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Appendix C Estimation of non-stationary DFM

We here elaborate on our estimation of the non-stationary DFM, complementing the brief
discussion in Section 3.3.

Data transformation. We use the same dataset as Stock & Watson (2016) but, unlike
those authors, do not transform the series to stationarity prior to estimating the DFM. This
means that we change Stock & Watson’s transformation codes 2 (first differences), 3 (second
differences), 5 (first log differences), and 6 (second log differences) to 1 (levels), 2, 4 (log
levels), and 5, respectively. We then correct outliers using the same procedure as Stock &
Watson, meaning that when the outlier adjustment procedure is applied to a series in levels,
we difference the series, then adjust outliers, and then finally cumulate the series again.
There are 8 series who have outliers adjusted, all of which are in levels. Finally, and unlike
Stock & Watson, we refrain from subtracting a nonparametric trend estimate from the series.
Instead, we control for a linear time trend in the estimation, as discussed below.

Estimation. We set the number of factors nf equal to 6 as in Stock & Watson (2016),
since these authors selected the number of factors based on information criteria applied to
∆Xt (essentially), and this also remains a valid way to select nf in our non-stationary model.
We then apply Stock & Watson’s PCA procedure for unbalanced panels to the differenced
data ∆Xt.C.1 The differenced data is de-meaned and standardized prior to performing PCA,
thus removing any series-specific deterministic linear time trends. This gives us estimates
∆f̂t of the differenced factors (up to rotation), and we then cumulate f̂t = ∑t

s=1 ∆f̂s. Asymp-
totically, f̂t equals ft up to rotation and a linear time trend (Barigozzi et al., 2021).C.2 We
then estimate the loadings Λ = (λ1, . . . , λnX

)′ through series-by-series OLS regressions of
Xi,t onto f̂t, controlling for a linear time trend. The OLS residuals v̂i,t are estimates of the
idiosyncratic components vi,t.

As in Stock & Watson (2016), we next fit AR(pv) processes to each idiosyncratic residual
v̂i,t by OLS, separately for each i. Unlike Stock & Watson, we apply the Pope (1990) bias

C.1Like Stock & Watson, we estimate the factors using only a subset of the variables in Xt, since some
variables are essentially aggregates of other variables.

C.2Since Stock & Watson (2016) also estimate factors from essentially the same differenced data, we refer to
their interpretation of the factors (p. 488): “[T]he first factor explains large fractions of the variation in the
growth of GDP and employment, but only small fractions of the variation in prices and financial variables.
The second through fourth factors explain the variation in headline inflation, oil prices, housing starts, and
some financial variables.”
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correction to the AR coefficient estimates to avoid understating persistence.
Differently from the stationary specification in Stock & Watson (2016), we fit a VECM

to the 6 estimated factors f̂t, explicitly allowing for unit roots and cointegration. We specify
that the VECM in error correction form contains pf − 1 lagged difference terms, implying a
VAR(pf ) model for the factors, and control for a time trend. That is, the fitted VECM is of
the form

∆f̂t = α̂β̂′f̂t−1 +
pf −1∑
ℓ=1

B̂ℓ∆f̂t−ℓ + ν̂0 + ν̂1t + η̂t,

where α̂ and β̂ are 6 × r matrices, with r denoting the cointegration rank, B̂1, . . . , B̂pf −1 are
6 × 6 matrices, and ν̂0 and ν̂1 are 6 × 1 vectors. All estimated parameters (including the
residual variance-covariance matrix) are unrestricted, with the exception of a conventional
normalization on the first r columns of β̂.C.3 We estimate the cointegration rank r using the
Johansen (1995) maximum eigenvalue test, again controlling for an unrestricted time trend.
We apply a sequential testing procedure using a 5% significance level. Given the final non-
rejected cointegration rank, we estimate the VECM parameters by quasi-MLE (Johansen,
1995) and then transform these parameters into VAR parameters (Kilian & Lütkepohl, 2017,
Equation 3.1.4). Note that, while the empirical estimation has controlled for deterministic
linear time trends in the individual series and in the latent factor process (essentially equiv-
alent with linearly detrending the data prior to analysis), we omit any such deterministic
terms from the final calibrated DFM (5)–(7) used in our simulation study.

To ensure comparability with Stock & Watson (2016), the principal components routine
uses data starting in 1959Q1, while the loadings, idiosyncratic components, and factor VECM
are estimated on data starting in 1959Q3.

Further estimation details and results. We select the factor and idiosyncratic error
lag lengths using the Akaike information criterion (AIC). For the factors, AIC is minimized
at pf = 3, but the criterion is essentially flat for pf ∈ [2, 4]; thus, to err on the side of allowing
for richer long-run dynamics, we set pf = 4. For the idiosyncratic errors, we apply the AIC
to each individual series. The 90th percentile of selected lags equals 4; we thus set pv = 4
to be consistent with the clear majority of the series. All estimated idiosyncratic AR(4)
processes are technically stationary, but half the processes have largest AR root exceeding
0.86, with 25% exceeding 0.93.

C.3We use the command jcitest in Matlab’s Econometrics Toolbox to test and estimate the VECM. We
refer to the command’s documentation for implementation details.
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The Johansen test selects a cointegration rank of 2 for the factor VECM, corresponding
to 6 − 2 = 4 common stochastic trends.
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Appendix D Definition of recursive shock estimand

Here we define the impulse response estimand for the recursive identification scheme.
The researcher observes only the endogenous variables w̄t ⊂ Xt, with no further direct

or noisy measures of structural shocks. Thus, the total vector of observables is wt = w̄t.
Consistent with a large literature on recursive shock identification in VARs (e.g., Christiano
et al., 1999), we take as the estimand the impulse responses with respect to a recursive
(Cholesky) orthogonalization of the reduced-form (Wold) forecast errors in the VAR(∞)
process for w̄t implied by the DFM. The shock of interest is the orthogonalized innovation to
a policy variable it in wt. For monetary policy DGPs, we order the federal funds rate last, as
in Christiano et al. (1999); this restricts the other included variables to not respond contem-
poraneously to the monetary innovation. For fiscal policy DGPs, we order the government
expenditure series first; this restricts the fiscal authority to respond to other innovations in
the recursive VAR with a lag, as in Blanchard & Perotti (2002).

Note that the recursively orthogonalized innovation differs across DGPs, and it generally
does not equal any of the structural shocks εj,t in the DFM. We nevertheless consider this
impulse response estimand due to its popularity in applied work.

We now provide the mathematical definition of the estimand. Recall that the encompass-
ing DFM takes the form (5)–(7). We map this DFM into the “ABCD” form of Fernández-
Villaverde et al. (2007) as follows. The general ABCD representation takes the form

st = Ast−1 + Bet, (D.1)

yt = Cst−1 + Det, (D.2)

where et ∼ N (0, I). Define the notation Φ1:p = (Φ1, . . . , Φp), Γℓ = diag(δ1,ℓ, . . . , δnX ,ℓ),
Γ1:p = (Γ1, . . . , Γp), and Ξ = diag(Ξ1, . . . , ΞnX

). Then the mapping from (5)–(7) to (D.1)–
(D.2) given a selected set of observables w̄t = S̄Xt is



ft

...
ft−pf +1

vt

...
vt−pv+1


︸ ︷︷ ︸

st

=


Φ1:pf −1 Φpf

0 0
I 0 0 0
0 0 Γ1:pv−1 Γpv

0 0 I 0


︸ ︷︷ ︸

A



ft−1
...

ft−pf

vt−1
...

vt−pv


+


H 0
0 0
0 Ξ
0 0


︸ ︷︷ ︸

B

εt

ξt


︸ ︷︷ ︸

et

, (D.3)
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w̄t = S̄
(
ΛΦ1:pf

Γ1:pv

)
︸ ︷︷ ︸

C



ft−1
...

ft−pf

vt−1
...

vt−pv


+ S̄

(
ΛH Ξ

)
︸ ︷︷ ︸

D

εt

ξt

 . (D.4)

Next we derive the “innovations representation” of the ABCD model, proceeding exactly
as in Fernández-Villaverde et al. (2007):D.1

x̂t = Ax̂t−1 + Kūt,

w̄t = Cx̂t−1 + ūt,

where x̂t = E[st | w̄t, w̄t−1, . . . ] and ūt = w̄t − E[w̄t | w̄t−1, w̄t−2, . . . ]. The innovations repre-
sentation immediately yields the impulse responses of the observables w̄t with respect to the
Wold innovations ūt. We orthogonalize the Wold innovations using a Cholesky decomposi-
tion, given the chosen ordering of the variables. In particular, letting Var(ūt) = Σū = B̄B̄′,
with B̄ lower triangular, and denoting the Wold innovation impulse responses by C̄(L), we
define the recursive impulse response estimands as

θh ≡
C̄ιy ,•,hB̄•,ιi

C̄ιi,•,0B̄•,ιi

, h = 0, 1, 2, . . . , (D.5)

where ιy and ιi are the indices corresponding to yt and it in the vector w̄t, respectively. Unlike
the observed shock and IV estimands considered in Section 3.2, the estimand (D.5) might
not equal the model-implied structural impulse response of the variable yt with respect to
any aggregate shock εj,t in the DFM.D.2 In other words, the expression (D.5) is the impulse
response with respect to a potentially non-structural innovation.

D.1To ensure that the matrix Σ = Var(st | w̄t, w̄t−1, . . . ) is positive semidefinite despite numerical rounding
errors, we write Equation 9 in Fernández-Villaverde et al. (2007) in the following equivalent way:

Σ = LΣ̃L′, where L ≡ Ã − ÃΣ̃C̃ ′(C̃Σ̃C̃ ′)−1C̃, Σ̃ ≡
(

Σ 0
0 I

)
, Ã ≡ (A, B), C̃ ≡ (C, D).

D.2A necessary condition for the impulse responses (D.5) to equal structural impulse responses from (5)–(7)
is that εj,t ∈ span({w̄t−ℓ}∞

ℓ=0) for at least one shock j. A sufficient condition for εt ∈ span({w̄t−ℓ}∞
ℓ=0) is

that nw̄ = nf , Λ̄ is non-singular, and Ξi = 0 for all i in w̄t.
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To interpret the estimand (D.5), consider two popular applied identification schemes.
First, in the monetary policy shock identification scheme of Christiano et al. (1999), yt may
be aggregate output, it is the nominal interest rate, and the nominal rate is typically ordered
after all other observables. The recursive estimand is then the impulse response of output to
a residualized interest rate innovation, normalized by the impact response of interest rates.
Second, for the fiscal policy shock identification procedure in Blanchard & Perotti (2002),
we may again take yt to be aggregate output and let it be aggregate government spending.
In this case, reduced-form innovations in the government spending equation are treated as
structural shocks, and so (D.5) gives impulse responses to those innovations, normalized by
the impact response of government spending.
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Appendix E Examples of estimated IRFs

Figures E.1 to E.7 provide a visual illustration of estimated impulse response functions (IRFs)
from the seven estimation procedures defined in Section 4. We fix a single (randomly chosen)
DGP with an observed fiscal shock and simulate ten data sets with sample size T = 200.
We then apply the seven estimation methods to these ten data sets.
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9Observed fiscal shock: LP IRFs

Figure E.1: Structural impulse response estimand (thick blue) for one specification with an
observed fiscal spending shock vs. ten least-squares LP impulse response estimates.

Observed fiscal shock: Bias-corrected LP IRFs

Figure E.2: Structural impulse response estimand (thick blue) for one specification with an
observed fiscal spending shock vs. ten bias-corrected LP impulse response estimates.



10

Observed fiscal shock: Penalized LP IRFs

Figure E.3: Structural impulse response estimand (thick blue) for one specification with an
observed fiscal spending shock vs. ten penalized LP impulse response estimates.



11Observed fiscal shock: VAR IRFs

Figure E.4: Structural impulse response estimand (thick blue) for one specification with an
observed fiscal spending shock vs. ten least-squares VAR impulse response estimates.

Observed fiscal shock: Bias-corrected VAR IRFs

Figure E.5: Structural impulse response estimand (thick blue) for one specification with an
observed fiscal spending shock vs. ten bias-corrected VAR impulse response estimates.



12Observed fiscal shock: BVAR IRFs

Figure E.6: Structural impulse response estimand (thick blue) for one specification with an
observed fiscal spending shock vs. ten Bayesian VAR impulse response estimates.

Observed fiscal shock: VAR model averaging IRFs

Figure E.7: Structural impulse response estimand (thick blue) for one specification with an
observed fiscal spending shock vs. ten VAR model averaging impulse response estimates.



Appendix F Further simulation results and robustness

F.1 IV estimators

Figures F.1 and F.2 plot the mean bias and standard deviation of the estimation procedures
in the case of IV identification. The relative ranking of the various estimation procedures
is essentially the same as in the median bias and interquartile range plots presented in our
main analysis in Section 5.4.

Figures F.3 and F.4 show the median bias of our estimation procedures, but now for the
10 percent of DGPs with the smallest and largest degrees of invertibility, respectively. As
expected, the median bias for SVAR-IV is particularly elevated relative to other estimation
methods if the degree of invertibility is small, as predicted by theory.
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IV: Mean bias of estimators

Figure F.1: Median (across DGPs) of absolute mean bias of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.

IV: Standard deviation of estimators

Figure F.2: Median (across DGPs) of standard deviation of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.
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IV: Median bias of estimators, small degree of invertibility

Figure F.3: Median (across DGPs) of absolute median bias of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h, for the 10% of DGPs with the smallest degree of invertibility.

IV: Median bias of estimators, large degree of invertibility

Figure F.4: Median (across DGPs) of standard deviation of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h, for the 10% of DGPs with the largest degree of invertibility.



F.2 Stationary DGPs

For our baseline analysis we used a non-stationary DFM with variables in levels as our
encompassing model. We did this to follow the predominant practice in applied work of
using variables in levels in LP and VAR regressions. Nevertheless, some researchers work
with data that has been transformed to stationarity prior to the analysis. We here discuss
results from an analogous simulation study conducted with a stationary encompassing DFM.

Encompassing model. We consider a stationary version of the encompassing DFM (5)–
(7). In particular, we parametrize the model based on the empirical reduced-form parameter
estimates from Stock & Watson (2016), using the same specification as in Lazarus et al.
(2018). We provide a brief summary here and refer to Stock & Watson for further details.
Differently from our main analysis, each series in the vector of observables Xt is now trans-
formed to ensure approximate stationarity. We follow Stock & Watson in selecting nf = 6
factors, two lags in the factor equation (5), and two lags in the idiosyncratic component
equation (7). The reduced-form parameters are estimated by principal components and
least-squares procedures; in particular, the factor VAR equation (5) is estimated by OLS
instead of imposing a VECM model. This pins down all parameters of the DFM except for
the structural impact response matrix H, which we construct exactly as in our main analysis.

DGP summary statistics. Table F.1 shows summary statistics of the 6,000 stationary
DGPs (3,000 monetary DGPs and 3,000 fiscal ones, as in our baseline analysis). The persis-
tence of the DGPs varies widely, as measured by the ratio trace(LRV (w̄t))/ trace(Var(w̄t)),
but note that none of the DGPs feature near-unit roots, with the largest absolute eigenvalue
of the VAR companion matrix being below 0.91 in all cases. As in our baseline analysis, the
DGPs feature marked heterogeneity in the characteristics of impulse response functions and
in the degree to which the DGPs are well-approximated by a VAR(4) model.

Estimators. The estimation procedures are the same as in the baseline analysis, except
for the Bayesian VAR. Rather than centering the Minnesota prior at independent random
walks, we center at independent white noise, i.e., all autoregressive coefficients are shrunk
towards 0. We also remove the “sum-of-coefficients” and “dummy-initial-observation” priors.

Results. Figures F.5 to F.7 show bias, standard deviation, as well as the best estimation
method choice for our experiments based on the stationary DFM, focusing here on the case
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Stationary DGPs: Summary statistics
Percentile min 10 25 50 75 90 max

Data and shocks
trace(long-run var)/trace(var) 0.36 0.76 1.00 1.45 2.18 3.71 18.09
Largest VAR eigenvalue 0.84 0.84 0.84 0.84 0.85 0.86 0.91
Fraction of VAR coef’s ℓ ≥ 5 0.02 0.11 0.15 0.21 0.27 0.34 0.77

Impulse responses up to h = 20
No. of interior local extrema 1 2 2 2 3 4 6
Horizon of max abs. value 0 0 0 0 1 2 8
Average/(max abs. value) -0.42 -0.16 -0.08 -0.02 0.06 0.11 0.43
R2 in regression on quadratic 0.01 0.10 0.20 0.46 0.69 0.83 0.97

Table F.1: Quantiles of various population parameters across the stationary DGPs for observed
shock identification. “long-run var”: long-run variance of series. “var”: variance of series. “Largest
VAR eigenvalue”: largest absolute eigenvalue of reduced-form VAR companion matrix. “Fraction
of VAR coef’s ℓ ≥ 5”:

∑1000
ℓ=5 ∥Aw

ℓ ∥/
∑1000

ℓ=1 ∥Aw
ℓ ∥, where Aw

ℓ are the population VAR(∞) coefficient
matrices and ∥ · ∥ is the Frobenius norm. “Average/(max abs. value)”: ( 1

21
∑20

h=0 θh)/ maxh{|θh|}.
“R2 in regression on quadratic”: R2 from a regression of the impulse response function {θh}20

h=0 on
a quadratic polynomial in h.

of an observed shock. We summarize the findings in three lessons that are analogous to those
in Sections 5.1 to 5.3.

1. Least-squares LP and VAR estimators again lie on opposite ends of the bias-variance
spectrum. Furthermore, as in our main analysis, the slope of this trade-off is stark, with
indifference between the two methods requiring the researcher to almost fully prioritize
bias. Since the stationary DGPs are not highly persistent, bias correction has negligible
impact, and indeed the uncorrected LP estimator has near-zero bias at all horizons (as
predicted by asymptotic theory). Note also that the bias and standard deviation of the
VAR estimators converge to zero as the horizon increases, a mechanical feature of VAR
estimators in stationary DGPs that is not shared by LP methods.

2. LP (bias-corrected or uncorrected) remains the preferred method when the weight ω on
bias in the loss function is very high, but this requires ω to be even closer to 1 than
in our baseline analysis. The region (gray with vertical lines) where bias-corrected LP is
preferred at the top of Figure F.7 is very thin. Whenever the loss function puts non-trivial
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weight on precision, penalized LP is usually preferred to least-squares or bias-corrected
LP due to the substantial variance reduction.

3. VAR methods tend to be preferred to least-squares or bias-corrected LP whenever the
weight on variance in the loss function is non-trivial. However, for MSE loss, BVAR is
now outperformed (on average across DGPs) at very short horizons h ≤ 2 by penalized
LP, another shrinkage method. BVAR tends to outperform least-squares VAR at shorter
horizons, but this ranking is reversed at intermediate horizons; at long horizons, the
methods perform similarly since the estimated impulse responses are close to 0 anyway.
Though at first sight bias-corrected VAR (yellow with horizontal lines) looks attractive
in Figure F.7 at intermediate horizons when the weight on bias is moderately high, we
remind the reader that least-squares VAR (purple) performs very similarly. VAR model
averaging continues to perform poorly regardless of horizon and bias-variance preferences.
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Observed shock, stationary DGPs: Bias of estimators

Figure F.5: Median (across DGPs) of absolute bias of the different estimation procedures, relative
to
√

1
21
∑20

h=0 θ2
h.

Observed shock, stationary DGPs: Standard deviation of estimators

Figure F.6: Median (across DGPs) of standard deviation of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.



20

Observed shock, stationary DGPs: Optimal estimation method

Figure F.7: Method that minimizes the average (across DGPs) loss function (4). Horizontal axis:
impulse response horizon. Vertical axis: weight on squared bias in loss function. The loss function
is normalized by the scale of the impulse response function, as in Figures F.5 and F.6.



Recursive identification: DGP summary statistics
Percentile min 10 25 50 75 90 max

Impulse responses up to h = 20
No. of interior local extrema 0 1 2 2 3 3 7
Horizon of max abs. value 0 1 1 6 10 20 20
Average/(max abs. value) -0.83 -0.70 -0.58 -0.07 0.38 0.65 0.94
R2 in regression on quadratic 0.01 0.45 0.65 0.83 0.93 0.98 1.00

Table F.2: Quantiles of various population parameters across the 6,000 DGPs for recursive identi-
fication. “Average/(max abs. value)”: ( 1

21
∑20

h=0 θh)/ maxh{|θh|}. “R2 in regression on quadratic”:
R-squared from a regression of the impulse response function {θh}20

h=0 on a quadratic polynomial
in h.

F.3 Recursive identification

Here we provide results for the recursive impulse response estimand defined in Section 3.2
and Supplemental Appendix D.

Table F.2 shows summary statistics for the impulse response functions in the recursive
identification setting, analogous to the summary statistics for the “observed shock” case in
the bottom half of Table 1 in Section 3.4. Note that the first three entries of the top half of
that table apply without change here.F.1

Figures F.8 and F.9 show the median (across DGPs) absolute bias and standard deviation
of the various estimators. Figure F.10 depicts the best estimation method as a function of
the horizon and the bias weight ω in the loss function (which is averaged across DGPs).
These three figures are reasonably similar—both qualitatively as well as quantitatively—to
the corresponding figures for the “observed shock” estimands in Section 5, with one notable
difference: the relative bias increase for BVAR is smaller, and so now BVAR looks even
more attractive, leading to the large solid-dotted blue area in Figure F.10. Intuitively, since
recursive (i.e., Cholesky) shock identification depends heavily on estimating the reduced-
form innovation variance-covariance matrix of the multivariate system, the stylized prior
information about this matrix imposed by the BVAR provides helpful additional shrinkage
that the other methods do not exploit.

F.1The last two entries of ourse do not apply here: the degree of invertibility is trivially equal to 1, and we
are not studying IV identification.
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Recursive identification: Bias of estimators

Figure F.8: Median (across DGPs) of absolute bias of the different estimation procedures, relative
to
√

1
21
∑20

h=0 θ2
h.

Recursive identification: Standard deviation of estimators

Figure F.9: Median (across DGPs) of standard deviation of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.
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Recursive identification: Optimal estimation method

Figure F.10: Method that minimizes the average (across DGPs) loss function (4). Horizontal
axis: impulse response horizon. Vertical axis: weight on squared bias in loss function. The loss
function is normalized by the scale of the impulse response function, as in Figures 2 and 3. At
h = 0, VAR and LP are numerically identical; we break the tie in favor of VAR.



F.4 Salient observables

We here re-run our analysis on a restricted set of DGPs that use a smaller subset of par-
ticularly salient time series. Whereas our baseline analysis randomly draws series from the
large set of 207 variables included in the empirical DFM of Stock & Watson (2016), we now
consider the exhaustive list of all possible five-variable combinations of 17 oft-used series.

Our subset of salient series includes (Stock & Watson Data Appendix series # in brack-
ets): real GDP (1); real consumption (2); real investment (6); real government expenditure
(12); the unemployment rate (56); personal consumption expenditure prices (95); the GDP
deflator (97); the core consumer price index (121); average hourly earnings (132); the fed-
eral funds rate (142); the 10-year Treasury rate (147); the BAA 10-year spread (151); an
index of the U.S. dollar exchange rate relative to other major currencies (172); the S&P
500 (181); a real house price index (193); consumer expectations (196); and real oil prices
(202). As in our baseline analysis, we force each DGP to include either the federal funds
rate or government spending (for monetary or fiscal shock estimands, respectively) as well
as at least one real activity series (categories 1–3) and one price series (category 6). Subject
to these constraints, we then generate the exhaustive list of all five-variable combinations of
the salient series. This yields a total of 1,581 DGPs (845 monetary shock DGPs and 736
fiscal shock DGPs).

Results for bias, standard deviation, and optimal method choice are reported in Fig-
ures F.11 to F.13. The figures look very similar to those from our baseline analysis. We
therefore conclude that there is little in the way of systematic differences between the larger
set of variables included in the full DFM and this smaller subset of particularly salient
macroeconomic time series.
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Observed shock, salient observables: Bias of estimators

Figure F.11: Median (across DGPs) of absolute bias of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.

Observed shock, salient observables: Standard deviation of estimators

Figure F.12: Median (across DGPs) of standard deviation of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.
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Observed shock, salient observables: Optimal estimation method

Figure F.13: Method that minimizes the average (across DGPs) loss function (4). Horizontal
axis: impulse response horizon. Vertical axis: weight on squared bias in loss function. The loss
function is normalized by the scale of the impulse response function, as in Figures 2 and 3. At
h = 0, VAR and LP are numerically identical; we break the tie in favor of VAR.



F.5 90th percentile loss

Whereas our baseline results report medians (of bias and standard deviation) across DGPs,
we now report the 90th percentiles across DGPs. This places the spotlight on those DGPs
that are particularly challenging for impulse response estimation.

Figures for bias, standard deviation, and optimal method choice are displayed in Fig-
ures F.14 to F.16. By construction, the bias and standard deviation numbers are now higher
for all estimators. Importantly, however, relative magnitudes do not change by much; that is,
for DGPs in which VARs or shrinkage techniques do poorly, least-squares and bias-corrected
LP tend to do just as poorly (relative to their respective median performance). As a result,
optimal method choice for a researcher that evaluates loss at the 90th percentile looks similar
to our baseline.
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Observed shock, 90th percentile of loss: Bias of estimators

Figure F.14: 90th percentile (across DGPs) of absolute bias of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.

Observed shock, 90th percentile of loss: Standard deviation of estimators

Figure F.15: 90th percentile (across DGPs) of standard deviation of the different estimation
procedures, relative to

√
1
21
∑20

h=0 θ2
h.
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Observed shock, 90th percentile of loss: Optimal estimation method

Figure F.16: Method that minimizes the 90th percentile (across DGPs) of the loss function (4).
Horizontal axis: impulse response horizon. Vertical axis: weight on squared bias in loss function.
The loss function is normalized by the scale of the impulse response function, as in Figures 2 and 3.
At h = 0, VAR and LP are numerically identical; we break the tie in favor of VAR.



F.6 Fiscal and monetary shocks

Recall that the results from Section 5 combine fiscal and monetary policy shock estimands.
We here break the results down by policy shock estimand.

Figures F.17 and F.18 show the bias and standard deviation plots for the 3,000 fiscal
shock DGPs, while Figures F.19 and F.20 show the analogous figures for the 3,000 monetary
shock DGPs. The results are qualitatively similar across the two kinds of DGPs, including
the relative rankings of the various estimation procedures. However, the overall level of the
standard deviations is somewhat higher in the fiscal shock case for all estimation methods.
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Observed fiscal shock: Bias of estimators

Figure F.17: Median (across DGPs) of absolute bias of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.

Observed fiscal shock: Standard deviation of estimators

Figure F.18: Median (across DGPs) of standard deviation of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.
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Observed monetary shock: Bias of estimators

Figure F.19: Median (across DGPs) of absolute bias of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.

Observed monetary shock: Standard deviation of estimators

Figure F.20: Median (across DGPs) of standard deviation of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.



F.7 Longer estimation lag length

Here we provide results for “observed shock” identification when the estimation lag length
is increased to p = 8 (recall that we set p = 4 in Section 5).

Figures F.21 and F.22 show the median (across DGPs) absolute bias and standard devia-
tion of the estimation methods, while Figure F.23 shows the optimal method choice according
to the loss function (which has been averaged across DGPs). Consistent with the theoretical
results in Plagborg-Møller & Wolf (2021), least-squares LPs and VARs now perform similarly
at all horizons h ≤ p = 8. BVAR shrinkage now looks even more appealing than in our main
analysis for loss functions with bias weight ω ≤ 0.7, due to the much lower standard devia-
tion of this procedure. VAR bias correction has more bite in terms of reducing bias than in
the baseline results. Otherwise the qualitative conclusions from Section 5 are unchanged.
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Observed shock, 8 lags: Bias of estimators

Figure F.21: Median (across DGPs) of absolute bias of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.

Observed shock, 8 lags: Standard deviation of estimators

Figure F.22: Median (across DGPs) of standard deviation of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.
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Observed shock, 8 lags: Optimal estimation method

Figure F.23: Method that minimizes the average (across DGPs) loss function (4). Horizontal
axis: impulse response horizon. Vertical axis: weight on squared bias in loss function. The loss
function is normalized by the scale of the impulse response function, as in Figures 2 and 3. At
h = 0, VAR and LP are numerically identical; we break the tie in favor of VAR.



F.8 Smaller sample size

Recall that our baseline experiments consider a sample size of T = 200 quarters. We here
instead present results for T = 100. In the interest of space, we focus on results for “observed
shock” identification.

Results for bias, standard deviation, and optimal method choice are displayed in Fig-
ures F.24 to F.26, respectively. The figures are qualitatively similar to those for our baseline
analysis, though there is a quantitative difference: reducing the sample size increases stan-
dard deviation by more (in relative terms) than bias. As a result, the estimation method
choice plot indicates a more pronounced preference for shrinkage, with a larger area now
solid-dotted blue (BVAR). Use of bias-corrected LP (grey with vertical lines) requires an
even larger preference for low bias over high precision than in our baseline analysis.
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Observed shock, small sample: Bias of estimators

Figure F.24: Median (across DGPs) of absolute bias of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.

Observed shock, small sample: Standard deviation of estimators

Figure F.25: Median (across DGPs) of standard deviation of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.
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Observed shock, small sample: Optimal estimation method

Figure F.26: Method that minimizes the average (across DGPs) loss function (4). Horizontal
axis: impulse response horizon. Vertical axis: weight on squared bias in loss function. The loss
function is normalized by the scale of the impulse response function, as in Figures 2 and 3. At
h = 0, VAR and LP are numerically identical; we break the tie in favor of VAR.



F.9 Larger sample size and estimation lag length

While our baseline experiments have a sample size of T = 200 and an estimation lag length
of p = 4, here we increase these to T = 720 and p = 12. This configuration of (T, p) is
reminiscent of sample sizes and specifications often seen with monthly data. However, since
the parameters of the encompassing DFM remain fixed at our quarterly calibration described
in Section 3, we caution that it would be inappropriate to draw firm conclusions about how
the estimators will perform in actual monthly data sets. In this subsection only, we use 2,000
Monte Carlo simulations per DGP, rather than 5,000.

Figures F.27 and F.28 show the bias and standard deviation of the estimators. As pre-
dicted by theory (Plagborg-Møller & Wolf, 2021), the least-squares LP and VAR estimators
give similar results for horizons h ≤ p = 12. At horizons h > 12, the trade-off between the
various estimators is qualitatively similar to our baseline results in Section 5. Figure F.29
shows that, while the choice of optimal estimation method is overall similar to our base-
line, penalized LP is more attractive at horizons h ∈ [5, 12] and for loss functions with
ω > 0.5 than in our baseline results, since this estimator offers useful shrinkage relative to
least-squares LP or VAR. Nevertheless, BVAR remains the preferred estimator at almost all
horizons for the special case of MSE loss (ω = 1/2).
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Observed shock, large sample, 12 lags: Bias of estimators

Figure F.27: Median (across DGPs) of absolute bias of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.

Observed shock, large sample, 12 lags: Standard deviation of estimators

Figure F.28: Median (across DGPs) of standard deviation of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.
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Observed shock, large sample, 12 lags: Optimal estimation method

Figure F.29: Method that minimizes the average (across DGPs) loss function (4). Horizontal
axis: impulse response horizon. Vertical axis: weight on squared bias in loss function. The loss
function is normalized by the scale of the impulse response function, as in Figures 2 and 3. At
h = 0, VAR and LP are numerically identical; we break the tie in favor of VAR.



F.10 More observables

Our baseline simulations assume that the econometrician observes nw̄ = 5 macro variables
(perhaps in addition to an observed shock or IV). In this subsection we consider simulations
that increase the number of macro observables from 5 to 7.

We first consider the case of observed shock identification. Figures F.30 and F.31 show
that the bias and standard deviation properties of the estimators change little from our
baseline results when we increase the number of observables. All qualitative conclusions
emphasized in Sections 5.1 to 5.3 continue to go through. Similarly, Figure F.32 shows that
the choice of optimal method as a function of horizon and loss function is virtually unchanged
from the baseline, with the minor exception that the region where penalized LP is preferred
has shrunk somewhat.

In the case of IV identification, the median bias and interquartile range for the various
estimators displayed in Figures F.33 and F.34 are largely similar to our baseline results in
Section 5.4. However, the median bias of SVAR-IV relative to internal-instruments proce-
dures is slightly smaller when the number of observables is larger, due to the mechanical
increase in the degree of invertibility (the median degree of invertibility across the DGPs
equals 0.45, versus 0.39 in our baseline, cf. Table 1).
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Observed shock, 7 observables: Bias of estimators

Figure F.30: Median (across DGPs) of absolute bias of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.

Observed shock, 7 observables: Standard deviation of estimators

Figure F.31: Median (across DGPs) of standard deviation of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.
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Observed shock, 7 observables: Optimal estimation method

Figure F.32: Method that minimizes the average (across DGPs) loss function (4). Horizontal
axis: impulse response horizon. Vertical axis: weight on squared bias in loss function. The loss
function is normalized by the scale of the impulse response function, as in Figures 2 and 3. At
h = 0, VAR and LP are numerically identical; we break the tie in favor of VAR.
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IV, 7 observables: Median bias of estimators

Figure F.33: Median (across DGPs) of absolute median bias of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.

IV, 7 observables: Interquartile range of estimators

Figure F.34: Median (across DGPs) of interquartile range of the different estimation procedures,
relative to

√
1
21
∑20

h=0 θ2
h.



F.11 Splitting by variable categories

Here we show that the categories of variables included in the DGP are not highly predictive
of the bias or standard deviation of any estimator. We group the 207 variables in the Stock
& Watson (2016) data set into 11 categories, proceeding exactly as in the Data Appendix to
that paper, except that we lump together their final three categories in a single “Asset Price
& Sentiment” category. Let ∆j,d denote the total number of variables in category j that are
included in DGP d. We are interested in relating the absolute bias and standard deviation
of the various estimation methods with ∆j,d, across DGPs and horizons.

Using the baseline simulation results from Sections 5.1 to 5.3, we run the following OLS
regression separately for each estimation method m, pooling observations across all DGPs
and all horizons:

log biasm,d,h =
10∑

j=1
γ̂j∆j,d +

20∑
i=0

ι̂i1(i = h) + êm,d,h, d = 1, . . . , 6000, h = 0, 1, . . . , 20.

Here biasm,d,h is the absolute bias of estimator m in DGP d at horizon h, γ̂j are coefficients
on the category counts, ι̂i are coefficients on indicator variables for each horizon, and êm,d,h

is the OLS residual. Notice that we omit category 11 from the regression for reasons of
multicollinearity (there are 5 variables in each DGP). We also run the above regression with
the log standard deviation on the left-hand side in place of the log absolute bias.

Table F.3 shows the coefficients γ̂j on the category counts. A coefficient of 0.1, say, means
that adding one variable of that category to the DGP (while removing a variable from the
omitted “Asset Price & Sentiment” category) leads to a 10% higher absolute bias (resp.,
standard deviation). No coefficients in the table exceed 0.2 in absolute value, indicating
that none of the categories are particularly predictive of the bias or standard deviation of
the resulting impulse response estimates. The only exception is that adding variables from
the “Interest Rates” category does seem to moderately lower the standard deviation of most
of our estimation procedures, which is consistent with the results reported in Supplemental
Appendix F.6. Though the regression results reported in Table F.3 pool across all horizons
h ∈ [0, 20], we obtain similar coefficients if we instead restrict the regressions only to the
intermediate horizons h ∈ [5, 12].

We conclude that our baseline results do not conceal significant across-category hetero-
geneity. In particular, and differently from Marcellino et al. (2006), we do not find major
differences when comparing price and real activity series.
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Bias regression
VAR VAR BC BVAR LP LP BC Pen LP VAR Avg

NIPA -0.12 -0.10 -0.03 -0.05 -0.06 0.01 -0.04
Industrial Production -0.06 -0.06 0.66 -0.01 -0.01 0.06 0.02
Employment & Unemployment 0.02 0.07 0.08 -0.02 0.05 0.04 -0.03
Orders, Inventories & Sales -0.05 -0.09 0.01 -0.03 0.00 0.02 0.00
Housing Starts & Permits -0.01 0.01 0.04 0.02 0.08 0.08 0.06
Prices 0.05 0.15 0.12 -0.18 -0.03 -0.17 -0.05
Productivity & Earnings 0.02 -0.01 0.03 -0.02 -0.05 -0.02 -0.01
Interest Rates -0.01 -0.01 0.03 -0.03 -0.03 -0.04 -0.03
Money & Credit 0.04 0.07 0.08 -0.03 0.01 0.00 -0.03
International 0.07 0.12 0.15 -0.11 -0.05 -0.09 -0.05

Standard deviation regression
VAR VAR BC BVAR LP LP BC Pen LP VAR Avg

NIPA 0.08 0.09 0.08 0.11 0.11 0.11 0.10
Industrial Production -0.02 -0.02 -0.02 -0.04 -0.04 -0.03 -0.03
Employment & Unemployment 0.08 0.07 0.08 0.07 0.08 0.08 0.07
Orders, Inventories & Sales -0.04 -0.04 -0.05 -0.04 -0.04 -0.03 -0.04
Housing Starts & Permits 0.05 0.05 0.06 0.06 0.06 0.07 0.06
Prices 0.04 0.04 0.03 0.11 0.09 0.06 0.08
Productivity & Earnings -0.03 -0.03 -0.03 -0.04 -0.04 -0.04 -0.04
Interest Rates -0.13 -0.13 -0.13 -0.17 -0.17 -0.17 -0.17
Money & Credit 0.03 0.03 0.03 0.02 0.02 0.03 0.02
International 0.03 0.03 0.02 0.07 0.06 0.05 0.06

Table F.3: Coefficients from OLS regressions of log bias (top table) or log standard deviation
(bottom table) on variable category counts (along rows), controlling for horizon fixed effects. Re-
gressions are run separately by estimation method (along columns), and observations are pooled
across DGPs and horizons. Bias and standard deviation normalized as in Figures 2 and 3. Observed
shock identification.



Appendix G Proofs

G.1 Auxiliary lemmas

Before proving Proposition 1, we state and prove some auxiliary lemmas. All lemmas below
impose the assumptions of Proposition 1.

Define the process ỹt ≡ ∑t
s=1(ε1,s + τε1,s−1 + ε2,s) for all t ≥ 1, with ỹ0 = 0, and let

w̃t ≡ (ε1,t, ỹt)′. Define also the 2 × 2 matrix DT ≡ diag(T 1/2, T ).

Lemma G.1. For all j = 1, 2 and ℓ ≥ 0,

1
T

T∑
t=1

(yt − ỹt)2 = Op(1), 1
T 1/2

T∑
t=1

(yt − ỹt)εj,t+ℓ = Op(1).

Proof. From the DGP (1) we have

yt − ỹt = α√
T

t∑
s=1

ε1,s−2.

The first statement of the lemma follows from Markov’s inequality and a simple moment
calculation. Then second statement of the lemma follows from Chebyshev’s inequality, since
the process εj,t+ℓ

∑t
s=1 ε1,s−2 is serially uncorrelated and has a variance of order O(T ).

Lemma G.2. For any ℓ ≥ 0 and j = 1, 2,

T∑
t=1

εj,t+ℓw̃
′
t−1D

−1
T = Op(1).

Proof. This follows from Chebyshev’s inequality and standard variance calculations, using
that εj,t+ℓw̃

′
t−1 is a serially uncorrelated process.

Lemma G.3. For any ℓ ≥ 1 and j = 1, 2,

1
T

T∑
t=1

εj,t−ℓỹt−1 = Op(1).

Proof. Write 1
T

∑T
t=1 εj,t−ℓỹt−1 = ∑ℓ−1

b=0
1
T

∑T
t=1 εj,t−ℓ∆ỹt−b−1 + 1

T

∑T
t=1 εj,t−ℓỹt−ℓ−1, where we

define ỹt = 0 for t ≤ 0. The first term is clearly Op(1), being composed of sample averages
of stationary variables. The second term is Op(1) by Lemma G.2.
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Lemma G.4. D−1
T

∑T
t=1 wtw

′
tD

−1
T

d→ diag
(
1, {(1 + τ)2 + σ2

2}
∫ 1

0 W (r)2 dr
)
, where W (·) is a

standard Brownian motion.

Proof. By Lemma G.1, it suffices to show that D−1
T

∑T
t=1 w̃tw̃

′
tD

−1
T converges to the stated

limiting distribution. The (1, 1) element converges in probability to 1 by the law of large
numbers. The (1, 2) element is Op(T −1/2) by Lemma G.3. Finally, the convergence in distri-
bution of the (2, 2) element follows from Phillips & Solo (1992, Thm. 3.4), the continuous
mapping theorem, and the long-run variance of the process (ε1,t + τε1,t−1 + ε2,t) being equal
to (1 + τ)2 + σ2

2.

Recall the definitions of θh,T , β̂h, δ̂h, Â, κ̂, and the unit vector ej from Section 2.

Lemma G.5. For any 0 ≤ ℓ ≤ h, define bℓ,h ≡ 1(ℓ > 0) + τ1(0 < ℓ < h). Then

β̂h − θh,T = 1
T

T −h∑
t=2

h∑
ℓ=0

(bℓ,hε1,t+ℓ + ε2,t+ℓ)ε1,t + op(T −1/2). (G.1)

Proof. Let ε̂1,t ≡ ε1,t − b̂′wt−1 be the residual from an auxiliary regression of ε1,t on wt−1.
Using Lemmas G.1, G.2 and G.4, it is straightforward to show that

DT b̂ =
{

D−1
T

T −h∑
t=2

wt−1w
′
t−1D

−1
T

}−1 {
D−1

T

T −h∑
t=2

w̃t−1ε1,t + Op(T −1/2)
}

= Op(1).

By the Frisch-Waugh theorem and sample orthogonality of ε̂1,t and wt−1, we may write

β̂h = θh,T +
1
T

∑T −h
t=2 (yt+h − θh,T ε̂1,t)ε̂1,t

1
T

∑T −h
t=2 ε̂2

1,t

= θh,T +
1
T

∑T −h
t=2 (yt+h − θh,T ε1,t − τε1,t−1 − yt−1)ε̂1,t

1
T

∑T −h
t=2 ε̂2

1,t

. (G.2)

Lemmas G.1 and G.4 and DT b̂ = Op(1) yield 1
T

∑T −h
t=2 ε̂2

1,t

p→ E(ε2
1,t) = 1. We can therefore

focus on the numerator in the fraction in (G.2), which we decompose as

1
T

T −h∑
t=2

(yt+h − θh,T ε1,t − τε1,t−1 − yt−1)ε1,t + 1
T

T −h∑
t=2

(yt+h − θh,T ε1,t − τε1,t−1 − yt−1)(ε̂1,t − ε1,t).

(G.3)
We first show that the first term above equals the right-hand side of (G.1). Iteration on the
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DGP (1) implies

yt+h − θh,T ε1,t − τε1,t−1 − yt−1 =
h∑

ℓ=0
(bℓ,hε1,t+ℓ + ε2,t+ℓ) + α√

T

h∑
ℓ=0

ε1,t+ℓ−21(ℓ ̸= 2).

The desired conclusion then follows from

1
T

T −h∑
t=2

α√
T

h∑
ℓ=0

ε1,t+ℓ−21(ℓ ̸= 2)ε1,t = Op(T −1),

which can be easily verified with Chebyshev’s inequality, using that ε1,t+ℓε1,t is a serially
uncorrelated process for ℓ ̸= 0.

We finish the proof by showing that the second term in (G.3) is Op(T −1), i.e.,

− 1
T

T −h∑
t=2

{
h∑

ℓ=0
(bℓ,hε1,t+ℓ + ε2,t+ℓ) + α√

T

h∑
ℓ=0

ε1,t+ℓ−21(ℓ ̸= 2)
}

w′
t−1b̂ = Op(T −1).

This follows from DT b̂ = Op(1) and Lemmas G.1 to G.3.

Lemma G.6. Define A0 ≡ ( 0 0
τ 1 ). We have

Â − A0 = 1
T

T∑
t=2

 ε1,t

ε1,t + ε2,t

 ε1,t−1e
′
1 + op(T −1/2),

κ̂ − 1 = 1
T

T∑
t=2

ε1,tε2,t + op(T −1/2).

Proof. By appealing repeatedly to Lemmas G.1 to G.4, we get

Â − A0 =
 1

T

T∑
t=2

 ε1,t

ε1,t + ε2,t + α√
T

ε1,t−2

w′
t−1D

−1
T T 1/2

(D−1
T

T∑
t=2

wt−1w
′
t−1D

−1
T

)−1

D−1
T T 1/2

=
 1

T

T∑
t=2

 ε1,t

ε1,t + ε2,t

 w̃′
t−1D

−1
T T 1/2 + α

T
e2

T∑
t=2

ε1,t−2w̃
′
t−1D

−1
T + Op(T −1)

{e1e
′
1 + op(1)}

=
 1

T

T∑
t=2

 ε1,t

ε1,t + ε2,t

 w̃′
t−1D

−1
T T 1/2 + Op(T −1)

{e1e
′
1 + op(1)}

=
 1

T

T∑
t=2

 ε1,t

ε1,t + ε2,t

 (ε1,t−1e
′
1 + T −1/2ỹt−1e

′
2) + Op(T −1)

{e1e
′
1 + op(1)}
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= 1
T

T∑
t=2

 ε1,t

ε1,t + ε2,t

 ε1,t−1e
′
1 + 1

T 3/2

T∑
t=2

 ε1,t

ε1,t + ε2,t

 ỹt−1e
′
2 × op(1) + op(T −1/2)

= 1
T

T∑
t=2

 ε1,t

ε1,t + ε2,t

 ε1,t−1e
′
1 + Op(T −1/2) × op(1) + op(T −1/2).

This proves the first statement of the lemma.
Next, by the Frisch-Waugh Theorem, κ̂ ≡ Σ̂21/Σ̂11 equals the coefficient on ε1,t in an

OLS regression of yt on ε1,t and wt−1. In other words, κ̂ equals the impact LP estimate β̂0.
The second statement of the lemma then follows from Lemma G.5 applied to h = 0.

G.2 Proof of Proposition 1

We derive the asymptotic distributions of the LP and VAR estimators in that order.

LP. It follows from Lemma G.5 and a standard martingale central limit theorem that

√
T (β̂h − θh,T ) d→ N(0, aVarLP),

where

aVarLP = E(ε2
1,t)E

{ h∑
ℓ=0

(bℓ,hε1,t+ℓ + ε2,t+ℓ)
}2

=
h∑

ℓ=0
b2

ℓ,h + (h + 1)σ2
2

= {1 + (h − 1)(1 + τ)2)}1(h ≥ 1) + (h + 1)σ2
2.

VAR. We derive the asymptotic distribution of δ̂h by appealing to the delta method. Let
fh(A, κ) ≡ e′

2A
hγ, where γ = (1, κ)′, so that δ̂h = fh(Â, κ̂). We need the Jacobians of this

transformation with respect to vec(A) and κ. In fact, we only require the Jacobians with
respect to vec(Ae1) and κ, since Lemma G.6 implies that the second column of Â is super-
consistent. The Jacobians should be evaluated at plim Â = A0 ≡ ( 0 0

τ 1 ) and plim κ̂ = 1.
Thus, γ should be evaluated at γ0 ≡ (1, 1)′.

First, for h ≥ 2, the Jacobian with respect to Ae1 equals (Magnus & Neudecker, 2007, p.
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∂e′
2A

hγ

∂ vec(Ae1)

∣∣∣∣
A=A0,γ=γ0

= (γ′ ⊗ e′
2)

h∑
j=1

(
(A′

0)h−j ⊗ Aj−1
0

)
(e1 ⊗ I)

= (γ′ ⊗ e′
2)

h∑
j=1

{(A′
0)h−je1} ⊗ Aj−1

0

= (γ′ ⊗ e′
2)(e1 ⊗ A0 + 0)

= (γ′e1 ⊗ e′
2A0)

= (τ, 1),

where the third equality uses that A0 is an idempotent matrix, and A′
0e1 = 0. For h = 1,

the Jacobian with respect to vec(Ae1) obviously equals (0, 1). So we can write the Jacobian
for all h ≥ 1 as (τ1(h ≥ 2), 1).

Second, for any h ≥ 1, the Jacobian with respect to κ equals

∂e′
2A

hγ

∂κ

∣∣∣∣
A=A0,γ=γ0

= e′
2A

h
0e2 = e′

2A0e2 = 1.

Next, Lemma G.6 and a standard martingale central limit theorem imply

√
T (Â − A0)e1

d→ N(0, aVar(Âe1)),
√

T (κ̂ − 1) d→ N(0, aVar(κ̂)),

where

aVar(Âe1) = Var
 ε1,t

ε1,t + ε2,t

 ε1,t−1

 =
1 1

1 1 + σ2
2

 ,

aVar(κ̂) = Var(ε1,tε2,t) = σ2
2.

Moreover, Âe1 and κ̂ are asymptotically independent by Lemma G.6, since

Cov
 ε1,t

ε1,t + ε2,t

 ε1,t−1, ε1,tε2,t

 = 0.

Given all the preceding ingredients, we can apply the delta method to conclude that

√
T (δ̂h − θh,T ) =

√
T (δ̂h − e′

2A
hγ) +

√
T (e′

2A
hγ − θh,T ) d→ N(aBiasVAR, aVarVAR),
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where, for h ≥ 1,

aBiasVAR =
√

T (e′
2A

hγ − θh,T ) = −α1(h ≥ 2),

aVarVAR = (τ1(h ≥ 2), 1)
1 1

1 1 + σ2
2

τ1(h ≥ 2)
1

+ σ2
2

= (1 + τ1(h ≥ 2))2 + 2σ2
2.
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