7 Online Appendix: Properties of Cost Functionals

In this section, we collect together proofs of properties of cost functionals mentioned in main body of the paper.

7.1 Entropy Reduction Cost Functional

Lemma 18 The entropy reduction information cost satisfies CPD for all $\psi \in (\theta_{\min}, \theta_{\max})$.

Proof. For any SCR s, the associated entropy reduction is

$$c(s) = \mathbf{E} \left[H(s(\theta)) \right] - H \left[\mathbf{E} \left(s(\theta) \right) \right] ,$$

where $H: [0,1] \to \mathbb{R}$ is given by

$$H(x) = x \ln x + (1 - x) \ln (1 - x)$$

Now let $p_1(s) = \mathbf{E}(s(\theta))$ denote the unconditional probability that action 1 is chosen under SCR s. Note that this cost functional is convex and Fréchet differentiable at s with derivative

$$H'(s(\theta)) - H'(p_1(s))$$
.

Now since $\psi \in (\theta_{\min}, \theta_{\max})$ and the prior density g is positive over $[\theta_{\min}, \theta_{\max}]$, we have $\mathbf{E}(\mathbf{1}_{\{\theta \geq \psi\}}) \in (0, 1)$. Choose $\xi > 0$ such that $\mathbf{E}(\mathbf{1}_{\{\theta \geq \psi\}}) \in (\xi, 1 - \xi)$. Then choose $\rho > 0$ small enough such that for all $s \in B_{\rho}(\mathbf{1}_{\{\theta \geq \psi\}})$, $p_1(s) \in (\xi, 1 - \xi)$. Note that for small $\varepsilon > 0$, $s \in B_{\rho}(\mathbf{1}_{\{\theta \geq \psi\}})$ implies $L_{\psi}^{\varepsilon}s \in B_{\rho}(\mathbf{1}_{\{\theta \geq \psi\}})$. Let $A(s) = \{\theta : L_{\psi}^{\varepsilon}s(\theta) \neq s(\theta)\}$. Now Fréchet differentiability implies that we have

$$c\left(L_{\psi}^{\varepsilon}s\right) - c\left(s\right) \leq \int_{A(s)} \left[H'\left(L_{\psi}^{\varepsilon}s\left(\theta\right)\right) - H'\left(p_{1}\left(L_{\psi}^{\varepsilon}s\right)\right)\right]\left(L_{\psi}^{\varepsilon}s\left(\theta\right) - s\left(\theta\right)\right) dG\left(\theta\right)$$

and

$$c\left(L_{\psi}^{\varepsilon}s\right) - c\left(s\right) \ge \int_{A(s)} \left[H'\left(s\left(\theta\right)\right) - H'\left(p_{1}\left(s\right)\right)\right] \left(L_{\psi}^{\varepsilon}s\left(\theta\right) - s\left(\theta\right)\right) dG\left(\theta\right) ,$$

Hence,

$$\left| c\left(L_{\psi}^{\varepsilon}s\right) - c\left(s\right) \right| \leq \max \left(\begin{array}{c} \left| \int_{A(s)} \left[H'\left(s\left(\theta\right)\right) - H'\left(p_{1}\left(s\right)\right) \right] \left(L_{\psi}^{\varepsilon}s\left(\theta\right) - s\left(\theta\right) \right) dG\left(\theta\right) \right|, \\ \left| \int_{A(s)} \left[H'\left(L_{\psi}^{\varepsilon}s\left(\theta\right) \right) - H'\left(p_{1}\left(L_{\psi}^{\varepsilon}s\right) \right) \right] \left(L_{\psi}^{\varepsilon}s\left(\theta\right) - s\left(\theta\right) \right) dG\left(\theta\right) \right| \end{array} \right)$$

Since H'(x) is increasing in x, for all $\theta \in A(s)$, both $|H'(s(\theta)) - H'(p_1(s))|$ and $|H'(L_{\psi}^{\varepsilon}s(\theta)) - H'(p_1(L_{\psi}^{\varepsilon}s))|$ are bounded above by

$$K = \max\left(\left|H'\left(1-\varepsilon\right) - H'\left(\xi\right)\right|, \left|H'\left(1-\xi\right) - H'\left(\varepsilon\right)\right|\right) \;.$$

Therefore,

$$\begin{aligned} \left| c \left(L_{\psi}^{\varepsilon} s \right) - c \left(s \right) \right| &\leq \int_{A(s)} K \cdot \left| L_{\psi}^{\varepsilon} s \left(\theta \right) - s \left(\theta \right) \right| dG \left(\theta \right) \\ &= K \cdot \left\| L_{\psi}^{\varepsilon} s, s \right\| . \end{aligned}$$

This concludes the proof.

7.2 The Pairwise-Separable Cost Functional

Lemma 19 The PS cost functional satisfies A9 (feasible almost perfect discrimination).

Proof. It suffices to show that $c_{PS}(\hat{s}_{k,\psi}) < \infty$, i.e., the integral

$$\int_{\theta} \int_{\theta'} \left| \theta' - \theta \right|^{-\alpha} D\left(\widehat{s}_{k,\psi} \left(\theta \right), \widehat{s}_{k,\psi} \left(\theta' \right) \right) h\left(\theta, \theta' \right) d\theta' d\theta$$

exists.

Let

$$A = \left\{ \left(\theta, \theta'\right) \in \mathbb{R}^2 : -k^{-1} \le \theta - \theta' \le k^{-1} \right\}$$

and

$$A_1 = \left\{ \left(\theta, \theta'\right) \in \mathbb{R}^2 : \theta \ge \psi + k^{-1}/2 \text{ and } \theta' \ge \psi + k^{-1}/2, \text{ or } \theta \le \psi - k^{-1}/2 \text{ and } \theta' \le \psi - k^{-1}/2 \right\}$$

First note that $|\theta' - \theta|^{-\alpha}$ is bounded on $\mathbb{R}^2 \setminus A$, thus the integral over $\mathbb{R}^2 \setminus A$ exists. Second, since $D\left(\widehat{s}_{k,\psi}\left(\theta\right), \widehat{s}_{k,\psi}\left(\theta'\right)\right) = 0$ on A_1 , we just need to show that the integral over $A \setminus A_1$ exists. Let

$$B_1 = \left\{ \left(\theta, \theta'\right) \in A \setminus A_1 : -k^{-1}/2 \le \theta' \le k^{-1}/2 \text{ and } 0 \le \theta - \theta' \le k^{-1} \right\} ,$$

$$B_2 = \left\{ \left(\theta, \theta'\right) \in A \setminus A_1 : -k^{-1}/2 \le \theta' \le k^{-1}/2 \text{ and } 0 \le \theta' - \theta \le k^{-1} \right\} ,$$

$$B_3 = \left\{ \left(\theta, \theta'\right) \in A \setminus A_1 : -k^{-1}/2 \le \theta \le k^{-1}/2 \text{ and } 0 \le \theta' - \theta \le k^{-1} \right\} ,$$

and

$$B_4 = \left\{ \left(\theta, \theta'\right) \in A \setminus A_1 : -k^{-1}/2 \le \theta \le k^{-1}/2 \text{ and } 0 \le \theta - \theta' \le k^{-1} \right\} .$$

Then $A \setminus A_1 = B_1 \cup B_2 \cup B_3 \cup B_4$. We next show that the integral over B_1 exists. Similar calculations can show the existence of the integral over B_2 , B_3 and B_4 , and are thus omitted.

By definition of a PS cost functional, $D(x_1, x_2)$ is bounded on $[0, 1] \times [0, 1]$ and $D(x_1, x_2) = O\left(|x_1 - x_2|^{\beta}\right)$ as $|x_1 - x_2| \to 0$. So there exists a K > 0, such that

$$D(x_1, x_2) \le K \cdot |x_1 - x_2|^{\beta}$$
 (23)

on $[0,1] \times [0,1]$. Now

$$\begin{split} &\int_{B_{1}}\left|\theta-\theta'\right|^{-\alpha}D\left(\widehat{s}_{k,\psi}\left(\theta\right),\widehat{s}_{k,\psi}\left(\theta'\right)\right)h\left(\theta,\theta'\right)d\theta'd\theta\\ &\leq \int_{B_{1}}\left|\theta-\theta'\right|^{-\alpha}K\cdot\left|\widehat{s}_{k,\psi}\left(\theta\right)-\widehat{s}_{k,\psi}\left(\theta'\right)\right|^{\beta}h\left(\theta,\theta'\right)d\theta'd\theta\\ &= \int_{B_{1}}\left(\theta-\theta'\right)^{-\alpha}K\cdot\left(\frac{1}{2}+k\left(\theta-\psi\right)-\frac{1}{2}-k\left(\theta'-\psi\right)\right)^{\beta}h\left(\theta,\theta'\right)d\theta'd\theta\\ &\leq Kk^{\beta}\overline{h}\int_{B_{1}}\left(\theta-\theta'\right)^{\beta-\alpha}d\theta'd\theta \;, \end{split}$$

for some $\overline{h} > 0$, where the first inequality is implied by (23), the equality is implied by the definition of $\widehat{s}_{k,\psi}$ and the last inequality is true because $\theta \ge \theta'$ on B_1 and $\frac{h(\theta,\theta')}{g(\theta)g(\theta')}$ is bounded above in the definition of PS cost functionals.

Now changing variables from (θ, θ') to (t, t') such that $t = \theta$ and $t' = \theta - \theta'$, we have

$$\int_{B_1} \left(\theta - \theta'\right)^{\beta - \alpha} d\theta' d\theta$$

$$= \int_0^{k^{-1}} (t')^{\beta - \alpha} \int_{-k^{-1}/2 + t'}^{k^{-1}/2 + t'} dt \cdot dt'$$

$$= k^{-1} \int_0^{k^{-1}} (t')^{\beta - \alpha} dt' .$$

This integral exists since $\beta - \alpha + 1 > 0$. Therefore, $c_{PS}(\hat{s}_{k,\psi}) < \infty$.

Proposition 20 The PS cost functional satisfies IPD if and only if $\alpha \geq 2$.

Proof. Let s be a non-decreasing discontinuous SCR and $s\left(\hat{\theta}_{-}\right) < s\left(\hat{\theta}_{+}\right)$ for some $\hat{\theta} \in [\theta_{\min}, \theta_{\max}]^{29}$ Let

$$s_{\widehat{\theta}}(\theta) = \begin{cases} s\left(\widehat{\theta}_{+}\right) & \text{if } \theta > \widehat{\theta} \\ s\left(\widehat{\theta}_{-}\right) & \text{if } \theta \le \widehat{\theta} \end{cases}$$
(24)

²⁹We can focus on $\hat{\theta} \in [\theta_{\min}, \theta_{\max}]$ because the possible $\hat{\theta}$ s of equilibrium SCRs are always in $[\theta_{\min}, \theta_{\max}]$ due to Assumption A3.

and

$$A = \min \left[D\left(s\left(\widehat{\theta}_{-}\right), s\left(\widehat{\theta}_{+}\right) \right), D\left(s\left(\widehat{\theta}_{+}\right), s\left(\widehat{\theta}_{-}\right) \right) \right].$$

Note that A > 0 since $s\left(\widehat{\theta}_{-}\right) \neq s\left(\widehat{\theta}_{+}\right)$. Then we have

$$c_{PS}(s) = \int_{\theta} \int_{\theta'} |\theta' - \theta|^{-\alpha} D(s(\theta), s(\theta')) h(\theta, \theta') d\theta' d\theta$$

$$\geq \int_{\theta} \int_{\theta'} |\theta' - \theta|^{-\alpha} D(s_{\theta}(\theta), s_{\theta}(\theta')) h(\theta, \theta') d\theta' d\theta$$

$$= D(s(\theta_{-}), s(\theta_{+})) \int_{-\infty}^{\theta} \int_{\theta}^{\infty} (\theta' - \theta)^{-\alpha} h(\theta, \theta') d\theta' d\theta$$

$$+ D(s(\theta_{+}), s(\theta_{-})) \int_{\theta}^{\infty} \int_{-\infty}^{\theta} (\theta - \theta')^{-\alpha} h(\theta, \theta') d\theta' d\theta$$

$$\geq 2A \cdot \int_{-\infty}^{\theta} \int_{\theta}^{\infty} (\theta' - \theta)^{-\alpha} h(\theta, \theta') d\theta' d\theta , \qquad (25)$$

where the first inequality follows the monotonicity of s in θ , and the second inequality follows the definition of A. Since g is continuous and strictly positive on $[\theta_{\min}, \theta_{\max}]$, it has a strictly positive lower bound on $[\theta_{\min}, \theta_{\max}]$. Since $\frac{g(\theta)g(\theta')}{h(\theta,\theta')}$ is bounded above, $h(\theta, \theta')$ has a strictly positive lower bound on $[\theta_{\min}, \theta_{\max}] \times [\theta_{\min}, \theta_{\max}]$. Hence, $\int_{-\infty}^{\theta} \int_{\theta}^{\infty} (\theta' - \theta)^{-\alpha} h(\theta, \theta') d\theta' d\theta$ is integrable if and only if $2 - \alpha > 0$. Therefore, $\alpha \ge 2$ implies $c_{PS}(s) = \infty$ and thus IPD. For the converse, consider an SCR $s_{\theta}(\cdot)$ defined by (24) such that $D\left(s\left(\hat{\theta}_{-}\right), s\left(\hat{\theta}_{+}\right)\right) =$ $D\left(s\left(\hat{\theta}_{+}\right), s\left(\hat{\theta}_{-}\right)\right) \equiv A > 0$. Immediate from the previous derivation of (25) we obtain that $c_{PS}(s_{\theta}) = \infty$ if $\alpha \ge 2$ and $c(s_{\theta}) < \infty$ if $\alpha < 2$. Then, IPD implies $c_{PS}(s_{\theta}) = \infty$ and thus $\alpha \ge 2$.

The following lemmas show that CPD is satisfied if $\alpha = 0$ and it is easier to be satisfied at lower values of α . Since the PS cost functional is continuous in α , there exists some $\hat{\alpha} \in [0, \min(2, \beta + 1)]$ such that CPD is satisfied for $\alpha \in [0, \hat{\alpha}]$. Due to the technicalities associated with the PS cost functional and the generality of the definitions of CPD and EPD, however, we do not obtain an analytical bound $\hat{\alpha}$ between CPD and EPD.

Lemma 21 The PS cost functional satisfies CPD at $\alpha = 0$.

Proof. When $\alpha = 0$, the cost functional becomes

$$c_{PS}(s) = \int_{\theta} \int_{\theta'} D\left(s\left(\theta\right), s\left(\theta'\right)\right) h\left(\theta, \theta'\right) d\theta' d\theta .$$

Hence, by the triangle inequality,

$$\begin{aligned} |c_{PS} \left(L_{\psi}^{\varepsilon} s \right) - c_{PS} \left(s \right)| &= \left| \int_{\theta} \int_{\theta'} \left[D \left(\left(L_{\psi}^{\varepsilon} s \right) \left(\theta \right), \left(L_{\psi}^{\varepsilon} s \right) \left(\theta' \right) \right) - D \left(s \left(\theta \right), s \left(\theta' \right) \right) \right] h \left(\theta, \theta' \right) d\theta' d\theta \right| \\ &\leq \int_{\theta} \int_{\theta'} \left| D \left(\left(L_{\psi}^{\varepsilon} s \right) \left(\theta \right), \left(L_{\psi}^{\varepsilon} s \right) \left(\theta' \right) \right) - D \left(s \left(\theta \right), s \left(\theta' \right) \right) \right| h \left(\theta, \theta' \right) d\theta' d\theta \\ &\leq \int_{\theta} \int_{\theta'} \left| D \left(\left(L_{\psi}^{\varepsilon} s \right) \left(\theta \right), \left(L_{\psi}^{\varepsilon} s \right) \left(\theta' \right) \right) - D \left(\left(L_{\psi}^{\varepsilon} s \right) \left(\theta \right), s \left(\theta' \right) \right) \right| h \left(\theta, \theta' \right) d\theta' d\theta \\ &+ \int_{\theta} \int_{\theta'} \left| D \left(\left(L_{\psi}^{\varepsilon} s \right) \left(\theta \right), s \left(\theta' \right) \right) - D \left(s \left(\theta \right), s \left(\theta' \right) \right) \right| h \left(\theta, \theta' \right) d\theta' d\theta . \end{aligned}$$
(26)

Since $\frac{\partial D(x_1, x_2)}{\partial x_1}$ and $\frac{\partial D(x_1, x_2)}{\partial x_2}$ exist on $[0, 1] \times [0, 1]$,³⁰ there exists a K > 0 such that $|D(x'_1, x_2) - D(x_1, x_2)| \le K \cdot |x'_1 - x_1|$ and $|D(x_1, x'_2) - D(x_1, x_2)| \le K \cdot |x'_2 - x_2|$ for all $x_1, x_2 \in [0, 1]$. Hence,

$$\left| D\left(\left(L_{\psi}^{\varepsilon} s\right) \left(\theta \right), \left(L_{\psi}^{\varepsilon} s\right) \left(\theta' \right) \right) - D\left(\left(L_{\psi}^{\varepsilon} s\right) \left(\theta \right), s\left(\theta' \right) \right) \right| \le K \cdot \left| \left(L_{\psi}^{\varepsilon} s\right) \left(\theta' \right) - s\left(\theta' \right) \right|$$

and

$$\left| D\left(\left(L_{\psi}^{\varepsilon} s\right)(\theta), s\left(\theta'\right) \right) - D\left(s\left(\theta\right), s\left(\theta'\right) \right) \right| \le K \cdot \left| \left(L_{\psi}^{\varepsilon} s\right)(\theta) - s\left(\theta\right) \right|$$

Plugging the above two inequalities into (26), we obtain

$$\begin{aligned} &|c_{PS} \left(L_{\psi}^{\varepsilon} s \right) - c_{PS} \left(s \right)| \\ &\leq \int_{\theta} \int_{\theta'} K \cdot \left| \left(L_{\psi}^{\varepsilon} s \right) \left(\theta' \right) - s \left(\theta' \right) \right| h \left(\theta, \theta' \right) d\theta' d\theta + \int_{\theta} \int_{\theta'} K \cdot \left| \left(L_{\psi}^{\varepsilon} s \right) \left(\theta \right) - s \left(\theta \right) \right| h \left(\theta, \theta' \right) d\theta' d\theta \\ &\leq \int_{\theta} \int_{\theta'} K \cdot \left| \left(L_{\psi}^{\varepsilon} s \right) \left(\theta' \right) - s \left(\theta' \right) \right| K' g \left(\theta' \right) g \left(\theta \right) d\theta' d\theta + \int_{\theta} \int_{\theta'} K \cdot \left| \left(L_{\psi}^{\varepsilon} s \right) \left(\theta \right) - s \left(\theta \right) \right| K' g \left(\theta' \right) g \left(\theta \right) d\theta' d\theta \\ &= KK' \cdot \int_{\theta} \left\| L_{\psi}^{\varepsilon} s, s \right\| g \left(\theta \right) d\theta + KK' \cdot \int_{\theta'} \left\| L_{\psi}^{\varepsilon} s, s \right\| g \left(\theta' \right) d\theta' \\ &= 2KK' \cdot \left\| L_{\psi}^{\varepsilon} s, s \right\| \;, \end{aligned}$$

where the second inequality follows because $\frac{h(\theta, \theta')}{g(\theta)g(\theta')}$ is bounded above by some K' > 0. Therefore, c_{PS} satisfies CPD when $\alpha = 0$.

Lemma 22 If the PS cost functional satisfies CPD at some $\alpha \ge 0$, then it satisfies CPD at all $\alpha' \in [0, \alpha]$.

Proof. To avoid confusion, let $c_{PS}^{\alpha}(\cdot)$ denote the PS cost functional with parameter α . Since $c_{PS}^{\alpha}(\cdot)$ satisfies CPD, for any $\psi \in \mathbb{R}$ and $\varepsilon \in (0, 1/2)$, there exists a $\rho > 0$ and K > 0 such that

$$\left|c_{PS}^{\alpha}\left(L_{\psi}^{\varepsilon}s\right) - c_{PS}^{\alpha}\left(s\right)\right| \leq K \cdot \left\|L_{\psi}^{\varepsilon}s,s\right\|$$

³⁰The proof goes through under a weaker condition that $\frac{\partial}{\partial x_i} D(x_1, x_2)$ exists for all $x_i \in (0, 1)$ and $x_j \in [0, 1], i, j \in \{1, 2\}, i \neq j$.

for all monotonic $s \in B_{\rho}(1_{\{\theta \geq \psi\}})$. Without loss of generality, we can choose a sufficiently small $\rho > 0$. Then by the construction of operator L_{ψ}^{ε} , there exists an interval $[\theta_1, \theta_2]$ such that for any monotonic $s \in B_{\rho}(1_{\{\theta \geq \psi\}})$, $L_{\psi}^{\varepsilon}s$ and s differ only in $[\theta_1, \theta_2]$. Fix a z > 0. Then

$$\begin{aligned} \left| c_{PS}^{\alpha'} \left(L_{\psi}^{\varepsilon} s \right) - c_{PS}^{\alpha'} \left(s \right) \right| \\ &= \left| \int_{\theta} \int_{\theta'} \left| \theta' - \theta \right|^{-\alpha'} \left[D \left(\left(L_{\psi}^{\varepsilon} s \right) \left(\theta \right), \left(L_{\psi}^{\varepsilon} s \right) \left(\theta' \right) \right) - D \left(s \left(\theta \right), s \left(\theta' \right) \right) \right] h \left(\theta, \theta' \right) d\theta' d\theta \right| \\ &\leq \left| \int_{\mathbb{R}^{2} \setminus \left[\theta_{1} - z, \theta_{2} + z \right] \times \left[\theta_{1} - z, \theta_{2} + z \right]} \left| \theta' - \theta \right|^{-\alpha'} \left[D \left(\left(L_{\psi}^{\varepsilon} s \right) \left(\theta \right), \left(L_{\psi}^{\varepsilon} s \right) \left(\theta' \right) \right) - D \left(s \left(\theta \right), s \left(\theta' \right) \right) \right] h \left(\theta, \theta' \right) d\theta' d\theta \right| \\ &+ \left| \int_{\left[\theta_{1} - z, \theta_{2} + z \right] \times \left[\theta_{1} - z, \theta_{2} + z \right]} \left| \theta' - \theta \right|^{-\alpha'} \left[D \left(\left(L_{\psi}^{\varepsilon} s \right) \left(\theta \right), \left(L_{\psi}^{\varepsilon} s \right) \left(\theta' \right) \right) - D \left(s \left(\theta \right), s \left(\theta' \right) \right) \right] h \left(\theta, \theta' \right) d\theta' d\theta \right| \\ &= \left| \int_{\left(-\infty, \theta_{1} - z \right) \cup \left(\theta_{2} + z, \infty \right)} \int_{\left[\theta_{1}, \theta_{2} \right]} \left| \theta' - \theta \right|^{-\alpha'} \left[D \left(\left(L_{\psi}^{\varepsilon} s \right) \left(\theta \right), \left(L_{\psi}^{\varepsilon} s \right) \left(\theta' \right) \right) - D \left(s \left(\theta \right), s \left(\theta' \right) \right) \right] h \left(\theta, \theta' \right) d\theta' d\theta \right| \\ &+ \left| \int_{\left[\theta_{1}, \theta_{2} \right]} \int_{\left(-\infty, \theta_{1} - z \right) \cup \left(\theta_{2} + z, \infty \right)} \left| \theta' - \theta \right|^{-\alpha'} \left[D \left(\left(L_{\psi}^{\varepsilon} s \right) \left(\theta \right), \left(L_{\psi}^{\varepsilon} s \right) \left(\theta' \right) \right) - D \left(s \left(\theta \right), s \left(\theta' \right) \right) \right] h \left(\theta, \theta' \right) d\theta' d\theta \right| \\ &+ \left| \int_{\left[\theta_{1} - z, \theta_{2} + z \right] \times \left[\theta_{1} - z, \theta_{2} + z \right]} \left| \theta' - \theta \right|^{-\alpha'} \left[D \left(\left(L_{\psi}^{\varepsilon} s \right) \left(\theta \right), \left(L_{\psi}^{\varepsilon} s \right) \left(\theta' \right) \right) - D \left(s \left(\theta \right), s \left(\theta' \right) \right) \right] h \left(\theta, \theta' \right) d\theta' d\theta \right| \\ &+ \left| \int_{\left[\theta_{1} - z, \theta_{2} + z \right] \times \left[\theta_{1} - z, \theta_{2} + z \right]} \left| \theta' - \theta \right|^{-\alpha'} \left[D \left(\left(L_{\psi}^{\varepsilon} s \right) \left(\theta \right), \left(L_{\psi}^{\varepsilon} s \right) \left(\theta' \right) \right) - D \left(s \left(\theta \right), s \left(\theta' \right) \right) \right] h \left(\theta, \theta' \right) d\theta' d\theta \right| \end{aligned}$$

where the second equality follows the fact $L_{\psi}^{\varepsilon}s$ and s differ only in $[\theta_1, \theta_2]$. Since $\frac{\partial D(x_1, x_2)}{\partial x_1}$ and $\frac{\partial D(x_1, x_2)}{\partial x_2}$ exist on $[0, 1] \times [0, 1]$,³¹ there exists a $K_1 > 0$ such that $|D(x'_1, x_2) - D(x_1, x_2)| \le K_1 \cdot |x'_1 - x_1|$ and $|D(x_1, x'_2) - D(x_1, x_2)| \le K_1 \cdot |x'_2 - x_2|$ for all $x_1, x_2 \in [0, 1]$. Then, the first term in the right hand side of (27) is

$$\begin{split} \left| \int_{(-\infty,\theta_{1}-z)\cup(\theta_{2}+z,\infty)} \int_{[\theta_{1},\theta_{2}]} \left| \theta' - \theta \right|^{-\alpha'} \left[D\left(\left(L_{\psi}^{\varepsilon}s\right)(\theta), \left(L_{\psi}^{\varepsilon}s\right)(\theta') \right) - D\left(s\left(\theta\right), s\left(\theta'\right) \right) \right] h\left(\theta,\theta'\right) d\theta' d\theta \right| \\ \leq \int_{(-\infty,\theta_{1}-z)\cup(\theta_{2}+z,\infty)} \int_{[\theta_{1},\theta_{2}]} \left| \theta' - \theta \right|^{-\alpha'} \left| D\left(s\left(\theta\right), \left(L_{\psi}^{\varepsilon}s\right)(\theta') \right) - D\left(s\left(\theta\right), s\left(\theta'\right) \right) \right| h\left(\theta,\theta'\right) d\theta' d\theta \\ \leq K' \int_{(-\infty,\theta_{1}-z)\cup(\theta_{2}+z,\infty)} \int_{[\theta_{1},\theta_{2}]} z^{-\alpha'} K_{1} \cdot \left| \left(L_{\psi}^{\varepsilon}s\right)(\theta') - s\left(\theta'\right) \right| g\left(\theta'\right) d\theta' g\left(\theta\right) d\theta \\ \leq z^{-\alpha'} K' K_{1} \cdot \int_{(-\infty,\theta_{1}-z)\cup(\theta_{2}+z,\infty)} \left\| L_{\psi}^{\varepsilon}s, s \right\| g\left(\theta\right) d\theta \\ \leq z^{-\alpha'} K' K_{1} \cdot \left\| L_{\psi}^{\varepsilon}s, s \right\| , \end{split}$$

where the first inequality holds because $(L_{\psi}^{\varepsilon}s)(\theta) = s(\theta)$ for $\theta \in (-\infty, \theta_1 - z) \cup (\theta_2 + z, \infty)$, and the second inequality follows that $|\theta' - \theta|^{-\alpha'} \leq z^{-\alpha'}$ for $\theta \in (-\infty, \theta_1 - z) \cup (\theta_2 + z, \infty)$

³¹The proof goes through under a weaker condition that $\frac{\partial}{\partial x_i} D(x_1, x_2)$ exists for all $x_i \in (0, 1)$ and $x_j \in [0, 1], i, j \in \{1, 2\}, i \neq j$.

and $\theta' \in [\theta_1, \theta_2]$, and that $\frac{h(\theta, \theta')}{g(\theta)g(\theta')}$ is bounded above by some K' > 0. By a symmetric argument, the second term in the right hand side of (27) is also bounded by $z^{-\alpha'}K'K_1 \cdot \left\| L_{\psi}^{\varepsilon}s, s \right\|$. Since $\alpha - \alpha' \ge 0$, $|\theta' - \theta|^{\alpha - \alpha'}$ is bounded for $(\theta, \theta') \in [\theta_1 - z, \theta_2 + z] \times [\theta_1 - z, \theta_2 + z]$, then there is a $K_2 > 0$ such that the third term in the right hand side of (27) is

$$\begin{aligned} \left| \int_{\left[\theta_{1}-z,\theta_{2}+z\right]\times\left[\theta_{1}-z,\theta_{2}+z\right]} \left|\theta'-\theta\right|^{\alpha-\alpha'} \left|\theta'-\theta\right|^{-\alpha} \left[D\left(\left(L_{\psi}^{\varepsilon}s\right)\left(\theta\right),\left(L_{\psi}^{\varepsilon}s\right)\left(\theta'\right)\right) - D\left(s\left(\theta\right),s\left(\theta'\right)\right) \right] h\left(\theta,\theta'\right) d\theta' d\theta \right. \\ \\ \leq K'K_{2} \cdot \left| \int_{\left[\theta_{1}-z,\theta_{2}+z\right]\times\left[\theta_{1}-z,\theta_{2}+z\right]} \left|\theta'-\theta\right|^{-\alpha} \left[D\left(\left(L_{\psi}^{\varepsilon}s\right)\left(\theta\right),\left(L_{\psi}^{\varepsilon}s\right)\left(\theta'\right)\right) - D\left(s\left(\theta\right),s\left(\theta'\right)\right) \right] g\left(\theta'\right) g\left(\theta\right) d\theta' d\theta \right. \\ \\ \leq K'K_{2} \cdot \left|c_{PS}^{\alpha}\left(L_{\psi}^{\varepsilon}s\right) - c_{PS}^{\alpha}\left(s\right)\right| \\ \\ \leq K'K_{2}K \cdot \left\| L_{\psi}^{\varepsilon}s,s \right\| . \end{aligned}$$

Hence, (27) becomes

$$\begin{aligned} & \left| c_{PS}^{\alpha'} \left(L_{\psi}^{\varepsilon} s \right) - c_{PS}^{\alpha'} \left(s \right) \right| \\ \leq & 2z^{-\alpha'} K' K_1 \cdot \left\| L_{\psi}^{\varepsilon} s, s \right\| + K' K_2 K \cdot \left\| L_{\psi}^{\varepsilon} s, s \right\| \\ = & \left(2z^{-\alpha'} K_1 + K_2 K \right) K' \cdot \left\| L_{\psi}^{\varepsilon} s, s \right\| . \end{aligned}$$

Therefore, $c_{PS}^{\alpha'}$ satisfies CPD.

7.3 The Fisher Cost Functional

Lemma 23 The Fisher cost functional satisfies sub-modularity.

Proof. Let s_1 and s_2 be two SCRs. It is straightforward to see that $c_{Fisher}(s_2 \vee s_1) + c_{Fisher}(s_2 \vee s_2) +$

 $c_{Fisher}(s_2 \wedge s_1) = c_{Fisher}(s_1) + c_{Fisher}(s_2)$. Let $A = \{\theta \in \mathbb{R} : s_2(\theta) \ge s_1(\theta)\}$ and $B = \{\theta \in \mathbb{R} : s_2(\theta) < s_1(\theta)\}$. Then,

$$\begin{split} c_{Fisher} \left(s_{2} \lor s_{1} \right) + c_{Fisher} \left(s_{2} \land s_{1} \right) \\ &= \int_{A} \frac{\left(\left[g\left(\theta \right) s_{2}\left(\theta \right) \right]' \right)^{2}}{g\left(\theta \right) s_{2}\left(\theta \right)} + \frac{\left(\left[g\left(\theta \right) \left(1 - s_{2}\left(\theta \right) \right) \right]' \right)^{2}}{g\left(\theta \right) \left(1 - s_{2}\left(\theta \right) \right)} d\theta + \int_{B} \frac{\left(\left[g\left(\theta \right) s_{1}\left(\theta \right) \right]' \right)^{2}}{g\left(\theta \right) s_{1}\left(\theta \right)} + \frac{\left(\left[g\left(\theta \right) \left(1 - s_{1}\left(\theta \right) \right) \right]' \right)^{2}}{g\left(\theta \right) \left(1 - s_{1}\left(\theta \right) \right)} d\theta \\ &+ \int_{A} \frac{\left(\left[g\left(\theta \right) s_{1}\left(\theta \right) \right]' \right)^{2}}{g\left(\theta \right) s_{1}\left(\theta \right)} + \frac{\left(\left[g\left(\theta \right) \left(1 - s_{1}\left(\theta \right) \right) \right]' \right)^{2}}{g\left(\theta \right) \left(1 - s_{1}\left(\theta \right) \right)} d\theta + \int_{B} \frac{\left(\left[g\left(\theta \right) s_{2}\left(\theta \right) \right]' \right)^{2}}{g\left(\theta \right) s_{2}\left(\theta \right)} + \frac{\left(\left[g\left(\theta \right) \left(1 - s_{1}\left(\theta \right) \right) \right]' \right)^{2}}{g\left(\theta \right) \left(1 - s_{1}\left(\theta \right) \right)} d\theta \\ &+ \int_{A} \frac{\left(\left[g\left(\theta \right) s_{2}\left(\theta \right) \right]' \right)^{2}}{g\left(\theta \right) s_{2}\left(\theta \right)} + \frac{\left(\left[g\left(\theta \right) \left(1 - s_{2}\left(\theta \right) \right) \right]' \right)^{2}}{g\left(\theta \right) \left(1 - s_{2}\left(\theta \right) \right)} d\theta + \int_{B} \frac{\left(\left[g\left(\theta \right) s_{2}\left(\theta \right) \right]' \right)^{2}}{g\left(\theta \right) s_{2}\left(\theta \right)} + \frac{\left(\left[g\left(\theta \right) \left(1 - s_{2}\left(\theta \right) \right) \right]' \right)^{2}}{g\left(\theta \right) \left(1 - s_{2}\left(\theta \right) \right)} d\theta \\ &+ \int_{A} \frac{\left(\left[g\left(\theta \right) s_{2}\left(\theta \right) \right]' \right)^{2}}{g\left(\theta \right) s_{2}\left(\theta \right)} + \frac{\left(\left[g\left(\theta \right) \left(1 - s_{2}\left(\theta \right) \right) \right]' \right)^{2}}{g\left(\theta \right) \left(1 - s_{2}\left(\theta \right) \right)} d\theta \\ &+ \int_{B} \frac{\left(\left[g\left(\theta \right) s_{2}\left(\theta \right) \right]' \right)^{2}}{g\left(\theta \right) s_{2}\left(\theta \right)} + \frac{\left(\left[g\left(\theta \right) \left(1 - s_{2}\left(\theta \right) \right]' \right)^{2}}{g\left(\theta \right) \left(1 - s_{2}\left(\theta \right) \right)} d\theta \\ &+ \int_{B} \frac{\left(\left[g\left(\theta \right) s_{2}\left(\theta \right) \right]' \right)^{2}}{g\left(\theta \right) s_{2}\left(\theta \right)} + \frac{\left(\left[g\left(\theta \right) \left(1 - s_{2}\left(\theta \right) \right]' \right)^{2}}{g\left(\theta \right) \left(1 - s_{2}\left(\theta \right) \right)} d\theta \\ &+ \int_{B} \frac{\left(\left[g\left(\theta \right) s_{2}\left(\theta \right) \right]' \right)^{2}}{g\left(\theta \right) s_{2}\left(\theta \right)} + \frac{\left(\left[g\left(\theta \right) \left(1 - s_{2}\left(\theta \right) \right]' \right)^{2}}{g\left(\theta \right) \left(1 - s_{2}\left(\theta \right) \right)} d\theta \\ &= c_{Fisher} \left(s_{1} \right) + c_{Fisher} \left(s_{2} \right) . \end{split}$$

7.4 The Additive Noise Cost Functional

Here we show that the additive noise cost functional c_{AN} is not submodular, by constructing a counterexample. Suppose ε is uniform on $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Let $b_{\psi} = 1_{\{x \ge \psi\}}$ be the step function behavioral strategy where a player invests if and only if his signal is above ψ . Then the induced stochastic choice rule $\tilde{s}_{k,b_{\psi}}$ is equal to the slope k threshold approximation of $1_{\{\theta \ge \psi\}}$, i.e.,

$$\widetilde{s}_{k,b_{\psi}}\left(\theta\right) = \int_{-1/2}^{1/2} b_{\psi}\left(\theta + \frac{1}{k}\varepsilon\right) d\varepsilon = \int_{-1/2}^{1/2} \mathbf{1}_{\varepsilon \le k(\theta - \psi)} = \widehat{s}_{k,\psi}\left(\theta\right)$$

Since k is the maximum slope of $\hat{s}_{k,\psi}$, we have

$$\frac{d\widetilde{s}_{k,b}\left(\theta\right)}{d\theta} \le k , \qquad (28)$$

where the inequality is an equality if and only if the behavioral strategy is the switching strategy b_{ψ} for some switching cutoff ψ . Now consider $\tilde{s}_{k_1,b_{\psi}}$ and $\tilde{s}_{k_2,b_{\psi}}$, where $k_2 > k_1 > 0$. Note that $\tilde{s}_{k_1,b_{\psi}}$ and $\tilde{s}_{k_2,b_{\psi}}$ intersect at $(\psi, 1/2)$, so that

$$\left(\widetilde{s}_{k_1,b_{\psi}} \vee \widetilde{s}_{k_2,b_{\psi}}\right)(\theta) = \begin{cases} \widetilde{s}_{k_1,b_{\psi}}\left(\theta\right) & \text{if } \theta < \psi\\ \widetilde{s}_{k_2,b_{\psi}}\left(\theta\right) & \text{if } \theta \ge \psi \end{cases}$$

 and

$$\left(\widetilde{s}_{k_1,b_{\psi}} \wedge \widetilde{s}_{k_2,b_{\psi}}\right)(\theta) = \begin{cases} \widetilde{s}_{k_2,b_{\psi}}\left(\theta\right) & \text{if } \theta < \psi \\ \widetilde{s}_{k_1,b_{\psi}}\left(\theta\right) & \text{if } \theta \ge \psi \end{cases}.$$

So k_2 is the maximal slope of both $\widetilde{s}_{k_1,b_{\psi}} \vee \widetilde{s}_{k_2,b_{\psi}}$ and $\widetilde{s}_{k_1,b_{\psi}} \wedge \widetilde{s}_{k_2,b_{\psi}}$. Inequality (28) thus implies $c_{AN}\left(\widetilde{s}_{k_1,b_{\psi}} \vee \widetilde{s}_{k_2,b_{\psi}}\right) = c\left(k_2\right)$ and $c_{AN}\left(\widetilde{s}_{k_1,b_{\psi}} \wedge \widetilde{s}_{k_2,b_{\psi}}\right) = c\left(k_2\right)$. Therefore,

$$\begin{aligned} c_{AN}\left(\widetilde{s}_{k_{1},b_{\psi}}\right) + c_{AN}\left(\widetilde{s}_{k_{2},b_{\psi}}\right) &= \widehat{c}\left(k_{1}\right) + \widehat{c}\left(k_{2}\right) \\ &< 2\widehat{c}\left(k_{2}\right) \\ &= c_{AN}\left(\widetilde{s}_{k_{1},b_{\psi}} \lor \widetilde{s}_{k_{2},b_{\psi}}\right) + c_{AN}\left(\widetilde{s}_{k_{1},b_{\psi}} \land \widetilde{s}_{k_{2},b_{\psi}}\right) ,\end{aligned}$$

a violation of submodularity.