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Abstract

Parameter estimates in misspecified models often converge to pseudo-true parameter
values, which minimize a population objective function. Pseudo-true values often differ
from quantities of economic interest, raising questions of how, if at all, they are relevant
for decision-making. To study this question we consider Bayesian decision-makers facing
a population minimum distance problem. Within a class of priors motivated by the
minimum distance objective, we characterize prior sequences under which posteriors
concentrate on the pseudo-true value. This convergence is fragile to small changes
in priors, implying that pseudo-true values are relevant for decision-making only in
special cases. Constructive results are nevertheless possible in this setting, and we
derive simple confidence intervals that guarantee correct average coverage for the true
parameter under every prior in the class we study, with no bound on the magnitude of
misspecification.

1 Introduction

Empirical research in economics often begins by positing a model which relates quan-
tities of economic interest to the distribution of observable data. Researchers then
use model-implied relationships, together with observed data, to construct estimates or
bounds for parameters of interest.

Unfortunately, commonly-used models impose assumptions which are difficult to
validate, and which are sometimes rejected outright. For instance, some models impose
functional form restrictions such as linearity, or distributional restrictions on latent error
terms. Others impose homogeneity across economic agents, or behavioral assumptions
such as utility or profit maximization. Finally, methods that aim to uncover causal
or structural relationships impose assumptions regarding unconfoundedness of treat-
ment and the scope for spillovers across units. When we have reason to doubt these
assumptions, it can be unclear how to interpret model-implied estimates or bounds.
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Indeed, absent some restriction on model misspecification, the quantities of interest are
necessarily unidentified, and we can learn nothing from data.

An influential literature, including White (1982), Hall and Inoue (2003), Müller
(2013), Hansen and Lee (2021), and Andrews and Kwon (2023), studies the problem
of inference under model misspecification, and avoids identification problems for the
quantity of economic interest θ by shifting the focus to “pseudo-true” parameter values,
defined as the minimizers of a population objective function. Under mild conditions
these papers show consistency of estimates for the pseudo-true value (in point-identified
settings) or identified set (in set-identified ones). Moreover, these papers provide infer-
ence results, for example showing asymptotic normality of point estimates and deriving
consistent standard errors for the pseudo-true value. These results have been highly in-
fluential for empirical practice, with the “sandwich” standard error formula discussed by
White (1982), for instance, now widely adopted in the context of maximum likelihood
estimation.

While focusing on pseudo-true values allows us to provide statistical guarantees, it
leaves open the question of how, if at all, these pseudo-true values relate to the original
quantities of economic interest. The literature studying inference on pseudo-true values
prominently discusses this tension, with White (1982) writing “[the estimator] converges
to a well defined limit, and may or may not be consistent for particular parameters of
interest.” Similarly, Mueller (2013) writes that “[it] is important to keep in mind that
the pseudo-true parameter of the misspecified model must remain the object of interest
for ... inference to make sense” and Hansen and Lee (2021) write that “it is difficult
to give economic interpretation to pseudo-true parameter values. Consequently, this
limits interest in valid inference procedures for pseudo-true values.”

This paper revisits the distinction between true and pseudo-true parameter values.
To abstract from sampling uncertainty we consider a population minimum-distance
problem in which the distribution of the data is perfectly observed. We adopt a decision-
theoretic, and specifically Bayesian, perspective to ask under what conditions the pos-
terior distribution for θ, given the distribution of the observable data, concentrates
around the pseudo-true parameter. Such concentration implies, under mild conditions
on the loss, that Bayes decision rules converge to plug-in rules based on pseudo-true
values.

We provide three main results. First, we characterize a class of joint priors for
the data distribution and θ such that the posterior density for θ is proportional to
a transformation of the minimum distance objective function. This proportionality
implies that the minimum distance objective is a sufficient statistic, and hence an
optimal way to summarize the data. This is a natural class of priors to consider in
the context of minimum distance estimation, since it corresponds to a belief that the
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minimum distance objective captures all decision-relevant information. We show that
proportionality holds if and only if an implicit prior on the degree of misspecification
satisfies a rotation-invariance condition.

Second, we characterize prior sequences in this rotation-invariant class such that
the posterior distribution concentrates around the pseudo-true value. These priors
assume that the degree of misspecification is negligible, which seems implausible in
many economic applications. We further find that concentration is fragile, in the sense
that seemingly small changes to the prior lead concentration to fail dramatically. When
posterior concentration around the pseudo-true value fails, researchers with different
priors on the form and degree of misspecification will have different posteriors for θ,
and consequently different Bayes decision rules.

This naturally raises the question of whether it is possible to give positive results
under the class of priors we consider. Our third main result constructs confidence
intervals that guarantee correct ex-ante coverage of θ under all priors satisfying our
rotation-invariance condition. These misspecification-robust confidence intervals have
width proportional to the square root of a population J-statistic and so, unlike confi-
dence intervals for pseudo-true values, grow wider as the model fit becomes observably
worse, a seemingly natural property for inference procedures in misspecificed models.

The question of inference under model misspecification is closely related to the
large literature on inference under partial identification, and the practice of plugging
in pseudo-true parameter estimates for decision-making is an instance of what Manski
(2021) terms “as-if optimization.” In settings where we are concerned with model mis-
specification, an alternative approach, implemented in various contexts by Conley et al.
(2012), Manski and Pepper (2018), Armstrong and Kolesár (2021), and Rambachan and
Roth (2023), is to explicitly bound the possible degree of misspecification and derive
results which are valid under all data generating processes satisfying this bound, for
instance by characterizing the identified set for the quantity of interest. A seemingly
natural approach to bounding misspecification leads, however, to the counter-intuitive
property that the width of the identified set shrinks as the observable degree of mis-
specification grows more severe, rather than widening as our confidence intervals do.

The next section introduces our population minimum distance setting and formally
defines model misspecification and pseudo-true values. Section 3 introduces the decision
problem we study and provides our first main result, characterizing the class of priors
such that the posterior for θ depends on the data through the minimum distance ob-
jective. Section 4 characterizes sequences of priors in this class such that the posterior
concentrates on the pseudo-true value, and shows that this concentration is fragile in
important respects. Finally, Section 5 derives our suggested confidence intervals, moti-
vated by an invariance property derived in Section 3, and compares them to identified
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sets based on bounds for the magnitude of misspecification.

2 Setting

2.1 Minimum Distance Model

Suppose that for some sample space D and ∆(D) the set of distributions on D, a
researcher observes a distribution P ∈ P ⊆ ∆(D). This corresponds to the large-sample
limit of a setting where the researcher observes a sample of n observationsDi ∈ D drawn
iid from P, since as n→ ∞ they can consistently estimate P from {Di}ni=1. To abstract
from sampling uncertainty, we consider the “population problem” where P is directly
observed.

Further suppose that the researcher is interested in an economic quantity θ ∈ Rp

and that they have a model that implies that the true (P, θ) pair satisfies

g (θ;P ) = Y (P )−X (P ) θ = 0 (1)

for known functions Y : P → Rk and X : P → Rk×p. We assume that X(P ) has full
column rank, and unless otherwise noted assume that the model is over-identified, with
k > p. We refer to g (θ;P ) as “moments,” though the linear minimum-distance setting
we consider here is more general than linear GMM. We focus on linear-in-parameters
moments of the form (1) for simplicity, but our exact results for this linear setting will
translate to approximate results for models which can be linearly approximated, for
instance under local misspecification as studied by Armstrong and Kolesár (2021).

Example: Linear IV As a first example, suppose that Di = (Yi, Xi, Zi) for Yi ∈ R
a scalar outcome, Xi ∈ {0, 1} a binary endogenous treatment, and Zi ∈ Rk a vector of
k mean-zero exogenous variables, E[Zi] = 0. We assume that these data are generated
from a potential outcomes model, where the potential outcomes Yi(x, z) may in general
depend on both Xi and Zi, and the potential treatments Xi(z) may depend on Zi. The
parameter of interest θ ∈ R is the average treatment effect (ATE),

θ = E[Yi(1, Zi)− Yi(0, Zi)],

which captures the average effect on Yi from changing Xi from zero to one.
If the researcher wants to estimate a constant-effect linear instrumental variables

model with excluded instrument Zi, this can be justified by assuming that Zi is excluded
from Yi, Yi(x, z) = Yi(x, z

′) for all (x, z, z′), that the instrument is randomly assigned
Zi ⊥⊥ Yi(·), Xi(·), and that treatment effects are constant, Yi(1) − Yi(0) = θ for all i.
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Under these assumptions Yi follows the linear model Yi = Xiθ + εi, where εi = Yi(0)

and E [Ziεi] = 0. Consequently, θ solves the moment condition (1) for

Y (P ) = EP [ZiYi] , X (P ) = EP [ZiXi] ,

which are (up to pre-multiplication by EP [ZiZ
′
i]
−1) equal to the reduced-form and

first-stage coefficient vectors in the linear IV model, respectively. △

Example: Logit Model As a second example, suppose that Di = (Yi, Xi) for
Yi ∈ {0, 1} a binary outcome and Xi = (1, X̃i) ∈ R2 an exogenous variable, where
X̃i ∈ {x1, ..., xJ}. If the researcher assumes a logistic regression (i.e. logit) model for
Yi,

Yi = 1{X ′
iψ > εi}

where εi ∼ Logistic(0, 1) is independent of Xi, then under this model

EP [Yi|Xi = x] = Ψ(x′ψ)

for Ψ(x) = ex

1+ex the logistic function or, equivalently,

Ψ−1(EP [Yi|Xi = x]) = x′ψ

for Ψ−1(x) = log
(

x
1−x

)
the logit function.

We suppose that the object of interest θ ∈ R2 parameterizes the conditional mean
of Y given two as-yet-unobserved values of X̃i,

θ = (θ1, θ2)
′ = (Ψ−1(E[Yi|Xi = (1, x∗1)]),Ψ

−1(E[Yi|Xi = (1, x∗2)]))
′,

where x∗1, x∗2 ̸∈ {x1, ..., xJ}. The model implies that θ solves (1) for

Y (P ) =


Ψ−1(EP [Yi|Xi = (1, x1)])

...
Ψ−1(EP [Yi|Xi = (1, xJ)])

 ,

X (P ) =


1 x1
...

...
1 xJ

 =

( x∗
2

x∗
2−x∗

1
− x∗

1
x∗
2−x∗

1

− 1
x∗
2−x∗

1

1
x∗
2−x∗

1

)
. △
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2.2 Misspecification and Pseudo-True Values

In many contexts researchers are concerned that their models may be misspecified. In
the minimum distance setting we consider, this means that at the true (P, θ) pair

g (θ;P ) = η ̸= 0, (2)

for η a parameter that describes the impact of misspecification on the moments. As
the following examples highlight, we may have η ̸= 0 for a variety of reasons.

Example: Linear IV (Continued) Suppose we maintain the exclusion and in-
dependence assumptions for the instruments Zi, but allow treatment effects to be het-
erogeneous across units, Var(Yi(1) − Yi(0)) > 0. If this treatment effect heterogeneity
is correlated with heterogeneity in the first-stage effect Xi(z) − Xi(z

′), the results of
Imbens and Angrist (1994) imply that the linear IV moments are not in general equal
to zero at θ. Instead, for β the vector of one-instrument-at-a-time IV estimands (i.e.
the IV coefficient using the first instrument by itself, the second by itself, and so on),
ι ∈ Rk the vector of ones, and ◦ the elementwise product, the implied value of η is

η = EP [ZiYi]− EP [ZiXi] θ = (β − θ · ι) ◦ EP [ZiXi] ̸= 0.

Hence, the model is misspecified in the sense we consider whenever the one-at-a-time
IV estimands differ from the average treatment effect. Note that the IV model can thus
be misspecified even when we have only a single instrument, k = 1: if in this case we
further impose the Imbens and Angrist (1994) monotonicity assumption, the IV model
will be misspecified if and only if the local average treatment effect (LATE) differs from
the ATE.

In this example we focus on misspecification arising from treatment effect hetero-
geneity, but our framework is sufficiently general to accommodate many other ways
in which the researcher’s assumptions could fail. For instance, if the exclusion re-
striction fails, so Yi(x, z) ̸= Yi(x, z

′) for some (x, z, z′), or independence fails and
Zi ̸⊥⊥ (Yi(·), Xi(·)), each of these will will imply a particular form for η. △

Example: Logit Model (Continued) The logit model may be misspecified for
a variety of reasons, for instance because the linear threshold model is incorrect and x
in fact enters nonlinearly, Yi = 1{h(Xi) > εi}, or because the linear threshold model is
correct but the residual εi does not follow a logistic distribution. Whatever the reason
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for misspecification, we will have

η =


Ψ−1 (EP [Yi|Xi = (1, x1)])

...
Ψ−1 (EP [Yi|Xi = (1, xJ)])

−


1 x1
...

...
1 xJ


( x∗

2
x∗
2−x∗

1
− x∗

1
x∗
2−x∗

1

− 1
x∗
2−x∗

1

1
x∗
2−x∗

1

)
θ ̸= 0,

where the conditional expectations EP [Yi|Xi = (1, xj)] will depend of the precise form
of misspecification. △

If we allow η ̸= 0 and impose no other restrictions, identification of θ is hopeless,
since any value of θ is compatible with any distribution P . To avoid such a pessimistic
conclusion one route pursued in the literature, including in Conley et al. (2012), Manski
and Pepper (2018), Masten and Poirier (2020), Armstrong and Kolesár (2021), and
Rambachan and Roth (2023), is to consider bounded relaxations of the model.

First, note that for a P -dependent positive-definite weighting matrix W (P ) , the
model is correctly specified if and only if the W -weighted norm of the misspecification
parameter η is equal to zero

∥η∥W :=
√
η′W (P ) η = 0.

To allow the possibility of misspecification, the researcher could thus relax this as-
sumption, and assume only that ∥η∥W is bounded above by some known constant d.
The identified set for θ under this relaxation is then the set of values θ such that the
minimum distance objective function

QW (θ;P ) := ∥g(θ;P )∥2W

takes a value smaller than d2

ΘI (P, d) :=
{
θ : QW (θ;P ) ≤ d2

}
. (3)

While this approach requires the researcher to specify the norm bound d, the data
do contain some information about this quantity. Specifically, when d2 < JW (P )

for JW (P ) = minθQW (θ;P ) the population analog of the J-statistic (Hansen, 1982),
ΘI (P, d) is empty, so the data reject the assumption that ∥η∥W < d. Thus, the data
imply lower, but not in general upper, bounds on the degree of misspecification.

Another common practice when we are concerned with model misspecification is
to focus on pseudo-true parameter values (c.f. White 1982, Müller 2013, Hansen and
Lee 2021, and Andrews and Kwon 2023), which are defined as the minimizers of a
population objective function. In our setting, the pseudo-true parameter corresponds
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to the value of θ at which JW (P ) is attained, and takes a simple form

θW (P ) = argmin
θ

QW (θ;P ) = (X(P )′W (P )X(P ))−1X(P )′W (P )Y (P ).

Note that θW (P ) is equal to the coefficient from a generalized least squares regression
of Y (P ) on X(P ), weighting by W (P ).

Example: Linear IV (Continued) In the linear IV model with treatment effect
heterogeneity it is common to focus attention on the two-stage least squares (TSLS)
estimand, which corresponds to the pseudo-true value using the TSLS weighting matrix
W (P ) = EP [ZiZ

′
i]
−1, and can be interpreted as a LATE under appropriate assumptions

(Angrist and Imbens, 1995). △

Example: Logit Model (Continued) In the logit model with misspecification,
we cannot choose θ to match the full set of observed conditional means EP [Yi|Xi = x].

The weighting matrix governs how we prioritize matching different elements of this
vector, and one natural choice is to take W (P ) to be the diagonal matrix with jth
diagonal element equal to the probability that X̃i = xj , EP [1{X̃i = xj}], which pri-
oritizes matching the conditional mean for Xi values which are more common in the
population.1 △

The pseudo-true parameter corresponds exactly to the identified set with d2 =

JW (P ), ΘI(P, JW (P )) = {θW (P )}. Hence, if a researcher assumes the true parameter
value is equal to the pseudo-true, this is the same as assuming that the degree of
misspecification, measured in the norm ∥ · ∥W is as small as it can possibly be given
the observed distribution P . If they instead allow the possibility that θ and θW (P )

are different, then as discussed in the introduction it is not obvious how, if at all, the
pseudo-true value θW (P ) relates to the economic questions that motivate the analysis
in the first place. Consequently, it is unclear when we would want to estimate pseudo-
true values. The following two sections consider this question from a decision-theoretic
perspective, providing conditions under which optimal decisions depend on the data
through (i) the population minimum distance objective Q(θ;P ) and (ii) the pseudo-
true value θW (P ) in particular.

1Interestingly, this can be shown to correspond to the limit of the optimal minimum distance weighting
matrix for this model under correct specification.
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3 Optimal Decisions and Minimum Distance

Researchers are often interested in estimating economic parameters in order to inform
decisions by policymakers, businesses, or households. It is not obvious that pseudo-true
values are suitable for this purpose. To explore this question, we adopt a decision-
theoretic perspective and ask under what conditions Bayesian decision-makers would
be willing to base their decisions on minimum distance methods and the pseudo-true
values they generate.

3.1 Decision Problem

Consider a decision-maker who has to choose an action a from a set of possible actions
A. After choosing action a, the decision-maker suffers a loss L(a, θ) that depends on
the action taken and the true value for θ. If θ were known the optimal action for the
decision-maker would be to simply choose a ∈ argmina∈A L(a, θ).

In practice θ is unknown, and the decision-maker instead observes only the distribu-
tion P ∈ P of the data. Hence, the decision-maker must select a decision rule δ : P → A
that maps data distributions into actions. The decision-maker prefers decision rules δ
that yield a lower loss, L(δ(P ), θ), but when θ cannot be uniquely determined based on
P (e.g. when θ is set-identified due to model misspecification), different decision rules
δ will perform best at different (P, θ) pairs, and there generally will not be a uniformly
best choice.

To select among possible decision rules in settings without a uniformly best rule,
the decision-maker necessarily trades off performance across different (P, θ) pairs. One
way to formalize such tradeoffs is to consider Bayes decision rules, which weight losses
across different (P, θ) pairs according to a prior π ∈ ∆(P × Rp). The Bayes decision
rule δπ minimizes the average loss under the prior,

δπ ∈ argmin
δ

∫
L(δ(P ), θ)dπ(P, θ).

To compute δπ, it suffices to minimize the posterior expected loss at each P,

δπ(P ) ∈ argmin
a∈A

∫
L(a, θ)π(θ|P )dθ,

where for simplicity we assume the posterior for θ|P is continuous and write π(θ|P ) for
the posterior density.

Example: Linear IV (Continued) As in Andrews and Shapiro (2021), suppose
the decision-maker needs to set a tax or subsidy a ∈ R for the treatment, where a > 0

denotes a subsidy, while a < 0 denotes a tax, and that the loss is L(a, θ) = (a − θ)2.
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That is, the optimal subsidy level is equal to the average treatment effect, while the
loss increases quadratically as the subsidy departs from the ATE. △

3.2 Minimum-Distance Priors

The posterior density π(θ|P ) summarizes all decision-relevant information about the
parameter θ given the data. To connect minimum distance methods and Bayes decision
rules, we consider a class of decision-makers for whom the minimum distance objective
function is a sufficient statistic, in the specific sense that π(θ|P ) is proportional to a
function of (QW (θ;P ),W (P ), X(P )). For such priors the minimum distance objective
contains all decision-relevant information, so and is the natural basis for decisionmaking.

Assumption 1 The conditional prior π(Y (P ), θ|X(P ),W (P )) is absolutely continu-
ous for all X(P ),W (P ). Moreover, for all P ∈ P,

π(θ|P ) ∝ h(QW (θ;P ),W (P ), X(P ), θ)

for a non-negative function h.

The first part of the assumption is a continuity requirement that is imposed primarily
for convenience and could be weakened. The second part of the assumption connects the
posterior distribution to the minimum distance objective, and is weaker than assuming
that π(θ|P ) is proportional to a function h(QW (θ;P ), θ) as in the Gibbs posterior
distributions studied in the statistics and machine learning literature (e.g. Catoni
2007, Alquier et al. 2016, Bissiri et al. 2016, Martin and Syring 2022) and the quasi-
Bayesian approach of Chernozhukov and Hong (2003). Under Assumption 1, providing
the decision-maker with (QW (·|P ),W (P ), X(P )) is as good as providing them with the
full data. By contrast, when this sufficiency fails to hold minimum-distance methods
sacrifice decision-relevant information and so may not be appropriate. Hence, we view
Assumption 1 as a reasonable restriction in settings where researchers are considering
minimum distance methods.

Assumption 1 immediately implies that the posterior density π(θ|P ) depends on the
data only through (W (P ), X(P ), Y (P )).

Lemma 1 Under Assumption 1, π(θ|P ) = π(θ|W (P ), X(P ), Y (P )).

Example: Linear IV (Continued) Focusing on the case whereW (P ) is the two-
stage least squares weighting matrix W (P ) = EP [ZiZ

′
i]
−1, Lemma 1 implies that the

decision-maker’s posterior for the ATE depends on the data only through the reduced-
form and first stage regression coefficients, together with the covariance matrix of the
instruments. This rules out, for instance, priors such that the decision-maker’s beliefs
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about the ATE are informed by higher moments of P . △

Assumption 1 further implies that the posterior density π(θ|P ) can be expressed
in terms of the minimum distance moments (1). In particular, the first part of As-
sumption 1 implies that the conditional priors for θ given (X(P ),W (P )) and η given
(W (P ), X(P ), θ) are continuous. For brevity, let πθ(θ) := π(θ|W (P ), X(P )) and
πη(η|θ) := π(η|W (P ), X(P ), θ) denote their densities with respect to Lebesgue mea-
sure. With this notation the posterior density of θ given P is

π(θ|P ) = πθ(θ)πη(Y (P )−X(P )θ|θ)∫
πθ(θ)πη(Y (P )−X(P )θ|θ)dθ

=
πθ(θ)πη(g(θ;P )|θ)∫
πθ(θ)πη(g(θ;P )|θ)dθ

. (4)

Examining this expression, we see that it resembles the posterior in a finite-sample
problem with parameter θ, prior πθ, and likelihood πη. Consistent with this resemblance
the posterior π(θ|P ) will be non-degenerate with non-trivial uncertainty about the true
value of θ even though the data distribution P in our problem is perfectly known. This
reflects the fact that θ is not point-identified, so since the conditional prior πη on the
degree of misspecification is non-dogmatic the decision-maker remains uncertain about
θ even after observing P.

Assumption 1 also restricts the form of πη(η|θ), which describes the prior distri-
bution for the moments evaluated at the true parameter value θ. In particular, As-
sumption 1 implies that the prior density at η conditional on (W (P ), X(P ), θ) depends
only on η′W (P )η, πη(η|θ) ∝ f(η′W (P )η|θ), where the function f may also vary with
(W (P ), X(P )).

Lemma 2 Assumption 1 implies that

πη(η|θ) ∝ f(η′W (P )η|θ)

for a non-negative function f(u|θ) := f(u|W (P ), X(P ), θ) with
∫
f(η′η|θ)dη < ∞ for

all θ, P .

Lemma 2 implies that the prior density πη(η|θ) is invariant to rotation of W (P )
1
2 η, in

the sense that for any η, η̃ such that W (P )
1
2 η = OW (P )

1
2 η̃ for a rotation matrix O,

the prior density is the same at η and η̃, πη(η|θ) = πη(η̃|θ). The density πη(η|θ) is
thus constant on the ellipsoids {η : η′W ′(P )η = C} for all constants C, from which it
follows that πη(η|θ) is an elliptically-contoured distribution (Muirhead, 1982).

Example: Linear IV (Continued) Recall that η = (β−θ·ι)◦EP [ZiXi] measures
the difference between the average treatment effect and the vector of one-instrument-
at-a-time IV estimands. One example of an elliptically-contoured distribution in this
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setting takes η|θ,W (P ) ∼ N(0,W (P )−1), which corresponds to f(u|θ) = exp(−1
2u).

Under this prior, each LATE is equal to the ATE plus a mean-zero noise term, where
the covariance matrix of the noise is determined by W (P ) and the first stage EP [ZiXi].

There are many other rotation-invariant priors, however, including a multivariate t prior
with ν degrees of freedom, where f(u|θ) =

(
1 + 1

νu
)− ν+k

2 , and an elliptically contoured
power law which takes f(u|θ) = u−κ−1 for κ > k − 1. △

Together, the conclusions of Lemmas 1 and 2 imply that the posterior density π(θ|P )
is proportional to a function of (QW (θ;P ),W (P ), X(P )), as required by Assumption
1. The next proposition summarizes this line of reasoning.

Proposition 1 Assumption 1 holds if and only if for all P ∈ P,

π(θ|P ) = πθ(θ)f(QW (θ;P )|θ)∫
πθ(θ)f(QW (θ;P )|θ)dθ

,

for a non-negative function f(u|θ) := f(u|W (P ), X(P ), θ) with
∫
f(η′η|θ)dη < ∞ for

all θ, P .

As discussed above, the posterior distribution will typically feature non-trivial uncer-
tainty about the parameter θ.

4 Concentration-Inducing Priors

We next show that for particular sequences of priors satisfying Assumption 1, the
corresponding posterior distributions concentrate around the pseudo-true parameter
value θW (P ). This concentration in turn implies that Bayes decision rules converge to
plug-in decision rules for a large class of loss functions. The prior sequences we consider
imply that the model is misspecified with probability one (in the sense that ∥η∥W > 0

almost surely under the prior), but take the expected magnitude of misspecification to
zero. Hence, while these priors allow the possibility of misspecification, they assume
that the degree of misspecification is arbitrarily small.

An assumption that the degree of misspecification is arbitrarily small is unreasonable
in many economic applications. Moreover, we show that concentration around the
pseudo-true value is fragile. First, we show that if we take our concentration-inducing
prior sequences and mix them, to an arbitrarily small degree, with any fixed full-support
prior on θ and the degree of misspecification η, concentration around the pseudo-true
value immediately fails whenever JW (P ) > 0. Second, we show that even under prior
sequences which imply a vanishing degree of misspecification, concentration around the
pseudo-true value requires that the prior on η be sufficiently thin-tailed.
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4.1 Posterior Concentration

To provide sufficient conditions for posterior concentration around the pseudo-true pa-
rameter value we first assume that the prior density πη(η|θ) is independent of θ and
thin-tailed, in the sense that f(u|θ) = f(u) decays at a faster-than polynomial rate as
u→ ∞.

Assumption 2 f(u|θ) = f(u), where f(u) is strictly positive, continuous and non-
increasing in u, and satisfies limu→∞

f(au)
f(u) = 0 for all a > 1.

This assumption is important for the concentration results derived in this section and
holds, for instance, when π(η|θ) is a normal density.

Example: Linear IV (Continued) If πη(η|θ) is a N(0,W (P )−1) density, then

since exp(−a
2
u)

exp(− 1
2
u)

= exp
(
1−a
2 u
)

and a > 1, Assumption 2 holds. △

Under sequences of priors that satisfy Assumptions 1 and 2 and take the degree of
misspecification to be small, the posterior distribution concentrates on the pseudo-true
value. To show this formally, we consider a scale family of priors on the misspecification
parameter η, πη,c(η|θ) ∝ f(1cη

′W (P )η). The scale parameter c controls the magnitude
of misspecification implied by the prior, and the prior variance of η is proportional
to c. Our main result in this section considers the behavior of the posterior as the
scale parameter becomes small, c→ 0, corresponding to priors that assume a vanishing
degree of misspecification.

Proposition 2 Suppose Assumptions 1 and 2 hold. For any continuous πθ(θ) with
πθ(θW (P )) > 0, the posterior

πc(θ|P ) =
πθ(θ)f(

1
cQW (θ;P ))∫

πθ(θ)f(
1
cQW (θ;P ))dθ

concentrates on θW (P ) as c→ 0. For Bε(θW (P )) = {θ : ∥θW (P )− θ∥ < ε},

lim
c→0

∫
1{θ /∈ Bε(θW (P ))}dπc(θ|P ) = 0 for all ε > 0.

Proposition 2 shows that for priors satisfying Assumptions 1 and 2 where the degree
of misspecification is small, the posterior distribution concentrates on the pseudo-true
parameter value θW (P ). This is entirely expected when JW (P ) = 0, since in this case
the data provide no evidence of misspecification and priors with c → 0 put vanishing
probability on substantial misspecification. When JW (P ) > 0, by contrast, the data
imply non-trivial misspecification but Proposition 2 shows that the posterior continues
to concentrate.
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Concentration of the posterior πc(θ|P ) translates to convergence of the Bayes deci-
sion rule

δπc(P ) ∈ argmin
a∈A

∫
L(a, θ)dπc(θ|P ),

under conditions on the decision problem.

Proposition 3 Suppose that A is compact under some metric d, that supa,θ L(a, θ) <
∞, that supa,a′,θ |L(a, θ) − L(a′, θ)| < λ · d(a, a′) for some λ > 0, and that the loss
L(a, θ) has a unique minimum for all θ. Then as c→ 0,

δπc(P ) → argmin
a∈A

L(a, θW (P )).

Proposition 3 shows that for bounded loss functions that are Lipschitz in a, Bayes
decision rules corresponding to the priors we study converge to plug-in decision-rules
based on the pseudo-true parameter value. This result is useful for a number of reasons.
First, it shows that plug-in decision rules using the pseudo-true parameter value corre-
spond to the limit of a sequence of Bayes decision rules for a large class of loss functions,
providing one justification for such plug-in rules. Second, it shows that the pseudo-true
parameter value θW (P ) is a sufficient statistic for communication with an audience
whose priors take the limiting form we consider: a researcher looking to summarize
the data for such an audience is justified in reporting only the pseudo-true parameter
value, since it allows audience members to compute the optimal decision for whatever
loss function they have, provided that loss satisfies the conditions of Proposition 3.

The conditions on the loss function in Proposition 3 are somewhat restrictive and
rule out squared error loss on an unbounded domain. These conditions only are suffi-
cient and not necessary for convergence of decision rules, however, and we can obtain
convergence in many settings with unbounded loss functions by using additional struc-
ture for the loss function and prior.

Example: Linear IV (Continued) Proposition 3 does not apply in this example,
because the loss L(a, θ) is unbounded and, moreover, is not Lipschitz in a. Nonetheless,
if πη(η|θ) corresponds to a N

(
0, 1cW (P )−1

)
distribution while the prior on θ is flat, the

posterior density is

πc(θ|P ) = N
(
θW (P ), c · (EP [ZiXi]

′W (P )EP [ZiXi])
−1
)

= N
(
θW (P ), c · (X(P )′W (P )X(P ))−1

)
.

Hence, for all c the posterior distribution is a normal centered at θW (P ) with variance
proportional to c. Consistent with Proposition 2, this posterior converges weakly to a
point mass at θW (P ) as c → 0. Moreover, despite the conditions of Proposition 3 not
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holding in this example, the Bayes decision rule δπc(P ) is equal to θW (P ) for all c, so
the Bayes decision rule always agrees with the plug-in rule based on the pseudo-true
value. △

4.2 Posterior Concentration is Fragile

This section shows that the convergence established by Propositions 2 and 3 is fragile
in two important respects.

Fragility to Prior Contamination First, we show that if we mix the concentration-
inducing priors studied in the previous section with any fixed, full support prior for η|θ,
posterior concentration fails when JW (P ) > 0.

Proposition 4 Consider conditional priors of the form

πϕη,c(η|θ) = (1− ϕ)πη,c(η|θ) + ϕπ∗η(η|θ)

for any full-support conditional prior π∗η(η|θ) and ϕ ∈ (0, 1). If JW (P ) > 0, then under
Assumption 2, for any πθ(θ) the resulting posterior satisfies

lim
c→0

πϕc (θ|P ) =
πθ(θ)π

∗(Y (P )−X(P )θ|θ)∫
πθ(θ)π∗(Y (P )−X(P )θ|θ)dθ

.

If instead JW (P ) = 0, πθ(θ) is continuous, and πθ(θW (P )) > 0, then

lim
c→0

∫
1{θ /∈ Bϕ(θW (P ))}dπϕc (θ|P ) = h(ϕ),

where limϕ→0 h(ϕ) = 0.

Proposition 4 shows that if JW (P ) > 0 and we contaminate the concentration
inducing prior πη,c(η|θ), to an arbitrarily small extent, with any full-support prior π∗ for
η|θ then the posterior converges to a the same limit as if we had set πη(η|θ) = π∗η(η|θ).
By contrast, when JW (P ) = 0, the c→ 0 limiting posterior continues to have a point-
mass at θW (P ), where the mass assigned to this point converges to one when ϕ → 0.

Hence, in the ϕ→ 0 limit we obtain the same concentration result as in Proposition 2.
Proposition 4 can be interpreted in terms of pre-testing for model specification: in

the case where JW (P ) > 0, the data imply that the model is non-trivially misspeci-
fied. By contrast, while the priors πη,c(η|θ) imply that the model is misspecified with
probability one, as c → 0 they imply that the degree of misspecification is arbitrarily
small.

When we allow the possibility that η is instead drawn from a fixed full-support
distribution π∗η, for c sufficiently small the data provide arbitrarily strong support for
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π∗η(η|θ) over πη,c(η|θ). Loosely speaking, the concentration-inducing prior πη,c(η|θ) is
rejected in favor of the full-support prior π∗η(η|θ). By contrast, when JW (P ) = 0 the
data are consistent with correct specification of the model. Moreover, as c → 0 the
density πη,c(0|θ) diverges to infinity while π∗η(0|θ) is fixed. Consequently, the posterior
πϕc (θ|P ) for ϕ > 0 concentrates some of its mass around θW (P ) as c → 0, where the
exact amount of mass is controlled by ϕ.2

Fragility to Heavy Tails Second, we show that even under prior sequences such
that the degree of misspecification goes to zero, the concentration obtained in Propo-
sition 2 relies on thin tails for πη(η|θ). To illustrate this point, we show that posterior
concentration around the pseudo-true value fails in two examples with heavy-tailed
priors.

Example: Posterior Non-Concentration with t Prior Suppose that our
prior on η corresponds to a multivariate t distribution centered at zero with scale matrix
W (P )−1 and ν̃ degrees of freedom, f(u) ∝

(
1 + 1

ν̃u
)− ν̃+k

2 . Provided JW (P ) > 0, if we
define ν = ν̃ + k − p and

Σ(P ) = JW (P )
(
νX(P )′W (P )X(P )

)−1

it follows that

lim
c→0

πc(θ|P ) ∝ πθ(θ)
(
1 + ν−1(θ − θW (P ))′Σ(P )−1(θ − θW (P ))

)−(ν+p)/2
,

where the second term is the density for a multivariate t distribution centered at θW (P ),
with scale matrix Σ(P ) and ν degrees of freedom. Consequently, the c → 0 limiting
posterior corresponds to updating the prior πθ based on observing θW (P ) ∼ tν(θ,Σ(P )).

Note that the degrees of freedom in the “likelihood,” ν, is equal to the degrees of free-
dom in the misspecification prior πη plus the degree of over-identification, so a higher
degree of over-identification leads to thinner tails for the posterior all else equal. The
scale parameter in the “likelihood,” Σ = JW (P ) (νX(P )′W (P )X(P ))−1, is increasing
in the J-statistic so cases where the moment conditions are observed to be more badly
violated lead to a more uncertain posterior, all else equal. △

The tail thickness of f(·) matters because it determines beliefs about the total level
of misspecification conditional on a given value of the J-statistic. To see this, let us
again assume that η|θ ∼ πη,c(η|θ) and consider the conditional distribution of ∥η∥W
conditional on the norm of η exceeding a threshold τ , ∥η∥W | (τ < ∥η∥W ). For thin-

2We thank Jesse Shapiro for pointing out this connection.
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tailed priors (i.e. those satisfying Assumption 2), one can show that for all a > 1 and
all positive constants τ > 0,

lim
c→∞

Prπη,c {∥η∥W ≥ a · τ | (τ ≤ ∥η∥W )} → 0. (5)

Hence, even in the case where the model is known to be misspecified, as c → 0 thin-
tailed priors imply that the degree of additional misspecification, beyond that implied
by the lower bound, is negligible. Recall, however, that the J-statistic is itself a lower
bound on the total degree of misspecification, ∥η∥W ≥ JW (P ). Consistent with this,
when c → 0 thin-tailed priors imply that the total degree of misspecification must not
be much larger than that suggested by the J-statistic, and thus that θ must the close
to θW (P ), which is the unique parameter value compatible with ∥η∥W = JW (P ).

By contrast, for f corresponding to a multivariate t distribution we have that

lim
c→∞

Prπη,c {∥η∥W ≥ a · τ | (τ ≤ ∥η∥W )} → p(a). (6)

for a fixed, nonzero function p(·) that does not depend on the misspecification lower
bound τ . Consequently, in this case the researcher’s belief about the total degree of
misspecification is non-degenerate and, once c is sufficiently small, scales proportionally
with τ.

While t-distributed priors for η|θ correspond to updates via a t likelihood in the
c → 0 limit, if we instead consider multivariate power law prior then dependence on c

vanishes entirely.

Example: Posterior Non-Concentration with Power Law Prior Suppose
f(x) = x−α for α > k. Then for ν = 2α− p,

Σ(P ) = JW (P )
(
νX(P )′W (P )X(P )

)−1
,

and all c,

πc(θ|P ) ∝ π(θ)
(
1 + ν−1(θ − θW (P ))′Σ−1(θ − θW (P ))

)−(ν+p)/2

which corresponds to the posterior distribution from observing θW (P ) ∼ tν(θ,Σ(P )).
We again see that a higher degree of over-identification leads to thinner tails for the
posterior, while a larger J-statistic leads to a more dispersed posterior. △
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5 Confidence Sets Based on Rotation-Invariance

Outside of the restrictive cases where π(θ|P ) concentrates on the pseudo-true value,
researchers will have non-trivial uncertainty about the true value of θ even after ob-
serving P , where the exact posterior will depend on the details of the prior. Despite
this dependence of posterior beliefs on the prior, in this section we construct confidence
intervals that have correct coverage ex-ante for the true value θ under all priors sat-
isfying Assumption 1. Since as we previously argued this class has a close connection
to minimum distance methods, we view these confidence sets as a natural summary
for misspecification-driven uncertainty in settings where researchers adopt a minimum
distance approach.

To state this result, suppose the researcher is interested in inference on a linear
combination of the elements of θ, v′θ for v ∈ Rp. For t∗

k−p,1−β
2

the level 1−β
2 critical value

for a standard t distribution with k−p degrees of freedom, θW (P ) = argminθQW (θ;P )

the pseudo-true value, JW (P ) = minθQW (θ;P ) the population J-statistic, andH(P ) =

X(P )′W (P )X(P ) = ∂2

∂θ∂θ′QW (θ;P ) the Hessian of the minimum distance objective,
define the confidence interval

CI(P ) :=

[
v′θW (P )±

√
JW (P )

k − p
·
√
v′H(P )−1v · t∗

k−p,1−β
2

]
. (7)

This confidence interval has correct coverage conditional on (W (P ), X(P )), and thus
correct ex-ante coverage, for all priors satisfying Assumption 1.

Proposition 5 For any prior π such that Assumption 1 holds,

Prπ
{
v′θ ∈ CI(P )|W (P ), X(P )

}
= Prπ

{
v′θ ∈ CI(P )

}
= 1− β.

The confidence interval (7) has a number of interesting features. While it is centered
at the pseudo-true value, its width is governed by (i) the Hessian of the minimum dis-
tance objective function H(P ) and (ii) the population J-statistic JW (P ). The fact that
a smaller Hessian leads to wider confidence intervals resembles many other inference
problems, though ours is unusual in that our intervals are derived in a population prob-
lem and reflect uncertainty due to misspecification, rather than sampling uncertainty.
The dependence on the population J-statistic is non-standard, but seems intuitively
reasonable given the connection to model misspecification.

It is important to note that the notion of coverage considered in Proposition 5
is non-standard. Since we consider the population problem where P is observed, the
frequentist coverage is either zero or one, Pr(P,θ) {v′θ ∈ CI(P )} ∈ {0, 1}. In Proposition
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5, we instead consider average coverage under π,

Prπ
{
v′θ ∈ CI(P )

}
=

∫
Pr(P,θ)

{
v′θ ∈ CI(P )

}
dπ(P, θ),

which measures ex-ante coverage probability under the prior. Proposition 5 thus es-
tablishes that any Bayesian whose prior satisfies Assumption 1 thinks, prior to seeing
the data, that the interval CI(P ) has coverage 1− β. In this sense, (7) is a confidence
interval with correct average coverage under the class of priors satisfying Assumption
1.

We provide intuition for Proposition 5 from two perspectives, first establishing a
connection to generalized least squares and then showing that this confidence interval
corresponds to a credible set under an improper power law prior.

Regression Interpretation Note that for

(Ỹ , X̃, η̃) =W (P )
1
2 (Y (P ), X(P ), η)

we can write the minimum distance model allowing for misspecification, as

Ỹ (P ) = X̃(P )θ + η̃, (8)

where under all priors π satisfying Assumption 1, the conditional distribution of η̃|X̃(P ), θ

is rotation-invariant, η̃|X̃(P ), θ ∼ Oη̃|X̃(P ), θ for all orthonormal matrices O. Hence,
for any prior satisfying Assumption 1 the problem of inference on θ conditional on X̃(P )

reduces to that of inference on the coefficient in a regression with a rotation-invariant
error. Since the validity of t-statistics relies only on rotation-invariance of the error and
not the exact distribution, t-tests provide valid tests for scalar coefficients c′θ in this
setting. The confidence interval (7), however, is exactly the t-statistic confidence inter-
val derived from (8). If we instead want a confidence interval for a multi-dimensional
combination of the coefficients θ, the analogous approach based on F -statistics is also
valid.

Bayesian Interpretation Recall that under the multivariate power-law prior for
η|θ, f(x) = x−α, the posterior πc(θ|P ) corresponds to a t distribution with 2α−p degrees
of freedom. Consequently, the confidence interval (7) corresponds to a posterior credible
set under a flat prior on θ and a multivariate power law prior on η with α = k/2. This
is an improper prior for η, since in this case

∫
πη(η|θ)dη =

∫
f(η′W (P )η|θ)dη = ∞,

but yields a proper posterior π(θ|P ). Viewed from this perspective, Proposition 7 shows
that there exists an improper conditional prior on θ, η|W (P ), X(P ) whose credible sets
have correct average coverage under all priors satisfying Assumption 1.
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5.1 Comparison to Norm-Bound Identified Sets

η⊥

η̂

X(P )θ

η X(P )θW (P )

Y (P )

Figure 1: Relationship between the pseudo-true value and true θ in an example with scalar θ. The solid
diagonal line represents the column space of X(P ). The vector η⊥ perpendicular to the column space
captures the detectable component of the misspecification vector, while vector η̂ parallel to the column space
captures the undetectable component of misspecification.

We next compare the behavior of the confidence set (7) to the identified set (3)
constructed under the assumption that ∥η∥W ≤ d. To facilitate this comparison, note
that we can decompose

η̃ :=W (P )
1
2 η =M(P )η̃ + (I −M(P ))η̃ := η̂ + η⊥

for
M(P ) = X̃(P )(X̃(P )′X̃(P ))−1X̃(P )′

the projection matrix onto X̃(P ) = W (P )
1
2X(P ). Here η̂ and η⊥ are the projection

of η̃ onto the column span of X̃(P ) and the residual from this projection, respectively.
Note that ∥η⊥∥2 = JW (P ), so the J-statistic is directly informative about the mag-
nitude of this term, while η̂ = X̃(P )(θW (P ) − θ) governs the difference between the
true and pseudo-true parameter values. Intuitively, η⊥ is the detectable component
of the misspecification vector η, which has no effect on the bias of the pseudo-true
value but governs the J-statistic. Analogously, η̂ is the undetectable component, which
governs the bias but has no effect on the J-statistic. The overall degree of misspecifi-
cation reflects the sum of these terms, ∥η∥2W = ∥η⊥∥2 + ∥η̂∥2. Figure 1 visualizes this
decomposition in a case where θ is scalar.
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θ

Y A

Y B

lB uB{θA} θ

Y A

Y B

lA uAlB uB

Figure 2: Intervals for θ using the norm-bounding approach and the rotation invariant prior approach.
When dataset A or B is observed, the identified set or confidence interval for θ is given by [lA, uA] or
[lB , uB ], respectively, where in the left panel lA = uA = θA.

Equipped with this decomposition, note that for

η̂(θ, P ) =W (P )
1
2X(P )(θW (P )− θ)

the value of η̂ implied by θ, we can write

ΘI(P, d) =
{
θ : ∥η̂(θ, P )∥2 + JW (P ) ≤ d2

}
.

which implies an identified set for v′θ equal to[
v′θW (P )±

√
d2 − JW (P )

√
v′H(P )−1v

]
.

Hence, the bounds of the identified set correspond to values of θ which spend the
misspecification “budget” ∥η∥2W ≤ d2 − JW (P ) obtained by subtracting the J-statistic
from the a-priori upper bound d2. As the degree of detectable misspecification becomes
more severe, in the sense that the J-statistic grows larger, the length of the identified
set shrinks. The first panel of Figure 2 illustrates this, again focusing on the case where
θ is scalar. Here we hold d, X(P ), and W (P ) fixed but consider two possible values
Y (P ), Y A and Y B, where Y A implies a larger J-statistic. The identified set for θ is
larger for Y B than Y A. Indeed, in this example the J-statistic at Y A is exactly equal
to d, so the identified set collapses to the pseudo-true parameter value.

The comparative statics of our proposed confidence interval (7) are quite different.
The proof for the validity of this interval rests on the fact that when η̃ is rotation
invariant and θ is scalar, the distribution of ∥η̂∥/∥η⊥∥ corresponds exactly to a t-
distribution with k − p degrees of freedom. Consistent with this observation, we can
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re-write the confidence interval (7) as

CI(P ) =
{
θ : ∥η̂(θ, P )∥ ≤ t∗k−p,1−β∥η⊥∥

}
,

for η̂(θ, P ) = X̃(P )(θW (P )− θ). As the second panel of Figure 2 illustrates, this width
of this interval is increasing in the size of the J-statistic, with a wider interval for Y A

than for Y B. This seems like a potentially appealing property for uncertainty summaries
in settings where researchers are concerned about misspecification.

6 Conclusion

As highlighted in the literature studying inference on pseudo-true values, true and
pseudo-true values generally differ in misspecified models. Consistent with this obser-
vation, we show that pseudo-true values do not in general provide a satisfactory data
summary for decision-makers whose loss depends on the true parameter value. We also
show, however, that for a class of Bayesian priors motivated by minimum distance meth-
ods, it is possible to construct confidence intervals that have correct average coverage
under the prior without any ex-ante bound on the magnitude of misspecification.

The class of priors we study infers the “shape” of beliefs about model misspecification
from the weighting matrix used in minimum distance estimation. This appears to
be consistent with the way in which some researchers already choose their weighting
matrices.3 For such researchers, the intervals we suggest offer a natural way to account
for the possibility of model misspecification, and are thus a natural complement to
standard minimum distance approaches.

3For instance, Benhabib et al. (2019) write “The weighting matrix W in the baseline is a diagonal matrix
with identical weights for all but the last moment of both the wealth distribution and the mobility moments,
which are overweighted (ten times), according to the prior that matching the tail of the distribution is a
fundamental objective of our exercise.”
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7 Proofs

Proof of Lemma 1 QW (·|P ) can be expressed as a function of (X(P ),W (P ), Y (P )),
so by Assumption 1,

π(θ | P ) = π(θ | QW (·;P ), X(P ),W (P ))

= π(θ | X(P ),W (P ), Y (P ))

as we aimed to show. □
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Proof of Lemma 2 For any parameter value θ, Lemma 1 and Assumption 1 imply
that

π(θ|P ) ∝ πθ(θ)πη(g(θ;P )|θ) ∝ h(QW (θ;P ),W (P ), X(P ), θ).

Hence, we see that

πη(g(θ;P )|θ) ∝ f(QW (θ;P )|W (P ), X(P ), θ) :=
h(QW (θ;P ),W (P ), X(P ), θ)

πθ(θ)

where integrability of f follows from the fact that πη is a probability density. □

Proof of Proposition 1 Immediate from Equation (4) and Lemma 2. □

Proof of Proposition 2 Note that for the claim to hold, it is necessary and
sufficient that for W̃ (P ) = X(P )′W (P )X(P ) and

B̃ε(θW (P )) =
{
θ : ∥θW (P )− θ∥W̃ (P ) < ε

}
,

we have that for all ε > 0,∫
1{θ ∈ B̃ε(θW (P ))}dπc(θ | P ) =

∫
1{θ ∈ B̃ε(θW (P ))}f

(
1
cQW (θ;P )

)
πθ(θ)dθ∫

f
(
1
cQW (θ;P )

)
πθ(θ)dθ

→ 1.

Taking the inverse of this probability (which is possible because the posterior assigns
strictly positive mass to neighborhoods of the pseudo-true value) yields

1 +

∫
1{θ /∈ B̃ε(θW (P ))}f

(
1
cQW (θ;P )

)
πθ(θ)dθ∫

1{θ ∈ B̃ε(θW (P ))}f
(
1
cQW (θ;P )

)
πθ(θ)dθ

, (9)

where to prove the result it suffices to show that the second term goes to zero.
To this end, note that for any a > 1, continuity of the conditional prior for θ implies

that we can re-write the second term of (9) as∫
(1{θ ∈ B̃aε(θW (P )) \ B̃ε(θW (P ))}+ 1{θ /∈ B̃aε(θW (P ))})f

(
1
cQW (θ;P )

)
πθ(θ)dθ∫

1{θ ∈ B̃ε(θW (P ))}f
(
1
cQW (θ;P )

)
πθ(θ)dθ

.

Note, however, that we can express the minimum distance objective as

QW (θ;P ) = JW (P ) + ∥θ − θW (P )∥2
W̃ (P )

.

Thus, since we have assumed f is non-increasing∫
1{θ /∈ B̃aε(θW (P ))}f

(
1
cQW (θ;P )

)
πθ(θ)dθ∫

1{θ ∈ B̃ε(θW (P ))}f
(
1
cQW (θ;P )

)
πθ(θ)dθ

≤
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∫
1{θ /∈ B̃aε(θW (P ))}f

(
1
c (JW (P ) + a2ε2))

)
πθ(θ)dθ∫

1{θ ∈ B̃ε(θW (P ))}f
(
1
c (JW (P ) + ε2)

)
πθ(θ)dθ

=

f
(
1
c (JW (P ) + a2ε2)

)
f
(
1
c (JW (P ) + ε2)

) ∫ 1{θ /∈ B̃aε(θW (P ))}πθ(θ)dθ∫
1{θ ∈ B̃ε(θW (P ))}πθ(θ)dθ

,

where the first term converges to zero as c → 0 by Assumption 2, while the second
doesn’t depend on c. Hence,

lim
c→0

∫
1{θ /∈ B̃aε(θW (P ))}f

(
1
cQW (θ;P )

)
πθ(θ)dθ∫

1{θ ∈ B̃ε(θW (P ))}f
(
1
cQW (θ;P )

)
πθ(θ)dθ

= 0.

Note, next, that∫
1{θ ∈ B̃aε(θW (P )) \ B̃ε(θW (P ))}f

(
1
cQW (θ;P )

)
πθ(θ)dθ∫

1{θ ∈ B̃ε(θW (P ))}f
(
1
cQW (θ;P )

)
πθ(θ)dθ

≤

∫
1{θ ∈ B̃aε(θW (P )) \ B̃ε(θW (P ))}f

(
1
c (JW (P ) + ε2)

)
πθ(θ)dθ∫

1{θ ∈ B̃ε(θW (P ))}f
(
1
c (JW (P ) + ε2)

)
πθ(θ)dθ

=

∫
1{θ ∈ B̃aε(θW (P )) \ B̃ε(θW (P ))}πθ(θ)dθ∫

1{θ ∈ B̃ε(θW (P ))}πθ(θ)dθ
,

where the last expression goes to zero as we take a → 1. Together with our earlier
argument this implies that

lim
c→0

∫
1{θ /∈ B̃ε(θW (P ))}f

(
1
cQW (θ;P )

)
πθ(θ)dθ∫

1{θ ∈ B̃ε(θW (P ))}f
(
1
cQW (θ;P )

)
πθ(θ)dθ

= 0, (10)

and so completes the proof. □

Proof of Proposition 3 Since the loss is uniformly bounded, Proposition 2, to-
gether with the dominated convergence theorem, implies that

lim
c→0

∫
L(a, θ)dπc(θ|P ) = L(a, θW (P )) for all a ∈ A.

Our assumptions that L is Lipschitz and A is compact implies that this convergence
is uniform on A, limc→0 ∥

∫
L(·, θ)dπc(θ|P ) − L(·, θW (P ))∥∞ = 0. The result is then

immediate from the argmax continuous mapping theorem (Theorem 3.2.2 of van der
Vaart and Wellner (1996)) . □

Proof of Proposition 4 For this result we consider priors of the restricted form

πϕη,c (η|θ) = (1− ϕ)πη,c (η|θ) + ϕπ∗ (η|θ) .
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The corresponding posterior is

πϕc (θ|P ) =
πθ (θ)π

ϕ
η,c (g (θ;P ) |θ)∫

πθ (θ)π
ϕ
η,c (g (θ;P ) |θ) dθ

=

πθ (θ) ((1− ϕ)πη,c (g (θ;P ) |θ) + ϕπ∗ (g (θ;P ) |θ))∫
πθ (θ) ((1− ϕ)πη,c (g (θ;P ) |θ) + ϕπ∗ (g (θ;P ) |θ)) dθ

.

When JW (P ) > 0 we have that πη,c (g (θ;P ) |θ) → 0 as c→ 0 for all θ. Hence, for each
θ,

lim
c→0

πθ (θ) ((1− ϕ)πη,c (g (θ;P ) |θ) + ϕπ∗ (g (θ;P ) |θ)) = ϕπθ (θ)π
∗ (g (θ;P ) |θ) .

Moreover, since πη,c (g (θ;P ) |θ) ≤ πη,c (g (θW (P ) ;P ) |θ) by definition, the dominated
convergence theorem implies that∫

πθ (θ) ((1− ϕ)πη,c (g (P, θ) |θ) + ϕπ∗ (g (P, θ) |θ)) dθ →

ϕ

∫
πθ (θ)π

∗ (g (P, θ) |θ) dθ.

Therefore the posterior fails to concentrate around the pseudo-true parameter:

lim
c→0

πϕc (θ|P ) =
πθ (θ)π

∗ (g (P, θ) |θ)∫
πθ (θ)π∗ (g (P, θ) |θ) dθ

.

Now we prove the result for JW (P ) = 0. Define w1,c + w2,c = 1 as

w1,c =
(1− ϕ)

∫
πη,c (g(θ;P ) | θ)πθ(θ)dθ

(1− ϕ)
∫
πη,c (g(θ;P ) | θ)πθ(θ)dθ + ϕ

∫
π∗ (g(θ;P ) | θ)πθ(θ)dθ

and

w2,c =
ϕ
∫
π∗ (g(θ;P ) | θ)πθ(θ)dθ

(1− ϕ)
∫
πη,c (g(θ;P ) | θ)πθ(θ)dθ + ϕ

∫
π∗ (g(θ;P ) | θ)πθ(θ)dθ

.

Then we can write the posterior as the following mixture of familiar posterior densities,
where w1,c and w2,c are the mixture probabilities,

πϕc (θ|P ) =
πθ(θ) ((1− ϕ)πη,c(g(θ;P )|θ) + ϕπ∗(g(θ;P )|θ)))∫
πθ(θ) ((1− ϕ)πη,c(g(θ;P )|θ) + ϕπ∗(g(θ;P )|θ))) dθ

=
(1− ϕ)πη,c(g(θ;P )|θ)πθ(θ) + ϕπ∗(g(θ;P )|θ))πθ(θ)

(1− ϕ)
∫
πη,c(g(θ;P )|θ)πθ(θ)dθ + ϕ

∫
π∗(g(θ;P )|θ))πθ(θ)dθ

=
(1− ϕ)

[∫
πη,c (g(θ;P ) | θ)πθ(θ)dθ

]
πc(θ | P ) + ϕ

[∫
π∗ (g(θ;P ) | θ)πθ(θ)dθ

]
π∗(θ | P )

(1− ϕ)
∫
πη,c(g(θ;P )|θ)πθ(θ)dθ + ϕ

∫
π∗(g(θ;P )|θ))πθ(θ)dθ

= w1,cπc(θ | P ) + w2,cπ
∗(θ | P ).
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Proposition 2 states that the first mixture component concentrates around the
pseudo-true value as c → 0. Meanwhile, the second mixture component is constant
with respect to c. Therefore, we are interested in the limiting behavior of the mixture
probabilities as c→ 0 when JW (P ) = 0. We next show how the numerator of w1,c con-
verges to πθ(θW (P )) as c→ 0. Note that when JW (P ) = 0 we can write the minimum
distance objective as QW (θ;P ) = ∥θ − θW (P )∥W̃ (P ) so the integral found in w1,c and
w2,c can be written as

∫
πη,c(g(θ;P ) | θ)πθ(θ)dθ =

∫
πθ(θ)

f
(
1
c∥θ − θW (P )∥2

W̃ (P )

)
∫
f
(
1
c∥θ̃ − θW (P )∥2

W̃ (P )

)
dθ̃
dθ.

Make the substitution θ 7→ θW (P ) −
√
cθ in the outer integral and θ̃ 7→ θW (P ) −

√
cθ̃

in the normalizing constant as follows,

∫
πθ(θ)

f
(
1
c∥θ − θW (P )∥2

W̃ (P )

)
∫
f
(
1
c∥θ̃ − θW (P )∥2

W̃ (P )

)
dθ̃
dθ =

∫
c−1/2πθ(θW (P )−

√
cθ)

f
(
∥θ∥2

W̃ (P )

)
∫
c−1/2f

(
∥θ̃∥2

W̃ (P )

)
dθ̃
dθ =

∫
πθ(θW (P )−

√
cθ)

f
(
∥θ∥2

W̃ (P )

)
∫
f
(
∥θ̃∥2

W̃ (P )

)
dθ̃
dθ

Because πθ is assumed to be continuous and full-support, there exists some finite M
such that πθ(θ) ≤M for all θ in a neighborhood of θW (P ). It follows that

lim
c→0

∫
πθ(θW (P )−

√
cθ)

f
(
∥θ∥2

W̃ (P )

)
∫
f
(
∥θ∥2

W̃ (P )

)
dθ
dθ = πθ(θW (P )).

Therefore, when we take c→ 0, the mixture probabilities converge to the following
limits:

w1,c → w∗
1 =

(1− ϕ)πθ(θW (P ))

(1− ϕ)πθ(θW (P )) + ϕ
∫
π∗ (g(θ;P ) | θ)πθ(θ)dθ

and

w2,c → (1− w∗
1) =

ϕ
∫
π∗ (g(θ;P ) | θ)πθ(θ)dθ

(1− ϕ)πθ(θW (P )) + ϕ
∫
π∗ (g(θ;P ) | θ)πθ(θ)dθ

.

Thus as we take c→ 0,
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∫
1{θ ∈ B̃ε(θW (P ))}πϕc (θ|P )dθ =

w1,c

∫
1{θ ∈ B̃ε(θW (P ))}πc(θ|P )dθ + w2,c

∫
1{θ ∈ B̃ε(θW (P ))}π∗(θ|P )dθ →

→ w∗
1 + (1− w∗

1)

∫
1{θ ∈ B̃ε(θW (P ))}π∗(θ|P )dθ.

Since the mixture posterior π∗(θ|P ) is assumed to be continuous, taking ε → 0 sends
the second term to zero. Therefore, the posterior concentrates around a point mass at
the pseudo-true value with probability w∗

1, where w∗
1 → 1 as ϕ→ 0. □

Proof of Proposition 5 Classic results in statistics, e.g. Muirhead (1982), Chapter
1.5, imply the result for the case of a single regressor. For completeness, we prove the
result for the general case.

The confidence interval (7) corresponds to the set of values for v′θ where the test
statistic

v′θW (P )− v′θ√
JW (P )
k−p v′H(P )−1v

(11)

has absolute value less than t∗
k−p,1−β

2

. Hence, if we can show that (11) follows a tk−p

distribution under all priors consistent with Assumption 1, the result is immediate.
Note that (11) is equal to the t-statistic from regression (8) in the text,

v′θW (P )− v′θ√
JW (P )
k−p v′H(P )−1v

=
v′(X̃(P )′X̃(P ))−1X̃(P )′η̃√

η̃′(I−M(P ))η̃
k−p v′H(P )−1v

(12)

Specifically, η̃′(I−M(P ))η̃
k−p corresponds to the unbiased variance estimate, so the denomi-

nator
√

η̃′(I−M(P ))η̃
k−p v′H(P )−1v corresponds to the homoskedastic standard error. Note,

moreover, that the t-statistic is scale-invariant in the error, so (12) is equal to

v′(X̃(P )′X̃(P ))−1X̃(P )′ η̃
∥η∥√

η̃
∥η∥

′
(I−M(P )) η̃

∥η∥
k−p v′H(P )−1v

.

Proposition 1 implies that η̃
∥η∥ is uniformly distributed on the unit sphere under any

prior π satisfying Assumption 1. However, this exactly the distribution of Z
∥Z∥ for

Z ∼ N(0, I). It follows that under π, (12) has the same distribution as

v′(X̃(P )′X̃(P ))−1X̃(P )′ Z
∥Z∥√

Z
∥Z∥

′
(I−M(P )) Z

∥Z∥
k−p v′H(P )−1v

=
v′(X̃(P )′X̃(P ))−1X̃(P )′Z√

Z′(I−M(P ))Z
k−p v′H(P )−1v

,
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where we have again used scale invariance of the t-statistic. However, the last expression
is the t-statistic from the regression

Ỹ (P ) = X̃(P )θ + Z,

which is well-known to be tk−p distributed, completing the proof. □
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