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Abstract. Encryption - the process of encoding information - mitigates the dam-
age that comes from obstacles to exchange: private information, limited commu-
nication, and limited commitment. We emphasize specifically that encryption is
a way to implement optimized solutions to bilateral and multi-agent mechanism
design problems as smart contracts. To illustrate how such encryption schemes
could be relevant to economic applications, we first illustrate how ”classical”
problems such as auction design with private values, constrained-optimal hybrid
insurance and credit schemes for markets suffering from liquidity problem. The
common thread in each of these applications is that messages are kept secret from
other agents in a contract and from third parties, communication channels are
optimized, and data are secured and immutable. Agents can commit to arrange-
ments and commit to the way they are implemented, without inconsistencies,
even in evolving situations where they would have liked to renege. We make
use in particular of homomorphic encryption, HE, and multi-party computation,
MPC, which we will describe in detail in the text and concretely implement for
the auction with private values and the constrained-optimal hybrid insurance and
credit schemes for markets suffering from liquidity problem.
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(1) Our design methodology: understanding cryptog-

raphy technologies, and leveraging them (selectively)

as new design possibilities

Financial systems can be viewed as systems allowing agents to enter into contracts.
However, contracts are not-single dimensional (e.g., more or less money); the more con-
tingencies financial systems can deal with, the more efficient and resilient they become.
These contingencies are notably constraints generated by (1) untrusted messages - crucial
for instance in the counting of ballots, or of auction bids -, by (2) unobserved actions - ex-
acerbating risks from counterparties, settlements, and commitments), or by (3) unobserved
states - while estimating competitors’ bidding power and valuation of the good sold in an
auction for instance. We will see in a range of applications how these issues can be raised,
and how uncertainties, commitment issues and secrecy cause distortions.

Encryption, as the science of protecting messages’ content and authenticity, while
securing senders and receivers’ identities and privacy, enables a large toolbox for economic
design. We will then see how additional guarantees on authenticity, on commitments and
enforcement of contracts can help solving the issues raised above. Moreover, we will also
study how a wider range of public-privacy states of information and the ability to perform
computations over encrypted data (thus preserving their secrecy) can fundamentally improve
the design of financial contracts in linking agents’ differing preference and risk profiles (the
unobserved states that play a crucial role in mechanism design). We will thus be able to
introduce flexible hybrids contracts, in between pure borrowing/lending and pure insurance
contracts.

We follow three steps in the design of these new economic systems. First, we decompose
and examine separately the different technological components of encryption, to ”translate
them” into individual tools formulated within the usual mechanism design environment (de-
scribed in the following section). Second, having these new economic design tools at our
disposal, we ”revisit” several classical economic problems (such as the ones mentioned above
- auctions, borrowing/lending, insurance...) and craft the incentives and constraints that
have to be put in place or lifted for an improved contract to be designed, in an objectives-
first and context dependant approach (there can be different goals and values for a contract
to aim to implement, and each economic application presents a different environment for the
contract to take into account). Finally, we show how this contract devised in the abstract
language of mechanism design can be implemented in real life using different combinations
of existing technologies - each of them implementing the correct set of incentives, but po-
tentially presenting different engineering trade-offs that we try to highlight. This way, our
contribution will be to present an end to end ”cookbook” on cryptography technologies to
implement several mechanism design solutions. We hope to provide inspiration and methods
for economic and policy designers to be able to leverage the right cryptography tools to
design the right solution to the specific problems they will be facing.
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(2) The Mechanism Design Framework

In general, at an abstract level, an economic application is laid out in terms of pref-
erences of the agents, their endowments, and the technology available to them. In fact, to
examine the extent to which different historic forms of economic contracts and organiza-
tions can be explained by information-incentive problems, and to explore how to improve
these contracts and organizations, it is useful first to retreat to the abstract setting of the
exchange and endowment economy, in which we add constraints related to the flow of infor-
mation - for instance that an agent’s preference is fully private and not observable, or that
his endowment or output are not observable (at least not without considerable cost). These
information related constraints are key in demonstrating how a seemingly imperfect form
of organization was actually the best implementable possible, given the technologies of the
time. Related, new technologies that allow relaxation of some of these constraints on the
flow of information (such as homomorphic encryption and multiparty computation explored
in the next subsection, which allow computations to run in a privacy-preserving fashion,
guaranteeing each individual input’s secrecy) can potentially lead to better implementable
mechanism design solution. Townsend JME 1988’s findings on limitations introduced by
publicly communicated messages provides for instance guidance on the gains that could be
collected from using privacy-preserving computation technologies.

(3) ”Decentralizing” third parties through homomor-

phic encryption and multiparty computation

This solves problems arising from the unobserved states mentioned above. We will
lay out some mathematical principles key to MPC and HE here, and reference these in the
detailed examples in subsequent sections to highlight how it translates to engineering design.

The key property of homomorphic encryption, HE, is that a function f can
operate on a true underlying space or equivalently operate on the space of encrypted (i.e.
encoded) values. That is, in order to utilize a function f in some application, one does not
need to input the ”plaintext” information which reveals the original and true values of a given
agent, but rather, one can encrypt the agent’s data, so that data can be kept private, apply
the same function f on encrypted input data, get a result in the encrypted space, and all of
this is the same as if the message had been true private values and the output from f were
encrypted. That is f(Enc(m)) = Enc(f(m)) . Equivalently, what we want in normal space is
on the right but the way to get it is in the encrypted space on the left of this equation: Deci-
pher[f(Enc(m))] = f(m). Note that this is for one agent, one message at a time, in contrast to
MPC below for multiple agents (but which is less flexible). Further, the ”distributivity”
of the encryption operation with the function operation gives flexibility in nav-
igating between the normal space and the encrypted space (see concrete examples
of such ”navigation” in sections 3, 4 and 5). The distributive property is telling us what
rules manage the parenthesis that order the sequence of operations - a distributive scheme
allows operations outside the parenthesis to be ”distributed” to the elements within, whereas
a non distributive scheme doesn’t allow such treatment of the parenthesis. This allows us
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to perform a series of composed transitive functions g all on top of the encrypted message,
as on the left: g[f(Enc(m))] = g[Enc(f(m))]. Thus, the agent or contract performing all the
functions never gets to see the actual content of the message, nor the true outcome of f in the
normal space (in subsections sections we will write in parenthesis * for ”distributivity”
next to equations in which this property is used).

The key property of multiparty computation, MPC, is that rather than de-
termine the value of a linear function f using inputs values from multiple agents, seeing
the inputs and the result of f directly, in normal space, one can run the function f on en-
crypted private inputs, then decrypt the output value or relevant summaries, and finally
share that result. Namely, for J agents Decipher[f(c1, c2, ..., cJ)] = f(m1,m2, ...,mJ) where
(c1, c2, ..., cJ) = Enc(m1,m2, ...,mJ) are the encrypted values of the inputs from m different
agents. Distributivity of MPC fails, and we can’t compose transitive functions g on top of
f - ie Decipher[g(f(c1, c2, ..., cJ))] ̸= g(f(m1,m2, ...,mJ)). But combining MPC with HE, we
have what MPC means plus the distributivity in operations - ie the inequality above becomes
an equality.

Further, another important way that MPC techniques differ from HE+MPC is in
the distribution of the work to perform the computation among the participating parties.
In classical MPC constructions (Goldreich et al. 1991), the work of the MPC protocol is
evenly distributed between all participating parties. The symmetry in the MPC protocol
might make installing, maintaining and running the MPC software on each agent’s internal
machine more challenging - as cheaper machines from one agent would slow down the overall
computation for all. With HE in addition of MPC, the distribution of work in the protocol
can be very uneven, with in extreme cases such as in de Castro et al 2020 all of the computa-
tion work happening on one single machine (each agent still performs the encryption steps on
his own machine). In addition, the work done on the agents’ machines is largely independent
of the actual computation done on the encrypted data, which allows more flexible updates
while maintaining of the computation functions.

Lastly, an important difference between classical MPC and HE-MPC concerns de-
cryption - the symmetry of computation workload between all J agents in classical MPC
requires all J agents to agree for the result to be decrypted. HE gives on the other hand
flexibility in choosing how many agents need to agree in order for the result to be decrypted.
Any number of agents k between 1 and J can be chosen - prior to the computation - to
allow for decryption. For illustration, here below would be a list of the main steps followed
by each agent in a HE-MPC computation, such as that of de Castro et al 2020. Overall,
let’s note that with HE and MPC, encrypted inputs can be kept private and
still contribute to operations performed on top of them. We will call that a
”private-but-contributing-state-of-information”, which we will make full use of
below.
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1. Each agent individually generates its own key pair, where each key pair contains a
public encryption key and a private decryption key (related to our public-key
cryptography section above).

2. All agents submit their public keys to each other (classic MPC) or to a central server
or an agent chosen to perform the homomorphic operations (HE-MPC version).
That entity will be called the ”pseudo agent” described in subsequent sections.

3. The pseudo-agent (HE-MPC version) or all agents through interactions (classical
MPC version) combines all agents’ public keys into a single joint/shared public key
(the core technique on which all forms of MPC are built).

4. This new joint/shared public key is distributed to all agents (the core technique on
which all forms of MPC are built).

5. Each agent encrypts its private data using this new joint/shared public key, generating
a ciphertext (an encrypted block of data) that cannot be decrypted by anyone but
themselves (related to the public-key cryptography section above).

6. Each agent sends the ciphertext of its private data to the pseudo-agent (HE-MPC
version) or to each other (classical MPC version). This ciphertext completely hides
the agent’s data.

7. The pseudo-agent (HE-MPC version) or all agents together through interactions
(classical MPC version) run computations on all the encrypted data, producing an
encrypted result of the computation (that is the homomorphic encryption part.
In classical MPC computations is distributed ”in a clever way” among all
agents, instead of homomorphically - see for instance Goldreich et al 1991).

8. The encrypted result are sent back to each agent.

9. Each agent uses the private key they generated in Step 1 to partially decrypt the answer
(which is still scrambled at that point) (related to public-key cryptography).

10. Each agent sends this partially decrypted answer back to the pseudo-agent (HE-MPC
version) or to each other (classical MPC version).

11. The pseudo-agent (HE-MPC version) or all agents together through interactions
(classical MPC version) combines the results of all the partial decryptions it receives
from agents to produce the decrypted result that is then shared back with the agents
(in HE-MPC the server just needs agreement from k between 1 and J the
total number of agents to decrypt. In classical MPC all agents need to
combine all partial decryptions to produce the decrypted result - which all
J agents would see, which is not the case in HE-MPC ).

Figure 2: main steps followed in an HE-MPC computation
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Over all, what private information to reveal (or not) even as a computation is
run on it, and who can decide of it, become a new choice element of mechanism design.
In subsequent examples - which are one specific instance of HE-MPC, and tailored to the
mechanism design solution so that it might presents variations from the steps listed above -
we take pains to clarify exactly what is needed, utilizing the best available technology. We
do not force financial applications onto a given technology, but go the other way around,
starting with the economics.

(4) An example of improvement replacing the trusted

third parties - auctions without auctioneers

To see an online interactive tutorial guiding through this example, please visit the fol-
lowing Jupyter Notebook http://bit.ly/FHEauctions

Generally, auctions are used frequently but are organized typically by a third party,
as in Mortgage Capital Trading’s use of a Trade Auction Manager. However, trusted third
parties are not always needed, and not always beneficial. In the previous example of current
bid-wanted-in-competition schemes, BWIC, dealers are being asked to bid on listed securi-
ties. A typical potential abuse: run over the telephone, the seller of the asset in question
who is the organizer of the auction tells buyer A : ”I prefer you my friend, but buyer B
just offered a slightly higher price, so if you can just make some effort the good is yours”.
Vice versa with buyer B to prop up the price. Neither buyer A nor B can check the bid
of the other buyer. Some of China’s P2P platforms also presented misleading information
to investors or engaged in AI cream-skimming in the creation of securitized pools. Trumid,
on the other hand, markets itself as a Wall Street company with an algorithm intended to
replace OTC dealers who are thought widely to trade on the proprietary information of their
clients.

However, companies like Trumid are ”replacing” OTC dealers by being more efficient
and better trusted third parties. However, we argue here that these improvements could be
brought further, by totally ”getting rid” of the trusted third party. There are for instance
several ways to implement our auction-without-auctioneer scheme with HE and MPC. Let’s
give one example here, building on lattice cryptography (so that this is post-quantum secure,
ie secure against attacks from quantum computers, when they will exist). For the purpose
of our exposition here to be self contained, let’s simplify some of the cryptography elements
- notably those related to the Ring-Learning with Errors (RLWE) model. Let us just note
that many of the mathematical properties we make use of, such as commutativity and dis-
tributivity, comes from those of mathematical Rings. For simplification purpose, let’s see all
elements drawn from these Rings as polynoms, for which the commutativity and distribu-
tivity properties are verified. Indeed, if one takes the key pair generation and decryption
steps as given (steps 1 to 4, and 8 to 11 in figure 2 above) all other steps are just like
”classical” public key cryptography, with our examples focusing on the math/mechanism
design of the computations ran by the server in step 7. For the avid reader more details can
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be found below, in the optional subsection, which we adapted from Brakerski (2012) and
Fan and Vercauteren (2012) (hereafter and in the literature called the BFV scheme). The
specific key generation protocol and corresponding decryption protocol we make use follows
the work of Asharov et al. (2012), of which no understanding is necessary here to follow the
mathematical operations we describe below.

(Optional read) Distributed Key Generation (steps 1 to 4 in figure 2)

Let’s run our example with two agents, A and B, who want to see whose bid is higher
and whose is lower, without relying on a trusted third party but without revealing to each
other the exact value of each one’s bid.

Consider the following standard BFV key generation protocol, which outputs a public-key
(pk)/secret-key (sk) pair of the form

(pk, sk) =
(
(a, δ), ( s, e)

)
(1)

where a and δ are two uniformly random samples over the ring Rq = Zq[x]/f(x) where f(x) is
some degree-n polynomial. The error term e is sampled from a discrete Gaussian with large
standard deviation (such noise terms are sometimes referred to as ’flooding’ or ’smudging’
terms). δ is a public scaling factor to prevent the small error term e from corrupting the
message m (Ring-Learning with Errors, RLWE). Our key generation protocol relies on the
common random string (CRS) model and begins with the assumption that all participants
have access to the same truly random seed for a pseudorandom number generator (PRNG).
All participants then use this seed to generate the same pseudorandom sample a from Rq.
Each party i then generates the following key pair:

(pki, ski) =
(
(a, δ), ( si, ei

)
(2)

So agent A has the following key pair :

(pka, ska) =
(
(a, δ), ( sa, ea)

)
(3)

And agent B the following key pair :

(pkb, skb) =
(
(a, δ), ( sb, eb)

)
(4)

Once all these public keys are generated, the shared public key is computed by summing
over Rq:

pk =
(
a, a ·

∑
i

si +
∑
i

ei
)

The result of this sum is a well-formed public key for the BFV scheme, where the corre-
sponding secret key =

∑
i si is already distributed in additive shares among the participants.

Multiparty encryption of each agent’s bid (steps 5 to 11 in figure 2 above)

Now that each agent has its unique secret key, while sharing a public key, they can
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start using these to encrypt their bids. To describe this encryption process we will follow
a sequential description, even though the actual order of the sequences don’t matter (both
can even happen at the same time).

So A (let’s say A starts, even though it would be the same if it’s B first) : A sends to
B its bid ma, obfuscated by its secret key sa, in the following encrypted message (let’s call
it cta , for ciphertext from A) :

cta = a · sa + δ ·ma + ea (5)

B cannot guess (from the security proof of the BFV scheme) the value of A’s bid ma. He
sends similarly his encrypted bid mb to A (let’s call it ctb , for ciphertext from B) :

ctb = a · sb + δ ·mb + eb (6)

Step 2. Multiparty addition of each agent’s bid

Let’s make each agent ”add in” his own secret key to the encrypted message he received
from the other party. Ie, for agent A, do the operation

a · sa + ea + ctb (7)

and for agent B the operation

a · sb + eb + cta (8)

So now agent A has the new ciphertext, by writing

ea + eb = e, (9)

and:

sa + sb = s (10)

ctb′ = a · s+ δ ·mb + e (11)

And agent B has the new ciphertext

cta′ = a · s+ δ ·ma + e (12)

And, if both of them resend the ciphertext each one had of the other, then both can do the
operation

cta′ − ctb′ = ctF inal = δ · (ma −mb) (13)

The sign of which reveals which agent’s bid was higher at the start.
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Let’s note that here with only 2 agents this is a limit case that would reveal, by dif-
ference, each agent’s bid value to each other. For strictly more than 2 agents, this wouldn’t
be a problem unless all but one agents coordinate and share their inputs, in which case
they can also infer the input from that last agent as well. For just 2 agents, let’s see now
how δ can be a value kept secret to each other, hence hiding the real value of both agent’s bid.

Using the 2 agents case to introduce the concept of ”pseudo agent” nodes

We have the previous setting with agents A and B. Let’s now introduce a ”pseudo
agent” C, which can be for instance a server that has been jointly set up by A and B, and
then left as a ”deterministic box” on its own (we use the ”deterministic box” image of some
box that has been pre-coded to do some things, and that then can be guaranteed to do it,
even if no one audits what is going on inside). In a distributed ledger language, C would
be a smart contract node. But here we present a more general case than just DLT-based
smart contract. This node will be very useful in the generalization work presented later in
the document.

A and B still have the following key pairs :

(pka, ska) =
(
(a, δ), ( sa, ea)

)
(14)

and

(pkb, skb) =
(
(a, δ), ( sb, eb)

)
(15)

However, now in step 1 both A and B send their ciphertexts to C, instead of to
each other. C also asks both A and B to send the following combination of A and B’s public
and private keys (let’s call them nna and nnb for ”not so random noise from A” and ”not so
random noise from B”) :

nna = a · sa + ea (16)

and

nnb = a · sb + eb (17)

nna and nnb have sufficient cryptographic properties (as in BFV) to conceal A and
B’s private keys (sa, ea) and (sb, eb), while allowing C to decrypt ctc , where ctc is obtained
through C adding the two ciphertexts cta and ctb he received from A and B. I.e.

ctc = cta + ctb = a · s+ δ · (ma +mb) + e (18)

Indeed, we have :

nna + nnb = a · s+ e (19)
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so that

ctc − (nna + nnb) = δ · (ma +mb) (20)

Similarly, C can just do the operation

cta − nna − (ctb − nnb) = δ · (ma −mb) (21)

And, since we assume that C has ”pre-coded” in him :
- ”STEP1 TAKE INPUT 1 FROM A, SUBTRACT INPUT 2 FROM A. (ie equations

18 - 16)
- STEP2 TAKE INPUT 1 FROM B, SUBTRACT INPUT 2 FROM B. (ie equations 18

- 17)
- STEP3 TAKE RESULT FROM STEP1, SUBTRACT RESULT FROM STEP2. (equa-

tion 18x2 - (16+17) = equation 21).
- IF RESULT FROM STEP 3 IS POSITIVE THEN AGENT A WON THE AUCTION.

ELSE AGENT B WON THE AUCTION.”

Then C can just announce to both A and B who won, with A and B never seeing
anything else than the ”not so random noises” and ciphertexts each of them sent to C,
which do not reveal their bid values.

Going back to the BWIC auction example, in which the seller of an asset orga-
nizes an auction scheme, one could apply the homorphic encrytion scheme we laid out above
to limit the seller’s incentives to misreport. Then, each buyer’s bid will be encrypted by
him using his unique secret key, to prevent anyone else from tampering with it (especially
the seller/organizer of the auction, who agrees to not possess each buyer’s individual secret
key). Furthermore, the organizer of this BWIC auction agrees to only provide the matching
(or ranking) operation of this auction, performed homomorphically on top of each buyer’s
encrypted bid, as ”pseudo-agent” C above does. The encrypted bids thus protect buyers’
privacy in both keeping it untampered, and by keeping them anonymous, to reduce potential
conflict of interest and collusion between the organizer of the auction and some participants
(if the public/private keys are allocated randomly to each participating agent).

Some decryption may come at the end if the winner needs to be revealed. The as-
set purchased might be on a distributed ledger with the transfer executed under a smart
contract, but this part is separate and is not necessary per se. An alternative, a third party
might be trusted to make the asset transfer. Both are an option, a choice for possible auction
designs.

(5) An example of improvement replacing the central

planner - in flexible, hybrid contracts between bor-

rowing/lending and insurance (Townsend, JME 1988)

In the previously described auction scheme, the secrets, the underlying messages before
encryption, need never be revealed to other agent or an institution performing the match-
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ing/ranking operation. We now extend this ”private-but-contributing-state-of-information”
to tackle one of the core problems in mechanism design - that surrounding the treatment
of private information held by agents, which are needed to convince its counterparties of its
truthfulness and secure their commitment, but which cannot be fully revealed for fear of
some counterparties exploiting the information.

One such example is that of the borrowing/lending and insurance literature, as described
in Townsend JME 1988’s findings on limitations introduced by publicly communicated mes-
sages. Townsend JME 1988 also provides guiding on the gains that could be collected from
using privacy-preserving computation technologies, and introduces flexible contract between
bor-rowing/lending and insurance, hybrid in that it has aspects of both. In interbank lending
markets for instance, banks try to buy or sell specific amounts of liquidity, that are linked to
their funding needs. If all banks real funding needs were known, some optimal distribution
and pricing schemes could be devised. However, if anyone of these banks accessed some
others’ real funding need, they would gain negotiation power and could exercise leverage
with this knowledge, or sell the information to others. The context also includes a variety of
payments arrangements. For example, money transfer organizations run short of liquidity,
of one object or another, and would benefit from a more organized or improved market. In
Kenya, agents for Safaricom are frequently running out of fiat Shillings or M-Pesa, seeking
gifts or loans informally from other agents. In Indonesia agents acting on behalf of banks
in towns and rural areas are also typically short of liquidity, want to rebalance, but com-
plain it is difficult to do so. Broker dealers as agents in New York markets have their own
liquidity problems, and despite borrowing and lending though repo markets, participation is
segmented and interest rates have moved erratically, counter to policy rates.

Townsend, JME 1988 presents for instance a schematic case between two agents, one
can be thought of as a potential borrower but with varying needs and the other who is on
the other side of the trade. The lender who in turn has varying needs at the time of repay-
ment. the two agents agree in a first, initial contract agreement stage, what the amounts
that will be borrowed in the second time step, depending on the realization of a shock.
However, to keep privacy as to whether the borrower is in a high or low liquidity need,
“a layer” of scrambling will be added for the lender not to be able to infer for sure if the
borrower is in the high or the low liquidity situation. Each agent is seeing the outcome,
the allocation of funds but not the messages that triggered that outcome, other than their
own. Please see below a table summarizing what the environment, the ”scrambling”, and
the contract is (from Townsend 1988). This scheme exhibits the full power of encryption, as
here it is even harder to conceal agents’ ”bids” than in the auction case presented before.
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One can view agent specific shortages in these contexts as idiosyncratic shocks, for
which ex ante insurance would be good. But revealing those shocks over time too quickly
can damage the possibility of beneficial trade. Though a simplified analogy, this is much as
with standard insurance, in which ex ante insurance possibilities are lost once the ex post
adverse event has occurred. This is known to be a problem in the foreign exchange markets
in the sense that information on trades should not be revealed too quickly (Lyon, 1996).

These applications can be cast as mechanism design problems that feature conceal-
ment, that is keeping private messages private but utilizing these as inputs to generate
outcomes. For example, two agents have utility functions subject to privately-observed pref-
erence shocks. The first agent in the first period, agent a, can be patient or urgent to
consume, private knowledge, and likewise for the second agent in the second period, agent
b. The ‘planner’, to use the standard language of mechanism design, sees the messages that
each of the two agents sends, but makes sure the other agent does not. Incentives to tell
the truth in the second period are easier to muster if the sender in the second period, agent
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b, does not know what message was sent by agent a in the first period. The information-
constrained optimal allocation is such that lying in the second period generates a very bad
outcome for the sender with positive probability.

But we do not rely on this mythical central planner or trusted third party. Let’s
examine now how one would build such a scheme without him.

Implementation notes for the hybrid borrowing lending case without central
planner

Let’s use the same setting as the previous auction between two agents : we thus
have agents A and B, and ”pseudo agent” C. We introduced ”pseudo agent” C here to help
conceal a new elements of privacy - we now want to protect the ”actual message” sent by
agent A at time step 2 (conceptually similar to protecting a bid value), but we also need to
compare that value with preset values which also have to be protected (as we don’t want B
or C to be able to retrospectively guess from the value transferred what the ”actual message”
sent by agent A at time stage 2 - the first date of contract implementation - was. This is done
through randomization as described above, but also through another layer of homomorphic
encryption and decryption enabled by interactions between A and C, and between B and C,
in addition of the interactions just between A and B. See for instance the summary schematic
view we draw below detailing how messages exchange between A, B and C happen, and how
information can be concealed by being encrypted by one agent but still used in computations
by another agent even while being encrypted).

To summarize from above, but also elaborate, agents A and B negotiate a risk pooling
contract carried out over two periods, time step 2 and time step 3. There is also an initial
contract setting at time step 1, and at the end of which they put their initial assets as
endowments into escrow. In period two A sends a message - either hA, in the case A has
a high need for liquidity, or lA, in which case A has a low need for liquidity. The ”central
planner” as in Townsend, JME 1988 then takes this message, and requests money from B or
vice versa accordingly (with some randomization going on if the message is hA, for B not to
be able to retrace with certainty what A sent in the first place). Please see sections 4 and 5
from Townsend, JME 1988 for a summary of theoretical optimal solutions and table 10 for
empirical computations.

Here the ”central planner” is replaced by the ”pseudo agent” C. The scheme goes
as follows :

Step 1. At time step 1

The contract to be executed has already been determined, here exactly the infor-
mation constrained optimum in Townsend JME 1988. Agent A sends messages EncA(hA)
and EncA(lA) to agent B, without telling him which ciphertexts correspond to which value
(ie without telling him which order he sent the two messages - that is low first and then high
or the other way around). This is in order to help conceal at time step 2 the value of the
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actual message m A will send - indeed, when B will receive m at time step 2 then he will
have to differentiate m with hA and lA (please see the schematic view of the messages being
sent in our protocol at the end of this section). By scrambling the order A can thus prevent
B from knowing what the value of m is. By adding ”pseudo agent C” in the protocol one
can now split the information, as C would know the order in which A sent hA and lA to B,
but not how to read EncA[EncB(m1-m)] and EncA[EncB(m2-m)] since C cannot decrypt
A and B’s encrypted messages. But C can perform homomorphic operations on it, such as
using these values as encrypted weights in determining the encrypted final allocation value.
This final allocation value will then be sent back to A and B for decryption, but without
A and B being able to know what weights C used to come up with this value (see FIRST
OPERATION, SECOND OPERATION and COMPUTE steps at the end of this section). B
on his side knows the values of EncA[EncB(m1-m)] and EncA[EncB(m2-m)], but not what
m1 and m2 correspond to.

Concerning the encryption, the subscript A after Enc means that it has been encrypted
using A’s key pair. So, recalling the notation of key pairs and encryption from last section :

EncA(hA) = a · sa + δ · hA + ea (22)

and

EncA(lA) = a · sa + δ · lA + ea (23)

Let’s assume for simplification in this case that δ = 1, so that the Enc operator we just
define here is commutative, ie

EncB(ncA(x)) = EncA(EncB(x)) = a · sa + a · sb + x+ ea + eb (24)

This is true for any message x. In practice schemes such as BFV can be made commutative,
even if the mathematics behind become a bit ”heavier”. We will use this commutative prop-
erty in the encoding at Step 2, Period 2, of the deterministic protocol ”pseudo agent C” will
follow.

From there on let’s call EncA(m1) the first value agent B received, and EncA(m2)
the second value agent B received. If A sent EncA(hA) first and EncA(lA) second then

EncA(m1) = EncA(hA) (25)

and

EncA(m2) = EncA(lA) (26)

and vice and versa. But B doesn’t know.

Agent A also sends to B, if he sent to him EncA(hA) first and EncA(lA) second:

EncA((1, 0)) = (a · sa + 1 + ea, a · sa + 0 + ea) (27)

14



Else A sends to B, if he sent to B EncA(lA) first and EncA(hA) second:

EncA((0, 1)) = (a · sa + 0 + ea, a · sa + 1 + ea) (28)

As encrypted messages, these are uninterpretable by B. B then encrypts this message with
his own key pairs, so that the message is encrypted using the “combined” multiparty key pair
built using both A and B’s pairs (similar to what we did for the auction without auctioneer
example). B sends that to C. That message is then now

EncB(EncA((1, 0))) = (a · sa + a · sb + 1 + ea + eb, a · sa + a · sb + 0 + ea + eb) (29)

if A sent to B EncA(hA) first and EncA(lA) second, else it is EncB(EncA((0,1))) in the
reverse case. Let’s call that message ”C’s input from B from STEP 1”. Here the value 0
means null, and the value 1 means non-null as will be the case in the rest of the document.

Step 2. At Period 2

Agent A sends the encrypted version of its actual message EncA(m) (which can only
take two values, either hA or lA) to B. Please note that this step is not mandated per se.
Agent A can do whatever he wants. But the incentive compatibility of the mechanism en-
sures what A will do, as prescribed.

B then sends back to A for reference EncB(0). This reference will be encrypted by
A using A’s own keys, and sent to C, to have an ”encrypted null reference” encrypted by
both B and A’s keys, EncA(EncB(0)) (let’s call it the ”encrypted null reference” from now
on). We will see right here already how this ”encrypted null reference” will ”show up”
in the set of messages sent between B and A. Indeed B also sends to A the encrypted pair
(EncB(EncA(m1) - EncA(m)), EncB(EncA(m2) - EncA(m)))= EncB[EncA(m1) - EncA(m)),
EncA(m2) - EncA(m)]. Note that this is a vector (a pair). This pair’s value is for instance
EncB((0,1)) if m1 = hA AND if m=hA (again here the value 0 means null, and the value 1
means non-null as will be the case in the rest of the document).

For clarity we will list below all the pair’s value depending on all possible cases, as
listed below. There the numbered cases denote which underlying shock in step 1 was sent
first, and alphabetical cases denote the actual underlying and the corresponding sent values,
due to incentive compatibility are : (we also organized all the entries below in a summarizing
table put at the end of the document, for more readability)

case 1) m1 is equal to hA, then m2 is equal to lA
case 2) m1 is equal to lA, then m2 is equal to hA

case a) m is equal to hA

case b) m is equal to lA

So the corresponding messages sent by B to A become :
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- in the pair (case 1, case a)EncB(EncA(m1) -EncA(m), EncA(m2) -EncA(m)) = (EncB((0,1)))
= (EncB(0),EncB(1)).

- in the pair (case 2, case a) EncB(EncA(m1) - EncA(m), EncA(m2) - EncA(m)) =
(EncB((1,0))) = (EncB(1),EncB(0)).

- in the pair (case 1, case b) EncB(EncA(m1) - EncA(m), EncA(m2) - EncA(m)) =
(EncB((1,0))) = (EncB(1),EncB(0)).

- in the pair (case 2, case b) EncB(EncA(m1) - EncA(m), EncA(m2) - EncA(m)) =
(EncB((0,1))) = (EncB(0),EncB(1)).

Again here the value 0 means null, and the value 1 means non-null as will be the
case in the rest of the document. Indeed we define a ”peculiar” algebra here, which says
that ALL non-null numbers will take the same value 1 ie if EncA(m2) - EncA(m) ̸= 0 then
EncA(m2) - EncA(m) = 1 ; same if EncA(m1) - EncA(m) ̸= 0 then EncA(m1) - EncA(m)
= 1 . So there are only two different outcomes resulting from the four possible cases 1,2
combined with cases a,b. That will make it easier to conceal what the actual message agent
A sent at period 2 is - see summarizing table at the end of this section.

A encrypts back the two messages received from B using his own keys, first the ref-
erence EncA(EncB(0)) (the ”encrypted null reference”), and the new pair message which
value is now encrypted with both B and A’s keys, and equal to either EncA(EncB((0,1))) or
EncA(EncB((1,0))). A sends both the ”encrypted null reference” and this new pair message
to C. Let’s call the new pair message ”C’s input from A from STEP 2”. Indeed, this is linked
again to the ”information splitting” we described at the start of the protocol, as B doesn’t
know the order in which hA and lA have been sent, but C who knows this order doesn’t have
the keys to read any of the messages it has to perform homomorphic operations on. Let’s
note that these messages are also encrypted with A’s private key, so even if a malicious B
intercepts these messages B still wouldn’t be able to read them. Let’s also note with the
commutative and the distributive properties of the Enc operator, the encrypted vectorized
messages (the pairs) become

EncA(EncB((0, 1))) = EncB(EncA((0, 1))) = (EncB(EncA(0)), EncB(EncA(1))) =

(encryptednullreference, EncB(EncA(1)))

and

EncA(EncB((1, 0))) = EncB(EncA((1, 0))) = (EncB(EncA(1)), EncB(EncA(0))) (30)

(31)

= (EncB(EncA(1)), encryptednullreference) (32)

.

Let’s sum-up all the messages sent between the agents in the following skemata:
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Schematic view of the messages being sent in our protocol:

C is constructed to have ”precoded” in it (made sure both by agents A and B as they
agree to the scheme) :

- FIRST OPERATION : COMPARE the two terms in the pair of ”C’s input from A from
STEP 2” with the ”encrypted null reference”, and FIND which term of the pair is equal to the
”encrypted null reference” (at least one of the terms should be, since ”C’s input from A from
STEP 2”’s value is either EncA(EncB((0,1))) or EncA(EncB((1,0))). And with the notation
that EncB(EncA((1,0))) = (EncB(EncA(1)),EncB(EncA(0))) = (EncB(EncA(1)),encrypted
null reference)). Keep in memory which term in the pair matched the ”encrypted null refer-
ence”, through a variablememorizedt and one variable NON memorizedt, withmemorizedt=1
and NON memorizedt=2 if the first term matched the ”encrypted null reference” ormemorizedt=2
and NON memorizedt=1 otherwise. The variable memorized is in the end keeping
track of whether the eventually realized true value was encrypted and sent first,
or second, at the very first stage at time step 1 when A sends a message to B,
without in itself revealing whether A sent a message for high liquidity need or for
low liquidiy need. Indeed, we built a summary table, Table 1, at the end of this section,
of all possible values of memorizedt depending on the case we are in. There we can see for
instance that for the high liquidity need value cases (case a, combined with case 1 and case
2) one moves across the two columns with memorizedt going from 1 to 2 depending on if
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the realized true value (here high liquidity need) was sent first or second by A to B (who
then encrypted it using his key and sent to C) at STEP 1. Similarly for the low value cases
(case b, combined with case 1 and case 2), memorizedt goes from 2 to 1.

Depending on the result ”pseudo agent C” will have to perform the randomization
function of Townsend, JME 1988, or execute the transfer corresponding to the low liquidity
need (thanks to the randomization in the high liquidity need case, this low liquidity case
cannot be distinct with certainty to the result of the randomization in the high liquidity
need from A case). However, because we don’t want ”pseudo agent C” to know in
which case we are even while he is doing it (so that no ones that even manages
to ”hack” C can reveal A’s true liquidity needs) the ”pre-programmed” sets of
operations has to take place on encrypted space, and has to cover both high
liquidity need and low liquidity need cases at once. For the first of these two require-
ments we can invoke the homomorphic property of the encryption scheme we have been using
all along. For the second requirement we can notice by looking at Table 1 below showing
all four cases combining cases 1,2 and cases a,b, that we can use the resulting (at this stage
encrypted) 0 and 1 in all four cases as ”switches” activating either the randomization func-
tion, or the low liquidity need. Indeed the randomization function AND the low liquidity
need transfer are coded beforehand IN EACH outcome. So no matter if the actual message
sent by agent A at period 2 is the high liquidity need or the low liquidity need both the code
doing the randomization and the low liquidity transfer will run. However what changes -
the ”switches” - are the weights in front of each of these two terms (the randomized number
and the fixed low liquidity number). The weights come from C’s comparing inputs from A
and B, and thus putting an encrypted 0 in front of one of these two terms as weight, and an
encrypted 1 in front of the other of these two terms as weight. So in all cases both terms are
”computed”, but in each case only one of them will actually have a non null weight in the
result. Let’s write this down more in details :

- SECOND OPERATION : memorizedt from FIRST OPERATION will tell us how each
of the two terms in the pair ”C’s input from B from STEP 1” will be used as the ”switches”
in the following operation.

Let’s note memorizedt(”C’s input from B from STEP 1”)= the first term of the pair (”C’s
input from B from STEP 1”) if memorizedt=1, else the second term of the pair (”C’s input
from B from STEP 1”) if memorizedt=2.

Let’s also note NON memorizedt(”C’s input from B from STEP 1”)= the second term of
the pair (”C’s input from B from STEP 1”) if memorizedt=1, else NON memorizedt(”C’s
input from B from STEP 1”)= the first term of the pair (”C’s input from B from STEP 1”)
if memorizedt=2.

I.e., if (”C’s input from B from STEP 1”)=EncB(EncA((0,1))) and memorizedt=1, then
memorizedt(”C’s input from B from STEP 1”)=EncB(EncA(0)) and NON memorizedt(”C’s
input from B from STEP 1”)=EncB(EncA(1)). Please see all possible cases in Table 1 below.
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Notice that in each case one of the two above variables memorizedt(”C’s input from B
from STEP 1”) and NON memorizedt(”C’s input from B from STEP 1”) will be EncA(EncB(0)),
while the other of the variable will be EncA(EncB(1)) (with as a reminder 0 meaning null
and 1 meaning non null, and with ALL non null values being equal to 1).

We can now build the following generic set of operations, covering all four
cases from the table above with the same sets of instructions :

COMPUTE the output transfer amount resulting from C as the sum between the amount
corresponding to the randomization from Townsend, JME 1988, with weight equal to the
value of the NOT-YET-DECODED-memorizedt(”C’s input from B from STEP 1”), and
the amount corresponding to A’s low liquidity need with weight equal to the value of the
NOT-YET-DECODED NON memorizedt(”C’s input from B from STEP 1”). In each of the
four case of the table above, only one of the amounts corresponding to the randomization or
corresponding to the low value will be non-null, since there is in each case one and only one
null weights (even if that null probability is NOT-YET-DECRYPTED - the first of the two
requirements to conceal to C and everyone whether randomization was done or not, since
even if it’s done it’s been computed in the encrypted space).

For clarity let’s write down the summary table, Table 1, of what messages are sent
in each of the four cases above (case 1 or 2, combined with case a or b, where the numbered
cases denote which underlying shock in period 1 was sent first, and alphabetical cases done
the actual underlying sent at period 2 due to incentive compatibility).

Let’s note that in all four cases at item 4) C ALWAYS computes, in all four
cases, the generic formula

memorizedt(C’s input from B from STEP 1).(randomized amount) + NON memorizedt(C’s
input from B from STEP 1).(low liquidity amount).

Let’s also note that homomorphic encryption, along with HE-MPC’s distributive and com-
mutative properties is used in 5) of the summary table below, in the equality

EncB(EncA(1)).(randomized amount) + EncB(EncA(0)).(low liquidity need amount)
= EncB(EncA(1.(randomized amount) + 0.(low liquidity amount))
= EncB(EncA(randomized amount))

and in EncB(EncA(0)).(randomized amount) + EncB(EncA(1)).(low liquidity need amount)
= EncB(EncA(0.(randomized amount) + 1.(low liquidity amount))
= EncB(EncA(low liquidity amount)).

We can verify that in all four cases such a homomorphically computed sum between one
null term and one non-null term will give the amount corresponding to the specific combi-
nation of case 1 or 2, with case a or b that occurred.
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So at this point C’s output is already a NOT-YET-DECRYPTED numerical value
without trace revealing for certain whether the numerical value is the result of a randomiza-
tion function - the one corresponding to the amount of the transfer that should happen.

Then C sends this NOT-YET-DECRYPTED numerical value back to agents A and
B for HE-MPC decryption (see steps 9 to 11 in Figure 2: main steps followed in an HE-
MPC computation), so that all three agents and pseudo agent A, B and C knows the value
of the transfer in plain numerical form (this value can either be automatically transferred if
the contract is linked to a distributed ledger, or be sent to a payment system). Thus, C’s
intermediate steps, all on encrypted space, and its generic coding that handles at once the
high and the low liquidity need case, prevents anyone that could even see C’s intermediate
results from knowing A’s liquidity need.
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Table 1: Summary of messages computed and sent in each of the four cases

Case 1: m1=hA and m2=lA Case 2: m1=lA and m2=hA

Case a: m=hA 1) C’s input from B from STEP 1
=EncB(EncA((1,0)))

2) C’s input from A from STEP 2
=EncA(EncB((0,1)))

3) C finds memorizedt=1, so that
NON memorizedt=2 as well

4) The ”switches” here take val-
ues: memorizedt(C’s input from B
from STEP 1) = EncB(EncA(1))
in front of (randomized amount),
and NON memorizedt(C’s in-
put from B from STEP 1) =
EncB(EncA(0)) in front of (low
liquidity need amount)

5) Thus the generic for-
mula takes here the values
EncB(EncA(1)).(randomized
amount) + EncB(EncA(0)).(low
liquidity need amount) =
EncB(EncA(1.(randomized
amount) + 0.(low liq-
uidity need amount)) =
EncB(EncA(randomized amount))

1) C’s input from B from STEP 1
=EncB(EncA((0,1)))

2) C’s input from A from STEP 2
=EncA(EncB((1,0)))

3) C finds memorizedt=2, so that
NON memorizedt=1 as well

4) The ”switches” here take val-
ues: memorizedt(C’s input from B
from STEP 1) = EncB(EncA(1))
in front of (randomized amount),
and NON memorizedt(C’s in-
put from B from STEP 1) =
EncB(EncA(0)) in front of (low
liquidity need amount)

5) Thus the generic for-
mula takes here the values
EncB(EncA(1)).(randomized
amount) + EncB(EncA(0)).(low
liquidity need amount) =
EncB(EncA(1.(randomized
amount) + 0.(low liq-
uidity amount)) =
EncB(EncA(randomized amount))

Case b: m=lA 1) C’s input from B from STEP 1
=EncB(EncA((1,0)))

2) C’s input from A from STEP 2
=EncA(EncB((1,0)))

3) C finds memorizedt=2, so that
NON memorizedt=1 as well

4) The generic formula
takes here the values
EncB(EncA(0)).(randomized
amount) + EncB(EncA(1)).(low
liquidity need amount) =
EncB(EncA(0.(randomized
amount) + 1.(low liquidity
amount)) = EncB(EncA(low liq-
uidity need amount))

1) C’s input from B from STEP 1
=EncB(EncA((0,1)))

2) C’s input from A from STEP 2
=EncA(EncB((0,1)))

3) C finds memorizedt=1, so that
NON memorizedt=2 as well

4) The generic formula
takes here the values
EncB(EncA(0)).(randomized
amount) + EncB(EncA(1)).(low
liquidity need amount) =
EncB(EncA(0.(randomized
amount) + 1.(low liquidity
amount)) = EncB(EncA(low liq-
uidity need amount))
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(6) Generalization principles

Let’s see what ”generalizing” these examples would first mean in the mechanism design
framework, before studying how that could be implemented on the technology and encryption
side. Let’s notice first that generalizing the contracts would mean, in the mechanism design
framework, to either increase the number of interacting agents (a), the complexity of the
message space (b), or the interaction (computations) to be run between them (c). Let’s
see for each of them how that would translate to technologically, using the implementation
examples we exposed above.

(a) Increasing the number of interacting agents - illustration using
the auction example above

The auction example presented in section (4) presents both ways one could tackle an
increase in interacting agents - first would be to use the 2 agents case as a basic building
block that could iterated making pairwise comparisons over all agents, second would be by
adapting the computation function between agents in a way that fit the problem better,
globally from the outset. For instance, if one chooses to use the 2 agents case, one can
realize that ”pseudo agent” C from section (4) is in fact a ranking operator. I.e. presented
with any two bids, ”pseudo agent” C can figure which is highest without knowing any of
the initial bid values. One can thus design a sorting algorithm between N agents’ bids using
this ranking operator, to find the maximum. One can add in privacy-preserving features
if needed - for instance, presenting pairs of bids to be compared randomly to C; letting C
encrypt the name of the ”winner” of a pairwise comparison so that no agents can know if
other agents’ bids are higher or lower than his... The engineering gains are in terms of design
here since we don’t need to alter any of the section (4) set up, while we might be trading
off computation time (since we would need to go through all pairs of bids using such a design).

The second approach can improve the number of comparisons, if we increase the com-
plexity of the computation so that instead of taking just 2 agents’ bids it can take N agents’.
For instance, instead of just doing a substraction of 2 agents’ bids to see which is higher,
one could do a multiparty addition of all N agents’ bids to then compute the difference of
all N agents’ bids vs the median bid value among the N of them. For the roughly half of
these agents that have bids lower than the median, we drop them from the auction, and
repeat the process for those agents left in the competition. The multiparty computation
complexity is of the same order than the previous case, since we are just doing additions
instead of subtractions, and increases linearly with the number of bidders. Please note that
one could do that with or without the ”pseudo agent C”, depending on privacy requirements
(as without pseudo agent C then all agents themselves are in charge of running the multiple
rounds of multiparty computations, with less and less agents participating in them. But
there the values of the successive medians can still be encrypted and kept secret from all, as
one only needs to know the sign of the substraction of a bid vs a median. With a ”pseudo
agent C” then it can be done all by him, so that agents themselves only see the final winner.
But that reintroduces the control problem of a trusted third party - in this case pseudo
agent C, which can be a server that has been jointly set up by all agents, and then left as a
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”deterministic box” on its own, or in a DLT setting a smart contract).

All in all, the trade-offs are linked to the complexity of a potential (re)design pro-
cess, the complexity of added encryption and multiparty computation steps if needed, and
added computation time from repeating encryption and multiparty computation steps if
needed, and the privacy considerations one needs to keep.

(b) Increasing the complexity of the message space - illustration
using the hybrid contract

Increasing the message space is equivalent, in mathematical terms, to increase the di-
mensions of that space. For instance, go back to the hybrid’s setting above, and assume there
are now three different messages (high, medium, low) that could be sent by the borrowing
agents instead of the two (high, low) in the previous setting.

There are now two ways one could accomodate such an enlarged message space. The
first would be, similarly to the first approach in more agents auction described above, to
adapt the existing set up as a basic solver to be repeated several times. Indeed, because
there are now 3 potential message values now, we will break these 3 potential values into
2 subproblems containing each only 2 potential values, so that each of these 2 subproblems
are EXACTLY the same problem as the case presented above. Therefore we would have

- one pseudo agent (C1) that will ”treat” the low and medium messages - but C1 doesn’t
know which ones they are doing

- one pseudo agent (C2) that will ”treat” the medium and high messages, but they don’t
know which ones they are doing

- one pseudo agent (C3) that will ”treat” the low and high messages, but they don’t know
which ones they are doing

Then, the first pseudo agent is EXACTLY as in our previous hybrid write up, but just
with (low, medium). That nodes sends out at the very end: Dec[Enc(actual message
value - low)] * Allocation corresponding to low + (1/2) * Dec[Enc(actual message value
- medium)]*Allocation corresponding to medium , with the notation that if a subtraction is
equal to zero above then Dec[Enc(0)]=1, else then Dec[Enc(non-null value)]=0 (as described
in section 5 in the 2 message value case). The second contract does EXACTLY the same
with medium and high as it did in the 2 value case, and that node sends out: Dec[Enc(actual
message value - high)] * Allocation corresponding to high + (1/2) * Dec[Enc(actual message
value - medium)]*Allocation corresponding to medium. Finally we just sum the values sent
by both contracts.

The second approach, as described in the auction case, would be to adapt the de-
sign of the existing set up so that it can take into account more messages at once. For
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instance, through the intermediary variables used to ”store” messages in the 2 agents case.
In the language of section (5), the memorized variable used previously will be a vector in-
stead of the previous scalar values it would take (0 or 1). ie memorized is now taking values
in (0,0,1), (0,1,0), (1,0,0) for the 3 values of high, medium, or low. Then the SECOND
OPERATION performed by pseudo agent C would now be for C to allocate the value [(first
term of the memorized vector) times value corresponding to low message + (second term of
the memorized vector) times value corresponding to medium message + (third term of the
memorized vector) times value corresponding to high message ” (eventually with interaction
terms)].

(c) Increasing the interaction (computations) to be run between
agents

This now touches upon the maturity of the underlying technologies. If we use HE
and MPC as described in this document, then for linear functions increase in complexity
of the computation functions are feasible (with associated costs in computation time, see
next subsection). Where things are harder are if we introduce non-linear operations like the
activation functions in a neural network, on which HE and MPC research is currently show-
ing promising results (see for instance Blatt, Gusev, Polyakov, Rohloff and Vaikuntanathan
2020). If alternative technologies are needed, other homomorphic solutions designed on dis-
tributed ledgers (such as Pedersen commitments in Narula, zkLedger 2018) are of interest.
Solutions such as trusted executed environments (TEEs) can be used similarly, though they
are hardware solutions - so necessarily introducing a discussion on how to maintain them,
similar to that around the ”pseudo agent” concept we introduced in this paper.

To conclude on the technical maturity of HE and MPC, one can review and benchmark
existing HE-MPC applications and computation times. This isn’t the focus of our paper, in
which we follow a mechanism design approach in thinking about incentives to send or not
messages, and about how these messages can be kept private while still taking part in plan-
ning computations. We refer instead to the following selection of literature listing notable
implementations. MPC and/or HE have been for instance utilized to develop a method for
protecting privacy in large-scale genome-wide association studies (Kamm et al., 2013). This
is an analysis of the likelihood of diseases based on private medical information, phenotype
(age, gender, height) and genotypes, so that physicians can make tailored recommendations
to their patients while all the individual data used in the analysis remains secure. We think of
previous research that has used MPC to run a double auction for the Danish sugar beet mar-
ket (Bogetoft et al., 2009); securely link Estonian education and tax databases (Bogdanov et
al., 2016); run a simulation of a decentralized and privacy-preserving local electricity trading
market (Abidin et al., 2016); perform an analysis of the gender wage gap in Boston using
data from a large set of Boston employers (Lapets et al., 2016); and proof of concept using
real data from large firms to show how to securely calculate aggregated measures over sen-
sitive cybersecurity data (Castro el al., 2020).
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Though encryption has its limits, in that problems do not scale up easily, the limit
in practice is more for the overall number of participants rather than the number of lines
of data or interactions in analysis. Overall advancements are promising. For example, the
Estonia project ran on 10 million tax records and half a million education records.

(7) Conclusion: Mechanism design solutions as smart

contracts (with and without distributed ledgers)

We do not need a planner or trusted third party. This idea should be clear from the
two previous examples, auctions without auctioneers and hybrid borrowing/lending insur-
ance schemes with secrets and no third party. To be clear how this generalizes, for a given
environment, we solve for the constrained-optimal multi-party arrangement. Then to im-
plement the scheme with our tools, we make the code that generated the solution to the
planner problem available for participating agents to see line by line, so they can validate
that the code does what it is supposed to do. This contract node now replaces the planner
entirely. This initial validation process can include multiple potential simulations as if being
implemented in real time, following the time line which follows. Agents get convinced it
achieves their desired purpose, the reason for contracting, and that information is concealed.

The contract can be hashed and signed into an immutable record that agents have
entered into it. No denials later. Next, each agent deposits owned assets or liquidity into
an escrow account. This could be an escrow account with a trusted third party such as a
commercial bank or an escrow account that is a digital asset on a ledger with programmed
conditions for use. The messages are sent internally, as described above.

Similar constructions allow delegated portfolio management without trust, consultation
with public oracles, and implementation of solutions which mitigate or potentially eliminate
bank runs through automated state contingent gateways dependent on recorded immutable
history.

To reiterate we do not need distributed ledgers for the mechanism design part of
the problem. Indeed, there is a bit of a disconnect in the different uses of the word trust
between computer science and economics literatures. Morris and Shin (1996) come to the
essence of the problem by modeling the incentives of participants to follow the prescribed
protocol in the Byzantine Generals problem. This is a classic and seemingly simple prob-
lem of coordinating a successful attack when the enemy may be prepared, in which case an
attack even if coordinated will not be successful, and only one general is informed of this
state. Generals can send messages back and forth, but messages are noisy, that is, may
not arrive albeit with a low probability. Strategic maximizing behavior in an explicit infor-
mation game, without commitment, is inconsistent with intuitive prescribed protocols, as
agents start to second guess each other as in a Bayesian sequential equilibria. An alterna-
tive counter-intuitive protocol with commitment and less communication, one that prevents
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the second general from replying with a validating message, achieves the optimum, ironically.

The larger point is that we cannot be sure that the validators on distributed ledgers
will blindly follow the protocol. Instead we should consider strategic behavior. The Morris
and Shin example is particularly damning as it is in the group’s interest to coordinate. The
opposite tactic is taken in implementation of multi-party mechanism design problems, as pro-
tocols take into account strategic behavior and private information and thus are constrained-
optimal and incentive-compatible from the get go. Apart from faulty computers, there is
no need for validation protocols. HE and MPC can be used to design contracts as objects
traded, to design data base infrastructure, to design auctions and matching algorithms, and
to design and implement appropriate regulation to deal with privacy and monopolistic con-
cerns. Notably, encryption and multi-agent mechanism design can help the BIS as tools to
help foster better coordination across central banks. Indeed, schemes such as the ones pre-
sented in this outline can be similarly applied in multilateral processes to ensure the fair and
exact execution of chosen computations or of chosen multiagent contracts, without directly
accessing nor revealing to anyone but their originators any of their sensitive information.
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