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Abstract

This article introduces a new framework for estimating average treatment effects
under unobserved confounding in modern data-rich environments featuring large
numbers of units and outcomes. The proposed estimator is doubly robust, combining
outcome imputation, inverse probability weighting, and a novel cross-fitting procedure
for matrix completion. We derive finite-sample and asymptotic guarantees, and show
that the error of the new estimator converges to a mean-zero Gaussian distribution
at a parametric rate. Simulation results demonstrate the practical relevance of the
formal properties of the estimators analyzed in this article.

1. Introduction
This article presents a novel framework for the estimation of average treatment effects in
modern data-rich environments in the presence of unobserved confounding. Modern data-rich
environments are characterized by repeated measurements of outcomes, such as clinical
metrics or purchase history, across a substantial number of units—be it patients in medical
contexts or customers in online retail. As an example, consider an internet-retail platform
where customers interact with various product categories. For each consumer-category pair,
the platform makes decisions to either offer a discount or not, and records whether the
consumer purchased a product in the category. Given an observational dataset capturing such
interactions, our objective is to infer the causal effect of offering the discount on consumer
purchase behavior. More specifically, we aim to infer two kinds of treatment effects: (a)
tailored to product categories, the average impact of the discount on a product across
consumers, and (b) tailored to consumers, the average impact of the discount on a consumer
across product categories. This task is challenging due to unobserved confounding that may
cause spurious associations between discount allocation and product purchase.
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There are two widely used approaches for treatment effect estimation: outcome-based
methods and assignment-based methods. Outcome-based methods operate by imputing the
missing potential outcomes for each consumer-product category pair. This process involves
predicting whether a consumer, who received a discount, would have made the purchase
without the discount (i.e., the potential outcome without discount), and conversely, if a
consumer who did not receive the discount would have purchased the product had they
received the discount (i.e., the potential outcome with discount). Assignment-based methods
predict the probability with which a consumer is offered the discount on a product category,
and inversely weight the observed outcomes by these estimated probabilities.

A substantial and influential body of literature has explored outcome-based methods,
particularly in settings where all confounding factors are measured (see, e.g., Cochran, 1968;
Rosenbaum and Rubin, 1983; Angrist, 1998; Abadie and Imbens, 2006, among many others).
Imputing potential outcomes in the presence of unobserved confounders poses a more complex
challenge, and the existing literature devoted to this problem is relatively small. In this
context, a commonly adopted framework is the latent factor framework (Bai and Ng, 2002;
Bai, 2009), wherein each element of the large-dimensional outcome vector is influenced by the
same low-dimensional vector of unobserved confounders. A closely related approach is the
technique of matrix completion (see, e.g., Chatterjee, 2015; Athey et al., 2021; Bai and Ng,
2021; Agarwal et al., 2023a; Dwivedi et al., 2022a) which has found widespread applications
in recommendation systems and panel data models.

In this article, we propose a doubly-robust estimator (see Bang and Robins, 2005; Cher-
nozhukov et al., 2018) of average treatment effects in the presence of unobserved confounding.
This estimator leverages information on both the outcome process and the treatment as-
signment mechanism under a latent factor framework. It combines outcome imputation and
inverse probability weighting with a new cross-fitting approach for matrix completion. We
show that the proposed doubly-robust estimator has better finite-sample guarantees than
alternative outcome-based and assignment-based estimators. Furthermore, the doubly-robust
estimator is approximately Gaussian, asymptotically unbiased, and converges at a parametric
rate, under provably valid error rates for matrix completion, irrespective of other properties
of the matrix completion algorithm used for estimation, making it relatively agnostic to the
specific matrix completion used.

Terminology and notation. For any real number b ∈ R, ⌊b⌋ is the greatest integer less
than or equal to b. For any positive integer b, [b] denotes the set of integers from 1 to b,
i.e., [b] ≜ {1, · · · , b}. We use c to denote any generic universal constant, whose value may
change between instances. For any c > 0, m(c) = max{c,

√
c} and ℓc = log(2/c). For any two

deterministic sequences an and bn where bn is positive, an = O(bn) means that there exist
a finite c > 0 and a finite n0 > 0 such that |an| ≤ c bn for all n ≥ n0. Similarly, an = o(bn)
means that for every c > 0, there exists a finite n0 > 0 such that |an| < c bn for all n ≥ n0.
For a sequence of random variables xn and a sequence of positive constants bn, xn = Op(bn)
means that the sequence |xn/bn| is stochastically bounded, i.e., for every ϵ > 0, there exists
a finite δ > 0 and a finite n0 > 0 such that P

(
|xn/bn| > δ

)
< ϵ for all n ≥ n0. Similarly,

xn = op(bn) means that the sequence |xn/bn| converges to zero in probability, i.e., for every
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ϵ > 0 and δ > 0, there exists a finite n0 > 0 such that P
(
|xn/bn| > δ

)
< ϵ for all n ≥ n0.

A mean-zero random variable x is subGaussian if there exists some b > 0 such that
E[exp(sx)] ≤ exp(b2s2/2) for all s ∈ R. Then, the subGaussian norm of x is given by
∥x∥ψ2 = inf{t > 0 : E[exp(x2/t2)] ≤ 2}. A mean-zero random variable x is subExponential
if there exist some b1, b2 > 0 such that E[exp(sx)] ≤ exp(b21s

2/2) for all −1/b2 < s < 1/b2.
Then, the subExponential norm of x is given by ∥x∥ψ1 = inf{t > 0 : E[exp(|x|/t)] ≤ 2}. Let
Uniform(a, b) denote the uniform distribution over the interval [a, b] for a, b ∈ R such that
a < b. Let N (µ, σ2) denote the Gaussian distribution with mean µ and variance σ2.

For a vector u ∈ Rn, we denote its tth coordinate by ut and its 2-norm ∥u∥2. For a
matrix U ∈ Rn1×n2 , we denote the element in ith row and jth column by ui,j, the ith row
by Ui,·, the jth column by U·,j, the largest eigenvalue by λmax(U), and the smallest by
λmin(U). Given a set of indices R ⊆ [n1] and C ⊆ [n2], UI ∈ R|R|×|C| is a sub-matrix of U
corresponding to the entries in I ≜ R×C. Further, we denote the Frobenius norm by ||U ||F ≜(∑

i∈[n1],j∈[n2]
u2
i,j

)1/2, the L1,2 norm by ||U ||1,2 ≜ maxj∈[n2]

(∑
i∈[n1]

u2
i,j

)1/2, the L2,∞ norm by

||U ||2,∞ ≜ maxi∈[n1]

(∑
j∈[n2]

u2
i,j

)1/2, and the maximum norm by ||U ||max ≜ maxi∈[n1],j∈[n2] |ui,j|.
Given two matrices U, V ∈ Rn1×n2 , the operators ⊙ and ⃝/ denote element-wise multiplication
and division, respectively, i.e., ti,j = ui,j · vi,j when T = U ⊙ V , and ti,j = ui,j/vi,j when
T = U ⃝/ V . When V is a binary matrix, i.e., V ∈ {0, 1}n1×n2 , the operator ⊗ is defined such
that ti,j = ui,j if vi,j = 1 and ti,j =? if vi,j = 0 for T = U⊗V . Given two matrices U ∈ Rn1×n2

and V ∈ Rn1×n3 , the operator ∗ denotes the Khatri-Rao product (or column-wise product) of
U and V , i.e., T = U ∗ V ∈ Rn1×n2n3 such that ti,j = ui,j−n2j̄ · vi,1+j̄ where j̄ = ⌊(j − 1)/n2⌋.
For random objects U and V , U ⊥⊥ V means that U is independent of V .

2. Setup
Consider a setting with N units and M measurements per unit. For each unit-measurement
pair i ∈ [N ] and j ∈ [M ], we observe a treatment assignment ai,j ∈ {0, 1} and the value of
the outcome yi,j ∈ R under the treatment assignment. For the ease of exposition, we focus on
binary treatments. However, our framework can be easily generalized to multi-ary treatments.

We operate within the Neyman-Rubin potential outcomes framework and denote the
potential outcome for unit i ∈ [N ] and measurement j ∈ [M ] under treatment a ∈ {0, 1}
by y

(a)
i,j ∈ R. Here, it is implicitly assumed that the potential outcome for any unit i and

measurement j does not depend on the treatment assignment for any other unit-measurement
pair, i.e., there are no spillover effects across units or measurements. In the context of
online retail data, the assumption of no spillovers across measurements is justified if the
cross-elasticity of demand across product categories, j, is low. The observed outcomes depend
on the potential outcomes and the treatment assignments,

yi,j = y
(0)
i,j (1− ai,j) + y

(1)
i,j ai,j, (1)

for all i ∈ [N ] and j ∈ [M ].
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2.1. Sources of stochastic variation
In the setup of this article, each unit j ∈ [N ] is characterized by a set of unknown parameters,
{(θ(0)i,j , θ

(1)
i,j , pi,j) ∈ R2× [0, 1]}j∈[M ], which we treat as fixed. Potential outcomes and treatment

assignments are generated as follows: for all i ∈ [N ], j ∈ [M ], and a ∈ {0, 1},

y
(a)
i,j = θ

(a)
i,j + ε

(a)
i,j (2)

and
ai,j = pi,j + ηi,j, (3)

where ε
(a)
i,j and ηi,j are mean-zero random variables, and

ηi,j =

{
−pi,j with probability 1− pi,j

1− pi,j with probability pi,j.
(4)

It follows that θ
(a)
i,j is the mean of the potential outcome y

(a)
i,j , and pi,j is the unknown

assignment probability or latent propensity score. The matrices Θ(0) ≜ {θ(0)i,j }i∈[N ],j∈[M ],
Θ(1) ≜ {θ(1)i,j }i∈[N ],j∈[M ], and P ≜ {pi,j}i∈[N ],j∈[M ] collect all mean potential outcomes and
assignment probabilities. Then, the matrices E(0) ≜ {ε(0)i,j }i∈[N ],j∈[M ], E

(1) ≜ {ε(1)i,j }i∈[N ],j∈[M ],
and W ≜ {ηi,j}i∈[N ],j∈[M ] capture all sources of randomness in potential outcomes and
treatment assignments.

Our setup allows Θ(0),Θ(1) to be arbitrarily associated with P , inducing unobserved
confounding. The identification restrictions made in Section 4 imply that Θ(0),Θ(1), and P
include all confounding factors, and require (ε

(0)
i,j , ε

(1)
i,j ) ⊥⊥ ηi,j.

2.2. Target causal estimand
For any given measurement j ∈ [M ], we aim to estimate the effect of the treatment averaged
over all units,

ATE·,j ≜ µ
(1)
·,j − µ

(0)
·,j (5)

where

µ
(a)
·,j ≜

1

N

∑
i∈[N ]

θ
(a)
i,j .

It is straightforward to adapt the methods in this article to the estimation of alternative
parameters, like the average treatment effect across measurements for each unit i, or the
estimation of treatment effects over a subset of the units, S ⊂ [N ].

3. Estimation
In this section, we propose an estimator that uses the treatment assignment matrix A and
the observed outcomes matrix Y to estimate the target causal estimand {ATE·,j}j∈[M ], where

Y ≜ {yi,j}i∈[N ],j∈[M ] and A ≜ {ai,j}i∈[N ],j∈[M ].

4



(a) A (b) Y (c) Y (0),obs (d) Y (1),obs

Figure 1: Schematic of the treatment assignment matrix A, the observed outcomes matrix Y
(where green and blue fills indicate observations under a = 1 and a = 0, respectively), and
the observed component of the potential outcomes matrices, i.e., Y (0),obs and Y (1),obs (where
? indicates a missing value). All matrices are N ×M where N is the number of customers
and M is the number of products.

Our estimator leverages matrix completion as a key subroutine. We start with a brief overview
of matrix completion below.

3.1. Matrix completion: A primer
Consider a matrix of parameters T ∈ RN×M . While T is unobserved, we observe the matrix
S ∈ {R, ?}N×M where ? denotes a missing value. The relationship between S and T is given
by

S = (T +H)⊗ F, (6)

where H ∈ RN×M represents a matrix of noise, F ∈ {0, 1}N×M is a masking matrix, and the
operator ⊗ is as defined in Section 1. A matrix completion algorithm, denoted by MC, takes
the matrix S as its input, and returns an estimate for the matrix T , which we denote by T̂
or MC(S). In other words, MC produces an estimate of a matrix from noisy observations of a
subset of all the elements of the matrix.

The matrix completion literature is rich with algorithms MC that provide error guarantees,
namely bounds on ∥MC(S)− T∥ for a suitably chosen norm/metric ∥·∥, under a variety of
assumptions on the triplet (T,H, F ). Typical assumptions are (i) T is low-rank, (ii) the
entries of H are independent, mean-zero and sub-Gaussian random variables, and (iii) the
entries of F are independent Bernoulli random variables. Though matrix completion is
commonly associated with the imputation of missing values, a typically underappreciated
aspect is that it also denoises the observed matrix. Even when each entry of S is observed,
MC(S) subtracts the effects of H from S, i.e., it performs matrix denoising. Refer to Nguyen
et al. (2019) for a survey of various matrix completion algorithms.
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3.2. Key building blocks
We now define and express matrices that are related to the quantities of interest Θ(0),Θ(1),
and P in a form similar to Eq. (6). See Figure 1 for a visual depiction of these matrices.

• Outcomes: Let Y (0),obs = Y ⊗ (1 − A) ∈ {R, ?}N×M be a matrix with (i, j)-th entry
equal to yi,j if ai,j = 0 and equal to ?, otherwise. Here, 1 is the N ×M matrix with all
entries equal to one. Analogously, let Y (1),obs = Y ⊗ A ∈ {R, ?}N×M be a matrix with
(i, j)-th entry equal to yi,j if ai,j = 1 and equal to ?, otherwise. In other words, Y (0),obs

and Y (1),obs capture the observed components of {y(0)i,j }i∈[N ],j∈[M ] and {y(1)i,j }i∈[N ],j∈[M ],
respectively, with missing entries denoted by ?. Then, we can write

Y (0),obs = (Θ(0) + E(0))⊗ (1− A) and Y (1),obs = (Θ(1) + E(1))⊗ A. (7)

• Treatments: From Eq. (3), we can write

A = (P +W ),

as all the entries in A are observed. Building on the earlier discussion, the application of
matrix completion yields the following estimates:

Θ̂(0) = MC(Y (0),obs), Θ̂(1) = MC(Y (1),obs), and P̂ = MC(A), (8)

where the algorithm MC may vary for Θ̂(0), Θ̂(1), and P̂ . Because all entries of A are observed,
MC(A) denoises A but does not need to impute missing entries. From Eq. (7) and Eq. (8), it
follows that Θ̂(0) and Θ̂(1) depend on A and Y , whereas P̂ depends only on A.

In this section, we deliberately leave the matrix completion algorithm MC as a “black-box”.
In Section 4, we establish finite-sample and asymptotic guarantees for our proposed estimator,
contingent on specific properties for MC. In Section 5, we propose a novel end-to-end matrix
completion algorithm that satifies these properties.

Given matrix completion estimates of (Θ̂(0), Θ̂(1), P̂ ), we formulate two preliminary esti-
mators for ATE·,j: (i) an outcome imputation estimator, which uses Θ̂(0) and Θ̂(1) only, and
(ii) an inverse probability weighting estimator, which uses P̂ only. Then, we combine these
to obtain a doubly robust estimator of ATE·,j.

Outcome imputation (OI) estimator. Let θ̂
(a)
i,j denote the (i, j)-th entry of Θ̂(a) for

i ∈ [N ], j ∈ [M ], and a ∈ {0, 1}. The OI estimator for ATE·,j is defined as follows:

ÂTEOI
·,j ≜ µ̂

(1,OI)
·,j − µ̂

(0,OI)
·,j , (9)

where

µ̂
(a,OI)
·,j ≜

1

N

∑
i∈[N ]

θ̂
(a)
i,j for a ∈ {0, 1}.

That is, the OI estimator is obtained by taking the difference of the average value of the j-th
column of the estimates Θ̂(0) and Θ̂(1). The quality of the OI estimator depends on how well
Θ̂(0) and Θ̂(1) approximate the mean potential outcome matrices Θ(0) and Θ(1), respectively.
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Inverse probability weighting (IPW) estimator. Let p̂i,j denote the (i, j)-th entry of P̂
for i ∈ [N ] and j ∈ [M ]. The IPW estimate for ATE·,j is defined as follows:

ÂTE IPW
·,j ≜ µ̂

(1,IPW)
·,j − µ̂

(0,IPW)
·,j , (10)

where

µ̂
(0,IPW)
·,j ≜

1

N

∑
i∈[N ]

yi,j
(
1− ai,j

)
1− p̂i,j

and µ̂
(1,IPW)
·,j ≜

1

N

∑
i∈[N ]

yi,jai,j
p̂i,j

.

That is, the IPW estimator is obtained by taking the difference of the average value of the
j-th column of the matrices Y (0),obs and Y (1),obs, replacing unobserved entries with zeros, and
weighting each outcome by the inverse of the estimated assignment probability to account
for confounding. The quality of the IPW estimate depends on how well P̂ approximates the
probability matrix P .

The matrix completion-based OI and IPW estimators in Eq. (9) and Eq. (10) have the
same form as the classical OI and IPW estimators, which are derived for settings where all
confounders are observed (e.g., Imbens and Rubin, 2015). In contrast to the classical setting,
our framework is one with unmeasured confounding.

3.3. Doubly robust (DR) estimator

The DR estimate for ATE·,j combines the estimates Θ̂(0), Θ̂(1), and P̂ from Eq. (8). It is
defined as follows:

ÂTEDR
·,j ≜ µ̂

(1,DR)
·,j − µ̂

(0,DR)
·,j , (11)

where

µ̂
(0,DR)
·,j ≜

1

N

∑
i∈[N ]

θ̂
(0,DR)
i,j with θ̂

(0,DR)
i,j ≜ θ̂

(0)
i,j +

(
yi,j − θ̂

(0)
i,j

)1− ai,j
1− p̂i,j

,

and

µ̂
(1,DR)
·,j ≜

1

N

∑
i∈[N ]

θ̂
(1,DR)
i,j with θ̂

(1,DR)
i,j ≜ θ̂

(1)
i,j +

(
yi,j − θ̂

(1)
i,j

)ai,j
p̂i,j

. (12)

In Section 4, we prove that ÂTEDR
·,j consistently estimates ATE·,j as long as either (Θ̂(0), Θ̂(1))

is consistent for (Θ(0),Θ(1)) or P̂ is consistent for P , i.e., it is doubly robust. Furthermore,
we show that the DR estimator provides superior finite sample guarantees than the OI and
IPW estimators, and that it satisfies a central limit theorem at a parametric rate under weak
conditions on the convergence rate of the matrix completion routine. Using simulated data,
Figure 2 demonstrates the improved performance of DR, relative to OI and IPW. Despite
substantial biases observed in both OI and IPW estimates, the error of the DR estimate
demonstrates a mean-zero Gaussian distribution. We provide a detailed description of the
simulation setup in Section 6.
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Figure 2: Empirical illustration of the convergence of the error of the doubly robust (DR)
estimator to a mean-zero Gaussian distribution. The histogram represents ÂTEDR

·,j − ATE·,j
and the curve represents the (best) fitted Gaussian distribution. Histogram counts are
normalized so that the area under the histogram integrates to one. Unlike DR, the outcome
imputation (OI) and inverse probability weighting (IPW) estimators have non-trivial biases,
as evidenced by the means of the distributions in dashed green, blue, and red, respectively.
We provide details of the simulations, including the data-generating process, in Section 6.

4. Main Results
This section presents the formal results of the article. Section 4.1 details assumptions,
Section 4.2 discusses finite-sample guarantees, and Section 4.3 presents a central limit
theorem for ÂTEDR

·,j .

4.1. Assumptions
Requirements on data generating process. We make two assumptions on how the data
is generated. First, we impose a positivity condition on the assignment probabilities.

Assumption 1 (Positivity). The unknown assignment probability matrix P is such that

λ ≤ pi,j ≤ 1− λ, (13)

for all i ∈ [N ] and j ∈ [M ], where 0 < λ ≤ 1/2 is a constant.

Assumption 1 requires that the propensity score for each unit-outcome pair is bounded away
from 0 and 1, implying that any unit-item pair can be assigned either of the two treatments.
An analogous assumption is pervasive in causal inference models that assume observed
confounding. For simplicity of exposition and to avoid notational clutter, Assumption 1
requires Eq. (13) for all outcomes, j ∈ [M ]. However, it is only necessary that Eq. (13) holds
for the outcomes of interest, j, for which ATE·,j is estimated. Our framework leverages the
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availability of a large number of outcomes to control for the confounding effect of latent
variables. In practical applications, however, ATE·,j may be estimated for a select group of
those outcomes. For example, in synthetic control settings (Abadie et al., 2010), ATE·,j is
estimated only for post-treatment outcomes. In that case, the positivity assumption applies
only for the selected subset of outcomes for which ATE·,j is estimated.

Next, we formalize the requirements on the noise variables.

Assumption 2 (Zero-mean, independent, and subGaussian noise). .

(a) (W,E(0), E(1)) have zero mean entries,

(b) W ⊥⊥ (E(0), E(1)),

(c) All entries of W are mutually independent,

(d) {(ε(0)i,j , ε
(1)
i,j ) : i ∈ [N ]} are mutually independent (across i) for every j ∈ [M ], and

(e) Each entry of E(0) and E(1) has subGaussian norm bounded by a constant σ.

Assumption 2(a) defines (Θ(0),Θ(1), P ) as the means of the potential outcomes and
treatment assignment in Eqs. (2) and (3). Assumption 2(b) implies that (Θ(0),Θ(1), P )
capture all confounding factors. Assumption 2(c) imposes independence across units and
measurements in the noise W . Assumption 2(d) imposes independence across units in the
noise (E(0), E(1)), for every measurement. Finally, Assumption 2(e) is mild and useful to
derive finite-sample guarantees. For the central limit theorem in Section 4.3, subGaussianity
could be disposed of by restricting the moments of ε(0)i,j and ε

(1)
i,j . Note that Assumption 2

does not restrict the dependence between ε
(0)
i,j and ε

(1)
i,j .

Requirements on matrix completion estimators. First, we assume the estimate P̂ is
consistent with Assumption 1.

Assumption 3. The estimated probability matrix P̂ is such that

λ̄ ≤ p̂i,j ≤ 1− λ̄,

for all i ∈ [N ] and j ∈ [M ], where 0 < λ̄ ≤ λ.

Assumption 3 is achieved by truncating entries of P̂ to the range [λ̄, 1− λ̄]. Second, our
theoretical analysis requires independence between certain sub-matrices of the estimates
(P̂ , Θ̂(0), Θ̂(1)) from Eq. (8), and the noise matrices (W,E(0), E(1)). We formally state this
independence condition as an assumption below.

Assumption 4. There exists partitions (R0,R1) of the units in [N ] and (C0, C1) of the
measurements [M ], such that each unit i ∈ [N ] is assigned to R0 or R1 with equal probability,
each measurement j ∈ [M ] is assigned to C0 or C1 with equal probability, and for each block
I ∈ P ≜ {Ri × Cj : i, j ∈ {0, 1}},

P̂I , Θ̂
(0)
I , Θ̂

(1)
I ⊥⊥ WI (14)
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Figure 3: A matrix S partitioned into four blocks when R0 = [N/2] and C0 = [M/2] in
Assumption 4, i.e., P = {Top Left, Top Right, Bottom Left, Bottom Right}.

and
P̂I ⊥⊥ E

(0)
I , E

(1)
I . (15)

Without loss of generality, suppose R0 = [⌊N/2⌋] and C0 = [⌊M/2⌋]. Figure 3 provides a
schematic of the corresponding block partition P. Eq. (14) requires that within each of
the four blocks in P, mean potential outcomes estimators and the assignment probability
estimators are independent of the sub-matrix of W for the same block. Assumption 2(b)
implies that Eq. (15) holds provided P̂ is a function of A only, as is the case for the matrix
completion procedure in Eq. (8). Analogous conditions appear in the literature on doubly
robust estimation under observed confounding (e.g., Definition 3.1 in Chernozhukov et al.,
2018). Specifically, in that context, Chernozhukov et al. (2018) split the available data into
K-folds, and require estimates of propensities and outcomes in each fold to be independent
of the noise in that fold. Section 5 provides a way to ensure Assumption 4 holds for any MC
algorithm using a cross-fitting procedure as long as Assumption 2 holds.

Matrix completion error rates. The formal guarantees in this section depend on the
normalized L1,2 norms of the errors in estimating the unknown parameters (Θ(0),Θ(1), P ).
We use the following notation for these errors:

E
(
P̂
)
≜

||P̂ − P ||1,2√
N

and E
(
Θ̂
)
≜

∑
a∈{0,1}

E
(
Θ̂(a)

)
, (16)

where

E
(
Θ̂(a)

)
=

||Θ̂(a) −Θ(a)||1,2√
N

.

A variety of matrix completion algorithms deliver E
(
P̂
)
= Op(min{N,M}−α) and E

(
Θ̂
)
=

Op(min{N,M}−β), where 0 < α, β ≤ 1/2. Throughout, our notation primarily tracks
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dependence on N . We say that these normalized errors achieve the parametric rate when they
have the same rate as Op(N

−1/2). Section 5 explicitly characterizes α and β under low-rank
assumptions on (Θ(0),Θ(1)) and P for a particular matrix completion algorithm.

4.2. Non-asymptotic guarantees
The first main result of this section provides both a non-asymptotic error bound and an
asymptotic consistency result for ÂTEDR

·,j − ATE·,j in terms of the errors E
(
P̂
)

and E
(
Θ̂
)

in
Eq. (16).

Theorem 1 (Finite Sample Guarantees for DR). Suppose Assumptions 1 to 4 hold. Fix
δ ∈ (0, 1) and j ∈ [M ]. Then, with probability at least 1− δ, we have∣∣ÂTEDR

·,j − ATE·,j
∣∣ ≤ ErrDR

N , (17)

where

ErrDR
N ≜

2

λ̄

[
E
(
Θ̂
)
·E
(
P̂
)
+
(√cℓδ/12√

ℓ1
E
(
Θ̂
)
+ 2σ

√
cℓδ/12 +

2σm(cℓδ/12)√
ℓ1

)
· 1√

N

]
, (18)

for m(c) and ℓc as defined in Section 1. Therefore, as N → ∞, if either (i) E
(
P̂
)
=

op(1), E
(
Θ̂
)
= Op(1), or (ii) E

(
Θ̂
)
= op(1), E

(
P̂
)
= Op(1), it holds that

ÂTEDR
·,j

p−→ ATE·,j, (19)

for all j ∈ [M ].

The proof of Theorem 1 is given in Appendix B. Eqs. (17) and (18) bound the absolute
error of the DR estimator by the rate of E

(
Θ̂
)
(E
(
P̂
)
+N−0.5) +N−0.5. When E

(
P̂
)

is lower
bounded at the parametric rate of N−0.5, ErrDR

N has the same rate as E
(
P̂
)
E
(
Θ̂
)
+N−0.5.

Doubly robust behavior of ÂTEDR
·,j . The error rate of E

(
P̂
)
E
(
Θ̂
)
+N−0.5 immediately

reveals that the DR estimate is doubly robust with respect to the error in estimating the mean
potential outcomes (Θ(0),Θ(1)) and the assignment probabilities P . First, the error ErrDR

N

decays at a parametric rate of Op(N
−0.5) as long as the product of error rates, E

(
P̂
)
E
(
Θ̂
)
,

decays as Op(N
−0.5). As a result, ÂTEDR

·,j can exhibit a parametric error rate even when
neither the mean potential outcomes nor the assignment probabilities are estimated at a
parametric rate. Second, ErrDR

N decays to zero as long as either of E
(
P̂
)

or E
(
Θ̂
)

decays to 0.
Hence, ÂTEDR

·,j is consistent as long as either the mean potential outcomes or the assignment
probabilities are estimated consistently.

We next compare the performance of DR estimator with the OI and IPW estimators from
Eqs. (9) and (10), respectively. Towards this goal, we characterize the ATE·,j estimation
error of ÂTEOI

·,j in terms of E
(
Θ̂
)

and of ÂTE IPW
·,j in terms of E

(
P̂
)
.
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Proposition 1 (Finite Sample Guarantees for OI and IPW). Fix any j ∈ [M ]. For
OI, we have ∣∣ÂTEOI

·,j − ATE·,j
∣∣ ≤ ErrOI

N ≜ E
(
Θ̂
)
. (20)

For IPW, suppose Assumptions 1 to 4 hold. Define ||Θ||max ≜
∑

a∈{0,1} ||Θ(a)||max, and fix any
δ ∈ (0, 1). Then, with probability at least 1− δ, we have∣∣ÂTE IPW

·,j − ATE·,j
∣∣ ≤ ErrIPWN , (21)

where

ErrIPWN ≜
2

λ̄

[
||Θ||max ·E

(
P̂
)
+
(√cℓδ/12√

ℓ1
||Θ||max + 2σ

√
cℓδ/12 +

2σm(cℓδ/12)√
ℓ1

)
· 1√

N

]
,

for m(c) and ℓc as defined in Section 1.

The proofs of Eq. (20) and Eq. (21) are given in Appendices D and E, respectively.
Proposition 1 implies that in an asymptotic sequence with bounded ||Θ||max, OI and IPW
attain the parametric rate Op(N

−0.5) provided E
(
Θ̂
)

and E
(
P̂
)

are Op(N
−0.5), respectively.

The next corollary compares these error rates with those obtained for the DR estimator in
Theorem 1.

Corollary 1 (Gains of DR over OI and IPW). Suppose Assumptions 1 to 4 hold.
Consider an asymptotic sequence such that ||Θ||max is bounded. If E

(
P̂
)
= Op(N

−α) and
E
(
Θ̂
)
= Op(N

−β) for 0 ≤ α, β ≤ 0.5, then

ErrOI
N = Op(N

−β), ErrIPWN = Op(N
−α),

and
ErrDR

N = Op(N
−min{α+β,0.5}).

Corollary 1 demonstrates that the DR estimate’s error decay rate is consistently superior
to that of the OI and IPW estimates across a variety of regimes for α, β. Specifically, the
error ErrDR

N scales strictly faster than both ErrOI
N and ErrIPWN if the estimation errors of Θ̂(0),

Θ̂(1), and P̂ converge slower than at the parametric rate Op(N
−1/2). When the estimation

errors of Θ̂(0), Θ̂(1), and P̂ all decay at a parametric rate, OI, IPW, and DR estimation errors
decay also at a parametric rate.

4.3. Gaussian approximation

The next theorem, proven in Appendix C, establishes a Gaussian approximation for ÂTEDR
·,j

under mild conditions on error rates E
(
P̂
)

and E
(
Θ̂
)
.

Theorem 2 (Asymptotic Normality for DR). Suppose Assumptions 1 to 4 and the
following conditions hold,
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(C1) E
(
P̂
)
= Op(sN) and E

(
Θ̂
)
= Op(tN) where the sequences sN and tN are o(1).

(C2) E
(
P̂
)
E
(
Θ̂
)
= op

(
N−1/2

)
.

(C3) Let σ(0)
i,j and σ

(1)
i,j be the standard deviations of ε(0)i,j and ε

(1)
i,j , respectively. The sequence

σ2
j ≜

1

N

∑
i∈[N ]

(σ
(1)
i,j )

2

pi,j
+

1

N

∑
i∈[N ]

(σ
(0)
i,j )

2

1− pi,j
, (22)

is bounded away from zero as N increases.

Then, for all j ∈ [M ],
√
N
(
ÂTEDR

·,j − ATE·,j
)
/σj

d−→ N
(
0, 1

)
, (23)

as N → ∞.

Theorem 2 describes two simple requirements on the estimated P̂ and (Θ̂(0), Θ̂(1)), under
which ÂTEDR

·,j exhibits an asymptotic Gaussian distribution centered at ATE·,j. Condition
(C1) requires that the estimation errors of P̂ and (Θ̂(0), Θ̂(1)) converge to zero in probability.
Condition (C2) requires that the product of the errors decays sufficiently fast, at a rate
op
(
N−1/2

)
, ensuring that the bias of the normalized estimator in Eq. (23) converges to zero.

Condition (C2) is similar to conditions in the literature on doubly-robust estimation of average
treatment effects under observed confounding (e.g., Assumption 5.1 in Chernozhukov et al.,
2018). Specifically, in that context, Chernozhukov et al. (2018) assume that the product of
propensity estimation error and outcome regression error decays faster than N−1/2.

Black-box asymptotic normality. We emphasize Theorem 2 applies to any matrix
completion algorithm MC as long as conditions (C1) and (C2) are satisfied This property arises
because the bias is dominated by the product of E

(
P̂
)

and E
(
Θ̂
)
, which can be shown to be

op
(
N−1/2

)
for a broad class of MC algorithms under mild assumptions on (P,Θ(0),Θ(1)). On the

other hand, achieving such black-box asymptotic normality results for OI or IPW estimates
is challenging, as their bias scales with individual error rates E

(
Θ̂
)

and E
(
P̂
)
, respectively,

which are typically lower bounded at the parametric rate of N−0.5. Our simulations in
Section 6 corroborate these theoretical findings.

5. Matrix Completion with Cross-Fitting
In this section, we introduce a novel algorithm designed to construct estimators (Θ̂(0), Θ̂(1), P̂ )
that adhere to Assumption 4 and satisfy conditions (C1) and (C2) in Theorem 2. We first
explain why traditional matrix completion algorithms fail to deliver the properties required
by Assumption 4. We then present Cross-Fitted-MC, a meta-algorithm that takes any
matrix completion algorithm and uses it to construct (Θ̂(0), Θ̂(1), P̂ ) that satisfy Assumption 4.
Finally, we describe Cross-Fitted-SVD, an end-to-end algorithm obtained by combining
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Cross-Fitted-MC with the singular value decomposition (SVD)-based algorithm of Bai and
Ng (2021), and establish that it also satisfies conditions (C1) and (C2) in Theorem 2.

Traditional matrix completion. Estimators (Θ̂(0), Θ̂(1), P̂ ) obtained from existing matrix
completion algorithms need not satisfy Assumption 4. In particular, using the entire assign-
ment matrix A to estimate each element of P typically results in a violation of P̂I ⊥⊥ WI in
Eq. (14), as each entry of P̂ is allowed to depend on the entire noise matrix W . For example,
in spectral methods (e.g., Nguyen et al., 2019), P̂ is a function of the SVD of the entire matrix
A, and

p̂i,j ⊥̸⊥ ai′,j′ , (24)

for all (i, j), (i′, j′) ∈ [N ] × [M ] in general, which implies that for every I ⊆ [N ] × [M ],
P̂I ⊥̸⊥ WI . Similarly, in matching methods such as nearest neighbors (Li et al., 2019), P̂
is a function of the matches/neighbors estimated from the entire matrix A. Dependence
structures such as p̂i,j ⊥̸⊥ ai,j for any i, j ∈ [N ]× [M ]—which is weaker than Eq. (24)—are
enough to violate the P̂I ⊥⊥ WI requirement in Eq. (14).

Likewise, the requirement Θ̂(0)
I , Θ̂

(1)
I ⊥⊥ WI in Eq. (14) can be violated, because Θ̂(0) and

Θ̂(1) depend respectively on Y (0),obs and Y (1),obs, which themselves depend on the entire
matrix A.

5.1. Cross-Fitted-MC: A meta-cross-fitting algorithm for matrix completion
We now introduce Cross-Fitted-MC, a cross-fitting approach that modifies any MC algorithm
to produce (Θ̂(0), Θ̂(1), P̂ ) that satisfy Assumption 4. Recall the setup from Section 3.1:
Given an observation matrix S ∈ {R, ?}N×M , a matrix completion algorithm MC produces an
estimate T̂ = MC(S) ∈ RN×M of a matrix of interest T , where S and T are related via Eq. (6).
With this background, we now describe the Cross-Fitted-MC meta-algorithm.

1. The inputs are (i) a matrix completion algorithm MC, (ii) an observation matrix S ∈
{R, ?}N×M , and (iii) a block partition P of the set [N ] × [M ] into four blocks as in
Assumption 4.

2. For each block I ∈ P, construct T̂I by applying MC on S ⊗ 1−I where 1−I ∈ RN×M

denotes a masking matrix with (i, j)-th entry equal to 0 if (i, j) ∈ I and 1 otherwise, and
the operator ⊗ is as defined in Section 1. In other words,

T̂I = T I where T = MC(S ⊗ 1−I).

3. Return T̂ ∈ RN×M obtained by collecting together {T̂I}I∈P , with each entry in its original
position.

We represent this meta-algorithm succinctly as below:

T̂ = Cross-Fitted-MC(MC, S,P).
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In summary, Cross-Fitted-MC produces an estimator T̂ such that for each block I ∈ P,
the sub-matrix T̂I is constructed only using the entries of S corresponding to the remaining
three blocks of P. See Figure 4 for a visualization of S ⊗ 1−I . The following result,
proven in Appendix F.1, establishes (Θ̂(0), Θ̂(1), P̂ ) generated by Cross-Fitted-MC satisfy
Assumption 4.

Proposition 2 (Guarantees for Cross-Fitted-MC). Suppose Assumption 2 holds. Let MC
be any matrix completion algorithm and P be any block partition of the set [N ]× [M ] into
four blocks as in Assumption 4. Let

Θ̂(0) = Cross-Fitted-MC(MC, Y (0),obs,P), (25)

Θ̂(1) = Cross-Fitted-MC(MC, Y (1),obs,P), (26)

P̂ = Cross-Fitted-MC(MC, A,P), (27)

where Y (0),obs and Y (1),obs are defined in Eq. (7). Then, Assumption 4 holds.

A host of MC algorithms are designed to de-noise and impute missing entries of matrices
under random patterns of missingness; the most common missingness pattern studied is
where each entry has the same probability of being missing, independent of everything
else. In contrast, Cross-Fitted-MC generates patterns where all entries in one block are
deterministically missing, as in Figure 4. A recent strand of research on the interplay between
matrix completion methods and causal inference models—specifically, within the synthetic
controls framework—has contributed matrix completion algorithms that allow for block
missingness (see, e.g., Athey et al., 2021; Agarwal et al., 2021; Bai and Ng, 2021; Agarwal
et al., 2023b; Arkhangelsky et al., 2021; Agarwal et al., 2023a; Dwivedi et al., 2022a,b).
However, it is a challenge to apply known theoretical guarantees for these methods to the
setting in this article because of: (i) the use of cross-fitting—which creates blocks where all
observations are missing—and (ii) outside of the completely-missing blocks, there can still be
missing observations with heterogeneous probabilities of missingness. In the next section, we
show how to modify any MC algorithm designed for block missingness patterns so that it can
be applied to our setting with cross-fitting and heterogeneous probabilities of missingness
outside the folds. For concreteness, we work with the Tall-Wide matrix completion algorithm
of Bai and Ng (2021).

5.2. The Cross-Fitted-SVD algorithm
Cross-Fitted-SVD is an end-to-end MC algorithm obtained by instantiating the Cross-
Fitted-MC meta-algorithm with the Tall-Wide algorithm of Bai and Ng (2021), which we
denote as TW. For completeness, we detail the TW algorithm in Section 5.2.1, and then use it
to describe Cross-Fitted-SVD in Section 5.2.2.

5.2.1. The TW algorithm of Bai and Ng (2021).
Bai and Ng (2021) propose TW to impute missing values in those matrices where there
exists a set of rows and a set of columns without missing entries. More concretely, for
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Figure 4: The matrix S ⊗ 1−Bottom Right obtained from the matrix S in Figure 3 by masking
the entries corresponding to the Bottom Right block with ?.

any matrix S ∈ {R, ?}N×M , let Robs ⊆ [N ] and Cobs ⊆ [M ] denote the set of rows and
columns, respectively, with all entries observed. Then, the block I = Rmiss × Cmiss, where
Rmiss ≜ [N ] \Robs and Cmiss ≜ [M ] \ Cobs, is such that all the missing entries in S are a subset
of it.

Given a rank hyper-parameter r ∈ [min{|Robs|, |Cobs|}], TWr produces an estimate of T as
follows:

1. Run SVD separately on S(tall) ≜ S[N ]×Cobs and S(wide) ≜ SRobs×[M ], i.e.,

SVD(S(tall)) = (U (tall) ∈ RN×rN ,Σ(tall) ∈ RrN×rN , V (tall) ∈ R|Cobs|×rN )

and
SVD(S(wide)) = (U (wide) ∈ R|Robs|×rM ,Σ(wide) ∈ RrM×rM , V (wide) ∈ RM×rM )

where rN ≜ min{N, |Cobs|} and rM ≜ min{|Robs|,M}. The columns of U (tall) and U (wide)

are the left singular vectors of S(tall) and S(wide), respectively, and the columns of V (tall)

and V (wide) are the right singular vectors of S(tall) and S(wide), respectively. The diagonal
entries of Σ(tall) and Σ(wide) are the singular values of S(tall) and S(wide), respectively, and
the off-diagonal entries are zeros. This step of TW requires the existence of the fully
observed blocks S(tall) and S(wide), i.e., Robs and Cobs cannot be empty.

2. Let Ṽ (tall) ∈ R|Cobs|×r be the sub-matrix of V (tall) that keeps the columns corresponding
to the r largest singular values only. Let Ṽ (wide) ∈ R|Cobs|×r be the sub-matrix of V (wide)

that keeps the columns corresponding to the r largest singular values only and the rows
corresponding to the indices in Cobs only. Obtain a rotation matrix R ∈ Rr×r as follows:

R ≜ Ṽ (tall)⊤Ṽ (wide)(Ṽ (wide)⊤Ṽ (wide))−1
.

That is, R is obtained by regressing Ṽ (tall) on Ṽ (wide). In essence, R aligns the right
singular vectors of S(tall) and S(wide) using the entries that are common between these two
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matrices, i.e., the entries corresponding to indices Robs × Cobs. The formal guarantees of
the TW algorithm remains unchanged if one alternatively regresses Ṽ (wide) on Ṽ (tall), or
uses the left singular vectors of S(tall) and S(wide) for alignment.

3. Let Σ
(tall) ∈ RrN×r be the sub-matrix of Σ(tall) that keeps the columns corresponding

to the r largest singular values only. Let V
(wide) ∈ RM×r be the sub-matrix of V (wide)

that keeps the columns corresponding to the r largest singular values only. Return
T̂ ≜ U (tall)Σ

(tall)
RV

(wide)⊤ as an estimate for T .

5.2.2. Cross-Fitted-SVD algorithm.

1. The inputs are (i) A ∈ RN×M , (ii) Y (a),obs ∈ {R, ?}N×M for a ∈ {0, 1}, and (iii)
hyper-parameters r1, r2, r3, and λ̄ such that r1, r2, r3 ∈ [min{N,M}] and 0 < λ̄ ≤ 1/2.

2. Choose a random partition (R0,R1) of [N ] and (C0, C1) of [M ] such that each i ∈ [N ]
is assigned to R0 or R1 with equal probability and each j ∈ [M ] is assigned to C0 or C1
with equal probability. Construct the block partition P ≜ {Ri × Cj : i, j ∈ {0, 1}}.

3. Return P̂ = Projλ̄
(
Cross-Fitted-MC(TWr1 , A,P)

)
where Projλ̄(·) projects each entry of

its input to the interval [λ̄, 1− λ̄].

4. Define Y (0),full as equal to Y (0),obs, but with all missing entries in Y (0),obs set to zero.
Define Y (0),obs analogously with respect to Y (1),full.

5. Return Θ̂(0) = Cross-Fitted-MC(TWr2 , Y
(0),full,P) ⃝/ (1− P̂ ).

6. Return Θ̂(1) = Cross-Fitted-MC(TWr3 , Y
(1),full,P) ⃝/ P̂ .

We provide intuition on the key steps of the Cross-Fitted-SVD algorithm next.

Computing P̂ . The estimate P̂ comes from applying Cross-Fitted-MC with TW on A
and truncating the entries of the resulting matrix to the range [λ̄, 1 − λ̄], in accordance
with Assumption 3. The TW sub-routine is directly applicable to A, because for any block
I = Ri × Cj ∈ P the masked matrix A⊗ 1−I has [N ] \ Ri fully observed rows and [M ] \ Cj
fully observed columns. See Figure 5(a) for a visualization of A⊗ 1−I .

Computing Θ̂(0) and Θ̂(1). The estimates Θ̂(0) and Θ̂(1) are constructed by applying
Cross-Fitted-MC with TW on Y (0),full and Y (1),full, which do not have missing entries. TW
is not directly applicable on Y (0),obs and Y (1),obs, as both matrices may not have any rows
and columns that are fully observed. See Figure 5(b) and Figure 5(c) for visualizations of
Y (0),obs ⊗ 1−I and Y (1),obs ⊗ 1−I , respectively. However, notice that

E[Y (0),full] = E[Y ⊙ (1− A)] = Θ(0) ⊙ (1− P ),

and
E[Y (1),full] = E[Y ⊙ A] = Θ(1) ⊙ P.
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(a) A⊗ 1−Bottom Right (b) Y (0),obs ⊗ 1−Bottom Right (c) Y (1),obs ⊗ 1−Bottom Right

Figure 5: Panels (a), (b), and (c) illustrate the matrices A ⊗ 1−I , Y (0),obs ⊗ 1−I , and
Y (1),obs ⊗ 1−I obtained from A, Y (0),obs and Y (1),obs, respectively, for the block partition P in
Figure 3 and the block I = Bottom Right. Unlike Panels (b) and (c), there exists rows and
columns with all entries observed in Panel (a). To enable the application of TW for Panels
(b) and (c), we replace missing entries in blocks Top Left, Top Right, and Bottom Left with
zeros.

As a result, MC(Y (0),full) and MC(Y (1),full) provide estimates of Θ(0) ⊙ (1 − P ) and Θ(1) ⊙ P ,
respectively—recall the discussion in Section 3.1. To estimate Θ(0) and Θ(1), we divide
the entries of MC(Y (0),full) and MC(Y (1),full) by the entries of (1 − P̂ ) and P̂ , respectively.
Adjustments of this type for heterogeneous missingness probabilities have been previously
explored in Ma and Chen (2019); Bhattacharya and Chatterjee (2022).

5.3. Theoretical guarantees for Cross-Fitted-SVD

To establish theoretical guarantees for Cross-Fitted-SVD, we adopt three assumptions from
Bai and Ng (2021). The first assumption imposes a low-rank structure on the matrices P ,
Θ(0), and Θ(1), namely that their entries are given by an inner product of latent factors.

Assumption 5 (Linear latent factor model on the confounders). There exist constants
rp, rθ0 , rθ1 ∈ [min{N,M}] and a collection of latent factors

U ∈ RN×rp , V ∈ RM×rp , U (a) ∈ RN×rθa , and V (a) ∈ RM×rθa for a ∈ {0, 1},

such that the unobserved confounders (Θ(0),Θ(1), P ) satisfy the following factorization:

P = UV ⊤ and Θ(a) = U (a)V (a)⊤ for a ∈ {0, 1}. (28)

Assumption 5 decomposes each of the unobserved confounders (P , Θ(0), and Θ(0)) into low-
dimensional unit-dependent latent factors (U , U (0), and U (1)) and measurement-dependent
latent factors (V , V (0), and V (1)). In particular, every unit i ∈ [N ] is associated with three
low-dimensional factors: (i) Ui,· ∈ Rrp , (ii) U (0)

i,· ∈ Rrθ0 , and (iii) U
(1)
i,· ∈ Rrθ1 . Similarly, every
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measurement j ∈ [M ] is associated with three factors: (i) Vi,· ∈ Rrp , (ii) V (0)
i,· ∈ Rrθ0 , and (iii)

V
(1)
i,· ∈ Rrθ1 . Such low-rank assumptions are standard in the matrix completion literature.

The second assumption requires that the factors that determine P , Θ(0) ⊙ (1− P ), and
Θ(1) ⊙ P explain a sufficiently large amount of the variation in the data. This assumption
is made on the factors of Θ(0) ⊙ (1 − P ) and Θ(1) ⊙ P instead of Θ(0) and Θ(1) as the TW
algorithm is applied on Y (0),full = Y ⊙ (1− A) and Y (1),full = Y ⊙ A, instead of Y (0),obs and
Y (1),obs (see steps 5 and 6 of Cross-Fitted-SVD). To determine the factors of Θ(0) ⊙ (1− P )
and Θ(1) ⊙ P , let

U ≜ [1N ,−U ] ∈ RN×(rp+1) and V ≜ [1M ,−V ] ∈ RM×(rp+1),

where 1N ∈ RN and 1M ∈ RM are vectors of all 1’s. Then,

Θ(0) ⊙ (1− P ) = U
(0)
V

(0)⊤ and Θ(1) ⊙ P = U
(1)
V

(1)⊤
, (29)

where U
(0)

≜ U ∗ U (0) ∈ RN×rθ0 (rp+1), V (0)
≜ V ∗ V (0) ∈ RM×rθ0 (rp+1), U (1)

≜ U ∗ U (1) ∈
RN×rθ1rp , and V

(1)
≜ V ∗ V (1) ∈ RN×rθ1rp , with the operator ∗ denoting the row-wise

Khatri-Rao product (see Section 1). We provide details of the derivation of these factors in
Appendix F.2.3.

Assumption 6 (Strong factors). There exists a positive constant c such that

∥U∥2,∞ ≤ c, ∥V ∥2,∞ ≤ c, ∥U (a)∥2,∞ ≤ c, and ∥V (a)∥2,∞ ≤ c for a ∈ {0, 1}.

Further, the matrices defined below are positive definite:

ΣU≜
U⊤U

N
, ΣV ≜

V ⊤V

M
, ΣU

(a)

≜
U

(a)⊤
U

(a)

N
, and ΣV

(a)

≜
V

(a)⊤
V

(a)

M
for a ∈ {0, 1}.

Assumption 6, a classic assumption in the literature on latent factor models, ensures that
the factor structure is strong. Specifically, it ensures that each eigenvector of P , Θ(0)⊙(1−P ),
and Θ(1) ⊙ P carries sufficiently large signal.

The subsequent assumption introduces additional conditions on the noise variables in Bai
and Ng (2021) than those specified in Assumption 2.

Assumption 7 (Weak dependence across measurements and independence across units). .

(a)
∑

j′∈[M ]

∣∣E[ε(a)i,j ε(a)i,j′ ]∣∣ ≤ c for every i ∈ [N ], j ∈ [M ], and a ∈ {0, 1}, and

(b) {E(a)
i,· : i ∈ [N ]} are mutually independent (across i) for a ∈ {0, 1}.

For every a ∈ {0, 1}, Assumption 7(a) requires the noise E(a) to exhibit only weak
dependency across measurements and Assumption 7(b) requires the noise E(a) to be indepen-
dent across units. We are now ready to provide guarantees on the estimates produced by
Cross-Fitted-SVD. The proof can be found in Appendix F.2.
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Proposition 3 (Guarantees for Cross-Fitted-SVD). Suppose Assumptions 1, 2, and 5
to 7 hold. Consider an asymptotic sequence such that ||Θ||max is bounded as both N and M

increase. Let P̂ , Θ̂(0), and Θ̂(1) be the estimates returned by Cross-Fitted-SVD with r1 = rp,
r2 = rθ0(rp + 1), r3 = rθ1rp, and any λ̄ such that 0 < λ̄ ≤ λ with λ denoting the constant
from Assumption 1. Then, as N,M → ∞,

E
(
P̂
)
= Op

(
1√
N

+
1√
M

)
and E

(
Θ̂
)
= Op

(
1√
N

+
1√
M

)
.

Proposition 3 implies that the conditions (C1) and (C2) in Theorem 2 hold whenever
N1/2/M = o(1). Then, the DR estimator from Eq. (11) constructed using the estimates Θ̂(0),
Θ̂(1), and P̂ returned by Cross-Fitted-SVD exhibits an asymptotic Gaussian distribution
centered at the target causal estimand. Further, Proposition 3 implies that the estimation
errors E

(
P̂
)

and E
(
Θ̂
)

achieve the parametric rate whenever N/M = o(1).

6. Simulations
This section reports simulation results on the performance of the DR estimator of Eq. (11)
and the OI and IPW estimators of Eqs. (9) and (10), respectively. For convenience, we let
N = M .

Data Generating Process (DGP). We now briefly describe the DGP for our simulations;
details can be found in Appendix G. To generate, P , Θ(0), and Θ(1), we use the latent factor
model given in Eq. (28). To introduce unobserved confounding, we set the unit-specific latent
factors to be the same across P , Θ(0), and Θ(1), i.e., U = U (0) = U (1). The entries of U and
the measurement-specific latent factors, V, V (0), V (1) are each sampled independently from a
uniform distribution. Further, the entries of the noise matrices E(0) and E(1) are sampled
independently from a normal distribution, and the entries of W are sampled independently
as per Eq. (4). Then, y(a)i,j , ai,j, and yi,j are determined from Eqs. (1) to (3), respectively.
The simulation generates P , Θ(0), and Θ(1) once. Then, given the fixed values of P , Θ(0),
and Θ(1), the simulation generates Q realizations of (Y,A)—that is, only the noise matrices
E(0), E(1),W are resampled for each of the Q realizations. For each of these Q instances of
the simulation, P̂ , Θ̂(0), and Θ̂(1) are obtained by applying the Cross-Fitted-SVD algorithm
to the corresponding A and Y with the choice of hyper-parameters as in Proposition 3 and
λ̄ = λ = 0.05. For each of the instances of the simulation we compute ATE·,j from Eq. (5), and
ÂTEOI

·,j , ÂTE IPW
·,j and ÂTEDR

·,j from Eqs. (9) to (11). We set Q = 1000. While Proposition 3
assumes the bounds rp and rθ on the ranks of the latent factors from Assumption 5 are
constants, we relax this restriction in the simulations and allow rp and rθ to scale with N in
the simulations, as we note below.

Results. Figure 6 reports simulation results for N = 1000, with rp =
⌊
N1/5

⌋
, rθ =

⌊
N1/4

⌋
in

Panel (a), and rp =
⌊
N1/4

⌋
, rθ =

⌊
N1/5

⌋
in Panel (b). Figure 2 in Section 3 reports simulation

results for rp = rθ =
⌊
N1/5

⌋
. In each case, the figure shows a histogram of the distribution of

ÂTEDR
·,j −ATE·,j across simulation instances, along with the best fitting Gaussian distribution
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(a) rp =
⌊
N1/5

⌋
, rθ =

⌊
N1/4

⌋
(b) rp =

⌊
N1/4

⌋
, rθ =

⌊
N1/5

⌋
Figure 6: Empirical illustration of the asymptotic performance of DR as in Theorem 2. The
histogram corresponds to the errors of 1000 independent instances of DR estimates, the green
curve represents the (best) fitted Gaussian distribution, and the black curve represents the
Gaussian approximation from Theorem 2. The dashed green, blue, and red lines represent
the biases of DR, OI, and IPW estimators.

Figure 7: Comparison of OI, IPW, and DR in terms of finite sample performance as in
Proposition 1. The estimates ÂTEOI

·,j , ÂTE IPW
·,j , and ÂTEDR

·,j are obtained by taking an
average over 1000 independent instances.

(green curve). The histogram counts are normalized so that the area under the histogram
integrates to one. Figure 6 plots the Gaussian distribution in the result of Theorem 2 (black
curve). The dashed blue, red and green lines in Figures 2 and 6 indicate the values of the
means of the OI, IPW, and DR error, respectively, across simulation instances. For reference,
we place a black solid line at zero and the black curve represents the Gaussian approximation
from Theorem 2. The DR estimator has minimal bias and a close-to-Gaussian distribution.
The biases of OI and IPW are non-negligible.

To further illustrate the different bias performance of the three estimators, Figure 7 reports
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the maximum over j ∈ [M ] of their respective mean absolute error estimates. For each j, the
estimate of the mean absolute error of OI, IPW, and DR is the average of |ÂTEOI

·,j −ATE·,j|,
|ÂTE IPW

·,j − ATE·,j| and |ÂTEDR
·,j − ATE·,j| across the Q simulation instances, respectively.

We set rp = rθ =
⌊
N1/5

⌋
and vary N ∈ {250, 500, 750, 1000, 1250, 1500}. To make the scaling

clear, we use least squares to produce the best N−ρ fit to the maximum bias as N varies. We
state the empirical decay rates in the legend, e.g., for DR, we report an empirical rate of
N−0.62. The DR estimator consistently outperforms the OI and IPW estimators.

7. Conclusion
This article introduces a new framework to estimate treatment effects in the presence
unobserved confounding. We consider modern data-rich environments, where there are many
units, and outcomes of interest per unit. We show it is possible to control for the confounding
effects of a set of latent variables when this set is low-dimensional relative to the number of
observed treatments and outcomes.

Our proposed estimator is doubly-robust, combining outcome imputation and inverse
probability weighting with matrix completion. Analytical tractability of its distribution
is gained through a novel cross-fitting procedure for matrix completion to estimate the
treatment assignment probabilities and mean potential outcomes. We study the properties
of the doubly-robust estimator, along with the outcome imputation and inverse probability
weighting-based estimators under black-box matrix completion error rates. We show that the
decay rate of the mean absolute error for the doubly-robust estimator dominates those of the
outcome imputation and the inverse probability weighting estimators. Moreover, we establish
a Gaussian approximation to the distribution of the doubly-robust estimator. Simulation
results demonstrate the practical relevance of the formal properties of the doubly-robust
estimator.
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Appendices

A. Supporting Concentration and Convergence Results
This section presents known concentration bounds on subGaussian and subExponential
random variables, along with the matrix Hoeffding bound and concludes with a basic result
on convergence of random variables.

We use subGaussian(σ) to represent a subGaussian random variable, where σ is a bound
on the subGaussian norm; and subExponential(σ) to represent a subExponential random
variable, where σ is a bound on the subExponential norm. (Recall the definitions of the
norms from Section 1.)

Lemma A.1 (subGaussian concentration: Theorem 2.6.3 of Vershynin (2018)). Let x ∈ Rn be
a random vector whose entries are independent, zero-mean, subGaussian(σ) random variables
Then, for any b ∈ Rn and t ≥ 0,

P
{∣∣b⊤x∣∣ ≥ t

}
≤ 2 exp

( −ct2

σ2∥b∥22

)
.

The following corollary expresses the bound in Lemma A.1 in a convenient form.

Corollary A.1 (subGaussian concentration). Let x ∈ Rn be a random vector whose entries
are independent, zero-mean, subGaussian(σ) random variables. Then, for any b ∈ Rn and
any δ ∈ (0, 1), with probability at least 1− δ,∣∣b⊤x∣∣ ≤ σ

√
cℓδ · ∥b∥2.

Proof. The proof follows from Lemma A.1 by choosing δ ≜ 2 exp(−ct2/σ2∥b∥22).

Lemma A.2 (subExponential concentration: Theorem 2.8.2 of Vershynin (2018)). Let x ∈ Rn

be a random vector whose entries are independent, zero-mean, subExponential(σ) random
variables Then, for any b ∈ Rn and t ≥ 0,

P
{∣∣b⊤x∣∣ ≥ t

}
≤ 2 exp

(
− cmin

( t2

σ2∥b∥22
,

t

σ∥b∥∞

))
.

The following corollary expresses the bound in Lemma A.2 in a convenient form.

Corollary A.2 (subExponential concentration). Let x ∈ Rn be a random vector whose entries
are independent, zero-mean, subExponential(σ) random variables Then, for any b ∈ Rn and
any δ ∈ (0, 1), with probability at least 1− δ,∣∣b⊤x∣∣ ≤ σm(cℓδ) · ∥b∥2,

where recall that m(cℓδ) = max
(
cℓδ,

√
cℓδ

)
.
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Proof. Choosing t = t0σ∥b∥2 in Lemma A.2, we have

P
{∣∣b⊤x∣∣ ≥ t0σ∥b∥2

}
≤ 2 exp

(
− ct0min

(
t0,

∥b∥2
∥b∥∞

))
≤ 2 exp

(
− ct0min

(
t0, 1

))
,

where the second inequality follows from min{t0, c} ≥ min{t0, 1} for any c ≥ 1 and ∥b∥2 ≥
∥b∥∞. Then, the proof follows by choosing δ ≜ 2 exp

(
− ct0min

(
t0, 1

))
which fixes t0 =

max{
√
cℓδ, cℓδ} = m(cℓδ).

Lemma A.3 (Product of subGaussians is subExponential: Lemma. 2.7.7 of Vershynin
(2018)). Let x1 and x2 be subGaussian(σ1) and subGaussian(σ2) random variables, respectively.
Then, x1x2 is subExponential(σ1σ2) random variable.

Lemma A.4 (Matrix Hoeffding bound: Theorem 1.3 of Tropp (2012)). Let X1, · · · , Xn be
a sequence of independent, random, and symmetric matrices such that, for every i ∈ [N ],
Xi ∈ Rd×d and E[Xi] = 0. Let A1, · · · , An be a sequence of fixed symmetric matrices such
that, for every i ∈ [N ], Ai ∈ Rd×d and A2

i −X2
i is positive semi-definite. Then,

P
{
λmax

(∑
i∈[n]

Xi

)
≥ t

}
≤ d exp

(
− t2

8λmax

(∑
i∈[n] A

2
i

)).
In the following corollary, we re-express the bound in Lemma A.4 in a convenient form.

Corollary A.3 (Matrix Hoeffding bound). Let X1, · · · , Xn be a sequence of independent,
random, and symmetric matrices such that, for every i ∈ [N ], Xi ∈ Rd×d and E[Xi] = 0. Let
A1, · · · , An be a sequence of fixed symmetric matrices such that, for every i ∈ [N ], Ai ∈ Rd×d

and A2
i −X2

i is positive semi-definite. Then, for any δ ∈ (0, 1), with probability at least 1− δ,

λmax

(∑
i∈[n]

Xi

)
≤

√
cℓ2δ/d · λmax

(∑
i∈[n]

A2
i

)
.

Proof. The proof follows from Lemma A.4 by choosing δ ≜ d exp
(
−t2/8·λmax(

∑
i∈[n] A

2
i )
)
.

Next lemma provides a useful intermediate result on convergence in probability.

Lemma A.5. Let Xn and Xn be sequences of random variables such that Xn = op(1). Let
δn = o(1) be a deterministic sequence such that 0 ≤ δn ≤ 1. Suppose P(|Xn| ≤ Xn) ≥ 1− δn.
Then, Xn = op(1).

Proof. Consider any ϵ > 0. Then, the event {|Xn| > ϵ} belongs to the union of {|Xn| > Xn}
and {Xn > ϵ}. Using the union bound,

P(|Xn| > ϵ) ≤ P(|Xn| > Xn) + P(Xn > ϵ) ≤ δn + P(Xn > ϵ).

Then, Xn = op(1) follows because Xn = op(1).
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B. Proof of Theorem 1: Finite Sample Guarantees for DR
Fix any j ∈ [M ]. Recall the definitions Eqs. (5) and (11) of the parameters ATE·,j and
corresponding doubly robust estimates ÂTEDR

·,j . The error ∆ATEDR
·,j = ÂTEDR

·,j − ATE·,j can
be re-expressed as

∆ATEDR
·,j =

1

N

∑
i∈[N ]

(
θ̂
(1,DR)
i,j − θ̂

(0,DR)
i,j

)
− 1

N

∑
i∈[N ]

(
θ
(1)
i,j − θ

(0)
i,j

)
=

1

N

∑
i∈[N ]

((
θ̂
(1,DR)
i,j − θ

(1)
i,j

)
−

(
θ̂
(0,DR)
i,j − θ

(0)
i,j

))
(a)
=

1

N

∑
i∈[N ]

(
T(1,DR)
i,j + T(0,DR)

i,j

)
, (A.1)

where (a) follows after defining T(1,DR)
i,j ≜

(
θ̂
(1,DR)
i,j − θ

(1)
i,j

)
and T(0,DR)

i,j ≜ −
(
θ̂
(0,DR)
i,j − θ

(0)
i,j

)
for

every (i, j) ∈ [N ]× [M ]. Then, we have

T(1,DR)
i,j = θ̂

(1,DR)
i,j − θ

(1)
i,j

(a)
= θ̂

(1)
i,j +

(
yi,j − θ̂

(1)
i,j

)ai,j
p̂i,j

− θ
(1)
i,j

(b)
= θ̂

(1)
i,j +

(
θ
(1)
i,j + ε

(1)
i,j − θ̂

(1)
i,j

)pi,j + ηi,j
p̂i,j

− θ
(1)
i,j

= (θ̂
(1)
i,j − θ

(1)
i,j )

(
1− pi,j + ηi,j

p̂i,j

)
+ ε

(1)
i,j

(pi,j + ηi,j
p̂i,j

)
=

(θ̂
(1)
i,j − θ

(1)
i,j )(p̂i,j − pi,j)

p̂i,j
−

(θ̂
(1)
i,j − θ

(1)
i,j )ηi,j

p̂i,j
+

ε
(1)
i,j pi,j

p̂i,j
+

ε
(1)
i,j ηi,j

p̂i,j
, (A.2)

where (a) follows from Eq. (12), and (b) follows from Eqs. (1) to (3). A similar derivation for
a = 0 implies that

T(0,DR)
i,j = −θ̂

(0,DR)
i,j + θ

(0)
i,j

= −
(θ̂

(0)
i,j − θ

(0)
i,j )(1− p̂i,j−(1− pi,j))

1− p̂i,j
+

(θ̂
(0)
i,j − θ

(0)
i,j )(−ηi,j)

1− p̂i,j
−

ε
(0)
i,j (1− pi,j)

1− p̂i,j
−

ε
(0)
i,j (−ηi,j)

1− p̂i,j

=
(θ̂

(0)
i,j − θ

(0)
i,j )(p̂i,j − pi,j)

1− p̂i,j
−

(θ̂
(0)
i,j − θ

(0)
i,j )ηi,j

1− p̂i,j
−

ε
(0)
i,j (1− pi,j)

1− p̂i,j
+

ε
(0)
i,j ηi,j

1− p̂i,j
. (A.3)

Consider any a ∈ {0, 1} and any δ ∈ (0, 1). We claim that, with probability at least 1− 6δ,

1

N

∣∣∣ ∑
i∈[N ]

T(a,DR)
i,j

∣∣∣ ≤2

λ̄
E
(
Θ̂(a)

)
·E
(
P̂
)
+

2
√
cℓδ

λ̄
√
ℓ1N

E
(
Θ̂(a)

)
+

2σ
√
cℓδ

λ̄
√
N

+
2σm(cℓδ)

λ̄
√
ℓ1N

, (A.4)
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where recall that m(cℓδ) = max
(
cℓδ,

√
cℓδ

)
. We provide a proof of this claim at the end of

this section. Applying triangle inequality in Eq. (A.1) and using Eq. (A.4) with a union
bound, we obtain that

∣∣∆ATEDR
·,j

∣∣ ≤ 2

λ̄
·E
(
Θ̂
)
E
(
P̂
)
+

2
√
cℓδ

λ̄
√
ℓ1N

E
(
Θ̂
)
+

4σ
√
cℓδ

λ̄
√
N

+
4σm(cℓδ)

λ̄
√
ℓ1N

, (A.5)

with probability at least 1− 12δ. The claim in Eq. (18) follows by re-parameterizing δ.
Next, to establish the claim in Eq. (19), choose δ = 1/N and note that every term in the

right hand side of Eq. (A.5) is op(1) under the conditions on E
(
Θ̂
)

and E
(
P̂
)
. Then, Eq. (19)

follows from Lemma A.5.

Proof of bound (A.4). Recall the partitioning of the units [N ] into R0 and R1 from
Assumption 4. Condition on this partition. Now, to enable the application of concentration
bounds, we split the summation over i ∈ [N ] in the left hand side of Eq. (A.4) into two
parts—one over i ∈ R0 and the other over i ∈ R1—such that the noise terms are independent
of the estimates of Θ(0),Θ(1), P in each of these parts as in Eqs. (14) and (15).

Note that |
∑

i∈[N ] T
(1,DR)
i,j | ≤ |

∑
i∈R0

T(1,DR)
i,j |+ |

∑
i∈R1

T(1,DR)
i,j |. Let s ∈ {0, 1}. Eq. (A.2)

and triangle inequality imply

∣∣∣ ∑
i∈Rs

T(1,DR)
i,j

∣∣∣ ≤ ∣∣∣ ∑
i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

)(
p̂i,j−pi,j

)
p̂i,j

∣∣∣+∣∣∣ ∑
i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

)
ηi,j

p̂i,j

∣∣∣
+
∣∣∣ ∑
i∈Rs

ε
(1)
i,j pi,j

p̂i,j

∣∣∣+∣∣∣ ∑
i∈Rs

ε
(1)
i,j ηi,j

p̂i,j

∣∣∣. (A.6)

Applying the Cauchy-Schwarz inequality to bound the first term yields that

∣∣∣∣ ∑
i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

)(
p̂i,j−pi,j

)
p̂i,j

∣∣∣∣ ≤
√√√√∑

i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

p̂i,j

)2

·
∑
i∈Rs

(
p̂i,j − pi,j

)2
≤

∥∥(Θ̂(1)
·,j −Θ

(1)
·,j
)
⃝/ P̂·,j

∥∥
2

∥∥P̂·,j−P·,j
∥∥
2
. (A.7)

To bound the second term in Eq. (A.6), note that ηi,j is subGaussian(1/
√
ℓ1) (see Ex-

ample 2.5.8 in Vershynin (2018)), zero-mean due to Assumption 2(a), and independent
across all i ∈ [N ] due to Assumption 2(c). Moreover, Assumption 4 (i.e., Eq. (14)) pro-
vides that (θ̂

(1)
i,j , θ̂

(0)
i,j , p̂i,j)i∈Rs ⊥⊥ (ηi,j)i∈Rs . Hence, applying the subGaussian concentration

(Corollary A.1) for (ηi,j)i∈Rs yields that

∣∣∣∣ ∑
i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

)
ηi,j

p̂i,j

∣∣∣∣ ≤ √
cℓδ√
ℓ1

·

√√√√∑
i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

p̂i,j

)2

≤
√
cℓδ√
ℓ1

∥∥(Θ̂(1)
·,j −Θ

(1)
·,j
)
⃝/ P̂·,j

∥∥
2
, (A.8)

with probability at least 1− δ.
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To bound the third term in Eq. (A.6), note that ε
(1)
i,j is subGaussian(σ) due to Assump-

tion 2(e), zero-mean due to Assumption 2(a), and independent across all i ∈ [N ] due to
Assumption 2(d). Moreover, Assumption 4 provides (i.e., Eq. (15)) that (p̂i,j)i∈Rs ⊥⊥ (ε

(1)
i,j )i∈Rs .

Hence, applying the subGaussian concentration (Corollary A.1) for (ε
(1)
i,j )i∈Rs yields that

∣∣∣ ∑
i∈Rs

ε
(1)
i,j pi,j

p̂i,j

∣∣∣ ≤ σ
√

cℓδ

√∑
i∈Rs

(pi,j
p̂i,j

)2

≤ σ
√

cℓδ
∥∥P·,j ⃝/ P̂·,j

∥∥
2
, (A.9)

with probability at least 1− δ.
Finally, to bound the fourth term in Eq. (A.6), note that ε(1)i,j ηi,j is subExponential(σ/

√
ℓ1)

due to Lemma A.3. Further, ε(1)i,j ηi,j is zero-mean due to Assumption 2(a) and independent
across all i ∈ [N ] due to Assumption 2(b) to (d). Moreover, Assumption 4 (i.e., Eqs. (14)
and (15)) imply that (p̂i,j)i∈Rs ⊥⊥ (ηi,j, ε

(1)
i,j )i∈Rs . Hence, applying the subExponential concen-

tration (Corollary A.2) for (ηi,jε
(1)
i,j )i∈Rs yields that

∣∣∣ ∑
i∈Rs

ε
(1)
i,j ηi,j

p̂i,j

∣∣∣ ≤ σm(cℓδ)√
ℓ1

∥1N ⃝/ P̂·,j∥2, (A.10)

with probability at least 1− δ. Putting together Eqs. (A.6) to (A.10), we conclude that, with
probability at least 1− 3δ,

1

N

∣∣∣ ∑
i∈Rs

T(1,DR)
i,j

∣∣∣ ≤ 1

N

∥∥(Θ̂(1)
·,j −Θ

(1)
·,j
)
⃝/ P̂·,j

∥∥
2

∥∥P̂·,j−P·,j
∥∥
2
+

√
cℓδ√
ℓ1N

∥∥(Θ̂(1)
·,j −Θ

(1)
·,j
)
⃝/ P̂·,j

∥∥
2

+
σ
√
cℓδ

N

∥∥P·,j ⃝/ P̂·,j
∥∥
2
+

σm(cℓδ)√
ℓ1N

∥∥1N ⃝/ P̂·,j
∥∥
2
. (A.11)

Then, noting that 1/p̂i,j ≤ 1/λ̄ for every i ∈ [N ] and j ∈ [M ] from Assumption 3, and
consequently that ∥B·,j ⃝/ P̂·,j∥2 ≤ ||B||1,2/λ̄ for any matrix B and every j ∈ [M ], we obtain
the following bound, with probability at least 1− 3δ,

1

N

∣∣∣ ∑
i∈Rs

T(1,DR)
i,j

∣∣∣ ≤ 1

λ̄N
||Θ̂(1)−Θ(1)||1,2||P̂−P ||1,2 +

√
cℓδ

λ̄
√
ℓ1N

||Θ̂(1)−Θ(1)||1,2

+
σ
√
cℓδ

λ̄N
||P ||1,2 +

σm(cℓδ)

λ̄
√
ℓ1N

||1||1,2 (A.12)

(a)

≤ 1

λ̄
E
(
Θ̂(1)

)
·E
(
P̂
)
+

√
cℓδ

λ̄
√
ℓ1N

E
(
Θ̂(1)

)
+

σ
√
cℓδ

λ̄
√
N

+
σm(cℓδ)

λ̄
√
ℓ1N

, (A.13)

where (a) follows from Eq. (16) and because ||P ||1,2 ≤
√
N and ||1||1,2 =

√
N . Then, the claim

in Eq. (A.4) follows for a = 1 by using Eq. (A.13) and applying a union bound over s ∈ {0, 1}.
The proof of Eq. (A.4) for a = 0 follows similarly.
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C. Proof of Theorem 2: Asymptotic Normality for DR

For every (i, j) ∈ [N ]× [M ], recall the definitions of T(1,DR)
i,j and T(0,DR)

i,j from Eq. (A.2) and
Eq. (A.3), respectively. Then, define

X(1,DR)
i,j ≜ T(1,DR)

i,j − ε
(1)
i,j −

ε
(1)
i,j ηi,j

pi,j
(A.14)

X(0,DR)
i,j ≜ T(0,DR)

i,j + ε
(0)
i,j −

ε
(0)
i,j ηi,j

1− pi,j
,

and

ZDR
i,j ≜ ε

(1)
i,j +

ε
(1)
i,j ηi,j

pi,j
− ε

(0)
i,j +

ε
(0)
i,j ηi,j

1− pi,j
. (A.15)

Fix any j ∈ [M ]. Then, the simplification of ∆ATEDR
·,j in Eq. (A.1) can be re-expressed as

∆ATEDR
·,j =

1

N

∑
i∈[N ]

(
X(1,DR)
i,j + X(0,DR)

i,j + ZDR
i,j

)
(A.16)

We prove in Appendices C.1 and C.2 the following convergence results for the above terms.

Lemma C.1 (Convergence of XDR
j ). Suppose Assumptions 1 to 4 and conditions (C1) to (C3)

in Theorem 2 hold. For any fixed j ∈ [M ],

1

σj
√
N

∑
i∈[N ]

(
X(1,DR)
i,j + X(0,DR)

i,j

)
= op(1).

Lemma C.2 (Convergence of ZDR
j ). Suppose Assumptions 1 and 2 hold and condition (C3)

in Theorem 2 hold. For any fixed

1

σj
√
N

∑
i∈[N ]

ZDR
i,j

d−→ N (0, 1).

Now, Theorem 2 follows by applying Slutsky’s theorem to put together Lemmas C.1
and C.2 with Eq. (A.16).

C.1. Proof of Lemma C.1
Fix any j ∈ [M ]. Consider any a ∈ {0, 1} and any δ ∈ (0, 1). We claim that, with probability
at least 1− δ/2,

1

N

∑
i∈[N ]

X(a,DR)
i,j ≤2

λ̄
·E
(
Θ̂(a)

)
E
(
P̂
)
+

2
√

cℓδ/12

λ̄
√
ℓ1

·
E
(
Θ̂(a)

)
√
N

+
4σm(cℓδ/12)

λλ̄
√
ℓ1

·
E
(
P̂
)

√
N

, (A.17)
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where recall that m(cℓδ/12) = max
(
cℓδ/12,

√
cℓδ/12

)
. We provide a proof of this claim at the

end of this section. Then, using Eq. (A.17) with a union bound, and the fact that σj ≥ c > 0
as per condition (C3), we obtain the following with probability at least 1− δ,

1

σj
√
N

∑
i∈[N ],
a∈{0,1}

X(a,DR)
i,j ≤ 1

c

(
2

λ̄
·
√
NE

(
Θ̂
)
E
(
P̂
)
+
2
√

cℓδ/12

λ̄
√
ℓ1

·E
(
Θ̂
)
+
8σm(cℓδ/12)

λλ̄
√
ℓ1

·E
(
P̂
))

. (A.18)

We emphasize that Eq. (A.18) holds for any δ ∈ (0, 1). Next, we choose a particular δ that is
o(1) and, under conditions (C1) and (C2), show that each of the three terms in the right
hand side of Eq. (A.18) are op(1). In particular, we choose

δ = exp
(
− 1/max

{
tN ,

√
sN

})
.

We note that this choice of δ suffices. First, δ = o(1) follows by using condition (C1),
the continuous mapping theorem, and the convergence in probability of the maximum of
two sequences of variables. Second,

√
NE

(
Θ̂
)
E
(
P̂
)
= op(1) from condition (C2). Third,√

ℓδ/12E
(
Θ̂
)
= op(1) follows by using condition (C1) and the continuous mapping theorem

after noting that
√

ℓδ/12E
(
Θ̂
)
≤ Op(t

1/2
N ). Fourth, m(ℓδ/12)E

(
P̂
)
= op(1) follows by using

condition (C1) and the continuous mapping theorem after noting that m(ℓδ/12)E
(
P̂
)
≤

Op(max{s1/2N , s
3/4
N }). Finally, Lemma C.1 follows from Lemma A.5.

Proof of Eq. (A.17) This proof follows a very similar road map to that used for establishing
the inequality in display (A.4). Recall the partitioning of the units [N ] into R0 and R1 from
Assumption 4. Condition on this partition. Now, to enable the application of concentration
bounds, we split the summation over i ∈ [N ] in the left hand side of Eq. (A.17) into two
parts—one over i ∈ R0 and the other over i ∈ R1—such that the noise terms are independent
of the estimates of Θ(0),Θ(1), P in each of these parts as in Eqs. (14) and (15).

Fix a = 1. Then, Eqs. (A.2) and (A.14) imply that

X(1,DR)
i,j =

(
θ̂
(1)
i,j −θ

(1)
i,j

)(
p̂i,j−pi,j

)
p̂i,j

−
(
θ̂
(1)
i,j −θ

(1)
i,j

)
ηi,j

p̂i,j
+

ε
(1)
i,j pi,j

p̂i,j
+

ε
(1)
i,j ηi,j

p̂i,j
− ε

(1)
i,j −

ε
(1)
i,j ηi,j

pi,j

=

(
θ̂
(1)
i,j −θ

(1)
i,j

)(
p̂i,j−pi,j

)
p̂i,j

−
(
θ̂
(1)
i,j −θ

(1)
i,j

)
ηi,j

p̂i,j
−
ε
(1)
i,j

(
p̂i,j−pi,j

)
p̂i,j

−
ε
(1)
i,j ηi,j

(
p̂i,j−pi,j

)
p̂i,jpi,j

.

Now, note that |
∑

i∈[N ] X
(1,DR)
i,j | ≤ |

∑
i∈R0

X(1,DR)
i,j | + |

∑
i∈R1

X(1,DR)
i,j |. Fix any s ∈ {0, 1}.

Then, triangle inequality implies that∣∣∣ ∑
i∈Rs

X(1,DR)
i,j

∣∣∣ ≤∣∣∣ ∑
i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

)(
p̂i,j−pi,j

)
p̂i,j

∣∣∣+ ∣∣∣ ∑
i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

)
ηi,j

p̂i,j

∣∣∣
+
∣∣∣ ∑
i∈Rs

ε
(1)
i,j

(
p̂i,j−pi,j

)
p̂i,j

∣∣∣+ ∣∣∣ ∑
i∈Rs

ε
(1)
i,j ηi,j

(
p̂i,j−pi,j

)
p̂i,jpi,j

∣∣∣. (A.19)
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Next, note that the decomposition in Eq. (A.19) is identical to the one in Eq. (A.6), except
for the fact when compared to Eq. (A.6), the last two terms in Eq. (A.19) have an additional
factor of (p̂i,j−pi,j)/pi,j . As a result, mimicking steps used to derive Eq. (A.11), we can obtain
the following bound, with probability at least 1− 3δ,

1

N

∣∣∣ ∑
i∈Rs

X(1,DR)
i,j

∣∣∣ ≤ 1

N

∥∥(Θ̂(1)
·,j −Θ

(1)
·,j
)
⃝/ P̂·,j

∥∥
2

∥∥P̂·,j−P·,j
∥∥
2
+

√
cℓδ√
ℓ1N

∥∥(Θ̂(1)
·,j −Θ

(1)
·,j
)
⃝/ P̂·,j

∥∥
2

+
σ
√
cℓδ

N

∥∥(P̂·,j−P·,j
)
⃝/ P̂·,j

∥∥
2
+

σm(cℓδ)√
ℓ1N

∥∥(P̂·,j−P·,j
)
⃝/

(
P̂·,j ⊙ P·,j

)∥∥
2
.

Then, noting that 1/pi,j ≤ 1/λ and 1/p̂i,j ≤ 1/λ̄ for all i ∈ [N ] and j ∈ [M ] from Assump-
tions 1 and 3, and consequently that ∥B·,j ⃝/ P̂·,j∥2 ≤ ||B||1,2/λ̄ and ∥B·,j ⃝/ P·,j∥2 ≤ ||B||1,2/λ
for any matrix B and every j ∈ [M ], we obtain the following bound, with probability at least
1− 3δ,

1

N

∣∣∣∑
i∈Rs

X(1,DR)
i,j

∣∣∣≤ 1

λ̄N
||Θ̂(1)−Θ(1)||1,2||P̂−P ||1,2 +

√
cℓδ

λ̄
√
ℓ1N

||Θ̂(1)−Θ(1)||1,2

+
σ
√
cℓδ

λ̄N
||P̂−P ||1,2 +

σm(cℓδ)

λλ̄
√
ℓ1N

||P̂−P ||1,2

(a)

≤ 1

λ̄N
||Θ̂(1)−Θ(1)||1,2||P̂−P ||1,2 +

√
cℓδ

λ̄
√
ℓ1N

||Θ̂(1)−Θ(1)||1,2

+
2σm(cℓδ)

λλ̄
√
ℓ1N

||P̂−P ||1,2

(b)

≤ 1

λ̄
E
(
Θ̂(1)

)
·E
(
P̂
)
+

√
cℓδ

λ̄
√
ℓ1N

E
(
Θ̂(1)

)
+

2σm(cℓδ)

λλ̄
√
ℓ1N

E
(
P̂
)
, (A.20)

where (a) follows because λ ≤ 1/2 < 1/
√
ℓ1 from Assumption 1 and

√
cℓδ ≤ m(cℓδ), and (b)

follows from Eq. (16). Then, the claim in Eq. (A.17) follows for a = 1 by applying a union
bound over s ∈ {0, 1} using Eq. (A.20), and re-parameterizing δ. The proof of Eq. (A.4) for
a = 0 follows similarly.

C.2. Proof of Lemma C.2
To prove this result, we invoke Lyapunov central limit theorem (CLT).

Lemma C.3 (Lyapunov CLT, see Theorem 27.3 of Billingsley (2017)). Consider a sequence
x1, x2, · · · of independent, mean-zero, and finite variance random variables. If Lyapunov’s
condition is satisfied, i.e., there exists ω > 0 such that∑N

i=1 E[|xi|2+ω]
(
∑N

i=1 E[x2
i ])

2+ω
2

→ 0, (A.21)
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as N → ∞, then ∑N
i=1 xi

(
∑N

i=1 E[x2
i ])

1
2

d−→ N (0, 1),

as N → ∞.

Fix any j ∈ [M ]. We apply Lyapunov CLT in Lemma C.3 on the sequence ZDR
1,j ,ZDR

2,j , · · ·
where ZDR

i,j is as defined in Eq. (A.15). Note that Assumption 2(a) and (b) imply E[ZDR
i,j ] = 0

for all i ∈ [N ], and Assumption 2(b) to (d) imply that ZDR
i,j ⊥⊥ ZDR

i′,j for all i ̸= i′ ∈ [N ]. First,
we show in Appendix C.2.1 that

Var(ZDR
i,j ) =

(σ
(1)
i,j )

2

pi,j
+

(σ
(0)
i,j )

2

1− pi,j
, (A.22)

for each i ∈ [N ]. Next, we show in Appendix C.2.2 that Lyapunov’s condition (A.21) holds
for the sequence ZDR

1,j ,ZDR
2,j , · · · with ω = 1. Finally, applying Lemma C.3 and using the

definition of σj from Eq. (22) yields Lemma C.2.

C.2.1. Proof of Eq. (A.22)
Fix any i ∈ [N ] and consider Var(ZDR

i,j ). We have

Var
(
ZDR
i,j

)
=Var

(
ε
(1)
i,j

(
1 +

ηi,j
pi,j

)
− ε

(0)
i,j

(
1− ηi,j

1− pi,j

))
. (A.23)

We claim the following:

Var
(
ε
(1)
i,j

(
1 +

ηi,j
pi,j

))
=

(σ
(1)
i,j )

2

pi,j
, (A.24)

Var
(
ε
(0)
i,j

(
1− ηi,j

1− pi,j

))
=

(σ
(0)
i,j )

2

1− pi,j
, and (A.25)

Cov
(
ε
(1)
i,j

(
1 +

ηi,j
pi,j

)
, ε

(0)
i,j

(
1− ηi,j

1− pi,j

))
= 0. (A.26)

Then, Eq. (A.22) follows by putting together Eqs. (A.23) to (A.26) by using Var(x1 − x2) =
Var(x1)+Var(x2)− 2Cov(x1, x2) for any random variables x1 and x2. It remains to establish
the claims in Eqs. (A.24) to (A.26).

Assumption 2 immediately implies that ε
(1)
i,j ⊥⊥ ηi,j and E[ε(1)i,j ] = E[ηi,j] = 0 (so that

ε
(1)
i,j

(
1 +

ηi,j
pi,j

)
is mean zero). Applying these observations, we obtain Eq. (A.24) as follows,

Var
(
ε
(1)
i,j

(
1 +

ηi,j
pi,j

))
= E

[(
ε
(1)
i,j

(
1 +

ηi,j
pi,j

))2
]
= E

[(
ε
(1)
i,j

)2
]
E
[(

1 +
ηi,j
pi,j

)2
]

= E
[(

ε
(1)
i,j

)2
][

1 + E
[
η2i,j
p2i,j

]]
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(a)
= (σ

(1)
i,j )

2

[
1 +

pi,j(1− pi,j)

p2i,j

]
=

(σ
(1)
i,j )

2

pi,j
,

where (a) follows because E[η2i,j] = Var(ηi,j) = pi,j(1 − pi,j) from Eq. (3), and E
[
(ε

(1)
i,j )

2
]
=

Var(ε(1)i,j ) = (σ
(1)
i,j )

2 from condition (C3). A similar argument establishes Eq. (A.25). Applying
the same observations as above, we obtain Eq. (A.26) as follows,

Cov
(
ε
(1)
i,j

(
1 +

ηi,j
pi,j

)
, ε

(0)
i,j

(
1− ηi,j

1− pi,j

))
= E

[
ε
(1)
i,j

(
1 +

ηi,j
pi,j

)
× ε

(0)
i,j

(
1− ηi,j

1− pi,j

)]
(a)
= E

[(
1 +

ηi,j
pi,j

)(
1− ηi,j

1− pi,j

)]
E[ε(1)i,j ε

(0)
i,j ]

=

(
1− E

[
η2i,j

pi,j
(
1− pi,j

)])E[ε(1)i,j ε(0)i,j ]
(b)
= 0 · E[ε(1)i,j ε

(0)
i,j ] = 0,

where (a) follows because (ε
(0)
i,j , ε

(1)
i,j ) ⊥⊥ ηi,j from Assumption 2 and (b) follows because

E[η2i,j] = Var(ηi,j) = pi,j(1− pi,j) from Eq. (3).

C.2.2. Proof of Lyapunov’s condition with ω = 1

We have∑
i∈[N ] E

[
|ZDR

i,j |3
](∑

i∈[N ] Var(ZDR
i,j )

)3/2 =
1

N3/2
·

∑
i∈[N ] E

[
|ZDR

i,j |3
](

1
N

∑
i∈[N ] Var(ZDR

i,j )
)3/2 (a)

=
1

N3/2
·
∑

i∈[N ] E
[
|ZDR

i,j |3
](

σj
)3/2

(b)

≤ 1

N3/2
·
∑

i∈[N ] E
[
|ZDR

i,j |3
]

c
3/2
1

(c)

≤ 1

N1/2
· c2

c
3/2
1

, (A.27)

where (a) follows by putting together Eqs. (22) and (A.22), (b) follows because σj ≥ c1 > 0
as per condition (C3), (c) follows because the absolute third moments of subExponential
random variables are bounded, after noting that ZDR

i,j is a subExponential random variable.
Then, condition (A.21) holds for ω = 1 as the right hand side of Eq. (A.27) goes to 0 as
N → ∞.

D. Proof of Proposition 1 (20): Finite Sample Guarantees for OI
Fix any j ∈ [M ]. Recall the definitions Eqs. (5) and (9) of the parameters ATE·,j and
corresponding outcome imputation estimates ÂTEOI

·,j . The error ∆ATEOI
·,j = ÂTEOI

·,j −ATE·,j
can be re-expressed as

∆ATEOI
·,j =

1

N

∑
i∈[N ]

(
θ̂
(1)
i,j − θ̂

(0)
i,j

)
− 1

N

∑
i∈[N ]

(
θ
(1)
i,j − θ

(0)
i,j

)
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=
1

N

∑
i∈[N ]

((
θ̂
(1)
i,j − θ

(1)
i,j

)
−

(
θ̂
(0)
i,j − θ

(0)
i,j

))
.

Using the triangle inequality, we have∣∣∆ATEOI
·,j
∣∣ ≤ 1

N

∣∣∣ ∑
i∈[N ]

(
θ̂
(1)
i,j − θ

(1)
i,j

)∣∣∣+ 1

N

∣∣∣ ∑
i∈[N ]

(
θ̂
(0)
i,j − θ

(0)
i,j

)∣∣∣. (A.28)

Consider any a ∈ {0, 1}. We claim that

1

N

∣∣∣ ∑
i∈[N ]

(
θ̂
(a)
i,j − θ

(a)
i,j

)∣∣∣ ≤ E
(
Θ̂(a)

)
. (A.29)

The proof is complete by putting together Eqs. (A.28) and (A.29).

Proof of Eq. (A.29) Fix any a ∈ {0, 1}. Using the Cauchy-Schwarz inequality, we have

1

N

∣∣∣ ∑
i∈[N ]

(
θ̂
(1)
i,j − θ

(1)
i,j

)∣∣∣ ≤ 1

N
∥1N∥2∥Θ̂(1)

·,j −Θ
(1)
·,j ∥2 =

1√
N
∥Θ̂(1)

·,j −Θ
(1)
·,j ∥2 ≤

1√
N
||Θ̂(1) −Θ(1)||1,2.

The proof is complete by using the notation in Eq. (16).

E. Proof of Proposition 1 (21): Finite Sample Guarantees for IPW
Fix any j ∈ [M ]. Recall the definitions Eqs. (5) and (10) of the parameters ATE·,j and
corresponding inverse probability weighting estimates ÂTE IPW

·,j . The error ∆ATEIPW
·,j =

ÂTE IPW
·,j − ATE·,j can be re-expressed as

∆ATEIPW
·,j =

1

N

∑
i∈[N ]

(yi,jai,j
p̂i,j

− yi,j(1− ai,j)

1− p̂i,j

)
− 1

N

∑
i∈[N ]

(
θ
(1)
i,j − θ

(0)
i,j

)
=

1

N

∑
i∈[N ]

((yi,jai,j
p̂i,j

− θ
(1)
i,j

)
−
(yi,j(1− ai,j)

1− p̂i,j
− θ

(0)
i,j

))
(a)
=

1

N

∑
i∈[N ]

(
T(1,IPW)
i,j + T(0,IPW)

i,j

)
, (A.30)

where (a) follows after defining T(1,IPW)
i,j ≜ yi,jai,j/p̂i,j − θ

(1)
i,j and T(0,IPW)

i,j ≜ θ
(0)
i,j − yi,j(1 −

ai,j)/1− p̂i,j for every (i, j) ∈ [N ]× [M ]. Then, we have

T(1,IPW)
i,j =

yi,jai,j
p̂i,j

− θ
(1)
i,j

(a)
=

(
θ
(1)
i,j + ε

(1)
i,j

)(
pi,j + ηi,j

)
p̂i,j

− θ
(1)
i,j
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= θ
(1)
i,j

(pi,j + ηi,j
p̂i,j

− 1
)
+ ε

(1)
i,j

(pi,j + ηi,j
p̂i,j

)
=

θ
(1)
i,j

(
pi,j − p̂i,j

)
p̂i,j

+
θ
(1)
i,j ηi,j

p̂i,j
+

ε
(1)
i,j pi,j

p̂i,j
+

ε
(1)
i,j ηi,j

p̂i,j
, (A.31)

where (a) follows from Eqs. (1) to (3). A similar derivation for a = 0 implies that

T(0,IPW)
i,j = θ

(0)
i,j − yi,j(1− ai,j)

1− p̂i,j

= −
θ
(0)
i,j

(
1− pi,j −

(
1− p̂i,j

))
1− p̂i,j

−
θ
(0)
i,j (−ηi,j)

1− p̂i,j
−

ε
(0)
i,j

(
1− pi,j

)
1− p̂i,j

−
ε
(0)
i,j (−ηi,j)

1− p̂i,j

=
θ
(0)
i,j

(
pi,j − p̂i,j

)
1− p̂i,j

+
θ
(0)
i,j ηi,j

1− p̂i,j
−

ε
(0)
i,j

(
1− pi,j

)
1− p̂i,j

+
ε
(0)
i,j ηi,j

1− p̂i,j
.

Consider any a ∈ {0, 1} and any δ ∈ (0, 1). We claim that, with probability at least 1− 6δ,

1

N

∣∣∣ ∑
i∈[N ]

T(a,IPW)
i,j

∣∣∣ ≤2

λ̄
||Θ(a)||max ·E

(
P̂
)
+

2
√
cℓδ

λ̄
√
ℓ1N

||Θ(a)||max +
2σ

√
cℓδ

λ̄
√
N

+
2σm(cℓδ)

λ̄
√
ℓ1N

. (A.32)

where recall that m(cℓδ) = max
(
cℓδ,

√
cℓδ

)
. We provide a proof of this claim at the end of

this section. Applying triangle inequality in Eq. (A.30) and using Eq. (A.32) with a union
bound, we obtain that

∣∣∆ATEIPW
·,j

∣∣ ≤ 2

λ̄
||Θ||max ·E

(
P̂
)
+

2
√
cℓδ

λ̄
√
ℓ1N

||Θ||max +
4σ

√
cℓδ

λ̄
√
N

+
4σm(cℓδ)

λ̄
√
ℓ1N

,

with probability at least 1− 12δ. The claim in Eq. (21) follows by re-parameterizing δ.

Proof of Eq. (A.32). This proof follows a very similar road map to that used for establishing
the inequality in display (A.4). Recall the partitioning of the units [N ] into R0 and R1 from
Assumption 4. Condition on this partition. Now, to enable the application of concentration
bounds, we split the summation over i ∈ [N ] in the left hand side of Eq. (A.32) into two
parts—one over i ∈ R0 and the other over i ∈ R1—such that the noise terms are independent
of the estimates of Θ(0),Θ(1), P in each of these parts as in Eqs. (14) and (15).

Fix a = 1 and note that |
∑

i∈[N ] T
(1,IPW)
i,j | ≤ |

∑
i∈R0

T(1,IPW)
i,j |+ |

∑
i∈R1

T(1,IPW)
i,j |. Fix any

s ∈ {0, 1}. Then, Eq. (A.31) and triangle inequality imply that

∣∣∣ ∑
i∈Rs

T(1,IPW)
i,j

∣∣∣≤ ∣∣∣ ∑
i∈Rs

θ
(1)
i,j

(
pi,j−p̂i,j

)
p̂i,j

∣∣∣+∣∣∣ ∑
i∈Rs

θ
(1)
i,j ηi,j

p̂i,j

∣∣∣+ ∣∣∣ ∑
i∈Rs

ε
(1)
i,j pi,j

p̂i,j

∣∣∣+∣∣∣ ∑
i∈Rs

ε
(1)
i,j ηi,j

p̂i,j

∣∣∣. (A.33)

Next, note that the decomposition in Eq. (A.33) is identical to the one in Eq. (A.6),
except for the fact when compared to Eq. (A.6), the first two terms in Eq. (A.33) have a
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factor of θ(1)i,j instead of
(
θ̂
(1)
i,j −θ

(1)
i,j

)
. As a result, mimicking steps used to derive Eq. (A.12),

we obtain the following bound, with probability at least 1− 3δ,

1

N

∣∣∣ ∑
i∈Rs

T(1,IPW)
i,j

∣∣∣≤ 1

λ̄N
||Θ(1)||1,2||P̂−P ||1,2+

√
cℓδ

λ̄
√
ℓ1N

||Θ(1)||1,2+
σ
√
cℓδ

λ̄N
||P ||1,2+

σm(cℓδ)

λ̄
√
ℓ1N

||1||1,2

(a)

≤ 1

λ̄
√
N
||Θ(1)||max||P̂−P ||1,2+

√
cℓδ

λ̄
√
ℓ1N

||Θ(1)||max+
σ
√
cℓδ

λ̄
√
N

+
σm(cℓδ)

λ̄
√
ℓ1N

,

(b)

≤ 1

λ̄
||Θ(1)||max ·E

(
P̂
)
+

√
cℓδ

λ̄
√
ℓ1N

||Θ(1)||max +
σ
√
cℓδ

λ̄
√
N

+
σm(cℓδ)

λ̄
√
ℓ1N

, (A.34)

where (a) follows because ||Θ(1)||1,2 ≤
√
N ||Θ(1)||max, ||P ||1,2 ≤

√
N and ||1||1,2 =

√
N , and (b)

follows from Eq. (16). Then, the claim in Eq. (A.32) follows for a = 1 by using Eq. (A.34) and
applying a union bound over s ∈ {0, 1}. The proof of Eq. (A.32) for a = 0 follows similarly.

F. Proofs of Propositions 2 and 3
In Appendix F.1, we prove Proposition 2, i.e., we show that the estimates of P , Θ(0), and
Θ(1) generated by Cross-Fitted-MC satisfy Assumption 4. Next, we prove Proposition 3
implying that the estimates of P , Θ(0), and Θ(1) generated by Cross-Fitted-SVD satisfy the
condition (C2) in Theorem 2 as long as

√
N/M = o(1).

F.1. Proof of Proposition 2: Guarantees for Cross-Fitted-MC

Consider any matrix completion algorithm MC and any block partition P of the set [N ]× [M ]
into four blocks as in Assumption 4. Fix any I ∈ P .

Consider P̂ in Eq. (27). To see why P̂I ⊥⊥ WI , note that A ⊗ 1−I depends only on
W \WI which is independent of WI from Assumption 2(c). Further, P̂I ⊥⊥ E

(0)
I , E

(1)
I holds

since W \ WI is independent of (E(0)
I , E

(1)
I ) from Assumption 2(b). Overall, we conclude

P̂I ⊥⊥ (WI , E
(0)
I , E

(1)
I ).

Next, consider Θ̂(0) and Θ̂(1) defined in Eqs. (25) and (26), respectively. Fix any a ∈ {0, 1}.
To see why Θ̂

(a)
I ⊥⊥ WI , note that Θ̂(a)

I depends on Y (a),obs ⊗ 1−I , which in turn depends on
(i) W \WI and (ii) E(a) \E(a)

I , each of which are independent of WI due to Assumption 2(c)
and Assumption 2(b), respectively.

F.2. Proof of Proposition 3: Guarantees for Cross-Fitted-SVD

To prove this result, we first derive a corollary of Lemma A.1 in Bai and Ng (2021) for a
generic matrix of interest T , such that S = (T +H)⊗ F , and apply it to P , Θ(0) ⊙ (1− P ),
and Θ(1) ⊙ P . We impose the following restrictions on T and H.

Assumption 8. There exist a constant rT ∈ [min{N,M}] and a collection of latent factors

Ũ ∈ RN×rT and Ṽ ∈ RM×rT ,

such that,

35



(a) T satisfies the factorization: T = Ũ Ṽ ⊤,

(b) ||Ũ ||2,∞ ≤ c and ||Ṽ ||2,∞ ≤ c for some positive constant c, and

(c) N−1Ũ⊤Ũ and M−1Ṽ ⊤Ṽ are positive definite matrices.

Assumption 9. The noise matrix H is such that,

(a) {hi,j : i ∈ [N ], j ∈ [M ]} are zero-mean subExponential with the subExponential norm
bounded by a constant σ,

(b)
∑

j′∈[M ]

∣∣E[hi,jhi,j′ ]∣∣ ≤ c for every i ∈ [N ] and j ∈ [M ], and

(c) {Hi,· : i ∈ [N ]} are mutually independent (across i).

The next result characterizes the entry-wise error in recovering the missing entries of
a matrix where all entries in one block are deterministically missing (see the discussion in
Section 5.1) using the TW algorithm (summarized in Section 5.2.1). Its proof, essentially
established as a corollary of Bai and Ng (2021, Lemma A.1), is provided in Appendix F.3.

Corollary F.1. Consider a matrix of interest T that satisfies Assumption 8 and a noise
matrix H that satisfies Assumption 9. Let S ∈ {R, ?}N×M be the observed matrix as in Eq. (6).
Let Robs ⊆ [N ] and Cobs ⊆ [M ] denote the set of rows and columns of S, respectively, with all
entries observed. Suppose the mask matrix F is such that each i ∈ [N ] belongs to Robs with
probability 1/2 and each j ∈ [M ] belongs to Cobs with probability 1/2. Let I = Rmiss × Cmiss

where Rmiss ≜ [N ] \ Robs and Cmiss ≜ [M ] \ Cobs. Then, TWrT produces an estimate T̂I of TI
such that

||T̂I − TI ||max = Op

(
1√
N

+
1√
M

)
,

as N,M → ∞.

Given this corollary, we now complete the proof of Proposition 3. Consider the partition
P in step 2 of Cross-Fitted-SVD and fix any I ∈ P . Recall that Cross-Fitted-SVD applies
TW on P ⊗ 1−I , Y (0),full ⊗ 1−I , and Y (1),full ⊗ 1−I , and note that 1−I satisfies the requirement
on the mask matrix in Corollary F.1.

F.2.1. Estimating P .
Consider estimating P using Cross-Fitted-SVD. To apply Corollary F.1, we use Assump-
tions 5 and 6 to note that P satisfies Assumption 8 with rank parameter rp. Then, we
use Eq. (3) and Assumption 2(b) to note that W satisfies Assumption 9. Step 3 of
Cross-Fitted-SVD can be rewritten as P̂ = Projλ̄

(
P
)

and P = Cross-Fitted-MC(TWr1 , A,P)
where r1 = rp. Then,

||P̂I − PI ||max

(a)

≤ ||P I − PI ||max
(b)
= Op

(
1√
N

+
1√
M

)
,
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where (a) follows from Assumptions 1 and 3, and the definition of Projλ̄(·), and (b) follows
from Corollary F.1. Applying a union bound over all I ∈ P , we have

E
(
P̂
) (a)

≤ ||P̂ − P ||max = Op

(
1√
N

+
1√
M

)
, (A.35)

where (a) follows from the definition of L1,2 norm.

F.2.2. Estimating Θ(0) and Θ(1).
For every a ∈ {0, 1}, we show that

E
(
Θ̂(a)

)
= Op

(
1√
N

+
1√
M

)
. (A.36)

We focus on a = 1 noting that the proof for a = 0 is analogous. We split the proof in two
cases: (i) ||

(
Θ̂(1) − Θ(1)

)
⊙ P̂ ||max ≤ ||Θ(1) ⊙

(
P̂ − P

)
||max and (ii) ||

(
Θ̂(1) − Θ(1)

)
⊙ P̂ ||max ≥

||Θ(1) ⊙
(
P̂ − P

)
||max.

In the first case, we have

λ̄||Θ̂(1) −Θ(1)||max

(a)

≤ ||
(
Θ̂(1) −Θ(1)

)
⊙ P̂ ||max ≤ ||Θ(1) ⊙

(
P̂ − P

)
||max

(b)

≤ ||Θ(1)||max||P̂ − P ||max, (A.37)

where (a) follows from Assumption 3 and (b) follows from the definition of ||Θ(1)||max. Then,

E
(
Θ̂(1)

) (a)

≤ ||Θ̂(1)−Θ(1)||max

(b)

≤ ||Θ(1)||max

λ̄
||P̂−P ||max

(c)
=

||Θ(1)||max

λ̄
Op

(
1√
N

+
1√
M

)
,

where (a) follows from the definition of L1,2 norm, (b) follows from Eq. (A.37), and (c) follows
from Eq. (A.35). Then, Eq. (A.36) follows as 1/λ̄ and ||Θ(1)||max are assumed to be bounded.

In the second case, using Eqs. (2) and (3) to expand Y (1),full, we have

Y (1),full = Θ(1) ⊙ P +Θ(1) ⊙ η + ε(1) ⊙ P + ε(1) ⊙ η.

Next, we utilize two claims proven in Appendices F.2.3 and F.2.4 respectively: Θ(1) ⊙ P
satisfies Assumption 8 with rank parameter rθ1rp and

ε(1) ≜ Θ(1) ⊙ η + ε(1) ⊙ P + ε(1) ⊙ η,

satisfies Assumption 9.
Now, note that step 6 of Cross-Fitted-SVD can be rewritten as Θ̂(1) = Θ

(1)
⃝/ P̂ and

Θ
(1)

= Cross-Fitted-MC(TWr3 , Y
(1),full,P) where r3 = rθ1rp. Then, from Corollary F.1,

||Θ(1)

I −Θ
(1)
I ⊙ PI ||max = Op

(
1√
N

+
1√
M

)
.
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Applying a union bound over all I ∈ P and noting that Θ
(1)

= Θ̂(1) ⊙ P̂ , we have

||Θ̂(1) ⊙ P̂ −Θ(1) ⊙ P ||max = Op

(
1√
N

+
1√
M

)
. (A.38)

The left hand side of Eq. (A.38) can be written as,

||Θ̂(1) ⊙ P̂ −Θ(1) ⊙ P ||max = ||Θ̂(1) ⊙ P̂ −Θ(1) ⊙ P̂ +Θ(1) ⊙ P̂ −Θ(1) ⊙ P ||max

(a)

≥ ||
(
Θ̂(1) −Θ(1)

)
⊙ P̂ ||max − ||Θ(1) ⊙

(
P̂ − P

)
||max

(b)

≥ λ̄||Θ̂(1) −Θ(1)||max − ||Θ(1)||max||P̂ − P ||max, (A.39)

where (a) follows from triangle inequality as ||
(
Θ̂(1) −Θ(1)

)
⊙ P̂ ||max ≥ ||Θ(1) ⊙

(
P̂ − P

)
||max

and (b) follows from Assumption 3 and the definition of ||Θ(1)||max. Then,

E
(
Θ̂(1)

) (a)

≤ ||Θ̂(1) −Θ(1)||max

(b)

≤ 1

λ̄
||Θ̂(1) ⊙ P̂ −Θ(1) ⊙ P ||max +

||Θ(1)||max

λ̄
||P̂−P ||max

(b)
=

1

λ̄
Op

(
1√
N

+
1√
M

)
+

||Θ(1)||max

λ̄
Op

(
1√
N

+
1√
M

)
,

where (a) follows from the definition of L1,2 norm, (b) follows from Eq. (A.39), and (c) follows
from Eqs. (A.35) and (A.38). Then, Eq. (A.36) follows as 1/λ̄ and ||Θ(1)||max are assumed to
be bounded.

F.2.3. Proof that Θ(0) ⊙ (1− P ) and Θ(1) ⊙ P satisfy Assumption 8.
Recall the factors U

(0) and V
(0) of Θ(0) ⊙ (1 − P ), and U

(1) and V
(1) of Θ(1) ⊙ P from

Section 5.3. Then, Assumption 8(a) holds from Eq. (29). Next, we note that

||U (1)||2,∞ = ||U ∗ U (1)||2,∞
(a)
= max

i∈[N ]

√∑
j∈[rp]

u2
i,j

∑
j′∈[rθ1 ]

(u
(1)
i,j′)

2 ≤ ||U ||2,∞||U (1)||2,∞
(b)

≤ c,

where (a) follows from the definition of Khatri-Rao product (see Section 1), and (b) follows
from Assumption 6. Then, Θ(1) ⊙ P satisfies Assumption 8(b) by using similar arguments on
V

(1). Further, Θ(0) ⊙ (1−P ) satisfies Assumption 8(b) by noting that ||U ||2,∞ and ||V ||2,∞ are
bounded whenever ||U ||2,∞ and ||V ||2,∞ are bounded, respectively. Finally, Assumption 8(c)
holds from Assumption 6.

F.2.4. Proof that ε(1) satisfies Assumption 9
Recall that ε(1) ≜ Θ(1)⊙η+ε(1)⊙P+ε(1)⊙η. Then, Assumption 9(a) holds as ε(1) is zero-mean
from Assumption 2 and Eq. (3), and ε(1) is subExponential because ε(1)i,j ηi,j is a subExponential
random variable Lemma A.3, every subGaussian random variable is subExponential random
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variable, and sum of subExponential random variables is a subExponential random variable.
Next, Assumption 9(b) holds as∑

j′∈[M ]

∣∣E[ε(1)i,j ε(1)i,j′ ]∣∣ (a)
=

∑
j′∈[M ]

∣∣E[θ(1)i,j θ(1)i,j′ηi,jηi,j′ + pi,jpi,j′ε
(1)
i,j ε

(1)
i,j′ + ε

(1)
i,j ε

(1)
i,j′ηi,jηi,j′ ]

∣∣ (b)

≤ c,

where (a) follows from Assumption 2, and (b) follows from Assumptions 1, 2, and 7, Eq. (3),
Lemma A.3, and because ||Θ(1)||max are bounded. Finally, Assumption 9(b) holds from
Assumptions 2 and 7.

F.3. Proof of Corollary F.1
Corollary F.1 is a direct application of Bai and Ng (2021, Lemma A.1), specialized to our
setting. Notably, Bai and Ng (2021) make four assumptions numbered A, B, C and D in
their paper to establish the corresponding result. It remains to establish that the conditions
assumed in Corollary F.1 imply the necessary conditions used in the proof of Bai and Ng
(2021, Lemma A.1). First, note that due to the specific sampling assumed in defining the
mask matrix in Corollary F.1, Bai and Ng (2021, Assumption D) holds immediately and Bai
and Ng (2021, Assumption B) holds with high probability by Hoeffding’s inequality.

It remains to show how Assumptions 8 and 9 imply the remainder of their assumptions,
namely Bai and Ng (2021, Assumptions A and C). Before doing that, note that certain
assumptions in Bai and Ng (2021) are not actually used in their proof of Lemma A.1 (or
in the proof of other results used in that proof), namely, the distinct eigenvalue condition
in Assumption A(a)(iii), the asymptotic normality conditions in Assumption A(c) and the
asymptotic normality conditions in Assumption C. For completeness, the remaining relevant
conditions from Bai and Ng (2021) are collected in the following two assumptions.

Assumption 10 (Strong block factors). Consider the latent factors Ũ ∈ RN×rT and Ṽ ∈
RM×rT from Assumption 8. Define the following matrices:

Ũobs ≜ ŨRobs×[rT ], Ũmiss ≜ ŨRmiss×[rT ], Ṽ obs ≜ ṼCobs×[rT ], and Ṽ miss ≜ ṼCmiss×[rT ],

where Robs ⊆ [N ] and Cobs ⊆ [M ] denote the set of rows and columns of S, respectively, with
all entries observed, and Rmiss ≜ [N ]\Robs and Cmiss ≜ [M ]\Cobs. Then, the matrices defined
below are positive definite:

ΣŨ ,obs≜
Ũobs⊤Ũobs

|Robs|
, ΣŨ ,miss≜

Ũmiss⊤Ũmiss

|Rmiss|
, ΣṼ ,obs≜

Ṽ obs⊤Ṽ obs

|Cobs|
, and ΣṼ ,miss≜

Ṽ miss⊤Ṽ miss

|Cmiss|
.

Assumption 11. The noise matrix H is such that,

(a) maxj∈[M ]
1
N

∑
j′∈[M ]

∣∣∑
i∈[N ] E[hi,jhi,j′ ]

∣∣ ≤ c,

(b) maxj∈[M ]

∣∣E[hi,jhi′,j]∣∣ ≤ ci,i′ and maxi∈[N ]

∑
i′∈[N ] ci,i′ ≤ c,

(c) 1
NM

∑
i,i′∈[N ]

∑
j,j′∈[M ]

∣∣E[hi,jhi′,j′ ]∣∣ ≤ c, and
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(d) maxj,j′∈[M ]
1
N2E

[∣∣∑
i∈[N ]

(
hi,jhi,j′ − E[hi,jhi,j′ ]

)∣∣4].
Assumption 10 is a restatement of Bai and Ng (2021, Assumption C) (without the central

limit theorems, which are not used in Bai and Ng (2021, Proof of Lemma A.1) as noted
above). This condition ensures a strong factor structure on the sub-matrix corresponding to
observed elements of S as well as on the sub-matrix corresponding to missing elements of S.

Assumption 11 is a restatement of the subset of conditions from Bai and Ng (2021,
Assumption A) necessary in Bai and Ng (2021, proof of Lemma A.1) and it essentially
requires weak dependence in the noise across measurements and across units. In particular,
Assumption 11(a), (b), (c), and (d) correspond to Assumption A(b)(ii), (iii), (iv), (v),
respectively, of Bai and Ng (2021). For the other conditions in Bai and Ng (2021, Assumption
A), note that Assumption 8 above is equivalent to their Assumption A(a)(i) and (ii) of Bai
and Ng (2021) when the factors are non-random as in this work. Similarly, Assumption 9(a)
above is analogous to Assumption A(b)(i) of Bai and Ng (2021). Assumption A(b)(vi) of Bai
and Ng (2021) is implied by their other Assumptions for non-random factors as stated in Bai
(2003).

To establish Corollary F.1, it remains to establish that Assumptions 10 and 11 hold,
which is done in Appendices F.3.1 and F.3.2 respectively.

F.3.1. Assumption 10 holds
We show that ΣŨ ,obs is positive definite. The proof for ΣŨ ,miss, ΣŨ ,obs, and ΣŨ ,miss being
positive definite follows similarly. Define ΣŨ ≜ N−1Ũ⊤Ũ ∈ RrT×rT . From Weyl’s inequality
(Bhatia, 2007, Theorem. 8.2), we have the following for some c > 0:

λmin(Σ
Ũ ,obs) ≥ λmin(Σ

Ũ)−λmax(Σ
Ũ − ΣŨ ,obs)

(a)

≥ c−λmax(Σ
Ũ−ΣŨ ,obs)

≥ c−
∣∣λmax(Σ

Ũ−ΣŨ ,obs)
∣∣,

where (a) follows from Assumption 8(c) as ΣŨ is positive definite. Now, it suffices to show
that

∣∣λmax(Σ
Ũ−ΣŨ ,obs)

∣∣ = op(1).
Recall that the mask matrix F is such that each i ∈ [N ] belongs to Robs with probability

1/2. For every i ∈ [N ], let 1i be an indicator random variable such that 1i = 1 if i ∈ Robs

and 1i = 0 if i /∈ Robs. Then, we express ΣŨ ,obs as follows,

ΣŨ ,obs =

∑
i∈[N ] 1iŨi,·Ũ

⊤
i,·∑

i∈[N ] 1i
. (A.40)

Then, we have

∣∣λmax(Σ
Ũ−ΣŨ ,obs)

∣∣ (a)
=

∣∣∣∣λmax

(∑
i∈[N ] Ũi,·Ũ

⊤
i,·

N
−

∑
i∈[N ] 1iŨi,·Ũ

⊤
i,·∑

i∈[N ] 1i

)∣∣∣∣
(b)

≤
∣∣∣∣λmax

(∑
i∈[N ] Ũi,·Ũ

⊤
i,·

N
−

∑
i∈[N ] 1iŨi,·Ũ

⊤
i,·

N/2

)∣∣∣∣
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+

∣∣∣∣λmax

(∑
i∈[N ] 1iŨi,·Ũ

⊤
i,·

N/2
−

∑
i∈[N ] 1iŨi,·Ũ

⊤
i,·∑

i∈[N ] 1i

)∣∣∣∣, (A.41)

where (a) follows from Eq. (A.40) and the definition of ΣŨ , and (b) follows from the triangle
inequality on the operator norm after noting that the maximum eigenvalue of any symmetric
matrix coincides with its operator norm. Next, we show that each term in Eq. (A.41) is op(1).

Proof that first term in Eq. (A.41) is op(1). We have

λmax

(∑
i∈[N ] Ũi,·Ũ

⊤
i,·

N
−

∑
i∈[N ] 1iŨi,·Ũ

⊤
i,·

N/2

)
= λmax

(
1

N

∑
i∈[N ]

(1− 21i)Ũi,·Ũ
⊤
i,·

)
. (A.42)

To bound Eq. (A.42), we apply Corollary A.3 with

Xi =
1

N
(1− 21i)Ũi,·Ũ

⊤
i,· and Ai =

1

N
Ũi,·Ũ

⊤
i,·. (A.43)

We note that, for every i ∈ [N ], E[Xi] = 0 as E[1i] = 1/2 and A2
i −X2

i is positive semi-definite
as

X2
i =

1

N2
(1− 21i)

2Ũi,·Ũ
⊤
i,·Ũi,·Ũ

⊤
i,·

(a)
=

1

N2
Ũi,·Ũ

⊤
i,·Ũi,·Ũ

⊤
i,· = A2

i ,

where (a) follows because 1i ∈ {0, 1}. We claim that
∣∣λmax(

∑
i∈[n] A

2
i )
∣∣ ≤ c2/N for some

c > 0. Then, using Corollary A.3, Eq. (A.42) is bounded as follows with probability at least
1− δ,

λmax

(
1

N

∑
i∈[N ]

(1− 21i)Ũi,·Ũ
⊤
i,·

)
≤

√
cℓ2δ/rT√
N

.

Therefore, the first term in Eq. (A.41) is op(1). It remains to bound λmax

(∑
i∈[N ] A

2
i

)
. We

have∣∣∣λmax

( ∑
i∈[N ]

A2
i

)∣∣∣ (a)
=

∣∣∣∣ max
x∈RN :∥x∥2=1

x⊤
( ∑
i∈[N ]

A2
i

)
x

∣∣∣∣
(b)
=

∣∣∣ max
x∈RN :∥x∥2=1

1

N2

∑
i∈[N ]

x⊤Ũi,·Ũ
⊤
i,·Ũi,·Ũ

⊤
i,·x

∣∣∣
(c)
=

∣∣∣ max
x∈RN :∥x∥2=1

1

N2

∑
i∈[N ]

∥Ũi,·∥2 · x⊤Ũi,·Ũ
⊤
i,·x

∣∣∣
(d)

≤ max
x∈RN :∥x∥2=1

c

N2

∑
i∈[N ]

|x⊤Ũi,·|2
(e)

≤ max
x∈RN :∥x∥2=1

c

N2

∑
i∈[N ]

∥x∥2∥Ũi,·∥2
(f)

≤ c2

N
,
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where (a) follows from the definition of the maximum eigenvalue of a matrix, (b) follows from
Eq. (A.43), (c) follows because Ũi,· ∈ RrT×1, (d) and (f) follow from Assumption 8(b), (e)
follows from Cauchy-Schwarz inequality.

Proof that second term in Eq. (A.41) is op(1). We have∣∣∣∣λmax

(∑
i∈[N ]1iŨi,·Ũ

⊤
i,·

N/2
−
∑

i∈[N ]1iŨi,·Ũ
⊤
i,·∑

i∈[N ] 1i

)∣∣∣∣ = ∣∣∣∣λmax

(
2

N

∑
i∈[N ]

1iŨi,·Ũ
⊤
i,·

)∣∣∣∣∣∣∣∣
∑

i∈[N ]1i−N/2∑
i∈[N ] 1i

∣∣∣∣.
(A.44)

To bound Eq. (A.44), we claim
∣∣λmax

(
1
N

∑
i∈[N ] 1iŨi,·Ũ

⊤
i,·
)∣∣ ≤ c for some c > 0, and apply

Corollary A.1 on the vector (11 − 1/2, · · · ,1N − 1/2). We note that, for every i ∈ [N ],
1i − 1/2 is zero-mean and subGaussian(1/

√
ℓ1) (see Example 2.5.8 in Vershynin (2018)).

Then, with probability at least 1− δ,∣∣∣ ∑
i∈[N ]

1i −N/2
∣∣∣ ≤ √

cℓδN

ℓ1
. (A.45)

Using Eq. (A.45) to bound Eq. (A.44), with probability at least 1− δ, we have∣∣∣∣λmax

(∑
i∈[N ] 1iŨi,·Ũ

⊤
i,·

N/2
−

∑
i∈[N ] 1iŨi,·Ũ

⊤
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i∈[N ] 1i

)∣∣∣∣ ≤
√

cℓδN/ℓ1

N/2−
√
cℓδN/ℓ1

.

Therefore, the first term in Eq. (A.41) is op(1). It remains to bound
∣∣λmax

(
1
N

∑
i∈[N ] 1iŨi,·Ũ

⊤
i,·
)∣∣.

We have ∣∣∣∣λmax

( 1

N

∑
i∈[N ]
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⊤
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≤ c,

where (a) follows from the definition of the maximum eigenvalue of a matrix, (b) follows from
Cauchy-Schwarz inequality, and (c) follows from Assumption 8(b).

F.3.2. Assumption 11 holds
First, Assumption 11(a) holds as follows,

max
j∈[M ]

1

N

∑
j′∈[M ]

∣∣∣ ∑
i∈[N ]

E
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1

N

∑
i∈[N ]

c = c,
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where (a) follows from triangle inequality and (b) follows from Assumption 9(b). Next, from
Assumption 9(a) and Assumption 9(c), we have

max
j∈[M ]

∣∣E[hi,jhi′,j]∣∣ = {
0 if i ̸= i′

maxj∈[M ]

∣∣E[h2
i,j]

∣∣ ≤ c if i = i′

Then, Assumption 11(b) holds as follows,

max
i∈[N ]

max
j∈[M ]

∑
i′∈[N ]

∣∣E[hi,jhi′,j]∣∣ ≤ c.

Next, Assumption 11(c) holds as follows,

1

NM

∑
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1

NM

∑
i∈[N ]

∑
j,j′∈[M ]

∣∣E[hi,jhi,j′ ]∣∣ (b)

≤ 1
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∑
i∈[N ]

∑
j∈[M ]

c = c,

where (a) follows from Assumption 9(c) and (b) follows from Assumption 9(b). Next, let
γi,j,j′ ≜ hi,jhi,j′ −E[hi,jhi,j′ ] and fix any j, j′ ∈ [M ]. Then, Assumption 11(d) holds as follows,

1

N2
E
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i∈[N ]

γi,j,j′
)4]

=
1

N2
E
[( ∑
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(a)
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1

N2
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E
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3

N2

∑
i ̸=i′∈[N ]

E
[
γ2
i,j,j′γ

2
i′,j,j′

]
≤ c,

where (a) follows from linearity of expectation and Assumption 9(c) after by noting that
E[γi,j,j′ ] = 0 for all i, j, j′ ∈ [N ] × [M ] × [M ] and (b) follows because γi,j,j′ has bounded
moments due to Assumption 9(a).

G. Data generating process for the simulations
The inputs of the data generating process (DGP) are: the probability bound λ; two positive
constants c(0) and c(1); and the standard deviations σ

(a)
i,j for every i ∈ [N ], j ∈ [M ], a ∈ {0, 1}.

The DGP is:

1. For positive integers rp, rθ and r = max{rp, rθ}, generate a proxy for the common
unit-level latent factors U shared ∈ RN×r, such that, for all i ∈ [N ] and j ∈ [r], ushared

i,j is
independently sampled from a Uniform(

√
λ,

√
1− λ) distribution, with λ ∈ (0, 1).

2. Generate proxies for the measurement-level latent factors V, V (0), V (1) ∈ RM×r, such that,
for all i ∈ [M ] and j ∈ [r], vi,j, v

(0)
i,j , v

(1)
i,j are independently sampled from a Uniform(

√
λ,√

1− λ) distribution.

3. Generate the treatment assignment probability matrix P

P =
1

rp
U shared
[N ]×[rp]V

⊤
[M ]×[rp].
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4. For a ∈ {0, 1}, run SVD on U sharedV (a)⊤, i.e.,

SVD(U sharedV (a)⊤) = (U (a),Σ(a),W (a)).

Then, generate the mean potential outcome matrices Θ(0) and Θ(1):

Θ(a) =
c(a)Sum(Σ(a))

rθ
U

(a)
[N ]×[rθ]

W
(a)⊤
[M ]×[rθ]

,

where Sum(Σ(a)) denotes the sum of all entries of Σ(a).

5. Generate the noise matrices E(0) and E(1), such that, for all i ∈ [N ], j ∈ [M ], a ∈ {0, 1},
ε
(a)
i,j is independently sampled from a N (0, (σ

(a)
i,j )

2) distribution. Then, determine y
(a)
i,j

from Eq. (2).

6. Generate the noise matrix W , such that, for all i ∈ [N ], j ∈ [M ], ηi,j is independently
sampled as per Eq. (4). Then, determine ai,j and yi,j from Eq. (3) and Eq. (1), respectively.

In our simulations, we set λ = 0.05, c(0) = 1 and c(1) = 2. In practice, instead of choosing
the values of σ(a)

i,j as ex-ante inputs, we make them equal to the standard deviation of all the
entries in Θ(a) for every i and j, separately for a ∈ {0, 1}.
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