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Abstract

Linear instrumental variable regressions are widely used to estimate causal effects. Many instru-

ments arise from the use of “technical” instruments and more recently from the empirical strategy

of “judge design”. This paper surveys and summarizes ideas from recent literature on estimation

and statistical inferences with many instruments for a single endogenous regressor. We discuss

how to assess the strength of the instruments and how to conduct weak identification-robust

inference under heteroskedasticity. We establish new results for a jack-knifed version of the

Lagrange Multiplier (LM) test statistic. Furthermore, we extend the weak-identification-robust

tests to settings with both many exogenous regressors and many instruments. We propose a test

that properly partials out many exogenous regressors while preserving the re-centering property

of the jack-knife. The proposed tests have correct size and good power properties.

Keywords: instrumental variable regressions, many instruments, weak instruments

1 Introduction

In linear instrumental variables (IV) regression, when there are many instruments, the

consistency of the estimation for the first stage coefficients becomes questionable. If the

uncertainty about the first stage coefficients has a first order importance, conventional

approximations to the distribution of IV estimators are generally unreliable. Recognizing

this problem, Bekker (1994) formally modeled the issue of many instruments by consider-

ing asymptotic approximations that assume the number of instruments grows to infinity

with the sample size. Specifically, Bekker (1994) is the first paper that pointed out the
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standard two-stage least squares (TSLS) estimator can be badly biased under many in-

struments.

Our paper provides an exposition of the challenges discovered and some solutions

proposed in the three decades since the original paper of Bekker (1994) in fast-growing

econometric literature on estimation and statistical inferences (testing, confidence sets

construction) in linear IV models with many instruments and a single endogenous re-

gressor. We first describe the trade-offs that arise from using many instruments. The

benefit of using more instruments is obvious — they bring additional exogenous infor-

mation that can help to estimate the structural parameter of interest and may lead to a

more efficient estimator. The challenges of using many instruments arise from the need

to find an optimal way to combine them (the task done by the first stage) and from the

growing complexity of such a task. When the information from additional instruments

grows slower than the complexity of the first stage, the additional instruments might be

detrimental and lead to a worse estimator. Specifically, the uncertainty from the first

stage tends to translate into the bias of the estimator for a structural parameter, and may

lead to an inconsistency of the structural estimator.

We survey some influential ideas attempting to properly use information from an

increasing number of instruments. These ideas include jack-knifing and sample splitting;

they produce estimators with a superior performance in comparison to the TSLS estimator

in settings with many instruments. We then discuss the definition of weak identification,

a situation when the information contained in the instruments is low relative to the

number of instruments to the extent that conventional approximations to the distribution

of IV estimators become invalid. We describe an empirically relevant pre-test for weak

identification as well as identification robust tests.

In addition to a survey of the existing literature, we also establish two new results

related to identification robust tests. First of all, we present a new form of identification

robust LM test that uses a new estimator of variance. Our test has superior power

properties in comparison with the LM test recently proposed in Matsushita and Otsu

(2022). The second new result is an identification robust Anderson-Rubin (AR) test that

is valid under both many instruments and many exogenous regressors (controls).
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Throughout this paper, we maintain the assumption of homogeneous treatment effect.

However, under a proper monotonicity assumption, results from Kolesar (2013) show that

two-step estimators are all consistent for a convex combination of local average treatment

effects. Therefore, some results presented in this paper can potentially be extended to

allow for heterogeneous treatment effects.

The remainder of this paper is organized as follows. Section 2 summarizes results on

estimation with many instruments and defines weak identification. Section 3 describes

a pre-test for weak identification. Section 4 describes existing weak identification robust

tests and introduces the new LM test. Section 5 discusses the challenges and solutions of

having many exogenous regressors. Section 6 concludes with open questions.

We finish the introduction by presenting two well-known examples of many instru-

ments. These examples demonstrate that whenever there is a good exogenous variation

allowing the identification of causal effects, many instruments arise naturally.

Example 1: Angrist and Krueger (1991) contains one of the most well-known ap-

plications of linear IV regression. This paper estimated the return to education using

the quarters of birth as instruments, and was prominently mentioned in the press-release

about the Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2021.

The structural parameter of interest is the coefficient on the educational attainment in

the structural equation:

wagei = β educationi + controlsi + ei.

Due to compulsory educational laws, children are required to stay in school until a certain

physical age, and yet children typically start their schooling in September when they

are at a different physical age. Thus, the quarter of birth, which can be considered as

randomly assigned in the population, produces an exogenous and observable variation in

educational attainment. Since the compulsory educational laws vary by state, the effects

of the quarter of birth on education are heterogeneous across the states. The effects are

possibly heterogeneous by birth cohort as well. Therefore, Angrist and Krueger (1991)

considered specifications that interact quarter of birth dummies with either state or year

of birth dummies or both. In the main specifications used by Angrist and Krueger (1991),
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interactions of the quarter of birth with the year of birth dummies yield 30 instruments.

Adding interactions with state of birth dummies yields 180 instruments. Finally, adding

fully saturated three-way interactions yields 1530 instruments.

In this setting, one starts with a single variable producing the exogenous variation,

but creates multiple “technical” instruments based on it in order to extract information

from heterogeneous and/or non-linear first stage. Such a setting is extremely common

in empirical practice and is one of the main sources of examples with many instruments.

Not only did Angrist and Krueger (1991) inspire the literature on weak identification, as

it was the main example in Staiger and Stock (1997), it was also a motivating example

for the literature on many instruments including Hansen et al. (2008).

Example 2. “Judge design” is a common name for empirical settings that use the ex-

ogenous assignment of cases to different decision makers as instruments for a treatment in

an attempt to estimate important causal effects of interest. Fueled by rich administrative

data, recent applications of “judge design” include Maestas et al. (2013); Dobbie et al.

(2018); Sampat and Williams (2019), and Bhuller et al. (2020). For example, Bhuller

et al. (2020) estimate the effect of incarceration on recidivism using random assignments

of criminal cases to judges as a source of exogenous variation. Judges express different

leniencies producing an exogenous variation in incarceration decisions. The instruments

here are dummies for individual judges. Since each judge can only process a certain num-

ber of cases out of the total court cases, the number of judges (the number of instruments)

increases fast with the sample size. Similar situation arises in applications of Mendelian

randomization (Davies et al., 2015) and name-based estimators of inter-generational mo-

bility (Santavirta and Stuhler, 2024), among others.

2 Estimation with many instruments

To describe the main ideas, we consider a simplified setup with one endogenous regressor

and no included exogenous regressors (controls). We will add exogenous regressors in

Section 5. Assume we observe an i.i.d. sample {(Xi, Yi, Zi), i = 1, ..., N} satisfying a
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linear IV model:  Yi = βXi + ei;

Xi = π′Zi + vi,

where Xi is a one-dimensional endogenous regressor, Zi ∈ RK are instruments satisfy-

ing the exclusion restriction E[ei|Zi] = 0. Additionally, we assume a linear first stage,

E[vi|Zi] = 0, which simplifies exposition and is crucial for deriving certain asymptotic

distributions - particularly, the LM statistics discussed later heavily rely on this assump-

tion. Notably, this assumption is not required for the AR test introduced later. We allow

errors to be heteroskedastic with 0 < c < E[e2i |Zi] < C. In this setting we are interested

in estimation of and statistical inferences on the structural coefficient β, while π is a set

of nuisance parameters. The first equation is often referred to as the structural equation,

while the second is called the first stage. We will discuss estimation and statistical in-

ference conditional on the realization of Zi, and thus will treat instruments as fixed. For

simplicity of notation, we drop the conditioning sign and all expectation signs should be

read as conditional on Zi’s.

2.1 Asymptotic bias of TSLS

The TSLS is the most widely known and used estimator in this case. To implement the

TSLS, one first runs the OLS regression of the first stage by regressing Xi on Zi which

obtains the estimated coefficients π̂. Then one runs the second stage regression of Yi on

X̂i = π̂′Zi, where the regression coefficient estimate β̂TSLS is the TSLS estimate.

The TSLS estimator is an efficiently weighted GMM estimator under conditional

homoskedasticity of errors ei and thus possesses the asymptotic optimality under ho-

moskedasticity in a setting with a small number of instruments. The notion of asymptotic

efficiency for GMM appeared in Chamberlain (1987). Since the unknown parameter β is

a scalar, a single relevant instrument is sufficient for identification. If we have K instru-

ments and can use any linear combination of them as the single instrument, the question

is which linear combination provides an estimator with the smallest asymptotic variance.

In the homoskedastic model the optimal combination is E[Xi|Zi] = π′Zi as it delivers

asymptotic efficiency. An alternative interpretation of the TSLS estimator through the
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lens of “optimal instruments”, is that the TSLS estimator uses the first stage to combine

multiple instruments Zi into a single estimated “optimal” instrument X̂i. One can show

that β̂TSLS is equal to the IV estimate in a just-identified IV regression of Yi on Xi using

X̂i as the single instrument. Furthermore, the asymptotic variance of the TSLS estimator

as well as of the infeasible optimal IV estimator is inversely proportional to π′Z ′Zπ, the

part of the endogenous regressor X explained by Z. Thus, if we know how to construct

the optimal instrument from the available data, we can expect additional instruments to

improve efficiency of the TSLS estimator through increasing the explained part of the

endogenous regressor.

In practice we do not know π, the coefficient of the optimal instrument combination,

and have to estimate it in the first stage. As we show, this typically leads to a bias in

the estimation of the structural coefficient that increases with the number of instruments.

Specifically, the estimated optimal instrument

X̂i = X ′Z(Z ′Z)−1Zi = π′Zi + v′Z(Z ′Z)−1Zi

contains not only the true optimal instrument π′Zi but also the estimation mistake, which

makes the estimated optimal instrument endogenous. For the next derivation only, assume

that the errors ei and vi are homoskedastic with σev = E[eivi] ̸= 0. The parameter σev

measures the degree of endogeneity of the regressor, and therefore the bias of the OLS.

Then

E

[
1

N

N∑
i=1

(X̂i − π′Zi)ei

]
=

1

N

N∑
i=1

Z ′
i(Z

′Z)−1ZiE[viei] =
tr(Z(Z ′Z)−1Z ′)

N
σev =

K

N
σev.

As shown above, the estimated instrument X̂i is endogenous, and consequently the TSLS

has bias proportional to a K
N

. Specifically, the bias of TSLS is increasing in the number of

instruments K, and if the number of instruments is a large fraction of the sample size, then

the TSLS is inconsistent. This result first appeared in Bekker (1994), who argues that in

order to get a more realistic approximation for the properties of the TSLS estimator when

the number of instruments is large, it is important to model the number of instruments

as increasing with the sample size.
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Another explanation for the TSLS bias is over-fitting of the first stage when the number

of regressors in the first stage regression is large. Suppose there are N instruments for a

sample of size N , then the first stage regression would produce a perfect fit and we have

X̂i = Xi. In this case, the TSLS equals to the OLS, which is inconsistent and biased due

to endogeneity of X. This is an extreme case, but it provides an intuition for why having

many instruments may complicate estimation.

In order to avoid the over-fitting problem, one may consider using some alternative es-

timation strategies for the first stage. Donald and Newey (2001) proposed an instrument

selection procedure based on a Mallows criteria. Suggestions to use LASSO selection on

the first stage were put forward by Belloni et al. (2012) and Belloni et al. (2014). Okui

(2011) proposed to use a shrinkage estimator, while Carrasco (2012) suggested several reg-

ularization procedures based on the spectral decomposition of the conditional expectation

operator, such as the principal components approach and Tikhonov’s regularization.

If one is willing to impose some assumptions about the form of the optimal instrument,

then with a proper estimation technique on the first stage that allows for a consistent esti-

mation of the optimal instrument, one may obtain a semi-parametric efficient estimator for

β. For example, Donald and Newey (2001) assumed a known ordering among instruments

(or groups of instruments) by strength/informativeness. The LASSO procedure of Belloni

et al. (2012) delivers a semi-parametric efficient estimator for β if the first-stage regression

is approximately sparse, that is, a relatively small number of the instruments successfully

approximates the optimal instrument. Another type of assumption often needed is a reg-

ularity condition placed on the conditional expectation operator. For example, Belloni

et al. (2012) restricted eigenvalues of an empirical Gram matrix, while Carrasco (2012)

assumed that the conditional expectation operator is a Hilbert-Schmidt operator.

When the assumptions about the form of the optimal instrument fail, the performance

of these alternative estimation strategies are not always guaranteed. Hansen and Kozbur

(2014) provided simulation evidence that the performance of IV estimators using LASSO

in the first stage is less than stellar when the signal on the first stage is dense and weak.

Angrist and Frandsen (2022) studied the performance of some Machine Learning (ML)

techniques for instrument selection using simulations calibrated to two important empiri-
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cal examples. They compared the performance of IV estimators using LASSO and random

forest in the first stage with that of OLS, TSLS and several jack-knife and split-sample

estimators that we will discuss below. In almost all cases the IV estimators using LASSO

and random forest in the first stage resulted in biases whose magnitudes are comparable

to those of OLS and TSLS without much improvement in variance. Moreover, the per-

formance of these two ML methods depends heavily on the choice of the regularization

parameter: the cross-validation or plug-in penalties for the LASSO, or the leaf-size for

the random forest. None of the standard choices for the regularization parameter were

totally satisfactory. One plausible explanation is that the sparsity of the first stage is a

poor description of the data in these two empirical applications.

2.2 Jack-knifing or diagonal removing

The bias of the TSLS arises from using the same observation in both stages of estimation.

Since the first stage estimate π̂ depends on Xi, the estimated optimal instrument X̂i

used by the TSLS is endogenous and is correlated with the structural error ei. In this

subsection, we survey some influential ideas attempting to remove the bias by jack-knifing

and sample-splitting.

Angrist and Krueger (1995) proposed removing the bias by using separate samples in

the two stages of the TSLS. They suggested splitting the original sample into two halves.

If π is estimated using the first half of the sample, and the estimated optimal instrument

is produced for the second half, then the constructed instrument will be exogenous and

the IV estimator would avoid the over-fitting bias of the TSLS. This idea is called sample-

splitting.

A refinement of sample-splitting that exploits the data in a more sophisticated way

is jack-knifing (Angrist et al., 1999). The idea is to run a separate first stage for each

observation. Namely, for observation i we run the OLS regression of X on Z on the sample

excluding observation i, calling the resulting estimate π̂(−i). Define Z∗
i = π̂′

(−i)Zi and run

the OLS regression of Yi on Xi using Z∗
i as the single instrument. The resulting estimate

of β is called a jack-knife IV estimator (JIVE). JIVE breaks the dependency between two

stages on the same observation and effectively satisfies the exogeneity condition E[Z∗
i ei] =
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0 for the constructed instrument.

The idea of running a separate first stage OLS regression for each observation seems

daunting but is ultimately unnecessary. There is a relatively easier formula for JIVE based

on the Sherman-Morrison-Woodbury formula, which provides an explicit way to calculate

the leave-one-out projection based on the full-sample orthogonal projection. Specifically,

one can show that while the TSLS can be written as

β̂TSLS =
X ′PZY

X ′PZX
=

∑
i,j PijXiYj∑
i,j PijXiXj

,

where PZ = Z(Z ′Z)−1Z ′ is a projection on Z, and Pij are its elements, the JIVE has a

similar form:

β̂ =

∑
i,j P

∗
ijXiYj∑

i,j P
∗
ijXiXj

, (1)

where elements P ∗
ij are slightly re-weighted elements of Pij with one important difference

- all diagonal elements are zeros.

The diagonal elements of the projection matrix are tightly connected to the TSLS

bias, since the expectation of the numerator for β̂TSLS − β is

E

[∑
i,j

PijXiej

]
= E

[∑
i,j

Pijviej

]
=
∑
i

PiiE [viei] .

Therefore, a closely related estimator, which just removes the diagonal from the TSLS

formula, is also often referred to as JIVE:

β̂JIV E =

∑
i ̸=j PijXiYj∑
i ̸=j PijXiXj

. (2)

This estimator was proposed in Angrist et al. (1999) and called JIV2 by the authors. It

is numerically extremely close to the other JIVE described in (1). For simplicity we will

call the estimator β̂JIV E defined in (2) the JIVE. The expectation of the numerator of the

estimation error for the JIVE,

β̂JIV E − β =

∑
i ̸=j PijXiej∑
i ̸=j PijXiXj

,
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is zero, E
[∑

i ̸=j PijXiej

]
= 0, and thus, the JIVE avoids the over-fitting bias of the TSLS

estimator.

The JIVE can also be motivated as the optimizer of a slightly corrected objective

function, specifically:

β̂JIV E = argmin
β

QJIV E(β) = argmin
β

∑
i ̸=j

Pij(Yi − βXi)(Yj − βXj).

The JIVE objective function is only slightly different than the TSLS objective function:

QTSLS(β) =
∑
i,j

Pij(Yi − βXi)(Yj − βXj) = (Y − βX)′PZ(Y − βX).

As was pointed out in Han and Phillips (2006) and Newey and Windmeijer (2009), the

problem with the TSLS objective function is that its expectation at the true parameter

value is not zero, EQTSLS(β0) ̸= 0, and therefore is not minimized at the true parameter

value. The JIVE objective function solves this issue by removing the diagonal. This

approach can be extended to other instrumental variable estimators for bias reduction.

For instance, Hausman et al. (2012) proposed a version of the LIML and Fuller estimators

with the diagonal removed (JIVE-LIML and JIVE-Fuller), while Hansen and Kozbur

(2014) proposed a similar modification for a ridge estimator.

2.3 Consistency of estimators with many instruments

JIVE-type estimators have superior consistency properties when compared with the TSLS.

In particular, Chao and Swanson (2005) established that under homoskedasticity the

TSLS is consistent when π′Z′Zπ
K

→ ∞, while the JIVE is consistent when π′Z′Zπ√
K

→ ∞.

These are drastically different conditions when the number of instruments K is growing

with the sample size. A similar statement under heteroskedasticity appeared in Hausman

et al. (2012) along with consistency of JIVE-LIML and JIVE-Fuller when π′Z′Zπ√
K

→ ∞.

Notice that π′Z ′Zπ, the explained part of regressor X, measures the information

contained in the optimal instrument. If one knew the optimal weights π, and used the

TSLS with the single optimal instrument Zπ, then this estimator is consistent as long
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as π′Z ′Zπ → ∞. The TSLS bias is proportional to K and constitutes the leading term

causing inconsistency of the TSLS when π′Z′Zπ
K

is asymptotically bounded. Once the bias

is removed, the consistency arises when the next asymptotic term is negligible.

The condition for consistency of JIVE (π′Z′Zπ√
K

→ ∞) emphasizes that additional in-

struments do not just increase the information extracted from the sample (π′Z ′Zπ) but

also come with a cost. To justify adding new instruments, they should bring enough ad-

ditional information so that π′Z′Zπ√
K

increases. This happens since the optimal coefficients

π are not known and have to be estimated. The estimation of the optimal coefficients

always comes with mistakes, which accumulate with the dimensionality of instruments,

K. The factor
√
K is the price one pays for the need to search for an optimal combination

in a high-dimensional setting.

In Mikusheva and Sun (2022) we showed that this price is unavoidable if the direction

or form of the optimal instrument is fully unknown. Specifically, we showed that if coeffi-

cients π are completely unknown and π′Z′Zπ√
K

is asymptotically bounded, then for any two

distinct values of parameter β there exists no asymptotically consistent test distinguishing

them. This implies that π′Z′Zπ√
K

→ ∞ is a necessary condition for consistency.

However, if one is willing to impose assumptions on the form of the optimal instru-

ment, then the condition for consistency may be weakened. Specifically, if one is willing

to assume that the optimal combination is sparse and uses a properly chosen LASSO pro-

cedure on the first stage, then the condition for consistency may be weakened to depend

(up to logarithm multipliers) on the squared root of the sparsity parameter in place of
√
K.

Chao et al. (2012) and Hausman et al. (2012) established that under some minor

assumptions, mainly additional moment restrictions and assumptions that the projection

operator PZ is well-balanced, the condition π′Z′Zπ√
K

→ ∞ implies that the JIVE, JIVE-

LIML and JIVE-Fuller are asymptotically Gaussian. This implies that one can employ t-

statistics and produce Wald-type confidence sets, so the inferences are somewhat standard

in this case. The one caveat of this statement is that the usual formulas for standard errors

are incorrect and understate the uncertainty. These papers also proposed the consistent

asymptotic variance estimators.
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3 Pre-testing for identification strength

The assumption that the amount of information extracted by the instruments is suffi-

ciently large relative to the squared root of the number of instruments (π′Z′Zπ√
K

→ ∞),

along with some technical conditions, guarantees the consistency of the JIVE. Under the

same assumption a properly defined t-statistic based on the JIVE converges asymptoti-

cally to a standard Gaussian distribution, making the usual t-test valid. However, if this

assumption does not hold, then the JIVE and other JIVE-type estimators tend to be

biased, and the asymptotic distribution of their t-statistics cannot be reliably approxi-

mated by a standard Gaussian distribution. Consequently, the t-tests and confidence sets

based on the t-statistics are asymptotically invalid. This phenomenon is known as weak

identification, as explained in Mikusheva and Sun (2022).

Weak identification has been recognized in IV estimation with small number of instru-

ments by Staiger and Stock (1997) and Stock and Yogo (2005). Stock and Yogo proposed

a pre-test for weak identification, which compares the first stage F -statistics for the hy-

pothesis that π = 0 with a specially selected cut-off. The cut-off technically depends on

the number of instruments and the goal of the pre-test (to bound the bias of the TSLS

estimator or to bound the size distortions of the t-test), but in practice the universal and

simple cut-off of 10 was suggested and has been widely adopted. In empirical research,

whenever the first stage F exceeds 10, it is considered reliable to use the standard TSLS

inferences, while otherwise one should employ an identification robust inference.

As pointed out by Hansen et al. (2008), this pre-test does not work well in the case of

many instruments. Specifically, the first stage F pre-test seems to indicate weak identifi-

cation in a wide range of cases where a reliable estimator exists. This is mainly because

the first stage F pre-test was built to assess the quality of inference procedures based on

the TSLS estimator. As was shown in the previous section, the TSLS estimator is a poor

choice of estimator for a case with many instruments. Figure 4 in Stock et al. (2002)

explicitly showed that the proper cut-off for the first stage F statistics should depend in

a significant way on the estimator used when the number of instruments is larger than

5 and should decline fast with the number of instruments for the JIVE and some other

bias-corrected estimators.
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In Mikusheva and Sun (2022), we proposed a new pre-test for weak identification

that is aimed at assessing the validity of the JIVE t-statistic inferences in cases of many

instruments, while allowing for a general form of heteroskedasticity.

The logic behind such a pre-test is very similar to that behind the first stage F pre-test

in settings with a small number of instruments. First, we derived the distribution of the

JIVE t-statistics under some technical conditions but without imposing the assumption

that π′Z′Zπ√
K

→ ∞. We then isolated the parameter that directly quantifies the deviations

of the JIVE t-statistics’ asymptotic distribution from the standard Gaussian. This the-

oretical parameter is an analog of the concentration parameter in the IV setting with a

small number of instruments introduced by Staiger and Stock (1997). We showed that

this parameter is µ2

Υ
√
K

, where µ2 =
∑

i ̸=j Pij(π
′Zi)(π

′Zj) is a diagonal-removed version of

π′Z ′Zπ, while Υ is a measure of the first stage uncertainty analogous to the variance of

the first stage error in the homoskedastic case. Notice that this parameter has
√
K in

the denominator, as we would expect for the case of many instruments. Then depending

on how much distortion from the declared size a researcher agreed to tolerate, we derive

a cut-off for the theoretical parameter. For example, for a 5%-test and a tolerance for

5% distortion, the cut-off is 2.5, which means that if µ2

Υ
√
K

> 2.5, then the JIVE t-test of

the nominal 5% size cannot have an asymptotic size of above 10%. Finally, we proposed

an estimator F̃ for the theoretical parameter µ2

Υ
√
K

and derived its accuracy to create the

cut-off for statistics F̃ . For example, if F̃ > 4.14, then with 95% confidence µ2

Υ
√
K

> 2.5,

and the JIVE t-test has less than 5 % size distortion.

This pre-test for weak identification provides the following empirical guidance in set-

tings with many instruments: use the JIVE t-test when F̃ > 4.14, otherwise use any of

the weak identification robust tests discussed in the next section. This two-step procedure

mirrors the approach popularized by Stock and Yogo (2005). By Bonferroni inequalities,

such two-step procedure guarantees that the total size of the two-step procedure is within

15%. A more accurate analysis of the limit distribution in Mikusheva and Sun (2022)

suggests that the maximal asymptotic size is bounded by 7%.

An alternative to pre-test is to always report a robust confidence set. The next section

discusses available approaches to constructing robust confidence sets. The Stata package
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FF F̃ TSLS JIVE (std. error) JIVE-Wald
180 instruments 2.4 13.4 0.083 0.099 (0.017) [0.066,0.132]
1530 instruments 1.3 6.2 0.063 0.072 (0.025) [0.024,0.121]

Table 1: Pre-test results in an example based on Angrist and Krueger (1991)
Notes: Results on the first-stage F statistics (FF), the pre-tests for weak identification, the JIVE and its
standard error and the JIVE-Wald confidence sets for IV specification underlying Table VII Column (6)
of Angrist and Krueger (1991). Sample size is 329,509.

manyweakiv implements the F̃ pre-test for weak identification and several identification-

robust tests detailed here. Additional information on the package is available in Sun

(2023).

Empirical example: Angrist and Krueger (1991). In the analysis of Angrist and

Krueger (1991), Staiger and Stock (1997) pointed out that the first stage F statistic is

low in the specification with many instruments and suspected weak identification. Hansen

et al. (2008) argued that this is not the case of weak but rather many instruments.

Mikusheva and Sun (2022) formally assessed this question based on the F̃ pre-test for

weak identification created for a many instrument setting. We used the original data from

Angrist and Krueger (1991), with a sample from the 1980 US census containing 329,509

men born 1930-39. We reproduced two specifications considered by Angrist and Krueger

(1991). The first specification uses 180 instruments that include 30 interactions between

quarter and year of birth dummies and 150 interactions between quarter and state of

birth dummies. The second specification uses 1,530 instruments, the full set of three-way

interactions among quarter of birth, year of birth and state of birth dummies. Table 1

reproduces part of Table 1 of Mikusheva and Sun (2022), reporting the first stage F , the

F̃ pre-test, the TSLS estimator, the JIVE, and the Wald confidence set based on JIVE.

In calculation of all statistics and estimators, we partial out the exogenous regressors and

then proceed as in a setting without exogenous regressors. This provides valid inferences

given that this specification has a relatively small number (71) of exogenous regressors.

In Section 5 we discuss alternative approaches that should be taken when the number of

exogenous regressors is large.

Based on the F̃ pre-test for weak identification, the JIVE t-tests are reliable in both
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specifications with 180 and 1,530 instruments. At the same time the value of the first stage

F is low and suggests that the TSLS and the TSLS-based confidence sets should not be

trusted. Another important observation is that having many uninformative instruments

may be detrimental to the statistical accuracy, as we see the specification with 1,530

instruments produced wider confidence sets.

4 Identification robust tests

When the pre-test for identification strength indicates that the JIVE-inferences are not

reliable, an important question is what valid statistical inferences can still be done. Low

values of F̃ suggest that information in the sample is low for the number of instruments

used to the extent that the JIVE is inconsistent. This also implies that no other consis-

tent estimator exists unless any additional information about the optimal instrument is

available. However, even in the absence of a consistent estimator, we may still construct

informative tests and confidence sets that are asymptotically valid, in the sense that their

probability of incorrectly rejecting the null hypothesis and covering the true parameter

value, respectively, remains well-controlled. A statistical inference procedure that remains

valid no matter the identification strength is therefore called robust to weak identifica-

tion. A large literature has developed a variety of statistical inference procedures robust

to weak identification when the number of instruments is small. According to Andrews

and Stock (2007) the same type of tests remain valid when the number of instruments

slowly increases with the sample size (K3/N → 0). Here we discuss how one can refine the

weak identification robust procedures to be robust under a large number of instruments,

when the number of instruments may be a fraction of the sample size.

Confidence sets. While we focus on robust tests, if one is interested in creating a

robust confidence set for β, this can be done by numerically inverting any of the robust

tests we discuss below. Specifically, one may conduct tests H0 : β = β0 for different

values of β0 and collect the values not rejected by the test to form a confidence set. The

asymptotic coverage of such a set will be at the declared level no matter the strength of

identification.
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4.1 Robust AR

The AR test was developed as an identification robust test in IV settings with a small

number of instruments. It uses the exogeneity assumption (E[ei|Zi] = 0), but not relevance

(π ̸= 0). The idea behind the AR test, is that in order to test H0 : β = β0, one tests

whether the implied errors e(β0) = Y −β0X, which coincide with the true structural errors

for the correct value of β0, are correlated with Z in the sample. The AR test statistic

is e(β0)
′ZΣ−1Z ′e(β0), where Σ is the covariance matrix of e′Z or a good estimate of it.

Under the null, this test statistic has an asymptotic χ2
K distribution. Under the further

assumption of homoskedasticity of ei the statistic reduces to 1
σ̂2 e(β0)

′Z(Z ′Z)−1Z ′e(β0) =

1
σ̂2 e(β0)

′PZe(β0).

The AR test introduced in settings with a small number of instruments performs poorly

in settings with a large number of instruments because the limit null distribution χ2
K does

not provide an accurate approximation. Notice that if a large number of instruments

is modeled as K → ∞, then the prescribed limit null distribution χ2
K drifts to infinity.

This issue is tightly related to the observation that under the null the test statistic has a

non-zero mean

E [e(β0)
′PZe(β0)] =

N∑
i=1

PiiEe2i .

This coincides with the issue that the expected value of the TSLS objective function is

not minimized at the true parameter value β0, contributing to its inconsistency when the

number of instruments is large. Therefore, the idea of jack-knifing or diagonal removing

can be similarly applied to the original AR test statistic (Crudu et al., 2021; Mikusheva

and Sun, 2022). The infeasible JIV (or leave-one-out) AR statistic is defined as

AR0(β0) =
1√
KΦ0

∑
i ̸=j

ei(β0)Pijej(β0),

where the normalizing factor Φ0 =
2
K

∑
i ̸=j P

2
ijσ

2
i σ

2
j is the variance of the quadratic form.

Here and below we allow for a general form of heteroskedasticity where σ2
i = Ee2i . Under

minor assumptions like finite fourth moments of the errors and a well-balanced design

assumption, the central limit theorem for quadratic forms established in Chao et al. (2012)
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guarantees that under H0 : β = β0 we have AR0(β0) ⇒ N(0, 1). It is worth pointing out

that this theorem needs K → ∞. The test rejects the null whenever we have a large

positive value of the AR statistic.

Variance estimation. In order to obtain a feasible test of an asymptotically correct

size, one needs to estimate the variance Φ0. A good estimator should be consistent under

the null and should allow for a general form of heteroskedasticity. Ideally, it should also

ensure a good power under alternatives.

Crudu et al. (2021) proposed using the squared implied errors σ̂2
i = e2i (β0) as an

unbiased proxy for σ2
i and the corresponding variance estimator is defined as

Φ̂1 =
2

K

∑
i ̸=j

P 2
ijσ̂

2
i σ̂

2
j .

It is very easy to show that under the null Φ̂1 is consistent for Φ0, and thus the test

using Φ̂1 has an asymptotically correct size under a general form of heteroskedasticity.

However, such a test may have low power against distant alternatives. Namely, if the true

β is very different from β0, then e(β0) differs from structural errors e by a potentially

large predictable component. Squaring the implied errors would drastically overestimate

the variances of error terms and may produce unnecessarily large values for Φ̂1. This may

lead to a significant power loss especially at large deviations of the postulated β0 from

the true β.

Since the difference between the implied errors e(β0) and structural errors e is pre-

dictable, one may residualize the implied error before squaring. Denote MZ = I −PZ the

projection matrix and let Mi be its ith row. Even under the null, the squared residualized

error is biased: E (Mie(β0))
2 ̸= σ2

i . This is because the squared residual contains not only

the squared error ei but also the square of the regression estimation mistake. The latter

can be large when the number of regressors K is large.

To construct an unbiased estimator for Φ0 under the null, in Mikusheva and Sun (2022)
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we suggested the following estimator:

Φ̂2 =
2

K

∑
i ̸=j

P 2
ij

MiiMjj +M2
ij

[ei(β0)Mie(β0)] [ej(β0)Mje(β0)] .

Our idea is based on the “cross-fit” variance proxies σ̂2
i = 1

1−Pii
ei(β0)Mie(β0), proposed

by Newey and Robins (2018) and Kline et al. (2020). These proxies are unbiased under

the null: Eσ̂2
i = σ2

i . However, since the normalizing factor Φ0 is quadratic in σ2
i and the

proxies for the variances of errors with different indexes (i.e. σ̂2
i and σ̂2

j ) depend on the

same sample, one can show that

E [(eiMie)(ejMje)] = (MiiMjj +M2
ij)σ

2
i σ

2
j ,

and we can therefore obtain an unbiased estimator of Φ0 by a simple re-weighting of

summands.

Another alternative estimator for Φ0 was proposed in Anatolyev and Sølvsten (2023).

Their idea is to create an unbiased proxy for σ2
i σ

2
j under the null by creating a product

of four uncorrelated terms using a “leave-three-out” estimator. They suggested using

Φ̂3 =
2
K

∑
i ̸=j P

2
ijσ̂

2
i σ

2
j with

σ̂2
i σ

2
j = ei(β0)ej(β0)

∑
k

M̃ik,−(ij)ek(β0)[ej(β0)− Z ′
j δ̂−(ijk)],

where δ̂−(ijk) are coefficient estimates from regressing e(β0) on Z leaving three observations

(i, j, k) out, while M̃ik,−(ij) is an element of the projection matrix leaving out i and j.

There are explicit formulas for leave-(one/two/three)-out projections available; however,

the numerical complexity of implementing Φ̂3 is higher than the other two estimators.

As for their theoretical properties, all three estimators of Φ0 are unbiased and con-

sistent under the null. When the true value β = β0 + ∆ differs from the hypothesized

value β0, Φ̂2 and Φ̂3 are also consistent under local alternatives. In Mikusheva and Sun

(2022) we derived the power function for the infeasible AR uniformly over a set of local
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alternatives

AR0(β0) ⇒ ∆2 µ2

√
KΦ0

+N (0, 1).

This is also the theoretical description of the power functions for AR using Φ̂2 or Φ̂3. One

can show numerically that using Φ̂1 leads to a power loss.

Small-scale simulations. We simulate the data according to a homoscedastic linear

IV model (3) with a linear first stage Πi = Π′Zi and true structural parameter β = 0.

The sample size is N = 200. We divide the sample into K = 40 equal groups, and define

the instruments to be the group indicators. We simulate two designs with varying levels

of sparsity. In the sparse first stage we set one large coefficient πK = 2 and πk = 0.001 for

all k < K. This is the setting where one instrument contains almost all information. The

dense first stage has homogeneous first stage coefficients πk = 0.316 for all k = 1, . . . , K.

Identification strength is held the same at µ2
√
K

= 2.5 for both designs. The error terms

(ei, vi) are drawn i.i.d. from a Gaussian distribution with mean zero, unit variances, and

correlation ρ = 0.2. For each simulation draw we perform the leave-one-out AR tests

using either Φ̂1 (red dashed line) or Φ̂2 (blue solid line). The resulting power curves are

reported on Figure 1.

One can make two observations based on Figure 1. First, that the settings considered

are cases of weak identification, as the power curves stabilize on the level well below

1. Second, there is a significant power loss due to using a naive estimator for the scale

estimator Φ̂1. The usage of estimator Φ̂2 is preferred from a power perspective.

4.2 Robust LM

In over-identified settings with a small number of instruments, the AR test is known to

be asymptotically inefficient if identification is strong. The main reason is that under

strong identification the data contains a lot of information about the optimal instrument,

which the AR test completely ignores. The solution has been an identification robust

modification of the Lagrange Multiplier (LM) test, known as the KLM test.

An alternative modification to the LM test can make it robust to weak identification

when there are many instruments. The LM test aims to construct the most powerful
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Figure 1: Power curves for the leave-one-out AR tests with Φ̂1 (red dashed) and Φ̂2 (blue solid) variance
estimators under sparse vs. dense first stage. Instruments are K = 40 balanced group indicators,
N = 200, based on 1,000 simulations.

combination of instruments and then conduct the AR test with the single instrument. The

original LM statistic is based on the linear combination e′(β0)Zπ̂ = e′(β0)PZX because

under homoskedasticity the optimal instrument is Zπ. However, similar to the bias of

the TSLS, in the setting of many instruments, the original LM statistic is poorly centered

due to the correlation between the first stage π̂ and the structural error. As before, the

problem can be solved by removing the diagonal. The infeasible leave-one-out LM statistic

is

LM1/2(β0) =
1√
KΨ

∑
i ̸=j

ei(β0)PijXj,

where the normalization scalar is

Ψ =
1

K

N∑
i=1

(
∑
j ̸=i

PijXj)
2σ2

i +
1

K

N∑
i=1

∑
j ̸=i

P 2
ijγiγj,

with σ2
i = Ee2i , γi = E[Xiei]. Matsushita and Otsu (2022) proposed this test statistic and

showed that under minor technical conditions, including the assumption that K → ∞ as

N → ∞, under H0 : β = β0 we have LM1/2(β0) ⇒ N(0, 1). The LM test rejects when∣∣LM1/2(β0)
∣∣ is large (two-sided rejection).

As before, in order to implement this test one needs an estimator of Ψ. Similar to

Crudu et al. (2021) in the case of the AR, Matsushita and Otsu (2022) suggested using the

squared implied errors as proxies for variances under the null. Specifically, their proposed
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estimator is

Ψ̂1 =
1

K

∑
i

σ̂2
i (
∑
j ̸=i

PijXj)
2 +

1

K

∑
i

∑
j ̸=i

P 2
ij γ̂iγ̂j,

where σ̂2
i = e2i (β0) and γ̂i = Xiei(β0). Matsushita and Otsu (2022) showed that their

estimator Ψ̂1 is consistent for Ψ under the null (H0 : β = β0), and thus, the feasible LM

with Ψ̂1 has the correct asymptotic size. However, for similar reasons as in the case of the

AR, the estimator Ψ̂1 may lead to power losses under alternatives because σ̂2
i contains a

large predictable part and overstates the variances σ2
i .

In the current paper we propose a novel variance estimator Ψ̂2 using ideas similar to

Mikusheva and Sun (2022):

Ψ̂2 =
1

K

∑
i

eiMie

Mii

(
∑
j ̸=i

PijXj)
2 +

1

K

∑
i

∑
j ̸=i

P̃ 2
ijXiMieXjMje.

Here we use σ̂2
i = eiMie

Mii
, an unbiased proxy for σ2

i , γ̂i = XiMie , a proxy for γi, and

re-weighting P̃ 2
ij =

P 2
ij

MiiMjj+M2
ij

to correct for correlation in proxies.

We also establish a new theoretical result showing that under both the null and local

alternatives this estimator Ψ̂2 is consistent under a general form of heteroskedasticity. For

that we need the following assumptions.

Assumption 1

(i) PZ is an N ×N projection matrix of rank K, K → ∞ as N → ∞ and there exists

a constant δ such that maxi Pii ≤ δ < 1;

(ii) Errors εi = (ei, vi)
′, i = 1, ..., N are independent with Eεi = 0,maxi E∥εi∥6 < ∞,

and for some positive constants c∗ and C∗ that do not depend on N

c∗ ≤ min
i

min
x

x′V ar(εi)x

x′x
≤ max

i
max

x

x′V ar(εi)x

x′x
≤ C∗.

Assumption 1 is a very straightforward generalization of assumptions needed for va-

lidity of robust AR test under many instruments. Specifically we only added the moment

conditions on the first stage error vi and positive-definiteness of the error covariance ma-

trix.
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Theorem 1 Let Assumption 1 hold, and π′Z′Zπ
K2/3 → 0 as N → ∞, then

(1) if β = β0, we have Ψ̂2

Ψ
→p 1 as N → ∞;

(2) if β = β0 +∆ such that ∆ · π′Z′Zπ
K

→ 0, we have Ψ̂2

Ψ
→p 1 as N → ∞.

Part (1) of Theorem 1 gives consistency under the null hypothesis, and thus implies

that the leave-one-out LM test using Ψ̂2 has an asymptotically correct size. Part (2)

addresses the consistency under local alternatives and guarantees that the power curves

of the LM test using our proposed estimator Ψ̂2 are the same as those of the infeasible LM

test. Specifically, the power function of the infeasible leave-one-out LM test is described

by the following convergence uniformly over the alternatives β = β0 +∆:

LM1/2 ⇒ ∆
µ2

√
KΨ

+N (0, 1).

Notice that ∆ can be both positive or negative, thus, if one uses LM1/2(β0) statistics

then they can employ the standard Gaussian critical values with two-sided rejection.

Alternatively, one may use the squared statistic and the 95-percentile of χ2
1 distribution.

Another observation is that the proposed LM test is consistent for fixed alternatives as

soon as µ2/
√
K → ∞.

Small-scale simulation (continued). We repeat the same simulation design as in

Section 4.1, where Assumption 1 is trivially satisfied. We calculate the power curves for

the leave-one-out LM test using Ψ̂1 (red dashed line) and Ψ̂2 (blue solid line) estimates

of the scale. They are reported in Figure 2. Here the power loss due to usage of the naive

estimate of the scale Ψ̂1 is extremely pronounced, especially in the sparse design. Another

observation is that in both designs, contrary to the conjecture that LM is more efficient

than AR, the leave-one-out AR test has higher power than the leave-one-out LM. This is

not a universal observation and we discuss their trade-offs in the next sub-section.

Empirical example (Angrist and Krueger, 1991). We return to the empirical

example of Angrist and Krueger (1991) and report the robust confidence sets obtained by

inverting the leave-one-out AR and LM tests robust to many weak instruments in Table
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Figure 2: Power curves for the leave-one-out LM with Ψ̂1 (red dashed) and Ψ̂2 (blue solid) variance
estimators under sparse vs. dense first stage. Instruments are K = 40 balanced group indicators,
N = 200.

FF F̃ JIVE-t-test Robust AR Robust LM
180 instruments 2.4 13.4 [0.066,0.132] [0.008,0.201] [0.067,0.135]
1530 instruments 1.3 6.2 [0.024,0.121] [-0.047, 0.202] [0.022,0.127]

Table 2: Robust and non-robust confidence sets in Angrist and Krueger (1991)
Notes: Results on pre-tests for weak identification and the confidence sets based on the JIVE t-test,
the leave-one-out AR and the leave-one-out LM for IV specification underlying Table VII Column (6) of
Angrist and Krueger (1991). The confidence sets are constructed via analytical test inversion.

2. We note that all confidence sets are finite intervals and are somewhat informative,

though the leave-one-out AR confidence is significantly wider than the other two. This is

mostly due to the fact we established before that the identification seems to be strong in

Angrist and Krueger (1991). We may also notice that the leave-one-out LM confidence

set is nearly identical to the JIVE-Wald confidence set. This is a reflection of the fact

that the leave-one-out LM test is asymptotically equivalent to the JIVE t-test under

strong identification. Unlike the JIVE t-test, which fails to controls size under weak

identification, the leave-one-out LM test is fully robust to weak identification. Thus, we

recommend using the leave-one-out LM test as a default option without a pre-test for

weak identification. Another observation is that the case with 1,530 instruments is less

informative and produces wider confidence sets for all three test statistics than when only

180 instruments are used.
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4.3 Combination tests

In the empirical example of Angrist and Krueger (1991) we have seen that the leave-one-

out LM test produces much shorter confidence sets than the robust leave-one-out AR

test. At the same time our simulation exercise showed the opposite ordering of power.

This raises the question of power comparison between these two tests. The answer is

that neither of the two tests dominates the other. As mentioned before, the power curves

for the infeasible tests (or for the feasible tests with our proposed estimators Φ̂2 or Ψ̂2

for the normalizing factors) under the alternative β = β0 + ∆ and when µ2

K
→ 0 can be

characterized by:

LM1/2 ⇒ ∆
µ2

√
KΨ

+N (0, 1),

AR ⇒ ∆2 µ2

√
KΦ

+N (0, 1).

These power curves imply that when a setting is strongly identified in the sense of

Mikusheva and Sun (2022), that is, when µ2
√
K

→ ∞, then both the leave-one-out AR and

the leave-one-out LM are asymptotically consistent for fixed alternatives β. Under strong

identification the two tests have different sets of local alternatives, namely, alternatives

with asymptotically non-trivial probability of detection. Specifically, for the leave-one-out

AR test the set of local alternatives is {∆ : ∆2µ2
√
K

= C} i.e., |∆| ∝
√√

K
µ2 , while for the

leave-one-out LM test it is {∆ : |∆|µ2
√
K

= C} i.e., |∆| ∝
√
K

µ2 . So, we observe that under

strong identification the leave-one-out AR test has a slower speed of detection than the

leave-one-out LM. This suggests that when identification is strong the leave-one-out LM

will tend to produce shorter confidence sets.

However, when identification is weak ( µ2
√
K

is bounded), there is no consistency for

fixed alternatives, and the confidence sets tend to be non-shrinking. In such settings, the

leave-one-out AR will tend to have higher power for distant alternatives and would be

preferable to use. The absence of ordering between AR and LM tests in terms of power

under weak identification has been known in a case with fixed number of instruments, our

findings extend this to many instruments case.

These considerations suggest that one may want to combine the robust test statistics
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in some optimal way based on the strength of identification. For example, one may do a

switch or “soft switch” between the leave-one-out AR and the leave-one-out LM statistics

depending on the size of F̃ . In cases with small number of instruments, Andrews (2016)

found the conditional likelihood ratio (CLR) test of Moreira (2003) has very good power

properties because it can be considered as a robust test that implements a soft switch. A

recent paper by Ayyar et al. (2022) suggests how to construct a weak instrument robust

analog of the CLR test when the number of instruments is large. A recent paper by Lim

et al. (2024) searches for an optimal linear combination test that optimizes a minimax

criterion that was first proposed in Andrews (2016). The resulting test statistic is a

weighted average of the leave-one-out AR and the leave-one-out LM.

5 Allowing for many exogenous regressors

To illustrate the issue arising from many instruments, previously we simplified the exposi-

tion by assuming no exogenous regressors (controls) in the structural equation. However,

this assumption is unrealistic in practice. In models with many instruments, it is typ-

ical to also have many exogenous regressors. While the specification underlying Table

2 contains a relatively small number of covariates (71), a more modern approach would

increase the number of covariates dramatically. For example, in settings like Angrist and

Krueger (1991) once we use interactions of baseline instruments with covariates as instru-

ments, it is common to include those covariates as exogenous regressors as well. More

broadly, in practice many instrumental variables are only valid after conditioning on addi-

tional covariates. “Saturated” specifications that control for covariates nonparametrically

can ensure proper interpretation of the IV estimate under the LATE framework of Im-

bens and Angrist (1994). A “saturated” specification includes rich interactions between

the instrument and the covariates, giving rise to many instruments and many exogenous

regressors, as recently discussed in Słoczyński (2020) and Blandhol et al. (2022).

To analyze the impact of many exogenous regressors, we consider the following model: Yi = βXi + γ′Wi + ei,

Xi = π′Zi + δ′Wi + vi,
(3)
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for i = 1, ..., N. This is a linear IV regression with a scalar outcome Yi, an endogenous

scalar regressor Xi, a KZ × 1 vector of instrumental variables Zi and a KW × 1 vector of

exogenous regressors Wi. The main assumption is E[ei|Zi,Wi] = E[vi|Zi,Wi] = 0. We are

interested in estimation of and statistical inference about β, and treat parameters π, γ, δ

as nuisance parameters.

New challenges of estimation with many instruments and many exogenous

regressors. The TSLS estimator of β in this case is equivalent to the TSLS in a model

that first partials out W . Let us introduce a projection matrix MW = I−W (W ′W )−1W ′.

Denote Y ⊥ = MWY , X⊥ = MWX and Z⊥ = MWZ to be the outcome variable, en-

dogenous regressor and instruments with the exogenous regressors partialled out. Finally

denote P⊥ = PZ⊥ = Z⊥ ((Z⊥)′Z⊥)−1
(Z⊥)′ to be the projection matrix based on the

residualized instruments. Then the TSLS estimator of β is

β̂TSLS =
(X⊥)′P⊥Y ⊥

(X⊥)′P⊥X⊥ .

As we have seen in the case without exogenous regressors, the TSLS estimator is very

biased when KZ is large. We should expect a similar issue in the case with many in-

struments and many exogenous regressors. One solution in the case without exogenous

regressors is to remove a diagonal from the projection matrix, so, a natural though naive

approach is the following estimator

β̂1 =

∑
i ̸=j X

⊥
i P

⊥
ij Y

⊥
j∑

i ̸=j X
⊥
i P

⊥
ijX

⊥
j

.

This estimator was proposed in Ackerberg and Devereux (2009) under the name improved

JIVE (IJIVE). Here we first partial out exogenous regressors, and then use a JIVE- type

estimator without exogenous regressors that removes a diagonal from the projection on

the instruments. Evdokimov and Kolesár (2018) showed that this approach does not quite

work and β̂1 tends to have large biases. Indeed,

β̂1 − β =

∑
i ̸=j X

⊥
i P

⊥
ij e

⊥
j∑

i ̸=j X
⊥
i P

⊥
ijX

⊥
j

, where e⊥ = MW e.
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We can show that the numerator has a non-trivial mean. Let us denote MW,ij as elements

of MW and use an observation that MWP⊥ = P⊥MW = P⊥:

E
∑
i ̸=j

X⊥
i P

⊥
ij e

⊥
j =

∑
k

∑
i ̸=j

E[vkek]MW,kiP
⊥
ijMW,kj =

∑
k

E[vkek]P⊥
kk(1−MW,kk).

The last expression is non-trivial, since on average 1−MW,kk is KW

N
, while the trace of P⊥

is KZ . Thus, under homoskedasticity, if the values of P⊥
kk are uncorrelated with MW,kk,

we should expect the last expression to be σ2KWKZ

N
. Removing the diagonal from P⊥

has not solved the many instruments issue here, because the procedure of partialling out

introduces the dependence across residuals so that e⊥i are not independent across i.

Another suggestion is to write the numerator of the TSLS as (X⊥)′P⊥Y ⊥ = X ′P⊥Y ,

which is due to MWP⊥MW = P⊥, and to remove the diagonal from P⊥. That is, one

may propose the following estimator:

β̂2 =

∑
i ̸=j XiP

⊥
ij Yj∑

i ̸=j XiP⊥
ijXj

.

This suggestion does not work either but for a different reason. The operator P⊥ has a

property that it projects out the exogenous regressors, namely P⊥W = 0, but the same

operator without the diagonal does not have this property:
∑

j ̸=i P
⊥
ijW

′
j ̸= 0. Thus

β̂2 − β =

∑
i ̸=j XiP

⊥
ijW

′
jγ +

∑
i ̸=j XiP

⊥
ij ej∑

i ̸=j XiP⊥
ijXj

.

The term in the numerator
∑

i ̸=j XiP
⊥
ijW

′
jγ = −

∑
iXiP

⊥
ii W

′
iγ corresponds to a bias.

Since the average value of P⊥
ii is KZ

N
, this term is (approximately) the fraction of the bias

that would arise if one does not include exogenous regressors in the regression (omitted

variable bias).

To summarize, the challenges from both many instruments and many exogenous re-

gressors are a counterplay of two needs: the need to partial out exogenous regressors and

the need to remove the diagonal. An ideal estimator takes the form of

β̂3 =
X ′AY

X ′AX
,
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where a N × N matrix A has the following properties: (i) AW = 0 (partialing out

property) and (ii) Aii = 0 for all i (zero diagonal property). Matrix A can be constructed

using Z and W , with some preferences for a matrix close to P⊥.

A recent paper by Chao et al. (2023) suggests a matrix A of the following form A =

MW (P⊥−Dθ)MW where Dθ is a diagonal matrix with diagonal elements θ1, ..., θN selected

in such a way that A has zero diagonal. Chao et al. (2023) showed that such θi’s can

be found in a well-balanced design (when mini MW,ii > 1/2) and provided a proof of

consistency and asymptotic Gaussianity of estimator β̂3 under some assumptions. Kolesar

(2013) suggested an alternative matrix A for bias correction, yielding an estimator with

a similar form to β̂3. For this paper, we focus on the matrix A proposed by Chao et al.

(2023) to construct tests robust to many instruments/exogenous regressors.

Robust AR. Following the ideas stated in the previous sections, we create a test for

H0 : β = β0 robust to many instruments/exogenous regressors using an AR-type statistic

ARW (β0) =
1√

KZΦ̂W

(Y − β0X)′A(Y − β0X),

where we propose a novel estimator for the normalization factor

Φ̂W =
2

K

∑
i,j

A2
ij

MZW,iiMZW,jj +M2
ZW,ij

σ̂2
i σ̂

2
j . (4)

Here σ̂2
i =

∑
k MZW,ik(Yi − β0Xi)(Yk − β0Xk), where MZW,ij are elements of MZW , a

projection matrix orthogonal to both Z and W . This proposal is similar to the Φ̂2

estimator in the case with no exogenous regressors. There is no consistent “naive” variance

estimator (like Φ̂1) in the presence of exogenous regressors since under the null Yi−β0Xi is

not equal to the error but rather contains the predictable non-zero part (γ−β0δ)
′Wi. This

term squared overstates the true variance σ2
i drastically. The ideas of cross-fit variance

estimation are very useful here. We propose a test that rejects the null when ARW (β0)

exceeds the right α- quantile of the standard normal distribution. We show this test has

the correct size.
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Assumption 2

(i) Projection matrices MW and P⊥ are such that mini MW,ii > 1/2, all components of

vector θ = (MW ◦MW )−1diag(P⊥) are non-negative; there exists a constant δ such

that P⊥
ii

M2
W,ii

≤ δ < 1, and the rank KZ of projection matrix P⊥ grows to infinity when

N → ∞ ;

(ii) Errors ei, i = 1, ..., N are independent with Eei = 0,maxi E∥ei∥6 < ∞, and for some

positive constants c∗ and C∗ that do not depend on N

c∗ ≤ min
i

E∥ei∥6 ≤ max
i

E∥ei∥6 ≤ C∗.

Assumption 2 (i) can be characterized as an assumption about a balanced design. In a case

with no exogenous regressors (MW = I) this assumption is equivalent to Assumption 1 (i).

Since inferences are done conditionally on W and Z, Assumption 2 (i) can be directly

assessed in a specific dataset for each application.

Theorem 2 Let Assumption 2 hold in model (3), then under the true null hypothesis

H0 : β = β0 as N → ∞ we have

ARW (β0) ⇒ N(0, 1).

Remark. We conjecture that an alternative AR type statistic can be constructed using

estimator proposed in Kolesar (2013) in the same way we constructed statistic ARW

based on estimator of Chao et al. (2023). Additionally, constructing an LM statistic with

asymptotically correct size under both many instruments and many controls should be

straightforward by combining the ideas stated in this section and Theorem 1.

Simulation study. In order to assess the size property of the newly proposed robust

test and to compare it with naive approaches to deal with both many instruments and

many exogenous regressors in a realistic setting we calibrate the simulation to Gilchrist

and Sands (2016).
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Gilchrist and Sands (2016) are interested in estimating social spillovers from movie

viewership, namely, the effect of viewership from a movie’s opening weekend on subsequent

viewership. To identify the causal effect they use weather during the opening weekend as

set of exogenous instruments. The setting contains both a large number of instruments

and a large number of exogenous regressors. The set of instruments includes 52 different

measures of weather conditions around a movie theater, including temperature, indicators

for snow/rain, precipitation, etc. The set of exogenous regressors includes indicators for

calendar year, day of the week, week of the year, holidays, as well as weather conditions in

periods for which subsequent viewership is measured. The number of exogenous regressors

is relatively high in comparison to the dimension of the instruments, which provides an

empirically relevant setting for showing that the original leave-one-out AR test might not

be robust to many exogenous regressors, and the adjustment proposed in this paper is

able to restore the correct size.

In order to calibrate the simulation to Gilchrist and Sands (2016), we follow the

simulation design proposed in Angrist and Frandsen (2022). Specifically, we take the

LIML estimator of the model from the original data as the ground truth for β. Let

ŷ(Wi) be the linear function in Wi equal to the dependent variable’s fitted value, after

subtracting β̂LIMLXi. We set π to be the first stage coefficients. We simulate the data

from the model:

Ỹi = ŷ(Wi) + βX̃i + ωi(ϵi − 1.5vi),

X̃i = π′Z⊥
i + vi.

Here β = 0.6, weights ωi are the absolute values of the LIML residuals to mimic the

heteroskedasticity of the data. We perform 1,000 simulations, drawing (vi, ϵi) indepen-

dently from the standard normal distribution. After removing multi-collinearities, we

have KZ = 48 and KW = 119 for a sample size N = 1, 669. We check that Assumption

2(i) holds in this setting.

We calculate the simulated size for our proposed AR test robust to many instruments

and many exogenous regressors by comparing statistics ARW (β0) with the upper 95%
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quantile of the standard normal distribution. We also check two naive approaches to

testing using the AR test by calculating statistics

AR1(β0) =
1√

KZΦ̂1

∑
i ̸=j

P⊥
ij (Y

⊥
i − β0X

⊥
i )

′(Y ⊥
j − β0X

⊥
j ),

AR2(β0) =
1√

KZΦ̂2

∑
i ̸=j

P⊥
ij (Yi − β0Xi)

′(Yj − β0Xj),

where Φ̂i are properly constructed estimators of the normalization factor using the cross-fit

ideas stated in this paper. The results are reported in Table 3.

N KZ KW size of size of size of
AR1 AR2 ARW

1,669 48 119 11% 1.3% 5%

Table 3: Simulation results for size of different modifications of the AR tests with many instruments and
many exogenous regressors. Simulation design mimics data from Gilchrist and Sands (2016).

The results show that if the test statistics fail at any of the two tasks, either at

removing the diagonal (as AR1 does) or at partialling out the exogenous regressors (as

AR2) then the size may differ from the declared level. At the same time a properly

constructed statistic that by construction performs both tasks, paired with the proper

estimator of the normalization factor, controls size effectively even with a large number of

both instruments and exogenous regressors. Similarly, the estimators β̂1 and β̂2 are badly

biased whereas β̂3 is roughly centered around the truth β = 0.6.

N KZ KW bias of bias of bias of
β̂1 β̂2 β̂3

1,669 48 119 74% 67% -0.2%

Table 4: Average of (β̂ − β)/β for different modifications of JIV estimators β̂ under many exogenous
regressors. Simulation design mimics data from Gilchrist and Sands (2016).
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6 Conclusion and open questions

The goal of this paper is to provide an overview for the statistical challenges surrounding

estimation and inferences in a linear IV model with many instruments. We show that aside

from the obvious benefits of bringing additional identifying information, many instruments

come at a cost as one typically needs to estimate the optimal way to combine many

instruments. If one has many not very informative instruments, then the uncertainty

surrounding the first stage estimation may produce significant biases of the TSLS, and

even lead to an inconsistency.

We showcased one set of methods and ideas that allowed reliable estimation and

inferences. One of the central ideas, jack-knifing or deleting a diagonal, produces both

new estimators with superior convergence properties and new identification robust tests.

We presented results established in the econometric literature that inform a coherent

empirical strategy. Specifically, one may use a pre-test for weak identification robust to

heteroskedasticity presented in Section 3, and depending on its results either use the JIV

estimator based on the idea of removing the diagonal paired with its standard errors, or

use any of the identification robust tests presented in Section 4. This paper also establishes

some new results including a version of the LM test robust to many weak instruments

with a new variance estimator and a modification of the AR test robust to both many

instruments and many exogenous regressors.

As a final word we wish to mention several open questions in this research area that

have a chance to be solved within the next few years and we hope this encourages some

researchers looking for next project to tackle them.

The first open question is related to the observation that a pre-test for weak identi-

fication is tightly related to an estimator one hopes to use and is formulated as whether

one can trust a specific estimator with a confidence set or a test based on it. The current

test for weak identification is created for the JIVE. However, there are results pointing

out that other estimators like the JIVE-LIML (or its heteroskedasticity-robust version)

are more efficient than the JIVE under strong identification (Hausman et al. (2012)). It

is still an open question to establish a pre-test for reliability of the heteroskedasticity-

robust JIVE-LIML. Along the same line of thoughts, currently there is no pre-test for
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any estimator that accommodates not just many instruments but also many exogenous

regressors, though empirically there is an important need for such a pre-test.

This paper discussed in detail one approach based on jack-knifing or diagonal removal.

There are other influential ideas mentioned in Section 2.1 related to instrument selection

or construction of the optimal instrument using ML approaches. Those ideas seem very

powerful and produce quite efficient estimators if the first stage can be well described by a

model in which the selected ML technique produces a consistent estimator of the optimal

instrument. Unfortunately, the performance of an ML first stage is generally unknown

if the first stage does not satisfy the assumptions of a model needed for ML consistency.

Based on simulation studies from Angrist and Frandsen (2022) we are pessimistic that the

aforementioned techniques work well under many weak instruments. As has been shown in

Mikusheva (2022) the conditions needed for consistency of an IV estimator using LASSO

selection on the first stage depends in a significant way on the true sparsity of the true

first stage model. It has also been suggested in Mikusheva (2022) that using sample-split

and cross-fit may be a powerful idea for breaking the dependence between two stages

when ML techniques are used on the first stage. Unfortunately, currently there is no

good technique to assess whether an IV estimator with some ML algorithm used in the

first stage is reliable in any given data set. One technical challenge for developing such

methods is understanding the asymptotic behavior of ML estimators in settings where

modeling assumptions needed for consistency of an ML algorithm (like sparsity) do not

hold.

It is worth pointing out that this paper as well as a vast majority of research papers

devoted to many and/or weak instruments are written for cross-sectional settings, while

there is a large number of empirical settings using macroeconomic or financial data that

can be labeled as many weak instruments. Mikusheva (2022) showcased a very clear need

to develop inferences robust to many weak instruments in time series settings as well as

the associated challenges.
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A Appendix with Proofs

Let C be a universal constant (that may be different in different lines but does not depend

on N or K).

Proof of Theorem 1. The assumptions laid out in this theorem are exactly the ones

stated in Theorem 5 of Mikusheva and Sun (2022). The only difference is that since we

focus on linear first stage that the residualization is complete and satisfies Π′MΠ = 0.

Part (1) of Theorem 1 follows from Lemma S3.1 (a) from the Supplementary Appendix

to Mikusheva and Sun (2022), which establishes the consistency of the scale parameter

Ψ̂2 under the null hypothesis.

Part (2) addresses the consistency of the scale parameter for local alternatives

e(β0) = e+∆v +∆ · Zπ = η +∆ · Zπ.

Notice that Me(β0) = Mη as the predicted part partials out completely. Define

Ψ̃2 =
1

K

∑
i

ηiMiη

Mii

(
∑
j ̸=i

PijXj)
2 +

1

K

∑
i

∑
j ̸=i

P̃ 2
ijXiMiηXjMjη.
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Part(1) of Theorem 1 shows that Ψ̃2/Ψ2 →p 1 as long as ∆ → 0. Given the partialling

out property we have:

Ψ̂2 − Ψ̃2 =
1

K

∑
i

∆ZiπMiη

Mii

(
∑
j ̸=i

PijXj)
2.

We now apply part (d) of Lemma S3.2 from the Supplementary Appendix to Mikusheva

and Sun (2022) noticing that wi = MiiZiπ in notations of that lemma:

1

K

∑
i

∆ZiπMiη

Mii

(
∑
j ̸=i

PijXj)
2 − 2

K

∑
i

∑
j ̸=i

P 2
ij

∆(Ziπ)
2

M2
ii

E[vjηj] →p 0.

Finally, given that E[vjηj] is bounded by the constant we get that the last expression is

bounded by ∆π′Z′Zπ
K

→ 0. □

Lemma 1 Let A = P⊥ −MWDθMW where θ1, ..., θN are selected in such a way that A

has all zero elements on the diagonal. Specifically θ = (MW ◦ MW )−1diag(P⊥). Then

under Assumption 2 we have

(i) c < 1
KZ

∑
i,j A

2
ij < C;

(ii) 1
K2

Z

∑
i,j,k A

2
ijA

2
ik → 0;

(iii) 1
K2

Z

∑
i,j A

4
ij → 0.

Proof of Lemma 1. First we notice that Assumption 2 implies that θi ≤ δ. Indeed

θi’s are the solution to a system of linear equations
∑

j M
2
W,ijθj = P⊥

ii and specifically θ =

(MW ◦MW )−1diag(P⊥). Here matrix MW ◦MW with elements M2
W,ij is diagonal-dominant

as
∑

j ̸=i M
2
W,ij = MW,ii − M2

W,ii ≤ M2
W,ii under Assumption 2 and thus is invertible.

Furthermore, the system of equations can be rewritten as θi = 1
M2

W,ii
(P⊥

ii −
∑

j ̸=i θjM
2
W,ij).

Thus, if θi ≥ 0 for all i as prescribed by Assumption 2 then θi ≤ P⊥
ii

M2
W,ii

≤ δ.

Below we use projection property MWP⊥ = P⊥MW = P⊥ and M2
W = MW as well as
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the definition of matrix A: Aij = P⊥
ij −

∑
k MW,ikθkMW,kj. For part (i) notice that

∑
i,j

A2
ij =

∑
i

(P⊥
ij )

2 − 2
∑
i,j,k

P⊥
ijMW,ikθkMW,kj +

∑
i,j,k,n

MW,ikθkMW,kjMW,inθnMW,nj =

=
∑
j

P⊥
jj − 2

∑
j,k

P⊥
jkθkMW,kj +

∑
j,k,n

MW,jkMW,knMW,njθkθn

=KZ − 2
∑
k

P⊥
kkθk +

∑
k,n

M2
W,knθkθn

=KZ − 2
∑
k

P⊥
kkθk +

∑
k

P⊥
kkθk = KZ −

∑
k

P⊥
kkθk.

Given 0 ≤ θi ≤ δ we have (1− δ)KZ ≤
∑

i,j A
2
ij ≤ KZ .

For (ii) notice that:

∑
i

A2
ij =P⊥

jj − 2
∑
k

P⊥
jkθkMW,kj +

∑
k,n

MW,jkMW,knMW,njθkθn =

=P⊥
jj − 2

∑
k

P⊥
jkθkMW,kj +

∑
k

MW,jkθk(P
⊥
jk − Ajk);∑

i,j,k

A2
ijA

2
ik =

∑
i

(P⊥
ii −

∑
k

P⊥
ikθkMW,ki −

∑
k

AikθkMW,ki)
2.

The sum above has terms:

∑
i

(P⊥
ii )

2 ≤ P⊥
ii ≤ KZ ;

∑
i

(∑
k

P⊥
ikθkMW,ki

)2

≤
∑
i

(∑
k

(P⊥
ik )

2
∑
k

M2
W,ki

)
max

k
θ2k ≤ C

∑
i

P⊥
ii ≤ CKZ ;

∑
i,k

P⊥
ii P

⊥
ikθkMW,ki ≤

∑
i

P⊥
ii

√∑
k

(P⊥
ik )

2
∑
k

M2
W,ki max

k
|θk| ≤ CKZ ;

∑
i

(∑
k

AikθkMW,ki

)2

≤
∑
i

(∑
k

A2
ik

∑
k

M2
W,ki

)
max

k
θ2k ≤ C

∑
i,k

A2
ik ≤ CKZ ;

∑
i,k

P⊥
ii AikθkMW,ki ≤

√∑
i

(P⊥
ii )

2

√√√√∑
i

(∑
k

AikθkMW,ki

)2

≤ CKZ ;

∑
i

(∑
k

P⊥
ikθkMW,ki

)(∑
k

AikθkMki

)
≤

√√√√∑
i

(∑
k

P⊥
ikθkMW,ki

)2
√√√√∑

i

(∑
k

AikθkMW,ki

)2

≤ CKZ .
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Putting all terms together we get
∑

i,j,k A
2
ijA

2
ik ≤ CKZ .

For (iii) notice that

∑
k

|MW,ikMW,jk| ≤
√∑

k

M2
W,ik

∑
k

M2
W,jk ≤

√
MW,iiMW,jj ≤ 1.

Thus |Aij| = |P⊥
ij −

∑
k MW,ikMW,jkθk| ≤ 1 + maxk |θk| ≤ C. This implies

∑
i,j

A4
ij ≤ C2

∑
i,j

A2
ij ≤ CKZ ,

and (iii) holds. □

Proof of Theorem 2. Statements proved in Lemma 1 alone with Assumption 2 lead

to the validity of all conditions of the Central Limit Theorem for quadratic forms stated

in Corollary A2.8 in Sølvsten (2020). This implies that under the null (H0 : β = β0) we

have:
1√

KZΦW

(Y − β0X)′A(Y − β0X) =
1√

KZΦW

e′Ae ⇒ N(0, 1),

when N,KZ → ∞ with ΦW = 2
K

∑
i,j A

2
ijσ

2
i σ

2
j , and σi = Ee2i . What is left to prove is the

consistency of Φ̂W , the estimator for ΦW defined in equation (4). For this proof we follow

closely the structure of the proof of Lemma 2 in Mikusheva and Sun (2022). Specifically,

define Mij = MZW,ij, Ã2
ij =

A2
ij

MiiMjj+M2
ij
, and we want to show that

2

K

∑
i,j

Ã2
ijeiMieejMje−

2

K

∑
i,j

A2
ijEe2iEe2j →p 0.

For this we first notice that

E
2

K

∑
i,j

Ã2
ijeiMieejMje =

2

K

∑
i,j

A2
ijEe2iEe2j ,

define ξij = eiMieejMje−E[eiMieejMje]. Our goal is to show that 1
K

∑
i,j Ã

2
ijξij →p 0. The

covariance structure of ξij including statements that maxi,j Eξ2ij < C and maxi,j,k |Eξijξik| <

C are proven in Lemma 2 of Mikusheva and Sun (2022). Following the proof of Lemma
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2 of Mikusheva and Sun (2022) the only conditions needed are
∑

i,j A
4
ij ≤ CKZ and∑

i,k,j A
2
ijA

2
ik ≤ CKZ , both of which are proven in Lemma 1. □
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