule (A∗
x,A∗

z), what are the corresponding

dynamic response paths xxxA∗(εεε) and zzzA∗(εεε) for a given non-policy shock path εεε?

Finally, for both general as well as optimal counterfactual policy rules, we would like to go

beyond counterfactuals conditional on particular non-policy shock paths εεε, and instead also

predict the effects of a rule change on unconditional macroeconomic dynamics. In particular,

14For example, the counterfactual rule cannot depend on the natural rate of interest, though it could of
course depend on an estimate of the natural rate based on observables.

15We emphasize that our results are completely silent on the shape of the loss function, with structural
modeling still the most natural way of obtaining a mapping from observables to welfare. We instead take
as given the loss function and ask what kind of empirical evidence would be most useful to figure out how
to minimize the loss. We furthermore note that our focus on a separable quadratic loss functions is in line
with standard optimal policy analysis, but not essential. As shown in Appendix A.3, our results extend to
the non-separable quadratic case, where the loss is now given by 1

2xxx
′Qxxx for a weighting matrix Q.
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we would like to predict how the change in policy rule would affect the unconditional second-

moment properties of the observed macroeconomic aggregates x.

The objective of the remainder of this section is to characterize the information required to

recover these desired policy counterfactuals. The key insight is that, exactly as in our simple

model, all of the required information can in principle be recovered from data generated

under the baseline policy rule.

2.3 Identification results

We begin by defining the dynamic causal effects that lie at the heart of our identification

results. By Assumption 1, we can write the solution to the system (6) - (7) aswww

xxx

zzz

 = ΘA ×

(
εεε

ννν

)
,

where the linear map ΘA collects the impulse responses of www, xxx and zzz to the non-policy and

policy shocks (εεε,ννν) under the prevailing baseline policy rule (7) with parameters A. We will

partition it as

ΘA ≡

Θw,ε,A Θw,ν,A

Θx,ε,A Θx,ν,A

Θz,ε,A Θz,ν,A

 . (10)

All of our identification results will require knowledge of {Θx,ν,A,Θz,ν,A}—the impulse

responses of the policy instruments z and macroeconomic observables x to contemporaneous

as well as all possible future shocks ννν to the prevailing policy rule. Furthermore, to construct

counterfactual paths that correspond to a given non-policy shock sequence εεε, we also require

knowledge of the causal effects of that particular shock sequence under the baseline policy

rule, {xxxA(εεε) = Θx,ε,A × εεε,zzzA(εεε) = Θz,ε,A × εεε}. We emphasize that, in principle, all of these

objects are estimable using data generated under the baseline policy rule: for example, given

valid instrumental variables for all the distinct policy shocks ννν as well as a single instrument

for the non-policy shock path εεε, the required entries of the Θ’s can be estimated using

semi-structural time-series methods (e.g., see Ramey, 2016, for a review).

These informational requirements are the natural generalization of those for the simple

model in Section 2.1. First, since we are now considering an infinite-horizon economy, any

given shock generates entire paths of impulse responses, corresponding to the rows of the Θ’s.
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Second, rather than two policy shocks, we now need to know causal effects corresponding to

the full menu of possible contemporaneous and news shocks ννν—all columns of the Θν ’s.

General counterfactual rule. We begin with the main object of interest—policy

counterfactuals after a non-policy shock sequence εεε under an alternative policy rule.

Proposition 1. Under Assumptions 1 and 2, we can recover the policy counterfactuals xxxÃ(εεε)

and zzzÃ(εεε) for a counterfactual rule {Ãx, Ãz} as

xxxÃ(εεε) = xxxA(εεε, ν̃νν) ≡ xxxA(εεε) + Θx,ν,A × ν̃νν (11)

zzzÃ(εεε) = zzzA(εεε, ν̃νν) ≡ zzzA(εεε) + Θz,ν,A × ν̃νν (12)

where ν̃νν solves

Ãx [xxxA(εεε) + Θx,ν,A × ν̃νν] + Ãz [zzzA(εεε) + Θz,ν,A × ν̃νν] = 000. (13)

Proof. The equilibrium system under the new policy rule can be written as

(
Hw Hx Hz

000 Ãx Ãz

)www

xxx

zzz

 =

(
−Hε

000

)
εεε (14)

By Assumption 2 we know that (14) has a unique bounded solution {wwwÃ(εεε),xxxÃ(εεε), zzzÃ(εεε)}.
To characterize {xxxÃ(εεε), zzzÃ(εεε)} as a function of observables, suppose that we could find a

bounded ν̃νν that solves (13). Since (6) also holds under the baseline policy rule, and since

(13) imposes the new policy rule, it follows that any {xxxA(εεε, ν̃νν), zzzA(εεε, ν̃νν)} with ν̃νν solving (13)

are also part of a solution of (14), and thus equal {xxxÃ(εεε), zzzÃ(εεε)}.
It now remains to establish that the system (13) actually has a solution. For this consider

the candidate ν̃νν = (Ãx −Ax)xxxÃ(εεε) + (Ãz −Az)zzzÃ(εεε). Since the paths {wwwÃ(εεε),xxxÃ(εεε), zzzÃ(εεε)}
solve (14), it follows that they are also a solution to the system

(
Hw Hx Hz

000 Ax Az

)www

xxx

zzz

 = −

(
Hεεεε

(Ãx −Ax)xxxÃ(εεε) + (Ãz −Az)zzzÃ(εεε)

)
(15)

But by Assumption 1 we know that the system (15) has a unique solution, so indeed the

paths {wwwÃ(εεε),xxxÃ(εεε), zzzÃ(εεε)} are that solution. Finally it follows from the definition of ΘA in

(10) that the candidate ν̃νν also solves (13), completing the argument.
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Proposition 1 implies that we can recover the desired policy counterfactual as a function of

observables alone—our econometrician needs to know the policy shock causal effect matrices

{Θx,ν,A,Θz,ν,A} and the effects of the shock εεε under the baseline rule, {xxxA(εεε), zzzA(εεε)}, but
she need not know the structural equations of the underlying model. The key equation (13)

in Proposition 1 is the infinite-horizon analogue of the bivariate system (5) from our two-

period example in Section 2.1. The intuition is as before: since we know how all possible

perturbations ννν to the baseline rule affect the variables x and z entering the counterfactual

rule, we can always construct a date-0 shock vector ν̃νν that mimics the equilibrium path of z

under the new rule. But since the first model block (6) depends on the policy rule only via

the expected instrument path, the equilibrium allocations under the new counterfactual rule

and the perturbed prevailing rule are the same. The only difference relative to the simple

two-period model is that, because we now consider an infinite-horizon setting, we in general

require evidence on contemporaneous and all possible future news shocks to the baseline rule

in order to be able to mimic an arbitrary alternative policy rule.16

What happens if Assumption 2—which maintains that the counterfactual rule delivers a

unique equilibrium—is violated? We can distinguish two cases. First, if no equilibrium exists

under the contemplated counterfactual policy rule, then the system (13) will simply not have

a solution. Second, if multiple equilibria exist, then impulse responses to any {εεε, ν̃νν} where ν̃νν

solves (13) will be a valid equilibrium for the counterfactual rule {Ãx, Ãz}. For example, in

the simple New Keynesian model of Section 2.1, applying our identification results for the

counterfactual rule ϕ̃ = 0—i.e., a nominal interest rate peg—would deliver the economy’s

fundamental (minimum state variable, or MSV) equilibrium.

Optimal policy. A very similar argument applies for optimal policy analysis.

Proposition 2. Consider a policymaker with loss function (9). Under Assumptions 1 and 3,

for any εεε, the solution to the optimal policy problem is implemented by the rule {A∗
x,A∗

z}
with

A∗
x =

(
λ1Θ

′
x1,ν,AW,λ2Θ

′
x2,ν,AW, . . . , λnxΘ

′
xnx ,ν,AW

)
, (16)

A∗
z = 000. (17)

16While Proposition 1 applies to a particular shock path εεε, it is immediate that the exact same argument
also applies to a particular historical scenario (Antolin-Diaz et al., 2021): a historical scenario is simply a
set of forecast paths xxxA and zzzA at a given point in time, and we can use the logic of Proposition 1 to recover
the analogous counterfactual historical scenario xxxÃ and zzzÃ.
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Given {A∗
x,A∗

z}, the corresponding counterfactual paths under the optimal policy rule, xxxA∗(εεε)

and zzzA∗(εεε), are characterized as in Proposition 1.

Proof. The solution to the policy problem is characterized by the following conditions:

H′
w(I ⊗W )φφφ = 000 (18)

(Λ⊗W )xxx+H′
x(I ⊗W )φφφ = 000 (19)

H′
z(I ⊗W )φφφ = 000 (20)

where Λ = diag(λ1, λ2, . . . ) and φ is the multiplier on (6). By Assumption 3 we know that

the system (18) - (20) together with (6) has a unique solution {xxx∗(εεε), zzz∗(εεε),www∗(εεε),φφφ∗(εεε)}.
Now consider the alternative problem of choosing deviations ννν∗ from the prevailing rule

to minimize (9) subject to (6) - (7). This second problem gives the first-order conditions

H′
w(I ⊗W )φφφ = 000 (21)

(Λ⊗W )xxx+H′
x(I ⊗W )φφφ+A′

xWφφφz = 000 (22)

H′
z(I ⊗W )φφφ+A′

zWφφφz = 000 (23)

Wφφφz = 000 (24)

where φz is the multiplier on (7). It follows from (24) that φφφz = 000. Then (21) - (23) together

with (6) determine the same unique solution for {xxx,zzz,www} as before, and ννν∗ adjusts residually

to satisfy (7). The original problem and the alternative problem are thus equivalent. Next

note that, by Assumption 1, we can re-write the alternative problem’s constraint set aswww

xxx

zzz

 = ΘA ×

(
εεε

ννν∗

)
(25)

The problem of minimizing (9) subject to (25) gives the optimality condition

nx∑
i=1

λiΘ
′
xi,ν,AWxxxi = 0 (26)

By the equivalence of the policy problems, it follows that (26) is an optimal policy rule,

taking the form (16) - (17). Finally, the second part of the result follows from Proposition 1

since (26) is just a special example of a policy rule {Ãx, Ãz}.
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Proposition 2 reveals that, in conjunction with a given policymaker loss function, the

information required to construct valid counterfactuals for arbitrary policy rules also suffices

to characterize optimal policy rules.17 The intuition is exactly as before: since we know the

causal effects of every possible policy perturbation ννν on the policymaker targets xxx, we in

particular know the space of those targets that is implementable through policy actions. At

an optimum, we must be at the point of this space that minimizes the policymaker loss. As

before, it does not matter whether this optimum is attained through some systematic policy

rule or through shocks to an alternative rule.

Unconditional second-moment properties. While Propositions 1 and 2 predict coun-

terfactual dynamics conditional on particular non-policy shock paths εεε, researchers may also

be interested in the unconditional second-moment properties of macroeconomic aggregates

following a change in policy rule. Of course, if researchers have estimated the effects of all

distinct non-policy shocks hitting the economy, then such unconditional analysis is simple:

apply Propositions 1 and 2 for each such shock and then collect the results in the form of a

vector moving average representation.

In practice, however, researchers may not be able to isolate all distinct aggregate non-

policy shocks. Our third identification result states that, in some cases, it is nevertheless

possible to recover the desired counterfactual second-moment properties. Since the result

requires some investment in additional notation, we only state the main idea here and rele-

gate further details to Appendix A.5. The key assumption allowing us to make progress is

“invertibility”: we need to assume that the structural vector moving average representation

of the observable data x and z under the baseline policy rule is invertible with respect to the

structural shocks driving the economy. This assumption, while restrictive (Plagborg-Møller

& Wolf, 2022), is routinely imposed in conventional structural vector autoregression analysis

(Fernández-Villaverde et al., 2007). Under this assumption, researchers need not be able to

separately observe all of the individual structural shocks; instead, it suffices to simply apply

17By certainty equivalence, the results from our perfect-foresight analysis readily extend to stochastic
linear-quadratic control problems. We can in that case re-write the derived optimal policy rule as a forecasting
targeting rule (Svensson, 1997):

nx∑
i=1

λiΘ
′
xi,ν,AWEt [xxxi] = 000, (27)

where now xxxi = (xit, xit+1, . . . )
′. In words, expectations of future targets must always minimize the pol-

icymaker loss within the space of (expected) allocations that are implementable via changes in the policy
stance. For a timeless perspective, (27) must apply to revisions of policymaker expectations at each t.
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our counterfactual prediction results in Propositions 1 and 2 to the Wold innovations and

then collect the results in the form of a counterfactual vector moving average. Appendix A.5

also discusses why this argument fails in the non-invertible case.

Role of the baseline rule {Ax,Az}. All identification results in this section were

stated using the causal effects of policy shocks ννν relative to the baseline policy rule {Ax,Az}.
We would like to emphasize, however, that this baseline rule only plays a limited role in our

analysis, and that it in particular does not need to be known by the econometrician.18

In our proofs of Propositions 1 and 2, the baseline policy rule {Ax,Az} functions as a

reference point: we find the sequence of policy shocks relative to that rule that implements the

desired counterfactual rule. This choice of reference point, however, is ultimately immaterial:

since private-sector behavior in (6) is shaped by policy only through the instrument path zzz,

all that matters for our results is knowledge of how macroeconomic outcomes xxx are related

to paths of policy instruments zzz. For example, under the natural assumption that Θz,ν,A is

invertible—i.e., the policymaker can implement any sequence of the policy instrument—we

could post-multiply all causal effect matrices by Θ−1
z,ν,A, thus writing policy causal effects not

in terms of shocks ννν relative to a given rule, but instead directly in terms of instrument paths

zzz. This change in reference point leaves our identification results completely unchanged, but

will prove useful when later connecting those theoretical identification results with empirical

evidence on policy shock propagation in Section 3.

Discussion. The theoretical identification results in Propositions 1 and 2 offer a bridge

between the “Lucas program” (e.g., see Christiano et al., 1999)—a strategy that relies on

micro-founded structural models to form policy counterfactuals—and the purely empirical

approach of Sims & Zha (1995). The propositions reveal that, under our assumptions, im-

pulse responses to policy shocks—objects that are estimable using semi-structural empirical

techniques—suffice to predict the effects of changes in systematic policy rules. Key to our

argument is the use of multiple distinct policy shocks. By using many such shocks (and all

realized at date 0), counterfactual rules can be imposed not just ex post but also in ex ante

expectation, and this turns out to be enough to circumvent the Lucas critique. We further

elaborate on the connection between our results and the approach of Sims & Zha—which

18Moreover, our results will continue to hold if the baseline policy rule underwent changes during the
sample period. For our purposes, the key requirement is that the private-sector behavioral relationships (6)
have remained stable over the observed sample period. We provide further details in Appendix A.4.
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uses one policy shock, set to a new level at each date t—in Section 2.4.

Our results can be interpreted as part of the recent effort to bring insights from the

“sufficient statistics” approach popular in public finance to macroeconomics (Chetty, 2009;

Nakamura & Steinsson, 2018). For a large family of structural models and policy counterfac-

tuals, policy shock impulse responses are sufficient statistics in the sense that we can directly

use them to compute the desired counterfactuals, without actually requiring knowledge of

the structural equations of the model. To leverage Propositions 1 and 2, an econometrician

does not need to make detailed assumptions on the private-sector block, nor does she need

to know the policy rule that generated the observed data.

2.4 Illustration & relation to Sims & Zha (1995)

This section provides a visual illustration of our identification results and their relationship

to the approach of Sims & Zha (1995). As our laboratory we use a HANK model as in Wolf

(2021), with details of the parameterization relegated to Appendix A.1. In this environment

we will compute policy counterfactuals in multiple ways: first by using the actual structural

equations of the model to simply solve the model with a counterfactual policy rule; and then

by using model-implied impulse responses to policy shocks to implement either the approach

of Sims & Zha or our identification result in Proposition 1.

We begin by solving the model with a baseline policy rule of

it = ϕππt +
∞∑
ℓ=0

νℓ,t−ℓ (28)

for ϕπ = 1.5. In particular, we recover a) the impulse responses {xxxA(εεε), zzzA(εεε)} to a contrac-

tionary cost-push shock εt under (28) and b) the causal effects of contemporaneous and news

policy shocks ννν to (28), {Θx,ν,A,Θz,ν,A}. We emphasize that those causal effects would be

estimable by an econometrician living in this economy and with access to valid instruments

for the cost-push shock εt as well as the policy shocks {ν0,t, ν1,t, . . . }.
We entertain the following counterfactual policy rule:

it = ϕiit−1 + (1− ϕi)(ϕππt + ϕyyt) (29)

for ϕi = 0.9, ϕπ = 2, ϕy = 0.5. The dotted and solid lines in all three panels of Figure 1

show the true model-implied impulse responses of output and inflation to a cost-push shock

εt under the baseline rule (28) (dotted) and the counterfactual rule (29) (solid), where both
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Sims & Zha Strategy

2 Shocks: Match 1-Period-Ahead Expectations

Full Date-0 Shocks: Match All Expectations

Figure 1: The dotted and solid lines show output and inflation responses to the cost-push shock
εt under the policy rules (28) and (29) in the HANK model. The dashed lines give counterfactuals
constructed through the policy shocks on the right. The top panel uses repeated realizations of
a single policy shock to enforce (29) ex post, as in Sims & Zha. The middle panel uses repeated
realizations of two policy shocks to enforce (29) ex post and in one-period-ahead expectation. The
lower panel shows our method, which uses a single realization of many policy shocks to enforce (29)
along the entire expected path. Lighter shades correspond to news about policy at longer horizons.
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of these lines are computed from the structural equations of the model.

We now seek to recover the desired counterfactual (solid) only through knowledge of the

dynamic causal effects of policy shocks, and without actually relying on any of the structural

equations of the model. The panels of Figure 1 show results for three possible strategies to

predict the counterfactual propagation of the cost-push shock.

Estimand of Sims & Zha. The top panel begins with the empirical strategy of Sims &

Zha (1995). Here the econometrician was only able to estimate the dynamic causal effects of

the first entry of ννν (i.e., the contemporaneous shock ν0,t), and then uses a sequence of such

policy shocks—one at each t = 0, 1, 2, . . .—to enforce the counterfactual rule (29) ex post

along the equilibrium transition path. The right panel shows the sequence of policy shocks

that implements this strategy, and the dashed lines in the left and middle panels give the

responses of output and inflation to the original cost-push shock plus the derived sequence of

monetary policy shocks. The main takeaway is that those dashed lines are not equal to the

true counterfactual (solid). Intuitively, the issue is that the contemplated counterfactual rule

is only imposed ex post, but not in ex ante expectation. Since expectations about the future

affect the present, enforcing the rule through ex post surprises is not the same as switching

and committing to a different rule from time t = 0 onwards. Visually, the importance of ex

post surprises is evident in the right panel: to map the baseline rule into the counterfactual

rule, the econometrician requires a sequence of expansionary policy shocks ν0,t, with those

shocks remaining large throughout the entire first year after the shock.

Towards our identification result. The middle and bottom panels now illustrate

the logic of our identification result—with multiple policy shocks, the econometrician has

enough degrees of freedom to impose the counterfactual rule not just ex post, but also in

expectation. As a warmup, the middle panel considers a case in which the econometrician is

able to estimate the causal effects of the first two entries of ννν (i.e., a contemporaneous and a

one-period forward guidance policy shock). Such access to multiple shocks suggests a natural

generalization of Sims & Zha: use the two policy shocks at each t ≥ 0 to enforce the desired

counterfactual rule not only ex post (as Sims & Zha do with one shock), but also in ex ante

expectation for the next period.19 Since the counterfactual policy rule is now imposed both

ex post and in ex ante expectation for one period, the predicted counterfactuals (dashed)

are closer to the truth (solid); correspondingly, the policy shock sequences in the right panel

19We present implementation details for this approach in Appendix A.7.
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feature smaller ex post surprises dated t = 1, 2, . . . . The bottom panel—which corresponds

to our identification result—simply continues this logic. With access to the causal effects of

the full vector of policy shocks ννν, the econometrician can rely purely on date-0 shocks (right

panel) to enforce the counterfactual rule not just ex post but also in ex ante expectation.

Under our assumptions, doing so suffices to circumvent the Lucas critique and recover the

correct counterfactual (left and center panels).

To summarize, the top- and bottom-right panels illustrate the core difference between the

empirical method of Sims & Zha and our identification result. In the former, the researcher

has access to a single policy shock, and uses a sequence of realizations of that shock to enforce

the counterfactual rule. In our approach, the researcher has access to many shocks and only

uses shocks at date-0 to enforce the counterfactual rule. Our identification result thus clearly

has substantially higher informational requirements, but this increase in information brings

with it the similarly substantial benefit of robustness to Lucas critique concerns.

2.5 Discussion

The central takeaway from the analysis in this section is that—under our maintained struc-

tural assumptions—systematic policy rule counterfactuals can, at least in principle, be con-

structed purely through empirical measurement, and in a way that is robust to Lucas critique

concerns. In the remainder of the paper we discuss how to operationalize our insights. The

main challenge is that the informational requirements underlying our identification results

are quite high: the researcher needs evidence on the causal effects of a full menu of policy

shocks that shift expectations of policy at all possible horizons. Section 3 presents an empir-

ical strategy for the relevant case of researchers with access to only a few distinct identified

policy shocks. We will then in Section 4 illustrate this empirical strategy through several

applications to systematic monetary policy rule counterfactuals.

3 Empirical method

This section presents our empirical method for constructing policy rule counterfactuals with

evidence on multiple, but a limited number of, distinct policy shocks. Section 3.1 illustrates

the basic logic of our method with an illustrative example based on the oil shock application

of Bernanke et al. (1997). Section 3.2 then introduces the general methodology.

Throughout, the discussion in this section will leverage the following connection between

our theoretical identification results in Section 2.3 and empirical evidence on policy shock
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propagation. For our theoretical analysis, we found it convenient to think of contemporane-

ous and news shocks ννν that perturb some fixed prevailing policy rule {Ax,Az} horizon by

horizon. For connecting to data, however, this perspective is less useful—empirical evidence

on policy shock causal effects just gives impulse responses and is generally silent on the

underlying policy rule. Instead, a more instructive way forward is to realize that the in-

formational requirements underlying our identification results could equivalently be phrased

in terms of policy instrument paths, as already discussed in Section 2.3: to implement our

results, the econometrician needs to know the causal effects associated with all possible time

paths of the policy instrument zzz. Empirical work that studies a given identified policy shock

simply gives us the dynamic causal effects associated with a particular path of the policy

instrument, without any reference to the underlying policy rule, to whether a policy shock is

contemporaneous or “news”, and in fact without even requiring stability of that underlying

rule. The basic idea of our empirical method is to combine those instrument time paths to

mimic the effects of a switch to a counterfactual policy rule.

3.1 Illustrative example

To illustrate the basic logic of our proposed empirical method as transparently as possible

we begin with a stylized example that emulates the monetary policy counterfactual analysis

of Bernanke et al. (1997). Like those authors, we consider an econometrician that wishes

to predict the (counterfactual) propagation of oil price shocks in the absence of a monetary

policy reaction—i.e., the canonical “zeroing-out” policy counterfactual.20

Revisiting Bernanke et al. (1997). Figure 2 provides a stylized representation of

how the econometrician could use our identification result to construct her desired oil shock

counterfactual. We emphasize that the impulse responses in this figure are purely illustrative;

they do not come from any empirical analysis or structural model.

As a first step, the econometrician begins by estimating the effects of an oil price shock

under the prevailing monetary reaction function, exactly as in Bernanke et al. (1997). In

the stylized example here, the oil shock leads to an increase in prices (top-left panel); the

20In notation of Section 2, such “zeroing-out” corresponds to a counterfactual policy rule that sets zzz = 000.
It is of course well-known that rules of this sort—for example a nominal interest rate peg—often lead to
equilibrium indeterminacy, violating Assumption 2 (Sargent & Wallace, 1981). As discussed in Section 2.3,
the counterfactuals presented here should thus be interpreted as corresponding to one particular equilibrium
associated with this policy rule.
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Stylized representation of the empirical method

Figure 2: Inflation (π) and nominal interest rate (i) impulse responses to: oil shock under the
baseline rule (left panel, solid); monetary policy shocks to the baseline rule (two middle panels,
solid and dashed); and oil shock under the counterfactual rule (right panel, solid). All impulse
responses are purely illustrative; they do not come from any empirical exercise or structural model.

monetary authority furthermore leans against this inflationary pressure through an increase

in nominal interest rates (bottom-left panel). By our identification result, she next needs

to estimate the effects of a monetary policy shock—or a linear combination of such policy

shocks—that moves nominal interest rates from date-0 onwards exactly like the observed

endogenous interest rate response to the oil shock. The two middle panels show two possible

scenarios. In the left one, the econometrician was able to identify a single monetary policy

shock that induces the exact same path of nominal interest rates as the oil shock. In the right

one, she estimated two separate policy shocks (one solid, one dashed), with the sum of the

two replicating the interest rate path after the oil shock. In both cases, the identified policy

shocks decrease inflation (top panels). Given either of these estimates, the econometrician

can apply our identification result: she simply needs to subtract the impulse responses shown

in the second or third column from those in the first column. The results are then shown

in the fourth column: interest rates are now by construction unresponsive, and inflation

increases by more than under the baseline policy response. It follows from Proposition 1
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that any structural model consistent with (i) our general model framework (6) - (7), (ii) the

original propagation of the oil shock (first column) and (iii) either one of the two middle

columns on monetary policy shock propagation will necessarily agree with this “zeroing-out”

counterfactual displayed in the right panel.

Discussion. We emphasize that the illustrative example displayed in Figure 2 is stylized

in two ways. First, using either of the estimated monetary policy shocks, the econometrician

was able to perfectly enforce the desired policy counterfactual using only date-0 shocks. In

actual applications this will not be possible in general, so approximations will be needed.

Second, the counterfactual rule that we considered was particularly simple, taking the form

of an exogenous interest rate path rather than a more complicated relationship between

endogenous equilibrium outcomes (like, e.g., a Taylor rule). Our empirical method, presented

in the next section, is the natural generalization of the stylized example: the researcher

considers an arbitrary counterfactual rule of our general form (8), and then enforces it as

well as possible using the available policy shock evidence.

3.2 Counterfactuals with a limited number of policy shocks

We consider a researcher that has access to estimates of ns distinct policy shocks associated

with ns distinct response paths of the policy instrument z.21 We denote the causal effects

of these shocks by {Ωx,A,Ωz,A}, where each of the ns columns of the Ω’s gives the impulse

response to a distinct identified policy shock. Given these lower-dimensional causal effect

maps, and given a non-policy shock εεε and a counterfactual rule {Ãx, Ãz}, the proof strategy
of Proposition 1 will fail in general. We would now need to set

Ãx(xxxA(εεε) + Ωx,A × sss) + Ãz(zzzA(εεε) + Ωz,A × sss) = 000 (30)

where sss ∈ Rns denotes weights assigned to the ns empirically identified policy shocks at date

0. The problem is that this system of T equations (where T is the large maximal transition

horizon) in ns unknowns will generically not have a solution. So how can researchers proceed?

Our proposal is to simply select the weights sss on the ns date-0 shocks to enforce the

21In saying that a researcher has access to policy shocks that induce different instrument paths, we are
implicitly assuming that these differences in instrument paths reflect different identification strategies captur-
ing different linear combinations of policy shocks rather than statistical noise or violations of the identifying
assumptions. We justify this interpretation in our empirical application in Section 4.
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desired counterfactual rule as well as possible. In practice, this means solving the problem

min
sss

||Ãx(xxxA(εεε) + Ωx,A × sss) + Ãz(zzzA(εεε) + Ωz,A × sss)||. (31)

The output of the simple problem (31) is the best approximation to the desired policy coun-

terfactual within the space of empirically identified policy shock paths. By our identification

results in Section 2 and because all shocks are dated t = 0 (i.e., no ex post surprises), this

approach is robust to the Lucas critique. In the illustrative example of Figure 2, the avail-

able evidence on policy shocks in the middle panels was sufficient to set the argument of

(31) exactly to zero. In actual applications, on the other hand, we will not perfectly enforce

the desired policy counterfactual; rather, we will approximate it as closely as possible. The

richer the menu of policy shocks we have access to, the better the approximation will become,

eventually converging to the truth (as ns → ∞). The important limitation of our approach is

thus that, for small ns, it will not always be possible to construct an accurate approximation

of the desired counterfactual rule—sometimes we will be able to set the implementation error

in (31) close to zero, other times it will be large. The practical usefulness of our proposed

method is thus an inherently application-dependent question.

By Proposition 2, our identification results also allow researchers to learn about optimal

counterfactual policy rules, given some exogenously specified loss function. Appendix B.2

shows how to apply our Lucas critique-robust method to such questions of optimal policy

design. Very briefly, the idea is to use date-0 policy shocks to reduce the policymaker loss as

much as possible. Our approach thus minimizes the loss function by perturbing the baseline

policy response in directions spanned by the set of empirically identified policy shocks.22

Finally, for both rule counterfactuals and for optimal policy, we in Appendix B also describe

how to leverage our results to construct counterfactual average business-cycle statistics.

4 Application to monetary policy counterfactuals

This section applies our empirical method to construct monetary policy rule counterfactuals.

We proceed in two steps. First, in Section 4.1, we provide a brief review of existing evidence

22This part of our empirical method is related to work by Barnichon & Mesters (2021). Those authors
argue that, under quite general conditions, evidence on policy shock impulse responses can be used to test the
optimality of a policy decision. Our method makes materially stronger assumptions—notably the separation
of the policy and non-policy blocks in (6) - (7)—allowing us to explicitly characterize optimal policy (and
optimal policy rules), as in Proposition 2.
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on monetary policy shock transmission—the key input to our empirical method. Second, in

Section 4.2, we apply our method to study the propagation of investment-specific technology

shocks under various counterfactual monetary rules.

4.1 A review of monetary policy shock evidence

In order to implement our empirical method, we require evidence on multiple distinct mone-

tary policy shocks that induce different time paths for nominal interest rates. The empirical

literature has devised many different strategies to isolate quasi-random variation in the con-

duct of monetary policy (see Ramey, 2016, as well as the discussion below). Since monetary

authorities affect current and future expected interest rates, monetary policy is inherently

multi-dimensional, and so it is not surprising that distinct identified policy shocks capture

different dimensions of policy: some identification schemes will capture transitory impulses,

while others reflect more persistent deviations from the policy rule.23 The empirical evidence

that we leverage is consistent with this observation.

Our applications in Section 4.2 will use two of the most canonical monetary policy shock

series: those of Romer & Romer (2004) and Gertler & Karadi (2015). Importantly, those two

monetary shock series are likely to be informative about very different monetary experiments.

While the Romer & Romer shock is rather short-lived (i.e., mostly reflecting contempora-

neous shocks ν0,t), the Gertler & Karadi shock is well-known to move longer-term nominal

interest rates and is thus more likely to have a larger forward guidance component (i.e., in

greater part reflecting νℓ,t for ℓ > 0). Our applications in the next section reveal that even

this relatively modest amount of evidence is in fact enough to tightly characterize several

important monetary policy rule counterfactuals.

While we have chosen to focus on the most well-known and well-understood policy shock

series for our main applications, we emphasize that similar arguments about interest rate

time profiles apply just as well to several other popular monetary policy shock series. First,

as we discuss in detail in Appendix C.4, the monetary shock series of Miranda-Agrippino

& Ricco (2021) and Aruoba & Drechsel (2022)—shock measures that seek to improve on

the original series of Romer & Romer and Gertler & Karadi in various ways—induce similar

dynamics, with one shock more transitory and the other more persistent. Second, some prior

work has explicitly split monetary policy shock series by their effects on different points of

23A related argument was made by Sims (1998): there is no need for different identification strategies to
yield correlated measures of policy shocks, simply because the identified shocks may capture different sources
of variation in policy. We thank our discussant Valerie Ramey for pointing out that connection.
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the yield curve, leveraging the intuitive idea that no two monetary policy surprises are likely

to shift the overall yield curve in exactly the same way. Estimates of this type are for example

presented in Gürkaynak et al. (2005), Antolin-Diaz et al. (2021), and Inoue & Rossi (2021),

and would offer natural alternatives as an input to our empirical method.24

4.2 Counterfactual policy rule exercises

We apply our empirical method to predict the effects of investment-specific technology shocks

under various counterfactual monetary policy rules. In particular, our objects of interest are

the counterfactual behavior of the output gap, inflation, and the short-term nominal rate.

We choose to focus on investment-specific technology shocks because such shocks are widely

argued to be one of the main drivers of aggregate business-cycle fluctuations, at least in the

U.S. (e.g., see Justiniano et al., 2010; Ramey, 2016).

We proceed as follows: we estimate the inputs required by our methodology, apply the

method and present the main results, and then discuss how to interpret those results in light

of our theoretical identification results in Section 2. Appendix C provides further details.

Inputs. The first input to our analysis are the aggregate effects of the non-policy shock of

interest εεε under the prevailing baseline policy rule. To recover those effects we rely on the

investment-specific technology news shock series identified by Ben Zeev & Khan (2015)—

a shock that induces an anticipated change in the relative price of investment goods. We

estimate the propagation of this shock by ordering it first in a recursive Vector Autoregression

(VAR) (as recommended in Plagborg-Møller & Wolf, 2021).

The second input are the causal effects of a menu of different monetary policy shocks. For

this we consider the shock series of Romer & Romer (2004) and Gertler & Karadi (2015), as

already discussed in Section 4.1. To correctly account for joint uncertainty in the estimation

of the effects of the two policy shocks, we study their propagation through a single VAR. For

robustness, we also repeat all of our policy counterfactual applications with the shock series

of Miranda-Agrippino & Ricco and Aruoba & Drechsel—two less well-known but arguably

somewhat more robust shock series—and find similar results. All results for these alternative

shock measures are reported in Appendix C.4.

24We note that this discussion also extends to fiscal shocks. For government spending, Ramey (2011)
explicitly distinguishes between shocks reflecting gradual military build-ups and more transitory upticks in
purchases. For taxes, Mertens & Ravn (2014) separate unanticipated (transitory) and anticipated (gradual)
tax shocks. We leave applications of our methodology to fiscal policy counterfactuals to future work.
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Policy Counterfactual, Output Gap Targeting

Figure 3: Output gap, inflation and interest rate impulse responses to a contractionary investment-
specific technology shock under the prevailing baseline rule (dotted) and the best feasible approxi-
mation to output gap targeting (solid), computed following (31). The shaded areas correspond to
16th and 84th percentile confidence bands. Perfect output gap targeting (i.e., ŷt = 0 for all t) is
displayed as the black dashed line.

Counterfactual policy results. We use our methodology to construct counterfactu-

als for several different alternative monetary policy rules: output gap targeting; a standard

Taylor (1999) rule; a nominal rate peg; nominal GDP targeting; and the optimal policy rule

corresponding to a loss function with equal weight on the output gap and a weighted average

of current and lagged inflation (i.e., average inflation targeting).

First, Figure 3 shows our counterfactual results for output gap stabilization. The iden-

tified investment technology shock has both a cost-push as well as a negative demand com-

ponent, consistent with theory (e.g., see Justiniano et al., 2010). Under the baseline policy

rule (dotted), nominal interest rates are cut relatively aggressively, though not by enough

to stabilize the output gap; furthermore inflation stays moderately above target.25 Under

our approximation to output gap targeting, nominal interest rates are cut much more ag-

gressively, essentially stabilizing the output gap from around a couple of quarters after the

shock, at the cost of persistently higher inflation. Given the well-documented lags in mone-

tary policy transmission, it seems unlikely that any nominal interest rate path could actually

stabilize the output gap in the immediate aftermath of the investment shock; we thus believe

25To the extent that our sample saw changes in the systematic conduct of monetary policy, the displayed
impulse responses will average over the in-sample observed monetary reactions to the investment shock. See
the discussion in Appendix A.4 for further details.
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Policy Counterfactual, Taylor Rule

Figure 4: Output gap, inflation and interest rate impulse responses to a contractionary investment-
specific technology shock under the prevailing rule (dotted) and the best feasible approximation
to a simple Taylor-type rule ît = 0.5̂it−1 + 0.5 × (1.5π̂t + ŷt) (solid), computed following (31).
The shaded areas correspond to 16th and 84th percentile confidence bands. The distance between
dashed and solid lines in the right panel is the implementation error (i.e., the argument of (31)).

that our empirical analysis yields an accurate approximation to what a strict output gap

targeting policy can actually achieve in practice.26

Second, Figure 4 shows the results for a Taylor-type rule with strong responses to inflation

and the output gap as well as moderate nominal interest rate smoothing. Due to the observed

increase in inflation, this policy rule actually dictates a much less aggressive rate cut, resulting

in somewhat lower output and inflation at medium horizons. In the right panel, the distance

between the dashed and solid lines indicates whether or not our method is able to accurately

implement the counterfactual rule. While the solid lines show our counterfactual path of

nominal interest rates, the dashed lines instead use the counterfactual Taylor rule to map

the output gap and inflation paths shown in the left and middle panels into paths of nominal

rates. The distance between the solid and dashed lines is the argument of (31)—i.e., the

policy rule implementation error. We see that the contemplated counterfactual Taylor rule

is imposed relatively well throughout, except at a couple of quarters after the initial shock

(where interest rates are still cut by too much relative to the Taylor rule prescription).

Third, we proceed in the spirit of the recent change in the Federal Reserve’s policy

framework and consider a policymaker with preferences over output and average inflation

26In the notation of Section 2, these statements correspond to the idea that perfect output gap targeting—
i.e., the rule yyy = 0, with y denoting the output gap—is not implementable (i.e., Assumption 2 is violated).
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Policy Counterfactual, Optimal AIT Policy Rule

Figure 5: Output gap, inflation and interest rate impulse responses to a contractionary investment-
specific technology shock under the prevailing baseline rule (dotted) and the best feasible approxi-
mation to an optimal average inflation targeting monetary policy rule (solid), computed as discussed
in Appendix B.2. The shaded areas correspond to 16th and 84th percentile confidence bands.

π̄t, where π̄t =
∑K

ℓ=0 ωℓπt−ℓ.
27 We then represent the loss function of a dual mandate

policymaker with preferences over average inflation as

L = λππ̄ππ
′Wπ̄ππ + λyyyy

′Wyyy (32)

with λπ = λy = 1, W = diag(1, β, β2, · · · ) and β = 1/1.01. Results for our optimal policy

counterfactual are displayed in Figure 5. The key takeaway here is that this optimal policy

counterfactual differs very little from actually observed outcomes. In other words, there is

little room to improve upon the observed allocation by changing policy within the space of

policy instrument paths spanned by our two identified policy shocks.

Appendices C.3 and C.4 present several further applications. First, we consider the two

remaining policy counterfactuals: nominal GDP targeting and a nominal interest rate peg.

We find that nominal GDP targeting can be implemented very accurately; interestingly, this

counterfactual looks quite similar to our estimated outcomes under the baseline rule, with

interest rates cut only slightly less aggressively. Matters look different for a nominal interest

rate peg, however. Here, nominal rates in our best Lucas critique-robust counterfactual still

27Here K denotes the maximal (lagged) horizon that enters the inflation averaging, and ωℓ denotes the
weight on the ℓth lag, with

∑
ℓ ωℓ = 1 and ωℓ ≥ 0 ∀ℓ. For our application we setK = 20 and ωℓ ∝ exp(−0.1ℓ).

Suitably stacking the weights {ωℓ}, we can define a linear map Π̄ such that π̄̄π̄π = Π̄× πππ.
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fall by quite a bit too much, in particular at short horizons. Our method thus in this case

does not allow an accurate characterization of the desired counterfactual. Second, we repeat

our analysis with the alternative shock series of Miranda-Agrippino & Ricco and Aruoba &

Drechsel. Those two shocks give similar impulse responses to our baseline shock measures,

and so our systematic policy rule counterfactuals are not affected much.

Counterfactual second-moment properties. While our analysis in this section has

focused on policy counterfactuals conditional on some given non-policy shock, we have also

used our identification results to construct counterfactual unconditional business-cycle statis-

tics. Specifically, our object of interest are counterfactual aggregate business-cycle statistics

under optimal policy for a policymaker with preferences as in (32). As discussed in Sec-

tions 2.3 and 3.2, recovering this counterfactual requires us to apply our policy counterfac-

tual mapping separately to the impulse responses for each reduced-form Wold innovation of

the observed macroeconomic aggregates, then stacking the resulting impulse responses into a

new counterfactual Wold representation, and finally using this Wold representation to derive

counterfactual second moments.

Results for this application are presented in Appendix C.5. Consistent with our “condi-

tional shock” results in Figure 5, we find that—at least within the space of identified policy

shock causal effects—only moderate policy improvements would have been feasible, with our

constructed counterfactual volatilities of the output gap and inflation only somewhat below

the actually observed level.

Discussion. The results from our applications in this section reveal that existing empirical

evidence on policy shocks is already sufficient to tightly restrict policy rule counterfactuals

for several prominent alternative monetary policy strategies. At the same time, we emphasize

that our empirical method is clearly not always applicable: for some non-policy shocks and

some counterfactual rules, it will not be possible to enforce the counterfactual rule accurately.

In particular, the counterfactuals that we constructed for the investment shock application

were relatively accurate precisely because the investment shock is rather transitory, thus

only requiring knowledge of the effects of similarly transitory interest rate changes, along the

lines of those implied by the Romer & Romer and Gertler & Karadi monetary policy shocks

(see Appendix C.2 for the exact paths). More persistent non-policy shocks εεε necessarily

induce more persistent policy instrument movements and thus would correspondingly require

empirical evidence on highly persistent policy shocks (e.g., far-ahead forward guidance).
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5 Conclusions

The standard approach to counterfactual analysis for changes in systematic policy rules relies

on fully-specified, structural, general-equilibrium models. Our identification results instead

point in a very different direction: researchers can estimate the causal effects of distinct policy

shocks and combine them to form policy counterfactuals. Importantly, these counterfactuals

are valid in a large class of models that encompasses the majority of structural business-cycle

models currently used for policy analysis.

An important challenge in implementing this strategy is that its informational require-

ments are high. We showed how to proceed in the empirically relevant case of evidence on

a small number of policy shocks. We illustrated through several examples that empirical

evidence is already sufficient to tightly characterize a variety of interesting monetary policy

rule counterfactuals, reducing the need for explicit structural modeling. More generally, a

key message of this paper is to emphasize the value of empirical strategies that recover the

dynamic causal effects associated with different time paths of policy instruments. Every

additional piece of empirical evidence on a different policy instrument path will expand the

space of counterfactual policy rules that can be analyzed with our method.

In closing, we would like to re-iterate two important considerations for researchers who

contemplate using our approach. First, our method is silent on issues of equilibrium unique-

ness. It will construct one valid equilibrium for the counterfactual policy rule, but nothing

guarantees uniqueness; for that, additional theoretical arguments are needed. Second, our

empirical method relies on linearity and thus should only be used when this assumption is

appropriate. Structural modelers often use linearization as a means of computing equilibria;

in such structural contexts, the uses and limitations of linear methods are well-understood.

Those same principles apply to the use of our method.
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Online Appendix for:

What Can Time-Series Regressions

Tell Us About Policy Counterfactuals?

This online appendix contains supplemental material for the article “What Can Time-Series

Regressions Tell Us About Policy Counterfactuals?”. We provide (i) supplementary results

complementing our theoretical identification analysis in Section 2, (ii) implementation details

for our empirical methodology in Section 3, and (iii) several supplementary findings and

alternative experiments complementing our empirical applications in Section 4.

Any references to equations, figures, tables, assumptions, propositions, lemmas,

or sections that are not preceded “A.”—“C.” refer to the main article.
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A Supplementary theoretical results

This appendix provides several results complementing our theoretical identification analysis

of Section 2. Appendix A.1 discusses examples of macro models that are nested by our results,

Appendix A.2 gives an example of a model that is not, Appendix A.3 extends our optimal

policy arguments to more general loss functions, Appendix A.4 works out what happens when

the policy rule itself is changing, Appendix A.5 provides the details for unconditional second-

moment counterfactuals, Appendix A.6 studies optimal monetary policy in our illustrative

HANK model, Appendix A.7 shows how we construct counterfactuals with a limited number

of policy shocks (as displayed in Figure 1), Appendix A.8 provides a global identification

analysis with even higher informational requirements, and finally Appendix A.9 extends our

results to the case where only the policy rule is non-linear.

A.1 Examples of nested models

We provide further details on three sets of models: the three-equation New Keynesian model

of Section 2.1, a general class of behavioral models, and the HANK model of Section 2.4.

Three-equation NK model. We here state the three-equation model of Section 2.1 in

the form of our general matrix system (6) - (7). We begin with the non-policy block. The

Phillips curve can be written as
1 −β 0 . . .

0 1 −β . . .

0 0 1 . . .
...

...
...

. . .

πππ − κyyy − εεεs = 0,

while the Euler equation can be written as

−σ


0 1 0 . . .

0 0 1 . . .

0 0 0 . . .
...

...
...

. . .

πππ +


1 −1 0 . . .

0 1 −1 . . .

0 0 1 . . .
...

...
...

. . .

yyy + σiii = 0.
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Letting xxx ≡ (πππ′, yyy′)′, we can stack these linear maps into the form (6). Finally the policy

rule can be written as

ϕππππ − iii+ ννν = 0,

which directly fits into the form of (7) with zzz = iii.

Behavioral model. Our general framework (6) - (7) is rich enough to nest popular

behavioral models such as the cognitive discounting framework of Gabaix (2020) or the

sticky information set-up of Mankiw & Reis (2002). We here provide a sketch of the argument

for a particular example—the consumption-savings decision of behavioral consumers. Our

discussion leverages sequence-space arguments as in Auclert et al. (2021).

Let the linear map E summarize the informational structure of the consumption-savings

problem, with entry (t, s) giving the expectations of consumers at time t about shocks at

time s. Here an entry of 1 corresponds to full information and rational expectations, while

entries between 0 and 1 can capture behavioral discounting or incomplete information. For

example, cognitive discounting at rate θ would correspond to

E =


1 θ θ2 . . .

1 1 θ . . .

1 1 1 . . .
...

...
...

. . .


while sticky information with a fraction 1 − θ receiving the latest information could be

summarized as

E =


1 1− θ 1− θ . . .

1 1 1− θ2 . . .

1 1 1 . . .
...

...
...

. . .

 .

Let p denote an input to the household consumption-savings problem (e.g., income or interest

rates). In sequence space, we can use the matrix E to map derivatives of the aggregate

consumption function with respect to p, denoted Cp, into their behavioral analogues C̃p via

C̃p(t, s) =
min(t,s)∑
q=1

[E(q, s)− E(q − 1, s)]Cp(t− q + 1, s− q + 1).

Typical behavioral frictions thus merely affect the matrices that enter our general non-policy
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block (6), but do not affect the separation of policy- and non-policy blocks at the heart of

our identification result.

Quantitative HANK model. The HANK model used for our quantitative illustration

in Section 2.4 is a simplified version of that in Wolf (2021). Since the model is standard our

discussion here will be relatively brief.

• Demand block. The economy is populated by a unit continuum of households that

can save in a nominally risk-free, liquid asset. We set the steady-state quarterly real

return on the asset to r̄ = 0.01, and its supply as a share of quarterly output to 1.04

(Kaplan et al., 2018). Households have time-separable log preferences over consump-

tion, with discount factor β. Their total non-asset income is (1− τy)eityt + τt. Here yt

is aggregate income and eit is idiosyncratic household productivity, with
∫ 1

0
eitdi = 1

at all t and where eit follows the income process of Kaplan et al. (2018), ported to

discrete time. Households also receive lump-sum transfers τt from the government; we

set the steady-state level of transfers as a share of quarterly output to 0.05. We recover

the time-invariant income tax rate τy to balance the government budget.

The consumption block of the model is solved in two steps. First, we iterate over the

household discount factor β to clear the liquid asset market in steady state. Second,

we differentiate the aggregate consumption function around the deterministic steady

state, giving the linearized relation

ccc = Cyyyy + Ciiii+ Cππππ + Cττττ

where c is consumption, y is aggregate income, i is the nominal rate on the liquid asset,

π is inflation, and τ denotes the uniform lump-sum transfer. Without uninsurable

income risk this demand block would collapse to the familiar Euler equation.

• Supply block. The supply relation of our economy is a standard NKPC:28

πt = κyt +
1

1 + r̄
πt+1 + εt

where εt is a contractionary cost-push shock and we set κ = 0.1. We assume that εt

follows a standard AR(1) process with persistence 0.8.

28See McKay & Wolf (2022) for a discussion of the assumptions on primitives necessary to derive such a
supply relation from a combination of nominal rigidities and consumer labor supply in a HANK model.
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• Policy. The fiscal authority fixes the total amount of outstanding government debt

at its steady state level and adjusts lump-sum transfers to balance the budget. The

monetary authority follows the policy rules described in Section 2.4.

A.2 Filtering problems

To illustrate how an asymmetry in information between the private sector and the policy

authority can break our separation of the policy and non-policy blocks in (6) - (7) even for a

linear model, we consider a standard Lucas (1972) island model with a slightly generalized

policy rule. The policy authority sets nominal demand xt according to the rule

xt = ϕyyt + xt−1 + εmt

where yt denotes real aggregate output and εmt is a policy shock with volatility σm. The

private sector of the economy as usual yields an aggregate supply curve of the form

yt = θ(pt − Et−1pt)

where the response coefficient θ follows from a filtering problem and is given as

θ =
σ2
z

σ2
z + σ2

p

with σz denoting the (exogenous) volatility of idiosyncratic demand shocks and σp denoting

the (endogenous) volatility of the surprise component of prices, pt−Et−1pt. A straightforward

guess-and-verify solution of the model gives

pt =
1

1 + θ
xt +

θ

1 + θ
xt−1

and so

σ2
p =

(
1

1 + θ

)2

Var(ϕyyt + εmt ).

But since

yt =
1

1− θ
1+θ

ϕy

θ

1 + θ
εmt

it follows that θ depends on the policy rule coefficient ϕy, breaking our separation assumption.
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A.3 More general loss functions

Proposition 2 can be generalized to allow for a non-separable quadratic loss function. Suppose

the policymaker’s loss function takes the form

L =
1

2
xxx′Qxxx (A.1)

where Q is a weighting matrix. Following the same steps as the proof of Proposition 2, we

can formulate the policy problem as minimizing the loss function (A.1) subject to (25). The

first-order conditions of this problem are

Θ′
ν,x,A(Q+Q′)xxx = 0

so we can recover the optimal policy rule as

A∗
x = Θ′

ν,x,A(Q+Q′)

A∗
z = 000

Even outside of the quadratic case, the causal effects of policy shocks on xxx are still

enough to formulate a set of necessary conditions for optimal policy, but in this general case

the resulting optimal policy rule will not fit into the linear form (7).

A.4 Changing policy rules

Our results apply without change to economies in which the policy rule is changing over time;

instead, for our purposes, the key requirement is that the non-policy block (6) remains stable.

To see why, consider an econometrician that observes data generated from an economy

described first by the pair of equations

Hwwww +Hxxxx+Hzzzz +Hεεεε = 000 (A.2)

Ax,1xxx+Az,1zzz + ννν1 = 000 (A.3)

before then changing to

Hwwww +Hxxxx+Hzzzz +Hεεεε = 000 (A.4)

Ax,2xxx+Az,2zzz + ννν2 = 000 (A.5)
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That is, while the private-sector block remains stable throughout, the policy rule has changed

over time. In keeping with Assumption 1 we assume that both policy rules induce a unique

bounded equilibrium for any bounded sequence of {εεε,ννν1} or {εεε,ννν2}.
Now consider an econometrician that separately studies the propagation of policy shocks

on the two subsamples. In particular, suppose she has successfully estimated the causal

effects of some bounded policy shock vector ννν1 under the first rule. Then, by the exact same

logic as in the proof of Proposition 1, we know that the similarly bounded shock sequence

ννν2 = (Ax,1 −Ax,2)xxxA1(ννν1) + (Az,1 −Az,2)zzzA1(ννν1) + ννν1

under the new policy rule will induce the exact same impulse responses—that is, we have

xxxA1(ννν1) = xxxA2(ννν2), zzzA1(ννν1) = zzzA2(ννν2)

The same argument also works in reverse, mapping any bounded ννν2 into a similarly bounded

ννν1 with the exact same causal effects. This in particular implies that our econometrician

could use her evidence on policy shock propagation from either subsample to implement our

identification results in Section 2.3. Intuitively, since the private-sector block is unchanged,

policy shocks in both cases identify the exact same space of dynamic causal effects, just with

respect to two different reference points—the rule {Ax,1,Az,1} in the first subsample, and

the rule {Ax,2,Az,2} in the second subsample.

As the final step in the argument suppose now that the econometrician would estimate

policy shock causal effects across the two (large) subsamples; in particular, suppose that the

relative sizes of her two subsamples are (ω, 1 − ω). In that case, direct projection on an

instrumental variable that correlates with a given shock sequence ννν would asymptotically

recover a weighted average of sub-sample causal effects, e.g., ωΘx,ν,A1×ννν+(1−ω)Θx,ν,A2×ννν.

The overall estimated dynamic causal effect matrices would thus just be

Θx,ν,A ≡ ωΘx,ν,A1 + (1− ω)Θx,ν,A2

Θz,ν,A ≡ ωΘz,ν,A1 + (1− ω)Θz,ν,A2 .

Importantly, post-multiplying those dynamic causal effects matrices by any policy shock

vector ννν yields sequences of private-sector outcomes x and policy instruments z that are

consistent with the common (sample-invariant) private-sector block (A.2) = (A.4).

Now consider using those causal effect matrices to implement Proposition 1; that is,
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given baseline non-policy shock impulse responses {xxx(εεε), zzz(εεε)} (which could come from either

subsample, or also from a weighted average), find ν̃νν such that

Ãx [xxx(εεε) + Θx,ν,A × ν̃νν] + Ãz [zzz(εεε) + Θz,ν,A × ν̃νν] = 000.

and then compute the impulse responses

xxx(εεε) + Θx,ν,A × ν̃νν

zzz(εεε) + Θz,ν,A × ν̃νν

Since the counterfactual policy rule holds by construction of ν̃νν, and since the averaged policy

shock causal effects {Θx,ν,A,Θz,ν,A} embed the common (sample-invariant) private-sector

block, it follows by the same arguments as in the proof of Proposition 1 that those impulse

responses equal xxxÃ(εεε) and zzzÃ(εεε), respectively.

A.5 Counterfactual second-moment properties

Our analysis is largely focussed on constructing counterfactuals conditional on particular

non-policy shock paths εεε. This is in keeping with much of the empirical policy counter-

factual literature that followed the lead of Sims & Zha (1995) (e.g., Bernanke et al., 1997;

Eberly et al., 2020; Antolin-Diaz et al., 2021). However, under some additional assump-

tions, our results can also be used to construct unconditional counterfactual second-moment

properties—that is, predict how variances and covariances of macroeconomic aggregates

would change under a counterfactual rule. This section provides the detailed argument.

Setting. We consider a researcher that observes and is interested in the counterfactual

properties of some vector of aggregates y = (x, z)—the endogenous outcomes and policy in-

struments of our main analysis. We assume that, under the prevailing policy rule, this vector

of macro aggregates follows a standard structural vector moving average representation:29

yt =
∞∑
ℓ=0

Θℓεt−ℓ = Θ(L)εt, εt ∼ N(0, I) (A.6)

29Given our focus on second moments, the normality restriction is purely for notational convenience (see
e.g., Plagborg-Møller & Wolf, 2021).

49



We would like to predict the second-moment properties of the macroeconomic aggregates yt

under some counterfactual policy rule (8).

If the researcher can estimate the causal effects of all shocks εt on the outcomes yt, then

the identification argument is trivial: she simply applies Proposition 1 for each individual

shock, stacks the resulting impulse responses into a new vector moving average representation

Θ̃(L), and from here computes the counterfactual second-moment properties. This approach

may however not be feasible, as it requires the researcher to be able to correctly disentangle

all of the structural shocks driving the macro-economy.

Procedure. Our proposed procedure has three steps. First, the researcher estimates the

Wold representation of the observables yt. Second, using Proposition 1, she maps the impulse

responses to the Wold errors into new impulse responses corresponding to the counterfac-

tual policy rule. Third, she stacks those new impulse responses to arrive at a new vector

moving average representation, and from this representation constructs a new set of second-

moment properties. Our identification result states that, if the vector moving representation

(A.6) under the baseline rule is invertible, then this procedure correctly recovers the desired

counterfactual second moments.

Identification result. Let Θ̃ℓ denote the lag-ℓ impulse responses of the observables

yt to the shocks εt under the counterfactual policy rule. The process for yt under the

counterfactual policy rule thus becomes

yt =
∞∑
ℓ=0

Θ̃ℓεt−ℓ = Θ̃(L)εt

and so the second moments of the true counterfactual process are given by

Γy(ℓ) =
∞∑

m=0

Θ̃mΘ̃
′
m+ℓ. (A.7)

Now consider instead the output of our proposed procedure. Let ut denote the Wold

errors under the observed policy rule, and let ε∗t denote any unit-variance orthogonalization

of these Wold errors (e.g., ε∗t = chol(Var(ut))
−1 × ut). Then yt under the observed policy

rule satisfies

yt = Ψ(L)ε∗t =
∞∑
ℓ=0

Ψℓε
∗
t−ℓ
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where ε∗t ∼ N(0, I). Under invertibility—i.e., Θ(L) has a one-sided inverse—we in fact know

that ε∗t = Pεt, Ψ(L) = Θ(L)P ′ for some orthogonal matrix P . The second step of our

procedure gives the counterfactual vector moving average representation

yt = Ψ̃(L)ε∗t .

Now consider the two lag polynomials Θ̃(L) and Ψ̃(L). Since ε∗t = Pεt, applying our coun-

terfactual mapping to the jth Wold innovation ε∗j,t gives causal effects Ψ̃j(L) = Θ̃(L) × p′j,

where pj is the jth row of P .30 Thus overall we have

Ψ̃(L) = Θ̃(L)P ′.

But then the second-moment properties of yt implied by our proposed procedure are given

as
∞∑

m=0

Ψ̃mΨ̃
′
m+ℓ =

∞∑
m=0

Θ̃mP
′P Θ̃′

m+ℓ =
∞∑

m=0

Θ̃mΘ̃
′
m+ℓ = Γy(ℓ) (A.8)

which is exactly equal to (A.7), completing the argument.

Finally, we emphasize that this identification result inherently relies on invertibility. Un-

der invertibility, there is a static one-to-one mapping between true shocks εt and Wold errors

ε∗t ; thus, if we can predict the propagation of the Wold errors under the counterfactual

rule, then we also match the propagation of the true shocks, and so we correctly recover

second-moment properties. Under non-invertibility, however, there is no analogous one-to-

one mapping, and so it is not guaranteed that second moments will be matched.

A.6 Optimal policy counterfactual in HANK

Section 2.4 used a HANK model to illustrate the logic of Proposition 1—the general coun-

terfactual rule identification result. We here do the same for the analogous optimal policy

identification result in Proposition 2.

We consider a policymaker with a standard dual mandate loss function

L = λππππ
′Wπππ + λyyyy

′Wyyy (A.9)

30To see this, let ν̃ννi denote the sequence of policy shocks that maps the true shock εi into its counterfactual
causal effects. Then the sequence of policy shocks ν̃νν∗j that implements our counterfactual mapping for the

reduced-form shock ε∗j is given as ν̃νν∗j =
∑

i ν̃ννipij , and thus we have Ψ̃j(L) =
∑

i Θ̃i(L)pij , as claimed.
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Optimal Policy, HANK Model

Figure A.1: The dotted and solid lines in the left and middle panels show output and inflation
responses to the cost-push shock εt for the HANK model with policy rule (28) and the optimal rule
for the loss function (A.9). The dashed lines give output and inflation counterfactuals constructed
through the policy shocks on the right, set in line with Proposition 2. Lighter shades correspond
to news about policy at longer horizons.

with λπ = λy = 1. As in Section 2.4 we start by solving for the optimal policy using

conventional methods: that is, we first derive the policy rule corresponding to the first-order

conditions (18) - (20), then solve the model given that policy rule, and finally report the

result as the solid lines in the left and middle panels of Figure A.1. We see that, at the

optimum, the cost-push shock moves inflation by much more than output, consistent with

the assumed policy weights and the relatively flat Phillips curve. Compared to this optimal

policy, the simple baseline rule of the form (28) tightens too much (dotted).

We then instead use Proposition 2 to equivalently recover the optimal policy rule and

the corresponding impulse responses. We begin with the optimal rule itself. By (26), the

optimal rule is given as

λπΘ
′
π,ν,AWπππ + λyΘ

′
y,ν,AWyyy = 000.

A researcher with knowledge of the effects of monetary policy shocks on inflation and output,

{Θπ,ν,A,Θy,ν,A}, is able to construct this optimal policy rule. We can then create a counter-

factual response to the cost-push shock using (11)-(13), again requiring only knowledge of

the causal effects of policy shocks as well as the impulse responses to the cost-push shock

under the baseline rule. As expected, the resulting impulse responses—the dashed lines—

are identical to those obtained by explicitly solving the optimal policy problem. Finally, the

right panel of Figure A.1 shows the optimal policy as a deviation ν̃νν from the prevailing rule.
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The optimal rule accommodates the inflationary cost-push shock more than the baseline rule

(28), so the required policy “shock” is persistently negative (i.e., expansionary). Consistent

with our discussion in Figure 1, we choose to display those shocks ν̃νν in a way that emphasizes

that the optimum is achieved through a sequence of date-0 policy shocks.

A.7 Counterfactuals with a limited number of shocks

In Figure 1 we constructed counterfactuals using a limited number ns of policy shocks. We

here provide the computational details for this construction. We discuss the general case of a

researcher with access to ns shocks (which converges to our identification result for ns → ∞),

with the original proposal of Sims & Zha (1995) nested as the ns = 1 special case.

The approach of Sims & Zha leverages the idea that evidence on one policy shock—i.e.,

any single fixed path ννν—is sufficient to enforce any given counterfactual ex post. With ns

distinct shocks, the counterfactual rule can be implemented ex post as well as in ex ante ex-

pectation for the next ns−1 time periods. To compute the counterfactuals corresponding to

this multi-shock case we proceed as follows. First, at t = 0, we solve for the ns-dimensional

vector of policy shocks ννν0
1:ns

≡ (ν0
0 , . . . , ν

0
ns−1)

′ such that, in response to εεε and ννν0
1:ns

the

counterfactual rule holds at t = 0 and is expected to hold for t = 1, . . . , ns − 1. Output

and inflation at t = 0 are simply given as the thus-derived impulse responses to εεε and ννν0
1:ns

.

Second, at t = 1, we solve for the ns-dimensional vector of shocks ννν1
1:ns

≡ (ν1
0 , . . . , ν

1
ns−1)

′

such that, in response to the time-0 shocks {εεε,ννν0
1:ns

} and the time-1 shocks ννν1
1:ns

, the coun-

terfactual policy rule holds at t = 1 and in expectation for t = 2, . . . , ns. These impulse

responses then give us output and inflation at t = 1. Continuing iteratively, we then obtain

the entire output and inflation impulse responses, as plotted in the left and middle panels

of Figure 1. The corresponding policy shock paths are shown in the right panel.

A.8 Global identification argument

We here extend our identification results to a general non-linear model with aggregate risk.

Setting. We consider an economy that runs for T periods overall. As in our main analysis,

the economy consists of a private block and a policy block. Differently from our main analysis,

there is no exogenous non-policy shock sequence εεε; rather, there is a stochastic event ωt each

period, with stochastic events drawn from a finite (nω-dimensional) set. Let xt(ω
t) be the

value of the endogenous variables after history ωt ≡ {ω0, ω1, · · · , ωt} and let zt(ω
t) be the
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realization of the policy instruments after history ωt. Let xxx and zzz be the full contingent

plans for for all t ∈ {0, 1, · · · , T} and all histories. xxx and zzz are vectors in Rnx×N and Rnz×N

respectively, where N = nω + n2
ω + · · ·+ nT+1

ω .

We can write the private-sector block of the model as the non-linear equation

H(xxx,zzz) = 000. (A.10)

Similarly, we can write the policy block corresponding to a baseline policy rule as

A(xxx,zzz) + ννν = 000 (A.11)

where the vector of policy shocks ννν is now nz × N dimensional. We assume that, for any

ννν ∈ Rnz×N , the system (A.10) - (A.11) has a unique solution. We write this solution as

xxx = x(ννν), zzz = z(ννν).

We want to construct counterfactuals under the alternative policy rule

Ã(xxx,zzz) = 000 (A.12)

replacing (A.11). We again assume that the system (A.10) and (A.12) has a unique solution,

now written as (x̃xx, z̃zz). If we are interested in the counterfactual following a particular path

of exogenous events, then we are interested in selections from these vectors.

Proposition A.1. For any alternative policy rule Ã we can construct the desired counter-

factuals as

x(ν̃νν) = x̃xx, z(ν̃νν) = z̃zz (A.13)

where ν̃νν solves

Ã(x(ν̃νν), z(ν̃νν)) = 000. (A.14)

The solution ν̃νν to this system exists and any such solution generates the counterfactual (x̃xx, z̃zz).

Proof. We construct the solution ν̃νν as

ν̃νν ≡ Ã(x̃xx, z̃zz)−A(x̃xx, z̃zz).
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By the definition of the functions of x(•) and z(•), we know that

H(x(ν̃νν), z(ν̃νν)) = 000 (A.15)

A(x(ν̃νν), z(ν̃νν)) + Ã(x̃xx, z̃zz)−A(x̃xx, z̃zz) = 000 (A.16)

Similarly, by the definition of the functions x̃(•) and z̃(•), we also know that

H(x̃(000), z̃(000)) = H(x̃xx, z̃zz) = 000 (A.17)

Ã(x̃(000), z̃(000)) = Ã(x̃xx, z̃zz) = 000 (A.18)

Since the system (A.15) - (A.16) by assumption has a unique solution for any ν̃νν, it thus

follows that we must have {x(ν̃νν) = x̃xx, z(ν̃νν) = z̃zz}.
We now show that any solution to (A.14) must generate (x̃xx, z̃zz). Proceeding by contra-

diction, consider any other ν̃νν that solves (A.14) and suppose that either x(ν̃νν) ̸= x̃xx and/or

z(ν̃νν) ̸= z̃zz. By definition of the functions x(•) and z(•) together with the property (A.14) we

know that

H(x(ν̃νν), z(ν̃νν)) = 000

Ã(x(ν̃νν), z(ν̃νν)) = 000

and so (x(ν̃νν), z(ν̃νν)) is a solution of (A.10) and (A.12) that is distinct from (x̃, z̃). But by

assumption only one such solution exists, so we have a contradiction.

Informational requirements. To construct the desired policy counterfactual for all

possible alternative policy rules, we in general need to be able to evaluate the functions x(•)
and z(•) for every possible ννν ∈ Rnz×N . That is, we need to know the effects of policy shocks

of all possible sizes at all possible dates and all possible histories.

To understand how our baseline analysis relaxes these informational requirements, it is

useful to proceed in two steps: first removing uncertainty (but keeping non-linearity), and

then moving to a linear system.

1. Non-linear perfect foresight. For a non-linear perfect foresight economy, we replace

our general (nx + nz)×N -dimensional system with an (nx + nz)× T -dimensional one:

H(xxx,zzz,εεε) = 000
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A(xxx,zzz) + ννν = 000

Because of the lack of uncertainty, other possible realizations of the exogenous events do

not matter—only the particular time path, now denoted εεε, is relevant. Proceeding exactly

in line with the analysis above, we can conclude that now we need the causal effects of

all possible policy shocks ννν ∈ Rnz×T at the equilibrium path induced by εεε. Thus, since we

only care about the actual realized history of the exogenous inputs, the dimensionality of

the informational requirements has been reduced substantially.

2. Linear perfect foresight/first-order perturbation. Linearity further reduces our

informational requirements in two respects. First, because of linearity, to know the effects

of every possible ννν ∈ Rnz×T , it suffices to know the effects of nz × T distinct paths ννν that

together span Rnz×T . Second, estimates given any possible exogenous state path of the

economy suffice, simply because the effects of policy and non-policy shocks are additively

separable. We have thus reduced the problem to the (still formidable) one of finding the

effects of nz × T distinct policy shock paths.

A.9 Non-linear policy rules

We emphasize that the simplicity of our baseline identification results in Section 2.3 relative

to the much more involved discussion in Appendix A.8 hinges on linearity of the non-policy

block (6). Non-linear policy blocks, on the other hand, are straightforward to handle with

the same informational requirements as in our baseline analysis. Specifically, suppose the

object of interest is the counterfactual propagation of a shock sequence εεε under the following

example of a non-linear policy rule:

zzz = max
{
Ãxxxx, z

}
(A.19)

Compared to (8), this policy rule is simplified to set Ãz = −I, but then enriched to allow for a

canonical form of non-linearity—a kink in the policy rule, e.g., a zero lower bound constraint

on nominal interest rates. Proceeding perfectly analogously to the proof of Proposition 1, we

see that we can construct counterfactuals corresponding to (A.19) by solving for a sequence

of policy shocks ν̃νν such that (A.19) holds for all t = 0, 1, . . . . Intuitively, by our unchanged

assumptions on the non-policy block (6), it is still just the time path of the policy instrument

that matters for private-sector behavior, irrespective of whether this time path is generated

by a linear rule like (7) or a non-linear rule like (A.19).
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B Details for empirical method

This appendix provides econometric implementation details for our empirical method. Ap-

pendix B.1 begins with counterfactuals for a given alternative policy rule, while Appendix B.2

discusses optimal policy counterfactuals.

B.1 Policy rule counterfactuals

The solution to the problem (31) is given as

sss = −
[(

ÃxΩx,A + ÃzΩz,A

)′ (
ÃxΩx,A + ÃzΩz,A

)]−1

×
[(

ÃxΩx,A + ÃzΩz,A

)′ (
ÃxxxxA(εεε) + ÃzzzzA(εεε)

)]
.

The final step is simply to compute impulse responses to the combination of (i) the original

non-policy shock εεε and (ii) the derived policy shocks sss. For counterfactual second-moment

properties (as discussed in Appendix A.5) the only change is that these steps are applied

separately for each innovation in the Wold representation of observed macro aggregates.

B.2 Optimal policy counterfactuals

For our optimal policy counterfactual, we analogously consider the following constrained

optimal policy problem:

min
sss

1

2

nx∑
i=1

λixxx
′
iWxxxi (B.1)

such that

xxx = xxx(εεε) + Ωx,Asss

This gives the optimality conditions:

(W ⊗ Λ)xxx+φφφx = 000

Ω′
x,Aφφφx = 000,

where Λ = diag(λ1, λ2, . . . ).
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Solving this system gives our optimal policy counterfactual. The solution is given as

sss = −
[
Ω′

x,A (Λ⊗W ) Ωx,A
]−1 ×

[
Ω′

x,A (Λ⊗W )xxxA(εεε)
]
.

As before, for counterfactual second-moment properties, the analysis is repeated for impulse

responses to all Wold innovations separately.
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C Supplementary details for monetary applications

This appendix provides further results supplementing the discussion in Section 4 on our sys-

tematic monetary policy rule counterfactual applications. Appendices C.1 and C.2 begin by

describing the data and our baseline monetary policy shock causal effect estimates. Results

for the policy counterfactuals omitted in the main text are presented in Appendix C.3, and

we investigate the robustness of our results to the use of other monetary polishock measures

in Appendix C.4. Finally, we in Appendix C.5 illustrate how to use our monetary shock

estimates to construct counterfactual second-moment properties.

C.1 Data

Our analysis of investment-specific technology shocks follows Ben Zeev & Khan (2015), while

our monetary policy shock identification closely mimics that of (i) Romer & Romer (2004)

and (ii) Gertler & Karadi (2015).

Outcomes. We are interested in impulse responses of three outcome variables: the output

gap, inflation, and the policy rate. For the output gap, we use the series ygap hp of Barnichon

& Mesters (2020).31 For inflation, we compute annual changes in the GDP deflator (using the

series pgdp from the replication files of Ramey (2016)). Finally, we consider the federal funds

rate as our measure of the policy rate, obtained from the St. Louis Federal Reserve FRED

database. In keeping with much prior work, we also additionally control for commodity

prices, with our measure obtained from the replication files of Ramey (2016) (lpcom). All

series are quarterly.

Shocks & identification. We take the investment-specific technology shock series from

Ben Zeev & Khan (2015) (bzk ist news in the replication files of Ramey (2016)), the Romer

& Romer (2004) shock series from the replication and extension of Wieland & Yang (2020)

(rr 3), and the high-frequency monetary policy surprise series from Gertler & Karadi (2015)

(mp1 tc in the replication files of Ramey (2016)).32 When applicable, the shock series are

aggregated to quarterly frequency through simple averaging.

31All results are essentially unchanged if we use a measure of log real GDP instead (rgdp scaled by pop,
taken from the replication files of Ramey (2016)).

32Results are very similar if we use the alternative surprise series ff4 tc instead.
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In Appendix C.4 we examine the robustness of our conclusions to other policy shock

series—those of Aruoba & Drechsel (2022) and Miranda-Agrippino & Ricco (2021). For the

former, we obtain the shock series directly from their replication files (shock). For the latter,

we use the publicly available replication files to construct the SVAR-IV shock series for the

full sample (from 1979:M1 onwards), with the shocks constructed at the posterior mode of

the estimated reduced-form VAR (the specification for their Figure 3).

C.2 Shock & policy dynamic causal effects

For maximal consistency, we try to estimate all impulse responses within a common empirical

specification. For the investment-specific technology shocks, we order the shock measure first

in a recursive VAR containing our outcomes of interest (following Plagborg-Møller & Wolf,

2021), estimated on a sample from 1969:Q1–2007:Q4. For our two monetary policy shocks,

we estimate a single VAR in the two shock series, our three outcomes of interest, as well as

commodity prices, also estimated from 1969:Q1–2007:Q4.33 For identification, we order the

Gertler & Karadi shock first (again consistent with the results in Plagborg-Møller & Wolf

(2021)) and the Romer & Romer shock second-to-last, before the federal funds rate (the

additional “exogeneity insurance” as in Romer & Romer, 2004).

We use three lags in the technology shock specification, and four lags in the joint monetary

policy VAR. We furthermore estimate all VARs with a constant as well as a deterministic

linear trend. For the baseline investment-specific technology shock we fix the OLS point

estimates. We construct policy counterfactuals using our identified monetary policy shocks,

taking into account their estimation uncertainty. Since the transmission of both shocks is

estimated within a single VAR, we can draw from the posterior and compute the counter-

factuals for each draw, thus taking into account joint estimation uncertainty.

Results. The OLS point estimates for the technology shocks of Ben Zeev & Khan (2015)

are reported as the dotted lines in Figure 3. For monetary policy, the estimated causal effects

for our two outcomes of interest as well as the policy instrument are displayed in Figure C.1.

The results are in line with prior work: both policy shocks induce the expected signs of the

output gap and inflation responses, though the response shapes are quite distinct, consistent

with the differences in the induced interest rate paths. We also note that the magnitudes of

33The Gertler & Karadi shock series is only available from 1988 onwards. We thus follow prior work in
the macro IV literature (e.g., Känzig, 2021) and set the missing values to zero.
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Romer & Romer (2004) Shock

Gertler & Karadi (2015) Shock

Figure C.1: Impulse responses after the Romer & Romer monetary policy shock (top panel) and
the Gertler & Karadi monetary policy shock (bottom panel). The grey areas correspond to 16th and
84th percentile confidence bands, constructed using 10,000 draws from the posterior distribution
of the reduced-form VAR parameters.

the estimated responses are at the lower end of empirical estimates (c.f. Table 2 and Figures

1-2 in Ramey, 2016).

C.3 Results for omitted monetary policy counterfactuals

In Section 4 we presented detailed results for only three of our policy rule counterfactuals—

strict output gap targeting, the Taylor rule, and optimal average inflation targeting policy.

We here provide the remaining results.
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Policy Counterfactual, Interest Rate Peg

Figure C.2: Output gap, inflation and interest rate impulse responses to a contractionary
investment-specific technology shock under the prevailing baseline rule (dotted) and the best fea-
sible approximation to a nominal rate peg (solid), computed following (31). The shaded areas
correspond to 16th and 84th percentile confidence bands. Perfect nominal rate peg (i.e., ît = 0 for
all t) is displayed as the black dashed line.

Nominal interest rate peg. Results for the nominal interest rate peg are presented

in Figure C.2. We see that the desired counterfactual policy is implemented well from a

couple of quarters out onwards, but that nominal rates are still cut by quite a bit too much

immediately after the shock. Since rates are cut by less than in the baseline, the output gap

and inflation remain marginally lower for a longer period of time. Compared with the policy

counterfactuals discussed in Section 4, we see that a nominal rate peg is a counterfactual

policy that is not spanned particularly well by our available monetary shock evidence.

Nominal GDP targeting. Results for nominal GDP targeting are presented in Fig-

ure C.3. The counterfactual policy is implicitly defined by the targeting rule

π̂t + (ŷt − ŷt−1) = 0, ∀t = 0, 1, . . .

We find that implementation errors are quite small throughout (black dashed). Interestingly,

the policy instrument path is quite close to the estimated baseline (dotted grey), indicating

that nominal GDP is already stabilized quite well under the prevailing rule.

62



Policy Counterfactual, Nominal GDP Targeting

Figure C.3: Output gap, inflation and interest rate impulse responses to a contractionary
investment-specific technology shock under the prevailing baseline rule (dotted) and the best feasi-
ble approximation to nominal GDP targeting (solid), computed following (31). The shaded areas
correspond to 16th and 84th percentile confidence bands. Given each counterfactual draw for the
output gap, the sequence of inflation corresponding to perfect nominal GDP targeting (i.e., so that
π̂t + (ŷt − ŷt−1) = 0 for all t) is displayed as the black dashed line.

C.4 Counterfactuals with alternative shock measures

Some recent work has questioned the validity of the canonical monetary policy shocks of

Romer & Romer and Gertler & Karadi (see Ramey, 2016; Nakamura & Steinsson, 2018, and

the references therein). To examine the robustness of our conclusions to the use of alternative

measures of monetary policy shocks, we now use the policy shock series of Miranda-Agrippino

& Ricco (2021) and Aruoba & Drechsel (2022). These shock series are constructed using

methods similar to those of Gertler & Karadi and Romer & Romer, but use a richer set of

controls for the state of the economy as perceived by the Federal Reserve.

We study the propagation of these shocks in a single integrated VAR, exactly as in our

baseline analysis. We find that the two shocks differ in the implied interest rate movements,

with the shock of Miranda-Agrippino & Ricco (2021) mirroring the transitory rate movement

of Romer & Romer (2004), and the shock of Aruoba & Drechsel (2022) similar to the gradual

interest rate movement of Gertler & Karadi (2015). We then leverage these shock estimates

to construct monetary policy rule counterfactuals, proceeding exactly as in Section 4. Results

for our two main systematic policy rule counterfactuals—output gap targeting and the Taylor

rule—are displayed in Figure C.4. The main takeaway is that the systematic monetary policy

rule counterfactuals are very similar to our headline results. The underlying reason is simply
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Policy Counterfactual, Output Gap Targeting, Alternative Shocks

Policy Counterfactual, Taylor Rule, Alternative Shocks

Figure C.4: Output gap, inflation and interest rate impulse responses to a contractionary
investment-specific technology shock under the prevailing baseline rule (dotted grey) and the best
feasible approximation to output gap targeting (solid, top panel) and a simple Taylor-type rule
ît = 0.5̂it−1 + 0.5× (1.5π̂t + ŷt) (solid, bottom panel) computed following (31) and using the mon-
etary shocks of Miranda-Agrippino & Ricco (2021) and Aruoba & Drechsel (2022). The shaded
areas correspond to 16th and 84th percentile confidence bands.

that the impulse responses to the Miranda-Agrippino & Ricco and Aruoba & Drechsel shocks

are quite similar to those displayed in Figure C.1 for Romer & Romer and Gertler & Karadi.

The perhaps most notable difference is that the shocks of Miranda-Agrippino & Ricco and

Aruoba & Drechsel have somewhat larger effects on output and inflation (for a given peak

interest rate response), so the interest rate cut for the output gap targeting counterfactual

is somewhat less steep, and the inflation spike is somewhat more pronounced.
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C.5 Counterfactual second-moment properties

In this section we illustrate how estimates of monetary policy shock causal effects can also be

used to construct counterfactual average business-cycle statistics. Specifically, we construct

optimal policy counterfactuals for the the average inflation targeting loss function (32).

Our procedure follows the steps outlined in Appendices A.5 and B.2. First, we estimate

the Wold representation for our three macroeconomic observables (output gap, inflation,

policy rate), giving us impulse responses to the three reduced-form Wold innovations. Then,

for each of these three reduced-form shocks, we find the linear combination of date-0 mone-

tary policy shocks that minimizes the policymaker loss function. We then stack these three

sets of impulse responses in a new, counterfactual Wold representation, and finally use it to

construct counterfactual second-moment properties. We do so for 10,000 draws of monetary

policy shock causal effects from our reduced-form VAR.

Standard Deviation (per cent) Correlation with Output Gap

Baseline

Output Gap 1.52 —

Inflation 1.69 0.14

Nominal Rate 2.68 0.27

Counterfactual

Output Gap 1.27 —

(1.06, 1.44)

Inflation 1.38 -0.02

(1.27, 1.53) (-0.18, 0.11)

Nominal Rate 2.12 0.39

(1.73, 2.62) (0.24, 0.53)

Table C.1: Baseline and counterfactual business-cycle statistics for the best Lucas critique-robust
approximation to an optimal average inflation targeting monetary policy rule, computed as dis-
cussed in Appendix B.2 applied to each of the three reduced-form innovations in the Wold repre-
sentation of output gap, inflation, and policy rate. The values in brackets correspond to 16th and
84th percentile confidence bands.

Results are reported in Table C.1, where the top panel shows business-cycle statistics un-

der observed policy conduct while the bottom panel presents our optimal policy counterfac-

tual. We see that the empirically available subspace of two identified monetary shock paths
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suffices to somewhat lower the standard deviation of the output gap and inflation. However,

the reported gains in aggregate volatility are not substantial, suggesting that rather little

policy improvement was feasible within our identified space of policy shock causal effects.

These conclusions echo our conditional shock conclusions in Section 4.2.
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