7 Online Appendix: Properties of Cost Functionals

In this section, we collect together proofs of properties of cost functionals mentioned in main body of the paper.

7.1 Entropy Reduction Cost Functional

Lemma 18 The entropy reduction information cost satisfies $C P D$ for all $\psi \in\left(\theta_{\min }, \theta_{\max }\right)$.
Proof. For any SCR s, the associated entropy reduction is

$$
c(s)=\mathbf{E}[H(s(\theta))]-H[\mathbf{E}(s(\theta))]
$$

where $H:[0,1] \rightarrow \mathbb{R}$ is given by

$$
H(x)=x \ln x+(1-x) \ln (1-x)
$$

Now let $p_{1}(s)=\mathbf{E}(s(\theta))$ denote the unconditional probability that action 1 is chosen under $\operatorname{SCR} s$. Note that this cost functional is convex and Fréchet differentiable at s with derivative

$$
H^{\prime}(s(\theta))-H^{\prime}\left(p_{1}(s)\right)
$$

Now since $\psi \in\left(\theta_{\min }, \theta_{\max }\right)$ and the prior density g is positive over $\left[\theta_{\min }, \theta_{\max }\right.$], we have $\mathbf{E}\left(1_{\{\theta \geq \psi\}}\right) \in(0,1)$. Choose $\xi>0$ such that $\mathbf{E}\left(1_{\{\theta \geq \psi\}}\right) \in(\xi, 1-\xi)$. Then choose $\rho>0$ small enough such that for all $s \in B_{\rho}\left(1_{\{\theta \geq \psi\}}\right), p_{1}(s) \in(\xi, 1-\xi)$. Note that for small $\varepsilon>0, s \in B_{\rho}\left(1_{\{\theta \geq \psi\}}\right)$ implies $L_{\psi}^{\varepsilon} s \in B_{\rho}\left(1_{\{\theta \geq \psi\}}\right)$. Let $A(s)=\left\{\theta: L_{\psi}^{\varepsilon} s(\theta) \neq s(\theta)\right\}$. Now Fréchet differentiability implies that we have

$$
c\left(L_{\psi}^{\varepsilon} s\right)-c(s) \leq \int_{A(s)}\left[H^{\prime}\left(L_{\psi}^{\varepsilon} s(\theta)\right)-H^{\prime}\left(p_{1}\left(L_{\psi}^{\varepsilon} s\right)\right)\right]\left(L_{\psi}^{\varepsilon} s(\theta)-s(\theta)\right) d G(\theta)
$$

and

$$
c\left(L_{\psi}^{\varepsilon} s\right)-c(s) \geq \int_{A(s)}\left[H^{\prime}(s(\theta))-H^{\prime}\left(p_{1}(s)\right)\right]\left(L_{\psi}^{\varepsilon} s(\theta)-s(\theta)\right) d G(\theta)
$$

Hence,

$$
\left|c\left(L_{\psi}^{\varepsilon} s\right)-c(s)\right| \leq \max \binom{\left|\int_{A(s)}\left[H^{\prime}(s(\theta))-H^{\prime}\left(p_{1}(s)\right)\right]\left(L_{\psi}^{\varepsilon} s(\theta)-s(\theta)\right) d G(\theta)\right|}{\left|\int_{A(s)}\left[H^{\prime}\left(L_{\psi}^{\varepsilon} s(\theta)\right)-H^{\prime}\left(p_{1}\left(L_{\psi}^{\varepsilon} s\right)\right)\right]\left(L_{\psi}^{\varepsilon} s(\theta)-s(\theta)\right) d G(\theta)\right|}
$$

Since $H^{\prime}(x)$ is increasing in x, for all $\theta \in A(s)$, both $\left|H^{\prime}(s(\theta))-H^{\prime}\left(p_{1}(s)\right)\right|$ and $\left|H^{\prime}\left(L_{\psi}^{\varepsilon} s(\theta)\right)-H^{\prime}\left(p_{1}\left(L_{\psi}^{\varepsilon} s\right)\right)\right|$ are bounded above by

$$
K=\max \left(\left|H^{\prime}(1-\varepsilon)-H^{\prime}(\xi)\right|,\left|H^{\prime}(1-\xi)-H^{\prime}(\varepsilon)\right|\right)
$$

Therefore,

$$
\begin{aligned}
\left|c\left(L_{\psi}^{\varepsilon} s\right)-c(s)\right| & \leq \int_{A(s)} K \cdot\left|L_{\psi}^{\varepsilon} s(\theta)-s(\theta)\right| d G(\theta) \\
& =K \cdot\left\|L_{\psi}^{\varepsilon} s, s\right\|
\end{aligned}
$$

This concludes the proof.

7.2 The Pairwise-Separable Cost Functional

Lemma 19 The PS cost functional satisfies A9 (feasible almost perfect discrimination).
Proof. It suffices to show that $c_{P S}\left(\widehat{s}_{k, \psi}\right)<\infty$, i.e., the integral

$$
\int_{\theta} \int_{\theta^{\prime}}\left|\theta^{\prime}-\theta\right|^{-\alpha} D\left(\widehat{s}_{k, \psi}(\theta), \widehat{s}_{k, \psi}\left(\theta^{\prime}\right)\right) h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta
$$

exists.
Let

$$
A=\left\{\left(\theta, \theta^{\prime}\right) \in \mathbb{R}^{2}:-k^{-1} \leq \theta-\theta^{\prime} \leq k^{-1}\right\}
$$

and
$A_{1}=\left\{\left(\theta, \theta^{\prime}\right) \in \mathbb{R}^{2}: \theta \geq \psi+k^{-1} / 2\right.$ and $\theta^{\prime} \geq \psi+k^{-1} / 2$, or $\theta \leq \psi-k^{-1} / 2$ and $\left.\theta^{\prime} \leq \psi-k^{-1} / 2\right\}$.
First note that $\left|\theta^{\prime}-\theta\right|^{-\alpha}$ is bounded on $\mathbb{R}^{2} \backslash A$, thus the integral over $\mathbb{R}^{2} \backslash A$ exists. Second, since $D\left(\widehat{s}_{k, \psi}(\theta), \widehat{s}_{k, \psi}\left(\theta^{\prime}\right)\right)=0$ on A_{1}, we just need to show that the integral over $A \backslash A_{1}$ exists. Let

$$
\begin{aligned}
& B_{1}=\left\{\left(\theta, \theta^{\prime}\right) \in A \backslash A_{1}:-k^{-1} / 2 \leq \theta^{\prime} \leq k^{-1} / 2 \text { and } 0 \leq \theta-\theta^{\prime} \leq k^{-1}\right\}, \\
& B_{2}=\left\{\left(\theta, \theta^{\prime}\right) \in A \backslash A_{1}:-k^{-1} / 2 \leq \theta^{\prime} \leq k^{-1} / 2 \text { and } 0 \leq \theta^{\prime}-\theta \leq k^{-1}\right\}, \\
& B_{3}=\left\{\left(\theta, \theta^{\prime}\right) \in A \backslash A_{1}:-k^{-1} / 2 \leq \theta \leq k^{-1} / 2 \text { and } 0 \leq \theta^{\prime}-\theta \leq k^{-1}\right\}
\end{aligned}
$$

and

$$
B_{4}=\left\{\left(\theta, \theta^{\prime}\right) \in A \backslash A_{1}:-k^{-1} / 2 \leq \theta \leq k^{-1} / 2 \text { and } 0 \leq \theta-\theta^{\prime} \leq k^{-1}\right\}
$$

Then $A \backslash A_{1}=B_{1} \cup B_{2} \cup B_{3} \cup B_{4}$. We next show that the integral over B_{1} exists. Similar calculations can show the existence of the integral over B_{2}, B_{3} and B_{4}, and are thus omitted.

By definition of a PS cost functional, $D\left(x_{1}, x_{2}\right)$ is bounded on $[0,1] \times[0,1]$ and $D\left(x_{1}, x_{2}\right)=$ $O\left(\left|x_{1}-x_{2}\right|^{\beta}\right)$ as $\left|x_{1}-x_{2}\right| \rightarrow 0$. So there exists a $K>0$, such that

$$
\begin{equation*}
D\left(x_{1}, x_{2}\right) \leq K \cdot\left|x_{1}-x_{2}\right|^{\beta} \tag{23}
\end{equation*}
$$

on $[0,1] \times[0,1]$. Now

$$
\begin{aligned}
& \int_{B_{1}}\left|\theta-\theta^{\prime}\right|^{-\alpha} D\left(\widehat{s}_{k, \psi}(\theta), \widehat{s}_{k, \psi}\left(\theta^{\prime}\right)\right) h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \\
\leq & \int_{B_{1}}\left|\theta-\theta^{\prime}\right|^{-\alpha} K \cdot\left|\widehat{s}_{k, \psi}(\theta)-\widehat{s}_{k, \psi}\left(\theta^{\prime}\right)\right|^{\beta} h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \\
= & \int_{B_{1}}\left(\theta-\theta^{\prime}\right)^{-\alpha} K \cdot\left(\frac{1}{2}+k(\theta-\psi)-\frac{1}{2}-k\left(\theta^{\prime}-\psi\right)\right)^{\beta} h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \\
\leq & K k^{\beta} \bar{h} \int_{B_{1}}\left(\theta-\theta^{\prime}\right)^{\beta-\alpha} d \theta^{\prime} d \theta
\end{aligned}
$$

for some $\bar{h}>0$, where the first inequality is implied by 23 , the equality is implied by the definition of $\widehat{s}_{k, \psi}$ and the last inequality is true because $\theta \geq \theta^{\prime}$ on B_{1} and $\frac{h\left(\theta, \theta^{\prime}\right)}{g(\theta) g\left(\theta^{\prime}\right)}$ is bounded above in the definition of PS cost functionals.

Now changing variables from $\left(\theta, \theta^{\prime}\right)$ to $\left(t, t^{\prime}\right)$ such that $t=\theta$ and $t^{\prime}=\theta-\theta^{\prime}$, we have

$$
\begin{aligned}
& \int_{B_{1}}\left(\theta-\theta^{\prime}\right)^{\beta-\alpha} d \theta^{\prime} d \theta \\
= & \int_{0}^{k^{-1}}\left(t^{\prime}\right)^{\beta-\alpha} \int_{-k^{-1} / 2+t^{\prime}}^{k^{-1} / 2+t^{\prime}} d t \cdot d t^{\prime} \\
= & k^{-1} \int_{0}^{k^{-1}}\left(t^{\prime}\right)^{\beta-\alpha} d t^{\prime} .
\end{aligned}
$$

This integral exists since $\beta-\alpha+1>0$. Therefore, $c_{P S}\left(\widehat{s}_{k, \psi}\right)<\infty$.
Proposition 20 The PS cost functional satisfies IPD if and only if $\alpha \geq 2$.
Proof. Let s be a non-decreasing discontinuous SCR and $s\left(\widehat{\theta}_{-}\right)<s\left(\widehat{\theta}_{+}\right)$for some $\widehat{\theta} \in$ $\left[\theta_{\min }, \theta_{\max }\right]{ }^{29}$ Let

$$
s_{\widehat{\theta}}(\theta)= \begin{cases}s\left(\widehat{\theta}_{+}\right) & \text {if } \theta>\widehat{\theta} \tag{24}\\ s\left(\widehat{\theta}_{-}\right) & \text {if } \theta \leq \widehat{\theta}\end{cases}
$$

[^0]and
$$
A=\min \left[D\left(s\left(\widehat{\theta}_{-}\right), s\left(\widehat{\theta}_{+}\right)\right), D\left(s\left(\widehat{\theta}_{+}\right), s\left(\widehat{\theta}_{-}\right)\right)\right] .
$$

Note that $A>0$ since $s\left(\widehat{\theta}_{-}\right) \neq s\left(\widehat{\theta}_{+}\right)$. Then we have

$$
\begin{align*}
c_{P S}(s)= & \int_{\theta} \int_{\theta^{\prime}}\left|\theta^{\prime}-\theta\right|^{-\alpha} D\left(s(\theta), s\left(\theta^{\prime}\right)\right) h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \\
\geq & \int_{\theta} \int_{\theta^{\prime}}\left|\theta^{\prime}-\theta\right|^{-\alpha} D\left(s_{\widehat{\theta}}(\theta), s_{\widehat{\theta}}\left(\theta^{\prime}\right)\right) h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \\
= & D\left(s\left(\widehat{\theta}_{-}\right), s\left(\widehat{\theta}_{+}\right)\right) \int_{-\infty}^{\widehat{\theta}} \int_{\widehat{\theta}}^{\infty}\left(\theta^{\prime}-\theta\right)^{-\alpha} h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \\
& +D\left(s\left(\widehat{\theta}_{+}\right), s\left(\widehat{\theta}_{-}\right)\right) \int_{\widehat{\theta}}^{\infty} \int_{-\infty}^{\widehat{\theta}}\left(\theta-\theta^{\prime}\right)^{-\alpha} h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \\
\geq & 2 A \cdot \int_{-\infty}^{\widehat{\theta}} \int_{\widehat{\theta}}^{\infty}\left(\theta^{\prime}-\theta\right)^{-\alpha} h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta, \tag{25}
\end{align*}
$$

where the first inequality follows the monotonicity of s in θ, and the second inequality follows the definition of A. Since g is continuous and strictly positive on $\left[\theta_{\min }, \theta_{\max }\right]$, it has a strictly positive lower bound on $\left[\theta_{\min }, \theta_{\max }\right]$. Since $\frac{g(\theta) g\left(\theta^{\prime}\right)}{h\left(\theta, \theta^{\prime}\right)}$ is bounded above, $h\left(\theta, \theta^{\prime}\right)$ has a strictly positive lower bound on $\left[\theta_{\min }, \theta_{\max }\right] \times\left[\theta_{\min }, \theta_{\max }\right]$. Hence, $\int_{-\infty}^{\widehat{\theta}} \int_{\widehat{\theta}}^{\infty}\left(\theta^{\prime}-\theta\right)^{-\alpha} h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta$ is integrable if and only if $2-\alpha>0$. Therefore, $\alpha \geq 2$ implies $c_{P S}(s)=\infty$ and thus IPD. For the converse, consider an SCR $s_{\widehat{\theta}}(\cdot)$ defined by 24 such that $D\left(s\left(\widehat{\theta}_{-}\right), s\left(\hat{\theta}_{+}\right)\right)=$ $D\left(s\left(\widehat{\theta}_{+}\right), s\left(\widehat{\theta}_{-}\right)\right) \equiv A>0$. Immediate from the previous derivation of 25 we obtain that $c_{P S}\left(s_{\widehat{\theta}}\right)=\infty$ if $\alpha \geq 2$ and $c\left(s_{\widehat{\theta}}\right)<\infty$ if $\alpha<2$. Then, IPD implies $c_{P S}\left(s_{\widehat{\theta}}\right)=\infty$ and thus $\alpha \geq 2$.

The following lemmas show that CPD is satisfied if $\alpha=0$ and it is easier to be satisfied at lower values of α. Since the PS cost functional is continuous in α, there exists some $\widehat{\alpha} \in[0, \min (2, \beta+1)]$ such that CPD is satisfied for $\alpha \in[0, \widehat{\alpha}]$. Due to the technicalities associated with the PS cost functional and the generality of the definitions of CPD and EPD, however, we do not obtain an analytical bound $\widehat{\alpha}$ between CPD and EPD.

Lemma 21 The PS cost functional satisfies CPD at $\alpha=0$.
Proof. When $\alpha=0$, the cost functional becomes

$$
c_{P S}(s)=\int_{\theta} \int_{\theta^{\prime}} D\left(s(\theta), s\left(\theta^{\prime}\right)\right) h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta .
$$

Hence, by the triangle inequality,

$$
\begin{align*}
\left|c_{P S}\left(L_{\psi}^{\varepsilon} s\right)-c_{P S}(s)\right|= & \left|\int_{\theta} \int_{\theta^{\prime}}\left[D\left(\left(L_{\psi}^{\varepsilon} s\right)(\theta),\left(L_{\psi}^{\varepsilon} s\right)\left(\theta^{\prime}\right)\right)-D\left(s(\theta), s\left(\theta^{\prime}\right)\right)\right] h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta\right| \\
\leq & \int_{\theta} \int_{\theta^{\prime}}\left|D\left(\left(L_{\psi}^{\varepsilon} s\right)(\theta),\left(L_{\psi}^{\varepsilon} s\right)\left(\theta^{\prime}\right)\right)-D\left(s(\theta), s\left(\theta^{\prime}\right)\right)\right| h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \\
\leq & \int_{\theta} \int_{\theta^{\prime}}\left|D\left(\left(L_{\psi}^{\varepsilon} s\right)(\theta),\left(L_{\psi}^{\varepsilon} s\right)\left(\theta^{\prime}\right)\right)-D\left(\left(L_{\psi}^{\varepsilon} s\right)(\theta), s\left(\theta^{\prime}\right)\right)\right| h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \\
& +\int_{\theta} \int_{\theta^{\prime}}\left|D\left(\left(L_{\psi}^{\varepsilon} s\right)(\theta), s\left(\theta^{\prime}\right)\right)-D\left(s(\theta), s\left(\theta^{\prime}\right)\right)\right| h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \tag{26}
\end{align*}
$$

Since $\frac{\partial D\left(x_{1}, x_{2}\right)}{\partial x_{1}}$ and $\frac{\partial D\left(x_{1}, x_{2}\right)}{\partial x_{2}}$ exist on $[0,1] \times[0,1]$ there exists a $K>0$ such that $\left|D\left(x_{1}^{\prime}, x_{2}\right)-D\left(x_{1}, x_{2}\right)\right| \leq K \cdot\left|x_{1}^{\prime}-x_{1}\right|$ and $\left|D\left(x_{1}, x_{2}^{\prime}\right)-D\left(x_{1}, x_{2}\right)\right| \leq K \cdot\left|x_{2}^{\prime}-x_{2}\right|$ for all $x_{1}, x_{2} \in[0,1]$. Hence,

$$
\left|D\left(\left(L_{\psi}^{\varepsilon} s\right)(\theta),\left(L_{\psi}^{\varepsilon} s\right)\left(\theta^{\prime}\right)\right)-D\left(\left(L_{\psi}^{\varepsilon} s\right)(\theta), s\left(\theta^{\prime}\right)\right)\right| \leq K \cdot\left|\left(L_{\psi}^{\varepsilon} s\right)\left(\theta^{\prime}\right)-s\left(\theta^{\prime}\right)\right|
$$

and

$$
\left|D\left(\left(L_{\psi}^{\varepsilon} s\right)(\theta), s\left(\theta^{\prime}\right)\right)-D\left(s(\theta), s\left(\theta^{\prime}\right)\right)\right| \leq K \cdot\left|\left(L_{\psi}^{\varepsilon} s\right)(\theta)-s(\theta)\right|
$$

Plugging the above two inequalities into (26), we obtain

$$
\begin{aligned}
& \left|c_{P S}\left(L_{\psi}^{\varepsilon} s\right)-c_{P S}(s)\right| \\
\leq & \int_{\theta} \int_{\theta^{\prime}} K \cdot\left|\left(L_{\psi}^{\varepsilon} s\right)\left(\theta^{\prime}\right)-s\left(\theta^{\prime}\right)\right| h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta+\int_{\theta} \int_{\theta^{\prime}} K \cdot\left|\left(L_{\psi}^{\varepsilon} s\right)(\theta)-s(\theta)\right| h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \\
\leq & \int_{\theta} \int_{\theta^{\prime}} K \cdot\left|\left(L_{\psi}^{\varepsilon} s\right)\left(\theta^{\prime}\right)-s\left(\theta^{\prime}\right)\right| K^{\prime} g\left(\theta^{\prime}\right) g(\theta) d \theta^{\prime} d \theta+\int_{\theta} \int_{\theta^{\prime}} K \cdot\left|\left(L_{\psi}^{\varepsilon} s\right)(\theta)-s(\theta)\right| K^{\prime} g\left(\theta^{\prime}\right) g(\theta) d \theta^{\prime} d \theta \\
= & K K^{\prime} \cdot \int_{\theta}\left\|L_{\psi}^{\varepsilon} s, s\right\| g(\theta) d \theta+K K^{\prime} \cdot \int_{\theta^{\prime}}\left\|L_{\psi}^{\varepsilon} s, s\right\| g\left(\theta^{\prime}\right) d \theta^{\prime} \\
= & 2 K K^{\prime} \cdot\left\|L_{\psi}^{\varepsilon} s, s\right\|
\end{aligned}
$$

where the second inequality follows because $\frac{h\left(\theta, \theta^{\prime}\right)}{g(\theta) g\left(\theta^{\prime}\right)}$ is bounded above by some $K^{\prime}>0$. Therefore, $c_{P S}$ satisfies CPD when $\alpha=0$.

Lemma 22 If the $P S$ cost functional satisfies $C P D$ at some $\alpha \geq 0$, then it satisfies $C P D$ at all $\alpha^{\prime} \in[0, \alpha]$.

Proof. To avoid confusion, let $c_{P S}^{\alpha}(\cdot)$ denote the PS cost functional with parameter α. Since $c_{P S}^{\alpha}(\cdot)$ satisfies CPD, for any $\psi \in \mathbb{R}$ and $\varepsilon \in(0,1 / 2)$, there exists a $\rho>0$ and $K>0$ such that

$$
\left|c_{P S}^{\alpha}\left(L_{\psi}^{\varepsilon} s\right)-c_{P S}^{\alpha}(s)\right| \leq K \cdot\left\|L_{\psi}^{\varepsilon} s, s\right\|
$$

[^1]for all monotonic $s \in B_{\rho}\left(1_{\{\theta \geq \psi\}}\right)$. Without loss of generality, we can choose a sufficiently small $\rho>0$. Then by the construction of operator L_{ψ}^{ε}, there exists an interval $\left[\theta_{1}, \theta_{2}\right]$ such that for any monotonic $s \in B_{\rho}\left(1_{\{\theta \geq \psi\}}\right), L_{\psi}^{\varepsilon} s$ and s differ only in $\left[\theta_{1}, \theta_{2}\right]$. Fix a $z>0$. Then
\[

$$
\begin{align*}
& \left|c_{P S}^{\alpha^{\prime}}\left(L_{\psi}^{\varepsilon} s\right)-c_{P S}^{\alpha^{\prime}}(s)\right| \\
= & \left|\int_{\theta} \int_{\theta^{\prime}}\right| \theta^{\prime}-\left.\theta\right|^{-\alpha^{\prime}}\left[D\left(\left(L_{\psi}^{\varepsilon} s\right)(\theta),\left(L_{\psi}^{\varepsilon} s\right)\left(\theta^{\prime}\right)\right)-D\left(s(\theta), s\left(\theta^{\prime}\right)\right)\right] h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \mid \\
\leq & \left|\int_{\mathbb{R}^{2} \backslash\left[\theta_{1}-z, \theta_{2}+z\right] \times\left[\theta_{1}-z, \theta_{2}+z\right]}\right| \theta^{\prime}-\left.\theta\right|^{-\alpha^{\prime}}\left[D\left(\left(L_{\psi}^{\varepsilon} s\right)(\theta),\left(L_{\psi}^{\varepsilon} s\right)\left(\theta^{\prime}\right)\right)-D\left(s(\theta), s\left(\theta^{\prime}\right)\right)\right] h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \mid \\
& +\left|\int_{\left[\theta_{1}-z, \theta_{2}+z\right] \times\left[\theta_{1}-z, \theta_{2}+z\right]}\right| \theta^{\prime}-\left.\theta\right|^{-\alpha^{\prime}}\left[D\left(\left(L_{\psi}^{\varepsilon} s\right)(\theta),\left(L_{\psi}^{\varepsilon} s\right)\left(\theta^{\prime}\right)\right)-D\left(s(\theta), s\left(\theta^{\prime}\right)\right)\right] h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \mid \\
= & \left|\int_{\left(-\infty, \theta_{1}-z\right) \cup\left(\theta_{2}+z, \infty\right)} \int_{\left[\theta_{1}, \theta_{2}\right]}\right| \theta^{\prime}-\left.\theta\right|^{-\alpha^{\prime}}\left[D\left(\left(L_{\psi}^{\varepsilon} s\right)(\theta),\left(L_{\psi}^{\varepsilon} s\right)\left(\theta^{\prime}\right)\right)-D\left(s(\theta), s\left(\theta^{\prime}\right)\right)\right] h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \mid \\
& +\left|\int_{\left[\theta_{1}, \theta_{2}\right]} \int_{\left(-\infty, \theta_{1}-z\right) \cup\left(\theta_{2}+z, \infty\right)}\right| \theta^{\prime}-\left.\theta\right|^{-\alpha^{\prime}}\left[D\left(\left(L_{\psi}^{\varepsilon} s\right)(\theta),\left(L_{\psi}^{\varepsilon} s\right)\left(\theta^{\prime}\right)\right)-D\left(s(\theta), s\left(\theta^{\prime}\right)\right)\right] h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \mid \\
& +\left|\int_{\left[\theta_{1}-z, \theta_{2}+z\right] \times\left[\theta_{1}-z, \theta_{2}+z\right]}\right| \theta^{\prime}-\left.\theta\right|^{-\alpha^{\prime}}\left[D\left(\left(L_{\psi}^{\varepsilon} s\right)(\theta),\left(L_{\psi}^{\varepsilon} s\right)\left(\theta^{\prime}\right)\right)-D\left(s(\theta), s\left(\theta^{\prime}\right)\right)\right] h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \mid(, 27) \tag{27}
\end{align*}
$$
\]

where the second equality follows the fact $L_{\psi}^{\varepsilon} s$ and s differ only in $\left[\theta_{1}, \theta_{2}\right]$. Since $\frac{\partial D\left(x_{1}, x_{2}\right)}{\partial x_{1}}$ and $\frac{\partial D\left(x_{1}, x_{2}\right)}{\partial x_{2}}$ exist on $[0,1] \times[0,1]{ }^{31}$ there exists a $K_{1}>0$ such that $\left|D\left(x_{1}^{\prime}, x_{2}\right)-D\left(x_{1}, x_{2}\right)\right| \leq$ $K_{1} \cdot\left|x_{1}^{\prime}-x_{1}\right|$ and $\left|D\left(x_{1}, x_{2}^{\prime}\right)-D\left(x_{1}, x_{2}\right)\right| \leq K_{1} \cdot\left|x_{2}^{\prime}-x_{2}\right|$ for all $x_{1}, x_{2} \in[0,1]$. Then, the first term in the right hand side of 27) is

$$
\begin{aligned}
& \left|\int_{\left(-\infty, \theta_{1}-z\right) \cup\left(\theta_{2}+z, \infty\right)} \int_{\left[\theta_{1}, \theta_{2}\right]}\right| \theta^{\prime}-\left.\theta\right|^{-\alpha^{\prime}}\left[D\left(\left(L_{\psi}^{\varepsilon} s\right)(\theta),\left(L_{\psi}^{\varepsilon} s\right)\left(\theta^{\prime}\right)\right)-D\left(s(\theta), s\left(\theta^{\prime}\right)\right)\right] h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \mid \\
\leq & \int_{\left(-\infty, \theta_{1}-z\right) \cup\left(\theta_{2}+z, \infty\right)} \int_{\left[\theta_{1}, \theta_{2}\right]}\left|\theta^{\prime}-\theta\right|^{-\alpha^{\prime}}\left|D\left(s(\theta),\left(L_{\psi}^{\varepsilon} s\right)\left(\theta^{\prime}\right)\right)-D\left(s(\theta), s\left(\theta^{\prime}\right)\right)\right| h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \\
\leq & K^{\prime} \int_{\left(-\infty, \theta_{1}-z\right) \cup\left(\theta_{2}+z, \infty\right)} \int_{\left[\theta_{1}, \theta_{2}\right]} z^{-\alpha^{\prime}} K_{1} \cdot\left|\left(L_{\psi}^{\varepsilon} s\right)\left(\theta^{\prime}\right)-s\left(\theta^{\prime}\right)\right| g\left(\theta^{\prime}\right) d \theta^{\prime} g(\theta) d \theta \\
\leq & z^{-\alpha^{\prime}} K^{\prime} K_{1} \cdot \int_{\left(-\infty, \theta_{1}-z\right) \cup\left(\theta_{2}+z, \infty\right)}\left\|L_{\psi}^{\varepsilon} s, s\right\| g(\theta) d \theta \\
\leq & z^{-\alpha^{\prime}} K^{\prime} K_{1} \cdot\left\|L_{\psi}^{\varepsilon} s, s\right\|
\end{aligned}
$$

where the first inequality holds because $\left(L_{\psi}^{\varepsilon} s\right)(\theta)=s(\theta)$ for $\theta \in\left(-\infty, \theta_{1}-z\right) \cup\left(\theta_{2}+z, \infty\right)$, and the second inequality follows that $\left|\theta^{\prime}-\theta\right|^{-\alpha^{\prime}} \leq z^{-\alpha^{\prime}}$ for $\theta \in\left(-\infty, \theta_{1}-z\right) \cup\left(\theta_{2}+z, \infty\right)$

[^2]and $\theta^{\prime} \in\left[\theta_{1}, \theta_{2}\right]$, and that $\frac{h\left(\theta, \theta^{\prime}\right)}{g(\theta) g\left(\theta^{\prime}\right)}$ is bounded above by some $K^{\prime}>0$. By a symmetric argument, the second term in the right hand side of 27 is also bounded by $z^{-\alpha^{\prime}} K^{\prime} K_{1} \cdot\left\|L_{\psi}^{\varepsilon} s, s\right\|$. Since $\alpha-\alpha^{\prime} \geq 0,\left|\theta^{\prime}-\theta\right|^{\alpha-\alpha^{\prime}}$ is bounded for $\left(\theta, \theta^{\prime}\right) \in\left[\theta_{1}-z, \theta_{2}+z\right] \times\left[\theta_{1}-z, \theta_{2}+z\right]$, then there is a $K_{2}>0$ such that the third term in the right hand side of 27 is
\[

$$
\begin{aligned}
& \left|\int_{\left[\theta_{1}-z, \theta_{2}+z\right] \times\left[\theta_{1}-z, \theta_{2}+z\right]}\right| \theta^{\prime}-\left.\theta\right|^{\alpha-\alpha^{\prime}}\left|\theta^{\prime}-\theta\right|^{-\alpha}\left[D\left(\left(L_{\psi}^{\varepsilon} s\right)(\theta),\left(L_{\psi}^{\varepsilon} s\right)\left(\theta^{\prime}\right)\right)-D\left(s(\theta), s\left(\theta^{\prime}\right)\right)\right] h\left(\theta, \theta^{\prime}\right) d \theta^{\prime} d \theta \mid \\
\leq & K^{\prime} K_{2} \cdot\left|\int_{\left[\theta_{1}-z, \theta_{2}+z\right] \times\left[\theta_{1}-z, \theta_{2}+z\right]}\right| \theta^{\prime}-\left.\theta\right|^{-\alpha}\left[D\left(\left(L_{\psi}^{\varepsilon} s\right)(\theta),\left(L_{\psi}^{\varepsilon} s\right)\left(\theta^{\prime}\right)\right)-D\left(s(\theta), s\left(\theta^{\prime}\right)\right)\right] g\left(\theta^{\prime}\right) g(\theta) d \theta^{\prime} d \theta \mid \\
\leq & K^{\prime} K_{2} \cdot\left|c_{P S}^{\alpha}\left(L_{\psi}^{\varepsilon} s\right)-c_{P S}^{\alpha}(s)\right| \\
\leq & K^{\prime} K_{2} K \cdot\left\|L_{\psi}^{\varepsilon} s, s\right\| .
\end{aligned}
$$
\]

Hence, 27) becomes

$$
\begin{aligned}
& \left|c_{P S}^{\alpha^{\prime}}\left(L_{\psi}^{\varepsilon} s\right)-c_{P S}^{\alpha^{\prime}}(s)\right| \\
\leq & 2 z^{-\alpha^{\prime}} K^{\prime} K_{1} \cdot\left\|L_{\psi}^{\varepsilon} s, s\right\|+K^{\prime} K_{2} K \cdot\left\|L_{\psi}^{\varepsilon} s, s\right\| \\
= & \left(2 z^{-\alpha^{\prime}} K_{1}+K_{2} K\right) K^{\prime} \cdot\left\|L_{\psi}^{\varepsilon} s, s\right\|
\end{aligned}
$$

Therefore, $c_{P S}^{\alpha^{\prime}}$ satisfies CPD.

7.3 The Fisher Cost Functional

Lemma 23 The Fisher cost functional satisfies sub-modularity.
Proof. Let s_{1} and s_{2} be two SCRs. It is straightforward to see that $c_{F i s h e r}\left(s_{2} \vee s_{1}\right)+$ $c_{\text {Fisher }}\left(s_{2} \wedge s_{1}\right)=c_{\text {Fisher }}\left(s_{1}\right)+c_{\text {Fisher }}\left(s_{2}\right)$. Let $A=\left\{\theta \in \mathbb{R}: s_{2}(\theta) \geq s_{1}(\theta)\right\}$ and $B=$ $\left\{\theta \in \mathbb{R}: s_{2}(\theta)<s_{1}(\theta)\right\}$. Then,

$$
\begin{aligned}
& c_{\text {Fisher }}\left(s_{2} \vee s_{1}\right)+c_{\text {Fisher }}\left(s_{2} \wedge s_{1}\right) \\
= & \int_{A} \frac{\left(\left[g(\theta) s_{2}(\theta)\right]^{\prime}\right)^{2}}{g(\theta) s_{2}(\theta)}+\frac{\left(\left[g(\theta)\left(1-s_{2}(\theta)\right)\right]^{\prime}\right)^{2}}{g(\theta)\left(1-s_{2}(\theta)\right)} d \theta+\int_{B} \frac{\left(\left[g(\theta) s_{1}(\theta)\right]^{\prime}\right)^{2}}{g(\theta) s_{1}(\theta)}+\frac{\left(\left[g(\theta)\left(1-s_{1}(\theta)\right)\right]^{\prime}\right)^{2}}{g(\theta)\left(1-s_{1}(\theta)\right)} d \theta \\
& +\int_{A} \frac{\left(\left[g(\theta) s_{1}(\theta)\right]^{\prime}\right)^{2}}{g(\theta) s_{1}(\theta)}+\frac{\left(\left[g(\theta)\left(1-s_{1}(\theta)\right)\right]^{\prime}\right)^{2}}{g(\theta)\left(1-s_{1}(\theta)\right)} d \theta+\int_{B} \frac{\left(\left[g(\theta) s_{2}(\theta)\right]^{\prime}\right)^{2}}{g(\theta) s_{2}(\theta)}+\frac{\left(\left[g(\theta)\left(1-s_{2}(\theta)\right)\right]^{\prime}\right)^{2}}{g(\theta)\left(1-s_{2}(\theta)\right)} d \theta \\
= & \int_{A} \frac{\left(\left[g(\theta) s_{1}(\theta)\right]^{\prime}\right)^{2}}{g(\theta) s_{1}(\theta)}+\frac{\left(\left[g(\theta)\left(1-s_{1}(\theta)\right)\right]^{\prime}\right)^{2}}{g(\theta)\left(1-s_{1}(\theta)\right)} d \theta+\int_{B} \frac{\left(\left[g(\theta) s_{1}(\theta)\right]^{\prime}\right)^{2}}{g(\theta) s_{1}(\theta)}+\frac{\left(\left[g(\theta)\left(1-s_{1}(\theta)\right)\right]^{\prime}\right)^{2}}{g(\theta)\left(1-s_{1}(\theta)\right)} \\
& +\int_{A} \frac{\left(\left[g(\theta) s_{2}(\theta)\right]^{\prime}\right)^{2}}{g(\theta) s_{2}(\theta)}+\frac{\left(\left[g(\theta)\left(1-s_{2}(\theta)\right]^{\prime}\right)^{2}\right.}{g(\theta)\left(1-s_{2}(\theta)\right)} d \theta+\int_{B} \frac{\left(\left[g(\theta) s_{2}(\theta)\right]^{\prime}\right)^{2}}{g(\theta) s_{2}(\theta)}+\frac{\left(\left[g(\theta)\left(1-s_{2}(\theta)\right)\right]^{\prime}\right)^{2}}{g(\theta)\left(1-s_{2}(\theta)\right)} d \theta d \theta \\
= & c_{\text {Fisher }}\left(s_{1}\right)+c_{\text {Fisher }}\left(s_{2}\right) .
\end{aligned}
$$

7.4 The Additive Noise Cost Functional

Here we show that the additive noise cost functional $c_{A N}$ is not submodular, by constructing a counterexample. Suppose ε is uniform on $\left[-\frac{1}{2}, \frac{1}{2}\right]$. Let $b_{\psi}=1_{\{x \geq \psi\}}$ be the step function behavioral strategy where a player invests if and only if his signal is above ψ. Then the induced stochastic choice rule $\widetilde{s}_{k, b_{\psi}}$ is equal to the slope k threshold approximation of $1_{\{\theta \geq \psi\}}$, i.e.,

$$
\widetilde{s}_{k, b_{\psi}}(\theta)=\int_{-1 / 2}^{1 / 2} b_{\psi}\left(\theta+\frac{1}{k} \varepsilon\right) d \varepsilon=\int_{-1 / 2}^{1 / 2} 1_{\varepsilon \leq k(\theta-\psi)}=\widehat{s}_{k, \psi}(\theta)
$$

Since k is the maximum slope of $\widehat{s}_{k, \psi}$, we have

$$
\begin{equation*}
\frac{d \widetilde{s}_{k, b}(\theta)}{d \theta} \leq k \tag{28}
\end{equation*}
$$

where the inequality is an equality if and only if the behavioral strategy is the switching strategy b_{ψ} for some switching cutoff ψ. Now consider $\widetilde{s}_{k_{1}, b_{\psi}}$ and $\widetilde{s}_{k_{2}, b_{\psi}}$, where $k_{2}>k_{1}>0$. Note that $\widetilde{s}_{k_{1}, b_{\psi}}$ and $\widetilde{s}_{k_{2}, b_{\psi}}$ intersect at $(\psi, 1 / 2)$, so that

$$
\left(\widetilde{s}_{k_{1}, b_{\psi}} \vee \widetilde{s}_{k_{2}, b_{\psi}}\right)(\theta)= \begin{cases}\widetilde{s}_{k_{1}, b_{\psi}}(\theta) & \text { if } \theta<\psi \\ \widetilde{s}_{k_{2}, b_{\psi}}(\theta) & \text { if } \theta \geq \psi\end{cases}
$$

and

$$
\left(\widetilde{s}_{k_{1}, b_{\psi}} \wedge \widetilde{s}_{k_{2}, b_{\psi}}\right)(\theta)= \begin{cases}\widetilde{s}_{k_{2}, b_{\psi}}(\theta) & \text { if } \theta<\psi \\ \widetilde{s}_{k_{1}, b_{\psi}}(\theta) & \text { if } \theta \geq \psi\end{cases}
$$

So k_{2} is the maximal slope of both $\widetilde{s}_{k_{1}, b_{\psi}} \vee \widetilde{s}_{k_{2}, b_{\psi}}$ and $\widetilde{s}_{k_{1}, b_{\psi}} \wedge \widetilde{s}_{k_{2}, b_{\psi}}$. Inequality (28) thus implies $c_{A N}\left(\widetilde{s}_{k_{1}, b_{\psi}} \vee \widetilde{s}_{k_{2}, b_{\psi}}\right)=c\left(k_{2}\right)$ and $c_{A N}\left(\widetilde{s}_{k_{1}, b_{\psi}} \wedge \widetilde{s}_{k_{2}, b_{\psi}}\right)=c\left(k_{2}\right)$. Therefore,

$$
\begin{aligned}
c_{A N}\left(\widetilde{s}_{k_{1}, b_{\psi}}\right)+c_{A N}\left(\widetilde{s}_{k_{2}, b_{\psi}}\right) & =\widehat{c}\left(k_{1}\right)+\widehat{c}\left(k_{2}\right) \\
& <2 \widehat{c}\left(k_{2}\right) \\
& =c_{A N}\left(\widetilde{s}_{k_{1}, b_{\psi}} \vee \widetilde{s}_{k_{2}, b_{\psi}}\right)+c_{A N}\left(\widetilde{s}_{k_{1}, b_{\psi}} \wedge \widetilde{s}_{k_{2}, b_{\psi}}\right)
\end{aligned}
$$

a violation of submodularity.

[^0]: ${ }^{29} \mathrm{We}$ can focus on $\widehat{\theta} \in\left[\theta_{\min }, \theta_{\max }\right]$ because the possible $\widehat{\theta}$ s of equilibrium SCRs are always in $\left[\theta_{\min }, \theta_{\max }\right]$ due to Assumption A3.

[^1]: ${ }^{30}$ The proof goes through under a weaker condition that $\frac{\partial}{\partial x_{i}} D\left(x_{1}, x_{2}\right)$ exists for all $x_{i} \in(0,1)$ and $x_{j} \in[0,1], i, j \in\{1,2\}, i \neq j$.

[^2]: ${ }^{31}$ The proof goes through under a weaker condition that $\frac{\partial}{\partial x_{i}} D\left(x_{1}, x_{2}\right)$ exists for all $x_{i} \in(0,1)$ and $x_{j} \in[0,1], i, j \in\{1,2\}, i \neq j$.

