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Abstract

We study the risk-taking behavior over the life cycle of entrepreneurs subject to partial

insurance against idiosyncratic shocks. The model quantitatively accounts for the aggre-

gate and idiosyncratic risk premia, the life-cycle profiles of consumption and risk-taking,

and the patterns of wealth inequality observed in the data. A reform that relaxes the

risk constraints reduces the idiosyncratic risk premium and induces an investment boom.

Consistent with a Kuznets curve, inequality increases in the short run and declines in the

long run. The initial generation of entrepreneurs benefits from better insurance, but future

generations will be worse off after the reform.
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1 Introduction

Entrepreneurship is inherently a risky activity. Entrepreneurial risk is particularly important
in developing economies, where the bulk of production occurs in privately owned businesses,
and risk-sharing opportunities are limited. Given that entrepreneurs hold under-diversified
portfolios, such risks have far-reaching implications.1 At the individual level, entrepreneurial
risk distorts investment and savings decisions. The importance of business income is highly
heterogeneous and varies substantially over the life cycle, shaping wealth inequality patterns.
At the aggregate level, imperfect insurance leads to an inefficient risk premium, which de-
presses the capital stock and hinders economic development. The pervasive effects of limited
risk-sharing highlight the relevance of policy interventions that alleviate the consequences of
entrepreneurs’ lack of diversification.

To assess the aggregate impact of such interventions, it is crucial to determine the quan-
titative importance of the limits to risk sharing. Identifying such limits, however, is chal-
lenging. For instance, despite holding concentrated portfolios, entrepreneurs may engage
in self-insurance or informal insurance arrangements, which attenuates the equilibrium im-
pact of under-diversification. Such insurance arrangements are widespread in developing
economies, as documented, e.g., by Kinnan and Townsend (2012). Moreover, it is essen-
tial to disentangle the effects of aggregate and idiosyncratic shocks. Lack of diversification
is potentially less consequential if private businesses are mostly exposed to aggregate (non-
diversifiable) risk. Therefore, the relevance of risk-sharing frictions cannot be directly inferred
from the degree of observed under-diversification, which ignores unobserved transfers, or the
volatility of business income, which is driven by both aggregate and idiosyncratic shocks.

This paper studies the aggregate and distributive implications of entrepreneurial risk in
a quantitative life-cycle model with limited idiosyncratic insurance. We discipline the model
using a rich dataset on small business owners in Thailand, which includes information on
the returns of entrepreneurial activity and entrepreneurs’ risk-taking and consumption.2 The
model captures several salient features of the data, including the risk premium on business
returns, the life-cycle profile of entrepreneurs’ risk-taking and consumption, and the patterns
of inequality between- and within-age groups. By combining a theory of the idiosyncratic risk
premium with detailed information on portfolios and business returns, we assess the extent of
limits to risk sharing faced by entrepreneurs and, ultimately, determine the impact of reforms
relaxing these constraints on investment, inequality, and economic development.

We start by studying empirically the determinants of expected entrepreneurial returns. Ex-

1For evidence on the under-diversification of entrepreneurs see, e.g., Moskowitz and Vissing-Jørgensen
(2002), and Herranz et al. (2009) for a study focused on small businesses.

2A large literature studies the macroeconomic and asset-pricing implications of firm-level risk (see, e.g.,
Christiano et al. 2014, Gârleanu et al. 2015, Dou 2016, Herskovic et al. 2016, Di Tella 2017, Herskovic et al. 2018),
but these studies usually rely on data of public companies to discipline their quantitative exercises.
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pected returns are tightly connected to the marginal product of capital (MPK), so the required
return on a project is potentially a key determinant of its scale.3 Imperfect risk sharing im-
plies that entrepreneurs require compensation for holding idiosyncratic risk, suggesting that
average returns vary positively in the cross-section with the exposure to idiosyncratic shocks.
As expected, we find that entrepreneurs with higher risk exposure receive higher expected re-
turns. More importantly, a two-factor model explains most of the variation in entrepreneurial
returns in our data. Differences in idiosyncratic volatility and exposure to aggregate risk
explain almost 70% of the cross-sectional variation in average returns. Given idiosyncratic
volatility and aggregate betas are measured with error, this captures only a lower bound on
how much these two factors explain the variation in returns.4 Therefore, a risk-based expla-
nation can account for nearly all cross-section differences in expected entrepreneurial returns.

Moreover, while more than 90% of the variance is explained by idiosyncratic shocks,
less than half of the expected return consists of compensation for holding idiosyncratic risk.
Sharpe ratios then vary by source of risk in a way inconsistent with an autarky allocation,
where only total variance would matter, and also inconsistent with perfect risk sharing, as the
idiosyncratic risk premium would be zero. Therefore, the evidence suggests entrepreneurs
are partially insuring idiosyncratic shocks.

Next, we consider the determinants of entrepreneurs’ risk-taking decisions, as measured
by the share of net worth invested in the business. Risk-taking depends not only on the
risk and return properties of the project but also on entrepreneurs’ attitudes towards risk.
Households’ characteristics potentially shape their risk preferences. In particular, we find
substantial variation in risk-taking over the life cycle. Young entrepreneurs are nearly 40%
more exposed to the business than old entrepreneurs. These differences in risk-taking cannot
be explained by differences in expected returns, suggesting heterogeneity in risk tolerance
across age groups.

To capture these motivating facts, we propose a general equilibrium model with two main
ingredients: limited idiosyncratic insurance and finite lives with imperfect altruism. The
economy is populated by entrepreneurs and wage earners. Entrepreneurs are the only ones
with access to a production technology. The technology is exposed to aggregate and idiosyn-
cratic shocks. Aggregate shocks are public information, so there are no frictions in sharing
aggregate risk. In contrast, idiosyncratic shocks are private information. Entrepreneurs face
a moral hazard problem, as they can divert a fraction of capital every period. Under the opti-
mal contract, entrepreneurs are subject to a skin-in-the-game constraint, so they must bear a
fraction of the idiosyncratic risk in equilibrium.

The moral hazard parameter controls the degree of partial insurance. We identify the

3See David et al. (2022) on how differences in (aggregate) risk premium lead to dispersion in MPK.
4When we sort entrepreneurs according to their exposure to aggregate and idiosyncratic risk, as is standard

in empirical asset pricing, we obtain that nearly 90% of the variation can be explained by only these two factors.
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moral hazard parameter by matching the decomposition of expected returns into aggregate
and idiosyncratic components performed in the data. Intuitively, if entrepreneurs can diver-
sify a significant fraction of the risk, expected returns would reflect primarily compensation
for holding aggregate risk.

We show that the degree of partial insurance depends on three components: i) the idiosyn-
cratic risk premium, ii) the share of the variance of returns due to idiosyncratic shocks, and iii)
the share of the business on entrepreneurs’ net worth. Entrepreneurs can diversify roughly
40% of the idiosyncratic volatility, so they have to absorb most of the idiosyncratic shocks.
Therefore, entrepreneurs face relevant limitations in diversifying risks, significantly affecting
their investment decisions.

Importantly, we assume that entrepreneurial households also receive some labor income
from household members working outside the business, consistent with what we observe in
our data. This fact implies that entrepreneurs’ effective risk aversion depends inversely on the
ratio of human wealth (present discounted value of future labor income) to financial wealth
(investment in safe assets and the business). The human-financial wealth ratio declines over
the life cycle in the data. This mechanism endogenously creates heterogeneity in risk aversion,
which is essential to replicating the empirical life-cycle profiles.

The model quantitatively matches the decline in risk-taking over the life cycle, as young
entrepreneurs are relatively risk-tolerant, given a higher human-financial ratio early in life.5

Household savings have a significant life-cycle component. The consumption-wealth ratio
initially declines with age as savings increase, and then it increases by the end of the life
cycle. The model captures this pattern through the interplay of two different effects. First, the
decline in the human-financial wealth ratio reduces the consumption-wealth ratio. Second,
the marginal propensity to consume (MPC) increases with age due to imperfect altruism. This
effect is stronger for older households, which explains the higher consumption-wealth ratio
later in life.

To focus on the impact of limits to risk sharing, we initially assume the moral hazard prob-
lem is the only friction in the model. We then study the implications of introducing borrowing
constraints into the model in two extensions. We first introduce limited pledgeability of phys-
ical capital by having collateral constraints. The life-cycle predictions are mostly unchanged,
but collateral constraints have important implications for determining entrepreneurial re-
turns. Collateral constraints sever the link between risk and return for constrained entrepreneurs.
Differences in the business scale and expected returns are driven by differences in net worth
for this group of entrepreneurs. Poorer entrepreneurs end up with higher MPK. We test these
predictions in our data. Net worth explains only a negligible fraction of the cross-sectional

5This mechanism is reminiscent of work on portfolio choice with labor income (Bodie et al. 1992, Heaton and
Lucas 1997, and Viceira 2001). See Huggett and Kaplan (2016) for a similar approach to valuing human wealth.
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differences in average returns, and we find only weak support for the prediction that poorer
entrepreneurs have higher expected returns after we control for risk exposure. Moreover,
the relationship between risk and return is actually stronger for entrepreneurs with relatively
low net worth. These results suggest that collateral constraints are not the primary driver of
expected returns in our data.

In a second extension, we introduce limited pledgeability of human wealth by having
uninsurable labor income risk. This version of the model allows us to study the interaction
between uninsurable labor income risk, as in Aiyagari (1994), and uninsurable investment
risk, as in Angeletos (2007). We obtain (approximate) analytical expressions despite having
aggregate shocks and incomplete markets. The borrowing limit associated with uninsurable
labor income risk has two effects on risk-taking. On the one hand, it tends to reduce risk-
taking, as entrepreneurs have fewer resources, which limits the scale of the enterprise. On the
other hand, it endogenously reduces risk aversion, which pushes entrepreneurs to be more
exposed to risk. As entrepreneurs cannot borrow against a fraction of human wealth, future
income acts as a buffer, making entrepreneurs more willing to take risks.

In contrast to the version with collateral constraints, variations in risk exposure always
affect expected returns with limited borrowing against labor income. Moreover, the theory
predicts that variations in idiosyncratic variance should significantly impact expected returns
for poorer entrepreneurs, as they are effectively more risk-averse. We test this prediction and
find support for it in our data. Overall, the hybrid model with both uninsurable labor and
investment risk successfully captures different aspects of the data. As the main predictions
of the baseline model do not change in the richer model, we focus on a setting with only
investment risk.

Entrepreneurial risk has a significant effect on inequality. On average, wealth initially
increases with age and then declines later in life. A similar inverted U-shape holds for the
standard deviation of wealth conditional on age, a measure of within-group inequality. The
initial increase in inequality is explained by a generalized "r-g" effect. A positive difference
between the expected return on wealth, which includes the aggregate and idiosyncratic risk
premium, and the economy’s growth rate causes entrepreneurs to accumulate more wealth
as they age. A countervailing force comes from the MPC increasing with age due to imper-
fect altruism. Even though this was not targeted during the calibration, the model roughly
captures the between- and within-group inequality patterns observed in the data.

At the aggregate level, the idiosyncratic risk premium and the capital stock are simulta-
neously determined. The expected return on the business pins down the MPK. Increasing
the idiosyncratic risk premium leads to a higher MPK and a smaller capital stock. Improving
risk sharing leads to a decline in the idiosyncratic risk premium and an increase in the capital
stock in the long run. The effect is quantitatively large, where a reform that reduces the risk
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premium by 140 basis points leads to an increase of the capital stock of 13%. This is consistent
with the view that financial development, captured here by the extent of idiosyncratic risk
sharing, is an important determinant of the level of economic development.6

We also consider the dynamic implications of relaxing risk constraints. Improving idiosyn-
cratic insurance leads to an investment boom that lasts for a decade, accompanied by a sharp
increase in the value of private businesses in the short run. Inequality falls in the long run,
as entrepreneurs are less exposed to risk after the reform. In contrast, inequality increases in
the short run due to a revaluation effect. The increase in the value of the business benefits
entrepreneurs with larger initial investments, which are relatively richer before the reform.
It takes a long time for inequality to converge to its new long-run level due to intergenera-
tional links. This pattern is consistent with Kuznets’s (1955) hypothesis over the relationship
between inequality and economic development.7

Considering the transitional dynamics is also relevant to assessing the welfare effects of
risk-sharing improvements. Entrepreneurs are worse off in the long run after the reform,
despite the benefits of better diversification, as entrepreneurs accumulate less wealth over
time. In contrast, the initial generation’s welfare improves with the reform. They received
their bequest before the intervention, and the value of their businesses increased substantially
in the short run. Therefore, most of the gains of the reform are reaped by the initial generation
of entrepreneurs and wage earners, who receive higher wages given the higher capital stock.

Related literature. This paper is related to several strands of literature in macroeconomics
and finance. First, the work studying how firm-level uncertainty affects asset prices and the
real economy (Gârleanu et al. 2015, Di Tella 2017, Dou 2016, Herskovic et al. 2016, Iachan et al.
2021).8 While this literature focuses primarily on business-cycle fluctuations, we study how
firm-level uncertainty affects the economy in the long run. Second, the literature on how the
lack of diversification of entrepreneurs’ portfolios affects several firm outcomes, including
real investment (Panousi and Papanikolaou 2012), capital structure (Chen et al. 2010, Her-
ranz et al. 2015), and risk-taking (Chen and Strebulaev 2019). This work is mainly in partial
equilibrium and abstracts from the aggregate implications of entrepreneurial risk.

We also contribute to recent work on the importance of heterogeneous returns for inequal-
ity. This literature documents substantial heterogeneity in portfolio returns (Fagereng et al.
2019, Fagereng et al. 2020, Bach et al. 2020); it finds that private business wealth is one the
main sources of wealth at the top (Smith et al. 2019, Smith et al. 2020), and that return hetero-

6See Levine (2005) for a literature review on the connections between financial and economic development.
7Greenwood and Jovanovic (1990) provides an early treatment of the Kuznets dynamics and its connection

with financial development.
8A related literature studies the asset-pricing implications of labor income risk in infinite-horizon (Con-

stantinides and Duffie 1996 and Heaton and Lucas 1996) and life-cycle models (Constantinides et al. 2002 and
Storesletten et al. 2007).
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geneity is important to quantitatively match the observed levels of inequality (Gomez 2017,
Hubmer et al. 2021).9 We study how the idiosyncratic risk premium in private business affects
inequality between- and within-age groups and how changes in this premium affect the dy-
namics of inequality. Greenwald et al. (2021) show that financial wealth inequality increases
after a decline in interest rates. We find similar effects for reducing the idiosyncratic risk
premium in the short run, but inequality falls in the long run.

A related literature studies the extent to which households partially insure labor income
shocks (Blundell et al. 2008 and Kaplan and Violante 2010). The work by, e.g., Krueger and
Perri (2006), Attanasio and Pavoni (2011), and Heathcote et al. (2014) shows how the degree
of partial insurance can be inferred with data on consumption and labor income. We focus
on entrepreneurial risk and show that the degree of partial insurance can be identified using
information on the idiosyncratic risk premium and the exposure of entrepreneurs’ wealth to
private businesses.

Our result that young entrepreneurs invest a larger fraction of their wealth in the business
is closely related to the findings in the literature on portfolio choice over the life cycle (Jagan-
nathan et al. 1996, Viceira 2001, Cocco et al. 2005), who found that young households should
invest more in the stock market than old households.10 In particular, we show that variations
in the human-financial wealth ratio account quantitatively for the pattern of entrepreneurial
risk-taking over the life cycle. Related work uses business income as a source of background
risk to explain stock market investment (Heaton and Lucas 2000a, 2000b). In contrast, we en-
dogenize the decision to invest in the business and show how non-business income is relevant
in accounting for cross-sectional differences in risk-taking.

An extensive micro-development literature studies risk sharing (Townsend 1994, Morduch
1995) and the risk and return of production activities in developing economies (Udry and
Anagol 2006, De Mel et al. 2008). Karlan et al. (2014) conducted a randomized control trial
extending credit and insurance to farmers and found that the lack of insurance is the bind-
ing constraint to investment. Their results are consistent with our findings that relaxing risk
constraints significantly impact investment. The macro-development literature studies the ag-
gregate implications of credit constraints (Buera and Shin 2013, Midrigan and Xu 2014, Moll
2014). Our approach is complementary to theirs, as we focus instead on the role of risk con-
straints. Our work is closer to the original model of uninsurable investment risk by Angeletos
(2007), which we extend to allow for partial idiosyncratic insurance, a rich demographic struc-
ture, and aggregate risk. These extensions are crucial to capture the patterns of consumption
and risk-taking observed in the microdata and derive the dynamics of inequality in response
to a relaxation of risk constraints.

9See De Nardi and Fella (2017) for a survey of quantitative Bewley models of wealth inequality.
10A related literature studies the life-cycle patterns of consumption and labor income (see, e.g., Deaton and

Paxson 1994, Gourinchas and Parker 2002, and Storesletten et al. 2004).
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2 Motivating evidence

In this section, we provide motivating evidence on entrepreneurial activity in the context of a
developing country. First, we study the determinants of entrepreneurial returns. Second, we
consider entrepreneurs’ risk-taking and consumption decisions over the life cycle.

Data. We use data from the Townsend Thai Monthly Survey, an intensive monthly survey
initiated in 1998 in four provinces of Thailand. Two provinces, Chachoengsao and Lopburi,
are semi-urban in a more developed central region near the capital, Bangkok. The other two
provinces are rural, Buriram and Srisaket, and are located in the less developed northeastern
region by the border of Cambodia. In each of the four provinces, the survey is conducted
in four villages, chosen at random within a given township. A detailed discussion of the
Townsend Thai Monthly Survey can be found in Samphantharak and Townsend (2010).

Our sample covers 710 households and 14 years of monthly data, starting in January 1999.
These economies were subject to various aggregate and idiosyncratic shocks during this time.
Rice cultivation is affected by seasonal variations in rainfall and temperature. Restrictions on
exports to the EU affected shrimp ponds. Milk cows’ productivity varies substantially over
time for a given animal and over the herd. The exposure to this rich set of shocks highlights
the importance of entrepreneurial risk, enabling us to disentangle the role of aggregate and
idiosyncratic shocks.

The data collected in the Townsend Thai Monthly Survey includes information on the
net income generated by the business and household total assets and liabilities. The data
is rich enough to construct a detailed balance sheet for these private businesses, which We
can then compute the return on assets (ROA), measured as net profits income over business
assets. We also measure the fraction of entrepreneurs’ wealth invested in the business and
the fraction invested in safe (real or financial) assets, providing us with a measure of risk-
taking. Finally, the data includes household labor income and consumption information. This
allows us to characterize the savings behavior and the importance of non-business income for
entrepreneurial households. See Appendix B for a detailed description of these variables.11

2.1 The determinants of expected entrepreneurial returns

Whether and how much to invest in a business depends on its risk/return trade-off. We study
this trade-off by considering the required risk compensation implicit in entrepreneurial re-
turns. The case of perfect risk sharing provides a natural benchmark. Under this assumption,

11The household is the unit of measurement, even though households typically consist of multiple members
doing separate or partially overlapping activities. We treat the household as a whole as unitary (see, e.g., Doepke
and Tertilt (2016) for a discussion of unitary models of the household).
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differences in expected returns are entirely driven by differences in the exposure to aggregate
risk, as idiosyncratic shocks can be perfectly insured or diversified. On the other extreme, en-
trepreneurs can be in financial autarky, without access to any insurance. In this case, only the
total amount of risk is relevant to entrepreneurs, causing expected returns to vary with both
aggregate and idiosyncratic volatility. When idiosyncratic shocks can be partially insured or
diversified, expected returns depend not only on the total variance of returns but also on the
relative importance of each source of risk.

This discussion motivates using a two-factor model to explain the cross-section of ex-
pected returns of private businesses based on the exposure to aggregate and idiosyncratic
shocks. This approach allows us to evaluate whether perfect risk sharing or autarky holds
and, more importantly, whether a risk-based explanation can quantitatively account for the
differences in entrepreneurial returns observed in the data. We estimate our factor model
following the standard two-pass regression methodology developed by Fama and MacBeth
(1973). In the first stage, we estimate entrepreneurs’ exposure to aggregate risk by the slope
of a time-series regression of returns for entrepreneur i, Ri,t, on the cross-sectional average
return across all entrepreneurs in a given province, Ragg

t . Formally, we run the regression:

Ri,t = αi + βiR
agg
t + ϵi,t,

for each entrepreneur i ∈ {1, . . . , N}. Notice that Ragg
t plays the role of the market portfolio in

standard tests of the capital asset pricing model (CAPM). By averaging across entrepreneurs
in a given region, idiosyncratic risk gets diversified, so βi captures the exposure to aggregate
risk for entrepreneur i.12 We measure the exposure to idiosyncratic risk by the variance of the
residuals in the above regression, σ2

i = var[ϵi,t].
Figure 1 shows how the exposure to each source of risk is related to entrepreneurs’ av-

erage return. We find a strong association between average time-series returns and expo-
sure to aggregate and idiosyncratic risk. The left panel on Figure 1 shows that entrepreneurs
more exposed to aggregate risk have higher average returns. Similarly, the right panel shows
a positive and significant relationship between average returns and idiosyncratic volatility,
consistent with entrepreneurs’ limited access to insurance.

One possible concern is that idiosyncratic volatility may be correlated with the aggregate
beta, e.g., riskier projects could be more exposed to both sources of risk. The positive associa-
tion between idiosyncratic risk and expected returns could still be consistent with perfect risk
sharing. To address this point, we run a second-stage cross-sectional regression of average
return for entrepreneur i, Ri = 1

T ∑T
t=1 Ri,t, on the estimated exposure to aggregate risk, β̂i,

12Following Samphantharak and Townsend (2018), we adopt the province as the relevant geographic unit.
Moreover, we compute a "leave-one-out" mean of the returns, so we regress the return of entrepreneur i on the
average return across all entrepreneurs other than i on a given province.
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Figure 1: Average returns vs. aggregate and idiosyncratic risk
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Note: The left (right) panel shows a scatter plot of average time-series returns for each entrepreneur against aggregate beta (idiosyncratic
volatility). Aggregate beta is measured as the slope of the time-series regression of individual returns on the leave-one-out average return
in the entrepreneur’s province. Idiosyncratic volatility is calculated as the volatility of residuals from the same regression. To limit the
influence of outliers, we trim 1% of the observations in the left and right tails.

and idiosyncratic risk σ̂2
i :

Ri = λ0 + λag β̂i + λidσ̂2
i + ui.

The coefficients λag and λid correspond to the price of aggregate and idiosyncratic risk, respec-
tively. They capture the required compensation for one exposure unit to each source of risk.

Table 1 shows the results for the second-stage regression. We find a positive and signif-
icant price of risk for βi and σ2

i . These two factors account for a significant fraction of the
cross-sectional variation in expected returns. Column 1 shows that the CAPM-inspired one-
factor model explains a sizeable fraction of the variation in average portfolio returns, with an
adjusted R2 of 34%. Given the limited empirical success of the CAPM (see, e.g., Fama and
French 1992), it is surprising that a single aggregate factor plays a significant role in explain-
ing entrepreneurial returns. Column 2 shows that idiosyncratic risk explains an even larger
fraction of the variation, with an adjusted R2 of 58%. Together, these two factors explain most
of the variation in expected returns, with an adjusted R2 of 68%.

An important issue is that our risk exposure measures are noisy estimates of the actual
beta and idiosyncratic volatility, so measurement error may bias our results. To deal with
this issue, we embed our two-stage procedure into a generalized method of moments (GMM)
framework and compute standard errors that account for the uncertainty in the estimation
of β̂i and σ̂2

i , as discussed in detail in Appendix B.2.13 We also follow the standard pro-
cedure in empirical asset pricing (see, e.g., Black et al. 1972) and group entrepreneurs into
bins, or portfolios, according to a 5 × 5 double sort based on aggregate beta and idiosyncratic
risk.14 The group-level betas and idiosyncratic variance are arguably better measured than

13See also Cochrane (2009) for a discussion on how to correct the standard errors in two-pass regressions.
14As these are private businesses, the portfolios are not tradeable. Forming portfolios allows us to reduce the
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Dependent Variable: mean_roa
Model: (1) (2) (3) (4)

Variables
(Intercept) -0.0071 0.0093∗∗∗ -0.0026 -0.0036

(0.0045) (0.0015) (0.0037) (0.0023)
beta 0.0195∗∗∗ 0.0117∗∗∗ 0.0090∗∗

(0.0044) (0.0039) (0.0032)
sigma2 0.1246∗∗∗ 0.1031∗∗∗ 0.2127∗∗∗

(0.0280) (0.0292) (0.0718)

Fit statistics
Observations 541 541 541 24
R2 0.344 0.578 0.685 0.892
Adjusted R2 0.343 0.577 0.684 0.882

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table 1: Estimation of two-factor model
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Figure 2: Realized vs. predicted returns

Note: The left panel shows a cross-sectional regression of average returns on the aggregate beta or idiosyncratic variance (or both). Standard
errors account for the uncertainty in estimating the regressors, and they are robust to contemporaneous correlations between error terms
across entrepreneurs. The right panel shows the 45◦ degree line and a scatter plot of the predicted returns of the two-factor model and actual
average returns for the portfolio-level analysis.

their individual-level counterparts, which limits the impact of measurement error. Column 4
shows the results. We obtain a similar price of aggregate risk and a larger price of idiosyn-
cratic risk, consistent with some attenuation bias in this case. The two risk factors account for
88% of the variation in group-level returns. Figure 2 shows the fit of the two-factor model by
comparing predicted and realized average returns. The model successfully accounts for the
significant variation in expected returns observed in our data. Both factors are necessary to
achieve this success. We show in Appendix B.3 that a single-factor model, based on either
an aggregate or idiosyncratic factor, performs substantially worse than the two-factor model.
In particular, we can reject the hypothesis of a single-factor model based on either source of
risk. Therefore, this evidence suggests that a two-factor model is necessary to explain the
cross-section of entrepreneurial returns.

To better grasp the role of each risk factor, we provide a decomposition of entrepreneurial
returns into an aggregate and idiosyncratic component. Table 2 decomposes the risk premium
and variance of returns using the results from Table 1. We find that most risk is idiosyncratic,
accounting for 94% of the variance, while idiosyncratic risk accounts for slightly less than half
of the risk premium. This implies that the Sharpe ratio of the aggregate component is nearly
five times larger than the Sharpe ratio of the idiosyncratic component.15

The results from Table 2 are inconsistent with the perfect risk sharing and autarky bench-
marks. The fact that the idiosyncratic risk premium explains almost half of total expected

noise in the estimation and better capture the risk/return relationship. To avoid within-portfolio diversification,
we assign to the portfolio the average idiosyncratic volatility instead of the volatility of the average.

15Samphantharak and Townsend (2018) computes a similar decomposition of expected returns and variance
based on entrepreneurs’ total portfolio returns, including risky and safe assets. The decomposition of the port-
folio’s risky component, which is our focus, is the relevant one to map into the structural model in Section 3.
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Table 2: Aggregate and idiosyncratic components of risk and return

Risk premium % of returns Volatility % of variance Sharpe ratio

Total returns 4.4% 100% 21.0% 100% 0.21
Aggregate component 2.4% 54.7% 5.1% 6.0% 0.47
Idiosyncratic component 2.0% 45.3% 20.3% 94.0% 0.10

Note: The aggregate component is measured as the coefficient on the aggregate beta on the cross-sectional regression times the average beta
across entrepreneurs. The idiosyncratic component is measured as the cross-sectional regression coefficient on idiosyncratic risk times the
idiosyncratic variance averaged across entrepreneurs. The variance decomposition is computed at the individual level based on the results
from the first-stage regression and then averaged across all entrepreneurs.

returns indicates that limits to diversification are substantial, which allows us to reject the
perfect risk-sharing benchmark. Financial autarky is also inconsistent with the observed pat-
tern in the Sharpe ratio. As shown in Appendix E.4, the share of variance of the idiosyncratic
component should coincide with its share of expected returns under autarky. Equivalently,
the Sharpe ratio should be proportional to the volatility.16 This implies that the Sharpe ratio
for the idiosyncratic component should be four times larger than the one for the aggregate
component, but we observe the opposite pattern in the data.17 These results suggest that
partial insurance is relevant to explain the empirical patterns involving risk and return. We
revisit this decomposition through the lenses of our structural model in Section 5.2.

2.2 Risk-taking and savings over the life cycle

Next, we consider entrepreneurs’ risk-taking and savings decisions. The decision of how
much to invest depends on the risk and return of the entrepreneurial activity and households’
attitude towards risk. Behavior towards risk is potentially shaped by households’ character-
istics, such as age and household size. We study then how risk-taking and consumption
decisions depend on expected returns, age, and a range of demographic controls.

To ensure stationarity, we consider the behavior of the ratio of the value invested in the
business to the entrepreneur’s financial wealth, our measure of risk-taking, and the ratio of
consumption to financial wealth. By looking at ratios instead of levels, we limit the influence
of aggregate shocks and focus on potentially more stable relationships. We consider five age
groups, ranging from 25 to 80 years old, where group 1 is the youngest and group 5 is the
oldest. The cutoffs for each group are chosen such that we have roughly the same number
of households in each group. We cluster standard errors by household and year to account

16In a two-factor model, the risk premium is given by pagσag + pidσid, where (pag, pid) is the return per unit
of risk (the prices of risk) and (σag, σid) the volatilities. Perfect risk sharing corresponds to pid = 0. In autarky,
the prices of risk (or Sharpe ratio) are pag = γσag and pid = γσid, so the risk premium is γ(σ2

ag + σ2
id).

17Financial autarky implies that the idiosyncratic Sharpe ratio relative to the aggregate Sharpe ratio should
be 20.3/5.1 ≈ 4.0, while we observed a ratio of 0.10/0.47 ≈ 0.21, almost a twentyfold difference.
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Table 3: Risk-taking and consumption behavior over the life cycle

Risk-taking Consumption-wealth ratio

(1) (2) (3) (4) (5) (6) (7) (8)

Age group: 1 0.30∗∗∗ 0.31∗∗∗ 0.30∗∗∗ 0.27∗∗∗ 0.14∗∗∗ 0.14∗∗∗ 0.12∗∗∗ 0.10∗∗∗

(0.01) (0.01) (0.02) (0.02) (0.009) (0.008) (0.008) (0.007)
Age group: 2 0.27∗∗∗ 0.28∗∗∗ 0.27∗∗∗ 0.25∗∗∗ 0.13∗∗∗ 0.13∗∗∗ 0.12∗∗∗ 0.11∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.009) (0.007) (0.007) (0.007)
Age group: 3 0.27∗∗∗ 0.27∗∗∗ 0.26∗∗∗ 0.25∗∗∗ 0.12∗∗∗ 0.12∗∗∗ 0.11∗∗∗ 0.11∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.008) (0.007) (0.008) (0.007)
Age group: 4 0.23∗∗∗ 0.23∗∗∗ 0.23∗∗∗ 0.22∗∗∗ 0.10∗∗∗ 0.10∗∗∗ 0.09∗∗∗ 0.08∗∗∗

(0.02) (0.01) (0.01) (0.01) (0.007) (0.006) (0.006) (0.006)
Age group: 5 0.22∗∗∗ 0.22∗∗∗ 0.23∗∗∗ 0.21∗∗∗ 0.11∗∗∗ 0.11∗∗∗ 0.10∗∗∗ 0.09∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.008) (0.008) (0.008) (0.007)

Year FE Yes Yes Yes Yes Yes Yes
Demographic controls Yes Yes Yes Yes
Risk and return controls Yes Yes

N 8,680 8,680 7,713 6,499 8,548 8,548 7,693 6,495
Adjusted R2 0.015 0.025 0.107 0.139 0.010 0.020 0.062 0.070
Clustered (year & household) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Note: Age effects correspond to the conditional expectation of the outcome variable evaluated at the mean of the continuous controls
and averaged over the year, province, and sector fixed-effects (when included). Demographic controls include dummies for the province,
household size, the number of kids, and a set of sector affiliation dummies. Risk and return controls include the entrepreneur’s average
return on the business and the exposure to aggregate and idiosyncratic risk.

for shocks potentially correlated over time or across households. We aggregate the data to
the annual level to better isolate the age effects. To limit the influence of outliers, we trim the
data at the 1% level at both tails. The details of the empirical methodology are described in
Appendix B.4.

We compute age effects controlling for year fixed-effects and additional controls follow-
ing the methodology of Kaplan (2012). In particular, for an outcome variable zi,a,r,t for en-
trepreneur i of age a at region r and year t, we compute the age effects as the conditional
expectation for a particular age group marginalized with respect to all controls:

ageyear FE+dem
a =

1
T

1
R

T

∑
t=1

R

∑
r=1

E[zi,a,r,t|a, r, t, xi,a,r,t = x],

where xi,a,r,t represents the vector of continuous control variables and x denotes its mean.
Table 3 presents the results. We find that risk-taking has a strong life-cycle pattern. Col-

umn 1, the case without any additional controls, shows that the amount invested in the
business declines sharply with age, with the coefficient for the oldest group being roughly
30% smaller than for the youngest group. A similar pattern holds as we add more controls.
Time fixed-effects do not change the results, as shown in column 2, suggesting that aggregate
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shocks affect the amount invested in the business and financial wealth but leave their ratio
roughly unchanged. Column 3 includes demographic and geographic controls, including the
household size, the number of children, the province the household is located in, and her sec-
tor affiliation, with similar patterns. Column 4 adds the average return on the business and
the exposure to aggregate and idiosyncratic risk as controls. We find once again substantial
variation in risk-taking over the life cycle, indicating these patterns are driven by differences
in attitudes toward risk instead of differences in risk or expected returns.

The consumption-wealth ratio also has a strong life-cycle pattern. However, instead of
declining monotonically with age as our risk-taking measure, we find a U-shaped pattern:
consumption-wealth initially decreases with age but increases for the oldest group.

We derive three main conclusions from these results. First, the cross-sectional variation
in risk-taking and consumption has a substantial life-cycle component. Second, the life-cycle
patterns in risk-taking are mainly driven by differences in risk appetite instead of differences
in risk or average return. Third, year fixed-effects do not significantly affect the life-cycle
patterns. This suggests a relatively stationary environment despite the presence of aggregate
shocks. These facts, in conjunction with the importance of partial insurance discussed in
Section 2.1, motivate the ingredients of our theoretical model.

3 A life-cycle model of entrepreneurial risk taking

In this section, we consider a model of entrepreneurial activity with two main ingredients:
i) imperfect idiosyncratic insurance and ii) finite lives with imperfect altruism. These two
ingredients play a crucial role in capturing the empirical patterns described in Section 2.

3.1 Environment

Time is continuous, and the economy is populated by two types of households: entrepreneurs
and wage earners. Population grows at rate g, and the share of entrepreneurs in the popula-
tion is constant and given by χe. The set of entrepreneurs and wage earners alive at period t
are denoted by Et and Wt, respectively. Entrepreneurs live for T periods and leave bequests to
their offspring. For simplicity, we assume that wage earners have an infinite horizon. While
all households receive labor income, only entrepreneurs can access a production technology.
Production is exposed to both aggregate and idiosyncratic shocks. Households buy and sell
aggregate insurance in a frictionless market, but they have access only to imperfect idiosyn-
cratic insurance. Households borrow and lend at a riskless rate rt. We now describe in detail
the technology, preferences, and financial frictions both types of households face.
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Technology. Entrepreneur i combines capital ki,t and hired labor li,t to produce a final ho-
mogeneous good ỹi,t, the numeraire in this economy, using the technology:

ỹi,t = Atkα
i,tl

1−α
i,t , (1)

and we denote scaled output by yt = ỹt/At.18

Productivity At is subject to aggregate shocks and follows a geometric Brownian motion:

dAt

At
= µAdt + σAdZt, (2)

where Zt is a standard Brownian motion.
Entrepreneurs can adjust their capital stock by investing in new capital or buying capital

from another entrepreneur. The investment technology is risky and subject to adjustment
costs. In particular, given a total investment of ιi,t Atki,t, capital evolves according to

dki,t

ki,t
= (Φ(ιi,t)− δ) dt + σiddZi,t. (3)

Zi,t is an idiosyncratic Brownian motion for entrepreneur i, which is independent across en-
trepreneurs. The investment function Φ(·) satisfies Φ(0) = 0, Φ′(·) > 0, and Φ′′(·) < 0.

The concavity of Φ(·) captures the presence of adjustment costs. Notably, investment is
risky and subject to idiosyncratic shocks. Entrepreneurs can also adjust their capital stock
by buying capital from other entrepreneurs at the price q̃t = qt At. The market value of the
business is given by q̃tki,t. In equilibrium, qt will be non-stochastic, so the relative price of
capital q̃t moves proportionally with aggregate productivity shocks.

The evolution of the aggregate capital stock, kt =
´
Et

ki,tdi, is not affected by idiosyncratic
shocks, as these shocks get diversified in the aggregate:

dkt =

[ˆ
Et

(Φ(ιi,t)− δ) ki,tdi
]

dt. (4)

The return on investing in the project can be written as the sum of the dividend yield, i.e.,
profits net of investment expenses relative to the value of the business, and capital gains:

dRi,t =
ỹi,t − w̃tli,t − ιi,t Atki,t

q̃tki,t
dt +

d(q̃tki,t)

q̃tki,t

= µR
i,tdt + σAdZt + σiddZi,t,

where w̃t = wt At denotes the wage rate and µR
i,t is the expected return.

18We adopt this convention throughout the paper: variables that grow with aggregate productivity At are
denoted with a tilde and the corresponding scaled variable are denoted without a tilde.
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Using Ito’s lemma to compute expected capital gains, the expected return on the project is

µR
i,t ≡

yi,t − wtli,t − ιi,tki,t

qtki,t︸ ︷︷ ︸
dividend yield

+
q̇t

qt
+ µA + Φ(ιi,t)− δ︸ ︷︷ ︸
expected capital gain

. (5)

Preferences and labor supply. Entrepreneurs live for T periods. They have isoelastic prefer-
ences over consumption c̃i,t with curvature parameter γ and derive utility of leaving bequests:

Esi

ˆ si+T

si

e−ρ(t−si)
c̃1−γ

i,t

1 − γ
dt + e−ρ(T−si)(1 − ψ)γV∗ ñ1−γ

i,si+T

1 − γ

 , (6)

ñi,t denotes financial wealth (or net worth), and si denotes the entrepreneur’s birthdate.19

The parameter ψ measures the strength of the bequest motive. If ψ = 1, entrepreneurs
give no weight to their offspring. If ψ = 0, the behavior of entrepreneurs coincides with the
one of an agent with an infinite horizon.20 The case 0 < ψ < 1 captures imperfect altruism.

In addition to business income, entrepreneurial households are allowed to receive labor
income. This is consistent with the observation that households have multiple sources of
income in our data. Labor is supplied inelastically, it is denoted by li,t, and it can vary deter-
ministically over the life cycle.21 As discussed in Section 3.3, there is significant variation in
the importance of labor income over the life cycle for entrepreneurs.

Financial friction. Entrepreneurs face a moral hazard problem, similar to the one in He and
Krishnamurthy (2012) and Di Tella (2017). We follow Di Tella (2017) and restrict attention to
short-term contracts. Aggregate shocks are perfectly observable by all households, while id-
iosyncratic shocks are only observed by the entrepreneur. An entrepreneur can divert capital,
but a fraction 1 − ϕ of the diverted capital is lost in the process. The parameter ϕ ∈ (0, 1)
controls the severity of the moral hazard problem.

Following the literature on dynamic moral hazard, we show in Appendix C.1 that the
solution to the contracting problem can be implemented by a market structure where en-
trepreneurs have access to a riskless asset with return rt and both aggregate and idiosyncratic
insurance. There is no limit on aggregate insurance, as aggregate shocks are perfectly ob-
servable. The quantity of idiosyncratic insurance is limited for incentive purposes. Formally,
entrepreneur i pays pag

t θ̃
ag
i,t to reduce aggregate volatility by θ̃

ag
i,t , where pag

t denotes the price
of aggregate insurance. In contrast, entrepreneur i can buy idiosyncratic insurance θ̃id

i,t at zero

19Financial wealth equals the entrepreneur’s assets, including the value of the business, net of liabilities.
20The constant V∗, given in Appendix A.1, equals the value function coefficient for an infinite-horizon agent.
21Notice that li,t denotes the amount of labor supplied by the household, while li,t is the amount of labor

demanded by the entrepreneur to run her project.
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cost in equilibrium, as providers of insurance can perfectly diversify across entrepreneurs.
However, the amount of idiosyncratic insurance is limited by the skin-in-the-game constraint:

θ̃id
i,t ≤ (1 − ϕ)q̃tki,tσid. (7)

This particular market structure represents one possible implementation of the optimal
contract allocation. For instance, instead of formal insurance contracts, this implementation
may capture the presence of informal insurance arrangements. As documented by, e.g., Kin-
nan and Townsend (2012), kinship networks play an important role in allowing households
to partially share idiosyncratic risk. The insurance constraint can also be interpreted as an
equity constraint, where entrepreneurs are unable to freely sell claims on their business to a
diversified set of investors, as in e.g. Chen et al. (2010) or Panousi and Papanikolaou (2012).

Constraint (7) is binding in equilibrium, causing entrepreneurs to be insurance-constrained.
To focus on entrepreneurial risk, we initially abstract from borrowing constraints. We discuss
the role of borrowing constraints in Section 3.4. Households face a natural borrowing limit:

ñi,t ≥ −h̃i,t, (8)

where h̃i,t ≡ Et

[´ s+T
t

πz
πt

w̃zli,zdz
]

denotes human wealth, and πt denotes a stochastic discount

factor (SDF) for this economy.22 The SDF evolves according to dπt = −rtπtdt − pag
t πtdZt. As

ñi,t = q̃tki,t + b̃i,t, where b̃i,t denotes the value of riskless bonds, condition (8) can be written as
−b̃i,t ≤ q̃tki,t + h̃i,t. Entrepreneurs can borrow freely against the business and human wealth.

Entrepreneurs’ problem. Entrepreneur i with age ai chooses a vector of stochastic processes
(c̃i, θ̃

ag
i , θ̃id

i , ki, li, ιi), taking prices (q̃, w̃, r, pag) as given, to solve the following problem:

Ṽt(ñi, ai) = max
c̃i,θ̃

ag
i ,θ̃id

i ,ki,li,ιi
Et

ˆ T−ai

0
e−ρz c̃1−γ

i,t+z

1 − γ
dz + e−ρ(T−ai)(1 − ψ)γV∗ ñ1−γ

i,t+T−ai

1 − γ

 , (9)

subject to (7), (8), non-negativity constraints ci,t, ki,t ≥ 0, and the law of motion of ñi,t

dñi,t =
[
(ñi,t − q̃tki,t)rt + q̃tki,tµ

R
i,t − pag

t θ̃
ag
i,t + w̃tli,t − c̃i,t

]
dt +

(
q̃tki,tσA − θ̃

ag
i,t

)
dZt +

(
q̃tki,tσid − θ̃id

i,t

)
dZi,t,

given initial financial wealth ñi,t = ñi > −h̃i,t.
The term in brackets in the expression above is the expected growth rate of financial

wealth. The entrepreneur invests ñi,t − q̃tki,t in the riskless asset, with rate of return rt, and
she invests the amount q̃tki,t in the risky business technology, with expected rate of return µR

i,t.

22Even though markets are (endogenously) incomplete, households agree on the valuation of variables not
exposed to idiosyncratic risk. Therefore, there is no ambiguity in defining the relevant SDF for aggregate payoffs.
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The cost of aggregate insurance is pag
t θ̃

ag
i,t . The entrepreneur receives labor income w̃tli,t and

consumes c̃i,t. The last two terms represent the exposure to aggregate and idiosyncratic risk,
which equals the risk exposure from the business net of insurance.

Wage earners’ problem. In contrast to entrepreneurs, wage earners do not have access to
a production technology. To simplify exposition, we assume they have an infinite horizon.
Allowing for finite lives and a bequest motive does not change our main results, as shown in
Appendix E.3. Wage earners and entrepreneurs share a per-period isoelastic utility function
with curvature parameter γ.23 As often assumed in models with heterogeneous returns, as
e.g. Kiyotaki and Moore (1997), wage earners and entrepreneurs have different discount rates.

The problem of wage earner j ∈ Wt is given by

Ṽw
t (ñj) = max

c̃j,θ̃
ag
j

Et

ˆ ∞

t
e−ρw(z−t)

c̃1−γ
j,z

1 − γ
dz

 , (10)

subject to non-negativity constraint c̃j,t ≥ 0, ñj,t ≥ h̃j,t, where h̃j,t denotes wage earner j’s
human wealth, and the law of motion of financial wealth ñj,t

dñj,t =
[
ñj,trt − pag

t θ̃
ag
j,t + w̃tl j,t − c̃j,t

]
dt − θ̃

ag
j,t dZt,

given initial financial wealth ñj,t = ñj > −h̃j,t. θ̃
ag
j,t can take positive or negative values, so

wage earners can choose to either buy or provide aggregate insurance to entrepreneurs.24

Equilibrium. We provide below a definition of the competitive equilibrium.

Definition 1. The competitive equilibrium is a set of aggregate stochastic processes: the aggregate
capital stock k, the interest rate r, the wage rate w̃, the relative price of capital q̃, and the price of
aggregate insurance pag; a set of stochastic processes for each entrepreneur i ∈ Et and wage earner j ∈
Wt: consumption c̃i, financial wealth ñi, capital ki, labor li, aggregate insurance θ̃

ag
i , and idiosyncratic

insurance θ̃id
i for i ∈ Et; consumption c̃j and aggregate insurance θ̃

ag
j for j ∈ Wt such that:

(a) Aggregate capital stock satisfies the law of motion (4), given the initial capital stock k0.

(b) (c̃i, θ̃
ag
i , θ̃id

i , ki, li, ιi) solve entrepreneurs’ problem (9), given (q̃, w̃, r, pag).

(c) (c̃j, θ̃
ag
j ) solve wage earners’ problem (10), given (w̃, r, pag).

23As shown by Swanson (2012), and consistent with Lemma 1 below, the coefficient of relative risk aversion
in the presence of labor is affected by, but is not equal to, γ.

24Wage earners can also provide idiosyncratic insurance. In our notation, we have already imposed that they
can diversify the exposure to idiosyncratic risk, so their financial wealth is only exposed to aggregate risk.
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(d) Markets clear for all t ≥ 0:

i. Market for goods

ˆ
Et

c̃i,tdi +
ˆ
Wt

c̃j,tdj +
ˆ
Et

ιi,t Atki,tdi =
ˆ
Et

ỹi,tdi.

ii. Markets for capital and labor

ˆ
Et

ki,tdi = kt,
ˆ
Et

li,tdi =
ˆ
Et

li,tdi +
ˆ
Wt

l j,tdj.

iii. Markets for aggregate insurance and riskless bonds

ˆ
Et

θ̃
ag
i,t di +

ˆ
Wt

θ̃
ag
j,t dj = 0,

ˆ
Et

[ñi,t − q̃tki,t]di +
ˆ
Wt

ñj,tdj = 0.

3.2 Solution to entrepreneurs’ problem

We describe next the solution to the entrepreneurs’ problem. We focus on a stationary equi-
librium, where scaled aggregate variables are constant, that is, wt = w and qt = q. In Section
6, we consider a non-stationary environment where aggregate variables are time-varying.

Maximizing expected returns. As (li,t, ιi,t) enters the maximization problem in Equation (9)
only through the expected return on the business, given in Equation (5), entrepreneurs choose
these variables to maximize expected returns. Labor demand assumes the usual form:

w = (1 − α)

(
ki,t

li,t

)α

. (11)

The capital-labor ratio is equalized across entrepreneurs and coincides with the aggregate
capital-labor ratio Kt ≡ kt/lt, where kt denotes the aggregate capital stock and lt denotes the
aggregate labor supply. In a stationary equilibrium, capital grows at the same rate as labor
supply, which grows with the population at rate g.

The investment rate ιi,t is given by

Φ′(ιi,t) =
1
q
⇒ ιi,t = (Φ′)−1

(
1
q

)
≡ ι (q) , (12)

where ι(q) is increasing in q, given the concavity of Φ(·). From Equation (5), an increase in the
investment rate ιi,t raises the expected capital gain by Φ′(ιi,t), but it reduces the dividend yield
by 1/q. Expected returns are maximized when Φ′(ιi,t) = 1/q, i.e., Equation (12) is satisfied.

18



Substituting Equations (11) and (12) into Equation (5), we obtain

µR =
αKα−1 − ι(q)

q
+ µA + Φ(ι(q))− δ, (13)

where µR
i,t = µR in a stationary equilibrium, so expected returns are equalized across en-

trepreneurs. Realized returns are, of course, still heterogeneous.

Human and total wealth. The lemma below shows that the relevant notion of wealth is total
wealth, ωi,t ≡ ni,t + hi,t, the sum of financial wealth and human wealth. In particular, the
entrepreneur’s value function depends on total wealth ωi,t and on age ai,t = t − si.

Lemma 1. Suppose the economy is in a stationary equilibrium. Then,

(a) Human wealth evolves according to

∂h(a)
∂a

= (r + pagσA − µA) h(a)− wl(a), (14)

given h(T) = 0. Human wealth is then given by

h(a) =
ˆ T−a

0
e−(r+pagσA−µA)zwl(a + z)dz. (15)

(b) The (scaled) value function is given by25

V(n, a) = ζ(a)−
1
γ
(n + h(a))1−γ

1 − γ
, (16)

where ζ(a) equals the consumption ratio to total wealth. The entrepreneur’s effective risk aver-
sion is given by

− Vnnn
Vn

=
γ

1 + h(a)
n

. (17)

(c) Capital stock and the aggregate and idiosyncratic insurance solve the mean-variance problem:

max
ki ,θ

ag
i ,θid

i

qki,t

ni,t
(µR − r)−

pagθ
ag
i,t

ni,t
− 1

2
γ

1 + hi,t
ni,t

(qki,t + hi,t

ni,t
σA −

θ
ag
i,t

ni,t

)2

+

(
qki,t

ni,t
σid −

θid
i,t

ni,t

)2
 , (18)

subject to (7).

Proof. See Appendix A.1.

25Scaled value function is related to the original value function by the condition Ṽt(ñ, a) = A1−γ
t V

(
ñ
At

, a
)

.
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The first part of Lemma 1 shows that human wealth is the present discounted value of fu-
ture labor income, where the discount rate incorporates the aggregate risk premium pagσA.26

This extra discount is required as wages move with aggregate productivity, making labor in-
come risky. Human wealth being a risky asset is consistent with Benzoni et al. (2007), which
shows that human wealth becomes highly correlated with stocks when aggregate output and
labor income are cointegrated, as in our model. As human wealth depends only on the en-
trepreneur’s age, we drop the dependence on the household, i.e. hi,t = h(ai,t).

The second part of Lemma 1 gives the value function, an age-dependent CRRA function
of total wealth. Importantly, the entrepreneur’s effective risk aversion depends on hi,t/ni,t,
the human-financial wealth ratio, which varies substantially over the life cycle in the data.

The final part of the lemma shows that entrepreneurs’ portfolio choice reduces to a mean-
variance problem, given the effective risk aversion γ/(1+ hi,t

ni,t
). This follows from the continuous-

time formulation, as Equation (18) comes from rearranging the Hamilton-Jacobi-Bellman (HJB)
equation of the entrepreneur’s problem. Problem (18) is subject to the skin-in-the-game con-
straint (7) and the Lagrange multiplier to this constraint, which we call the shadow price of
idiosyncratic insurance, plays an important role in the entrepreneurs’ risk-taking decision.

Policy functions. We next consider entrepreneurs’ policy functions.

Proposition 1. Suppose the economy is in a stationary equilibrium. Then,

i. Demand for capital is given by

qki,t

ni,t
=

1 + hi,t
ni,t

γ

pid

ϕσid
, (19)

where pid is the shadow price of idiosyncratic insurance, given by

pid =
µR − r − pagσA

ϕσid
. (20)

ii. The demand for aggregate insurance is given by

θ
ag
i,t

ni,t
=

(
qki,t

ni,t
+

hi,t

ni,t

)
σA −

1 + hi,t
ni,t

γ
pag. (21)

iii. The consumption-wealth ratio is given by

ci,t

ni,t
=

r
1 − ψe−r(T−ai)

(
1 +

hi,t

ni,t

)
, (22)

26We can write Equation (14) alternatively as wl(a) + µA + 1
h(a)

∂h(a)
∂a − r = pagσA, so the expected excess

return on human wealth equals the aggregate risk premium pagσA.
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where r ≡ 1
γ ρ +

(
1 − 1

γ

)
rMV and rMV ≡ r + (pag)2+(pid)2

2γ .

Proof. See Appendix A.1.

The demand for capital has three components: entrepreneur’s effective risk aversion,
γ/(1 + hi,t

ni,t
), the price of idiosyncratic insurance, pid, and the quantity of non-diversified risk,

ϕσid. The cross-sectional dispersion in risk-taking is captured by differences in effective risk
aversion, which are driven by the human-financial wealth ratio. Entrepreneurial risk-taking
then inherits the life-cycle patterns of the human-financial wealth ratio.

Equation (20) shows that the shadow price of idiosyncratic insurance, the Lagrange mul-
tiplier on the skin-in-the-game constraint, is equalized across entrepreneurs. Moreover, it
equals the return per unit of risk (the Sharpe ratio) of an investor who fully insures the project
against aggregate risk. In equilibrium, this Sharpe ratio is positive, so the skin-in-the-game
constraint is always binding, that is, θid

i,t = (1− ϕ)qtki,tσid. Intuitively, entrepreneurs purchase
as much idiosyncratic insurance as possible given it has zero cost.

Rearranging Equation (20), we can express expected excess returns as follows:

µR − r = pagσA︸ ︷︷ ︸
agg. risk premium

+ pidϕσid︸ ︷︷ ︸
id. risk premium

.

Hence, we obtain a two-factor model for expected returns, corresponding to the compensation
for aggregate and idiosyncratic risk, consistent with the evidence in Section 2. In the absence
of aggregate risk, growth, and adjustment costs, this expression simplifies to αKα−1 − r =

pidϕσid, so the MPK is not equal to the interest rate when ϕ > 0, even though entrepreneurs
face no borrowing constraints. Entrepreneurs do not expand the business, despite µR > r, to
limit their exposure to risk. In equilibrium, the wedge µR − r depends on entrepreneurs’ risk
appetite and their ability to diversify these risks, as captured by ϕ.

Interestingly, the demand for capital depends on the price and quantity of idiosyncratic
risk. Access to aggregate insurance leads to a separation between the choice of the scale of the
business and how much aggregate risk entrepreneurs are willing to hold. The choice of how
much to invest in the business is essentially a decision of how much idiosyncratic risk to bear.

The demand for aggregate insurance, given in Equation (21), is decreasing in pag with a
slope given by the inverse of the effective risk aversion. In equilibrium, we obtain pag =

γσA, so the demand for aggregate insurance simplifies to θ
ag
i,t = (qki,t − ni,t)σA.27 Poor en-

trepreneurs buy aggregate insurance, θ
ag
i,t > 0, while rich entrepreneurs provide insurance,

θ
ag
i,t < 0. This arrangement can be implemented by having richer entrepreneurs send trans-

fers to poor entrepreneurs as an indemnity after a negative aggregate shock, with transfers

27The result pag = γσA is standard in asset pricing and can be obtained by combining Equation (21) with the
market clearing condition for aggregate insurance, as shown in Appendix C.3.
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in the opposite direction after a positive aggregate shock. Note that if entrepreneurs on av-
erage have positive savings on the risk-free asset, such that

´
Et
(qki,t − ni,t)di < 0, then they

are net sellers of insurance. In this case, wage earners are borrowers in equilibrium. As they
effectively hold a leveraged position on their risky human wealth, wage earners are dispro-
portionately exposed to risk and demand aggregate insurance in equilibrium.

The consumption-wealth ratio is given in Equation (22). The first term r/(1 − ψe−r(T−a))

represents the marginal propensity to consume (MPC).28 It is increasing in age, as it is typical
in finite-horizon problems, and the bequest motive parameter ψ controls the strength of this
effect. If ψ = 0, the MPC is constant, recovering a standard result in infinite-horizon problems.
If ψ = 1, then the MPC gets arbitrarily large as the entrepreneur approaches the end of life,
so the stock of wealth is fully consumed at the final age T, as in Merton (1969). When γ > 1,
an increase in risk-adjusted returns raises the average MPC. Finally, the consumption-wealth
ratio depends on the human-financial wealth ratio, which varies over the life cycle.

3.3 Quantitative implications

We consider next the quantitative implications of the model for the life-cycle behavior of en-
trepreneurs. We start describing the calibration of the model and consider next the model’s
performance in accounting for the empirical life cycle patterns.

Technology, preferences, and demographics. We adopt the following calibration, which
is summarized in Table 4. The capital share is set to α = 0.33. The average growth rate
of productivity is set to µ = 0.003, following the evidence provided by Jeong and Townsend

(2007) for Thailand. The investment function assumes the functional form Φ(ι) =

√
Φ2

+ 2ι−
Φ. This corresponds to the case of quadratic adjustment costs, as the investment rate required
for capital to grow at rate g is ι = Φ(g + δ) + 0.5(g + δ)2. The coefficient of the investment
function is chosen to match a long-run relative price of capital q of one. The depreciation
rate is set to δ = 0.10. The discount rate of wage earners is chosen to match a risk-free rate
of r = 3.5%, consistent with the average real rate for Thailand over the last two and half
decades. The discount rate of entrepreneurs and the bequest motive parameters are chosen
to match the consumption-wealth ratio at the beginning and end of life. The life horizon is
set to T = 55, so it covers the life span from 25 to 80 years old, and the population growth is
set to g = 0.3%, the most recent value for population growth in Thailand. The parameter χe

is chosen to match the average ratio of the value of the business relative to the entrepreneurs’
financial wealth.

28The MPC is defined as the change in consumption in response to an increase in financial wealth, that is, the
MPC is given by ∂ci,t

∂ni,t
= r

1−ψe−r(T−ai)
.
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Table 4. Calibrated parameters

Parameter Choice

Preferences

ρ Entrepreneur’s rate of time preference 0.141
ρw Wage earner’s rate of time preference 0.127
ψ Bequest motive 0.37
γ Risk aversion 9.23

Technology & financial friction

µA Average productivity growth rate 0.003
σA Aggregate volatility 0.051
σid Idiosyncratic volatility 0.203
ϕ Moral hazard parameter 0.571
Φ Adjustment cost parameter 0.90
α Capital share in production function 0.33
δ Depreciation rate 0.10

Demographics

g Population growth 0.003
χe Share of entrepreneurs in the population 0.46
T Life span (adult life) 55

Risk, return, and the moral hazard parameter. We choose the risk aversion coefficient, the
aggregate and idiosyncratic volatility, and the moral hazard parameter to match the decom-
position of risk and return provided in Table 2. The volatility parameters, σA and σid, are
chosen to match the aggregate and idiosyncratic components of total volatility. The aggregate
risk premium is given by pagσA = γσ2

A, so we choose γ to match the aggregate risk premium.
The idiosyncratic risk premium is informative about ϕ. If ϕ = 0, we obtain the complete-
market solution, so the idiosyncratic risk premium equals zero. As we raise ϕ, the importance
of the idiosyncratic risk premium increases. Using expression (19) to solve for pid, we can
write the idiosyncratic risk premium in terms of the moral hazard parameter ϕ and observ-
able quantities, namely the level of idiosyncratic volatility and the exposure of entrepreneurs’
total wealth to the private business.29 Given these quantities, we can identify ϕ.

Measuring human wealth. It remains to specify the labor supply parameters. We follow
Gârleanu and Panageas (2015) and assume that li,t is a function of the entrepreneur’s age:
li,t = ∑L

l=1 Γleφl ai , where we normalize the average labor supply of entrepreneurs to one, that

is,
´
Et

li,tdi´
Et

di = 1. This functional form is flexible enough to capture the empirical labor income

dynamics while being analytically tractable. We estimate the parameters (Γl, φl)
L
l=1 by non-

29See Section 5 for a discussion of the determination of pid in equilibrium.
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Figure 3: Life Cycle Profiles: Labor Income and Human-Financial Ratio
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linear least squares such that the distribution of labor income across age groups matches the
one observed in the data. We set the number of exponential terms to L = 3. The wage
earner’s labor supply is constant and given by l j,t = 1. The left panel of Figure 3 shows that
the functional form does a good job of approximating the empirical labor income profile.

From Equation (15), human wealth can be computed as follows:

hi,t =

ˆ T−ai

0
e−(r+pagσA−µA)zw

L

∑
l=1

Γleφl(z+ai)dz.

Given the discount rate and the labor income profile, we can compute the human-financial
wealth hi,t/ni,t, both in the data and in the model. Appendix B discusses the construction of
the empirical life-cycle profiles in detail. The right panel of Figure 3 shows that the human-
financial wealth ratio declines over the life cycle. This is the result of labor income being
relatively high at the beginning of the life cycle and that households have fewer years of future
income as time goes by. Quantitatively, human wealth is nearly as important as financial
wealth at the beginning of life. By the age of 50, human wealth is less than half the financial
wealth. Even though this was not a calibration target, the model closely matches the evolution
of the human-financial wealth ratio over the life cycle.

Implications for risk-taking and savings. We consider next the evolution of risk-taking and
consumption over the life cycle. The left panel of Figure 4 shows that the share of wealth in-
vested in the business declines with age, consistent with the evidence in Table 3. In a station-
ary environment, this pattern cannot be explained by differences in expected returns, which
are assumed to be constant. The model generates this pattern by having the effective risk
aversion decreasing in the human-financial wealth ratio, consistent with the evidence the
life-cycle patterns were not driven by differences in returns or risk exposure. Given the pres-
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Figure 4: Life Cycle Profiles: Risk-taking and Consumption-Wealth Ratio
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ence of human wealth, young entrepreneurs are endogenously less risk-averse than older
entrepreneurs, so they invest a larger fraction of their wealth in the business. Notice that the
ratio of the risk-taking measure at the beginning and at the end of life is entirely determined
by the human-financial wealth ratio, which was calibrated independently of any information
on the cross-section of entrepreneurs’ risk-taking.

The consumption-wealth ratio is roughly U-shaped as a function of age. This non-monotonic
behavior is the result of two forces. First, the human-financial wealth ratio declines with
age, which induces households to reduce consumption. Second, the MPC increases with age,
which induces households to consume more. The first effect dominates at the beginning of
the life cycle, and the second effect dominates as the entrepreneur gets older.

3.4 The role of borrowing constraints and occupational choice

We consider next three extensions of our baseline model capturing the role of different forms
of borrowing constraints and endogenous occupational choice.

Collateral constraints. In our baseline model, risk is the only factor preventing entrepreneurs
from scaling up their operations. In Appendix E.1, we consider the effects of limited pledge-
ability of physical capital by introducing collateral constraints. We also introduce decreasing
returns to scale in production and heterogeneous idiosyncratic volatility. This allows us to
study how differences in both risk exposure and net worth affect expected returns in the
presence of collateral constraints. The Lagrange multiplier on the insurance constraint varies
across entrepreneurs, and it depends on the degree of pledgeability of physical capital. Lever-
age constraints do not change our predictions for risk-taking over the life cycle. The demand
for capital (19) holds exactly when we aggregate across entrepreneurs of a given age. Al-
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lowing for collateral constraints and heterogeneity changes the interpretation of pid, which
corresponds now to the average price of idiosyncratic risk, but does not affect the life-cycle
patterns.

The main difference relative to the baseline model is that expected returns depend on
entrepreneurs’ financial wealth. Among constrained entrepreneurs, the business scale is de-
termined by their net worth, so expected returns are independent of the risk exposure. Dif-
ferences in expected returns are then entirely driven by differences in net worth. Therefore,
if leverage constraints are a major factor limiting the activity of entrepreneurs, we should
observe a strong negative association between financial wealth and expected returns.

We test this prediction in our data. The left panel of Figure 5 shows the (cross-sectional)
scatter plot of average returns and average net worth. We find a non-significant positive rela-
tionship between returns and net worth. The theory predicts the association between wealth
and expected returns should hold only for entrepreneurs with relatively low net worth, af-
ter controlling for differences in risk exposure, so a sharper test would focus only on poorer
entrepreneurs. The right panel shows the relationship between average returns and the com-
ponent of net worth that is orthogonal to aggregate beta and idiosyncratic volatility for en-
trepreneurs with below-average (orthogonalized) net worth. We observe a weak and non-
significant association between net worth and expected returns. In both cases, net worth
explains only a negligible fraction of the variation in the cross-section of entrepreneurial re-
turns, with an adjusted R2 of less than half a percentage point. Moreover, the model with
leverage constraints predicts that there should be no association between expected returns
and risk exposure for entrepreneurs with sufficiently low net worth. We test this prediction
by running the same cross-sectional regression of average returns on the exposure to aggre-
gate and idiosyncratic risk but restricted to a sample of entrepreneurs with below-average net
worth. We find that the association between risk exposure and returns is actually stronger for
this subsample, where the R2 of the cross-sectional regression is 0.82, compared to R2 = 0.68
for the whole sample. These results suggest that collateral constraints are not the main driver
of expected entrepreneurial returns in our sample.

Uninsurable labor income risk and borrowing constraints. We consider next the implica-
tions of limited pledgeability of human wealth. In Appendix E.2, we introduce uninsurable
labor income risk, where labor (or non-business) income is subject to a Poisson disability
shock that permanently reduces labor income by a fraction ξd ∈ [0, 1]. The magnitude of the
shock limits how much entrepreneurs can borrow against future income, where entrepreneurs
cannot borrow if ξd = 1, and we recover the baseline case of full pledgeability when ξd = 0.
Even though a closed-form solution is not available with both insurance and borrowing con-
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Figure 5: Average returns vs. net worth
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Note: The left panel shows a scatter plot of the average net worth against the average return for each entrepreneur. The level of net worth
is normalized by its cross-sectional mean. The right panel shows a scatter plot of the residuals of a cross-sectional regression of average net
worth on aggregate beta and idiosyncratic variance against average time-series returns for a sample of entrepreneurs with below-average
orthogonalized net worth. To limit the influence of outliers, we trim 1% of the observations in the left and right tails.

straints, we provide an analytical characterization using perturbation techniques.30 As it is
well known in this class of models, the consumption function is concave on wealth: ci,t ∝ ω

ψc
i,t ,

where ψc ∈ (0, 1) when ξd > 0. The parameter ψc controls the concavity of the consump-
tion function. Our main finding is that the inability to borrow against future income has two
opposing effects on the demand for capital, as shown in the following expression:

qki,t

ni,t
=

1 + (1 − ξd)
hi,t
ni,t

γψc

pid

ϕσid
. (23)

When ξd = 0, the consumption function is linear, ψc = 1, and we recover Equation (19). When
ξd > 0, entrepreneurs have fewer resources available to invest due to limited credit, which
tends to reduce the scale of the business. This effect is intuitive and particularly important for
low net-worth entrepreneurs. However, limited pledgeability of human wealth implies that
entrepreneurs are effectively less risk averse, which tends to increase the scale of the business.
As entrepreneurs cannot borrow against a fraction of human wealth, future income acts as
a buffer, making entrepreneurs more willing to take risks. This second effect is particularly
relevant for richer entrepreneurs. In combination, these two effects imply that borrowing
constraints increase the dispersion of capital holdings, but it has a more muted effect on av-
erage capital holdings. As in the baseline model, entrepreneurs reduce their exposure to the
business as they get older due to a declining human-financial wealth ratio.

In contrast to the version with collateral constraints, the model predicts a positive asso-

30Our method extends the one used by Viceira (2001), and it is similar to risky steady-state approximations
(see e.g. Coeurdacier et al. 2011). Despite having aggregate risk and labor income risk, we do not approximate
the wealth distribution with finite moments as in Krusell and Smith (1998). See Appendix E.2 for details.
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ciation between risk exposure and expected returns, as in the baseline setting. Moreover,
this relationship should be stronger for entrepreneurs with low net worth, as they are more
risk averse. We test this prediction in the data. As shown in the appendix, average returns
are more sensitive to changes in idiosyncratic risk for entrepreneurs with below-average net
worth. Overall, the model with borrowing constraints generates predictions similar to the
baseline model regarding the life cycle and the risk-return trade-off. It generates a new layer
of predictions regarding the different behaviors of entrepreneurs with similar demograph-
ics and risk exposure but different net worth. Therefore, uninsurable labor income does not
substantially change the model’s life-cycle implications.

Endogenous occupational choice. In our baseline model, a household does not choose to be
an entrepreneur or a wage earner, as the fraction of entrepreneurial households is set exoge-
nously. In Appendix E.3, we introduce an endogenous occupational choice. We also assume
that wage earners have finite lives and imperfect altruism, like entrepreneurs. To become an
entrepreneur, the household must pay a fixed cost at the beginning of life. Households draw
a cost parameter from a given distribution. The threshold to become an entrepreneur de-
pends on financial wealth, such that a household that receives a larger bequest is more likely
to become an entrepreneur, and the shadow price of idiosyncratic risk. We show in the ap-
pendix that our results carry through essentially unchanged to this setting, where the fraction
of entrepreneurs in the economy is endogenous.

4 Distributive implications of entrepreneurial risk

In this section, we consider how entrepreneurial risk affects wealth inequality between and
within age groups. The main object of interest in this section is the joint distribution of (scaled)
financial wealth and age, which we denote by ft(n, a). Let f (a) be the age distribution in the
population. As the population grows at rate g and entrepreneurs live for T periods, f (a)
follows an exponential distribution truncated at age T. Given the joint distribution, we obtain
the average wealth conditional on age, nt(a), and the average wealth of all entrepreneurs, ne,t:

nt(a) =
ˆ ∞

−ht(a)
n ft(n|a)dn, ne,t =

ˆ T

0
nt(a) f (a)da,

where ft(n|a) = ft(n, a)/ f (a). We focus on the stationary distribution, such that ft(n, a) =

f (n, a) for all t, which allow us to drop time subscripts, nt(a) = n(a) and ne,t = ne.
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4.1 Between-group inequality

The next proposition provides a characterization of between-group inequality.

Proposition 2. Suppose the economy is in a stationary equilibrium. Then,
i) Between-group inequality: The share of wealth held by entrepreneurs of age a, f (a)n(a)

ne
, satisfies

log
f (a)n(a)

ne
= log

f (0)n(0)
ne

+ log

1 + h(0)
n(0)

1 + h(a)
n(a)


︸ ︷︷ ︸

human-to-financial
wealth effect

+

[
r +

(pag)2

γ
+

(pid)2

γ
− (g + µA)

]
︸ ︷︷ ︸

generalized "r-g" effect

a −
ˆ a

0

r
1 − ψe−r(T−a′) da′︸ ︷︷ ︸

average MPC effect

.

(24)

where

n(0) =
e

(
r+ (pag)2

γ + (pid)2
γ −(g+µA)−mpce

)
T

1 − e

(
r+ (pag)2

γ + (pid)2
γ −(g+µA)−mpce

)
T

h(0), (25)

and mpce =
1
T
´ T

0
r

1−ψe−r(T−a) da is the average MPC across the life cycle.
ii) Average financial wealth: The average financial wealth of entrepreneurs is given by

ne = f (0)(n(0) + h(0))
ˆ T

0
e

(
r+ (pag)2

γ +
(pid)2

γ −(g+µA)

)
a e−ra − ψe−rT

1 − ψe−rT da − he, (26)

where he =
´ T

0 f (a)h(a)da.

Proof. See Appendix A.2.

The first part of Proposition 2 decomposes the distribution of wealth across age groups
into three effects. First, a human-to-financial wealth effect. For older entrepreneurs, human
wealth has been mostly converted into financial wealth, that is, labor income accelerates the
accumulation of financial wealth. The second term is a generalized ”r − g” effect.31 The first
component is the return on total wealth: r + (pag)2/γ+ (pid)2/γ. The correct notion of return
in this context takes into account the aggregate and idiosyncratic risk premium. The second
component is the growth rate of the economy, g+ µA, the sum of population and productivity
growth. The generalized “r − g” effect implies that the wealth share tends to increase with
age if the return on total wealth exceeds the growth rate of the economy. The third term is
the average MPC effect. It captures the fact that wealth accumulated at age a depends on the
entrepreneur’s past consumption decisions. Entrepreneurs accumulate wealth when young,
but eventually consumption increases until wealth achieves a desired bequest level.

31The importance of r − g in determining wealth inequality has been emphasized by Piketty (2014). See
Benhabib et al. (2011) for the implications to the tail of the distribution and Jones (2015) for a literature review.
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Figure 6: Financial wealth distribution across age groups
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The wealth of newborn agents, that is the bequest they receive, can be written as

n(0) = e

(
r+ (pag)2

γ +
(pid)2

γ −(g+µA)−mpce

)
T
(n(0) + h(0)).

The exponential term captures the net accumulation rate of entrepreneurs’ wealth over their
lifetime. The amount of bequests is increasing in returns and decreasing in the growth rate of
the economy and the average MPC.

The second part of Proposition 2 characterizes the average financial wealth of entrepreneurs.
For a given level of the capital stock, this captures the wealth distribution between the two
types of households, as χene

qK equals the share of financial wealth held by entrepreneurs and
1 − χene

qK the share of financial wealth held by wage earners. As ne is the average of the fi-
nancial wealth conditional on age n(a), the same effects that shape the distribution of wealth
across age groups pin down the overall level of wealth held by entrepreneurs.

Figure 6 shows how financial wealth varies across age groups. The model captures the
inverted U-pattern of financial wealth. At the beginning of the life cycle, both the human-
financial wealth effect and the ”r − g” effect dominate the average MPC effect, so the wealth
share initially increases with age. The average MPC effect dominates later in the life cycle,
bringing down the wealth share.

4.2 Within-group inequality

We turn next to the characterization of the wealth distribution conditional on age. Let µn,t(n, a)
denote the expected change and σn,t(n, a) the instantaneous volatility of financial wealth for
an entrepreneur with financial wealth n and age a. The evolution of the distribution of wealth
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conditional on age is given by the Kolmogorov Forward Equation, as shown in Lemma 2.

Lemma 2 (Kolmogorov Forward Equation). The conditional distribution of financial wealth ft(n|a)
satisfies the partial differential equation

∂ ft(n|a)
∂t

+
∂ ft(n|a)

∂a
= −∂[ ft(n|a)µn,t(n, a)]

∂n
+

1
2

∂2 [ ft(n|a)σ2
n,t(n, a)

]
∂n2 , (27)

and the boundary condition ft(e−gTn|0) = ft(n|T), given an initial condition f0(n|a).

Proof. See Appendix A.3.

Despite the complexity created by the dependency on age, it is possible to solve for the
conditional distribution of financial wealth in closed form for the special case where en-
trepreneurs leave no bequests, that is, ψ = 1.

Proposition 3 (Within-group inequality: no bequests). Suppose ψ = 1, r + (pag)2

γ + (pid)2

γ > µA.
i) Shifted log-normal distribution. Conditional on age, financial wealth follows a shifted log-normal
distribution with support (−h(a), ∞), i.e., n + h(a) follows a log-normal distribution.
ii) Mean and variance by age. The expected value and variance of n conditional on age are given by

E[n|a] = h(0)e

(
r+ (pag)2

γ +
(pid)2

γ −µA

)
a e−ra − e−rT

1 − e−rT − h(a) (28)

V[n|a] =
e

(
pid
γ

)2
a
− 1

 [h(0)e

(
r+ (pag)2

γ +
(pid)2

γ −µA

)
a e−ra − e−rT

1 − e−rT

]2

. (29)

iii) Inverted-U shape of inequality over the life cycle. There exists 0 < â < T such that V[n|a]
is increasing in a for a < â and decreasing for a > â.

Proof. See Appendix A.4.

Proposition 3 gives a complete characterization of the distribution of wealth conditional
on age. Wealth has a shifted log-normal distribution, with an age-dependent shifter −h(a).
Since entrepreneurs can borrow, financial wealth clearly cannot be log-normally distributed,
as n can take on negative values. However, financial wealth cannot go below the natural
borrowing limit −h(a), so total wealth assumes only positive values. Total wealth follows a
log-normal distribution with mean and variance dependent on age.

The expression for the conditional mean E[n|a] = n(a) is essentially the same as the one in
Equation (24), after rearranging and specializing to the case ψ = 1. As we have seen, average
wealth increases with age at the beginning of life, and it goes down by the end of the life cycle.

The expression (29) shows how the variance of wealth evolves over the life cycle. Without
bequests, the variance is zero at ages a = 0 and a = T. The wealth dispersion increases at the
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Figure 7: Stationary distribution of financial wealth conditional on age
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beginning of life, as some entrepreneurs receive a series of positive shocks while others suffer
negative shocks. This force increases with the exposure to idiosyncratic risk, as measured by
pid/γ. The increasing MPC provides a countervailing force, as the level of wealth is brought
down at the end of the life cycle.

The results in Proposition 3 assume no bequests. In the general case, we must use nu-
merical methods, as discussed in Appendix C.2. Figure 7 shows the stationary distribution
of financial wealth for selected ages. The mean and the dispersion of the distribution initially
increase with age, then eventually both start to decline as entrepreneurs get older.

The same inverted U-pattern on wealth inequality can be found in the data. Figure 8 shows
the evolution of within-group inequality over the life cycle in our data. To make the units
easier to interpret, we divide financial wealth by the average wealth for all entrepreneurs.
The figure shows that the standard deviation of n/ne increases sharply until roughly age
60 and then declines until the end of the life cycle. Quantitatively, the model generates a
substantial increase in inequality over the life cycle, over 40% from early in life until the peak,
even though idiosyncratic shocks to the business are the only source of heterogeneity across
entrepreneurs. The increase in inequality in the data is even more pronounced. Introducing
differences in preferences or labor income across households could potentially bring the level
of within-group inequality closer to the one in the data.

Wealth inequality and risk sharing. As shown in Appendix A.4, the within-group variance
of log total wealth, and ultimately log consumption, increases with age:

V[log ωi,t|a] = V[log ci,t|a] =
(

pid

γ

)2

a.
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Figure 8: Standard deviation of financial wealth within age groups

30 40 50 60 70

0.4

0.5

0.6

0.7

age

st
d.

de
vi

at
io

n
fin

an
ci

al
we

al
th

data

(a) Within-group inequality: data
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(b) Within-group inequality: model

Note: Panel (a) shows the standard deviation of financial wealth by age in the data. Panel (b) shows the standard deviation of financial
wealth by age in the model economy. In both cases, we normalize the standard deviation by entrepreneurs’ average wealth.

The steepness of the variance life cycle profile depends on pid, so it is a function of the degree
of risk sharing in the economy. This is in line with the literature using the dispersion in
consumption over the life cycle to infer how imperfect is risk sharing (see e.g. Storesletten et
al. 2004). In our setting with entrepreneurial risk, the shadow price of idiosyncratic insurance
controls the level of consumption inequality in the economy.

5 Aggregate implications of entrepreneurial risk

In this section, we study the impact of entrepreneurial risk on the long-run level of the ag-
gregate capital stock. We find that financial development, captured by the magnitude of the
moral hazard parameter ϕ, is tightly linked to the level of economic development.

5.1 Equilibrium characterization

We present next the determination of aggregate variables in a stationary equilibrium. The
detailed derivations are provided in Appendix C.3.

Aggregate risk premium, interest rate, and the price of capital. Equating supply and de-
mand for aggregate insurance, we obtain the price of aggregate insurance,

pag = γσA, (30)

The interest rate is given by the standard condition

r = ρw + γµA − γ(γ + 1)
2

σ2
A, (31)
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From Equation (12), we obtain q = Φ + g + δ, where we choose Φ such that q = 1. Note that
pag, r, and q are independent of the moral hazard parameter ϕ, so they coincide with their
value at the complete-market economy.

Aggregate capital stock and idiosyncratic risk premium. From Equation (20), we obtain an
expression for the expected return on the business

r + pagσA + pidϕσid =
αKα−1 − ι(q)

q
+ g + µA. (32)

The left-hand side captures the required rate of return to invest in the business. The right-
hand side gives the actual expected return of investing in the business, a function of the
marginal product of capital (MPK) net of adjustment costs. Equation (32) generalizes the
standard textbook relation between MPK and interest rates to an environment with growth,
risk, and adjustment costs, as r = αKα−1 − δ in the absence of these three elements.

The expression (32) gives an inverse relation between the idiosyncratic risk premium
pidϕσid and the capital-labor ratio K. This downward-sloping relationship is represented by
the solid blue line in the left panel of Figure 9, which we refer to as the MPK schedule.

We need another condition relating K and pid. Aggregating the demand for capital (19)
across all entrepreneurs, we obtain

pid = γ︸︷︷︸
risk aversion

ϕσid︸︷︷︸
effective risk

qK
χe(ne + he)︸ ︷︷ ︸

id. risk exposure

, (33)

where ne and he denote the average financial and human wealth of entrepreneurs.
The price of idiosyncratic risk depends on the product of the risk aversion γ and the id-

iosyncratic risk (net of insurance) ϕσid, analogous to the price of aggregate risk. However,
pid depends on an additional term: the idiosyncratic risk exposure, that is, the ratio of physical
assets to total wealth of entrepreneurs. This term reflects the fact that entrepreneurs require a
larger idiosyncratic risk premium when they have a larger fraction of their wealth invested in
the business. Using Equation (26) to eliminate ne + he, we obtain an implicit relationship be-
tween pid and K. The left panel of Figure 9 plots this relationship as the solid upward-sloping
curve, which we refer to as the pricing schedule. The idiosyncratic risk premium and the capital
stock in the economy are determined by the intersection of the MPK and pricing schedules.
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Figure 9: Idiosyncratic Risk Premium and Capital Stock
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Note: In the left panel, the solid (dashed) upward-sloping curve shows the pricing schedule in the initial (new) stationary equilibrium for
ϕ0 = 0.571 (ϕ1 = 0.285). The right panel shows the equilibrium idiosyncratic risk premium and the marginal increase in the capital stock
of reducing the moral hazard parameter for different values of ϕ.

5.2 The price of aggregate and idiosyncratic risk in the data

The model replicates the level of risk premium and volatility on aggregate and idiosyncratic
risk observed in the data, as given in Table 2. A striking fact is that, despite idiosyncratic
volatility being four times larger than aggregate volatility, the idiosyncratic risk premium is
slightly smaller than the aggregate risk premium. This leads to a Sharpe ratio more than four
times larger for aggregate risk. Equations (30) and (33) help to shed light on this pattern.

The Sharpe ratio of aggregate risk corresponds to pag = γσA. The Sharpe ratio of idiosyn-
cratic risk is given by pidϕ, as the volatility computed in the data does not consider any insur-
ance available to entrepreneurs. If we were to naively price the idiosyncratic risk by analogy
with the aggregate risk, the Sharpe ratio would be γσid, that is, more than four times larger
than the one for aggregate risk. Two factors explain why the price of idiosyncratic risk is ac-
tually more than four times smaller than the one for aggregate risk: idiosyncratic insurance
and risk exposure. The pricing equation shows the role of these two components:

pidϕ = γσidϕ2 qK/χe

ne + he
.

The moral hazard parameter is ϕ = 0.57, which reduces the price of idiosyncratic risk by
1 − ϕ2 = 67%. The rest of the adjustment comes from the risk exposure factor: qK/χe(ne +

he) ≈ 0.16. Intuitively, the reason for a much smaller price of idiosyncratic risk is that en-
trepreneurs are proportionally less exposed to idiosyncratic risk due to insurance mechanisms
or because only a fraction of their wealth is exposed to this risk. Without human wealth and
heterogeneous agents, one would incorrectly attribute the low Sharpe ratio to a high degree
of insurance. The economy would appear to have better insurance than it actually has.
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Figure 10: Financial development and inequality in the long-run
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Note: Inequality in a stationary equilibrium for ϕ0 = 0.571 (initial steady state) and ϕ1 = 0.286 (new steady state). Panel (a) shows average
financial wealth by age. Panel (b) shows the standard deviation of financial wealth by age. All variables are normalized by entrepreneurs’
average wealth in the initial steady state.

5.3 Long-run effects of relaxing insurance constraints

We consider next the aggregate implications of relaxing insurance constraints. High values
of ϕ capture situations where access to insurance arrangements, formal or informal, is rather
limited. As institutional arrangements improve, e.g. mechanisms to monitor entrepreneurs’
activities, such frictions are expected to be reduced and entrepreneurs would bear less risk.32

Financial development leads to a reduction in the moral hazard parameter ϕ.
The left panel of Figure 9 shows the impact of an intervention that reduces ϕ. The MPK

schedule is unchanged, but the pricing schedule is shifted down. In the long run, the reduc-
tion in expected returns leads to a reduction in the MPK and higher capital stock. Reducing
the moral hazard parameter in half, from ϕ0 = 0.57 to ϕ1 = 0.29, the idiosyncratic risk pre-
mium falls by about 140 basis point, raising the capital stock by roughly 13%.

The right panel of Figure 9 shows that the economy’s response to changes in ϕ is highly
non-linear. The idiosyncratic risk premium (solid line) is convex in ϕ, so changes in the moral
hazard parameter lead to stronger risk premia effects in economies with low financial devel-
opment. The dashed line shows the marginal change in (log) capital due to a reduction in
the moral hazard parameter for different initial values of ϕ. The same reduction in ϕ can lead
to an increase in the capital stock that is five times larger in an economy with low financial
development (high ϕ) compared to an economy with high financial development (low ϕ).

Financial development also has important implications for inequality. The left panel of
Figure 10 shows the average financial wealth for each age group relative to the average across
all entrepreneurs on the initial stationary equilibrium. Financial wealth falls for all age groups

32To focus on entrepreneurs, we assume that insurance providers can perfectly diversify idiosyncratic risk.
If insurance providers also hold under-diversified portfolios, as in Gârleanu et al. (2015), a reduction in the risk
premium can be caused by an improvement in their ability to diversify, see e.g. Khorrami (2019).
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in the new equilibrium, as it is harder to accumulate wealth with lower expected returns. In
the long run, inequality falls after a reduction in ϕ, as shown in the right panel of Figure 10.
As entrepreneurs are less exposed to risk, we observe a smaller dispersion of financial wealth.

6 Dynamic effects of relaxing risk constraints

In the previous section, we studied the long-run effects of relaxing risk constraints by com-
paring two stationary equilibria (or steady states). This approach ignores the transitional
dynamics. To compute the welfare implications of relaxing risk constraints, it is important to
explicitly take into account what happens during the transition. Moreover, some of the effects
may take a long time to materialize. We turn next to the dynamic effects of changes in ϕ.

Computing the transitional dynamics. We consider a "small open economy" version of the
model, where the interest rate is kept at the level of the original stationary equilibrium.33

This allows us to focus on the dynamic implications of fluctuations in the idiosyncratic risk
premium on the capital stock. We show in Appendix D that the price of aggregate insurance is
given by pag

t = γσA during the transition. The next proposition characterizes the evolution of
the capital stock and its relative price, K and q, the consumption-wealth ratio of entrepreneurs
by age, ζt(a), and the level of total and human wealth, ωt(a) and ht(a).

Proposition 4. The evolution of (qt, Kt, {ζt(a), ht(a), ωt(a)}) is characterized by a pair of ordinary
differential equations (ODEs)

K̇t = [Φ(ι(qt))− δ − g]Kt

q̇t =

[
r + γσ2

A + γϕ2σ2
id

qtKt

χeωe,t
+ δ − µA − Φ(ι(qt))−

αKα−1
t − ι(qt)

qt

]
qt

and three partial differential equations (PDEs)

∂ζt(a)
∂t

= −∂ζt(a)
∂a

+ ζ2
t (a)− rtζt(a)

∂ht(a)
∂t

= −∂ht(a)
∂a

+ (r + γσ2
A − µA)ht(a)− (1 − α)Kα

t l(a)

∂ωt(a)
∂t

= −∂ωt(a)
∂a

+

[
r + γσ2

A − µA + γϕ2σ2
id

(
qtKt

χeωe,t

)2

− ζt(a)

]
ωt(a),

subject to the boundary conditions described in the appendix.

33We show in Appendix D that the interest rate is constant during the transitional dynamics when wage
earners have Epstein-Zin utility with linear intertemporal preferences.
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Proof. See Appendix A.5.

In the expressions above, we have eliminated the price of aggregate insurance using pag
t =

γσA and the price of idiosyncratic insurance using pid
t = γϕσid

qtKt
χeωe,t

, where ωe,t = ne,t +

he,t. We obtain the first ODE by aggregating (3) and the second one by rearranging the time-
dependent version of (32). The first PDE comes from the HJB equation for entrepreneurs,
the second one corresponds to the time-dependent version of (14), and the last PDE can be
obtained by averaging the budget constraint of entrepreneurs.

The transitional dynamics for heterogeneous agents models are often computed using a
shooting algorithm, as in e.g. Guerrieri and Lorenzoni (2017) or Achdou et al. (2017). Given
the large number of forward-looking variables, such an algorithm is impractical in our setting.
We adopt instead a combination of perturbation and finite-difference methods. First, we use
finite differences to discretize the system of ODE/PDEs. We end up with a (large) non-linear
boundary value problem, since (Kt, ωt(a)) have initial conditions, while (qt, ζt(a), ht(a)) have
terminal conditions. We then linearize the system around the new stationary equilibrium.
In contrast to the approach in e.g. Ahn et al. (2018), which linearizes around the economy
without aggregate shocks, we do not assume that aggregate or idiosyncratic shocks are small.
By avoiding these small-risk approximations, we are able to capture time-varying risk premia
and precautionary savings effects using this method.34 The final step consists of solving the
resulting linear rational expectation model, which can be done by standard techniques, as the
one by Blanchard and Kahn (1980). See Appendix D for a detailed discussion of the method.

6.1 Short-run dynamics: the overshooting effect

Figure 11 shows the evolution of the capital stock, the relative price of capital, entrepreneurs’
financial wealth, and the idiosyncratic risk premium, as deviations from the initial steady
state. We consider a reform that reduces the moral hazard parameter by half, from ϕ0 = 0.571
under our calibration to ϕ1 = 0.286. In response to a relaxation of insurance constraints, there
is an investment boom and a sharp increase in the value of businesses that lasts for roughly a
decade, as shown in Panels (a) and (b). The short-run response of the price of capital exceeds
by a large margin its long-run level, i.e. there is an overshooting effect. As entrepreneurs bear
less of the risk, they also require a smaller premium. In the long run, this leads to a smaller
MPK and larger capital stock. However, capital is fixed in the short run, so the only way
expected returns can go down is through expected capital losses. The price of capital then
jumps on impact and slowly reverts to its long-run level. This increase in marginal q induces
entrepreneurs to invest more, explaining the investment boom. This logic is reminiscent of
Dornbusch’s (1976) overshooting model, where exchange rates react more strongly to shocks

34See Winberry (2018) on perturbation methods to solve heterogeneous agent models with aggregate risk.
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Figure 11: Transitional dynamics: aggregate variables
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Note: Transitional dynamics from a stationary equilibrium with ϕ0 = 0.571 to a stationary equilibrium with ϕ1 = 0.286. Capital stock,
the relative price of capital, and entrepreneurs’ financial wealth are expressed as percentage deviations from the initial steady state. The
idiosyncratic risk premium is expressed as absolute deviation from the initial steady state in basis points.

in the short run to create expected capital losses to domestic investors.35 The overshooting
effect has important implications for wealth accumulation and inequality.

As discussed in Subsection 5.3, the financial wealth of entrepreneurs goes down in the
long run. In contrast, their financial wealth actually increases in the short run. The reason
for the contrast between the short-run and long-run responses is a revaluation effect. Since en-
trepreneurs own the capital stock, their wealth jumps on impact as the relative price of capital
goes up in the short run. As the expected return on the business goes down with the reduction
in the idiosyncratic risk premium, entrepreneurs accumulate wealth at a slower pace and end
up with less wealth in the long run. This long-run effect takes a long time to materialize, as
shown in Panel (c) of Figure 11, given it is partially transmitted to future generations through
lower bequests. Even thirty years after the shock, the reduction in entrepreneurs’ financial
wealth is only 25% of the long-run effect.

The slow wealth dynamics affect the behavior of risk premia. The short-run response of
the idiosyncratic risk premium exceeds its long-run level by nearly ten basis points, as shown
in Panel (d). After a decade, the difference between the risk premium to the new steady state

35The presence of adjustment costs is crucial for the overshooting result. Without adjustment costs, capital
jumps to the new steady-state level, and there is no movement in prices. Similarly, there is no overshooting in
Dornbusch’s model when the price level can immediately jump to its steady-state level.
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Figure 12: Transitional dynamics: inequality
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Note: Transitional dynamics from a stationary equilibrium with ϕ0 = 0.73 to a stationary equilibrium with ϕ1 = 0.365. Panel (a) shows the
dynamics of average financial wealth by age. Panel (b) shows the dynamics of the standard deviation of financial wealth by age.

level is cut by more than half, and then the risk premium increases slowly as entrepreneurs’
wealth declines, in line with the risk exposure effect discussed in Subsection 5.2.

6.2 Kuznets dynamics

Relaxing the risk constraints has important implications for the dynamics of inequality. Fig-
ure 12 shows the evolution of between- and within-group wealth inequality. The left panel
shows the evolution of average financial wealth for each age group at different points in time,
normalized by average wealth across all entrepreneurs in the initial equilibrium. Because of
the revaluation effect, financial wealth increases on impact for all age groups, but the effect is
stronger for younger entrepreneurs, as they are proportionally more exposed to the business.
Over time the financial wealth goes down due to the reduction in expected returns.

The right panel on Figure 12 shows the standard deviation of financial wealth by age.
Again the short-run and long-run responses are different. While wealth inequality goes down
in the long run, wealth inequality goes up in the short run. Entrepreneurs with initially more
wealth also hold more capital, so wealthier entrepreneurs benefit the most from the reform.

The evolution of inequality interacts in interesting ways with the demographic structure.
After the initial increase in inequality, wealth dispersion goes down for all age groups, but
entrepreneurs starting their professional lives just after the reform are the ones most affected.
Ten years after the reform, the drop in inequality is two times larger for 35-year-old en-
trepreneurs, who lived their entire professional life under the new regime, relative to 80-
year-old entrepreneurs, who lived most of their lives under the old regime. Similarly, the
drop in inequality is more pronounced for 35-year-old entrepreneurs than for 25-year-old en-
trepreneurs.
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Taking stock. The reform initially led to an investment boom and an increase in wealth
inequality. As the economy approaches its new level of output, inequality starts to recede
and it reaches a lower level in the long run. The initial increase in inequality as the economy
enters a high growth phase and eventual reduction in inequality as the economy reaches a
higher level of development is consistent with a Kuznets’s (1955) curve.36

6.3 Welfare implications

We turn next to the welfare implications of insurance constraints. Remember that the value
function of an entrepreneur of age a at time t is given by

Vt(n, a) = ζ
− 1

γ

t (a)
(n + ht(a))1−γ

1 − γ
.

Hence, the welfare of an entrepreneur depends on financial wealth n, human wealth ht(a),
and the consumption-wealth ratio ζt(a), which captures the path of expected future returns.
We evaluate financial wealth at the average level of the age group, n = nt(a), but one can
use the inequality results previously discussed to infer the dispersion in welfare within age
groups. Finally, we take a monotonic transformation of the value function to measure welfare
in consumption units. Hence, our measure of welfare will be

Wt(a) = log
[
u−1 (Vt(nt(a), a))

]
− log

[
u−1 (V∗(n∗(a), a))

]
=

ζ̂t(a)
γ(γ − 1)

+ ω̂t(a),

where u(c) = c1−γ

1−γ , and a hat denotes log deviations from the initial steady state.
Figure 13 shows the welfare gains for each age group at different points in time. The gen-

eration that is alive at the moment of the reform benefits the most, with gains concentrated
on younger entrepreneurs. This is the result of the revaluation effect. However, the negative
impact on wealth accumulation affects future generations of entrepreneurs. As they receive
smaller bequests and it becomes harder to accumulate wealth, their welfare is adversely im-
pacted. Figure 13 shows how demographics affect welfare gains. For instance, ten years after
the intervention, the welfare gains for entrepreneurs who started their professional life after
the reform, the ones with age between 25 to 35 years old, have welfare gains that are smaller
than the entrepreneurs of the same age at the time of the intervention. Thirty years after
the reform, entrepreneurs aged between 35 and 55 are worse off compared to an equilibrium
without the reform, with larger welfare losses for the older entrepreneurs. Therefore, the
initial generation of entrepreneurs reaps most of the benefits of the reform.

36Moll (2012) derived a Kuznet’s curve by showing that the steady-state top wealth share is hump-shaped in
financial development. In contrast, we focus on the transitional dynamics instead of long-run comparisons.
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Figure 13: Transitional dynamics: welfare

30 40 50 60 70 80

−0.03

−0.02

−0.01

0.00

0.01

0.02

age

Year 0
Year 10
Year 20
Year 30
Year 40

7 Conclusion

In this paper, we study the aggregate and distributive implications of entrepreneurial risk. We
propose a life-cycle model of entrepreneurship with aggregate and idiosyncratic risk under
limited insurance. We show that entrepreneurial returns command a positive idiosyncratic
risk premium, which accounts for a large fraction of total returns. The model captures quan-
titatively the empirical patterns of risk-taking and savings over the life cycle, the inverted-U
shape of wealth inequality, and the level of aggregate and idiosyncratic risk premia.

We also study the impact of relaxing insurance constraints. An improvement in idiosyn-
cratic insurance increases output, reduces inequality in the long run, and generates rich tran-
sitional dynamics. The price of capital overshoots in the short run, generating a large invest-
ment boom and an increase in the value of the business. This overshooting leads to an initial
increase in inequality. As the reduction in risk and expected returns have time to play out, in-
equality goes down in the long run with important intergenerational effects. Finally, most of
the welfare gains are concentrated in the generations that are alive at the time of the change,
and future generations of entrepreneurs are actually worse off.
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A Proofs

A.1 Proofs of Lemma 1 and Proposition 1

Proof. We start by showing part (b) of Lemma 1, that is, we solve for ht(a) and its dynamics.
Then, we proceed to solve for the entrepreneurs’ value function and policy functions, deriving
items (a) and (c) of Lemma 1 as well as the results in Proposition 1.

Pricing human wealth. Define the stochastic discount factor (SDF) for this economy as the
process πt satisfying the law of motion

dπt

πt
= −rtdt − pag

t dZt. (A.1)

Without loss of generality, we assumed that the SDF is not exposed to idiosyncratic risk,
as we only use the SDF to price human wealth which is not exposed to idiosyncratic risk.
Integrating the process above, we obtain

πz

πt
= exp

(
−
ˆ z

t

(
ru +

(pag
u )2

2

)
du −

ˆ z

t
pag

u dZu

)
. (A.2)

Similarly, integrating the process for At

Az

At
= exp

(ˆ z

t

(
µA − σ2

A
2

)
du +

ˆ z

t
σAdZu

)
. (A.3)

Hence, we can explicitly compute the following expectation
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[
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u σA − µA
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, (A.4)

where we used Ito’s isometry in the second equality and the fact that pag
t is deterministic.
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Human wealth is given by

ht(a) = Et

[ˆ t+T−a

t

πz Az

πt At
wzl(a + z − t)dz

]

=

ˆ t+T−a

t
e−
´ z

t (ru+pag
u σA−µA)duwzl(a + z − t)dz. (A.5)

Consider the human wealth for someone born at date s, so a = t − s:

ht(t − s) =
ˆ s+T

t
e−
´ z

t (ru+pag
u σA−µA)duwzl(z − s)dz. (A.6)

Differentiating the expression above with respect to time yields

∂ht(a)
∂t

+
∂ht(a)

∂a
=
(
rt + pag

t σA − µA
)

ht(a)− wtl(a), (A.7)

which gives (14) in a stationary equilibrium.

The HJB equation. The HJB equation for problem (9) is given by

ρṼt(ñ, t − s; At) = max
c̃t,θ̃

ag
t ,θ̃id

t ,kt,lt,ιt

{
c̃1−γ

t
1 − γ

+
Et
[
dṼi,t

]
dt

}
, (A.8)

subject to (7) as well as the terminal and boundary conditions

Ṽt(ñ, T) = (1 − ψ)γV∗ ñ1−γ

1 − γ
; lim

ñ→−h̃t(a)
Ṽt(ñ, a) =

{
0, if γ < 1

−∞, if γ ≥ 1
, (A.9)

where the terminal condition captures the effect of bequests and the boundary condition cap-
tures the fact that consumption is zero if the entrepreneur hits the natural borrowing limit.

Using Ito’s lemma, the HJB reduces to a partial differential equation for Ṽt(ñ, a; At):

ρṼt = max
c̃t ,θ̃

ag
t ,θ̃id
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∂A2
t

σ2
A A2

t ,

(A.10)

where (µñ,t, σag,t, σid,t) are the drift and diffusion terms for ñt, and the maximization is subject
to (7).

First, we verify that the following guess for the value function solves the PDE

Ṽt(ñ, a; At) = ζt(a)−γ (ñ + Atht(a))1−γ

1 − γ
. (A.11)
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Plugging the derivatives of the equation above into the HJB equation, we obtain
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where ωi,t = ni,t + ht(a) and pid
i,t denotes the Lagrange multiplier on the skin-in-the-game

constraint.
From the expression above, it is immediate that the optimal value of (li,t, ιi,t) maximizes

the expected return on the business. The first-order conditions for (li,t, ιi,t) are given in (11)
and (12), respectively. The expected return on the business will be equalized, allowing us to
write µR

i,t = µR
t .

The optimal quantity of capital, aggregate insurance, and idiosyncratic insurance solve the
problem

max
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(A.13)

subject to (7).
Multiplying the expression above by ωi,t/ni,t gives (18).

Policy functions. The first order condition for θid
i,t is given by

γ

[
qtki,t

ωi,t
σid −

θid
i,t

ωi,t

]
= pid

i,t. (A.14)

The equation above implies that the skin-in-the-game constraint is always binding, so
pid

i,t > 0 and θid
t = (1 − ϕ)qtki,tσid. If this was not the case, i.e. pid

i,t = 0, then we would
have θid

i,t = qtki,tσid, which violates the skin-in-the-game constraint.
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The first-order conditions for capital and aggregate insurance are given by

µR
t − r + pid

i,t(1 − ϕ)σid = γ
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. (A.15)

Combining the expressions above, we obtain

pid
i,t =

µR
t − rt − pag

t σA

ϕσid
, (A.16)

which coincides with expression (20) after we write pid
i,t = pid

t .
The demand for capital can be written as

qtki,t

ωi,t
=

pid
t

γϕσid
. (A.17)

Multiplying by ωi,t/ni,t, we obtain expression (19). Solving for θ
ag
i,t in the optimality con-

dition for aggregate insurance we obtain (21).
The first-order condition for consumption gives

ci,t

ωi,t
= ζt(a). (A.18)

Plugging the expressions above back into the HJB, we obtain a PDE for ζt(a)

∂ζt(a)
∂t

+
∂ζt(a)

∂a
= ζ2

t (a)− rtζt(a), (A.19)

where
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1
γ
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γ

)[
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(pid
t )

2 + (pag
t )2

2γ

]
. (A.20)

Define zs,t ≡ ζ−1
t (t − s) as the wealth-consumption ratio for an entrepreneur born at date

s. Differentiating with respect to t, we obtain

żs,t = − 1
ζ2

t (a)

[
∂ζt

∂t
+

∂ζt

∂a

]
= rtzs,t − 1. (A.21)
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Solving the above differential equation, we get

zs,t =

ˆ s+T

t
e−
´ u

t rzdzdu + e−
´ s+T

t rzdzzs,s+T, (A.22)

or in terms of ζt(a), we have
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t e−
´ u

t rzdzdu + e−
´ t+T−a

t rzdz(1 − ψ)(V∗)
1
γ

, (A.23)

where we used the boundary condition ζ−1
t (T) = (1 − ψ) (V∗)

1
γ .

Assuming (V∗)
1
γ = 1

r and a stationary equilibrium, where rt = r, we obtain

ζt(a) =
r

1 − ψe−r(T−a)
, (A.24)

which coincides with (22).
Notice that the assumption (V∗)

1
γ = 1

r guarantees that the consumption-wealth ratio for
ψ = 0 is the same as in the infinite horizon economy.

A.2 Proof of Proposition 2

Proof. We start by deriving the law of motion of financial wealth for an entrepreneur of a
given age. Using the value of capital, ki,t, aggregate and idiosyncratic insurance, (θag

i,t , θid
i,t),

and the definition of the price of idiosyncratic risk, pid
t , given in Proposition 1, we can write

the law of motion of financial wealth as follows

dñi,t =

[
rtω̃i,t +

(pid
t )

2

γ
ω̃i,t +

(pag
t )2

γ
ω̃i,t − h̃i,t(rt + pag
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]
dt +

(
ω̃i,t

pag
t
γ

− h̃i,tσA

)
dZt +

pid
t

γ
ω̃i,tdZi,t,

(A.25)

where ω̃i,t = ñi,t + h̃i,t.
Using the fact that pag

t = γσA in equilibrium, we find that the aggregate risk exposure of
entrepreneurs is given ñi,tσA. Hence, scaled financial wealth, ni,t = ñi,t/At, does not respond
to aggregate shocks. The evolution of ni,t can then be written as

dni,t = µn,t(ni,t, a)dt + σn,t(ni,t, a)dZi,t, (A.26)
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where

µn,t(n, a) =

[
rt +

(pid
t )

2

γ
+

(pag
t )2

γ
− µA − ζt(a)

]
(n + ht(a))− µh,t(a) (A.27)

σn,t(n, a) =
pid

t
γ
(n + ht(a)), (A.28)

and µh,t(a) is the drift of ht(a).

Derivation of Equation (24). Notice that total wealth evolves according to

dωi,t

ωi,t
=

[
rt +

(pag
t )2

γ
+

(pid
t )

2

γ
− µA − ζt(t − si)

]
dt +

pid
t

γ
dZi,t, (A.29)

where si is the birthdate of entrepreneur i.

Let ωs,t ≡
´
Et

1si=sωi,tdi´
Et

1si=sdi denote the average total wealth of entrepreneurs born at date s. The

law of motion of ωs,t is given by

dωs,t =

[
rt +

(pag
t )2

γ
+

(pid
t )

2

γ
− µA − ζt(t − s)

]
ωs,tdt (A.30)

where the idiosyncratic risk is diversified by averaging out across entrepreneurs of a given
cohort.

It is convenient to express total wealth as a function of age instead of the entrepreneurs’
birthdate. Let ωt(a) denote the average total wealth of investors with age a at period t. Using
the fact that ωs,t = ωt(t − s), we obtain the following PDE for ωt(a):

∂ωt(a)
∂t

+
∂ωt(a)

∂a
=

[
rt +

(pag
t )2

γ
+

(pid
t )

2

γ
− µA − ζt(a)

]
ωt(a). (A.31)

In a stationary equilibrium, ωt(a) does not depend on calendar time t, which allow us to
write

d log ω(a)
da

= r +
(pag)2

γ
+

(pid)2

γ
− µA − ζ(a). (A.32)

Integrating the expression above, we obtain

log ω(a) = log ω(0) +

[
r +

(pag)2

γ
+

(pid)2

γ
− µA

]
a −
ˆ a

0
ζ(u)du. (A.33)

Using the fact log ω(a)
ω(0) = log f (a)ω(a)

f (0)ω(0) + ga and the identity ω(a) = n(a)
(

1 + h(a)
n(a)

)
, we
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obtain expression (24) after some rearrangement.

Derivation of Equation (25). The expression for ω(a) in levels can be written as

ω(a) = ω(0)e

(
r+ (pag)2

γ +
(pid)2

γ −µA

)
a e−ra − ψe−rT

1 − ψe−rT . (A.34)

Evaluating at a = T gives

ω(T) = ω(0)e

(
r+ (pag)2

γ +
(pid)2

γ −µA−mpce

)
T

, (A.35)

where mpce =
1
T
´ T

0 ζ(a)da.
The boundary condition at age T implies ω(0) = e−gTω(T) + h(0), then

ω(0) =
h(0)

1 − e

(
r+ (pag)2

γ +
(pid)2

γ −µA−g−mpce

)
T

. (A.36)

Using ω(0) = n(0) + h(0) and rearranging the resulting expression, we obtain (25).

Derivation of Equation (26). Multiplying Equation (A.34) by f (a), integrating over age, and
using the fact that f (a) = e−ga f (0), we obtain

ne + he = f (0)ω(0)
ˆ T

0
e

(
r+ (pag)2

γ +
(pid)2

γ −(g+µA)

)
a e−ra − ψe−rT

1 − ψe−rT da, (A.37)

which gives Equation (26) after some rearrangement .

A.3 Proof of Lemma 2

Proof. We derive the Kolmogorov Forward Equation as the limit of a discrete-time econ-
omy. The discrete-time approximation goes as follows. Time takes values on the discrete set{

t1, . . . , tL}, where ∆t = tl+1 − tl is the constant time step. Scaled financial wealth ni,t takes
values on a discrete grid, ni,t ∈

{
n1, n2, . . . , nJ} with a constant step size ∆n = nj+1 − nj. Age

is also assumed to take values in a discrete grid
{

a1, . . . , aK}, where ∆a = ak+1 − ak, a1 = 0,
and aK = T. For simplicity, assume ∆a = ∆t. The probability of moving up, down, or staying
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at the same point of the grid are chosen to approximate (A.26) and are given, respectively, by

pu(nj, ak) =
1
2

[
σn(nj, ak)2

σ2 +
µn(nj, ak)

σ2 ∆n

]
(A.38)

pd(nj, ak) =
1
2

[
σn(nj, ak)2

σ2 − µn(nj, ak)

σ2 ∆n

]
(A.39)

ps(nj, ak) = 1 − σn(nj, ak)2

σ2 . (A.40)

where σ = max1≤j≤J,1≤k≤K σn(nj, ak), ∆n = σ
√

∆t, and ∆a = ∆t.
Notice that the expected change in ni,t, where ni,t = nj and ai = ak, is given by

E [ni,t+1 − ni,t] = pu(nj, ak)∆n + pd(nj, ak)(−∆n) = µn(nj, ak)∆t, (A.41)

and

E
[
(ni,t+1 − ni,t)

2
]
= pu(nj, ak)∆n2 + pd(nj, ak)(−∆n)2 = σn(nj, ak)2∆t. (A.42)

Let m(nj, ak, tl) denote the mass of agents with financial wealth nj, age ak, at period tl.
Summing over nj, we obtain the mass of agents with age ak, Mk,l ≡ ∑J

j=1 m(nj, ak, tl) =

eg(tl−(k−1)∆t). Summing over (nj, ak), we obtain the total population Ml = ∑K
k=1 Mk,l, so

Ml+1 = eg∆tMl. The law of motion of m, for k > 1 and 1 < j < J, is given by

m(nj, ak, tl + ∆t) = pu(nj − ∆n, ak − ∆a)m(nj − ∆n, ak − ∆a, tl) + ps(nj, ak − ∆a)m(nj, ak − ∆a, tl)

+ pd(nj + ∆n, ak − ∆a)m(nj + ∆n, ak − ∆a, tl). (A.43)

The boundary conditions are defined as follows. For j = 1 and j = J, we will assume a
reflecting boundary, that is, if n moves up from nJ or down from n1, it is immediately reflected
back to its initial position

m(nJ , ak, tl + ∆t) = pu(nJ − ∆n, ak − ∆a)m(nJ − ∆n, ak − ∆a, tl) + ps(nJ , ak − ∆a)m(nJ , ak − ∆a, tl)

+ pu(nj, ak − ∆a)m(nJ , ak − ∆a, tl), (A.44)

and analogously for j = 1.
Finally, for k = 1, we have

m(e−gTnj, a1, tl + ∆t) = egT
[

pu

(
nj − ∆n, aK

)
m
(

nj − ∆n, aK, tl
)
+ ps

(
nj, ak

)
m
(

nj, aK, tl
)

+pd

(
nj + ∆n, aK

)
m
(

nj + ∆n, aK, tl
)]

. (A.45)
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since each one of the egT heirs inherit e−gTnj, where we assumed e−gTnj belongs to the grid.

Let f (nj, ak, tl) ≡ m(nj,ak,tl)
Ml

denote the share of agents in state (nj, ak) in period tl. Dividing
both sides of (A.43) by Ml and taking a Taylor expansion, we obtain

(1 + g∆t)( f + ft∆t) =
1
2

(
σ2

n − (σ2
n)n∆n + 0.5(σ2

n)nn∆n2 − (σ2
n)a∆t

σ2 +
µn − (µn)n∆n

σ2 ∆n
)(

f − fa∆t − fn∆n + 0.5 fnn∆n2
)

+
1
2

(
σ2

n + (σ2
n)n∆n + 0.5(σ2

n)nn∆n2 − (σ2
n)a∆t

σ2 − µn + (µn)n∆n
σ2 ∆n

)(
f − fa∆t + fn∆n + 0.5 fnn∆n2

)
+

(
1 − σ2

n − (σ2
n)a∆t

σ2

)
( f − fa∆t) + o(∆t). (A.46)

Simplifying the expression above and taking the limit ∆t → 0, we obtain

ft + fa + g f =
1
2
(σ2

n)nn f − (µn)n f + (σ2
n)n fn − µn fn +

1
2

σ2
n fnn, (A.47)

or, more explicitly, we can write the expression as follows

∂ f (n, a, t)
∂t

+
∂ f (n, a, t)

∂a
+ g f (n, a, t) = −∂[ f (n, a, t)µn(n, a)]

∂n
+

1
2

∂
[

f (n, a, t)σ2
n(n, a)

]
∂n2 . (A.48)

Let ft(n|a) denote the conditional density at date t, so ft(n, a) = ft(n|a) f (a). We can write
the Kolmogorov Forward Equation in terms of the conditional density:

f (a)
∂ ft(n|a)

∂t
+ f (a)

∂ ft(n|a)
∂a

+ ft(n|a) f ′(a) = − f (a)
∂[ ft(n|a)µn(n, a)]

∂n
+ f (a)

1
2

∂
[

ft(n|a)σ2
n(n, a)

]
∂n2 − g ft(n, a).

(A.49)

Dividing by f (a) and using the fact that f ′(a) = −g f (a), we obtain

∂ ft(n|a)
∂t

+
∂ ft(n|a)

∂a
= −∂[ ft(n|a)µn(n, a)]

∂n
+

1
2

∂
[

ft(n|a)σ2
n(n, a)

]
∂n2 . (A.50)

In a stationary equilibrium, we can ignore the dependence on calendar time to obtain

∂ f (n|a)
∂a

= −∂[ f (n|a)µn(n, a)]
∂n

+
1
2

∂
[

f (n|a)σ2
n(n, a)

]
∂n2 . (A.51)

A.4 Proof of Proposition 3

Proof. The law of motion of (log) total wealth is

d log ωi,t =

[
r +

(pag)2

γ
+

(pid)2

γ
− r

1 − e−r(T−(t−s))
− µA − 1

2

(
pid

γ

)2]
dt +

pid

γ
dZi,t, (A.52)

where s denotes the birth date of entrepreneur i.
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Integrating the expression above, we obtain

log ωi,t = log ωi,s +

ˆ t

s

r +
(pag)2

γ
+

(pid)2

γ
− r

1 − e−r(T−(t′−s))
− µA − 1

2

(
pid

γ

)2
 dt′+

pid

γ
(Zi,t −Zi,s),

(A.53)
where Zi,t − Zi,s ∼ N (0, a) and a = t − s.

Hence, log ωi,t ∼ N (m(a), v(a)), where the mean and variance are given by

m(a) = log h(0) +

r +
(pag)2

γ
+

(pid)2

γ
− µA − 1

2

(
pid

γ

)2

− r

 a + log
1 − e−r(T−a)

1 − e−rT (A.54)

v(a) =

(
pid

γ

)2

a, (A.55)

using the fact that ωi,si = h(0) when ψ = 1.
Note that, as the ratio of consumption to total wealth is the same for all entrepreneurs with

the same age, the variance of log consumption is then given by

V[log ci,t|a] = V[log ωi,t|a] =
(

pid

γ

)2

a. (A.56)

Normalized financial wealth ni,t = ωi,t − hi,t has a shifted log-normal distribution condi-
tional on si = s, with support (−h(a), ∞). The expected value and variance of ni,t is given
by

E[n|a] = h(0)e

(
r+ (pag)2

γ +
(pid)2

γ −µA−r
)

a 1 − e−r(T−a)

1 − e−rT − h(a) (A.57)

V[n|a] =
e

(
pid
γ

)2
a
− 1

 [h(0)e

(
r+ (pag)2

γ +
(pid)2

γ −µA

)
a e−ra − e−rT

1 − e−rT

]2

. (A.58)

We show next that V[n|a] has an inverted U shape. Define the following functions:

v1(a) =

e

(
pid
γ

)2
a
− 1


1
2

e

(
r+ (pag)2

γ +
(pid)2

γ −µA

)
a
; v2(a) =

e−ra − e−rT

1 − e−rT . (A.59)

The derivative of the product of v1(a) and v2(a) will be positive if

v′1(a)v2(a) + v1(a)v′2(a) > 0 ⇐⇒ v′1(a)
v1(a)

> −v′2(a)
v2(a)

, (A.60)
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for a ̸= 0 and a ̸= T.
Notice that −v′2(a)/v2(a) is positive, monotonically increasing, and approaches ∞ as a

approaches T:

− v′2(a)
v2(a)

= r
1

1 − e−r(T−a)
. (A.61)

The term v′1(a)/v1(a) is positive, monotonically decreasing, and approaches +∞ as a → 0:

v′1(a)
v1(a)

=
1
2

(
pid

γ

)2
e

(
pid
γ

)2
a

e

(
pid
γ

)2
a
− 1

+ r +
(pag)2

γ
+

(pid)2

γ
− µA. (A.62)

Hence, there exists a unique 0 < â < T such that v′1(a)v2(a) + v1(a)v′2(a) > 0 for all a < â
and v′1(a)v2(a) + v1(a)v′2(a) < 0 for all a > â. Hence, V[n|a] is equal to zero at a = 0, it
increases monotonically for a < â, where it achieves the maximum, and it decreases towards
zero for â < a ≤ T.

A.5 Proof of Proposition 4

Proof. Aggregating Equation (3) and using the fact that labor supply grows at rate g, we obtain

K̇t = [Φ(ι(qt))− δ − g]Kt, (A.63)

given the initial condition K0 = K∗.
From (A.16) and (5), we obtain the expression

r + pag
t σA + pid

t ϕσid =
αKα−1

t − ι(qt)

qt
+

q̇t

qt
+ Φ(ι(qt))− δ + µA. (A.64)

Using pag
t = γσA and pid = γϕσid

qtKt
χeωe,t

and solving for q̇t, we obtain

q̇t =

[
r + γσ2

A + γϕ2σ2
id

qtKt

χeωe,t
+ δ − µA − Φ(ι(qt))−

αKα−1
t − ι(qt)

qt

]
qt, (A.65)

where ωe,t = ne,t + he,t.
The ODE above is subject to the terminal condition

lim
t→∞

qt = q, (A.66)

where q is the value of qt in the new stationary equilibrium.
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The first PDE was derived in the proof of Lemma 1 and it was given in (A.19). The bound-
ary conditions are ζt(T) = (1 − ψ)−1 (V∗)−

1
γ and

lim
t→∞

ζt(a) = ζ(a), (A.67)

where ζ(a) is the value in the new stationary equilibrium.
The PDE for the human wealth was given in (A.7). The boundary conditions are ht(T) = 0

and
lim
t→∞

ht(a) = h(a), (A.68)

where h(a) is the value in the new stationary equilibrium.
The PDE for total wealth was derived in the proof of Proposition 2 and it was given in

(A.31). The first boundary condition is ωt(0) = e−gTωt(T) + ht(0). The initial condition for
ωt(a) is given by

ω0(a) = n∗(a) + (q0 − q∗)k∗(a) + h0(a), (A.69)

where variables with an asterisk denote values before the change in ϕ.
The initial condition captures two types of revaluation effects. First, the value of the capital

stock changes, since the price of capital jumps on impact. Second, the value of human wealth
also changes since expected future wages respond on impact.

A.6 Proof of Lemma 3

Proof. With a slight abuse of notation, we denote the entrepreneur’s value function as a func-
tion of total wealth, age, and aggregate productivity: Ṽt(ω̃i, ai) = Ṽ(ω̃i, ai; At). The HJB for
the entrepreneur’s problem is given by

ρṼt = max
c̃i ,θ̃

ag
i ,θ̃id

t ,ki ,li ,ιi

c̃1−γ
t

1 − γ
+

Et
[
dṼt
]

dt
(A.70)

subject to the insurance and borrowing constraints (E.11).
We guess and verify that the value function can be written as

Ṽ(ω̃, a; At) = A1−γ
t V

(
ω̃

At
, a
)

, Ṽd(ω̃, a; At) = A1−γ
t Vd

(
ω̃

At
, a
)

, (A.71)

where V(ω, a) and Vd(ω, a) are independent of At.
Let ωi,t ≡ ω̃i,t/At denote scaled total wealth. Using an argument analogous to the one

used in Lemma 1, we can derive the law of motion hi,t = h̃i,t/At, which then gives the law of
motion of ωi,t:

dωi,t = µωi,tdt + σ
ag
i,t dZt + σid

i,tdZi,t, (A.72)
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where σ
ag
i,t ≡ (qki,t + (1 − ξd)hi,t − ωi,t) σA − θ

ag
i,t , σid

i,t ≡ qki,tσid − θid
i,t, and

µωi,t ≡ (r + pagσA − µA)ωi,t + qki,t(µ
R
i,t − r − pagσA) + (pag − σA)σ

ag
i,t + ξdwtli,t − ci,t. (A.73)

The HJB equation for the scaled value function can be written as

ρ̂V = max
ci,θ

ag
i ,θid

t ,ki,li,ιi

c1−γ
t

1 − γ
+ Va + Vω

[
r̂ωi,t + qki,t(µ

R
i,t − r − pagσA) + p̂agσ

ag
i,t + ξdwtli,t − ci,t

]
+

+
1
2

Vωω

(
(σ

ag
i,t )

2 + (σid
i,t)

2
)
+ λd

(
Vd − V

)
(A.74)

subject to θid
i,t ≤ (1 − ϕ)qki,tσid and ωi,t ≥ 0, where

ρ̂ ≡ ρ − (1 − γ)

(
µA − γσ2

A
2

)
, r̂ ≡ r + pagσA − µA, p̂ag ≡ pag − γσA.

(A.75)
As the HJB equation above is independent of At, we conclude that V(ω, a) is also inde-

pendent of At, confirming our initial guess.
As li,t and ιi,t only enter the problem through µR

i,t, it is optimal to choose them to maximize
expected returns. Expected returns is then constant and equalized across entrepreneurs, so
we drop the dependence on entrepreneur and time: µR

i,t = µR. The first-order condition with
respect to θ

ag
i,t is given by

p̂ag = −Vωω

Vω
σ

ag
i,t ⇒ θ

ag
i,t = (qki,t + (1 − ξd)hi,t − ωi,t) σA +

Vω

Vωω
p̂ag. (A.76)

An argument analogous to the one used for the model without labor income risk estab-
lishes that pag = γσA in a stationary equilibrium. This implies that p̂ag = 0 and σ

ag
i,t = 0, so

entrepreneurs choose the same exposure to aggregate risk in equilibrium.
Let Vω pid denote the Lagrange multiplier on the insurance constraint. The first-order con-

ditions with respect to ki,t and θid
i,t are given by

µR
i,t − r − γσ2

A + pid(1 − ϕ)σid = −Vωω

Vω

[
σ

ag
i,t σA + σid

i,tσid

]
, pid = −Vωω

Vω
σid

i,t. (A.77)

Given that σid
i,t > 0 by the insurance constraint and given the concavity of the value func-

tion, Vωω < 0, we have that pid > 0. Therefore, the insurance constraint is always binding,
that is, θid

i,t = (1 − ϕ)qki,tσid. Rearranging the expressions above, we obtain

qki,t = − Vω

Vωω

pid

ϕσid
, pid =

µR − r − pagσA

ϕσid
. (A.78)

61



Finally, the optimality condition for consumption is given by

c−γ
i,t = Vω ⇒ c(ωi,t, ai,t) = V

− 1
γ

ω (ωi,t, ai,t). (A.79)

A.7 Proof of Proposition 5

Proof. We provide next a complete characterization of the first-order approximation of the
entrepreneurs’ problem. We proceed in four steps. First, we derive the law of motion of
ω̂i,t. Second, we solve for the demand for capital. Third, we will solve for the consumption
function. Fourth, we derive the conditions that determine the approximation point ω.

Law of motion of the state. The log of total wealth for entrepreneur i evolves according to

d log ωi,t =

[
r̂ +

qki,t

ωi,t
pidϕσid −

1
2

(
qki,t

ωi,t
ϕσid

)2

+ ξd
wli,t

ωi,t
− ci,t

ωi,t

]
dt +

qki,t

ωi,t
ϕσiddZi,t. (A.80)

Log-linearizing the law of motion of ωi,t, we obtain

d log ωi,t =

r̂ +
qk
ω

pidϕσid(1 + k̂i,t − ω̂i,t)−
1
2

(
qk
ω

ϕσid

)2 (
1 + 2(k̂i,t − ω̂i,t)

)

+ξd
wl(a)

ω

(
1 +

l
′
(a)

l(a)
âi,t − ω̂i,t

)
− c

ω
(1 + ĉi,t − ω̂i,t)

]
dt +

qk
ω

ϕσid

(
1 + k̂i,t − ω̂i,t

)
dZi,t.

(A.81)

Rearranging the expression above, we get

dω̂i,t =

qk
ω

pidϕσid −
(

qk
ω

ϕσid

)2
(k̂i,t − ω̂i,t

)
+ ξd

wl(a)
ω

(
l
′
(a)

l(a)
âi,t − ω̂i,t

)
− c

ω
(ĉi,t − ω̂i,t)

 dt

+ E[d log ωi,t|ai,t = a] +
qk
ω

ϕσid

(
1 + k̂i,t − ω̂i,t

)
dZi,t. (A.82)

We can write the expression above in more compact form:

dω̂i,t = [ψω,0 + ψω,a âi,t + ψω,ωω̂i,t] dt +
[
ψσ

ω,0 + ψσ
ω,a âi,t + ψσ

ω,ωω̂i,t
]

dZi,t, (A.83)
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where

ψσ
ω,0 ≡ qk

ω
ϕσid, ψσ

ω,ω ≡ ψσ
ω,0(ψk,ω − 1), ψσ

ω,a ≡ ψσ
ω,0ψk,a. (A.84)

and

ψω,0 = r̂ +
qk
ω

pidϕσid −
1
2

(
qk
ω

ϕσid

)2

+ ξd
wl(a)

ω
− c

ω
(A.85)

ψω,ω =

qk
ω

pidϕσid −
(

qk
ω

ϕσid

)2
 (ψk,ω − 1)− ξd

wl(a)
ω

− c
ω
(ψc,ω − 1), (A.86)

ψω,a =

qk
ω

pidϕσid −
(

qk
ω

ϕσid

)2
ψk,a + ξd

wl
′
(a)

ω
− c

ω
ψc,a, (A.87)

Demand for capital. The first-order condition for capital and consumption are given by

− Vωωσid
i,t = Vω pid, Vω = c−γ

i,t . (A.88)

Using the fact that dVωdZi,t = Vωωσid
i,tdt and the expressions above, we can express the

optimality condition for capital as follows:

piddt = γ
dci,t

ci,t
dZi,t. (A.89)

Up to first order, we have that dci,t
ci,t

dZi,t = dĉi,tdZi,t = ψc,ωdω̂i,tdZi,t. We can then write the
expression above as follows:

pid = γψc,ω
[
ψσ

ω,0 + ψσ
ω,a âi,t + ψσ

ω,ωω̂i,t
]

. (A.90)

As the expression above must hold for all â and ω̂i,t, then we must have ψσ
ω,ω = ψσ

ω,a = 0.
This implies that coefficients in the expansion for capital are given by

ψk,ω = 1, ψk,a = 0. (A.91)

The exposure to the business relative to total wealth is then the same for all entrepreneurs,
in line with the results in Section 3:

qki,t

ωi,t
=

qk
ω

. (A.92)

Using the fact that Vωω = −γc−γ−1cω and evaluating the first-order condition for capital
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at (ω, a), we obtain

γ
cω(ω, a)
c(ω, a)

qk(ω, a)ϕσid = pid ⇒ qk(ω, a)
ω

=
1

γψc,ω

pid

ϕσid
, (A.93)

where we used that ψc,ω = cω(ω,a)ω
c(ω,a) .

The demand for capital can then be written as

qki,t

ni,t
=

1 + (1 − ξd)
hi,t
ni,t

γψc,ω

pid

ϕσid
. (A.94)

Consumption. The envelope condition with respect to ω for problem (E.12) is given by

ρ̂Vω = Vω r̂ +
E [dVω]

dt
. (A.95)

Using Ito’s lemma, we can write the expression above as follows

r = ρ + γ

(
µA +

1
dt

E[dĉi,t]

)
− γ(γ + 1)

2
σ2

A − γ2

2
E[dĉ2

i,t]− λd

( cd
i,t

ci,t

)−γ

− 1

 . (A.96)

Up to first order, the expression above can be written as

γψc,ω (ψω,ωω̂i,t + ψω,a âi,t)+γλd

(
ζ(a)ω

c

)−γ (
ω̂i,t(1 − ψc,w) +

(
ζ ′(a)
ζ(a)

− ψc,a

)
â
)
= constant.

(A.97)
As the expression above must hold for all values of ω̂i,t and âi,t, we obtain ψω,ω = ψω,a = 0.

This implies the following conditions must hold:

ψc,ωψω,ω +λd

(
ζ(a)ω

c

)−γ

(1−ψc,ω) = 0, ψc,ωψω,a +λd

(
ζ(a)ω

c

)−γ (ζ ′(a)
ζ(a)

− ψc,a

)
= 0.

(A.98)
Using the expression for ψω,ω, we obtain a quadratic equation for ψc,ω:

ψ2
c,ω − ψc,ω

[
1 − λd

ω

c

(
ζ(a)ω

c

)−γ

− ξd
wl(a)

c

]
− λd

ω

c

(
ζ(a)ω

c

)−γ

= 0. (A.99)

The equation above has a positive and a negative solution, where the economically rele-
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vant solution is the positive one:

ψc,ω =
1
2

1 − λd
ω

c

(
ζ(a)ω

c

)−γ

− ξd
wl(a)

c
+

√√√√(1 − λd
ω

c

(
ζ(a)ω

c

)−γ

− ξd
wl(a)

c

)2

+ 4λd
ω

c

(
ζ(a)ω

c

)−γ

 .

(A.100)

We will show next that ψc,ω < 1. Assuming that ψc,ω > 1, the expression above implies
that√√√√(1 − λd

ω

c

(
ζ(a)ω

c

)−γ

− ξd
wl(a)

c

)2

+ 4λd
ω

c

(
ζ(a)ω

c

)−γ

> 1+λd
ω

c

(
ζ(a)ω

c

)−γ

+ ξd
wl(a)

c
.

(A.101)
Squaring both sides of the inequality above, we obtain

(
1 − λd

ω

c

(
ζ(a)ω

c

)−γ

− ξd
wl(a)

c

)2

+ 4λd
ω

c

(
ζ(a)ω

c

)−γ

>

(
1 + λd

ω

c

(
ζ(a)ω

c

)−γ

+ ξd
wl(a)

c

)2

.

(A.102)
Rearranging the expression above, we obtain

4λd
ω

c

(
ζ(a)ω

c

)−γ

> 4

(
λd

ω

c

(
ζ(a)ω

c

)−γ

+ ξd
wl(a)

c

)
, (A.103)

which is a contradiction. Therefore, we must have 0 < ψc,ω < 1.
We solve next for ψc,a. The coefficient ψc,a satisfies the equation:

ψc,ω

(
ξd

wl
′
(a)

ω
− c

ω
ψc,a

)
+ λd

(
ζ(a)ω

c

)−γ (ζ ′(a)
ζ(a)

− ψc,a

)
= 0. (A.104)

Rearranging the expression above, we obtain

ψc,a =
ψc,ω

c
ω ξd

wl
′
(a)
c + λd

(
ζ(a)ω

c

)−γ ζ ′(a)
ζ(a)

ψc,ω
c
ω + λd

(
ζ(a)ω

c

)−γ . (A.105)

For ξd sufficiently small, the expression above is positive, as ζ ′(a), the consumption-wealth
ratio in the absence of labor income risk, is positive.

We can then write consumption as follows

ci,t = c(ω, a)eψc,a(ai,t−a)
(ωi,t

ω

)ψc,ω ≡ fc(ai,t)ω
ψc,ω
i,t , (A.106)

where the second equality defines the age-dependent function fc(a). Note that fc(a) is in-
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creasing in a for ξd sufficiently small.
It remains to solve for the consumption-wealth ratio at (ω, a). From the envelope condi-

tion, we obtain

r = ρ + γ (µA + ψc,ωψω,0 + ψc,a)−
γ(γ + 1)

2
σ2

A − γ2

2
(ψc,ωψσ

ω,0)
2 − λd

((
ζ(a)ω

c

)−γ

− 1

)
.

(A.107)

where ψω,0 = r + γσ2
A − µA + qk

ω pidϕσid − 1
2

(
qk
ω ϕσid

)2
+ ξd

wl(a)
ω − c

ω .
Rearranging the expression above, we obtain

ψc,a = ψc,ω

(
c
ω

− ξd
wl(a)

ω

)
− rd − (1 − ψc,ω)

(
µA − γσ2

A
2

)
+

λd
γ

((
ζ(a)ω

c

)−γ

− 1

)
,

(A.108)

where

rd ≡ 1
γ

ρ +

(
ψc,ω − 1

γ

)(
r +

(pag)2

2γ
+

(pid)2

2γψc,ω

)
. (A.109)

Using the expressions for ψc,ω and ψc,a, we obtain a non-linear equation for c given ω.
Note that if ξd = λd = 0, we recover a linearized version of the equation determining ζ ′(a)

ζ(a) ,
Equation (A.19).

Wealth dynamics and the approximation point. The law of motion of ω̂i,t can be written as

dω̂i,t = [ψω,0 + ψω,a âi,t + ψω,ωω̂i,t] dt +
pid

γψc,ω
dZi,t, (A.110)

where

ψω,ω =
c
ω

[
1 − ψc,ω − ξd

wl(a)
c

]
, ψω,a = λd

(
ζ(a)ω

c

)−γ c
ω

ξd
wl

′
(a)
c − ζ ′(a)

ζ(a)

ψc,ω
c
ω + λd

(
ζ(a)ω

c

)−γ .

(A.111)

We will show next that ψω,ω < 0. For the sake of reaching a contradiction, assume that
ψω,ω ≥ 0. This implies that the following condition is satisfied:

1+λd
ω

c

(
ζ(a)ω

c

)−γ

− ξd
wl(a)

c
≥

√√√√(1 − λd
ω

c

(
ζ(a)ω

c

)−γ

− ξd
wl(a)

c

)2

+ 4λd
ω

c

(
ζ(a)ω

c

)−γ

(A.112)
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Squaring both sides of the inequality and rearranging, we obtain

4λd
ω

c

(
ζ(a)ω

c

)−γ
(

1 − ξd
wl(a)

c

)
≥ 4λd

ω

c

(
ζ(a)ω

c

)−γ

, (A.113)

which is a contradiction. Thus, we must have ψω,ω < 0.
We solve next for ω. Let ω(a) ≡ exp (E[log ωi,t|ai,t = a]), then

d log ω(a)
da

= ψω,0 + ψω,a(a − a) + ψω,ω(log ω(a)− log ω). (A.114)

Solving the differential equation above, we obtain

log ω(a) = eψω,ωa log ω(0) +
ˆ a

0

[
ψ̃ω,0 + ψω,aa′

]
eψω,ω(a−a′)da′. (A.115)

Using the fact that the wealth of entrepreneurs at date T is left as a bequest to the next
generation, we can pin down ω(0). Evaluating the expression above at a = a, for a given
reference age a, we obtain an equation for ω.

B Data

In this appendix, we discuss our empirical measures in more detail. For an extensive dis-
cussion of the Townsend Thai Monthly Survey and the derivation of entrepreneurs’ balance
sheet information from the survey questionnaire, see Samphantharak and Townsend (2010).

B.1 Sample selection and variable definition

The dataset includes information on both economic and demographic variables. Economic
variables include households’ assets and liabilities, financial wealth, business and labor in-
come, and consumption. Demographic and geographic variables consist of the age of the
household’s head, year, number of household members, number of children in the house-
hold, and province in which the household is located. We focus on a sample of households
from age 25 to 80. We drop observations for households without information on age or finan-
cial wealth, resulting in an unbalanced panel of 796 households over 14 years, from 1999 to
2012.

Business exposure. The Townsend Thai Monthly Survey contains detailed information on
entrepreneurs’ assets, including fixed assets, inventories, and financial assets. We classify
these assets into business assets and non-business assets, which we treat as safe. The value
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of the business includes inventories, livestock, agricultural assets, business assets, and house-
hold assets. We follow Samphantharak and Townsend (2018) and include the value of house-
hold assets (cars, pick-up trucks, fishing boats, and so on) as part of the business. The moti-
vation for this choice is that many of these assets are also used by households in their produc-
tion activities. The value of safe assets includes cash in hand, account receivables, deposits at
financial institutions, ROSCA, other lending, prepaid insurance, and land. Given this break-
down, we can compute the fraction of financial wealth (total asset net of liabilities) invested
in the business, which we use as our measure of risk-taking.

Return on business activity. Given estimates for the value of entrepreneurs’ businesses and
the flow of business income generated in a given period, we can compute the return on assets
(ROA) as the ratio of business income over the value of the business. ROA is a common
accounting measure used to capture the profitability of business activities.

Human wealth. We compute our empirical measure of human wealth in a way analogous to
its counterpart in the model as the present discounted value of future expected labor income.
This requires us to specify the discount rate and the expected value of future labor. We use the
same discount rate used in the model, as shown in Equation (15). The expected value of future
labor income is age-dependent and computed as the average labor income for households of
that age. As in the construction of life-cycle profiles discussed below, we use trimmed means
to limit the influence of outliers. Consistent with the model’s assumption, human wealth has
no idiosyncratic component, as it corresponds to the present discounted value of future labor
income across different households conditional on age.

B.2 Standard-error adjusted for generated regressors

To take into account the effect of generated regressors, we embed our two-stage procedure
into a GMM framework, where all parameters are estimated simultaneously, and the standard
errors properly account for the uncertainty in the coefficients.

GMM formulas. We will use the general GMM formulas to compute the standard errors.
The moment conditions are given by

E[ f (zt, θ)] = 0, (B.1)
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where f (·) is a M-vector of moments, zt is a Z-vector of data, and θ denotes a K-vector of
parameters, where M ≥ K. The GMM estimate of θ, θ̂, satisfies the condition

aTgT(θ̂) = 0, (B.2)

for a given K × M matrix aT and gT(θ) ≡ 1
T ∑T

t=1 f (zt, θ).
The asymptotic distribution of the GMM estimate is:

√
T(θ̂ − θ) → N [0, (ad)−1aSa′(ad)−1′ ], (B.3)

where d = E[ ∂ f (zt,θ)
∂θ′ ] and S is given by

S =
∞

∑
j=−∞

E[ f (zt, θ) f (xt−j, θ)′]. (B.4)

Two-pass regressions. Our two-step procedure consists of first estimating a time-series re-
gression for each entrepreneur:

Rit = ai + βi fit + ϵit, (B.5)

for i = 1, . . . , N, where t = 1, . . . , T. The variance of ϵt is denoted by σ2
i . We assume that

E[ϵtϵ
′
t+j] = Σ for j = 0 and equal to zero for j ̸= 0. Therefore, we assume that errors are not

autocorrelated, but we allow them to be correlated across entrepreneurs, standard assump-
tions in the cross-sectional asset pricing literature (see, e.g., Shanken 1992). In the second
stage, we regress average returns on betas and idiosyncratic variance:

Ri = λ0 + λ1β̂i + λ2σ̂2
i + ui. (B.6)

Mapping to the GMM framework. Consider the following M = 4N-moment vector:

f (zt, θ) =


Rt − a − β · ft

(Rt − a − β · ft) · ft

(Rt − a − β · ft) · (Rt − a − β · ft)− σ2

Rt − λ01N − λ1β − λ2σ2

 , (B.7)

where Rt = [R1t, . . . , RNt]
′, a = [a1, . . . , aN]

′, β = [β1, . . . , βN]
′, ft = [ f1t, . . . , fNt]

′, and σ2 =

[σ2
1 , . . . , σ2

N]. The operator · denotes element-wise multiplication.
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The 3(N + 1)× 4N matrix aT is given by

aT =


I3N 03N×N

01×3N −1′N
01×3N −β′

01×3N −σ2′

 . (B.8)

The 4N × 3(N + 1) matrix d is given by

d =


−IN −diag(E[ ft]) 0N×N 0N×1 0N×1 0N×1

−diag(E[ ft]) −diag(E[ ft · ft]) 0N×N 0N×1 0N×1 0N×1

0N×N 0N×N −IN 0N×1 0N×1 0N×1

0N×N −λ1 IN −λ2 IN −1N −β −σ2

 . (B.9)

The matrix S is given by

S = E




ϵt

ϵt · ft

ϵt · ϵt − σ2

β · ( ft − E[ ft]) + ϵt




ϵt

ϵt · ft

ϵt · ϵt − σ2

β · ( ft − E[ ft]) + ϵt


′ , (B.10)

where we used the fact that errors are not autocorrelated and λ0 + λ1βi + λ2σ2
i = ai + βiE[ fit].

We can write the matrix above as follows:

S =


Σ Σdiag(E[ ft]) E[ϵt(ϵt · ϵt)′] Σ

Σdiag(E[ ft]) Σ · E[ ft f ′t ] diag(E[ ft])E[ϵt(ϵt · ϵt)′] diag(E[ ft])Σ
E[(ϵt · ϵt)ϵ′t] E[(ϵt · ϵt)ϵ′t]diag(E[ ft]) E[(ϵt · ϵt − σ2) · (ϵt · ϵt − σ2)] E[(ϵt · ϵt)ϵ′t]

Σ Σdiag(E[ ft]) E[ϵt(ϵt · ϵt)′] ββ′ · Σ f + Σ

 ,

where Σ f ≡ E[( ft −E[ ft])( ft −E[ ft])′]. We can then compute the variance-covariance matrix
of θ̂ as follows:

var(θ̂) =
1
T
(ad)−1aSa′(ad)−1′ , (B.11)

where the variance of [λ0, λ1, λ2]
′ is given by the 3 × 3 matrix in the lowest right corner of the

matrix above. An analogous derivation applies to the case where only βi or σ2
i are included

in the cross-sectional regression.
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Figure B.1: Realized vs. predicted returns: one-factor models
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Note: The left (right) panel shows a scatter plot of predicted returns of the single factor with aggregate beta (idiosyncratic variance) as a
factor against the realized returns for the portfolio-level analysis.

B.3 The fit of the single-factor models

In Section 2, Figure 2 shows the fit of the two-factor model. We consider here the perfor-
mance of the one-factor models using either aggregate beta or idiosyncratic variance as the
factor. Figure B.1 shows that both models struggle to properly account for the dispersion in
entrepreneurial returns, which shows the importance of considering a two-factor model.

B.4 Life-cycle profiles

When computing life-cycle profiles for a given variable, we aggregate households into 15 age
groups. The thresholds determining each group are chosen such that groups have roughly the
same number of households. To limit the influence of outliers, we compute trimmed means
with a trimming parameter of 7.5% in each side. We trim the data in a similar manner before
running the regressions.

The life-cycle profiles presented in the main text are computed without any controls, which
we denote by raw moments. We show next that controlling for year fixed-effects or demo-
graphics variables maintains our results essentially unchanged.

Let zi,k,t denote variable z for household i in age group k at year t. Consider the following
process for zi,k,t:

zi,k,t = αt + agek + δ′xi,k,t + ui,k,t, (B.12)

where αt represents the year fixed effect, agek is the age-group effect, and xi,k,t is a vector of
demographic and geographic controls, which includes the size of the household, the number
of children in the household, and a set of province dummies.
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The raw age-group effect is given by

ageraw
k = E

[
zi,k′,t|k′ = k

]
. (B.13)

The raw age-group effect can be estimated by taking averages by age or by regressing zi,k,t on
a set of dummies for age groups.

We follow Kaplan (2012) and define the age-group effect controlling for year fixed-effects
as follows:

ageyear−FE
k =

1
T

T

∑
t=1

E
[
zi,k′,t′ |k′ = k, t′ = t

]
. (B.14)

We can estimate ageyear−FE
k by running a regression on a set of dummy of age-group and year

fixed-effects and computing the predicted value of the regression evaluated at age k and at an
"average" year. Similarly, we define the age-group effect controlling for year fixed-effects and
demographic/geographic controls as follows:

ageyear−FE+dem
k =

1
T

T

∑
t=1

E
[
zi,k′,t′ |k′ = k, t′ = t, xi,k′,t′ = xk,t

]
, (B.15)

where xk,t denotes the average value of the controls xi,k,t conditional on age group k and year t.
We can estimate ageyear−FE+dem

k from the full regression with year and age-group fixed-effects
and demographic controls.

Figure ?? shows our estimates of the different age-group effects for the variables of in-
terest. The grey dashed lines show the 95% confidence interval for the raw estimates. We
cluster standard errors by household to allow shocks to be correlated over time. The life-cycle
patterns obtained under the raw measure are essentially identical to the ones obtained after
controlling for year fixed-effects and demographic variables.

B.5 Life-cycle profiles and average business returns

We have seen that an entrepreneur’s business exposure, or the fraction of financial wealth
invested in the business, varies substantially over the life cycle. We consider next the effect of
average return on the business on risk-taking and savings decisions.

Table 3 shows regressions of business exposure and the consumption-wealth ratio on a set
of age dummies and the average return on the business. We also consider specifications where
we control for year fixed-effects and demographic controls. Standard errors are clustered at
the household level as before. The table shows that the age effects are strongly significant and
account for a large fraction of the variation in both risk-taking and savings decisions, with the
regression R2 ranging from 60% to 70%.
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The effect of the average return on risk-taking is positive and significant. Note that adding
the average return on the business affects only marginally the regression R2. This is consistent
with the approach in the model where cross-sectional differences are generated by variables
with a strong life-cycle component instead of differences in expected returns.

The expected return’s effect on the consumption-wealth ratio is positive and strongly sig-
nificant in the case with year fixed-effects and demographic controls and marginally insignif-
icant in the other cases. The positive effect is consistent with the income effect dominating the
substitution effect in the savings decision, in line with the calibrated model.

C Derivations

C.1 The Optimal Contract

In this appendix, we consider the contracting problem in more detail. In particular, we show
that the market structure assumed in Section 3, where entrepreneurs have access to a riskless
bond and both aggregate and idiosyncratic insurance, corresponds to a specific implemen-
tation of the optimal contract allocation. The derivation closely follows the work of Di Tella
(2017), and it is provided for completeness.

C.1.1 Moral hazard

We assume that the aggregate productivity shock Zt and the individual cumulative return Ri,t

are publicly observable, but the idiosyncratic investment shock Zi,t is privately observed by
entrepreneur i. Moreover, the entrepreneur may secretly divert capital at rate ςi,t. The return
on the business is then given by

dRi,t =

[
yi,t − wtli,t − ιi,tki,t

qtki,t
+

q̇t

qt
+ µA + Φ(ιi,t)− δ − ςi,t

]
dt + σAdZt + σiddZi,t. (C.1)

Because Zi,t and ςi,t are not publicly observable, a principal contracting with the entrepreneur
cannot determine whether a low return results from a negative investment shock or positive
stealing. The optimal contract ensures that it is incentive-compatible for the entrepreneur to
choose ςi,t = 0 at all times.37 Note that the expected return coincides with the one in condition
(5) in the case of no stealing.

Diverted capital can be sold in the market, but a fraction of 1− ϕ is lost in the process. The
sale proceedings are invested in a hidden account, which is remunerated at the risk-free rate

37This is typical of cash-flow diversion models, see, e.g., DeMarzo and Sannikov (2006) and DeMarzo and
Fishman (2007).
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rt. The entrepreneur’s hidden savings Si,t evolve as follows:

dSi,t = rtSi,tdt + ϕq̃tki,tςi,tdt. (C.2)

C.1.2 The optimal contract problem

Consumption, investment, and factor demands are contractible. A contract between a prin-
cipal and an entrepreneur is then given by (c̃i, ιi, ki, li, F̃i), where all variables are adapted to
the filtration generated by (Z, Ri), and F̃i,t denotes the transfer to the principal. Entrepreneurs
cannot commit to long-term contracts. At any point, an entrepreneur can settle her promises
with the principal, transfer the funds from the hidden account to her bank account, and offer
the principal a new contract. Therefore, contracts are effectively short-term and the contract
can be redefined at every period.

The continuation value to the principal is given by

J̃i,t = Et

[ˆ si+T

t

πz

πt
F̃i,zdz

]
, (C.3)

where the expectation is taken under no stealing, ςi = 0 and πt corresponds to the principal’s
SDF, which evolves according to dπt = −rtπtdt − pag

t πtdZt, given the processes for rt and
pag

t .38

To compute the law of motion of J̃i,t, let Gi,t denote a martingale defined as follows

Gi,t =

ˆ t

si

πzdF̃i,z + Et

[ˆ si+T

t
πzdF̃i,z

]
, (C.4)

where Gi,si = Esi [Gi,t]. By the martingale representation theorem, there exists σZ
Gi,t

and σR
Gi,t

such that
πt F̃i,tdt + d(πt J̃i,t) = πtσ

Z
Gi,tdZt + πtσ

R
Gi,t(dRi,t − Et[dRi,t]). (C.5)

Applying Ito’s lemma on πt J̃i,t and combining with the expression above, we obtain

dJ̃i,t =
[
rt J̃i,t + pag

t (σZ
Ji,t + σR

Ji,tσA)− F̃i,t

]
dt + σZ

Ji,tdZt + σR
Ji,t(dRi,t − Et[dRi,t]), (C.6)

where σZ
Ji,t

= σZ
Gi,t

+ pag
t J̃i,t and σR

Ji,t
= σR

Gi,t
.

38When contracting with a wage earner, the relevant SDF is πt = e−ρwt c̃−γ
j,t . In a stationary equilibrium, con-

sumption follows the process dc̃j,t = µA c̃j,tdt + σA c̃j,tdZt, then dπt = −
[

ρw + γµA − γ(γ + 1) σ2
A
2

]
dt − γσAdZt,

where the drift corresponds to the interest rate rt and the diffusion term corresponds to the the price of aggregate
risk pag

t .
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The financial wealth of entrepreneur i is defined as ñi,t ≡ b̃i,t + q̃tki,t − J̃i,t, which corre-
sponds to the sum of holdings of the risk-free asset b̃i,t and the value of the business q̃tki,t, net
of the promised payments to the principal J̃i,t. The law of motion of financial wealth is given
by

dñi,t =
[
rtb̃i,t + w̃tli,t − F̃i,t − c̃i,t

]
dt + q̃tki,tdRi,t − dJ̃i,t. (C.7)

Combining (C.6) and (C.7), and assuming ςi,t = 0, we obtain

dñi,t =

[
rt(ñi,t − q̃ki,t) + q̃tki,tµ

R
i,t − pag

t (σZ
Ji,t + σR

Ji,tσA) + w̃tli,t − c̃i,t +

(
−q̃tki,t + ϕq̃tki,t +

θ̃id
t

σid

)
ςi,t

]
dt

+
(

q̃tki,tσA −
(

σZ
Ji,t + σR

Ji,tσA

))
dZt +

(
q̃tki,tσid − σR

Ji,tσid

)
dZi,t. (C.8)

By imposing ςi,t = 0 and defining θ̃
ag
i,t ≡ σZ

Ji,t
+ σR

Ji,t
σA and θ̃id

i,t ≡ σR
Ji,t

σid, we obtain the law
of motion of financial wealth presented in Section 3. Note that the transfers to the principal
F̃i,t only affect the law of motion of ñi,t through the diffusion terms of the principal’s continu-
ation value J̃i. Therefore, we can write the contract in terms of (θ̃ag

i,t , θ̃id
i,t) instead of F̃i,t.39 The

entrepreneur’s problem can then be written as

ρṼt = max
c̃i,θ̃

ag
t ,θ̃id

t ,ki,li,ιi

c1−γ
i,t

1 − γ
+ Et [dVt] , (C.9)

subject to the law of motion of financial wealth, ñi,t ≥ −h̃i,t, and the incentive-compatibility
(IC) constraint

0 ∈ arg max
ςi,t≥0

{
c1−γ

i,t

1 − γ
+ Et [dVt]

}
. (C.10)

Applying Ito’s lemma to the value function, we can write the IC constraint as follows

− q̃tki,t + ϕq̃tki,t +
θ̃id

t
σid

≤ 0 ⇒ θ̃id
i,t ≤ (1 − ϕ)q̃tki,tσid, (C.11)

where we used the fact that Vn,t is positive.
Therefore, the optimal contract problem, where entrepreneurs choose transfers to a princi-

pal, is equivalent to problem (9), where entrepreneurs have access to aggregate and idiosyn-
cratic insurance subject to the skin-in-the-game constraint (7).

39This reformulation also avoids the issue that the path of transfers F̃i,t is not uniquely determined, as an
entrepreneur can, for instance, borrow from the principal and invest in the risk-free asset without affecting her
utility.
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C.2 Numerical solution of the KFE

We compute the KFE solution using a finite-difference scheme. We consider first the case of a
stationary equilibrium and then discuss the solution in the case of a time-dependent KFE.

C.2.1 Stationary KFE

Consider the case of a stationary solution to the KFE. We solve the PDE (27) using a finite-
differences method. As in the proof of Lemma 2, we assume that n takes values in the grid
{n1, n2, . . . , nI} and age a takes values in the grid {a1, a2, . . . , aK}, with a1 = 0 and aK = T. We
adopt the following (upwind) difference scheme for 1 < i < I and k < K

f i,k+1 − f i,k

∆a
= − (µi,k

n )+ f i,k − (µi−1,k
n )+ f i−1,k

∆n
− (µi+1,k

n )− f i+1,k − (µi,k
n )− f i,k

∆n

+
(σi+1

n )2 f i+1,k − 2(σi
n)

2 f i,k + (σi−1
n )2 f i−1,k

2∆n2 , (C.12)

where f i,k ≡ f (ni, ak), µi,k
n ≡ µn(ni, ak), σi

n ≡ σn(ni), (x)+ = max{x, 0}, and (x)− = min{x, 0}.
Rearranging the expression above and collecting terms, we obtain

f i,k+1 = πi−1,k
u f i−1,k + πi,k

s f i,k + πi+1,k
d f i+1,k, (C.13)

where

πi,k
u = (µi,k

n )+
∆a
∆n

+
(σi

n)
2

2
∆a

∆n2 , πi,k
d = −(µi,k

n )−
∆a
∆n

+
(σi

n)
2

2
∆a

∆n2 , πi,k
s = 1 −

(
|µi,k

n |∆a
∆n

+ (σi
n)

2 ∆a
∆n2

)
.

The above scheme converges if, for all (i, k), the following variant of the Courant-Friedrichs-
Lewy (CFL) condition holds

|µi,k
n |∆a

∆n
+ (σi

n)
2 ∆a

∆n2 ≤ 1. (C.14)

We adopt a reflecting boundary at n1 and nI

f 1,k+1 = (π1,k
d + π1,k

s ) f 1,k + π2,k
d f 2,k (C.15)

f I,k+1 = π I,k
u f I−1,k + (π I,k

s + π I,k
u ) f I,k. (C.16)

In matrix form, we can write

f k+1 = Πk f k︸ ︷︷ ︸
explicit method

, f k+1 = [2I − Πk]−1 f k︸ ︷︷ ︸
implicit method

, (C.17)
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where

Πk =



π1,k
d + π1,k

s π2,k
d 0 0 · · · 0 0 0

π1,k
u π2,k

s π3,k
d 0 · · · 0 0 0

0 π2,k
u π2,k

s π3,k
d · · · 0 0 0

... . . . . . . . . . · · · ...
...

...
0 0 0 0 · · · π I−2,k

s π I−1,k
d 0

0 0 0 0 · · · π I−2,k
u π I−1,k

s π I,k
d

0 0 0 0 · · · 0 π I−1,k
u π I,k

s + π I,k
u


. (C.18)

Notice that (Πk)′ is a stochastic matrix, so we can interpret the coefficients as probabilities.
It remains to specify the boundary condition in the age dimension. An entrepreneur with age
T and financial wealth n leaves as bequest e−gTn for each child. The quantity e−gTn may not
be in the grid, so we linearly interpolate between the points in the grid. For any point ni in
the grid, there exists coefficients (i′, bi) such that

e−gTni = ni′ + bi∆n = (1 − bi)ni′ + bini′+1, (C.19)

where 0 ≤ bi < 1.
We can interpret bi as the probability of receiving a bequest of size ni′+1 and 1 − bi as

the probability of receiving a bequest of size ni′ . The boundary condition can be written as
follows:

f (ni′ , 0) = (1 − bi) f (ni, T), f (ni′+1, 0) = bi f (ni, T). (C.20)

Collecting the coefficients in a matrix B, we obtain the following condition in matrix form

f 1 = B f K. (C.21)

Combining the expressions above with the difference scheme for the f , we obtain

f K = ΠB f K ⇐⇒ [I − ΠB] f K = 0, (C.22)

where
Π ≡ Π1 × Π2 × . . . ΠK−1. (C.23)

Since B′ and (Πk)′ are stochastic matrices, we have that B′(Π)
′

is also a stochastic matrix.
Hence, the matrix has a unit eigenvalue, and a solution to the system of equations above
exists.
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C.2.2 Time-dependent KFE.

The discretized time-dependent KFE can be written as

f i,k
t+1 =

∆t
∆a

f i,k−1
t + πi−1,k

u,t f i−1,k
t + πi,k

s,t f i,k
t + πi+1,k

d,t f i+1,k
t , (C.24)

for 1 < i ≤ I and 1 < k ≤ K, where

πi,k
u,t = (µi,k

n )+
∆t
∆n

+
(σi

n,t)
2

2
∆t

∆n2 (C.25)

πi,k
d,t = −(µi,k

n )−
∆t
∆n

+
(σi

n,t)
2

2
∆t

∆n2 (C.26)

πi,k
s,t = 1 − ∆t

∆a
−
(
|µi,k

n,t|
∆t
∆n

+ (σi
n,t)

2 ∆t
∆n2

)
. (C.27)

Note that the difference equation above corresponds to the implicit scheme for the station-
ary KFE if f i,k

t+1 = f i,k
t . The boundary conditions are given by

f i,1
t+1 = (1 − bi) f i′,K

t+1 + bi f i′+1,K
t+1 (C.28)

f 1,k
t+1 =

∆t
∆a

f 1,k−1
t + (π1,k

d,t + π1,k
s,t ) f 1,k

t + π2,k
d,t f 2,k

t , (C.29)

f I,k
t+1 =

∆t
∆a

f I,k−1
t + π I−1,k

u,t f I−1,k
t + (π I,k

s,t + π I,k
u,t) f I,k

t . (C.30)

Let f k
t ≡ [ f 1,k

t , f 2,k
t , . . . , f I,k

t ]′ and ft ≡ [ f 2′
t , f 3′

t , . . . , f I′
t ]′. The recursion for ft can be written

as 

f 2
t+1

f 3
t+1
...

f K−1
t+1

f K
t+1


=



Π2
t 0 · · · 0 ∆t

∆a B
∆t
∆a II Π3

t · · · 0 0
...

... . . . ...
...

0 0 · · · ΠK−1
t 0

0 0 · · · ∆t
∆a II ΠK

t





f 2
t

f 3
t
...

f K−1
t

f K
t


. (C.31)

In matrix form, we can write the recursion for both the explicit scheme above and an
implicit scheme:

ft+1 = At ft, ft+1 = [2I − At]
−1 ft. (C.32)

C.3 Equilibrium prices and capital stock in a stationary equilibrium

We derive next the equilibrium prices and the capital stock in a stationary equilibrium.

78



C.3.1 Price of aggregate insurance, interest rate, and the relative price of capital

Price of aggregate insurance. The demand for aggregate insurance for wage earners is given by

θ
ag
j,t = hj,tσA − (nj,t + hj,t)

pag

γ
, (C.33)

which is analogous to the expression for entrepreneurs (21).
Combining the demand for aggregate insurance for entrepreneurs and wage earners with

the corresponding market-clearing condition, we obtain

ˆ
Et

[
(qki,t + hi,t)σA − (ni,t + hi,t)

pag

γ

]
di +

ˆ
Wt

[
hj,tσA − (nj,t + hj,t)

pag

γ

]
di = 0. (C.34)

Rearranging the expression above, we can solve for the price of aggregate insurance pag

pag =

´
Et
(qki,t + hi,t)di +

´
Wt

hj,tdj´
Et
(ni,t + hi,t)di +

´
Wt

(nj,t + hj,t)dj
γσA = γσA, (C.35)

using the fact that
´
Et

ni,tdi +
´
Wt

nj,tdj =
´
Et

qki,tdi. Notice that this result does not rely on the
assumption of a stationary equilibrium.
Interest rate. The financial wealth of wage earners evolves according to

dñj,t =
[
(r + γσ2

A)ñj,t + w̃tl j,t − c̃j,t

]
dt + ñj,tσAdZt. (C.36)

using the fact that the demand for aggregate insurance is given by θj,t = −nj,tσA in equilib-
rium.

Combining the expression above with the law of motion for human wealth, we obtain the
law of motion of total wealth:

dω̃i,t

ω̃i,t
=

[
r + γσ2

A − cj,t

nj,t + hj,t

]
dt + σAdZt. (C.37)

In a stationary equilibrium, wage earners’ scaled total wealth, ωj,t = ω̃j,t/At, is constant.
Therefore, the drift of ωj,t must be zero. We can compute the drift of ωj,t using Ito’s lemma:

dωi,t

ωi,t
=

dω̃i,t

ω̃i,t
− dAt

At
+

(
dAt

At

)2

− dAt

At

dω̃i,t

ω̃i,t
(C.38)

=

[
r + γσ2

A − cj,t

nj,t + hj,t
− µA

]
dt. (C.39)
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The interest rate must then satisfy the condition

r + γσ2
A −

[
1
γ

ρw +

(
1 − 1

γ

)(
r +

γσ2
A

2

)]
− µA = 0, (C.40)

using the fact that the consumption-wealth ratio is given by

cj,t

nj,t + hj,t
=

1
γ

ρw +

(
1 − 1

γ

)(
r +

(pag)2

2γ

)
, (C.41)

which is a special case of (22), as we set pid
t = 0 and T → ∞.

Rearranging expression (C.40), we obtain

r = ρw + γµA − γ(γ + 1)
σ2

A
2

. (C.42)

Relative price of capital. Plugging the expression for Φ′(ι) into the first-order condition for ι in
equation (12), we obtain

1√
Φ2

0 + 2Φ1ι
=

1
q
⇒ ι =

q2 − Φ2
0

2Φ1
. (C.43)

In a stationary equilibrium, the capital-labor ratio is constant. Thus, capital grows at the
population rate g, which gives us the condition

Φ(ι)− δ = g ⇒ q = Φ0 + Φ1(g + δ), (C.44)

where we used the fact that Φ(ι) = q−Φ0
Φ1

, obtained by plugging the expression for ι into the
functional form for Φ(ι).

C.3.2 Entrepreneurs’ human and total wealth

The value of human wealth for an entrepreneur with age a is given by

h(a) =
ˆ T−a

0
e−(r+pagσA−µA)z

L

∑
l=1

Γleφl(z+a)dzwle

= (1 − α)Kαle

L

∑
l=1

Γleφl a 1 − e−(r+pagσA−µA−φl)(T−a)

r + pagσA − µA − φl
. (C.45)
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The average human wealth for entrepreneurs is given by

he =

ˆ T

0

ge−ga

1 − e−gT h(a)da = (1 − α)Kαle

L

∑
l=1

Γl
ge(φl−g)a

1 − e−gT
1 − e−(r+pagσA−µA−φl)(T−a)

r + pagσA − µA − φl
. (C.46)

Expressing condition (24) in levels, and after some rearrangement, we obtain entrepreneurs’
total wealth by age

ω(a) = ω(0)e

(
r+ (pag)2

γ +
(pid)2

γ −µA

)
a e−ra − ψe−rT

1 − ψe−rT , (C.47)

where ω(0) is given by

ω(0) =
h(0)

1 − e

(
r+ (pag)2

γ +
(pid)2

γ −g−µA−r
)

T 1−ψ

1−ψe−rT

. (C.48)

The average total wealth for entrepreneurs is given by

ωe =

ˆ T

0

ge−ga

1 − e−gT ω(a)da = ω(0) f (0)
ˆ T

0

er̂1a − ψe−Ter̂2a

1 − ψe−rT da, (C.49)

where r̂1 = r + γσ2
A + (pid)2

γ − µA − g − r and r̂2 = r̂1 + r.

C.3.3 Capital stock and idiosyncratic risk premium

Rearranging the expression for the shadow price of idiosyncratic risk (20), and using the def-
inition of expected returns (13), we obtain the MPK schedule, as discussed in Section 5:

r + pagσA + pidϕσid =
αKα−1 − ι(q)

q
+ µA + Φ(ι(q))− δ. (C.50)

where r, pag, and q are functions of parameters, as derived above.
Integrating condition (19) across all entrepreneurs, we obtain

pid = γϕσid
qK

χeωe
, (C.51)

where χe is the fraction of entrepreneurs in the population.
Note that ωe is a function of pid and K. Plugging the expression for (C.49) into the equa-

tion above, we obtain pid implicitly as a function of K. This relationship between pid and K
corresponds to the pricing schedule discussed in Section 5. Therefore, we obtain the equilib-
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rium capital stock and equilibrium price of idiosyncratic risk by finding the pair (K, pid) that
simultaneously satisfies the MPK schedule and the pricing schedule.

D Transitional dynamics

In this section, we describe the computation of the transitional dynamics. We focus on the case
where the interest rate is fixed during the transition. This simplifies the numerical solution
while allow us to focus on the response of the idiosyncratic risk premium. To ensure that that
the interest rate is constant, we assume that wage earners have Epstein-Zin preferences and
take the limit as the elasticity of intertemporal substitution goes to infinity, that is, workers
have linear intertemporal preferences.40

D.1 Wage earners with Epstein-Zin preferences

Wage earners have the continuous-time analog of Epstein-Zin preferences with EIS ψw and
risk aversion γ. The wage earner’s problem is given by

Ṽw
t (ñj) = max

c̃j,θ̃
ag
j

Et

[ˆ ∞

t
fw(c̃j,z, Ṽz)dz

]
, (D.1)

subject to ñj,t ≥ h̃j,t, where h̃j,t denotes wage earner j’s human wealth, non-negativity con-
straint c̃j,t ≥ 0, and the law of motion of financial wealth ñj,t

dñj,t =
[
ñj,trt − pag

t θ̃
ag
j,t + w̃tl j,t − c̃j,t

]
dt − θ̃

ag
j,t dZt,

where fw(c̃, V) is the aggregator given by

fw(c̃, Ṽ) = ρw
(1 − γ)Ṽ
1 − ψ−1

w


 c̃(

(1 − γ)Ṽ
) 1

1−γ

1−ψ−1
w

− 1

 . (D.2)

It is convenient to work with the scaled value function Vw
t (n), which satisfies the condition

Ṽw
t (ñ) = A1−γ

t Vw
t

(
ñt
At

)
, where Vw

t (·) is independent of At. The HJB equation in terms of the

40This assumption is meant to capture, in an extreme form, the essence of the macro-finance literature which
assumes a high EIS (see e.g. Bansal and Yaron 2004 and Barro 2009). In these models, the high EIS dampens
movements in interest rates, so risk premia accounts for most of the variation in discount rates.
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scaled value function is given by

ρ̃w
(1 − γ)Vw

1 − ψ−1
w

= max
c̃,θ̃ag

ρw
(1 − γ)Vw

1 − ψ−1
w

(
c

((1 − γ)Vw)
1

1−γ

)1−ψ−1
w

+ Vw
t + Vw

n

[
r̃n + (γσA − pag)θag + wl − c

]
+

1
2

Vw
nn (θ

ag + nσA)
2 . (D.3)

where ρ̃w ≡ ρw − (1 − ψ−1
w )

(
µA − γσ2

A
2

)
and r̃t ≡ rt + γσ2

A − µA.

Policy functions. The first-order conditions for this problem are given by

ρw ((1 − γ)Vw)
ψ−1

w −γ
1−γ c−ψ−1

w = Vw
n , γσA − pag = −Vw

nn
Vw

n
(θag + nσA) . (D.4)

We will guess and verify that the scaled value function takes the form

Vw
t (nj,t) =

(
ζw,t

ρ
ψw
w

) 1−γ
1−ψw (nj,t + hj,t)

1−γ

1 − γ
, (D.5)

where ζw,t and hj,t are potentially time-varying, but they are non-stochastic.
Using the expression for the value function above, we obtain the policy functions:

cj,t

nj,t + hj,t
= ζw,t, θ

ag
j,t = σAhj,t −

pag
t
γ

(nj,t + hj,t). (D.6)

Inserting the policy functions derived above back into the HJB equation, we obtain

ρ̃w

1 − ψ−1
w

=
ψ−1

w

1 − ψ−1
w

ζw,t +
1

1 − ψw

ζ̇w,t

ζw,t
+ r̃t. (D.7)

Rearranging the expression above for the case of a stationary equilibrium, so ζ̇w,t = 0, we
obtain the consumption-wealth ratio:

ζw,t = ψwρw + (1 − ψw)

(
r +

γσ2
A

2

)
, (D.8)

which coincides with the expression for the consumption-wealth ratio for wage earners given
in (C.41) in the special case of CRRA preferences, i.e., ψ−1

w = γ.

Price of aggregate risk and interest rate. The demand for aggregate insurance derived
above coincides with the expression for aggregate insurance in the CRRA case (see Equation
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C.33). Therefore, the same argument used in Section C.3 to solve for the price of aggregate
risk can be applied in the case with Epstein-Zin preferences in a non-stationary setting. This
implies that the price of aggregate risk is constant and given by pag

t = γσA during the transi-
tional dynamics.

We consider next the behavior of the interest rate. A derivation analogous to the one in
Section C.3 shows that the interest rate in a stationary equilibrium is given by

r = ρw + ψ−1
w µA − (1 + ψ−1

w )
γσ2

A
2

, (D.9)

which coincides with (31) when ψ−1
w = γ.

Taking the limit of (D.7) as ψw → ∞, we obtain rt in the case of a non-stationary equilib-
rium:

rt + γσ2
A − µA = ρw +

γσ2
A

2
− µA ⇒ rt = ρw − γσ2

A
2

. (D.10)

Therefore, the interest rate is constant when wage earners have linear intertemporal pref-
erences. Moreover, the expression above coincides with the one for the interest rate in the
stationary equilibrium (D.9) when specialized to ψ−1

w = 0.

D.2 Computation of the transition dynamics

Let x̂t ≡ log xt
x for any variable xt, where variables without a time subscript indicate the value

in the new stationary equilibrium. The system of differential equations can then be written as

˙̂Kt =
q

Φ1
(eq̂t − 1) (D.11)

˙̂qt = γϕ2σ2
id

qK
χeωe

(
eq̂t+K̂t−ω̂e,t − 1

)
− q

Φ1
(eq̂t − 1)−

[
αKα−1e(α−1)K̂t − ι(qeq̂t)

qeq̂t
− αKα−1 − ι(q)

q

]
(D.12)

∂ĥt(a)
∂t

= −∂ĥt(a)
∂a

− (1 − α)
Kαl(a)
h(a)

(
eαK̂t−ĥt(a) − 1

)
(D.13)

∂ω̂t(a)
∂t

= −∂ω̂t(a)
∂a

+ γ(ϕσid)
2
(

qK
χeωe

)2 (
e2(q̂t+K̂t−ω̂e,t) − 1

)
− ζ(a)

(
eζ̂t(a) − 1

)
(D.14)

∂ζ̂t(a)
∂t

= −∂ζ̂t(a)
∂a

+ ζ(a)
(

eζ̂t(a) − 1
)
− (γ − 1)

(ϕσid)
2

2

(
qK

χeωe

)2 (
e2(q̂t+K̂t−ω̂e,t) − 1

)
. (D.15)

84



Linearizing the system above, we obtain

˙̂Kt =
q

Φ1
q̂t (D.16)

˙̂qt = γϕ2σ2
id

qK
χeωe

(
q̂t + K̂t − ω̂e,t

)
+

αKα−1 − ι(q)
q

q̂t + (1 − α)
αKα−1

q
K̂t (D.17)

∂ĥt(a)
∂t

= −∂ĥt(a)
∂a

− (1 − α)
Kαl(a)
h(a)

(
αK̂t − ĥt(a)

)
(D.18)

∂ω̂t(a)
∂t

= −∂ω̂t(a)
∂a

+ 2γ(ϕσid)
2
(

qK
χeωe

)2 (
q̂t + K̂t − ω̂e,t

)
− ζ(a)ζ̂t(a) (D.19)

∂ζ̂t(a)
∂t

= −∂ζ̂t(a)
∂a

+ ζ(a)ζ̂t(a)− (γ − 1)(ϕσid)
2
(

qK
χeωe

)2 (
q̂t + K̂t − ω̂e,t

)
, (D.20)

where

ω̂e,t =

ˆ T

0

ω(a) f (a)
ωe

ω̂t(a)da. (D.21)

We now discretize the system using a finite-differences method. The time variable t and
age a will take values in the equally spaced grid {t1, t2, . . . , tN} and {a1, a2, . . . , aK}, respec-
tively. We adopt the following notation: ζk

n = ζtn(ak) denotes the consumption-wealth ratio
at time tn and age ak, and an analogous notation holds for the remaining variables. The time
and age steps are denoted by ∆t = tn+1 − tn and ∆a = ak+1 − ak. The discretized version of
the ODEs is given by

K̂n+1 − K̂n

∆t
=

q
Φ1

q̂n (D.22)

q̂n+1 − q̂n

∆t
= γϕ2σ2

id
qK
ωe

(
q̂n + K̂n − ω̂e,n

)
+

αKα−1 − ι(q)
q

q̂n + α(1 − α)
Kα−1

q
K̂n. (D.23)

Discretizing the PDEs we obtain at the interior points

ĥk
n+1 − ĥk

n

∆t
= − ĥk+1

n − ĥk
n

∆a
− (1 − α)

Kαl
k

hk

(
αK̂n − ĥk

n

)
(D.24)

ω̂k
n+1 − ω̂k

n

∆t
= − ω̂k

n − ω̂k−1
n

∆a
+ 2γ(ϕσid)

2
(

qK
ωe

)2 (
q̂n + K̂n − ω̂e,n

)
− ζk ζ̂k

n (D.25)

ζ̂k
n+1 − ζ̂k

n

∆t
= − ζ̂k+1

n − ζ̂k
n

∆a
+ ζk ζ̂k

n − (γ − 1)(ϕσid)
2
(

qK
ωe

)2 (
q̂n + K̂n − ω̂e,n

)
, (D.26)

where, using the Trapezoidal rule, ω̂e,n is given by

ω̂e,n =

[
K−1

∑
k=2

ω̂k
n

f (ak)ω(ak)

ωe
+ ω̂1

n
f (a1)ω(a1)

2ωe
+ ω̂K

n
f (aK)ω(aK)

2ωe

]
∆a. (D.27)
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It remains to specify the boundary conditions. We have initial conditions for state variables
and terminal conditions for jump variables. For the first two equations, we have that capital
starts at the old steady state and the relative price of capital converges to the new one.

k̂1 = k̂∗; lim
n→∞

q̂n = 0, (D.28)

where k̂∗ is the log deviation of the capital stock at the old steady state relative to the new one.
The boundary conditions associated with ζ̂t(a) and ĥt(a) are the following

ζ̂K
n = 0; lim

n→∞
ζ̂k

n = 0, ∀k (D.29)

ĥK
n = 0; lim

n→∞
ĥk

n = 0, ∀k. (D.30)

The consumption-wealth ratio and human wealth are forward-looking variables, so they
have terminal conditions instead of initial conditions. Notice that ht(T) = 0, while ζt(T) is
determined by the bequest motive, so deviations from the new steady state are equal to zero.
We then only need to solve for the vectors ζ̂n =

[
ζ̂1

n, ζ̂2
n, . . . , ζ̂K−1

n
]

and ĥn =
[

ĥ1
n, ĥ2

n, . . . , ĥK−1
n

]
,

since the value at the final age is pinned down by the boundary condition.
The boundary condition for total wealth is given by

ω̂k
1 = ω̂k,∗

1 ; ω̂1
n =

f KωK

f 1ω1 ω̂K
n +

h1

ω1 ĥ1
n. (D.31)

Note that the value of ω̂1
n is pinned down by the boundary condition, given ω̂K

n and ĥ1
n. In

this case, we have to solve for ω̂n = [ω̂2
n, . . . , ω̂K

n ]
′, a K − 1-dimensional vector. The determi-

nation of ω̂k,∗
1 will be discussed below.

Given the boundary conditions, we can assemble the system in matrix form. First, we can
write the difference equations for the state variables in matrix form

[
K̂n+1

ω̂n+1

]
=

[
1 0′K−1

q
Φ1

∆t 0K−1 0′K−1

aω1K−1 Aωω aω1K−1 Aωh Aωζ

]


K̂n

ω̂n

q̂n

ĥn

ζ̂n

 , (D.32)

where aω = 2γ(ϕσid)
2
(

qK
χeωe

)2
∆t, and Aωω, Aωh, and Aωζ are K − 1 × K − 1 matrices given
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by

Aωω =



1 − aω
f 2ω2

ωe
∆a − ∆t

∆a −aω
f 3ω3

ωe
∆a · · · −aω

f K−1ωK−1

ωe
∆a −aω

f KωK

ωe
∆a + f KωK

f 1ω1
∆t
∆a

−aω
f 2ω2

ωe
∆a + ∆t

∆a 1 − aω
f 3ω3

ωe
∆a − ∆t

∆a · · · −aω
f K−1ωK−1

ωe
∆a −aω

f KωK

ωe
∆a

...
...

. . .
...

...

−aω
f 2ω2

ωe
∆a −aω

f 3ω3

ωe
∆a · · · 1 − aω

f K−1ωK−1

ωe
∆a − ∆t

∆a −aω
f KωK

ωe
∆a

−aω
f 2ω2

ωe
∆a −aω

f 3ω3

ωe
∆a · · · −aω

f K−1ωK−1

ωe
∆a + ∆t

∆a 1 − aω
f KωK

ωe
∆a − ∆t

∆a


,

(D.33)

Aωh =



−aω
f 1h1

2ωe
∆a + h1

ω1
∆t
∆a 0 · · · 0 0

−aω
f 1h1

2ωe
∆a 0 · · · 0 0

...
...

. . .
...

...

−aω
f 1h1

2ωe
∆a 0 · · · 0 0

−aω
f 1h1

2ωe
∆a 0 · · · 0 0


, Aωζ =



0 −ζ2∆t 0 · · · 0 0
0 0 −ζ3∆t · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 −ζK−1∆t
0 0 0 · · · 0 0


. (D.34)

The difference equations for the jump variables can be written as

q̂n+1

ĥn+1

ζ̂n+1

 =

 AqK Aqωω′ Aqq Aqh 0′K−1

AhK 0K−1,K−1 0K−1 Ahh 0K−1,K−1

aζ1K−1 −aζ1K−1ω′ aζ1K−1 Aζh Aζζ




K̂n

ω̂n

q̂n

ĥn

ζ̂n

 , (D.35)

where

AqK =

[
γϕ2σ2

id
qK

χeωe
+ α(1 − α)

Kα−1

q

]
∆t, Aqω = −γϕ2σ2

id
qK
ωe

∆t, ω =

[
f 2ω2

ωe
,

f 3ω3

ωe
, . . . ,

f KωK

ωe

]′
∆a,

(D.36)

Aqq = 1 +
[

γϕ2σ2
id

qK
χeωe

+
αKα−1 − ι(q)

q

]
∆t, Aqh = −γϕ2σ2

id
qK

χeωe
∆t

f 1h1

2ωe
∆ae′1,K−1, (D.37)

AhK = −(1 − α)αKα

[
l(a1)

h(a1)
, · · · l(aK−1)

h(aK−1)

]′
∆t, aζ = −(γ − 1)(ϕσid)

2
(

qK
χeωe

)2
∆t, (D.38)

Aζh = −aζ
f 1h1

2ωe
∆a1K−1e′1,K−1 (D.39)
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Ahh =



1 + w l(a1)
h(a1)

∆t + ∆t
∆a − ∆t

∆a 0 · · · 0 0

0 1 + w l(a2)
h(a2)

∆t + ∆t
∆a − ∆t

∆a · · · 0 0
...

. . . . . . · · · . . . . . .

0 0 0 · · · 1 + w l(aK−2)
h(aK−2)

∆t + ∆t
∆a − ∆t

∆a

0 0 0 · · · 0 1 + w l(aK−1)
h(aK−1)

∆t + ∆t
∆a


(D.40)

Aζζ =



1 + ζ̂1∆t + ∆t
∆a − ∆t

∆a 0 · · · 0 0
0 1 + ζ̂2∆t + ∆t

∆a − ∆t
∆a · · · 0 0

...
. . . . . . · · · . . . . . .

0 0 0 · · · 1 + ζ̂K−2∆t + ∆t
∆a − ∆t

∆a
0 0 0 · · · 0 1 + ζ̂K−1∆t + ∆t

∆a


. (D.41)

Let xn = [K̂n, ω̂′
n]

′ denote the vector of predetermined variables, yn = [q̂n, ζ̂ ′n, ĥ′n]′ the
vector of jump variables, and zn = [x′n, y′n]′ a vector containing the state and jump variables.
We can then write the system in matrix form

zn+1 = Azn, (D.42)

for a matrix of coefficients A.
Provided the Blanchard and Kahn (1980) conditions are satisfied, there exists a unique pair

of matrices (P, H) such that
xn+1 = Pxn; yn = Hxn. (D.43)

The initial value of entrepreneurs’ total wealth by age is given by

ω0(a) = ω∗(a) + (q0 − q∗)k∗(a) + h0(a)− h∗(a)︸ ︷︷ ︸
revaluation effect

, (D.44)

where ω∗(a) and h∗(a) denote total wealth and human wealth at the initial steady state, re-
spectively, and k∗(a) denotes the amount of capital held by entrepreneurs of age a in the old
steady state, which is given by k∗(a) = ω∗(a)

ωe
K∗.

Log-linearizing the expression above around the new steady state, we obtain

ω̂0(a) = ω̂∗(a) +
qK
ωe

(q̂0 − q̂∗) +
h(a)
ω(a)

(ĥ0(a)− ĥ∗(a)). (D.45)

We can write the initial condition for x1 as follows

x1 = x∗ + G(y1 − y∗) ⇒ x1 = [I − GH]−1(x∗ − Gy∗), (D.46)
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where x∗ = [k̂∗, (ω̂∗)′]′, y∗ = [q̂∗, (ĥ∗)′, (ζ̂∗)′]′, and G is a K × 2K − 1 matrix given by

G =

[
0 0′K−1 0′K−1

qK
ωe

1K−1 Gωh 0K−1,K−1

]
, (D.47)

where Gωh has entries (k, k + 1) equal to h(ak+1)
ω(ak+1)

for k = 1, . . . , K − 1, and zero otherwise.

E Extensions

E.1 Limited pledgeability and heterogeneous expected returns

In this subsection, we extend the basic environment in three dimensions: i) limited pleadge-
ability of physical assets, ii) heterogeneous idiosyncratic volatility, and iii) decreasing returns
to scale. We focus on the case of a stationary equilibrium.

Limited pleadgeability of capital. Let bi,t ≡ ni,t − qtkt denote the amount of safe assets held
by entrepreneur i. The natural borrowing limit can be written as

− bi,t ≤ hi,t + qki,t. (E.1)

This allows the entrepreneur to borrow freely against physical assets or human wealth.
Let’s now assume that there is limited pledgeability of physical assets, that is, entrepreneurs
can only borrow a fraction of 1 − λ−1 of the value of physical assets, a form of collateral
constraint:

− bi,t ≥ hi,t + (1 − λ−1)qki,t ⇒ qki,t ≤ λωi,t, (E.2)

where λ ≥ 1. Hence, the entrepreneur faces a portfolio problem subject to leverage con-
straints. Moreover, we assume idiosyncratic volatility σi,id is heterogeneous across entrepreneurs.
The leverage constraint is more likely to be binding for entrepreneurs with less risky projects.

Given that the leverage constraint is linear in total wealth, we can obtain a closed-form
solution for the portfolio problem with leverage constraints.41 The HJB for an entrepreneur
can be written as

ρ

1 − γ
= max

ci,t,ki,t,li,t,ιi,t,θ
ag
i,t ,θid

i,t

{
ζ

γ
t (a)

1 − γ

(
ci,t

ωi,t

)1−γ

− γ

1 − γ

1
ζt(a)

(
∂ζt(a)

∂t
+

∂ζt(a)
∂a

)
+ rt +

qtki,t

ωi,t
(µR

i,t − rt)

−
pag

t θ
ag
i,t

ωi,t
+

hi,t

ωi,t
σA pag

t − ci,t

ωi,t
− γ

2

(qtki,t + hi,t

ωi,t
σA −

θ
ag
i,t

ωi,t

)2

+

(
qtki,t

ωi,t
σi,id −

θid
i,t

ωi,t

)2
 ,

41A similar result on the optimal portfolio share with leverage constraints can be found for investors without
labor income in, for instance, Grossman and Vila (1992) and Detemple and Murthy (1997).
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subject to leverage and insurance constraints: qtki,t ≤ λωi,t and θid
i,t ≤ (1 − ϕ)qtki,tσi,id.

The optimal capital demand is given by

qki,t

ni,t
=

pid
i

γϕσi,id

(
1 +

hi,t

ni,t

)
, (E.3)

where the price of idiosyncratic risk pid
i,t satisfies the condition:

pid
i = min

{
µR

i − r − pagσA

ϕσi,id
, γϕσi,idλ

}
.

Risk-taking. The price of idiosyncratic risk is now heterogeneous across entrepreneurs. For
entrepreneurs with less risky projects, the leverage constraint may be binding. In this case,
the price of idiosyncratic risk is given pid = γϕσi,idλ, which implies that qtki,t = λωi,t. To
aggregate Equation (E.3) across types, it is convenient to first take logs, average for a given age
group, and then convert the expression back to levels. Define k(a) = exp (Ei[log ki,t|ai = a])
and ω(a) = exp (Ei[log(ni,t + hi,t)|ai = a]) as the relevant cross-sectional average of capital
and total wealth conditional on age. The aggregate exposure to the business for entrepreneurs
of age a is then given by

qk(a)
n(a)

=
1 + h(a)

n(a)

γ

pid

ϕσid
, (E.4)

where n(a) = ω(a)− h(a) and

σid = exp (Ei[log σi,id]) , pid = exp
(

Ei[log pid
i ]
)

. (E.5)

Therefore, we obtain the same expression for the business exposure after aggregation as
in the baseline model, showing that our results extend to the case with limited pledgeability
and heterogeneity in productivity and risk. An analogous derivation shows that our results
for the consumption-wealth ratio extend to this case as well.

Introducing decreasing returns to scale. Consider next a span-of-control (Lucas 1978) ver-
sion of the model. Production depends not only on the amount of capital and labor but also
on entrepreneurial ability ei, which is fixed for the entrepreneur’s lifetime:

ỹi,t = Atkα
i,tl

β
i,te

1−α−β
i . (E.6)

For simplicity, we focus on the case ei is common across entrepreneurs and normalized to
ei = 1. It is straightforward to extend the analysis to the case of heterogeneous ability.
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Labor is chosen to maximize expected returns, so labor demand is given by

w = βkα
i,tl

β−1
i,t . (E.7)

The expected return for entrepreneur i is given by

µi,t =
(1 − β)

(
β
w

) β
1−β k

α+β−1
1−β

i,t − ι(q)

q
+ µA + Φ(ι(q))− δ. (E.8)

If β = 1 − α, so entrepreneurial ability does not enter the production technology, we recover
the formula in the baseline model. When α + β < 1, expected returns potentially vary across
entrepreneurs.

Expected returns and assets. In the span-of-control version of the model, the demand for
capital is still given by (E.3), but the price of idiosyncratic risk is given by

pid
i = min

{
µ̃R

i − r − pagσA

ϕσi,id
, γ̃ϕσi,idλ

}
,

where µ̃R
i,t ≡ α

(
β
w

) β
1−β k

α+β−1
1−β

i,t −ι(q)
q + µA + Φ(ι(q)) − δ = µR

i +
∂µR

i
∂ki

ki captures returns on the
marginal unit of capital, and γ̃ is the effective risk aversion with respect to total wealth bets.

Suppose first that λ → ∞, so there is no leverage constraint. In this case, we can write the
expected excess return on the business as follows:

µ̃R
i,t − r = pagσA +

qki,t

ωi,t
γ̃(ϕσi,id)

2. (E.9)

Using the expression for µ̃R
i , we obtain that the left-hand side is strictly decreasing in ki,t, and

it approaches ∞ as ki,t goes to zero when α + β < 1. The right-hand side is strictly increasing
in ki,t. Hence, there is a unique value of ki,t that satisfies the equation above. Households with
riskier projects have higher expected returns and hold a smaller capital stock, in line with the
evidence in Section 2. Moreover, expected returns are higher for households with less total
wealth, everything else constant, as they hold less capital.

When λ is finite, the entrepreneur will be constrained if ωi,t is sufficiently low. Capital
demand, qki,t = λωi,t, and expected returns are driven by variations in total wealth. For these
entrepreneurs, expected returns are independent of the exposure to aggregate or idiosyncratic
risk.

91



E.2 Uninsurable labor income risk and borrowing constraints

In this subsection, we introduce uninsurable labor income risk into the entrepreneur’s prob-
lem. This will enable us to study the implications of both insurance and borrowing constraints
on entrepreneurial behavior. In particular, we focus on how the inability to borrow against
future income affects the entrepreneur’s risk-taking decision.

E.2.1 The entrepreneurs’ problem with labor income risk

Entrepreneurs receive labor income li,t. With Poisson intensity λd, entrepreneurs suffer a
"disability" shock that reduces their labor income by a factor 1 − ξd, that is, labor income is
given by li,t = l(ai) in the no-disability state and li,t = (1− ξd)l(ai) in the disability state. The
disability shock happens only once in an entrepreneur’s lifetime, and it is permanent. When
either λd = 0 or ξd = 0, we recover the model with no labor income risk discussed in Section
3.

We assume that households are subject to a natural borrowing limit, given by ñi,t ≥
−(1 − ξd)h̃i,t.42 As discussed in Aiyagari (1994), the natural borrowing limit under incom-
plete markets corresponds to the worst-case scenario of the realization of idiosyncratic shocks,
which in our setting corresponds to the disability shock happening immediately. Therefore,
under the natural borrowing limit, entrepreneurs can borrow at most a fraction 1 − ξd of the
human wealth h̃i,t. Note that, even for an arbitrarily small value of λd, the borrowing limit is
tighter in the presence of uninsurable income risk. In this case, the parameter ξd effectively
controls the pledgeability of human wealth.

The entrepreneur’s problem in the no-disability state is given by

Ṽt(ñi, ai) = max
c̃i,θ̃

ag
i ,θ̃id

t ,ki,li,ιi
Et

[ˆ t+Td

t
e−ρ(z−t) c̃1−γ

i,z

1 − γ
dz + e−ρTdṼd

t+Td
(ñi,t+Td , ai + Td)

]
, (E.10)

subject to non-negativity constraints ci,t, ki,t ≥ 0, the law of motion of ñi,t

dñi,t =
[
ñi,tr + q̃tki,t(µ

R
i,t − r)− pag θ̃

ag
i,t + w̃tli,t − c̃i,t

]
dt +

(
q̃tki,tσA − θ̃

ag
i,t

)
dZt +

(
q̃tki,tσid − θ̃id

i,t

)
dZi,t,

and insurance and borrowing constraints

θ̃id
i,t ≤ (1 − ϕ)q̃tki,tσid, ñi,t ≥ −(1 − ξd)h̃i,t, (E.11)

where h̃i,t ≡ Et

[´ t+T−ai
t

πz
πt

w̃zlidz
]
, Td is the minimum of the (random) arrival time of a Pois-

42Kaplan and Violante (2010) argue that the standard incomplete markets model with a natural borrowing
limit better captures the degree of partial insurance observed in the data than versions of the model with tighter
borrowing limits.
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son process with intensity λd > 0 and the entrepreneur’s life horizon T − ai. If Td < T − ai,
then Ṽd(ñi, ai) corresponds to the value function in the disability state. As there is no labor
income risk in the disability state, this is equal to the value function derived in Section 3. The
value function evaluated at ai = T, Ṽd

t (ñi, T), is given by the bequest function.

E.2.2 The stationary problem

It is convenient to adopt a change of variables and to detrend the problem. First, we fol-
low Aiyagari (1994) and define total (pledgeable) wealth ω̃i,t = ñi,t + (1 − ξd)h̃i,t. This cor-
responds to the total amount of funds available to an entrepreneur, that is, the sum of the
financial wealth and the borrowing limit. In the special case where ξd = 0, we recover the
definition of total wealth given in Section 3. With a slight abuse of notation, we denote the
entrepreneur’s value function as Ṽt(ω̃i,t, ai,t) = Ṽ(ω̃i,t, ai,t; At). Therefore, the entrepreneur’s
problem depends on the level of aggregate productivity. The next lemma shows that, despite
the presence of uninsurable labor income risk and aggregate shocks, it is possible to detrend
the problem and to define a stationary equilibrium in a way analogous to Lemma 1.

Lemma 3. Suppose the economy is in a stationary equilibrium. Then,

i. Scaled variables are independent of aggregate productivity, that is, the scaled value function

V(ωt, at) = Ṽt(ωt At,at)

A1−γ
t

and the scaled policy functions ci,t =
c̃i,t
At

, θid
i,t =

θ̃id
i,t

At
, and θ

ag
i,t =

θ̃
ag
i,t

At
do

not depend on At.

ii. The optimal value of li,t and ιi,t are given by (11) and (12), respectively. The insurance con-
straint is binding, and the shadow price of idiosyncratic insurance is given by (20). The price
of aggregate insurance is given by (30) and the demand for aggregate insurance is given by
θ

ag
i,t = (qki,t − ni,t) σA.

iii. The scaled value function satisfies the HJB equation

ρ̂V = max
ci,σid

i,t

c1−γ
t

1 − γ
+ Va + Vω

[
r̂ωi,t + pidσid

i,t + ξdwtli,t − ci,t

]
+

1
2

Vωω(σ
id
i,t)

2 + λd

(
Vd − V

)
,

(E.12)

where σid
i,t = qki,tϕσid, ρ̂ ≡ ρ − (1 − γ)

(
µA − γσ2

A
2

)
, and r̂ ≡ r + γσ2

A − µA.

Proof. See Appendix A.6.

In the first part of Lemma 3, we show that scaled variables are independent of aggregate
productivity. This implies that a stationary distribution of scaled wealth exists and there is
no need to approximate the aggregate wealth distribution by a finite number of moments as
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in Krusell and Smith (1998), despite the presence of aggregate risk and incomplete markets.
Two assumptions are important to obtain this result: i) a borrowing limit that is proportional
to aggregate income; ii) the probability of switching to the disability state is independent
of aggregate shocks. Note that the natural borrowing limit in our setting satisfies the first
condition. This result echoes the one obtained by Krueger and Lustig (2010), who derive
conditions under which uninsurable labor income risk has no effect for the price of aggregate
risk. Consistent with their findings, we show that the price of aggregate insurance is pag =

γσA, the same we would obtain in a complete-markets economy.
The second part of the lemma shows that the solution to the entrepreneur’s problem shares

many of the features we derived without idiosyncratic labor income risk. Labor demand and
investment rates are chosen to maximize expected returns, insurance constraints are always
binding, and entrepreneurs with low financial wealth have a positive demand for aggregate
insurance.

The third part of Lemma 3 shows how the entrepreneur’s problem ultimately reduces to
a choice of (scaled) consumption and the exposure to idiosyncratic risk, or equivalently, the
amount of capital to be employed in the business. In contrast to the problem in Section 3,
a closed-form solution to this problem is not available, as the consumption function is not a
linear function of total wealth anymore.

E.2.3 The approximate solution

We consider next an approximate solution to problem (E.12). Despite the well-known lack of
closed-form solutions, we can provide an analytical characterization using perturbation tech-
niques. In particular, we extend the methods used in Viceira (2001) to a general equilibrium
life-cycle model. This approximate solution will allow us to show analytically how borrow-
ing constraints affect entrepreneurs’ risk-taking decisions, which is challenging to obtain from
problem (E.12) otherwise.

Let ω(a) denote the average total wealth of entrepreneurs conditional on age a. We con-
sider a log-linear approximation of the consumption and capital functions around the point
(ω, a):

log c(ωi,t, ai,t) = log c(ω, a) + ψc,ωω̂i + ψc,a âi +O
(

ω̂2
i , â2

i

)
(E.13)

log k(ωi,t, ai,t) = log k(ω, a) + ψk,ωω̂i + ψk,a âi +O
(

ω̂2
i , â2

i

)
(E.14)

where ω̂i ≡ log ωi − log ω and ω ≡ exp E[log ωi,t|ai,t = a], given 0 < a < T.
We can write the expressions above in a more compact form:

ĉi,t = ψc,ωω̂i,t + ψc,a âi,t, k̂i,t = ψk,ωω̂i,t + ψk,a âi,t, (E.15)
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up to first order in (ω̂i,t, âi,t), where ẑi,t ≡ log z(ωi,t, ai,t)− log z(ω, a) for z ∈ {c, k}.
Note that this log-linear approximation is only feasible when total wealth is always posi-

tive, that is, ωi,t > 0 for all i and t. This condition holds in the solution to the entrepreneurs’
problem given the combination of the natural borrowing limit with an unbounded marginal
utility as ci,t approaches zero (see, e.g., the discussion in Chamberlain and Wilson 2000). If
an entrepreneur were to borrow the maximum amount, such that ωi,t = 0, then consumption
would be zero in the advent of a disability shock, a state with infinite marginal utility. An
entrepreneur is better off by reducing borrowing and avoiding this possibility.

The next proposition provides a characterization of the first-order approximation of the
entrepreneurs’ problem.

Proposition 5. Suppose the economy is in a stationary equilibrium and consider a first-order approx-
imation of the policy functions and wealth dynamics around (ω, a). Then,

i. Consumption is an age-dependent concave function of total wealth given by

ci,t = fc(ai,t)ω
ψc,ω
i,t , (E.16)

where 0 < ψc,ω < 1 and f ′c(ai,t) > 0 for ξd sufficiently small.

ii. The demand for capital is given by

qki,t

ni,t
=

1 + (1 − ξd)
hi,t
ni,t

γψc,ω

pid

ϕσid
. (E.17)

iii. Log total wealth evolves according to

d log ωi,t = [ψ̃ω,0 + ψω,aai,t + ψω,ω log ωi,t] dt +
pid

γψc,ω
dZi,t, (E.18)

where ψω,ω < 0 and ψω,a < 0 for ξd sufficiently small.

Proof. See Appendix A.7.

The first part of Proposition 5 describes the consumption function. Consumption is a
strictly concave function of total wealth, as it is typical of problems with uninsurable labor
income risk, where ψc,ω ∈ (0, 1) represents the elasticity of consumption with respect to to-
tal wealth. This is in contrast to the consumption function derived in Proposition 1, where
consumption is a linear function of ωi,t, that is, ψc,ω = 1. For ξd sufficiently small, consump-
tion is an increasing function of age given ωi,t, reflecting the impact of entrepreneurs’ finite
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horizon.43

The second part of Proposition 5 gives the demand for capital and it corresponds to the
main result of this section. The fact that entrepreneurs cannot borrow against future labor
income has two (opposite) effects on the demand for capital. First, entrepreneurs have fewer
resources available to them when ξd > 0, which tends to reduce the business scale. This effect
is particularly more pronounced for entrepreneurs who are close to the borrowing limit, that
is, −ni,t is close to (1 − ξd)hi,t. Second, the limited pledgeability of human wealth reduces the
effective risk aversion of entrepreneurs, as γψc,ω < γ. The fraction of human wealth that
cannot be used to fund a business investment acts as a buffer against future shocks, which
makes the entrepreneur less concerned about taking investment risks.

It can be shown that uninsurable labor income risk reduces the scale of the business rela-
tive to an economy with ξd = 0 if and only if

ni,t <

[
ξd

1 − ψc,ω
− 1
]

hi,t. (E.19)

Tighter borrowing constraints, captured by ξd > 0, reduce investment in the business for poor
entrepreneurs, but they increase investment in the business for rich entrepreneurs. Given that
these two forces move in opposite directions, the aggregate effect of borrowing constraints
tends to be muted. Importantly, for all values of ξd, a declining human-financial wealth ratio
over the life cycle causes entrepreneurs’ exposure to the business to decline with age, as in the
baseline model.

Entrepreneurs have an age-dependent target for wealth: ψ̃ω,0+ψω,aa
|ψω,ω | . Entrepreneurs build

up wealth when ωi,t is below target and they decumulate wealth when ωi,t is above target.
When ψω,a < 0, the target on total wealth drifts down with age, again an implication of the
entrepreneurs’ finite horizon.

Note that the ratio of consumption to financial wealth can be written as

ci,t

ni,t
= fc(ai,t)ω

−(1−ψc,ω)
i,t

(
1 +

hi,t

ni,t

)
. (E.20)

As typically fc(·) is increasing with age and ωi,t is decreasing with age on average, we obtain
that the first two terms in the expression above increase with age. Figure 3 shows that the
human-financial wealth ratio is declining with age. In line with our discussion in Section
3, the consumption-financial wealth ratio then depends on two forces that move in opposite
directions with age.

Therefore, we conclude that introducing uninsurable labor income risk and borrowing
43The condition on ξd is necessary, as with uninsurable labor income risk the slope of the labor income profile

also plays a role. The effect of a finite horizon on consumption is attenuated when labor income declines with
age, and this effect is amplified when labor income increases with age.
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constraints does not change substantially our results, while it adds a significant layer of com-
plexity to the analysis.

E.3 Endogenous occupational choice

In this subsection, we introduce an occupational choice into the households’ problem. More-
over, we assume that wage earners have a finite horizon and imperfect altruism in the same
way as entrepreneurs. For simplicity, we abstract from limited pledgeability and ex-ante het-
erogeneity on entrepreneurs and once again focus on a stationary equilibrium.

E.3.1 The occupational choice

At the beginning of life, a household can choose to become an entrepreneur or a wage earner.
To become an entrepreneur, household i must pay a fixed cost φiỹi,t, where φi is a cost param-
eter draw from a distribution Fφ(·) with support [φ, φ]. Let Ṽt(ñi, a) denote the value function
of a household that chose to become an entrepreneur and Ṽw

t (ñi, a) the value function of a
household who chose to become a wage earner. In contrast to the model from Section 3, a
wage earner lives for T periods and derives the same utility of bequests as entrepreneurs.

A household that inherits financial wealth ñi will choose to become an entrepreneur if

Ṽt(ñi − φiỹt, 0) > Ṽw
t (ñi, 0). (E.21)

The value function of an entrepreneur can be written, after normalization, as V(n, a) =

ζ(a)−
1
γ (n+h(a))1−γ

1−γ . Similarly, the value function of a wage earner can be written as Vw(n, a) =

ζw(a)−
1
γ (n+hw(a))1−γ

1−γ .
The condition for becoming an entrepreneur can then be written as

ζ(0)
1

γ(γ−1) (ni + h(0)− φiy) > ζw(0)
1

γ(γ−1) (ni + hw(0)). (E.22)

Rearranging the expression above, we obtain that a household becomes an entrepreneur
if φi < φ∗(ni), where the threshold φ∗(ni) is given by

φ∗(ni) ≡
1
y

[((
ζ(0)

ζw(0)

) 1
γ(γ−1)

− 1

)
ni +

(
ζ(0)

ζw(0)

) 1
γ(γ−1)

h(0)− hw(0)

]
. (E.23)

It can be shown that ζ(0) > ζω(0) for γ > 1, so households who received larger bequests
are more likely to become entrepreneurs. The difference between ζ(0) and ζω(0) is increasing
in pid, the shadow price of idiosyncratic risk.
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As the cost parameter is drawn independently of the bequest a household receives, then
the mass of entrepreneurs in a stationary equilibrium is given by

χe = Fφ (φ∗(n(0))) , (E.24)

where n(0) is the average financial wealth of newborn entrepreneurs.
In a stationary equilibrium, the mass of entrepreneurs is constant. As ζ(0), ζw(0), and n(0)

depend on the interest rate and the aggregate and idiosyncratic risk premia, then the share of
entrepreneurs in the economy depends on the equilibrium expected returns.

E.3.2 Wage earners’ problem and equilibrium determination

The optimal consumption-wealth ratio and demand for insurance for wage earners are now
given by

cj,t

ωj,t
= ζw(a) =

rw

1 − ψe−rw(T−aj)
, θ

ag
j,t = hj,tσA − pag

γ
ωj,t, (E.25)

where

rw =
1
γ

ρw +

(
1 − 1

γ

)(
r +

(pag)2

2γ

)
. (E.26)

The price of aggregate insurance, wages, and the relative price of capital are the same as
in the baseline model:

pag = γσA, w = (1 − α)Kα, q = Φ0 + Φ1(g + δ). (E.27)

Finite lives for wage earners change the determination of the interest rate. The interest
rate is now jointly determined with the capital-labor ratio and the price of idiosyncratic risk
by conditions (32), (33), and the market clearing condition for consumption

ˆ T

0

rω(a)
1 − ψe−r(T−a)

f (a)da +
ˆ T

0

rwωw(a)
1 − ψe−rw(T−a)

f (a)da = αKα − ιK, (E.28)

where

ω(a) = ω(0)e

(
r+γσ2

A+
(pid)2

γ −µA−r
)

a 1 − ψe−r(T−a)

1 − ψe−rT , ωw(a) = ωw(0)e(r+γσ2
A−µA−rw)a 1 − ψe−rw(T−a)

1 − ψe−rwT .

Assuming finite lives for wage earners would change the calibration of ρw but otherwise
would not affect our main results.
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E.4 Financial autarky

We consider next the case of financial autarky, where entrepreneurs have no access to either
aggregate or idiosyncratic insurance. To shut down idiosyncratic insurance, we must set ϕ =

1. To capture the absence of aggregate insurance, we will focus on the special case where
there is no demand for aggregate insurance, so the solution would coincide with the case
where entrepreneurs have no access to insurance.

Suppose that hi,t = 0, so entrepreneurs have no labor income, and assume that nj,t = 0
for j ∈ Wt, so wage earners have no financial wealth. The first assumption implies that
qki,t
ni,t

is equalized across entrepreneurs, and the second assumption implies that qki,t = ni,t.

As the demand for aggregate insurance is given by θ
ag
i,t = (qki,t − ni,t)σA, we obtain that

entrepreneurs do not demand aggregate insurance. The solution will then coincide with the
case where aggregate insurance is not available.

Under these assumptions, the price of idiosyncratic risk, given in Equation (33), specializes
to the following expression:

pid = γσid. (E.29)

The risk premium is then given by

pagσA + pidσid = γ
[
σ2

A + σ2
id

]
, (E.30)

and the aggregate Sharpe ratio relative to the idiosyncratic Sharpe ratio is given by pag/pid =

σA/σid.
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