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Abstract

The textbook case for industrial policy is well understood. If some sectors are

subject to external economies of scale, whereas others are not, a government should

subsidize the first group of sectors at the expense of the second. Little is known,

however, about the magnitude of the welfare gains from such policy interventions.

In this paper we develop an empirical strategy that leverages commonly available

trade data and existing estimates of sector-level trade elasticities to estimate sector-

level economies of scale and, in turn, to quantify the gains from optimal industrial

policy in a general-equilibrium environment. Our results point towards significant

economies of scale across manufacturing sectors, but gains from industrial policy that

are hardly transformative, even among the most open economies.
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1 Introduction

Industrial policy has been practiced around the globe for centuries. It has been a source of
controversy among economists for about as long. Is industrial policy a critical input into
the making of growth miracles? Or even in the best of worlds, where market failures have
been correctly identified and benevolent governments are solely motivated by the desire
to fix them, are the potential gains from industrial policy likely to be modest instead? The
goal of our paper is to make progress on these and other related questions.

We focus on the textbook case for industrial policy in economies where some sectors
are subject to external economies of scale. Accordingly, private marginal costs of produc-
tion are higher than social ones. This creates a rationale for Pigouvian subsidies equal
to the difference between the two, with the associated welfare gains equal to the area of
the Harberger triangle located between the demand and social marginal cost curves, as
illustrated in Figure 1. In what follows, we propose to bring these classical ideas to the
data and offer a first quantification of the textbook gains from industrial policy.

The contribution of our paper is threefold. First, we offer a modern general-equilibrium
treatment of these classical ideas in an open-economy environment. Our theoretical anal-
ysis characterizes optimal industrial policy and its welfare consequences, up to a second-
order approximation, as a function of sector-level scale elasticities. As a second step, we
show how to estimate the previous elasticities using commonly available trade data as
well as existing estimates of sector-level trade elasticities. Our empirical analysis points
towards sizable economies of scale across manufacturing sectors, which opens up the
possibility of substantial wedges between private and social costs of production. As a
final step, we combine our theoretical and empirical results to quantify the gains from
industrial policy. Despite significant economies of scale in manufacturing, the gains from
industrial policy that we estimate are hardly transformative, reflecting the fact that little
reallocation across sectors actually takes place in response to the optimal industrial policy,
even in the most open economies.

Section 2 presents our theoretical framework. Our baseline analysis considers a Ri-
cardian economy with multiple sectors, each subject to external economies of scale. Our
focus on this environment is motivated by its long intellectual history—from the work of
Marshall (1920) to Graham’s (1923) famous argument for trade protection and the formal
treatment of external economies of scale in Chipman (1970) and Ethier (1982)—as well
as the recent emergence of the Ricardian model as a workhorse model for quantitative
work. We first show that, in the presence of optimal trade policy, the optimal industrial
policy takes the form of an employment subsidy whose level only depends on the elastic-
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Figure 1: The Textbook Case for Industrial Policy

Notes: Due to external economies of scale in a sector, private marginal cost MC exceeds social marginal
cost SMC and so output Q is less than the social optimum Q∗. The optimal industrial policy is a subsidy
s = MC(Q∗)− SMC(Q∗), which gives rise to gains equal to the area of the grey Harberger triangle.

ity of productivity with respect to sector size, or “scale elasticity,” consistent with Pigou’s
(1920) logic. We then show that, up to a second-order approximation, the welfare gains
from industrial policy are equal to half the product of the scale elasticity and the propor-
tional change in sector size that it generates, summed across all sectors and weighted by
the share of each sector in GDP, i.e., the sum of the areas of Harberger triangles in each
sector.

Section 3 describes our empirical strategy to estimate scale elasticities. It builds on two
simple observations. First, if there are positive economies of scale, larger sectors should
tend to sell their products at lower prices. Second, if prices are lower in those sectors,
quantities demanded should tend to be higher. It follows that one can estimate scale
elasticities by tracing out the impact of exogenous (i.e., demand driven) variation in sec-
tor size on equilibrium quantities. We operationalize this general idea by assuming that
within each sector: (i) productivity is a log-linear function of total sector employment, so
that we have constant scale elasticities; and (ii) that the demand for output from different
countries is a log-linear function of their prices, so that we have constant trade elastici-
ties.1 Under these restrictions, the (log of the) export price from a country is proportional
to (the log of) its sector size, with a slope given by the scale elasticity; and the (log of the)

1These parametric restrictions are satisfied by the multi-sector gravity models analyzed in Kucheryavyy
et al. (2017), a set that includes models with perfect competition and external economies of scale, as in this
paper, but also models with monopolistic competition and free entry, in which case scale effects arise from
product differentiation and love of variety within industries, as in Krugman (1980).
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export price is proportional to (the log of) its bilateral exports, with a slope given by the
inverse of the trade elasticity. Given existing estimates of sector-level trade elasticities in
the literature, we can therefore estimate sector-level scale elasticities using a log-linear
regression of bilateral exports, adjusted by the trade elasticity, on sector size.

Since idiosyncratic productivity differences across countries and sectors affect both
sector size and bilateral exports, identification of scale elasticities requires demand-side
instrumental variables (IVs) that are correlated with sector size yet uncorrelated with pro-
ductivity shocks. To construct such instruments, we exploit variation in countries’ pop-
ulation and preferences, by multiplying the former with estimates of structural demand
residuals in each country-sector pair. The logic of our IV strategy is that, within each sec-
tor, employment should be higher in countries that are larger and/or have a stronger taste
for goods from that sector. Under the assumption that population and demand residu-
als are uncorrelated with idiosyncratic productivity shocks, sector-by-sector, the previous
procedure provides valid (and, in practice, strong) instruments for sector size at the coun-
try level. Importantly, our identification strategy deliberately draws on cross-sectional
variation alone, so as to isolate the long-run notion of scale economies that animates the
textbook case for industrial policy.

Section 4 presents our estimates of scale elasticities. Drawing on a cross-section of 61
of the world’s largest countries in 2010, our results point to statistically significant scale
elasticities in every 2-digit manufacturing sector, with an average of 0.21. The existence
of positive economies of scale reflects the fact that, within each sector, we find a positive
relationship between demand-driven size and bilateral trade flows, a finding that is ro-
bust across samples and specifications. Our results also suggest substantial heterogeneity
across sectors, with estimates ranging from 0.11 to 0.31, mostly driven by the heterogene-
ity of existing estimates of sector-level trade elasticities.2 In the data, the relationship
between demand-driven sector size and bilateral trade flows is fairly stable across sec-
tors. Through the lens of our model, this creates a tendency for sectors with higher trade
elasticities, whose sales should respond more to prices, to be those with lower scale elas-
ticities, so that their prices respond less to sector size. Accordingly, alternative sets of
trade elasticity estimates may lead to very different scale elasticity estimates and, in turn,
very different recommendations about the structure of optimal industrial policies.3

2Interestingly, the previous numbers are below the inverse of the trade elasticity in all sectors, implying
that scale effects are weaker than those implicitly assumed in trade models with monopolistic competition à
la Krugman (1980) or Melitz (2003), as discussed in Costinot and Rodríguez-Clare (2014) and Kucheryavyy,
Lyn and Rodríguez-Clare (2017).

3In his original discussion of optimal industrial policy, Pigou (1920) noted: “Attempts to develop and
expand [these theoretical results] are sometimes frowned upon on the ground that they cannot be applied
to practice. For, it is argued, though we may be able to say that [...] economic welfare would be increased by
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Section 5 uses our empirical estimates to evaluate the gains from industrial policy. We
focus on the best-case scenario that governments maximize welfare, have full knowledge
of the underlying economy, and have full access to trade policy that can neutralize the
adverse terms-of-trade effects that would occur when implementing industrial policy on
its own. Yet even under these optimistic assumptions, we find that gains from indus-
trial policy in our baseline calibration range from 0.59% to 2.06% of GDP, with larger
gains for more open economies, and an average gain equal to 1.08%. These modest ben-
efits from industrial policy do not reflect modest “wedges.” According to our estimates
of scale elasticities, if labor was to reallocate fully to the manufacturing sector with the
largest scale elasticity, the average welfare gains predicted by the areas of Harberger tri-
angles would be equal to 12.4%. Modest gains instead reflect the fact that only modest
labor reallocations take place from “low-wedge” to “high-wedge” sectors, both because
of inelastic domestic demand (due to a low estimated elasticity of substitution between
sectors) and inelastic foreign demand (due to estimates of trade elasticities that are also
small). Graphically, Harberger triangles have large heights, but small bases, even for the
most open countries. Interestingly, while the exact structure of optimal industrial policy
is very sensitive to the choice of trade elasticities, we find that the welfare gains from such
policies are fairly robust across alternative choices.

Section 6 extends our theoretical and empirical analysis to a general environment fea-
turing multiple factors of production and input-output linkages across sectors. We show
that, for a given set of trade elasticities, the structure of optimal industrial policy is re-
markably similar to that in our baseline environment, with a correlation between the op-
timal industrial policy estimated in the two environments equal to 0.98. In terms of the
magnitude of the welfare gains, though, the introduction of input-output linkages raises
the average gains from industrial policy from 1.08% to 4.06%. This derives both from a
mechanical increase in the tax base, since gross output rather than value added is being
subsidized, and from larger reallocations across sectors, since subsidizing a sector now
also tends to lower the price of inputs in that sector.

There is a large literature studying the rationale and potential consequences of indus-
trial policy, as reviewed in Harrison and Rodríguez-Clare (2010), Lane (2020), Juhasz et al.
(2023a), and Juhasz and Steinwender (2023). Recent work includes reduced-form empiri-
cal analysis on the consequences of the Napoleonic blockade (Juhasz, 2018) and South Ko-
rea’s transition to a military dictatorship (Lane, 2017), text-based analysis to measure vari-

granting bounties to industries falling into one category and by imposing taxes on those falling into another
category, we are not able to say to which of our categories the various industries of real life belong.” The
extent to which our analysis addresses these concerns (or not) therefore depends on the confidence (or lack
thereof) that one has in existing estimates of sector-level estimates of trade elasticities.
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ous types of industrial policy (Juhasz et al., 2023b), as well as theoretical work on optimal
industrial policy in the presence of financial frictions (Itskhoki and Moll, 2019 and Liu,
2019). However, despite the prominence of industrial policy in accounts of growth take-
offs, and the recent popularity of industrial policy initiatives in many countries’ economic
agendas—from “Made in China 2025” to the “European Green Deal Industrial Plan” and
the “CHIPS and Science Act” and “Inflation Reduction Act” in the United States—there
is a dearth of work that has tried to combine both theory and data in order to evaluate the
potential benefits of industrial policy.

A notable exception is Lashkaripour and Lugovskyy (2018), which studies a monop-
olistically competitive environment à la Krugman (1980) where the elasticity of substi-
tution between domestic varieties may differ from the elasticity of substitution between
domestic and foreign varieties. In this model, the scale elasticity is indirectly determined
by the elasticity of substitution between domestic varieties, whereas the trade elasticity
is determined by the elasticity of substitution between domestic and foreign varieties, so
estimates of these two demand elasticities, obtained from monthly exchange rate varia-
tion in Colombia, can be used to calculate the effects of optimal policy. In contrast, our
empirical strategy directly identifies scale elasticities from the responses of sector-level
productivity, as revealed by exports, to changes in sector size caused by long-run varia-
tion in domestic demand.

Our paper also relates to a large literature that uses gravity models for counterfac-
tual analysis, including Kucheryavyy et al. (2017) who develop the generalization of the
Ricardian model with industry-level economies of scale used in our estimation of the
gains from industrial policy. As discussed in Kucheryavyy et al. (2017), the quantitative
predictions of gravity models hinge on two key elasticities: trade elasticities and scale
elasticities. While the former have received significant attention in the empirical litera-
ture (see for instance Head and Mayer, 2013), the latter have not. Scale economies, when
introduced in gravity models, are instead indirectly calibrated using information about
the elasticity of substitution across goods in monopolistically competitive environments,
as emphasized by Costinot and Rodríguez-Clare (2014). One of the goals of our paper is
to offer more direct and credible evidence about scale elasticities for use in quantitative
multi-sector gravity models.

In line with the aforementioned quantitative trade literature, we focus on the estima-
tion of scale effects that operate at the level of a country-sector pair. This matches the
level at which industrial policy is most often enacted. A related literature in urban and
regional economics estimates agglomeration effects at the sub-national level, as surveyed
in Rosenthal and Strange (2004) and Combes and Gobillon (2015). Depending on whether
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these agglomeration effects are region- or region-and-sector-specific, this creates an addi-
tional rationale for place-based policies, as in Kline and Moretti (2014), or so called cluster
policies, as in Duranton (2011).

Our empirical analysis at the country-sector level is most closely related to Caballero
and Lyons (1992) and Basu and Fernald (1997) who estimate returns to scale for US man-
ufacturing sectors at the two-or three-digit levels. A distinctive feature of our empirical
strategy is that we do not rely on measures of real output, or price indices, collected by
statistical agencies. Instead, we use existing estimates of trade elasticities to infer such
prices. This provides a theoretically-grounded way to adjust for potential quality dif-
ferences across origins within the same sector, as discussed in detail in Bartelme et al.
(2019), as well as an approach that works symmetrically for a large set of countries around
the world, albeit one whose credibility depends on the credibility of existing estimates
of trade elasticities. Our method also can only be applied to estimate scale elasticities
in tradable sectors. Although tradable manufacturing sectors have been the traditional
focus of industrial policy—from Japan, South Korea and Taiwan in the 20th century to
China in the 21st—this is a non-trivial limitation of our approach (which we will have to
deal with by considering a wide range of scale elasticities outside manufacturing in our
counterfactual analysis).

Finally, the general idea of using trade data to infer economies of scale bears a di-
rect relationship to empirical tests of the home-market effect; see e.g. Head and Ries
(2001), Davis and Weinstein (2003), and Costinot et al. (2019). Indeed, the home-market
effect—that is, a positive effect of demand on exports—implies the existence of economies
of scale at the sector level. Our empirical strategy is also closely related to previous work
on revealed comparative advantage; see e.g. Costinot, Donaldson and Komunjer (2012)
and Levchenko and Zhang (2016). The starting point of these papers, like ours, is that
trade flows contain information about relative costs of production, a point also empha-
sized by Antweiler and Trefler (2002).

2 Theory

2.1 Baseline Environment

Consider an economy with many countries, indexed by i or j, and many sectors, indexed
by k. Labor is the only factor of production, with Li the fixed labor supply in each country.
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Technology. Production is subject to local external economies of scale that depend on
total employment in each sector. Holding total employment fixed, firm-level production
functions exhibit constant returns to scale.4 If firms from an origin country i use ℓij,k units
of labor to produce good k for a destination country j, they can deliver yij,k units of good
k to consumers in that country with

yij,k = Aij,kEk(Li,k)ℓij,k.

Transportation costs, if any, are reflected in Aij,k, while external economies of scale are
reflected in Ek(Li,k), with Li,k denoting total employment in sector k and country i,

Li,k = ∑
j
ℓij,k. (1)

From now on, we simply refer to Li,k as sector size.

Preferences. In each destination country j, there is a representative agent with utility,

uj(cj),

where cj ≡ {cij,k}i,k is the vector of consumption and cij,k denotes consumption of good k
from a particular origin i in a destination country j.5

Prices and Taxes. There are three types of ad-valorem taxes: import tariffs {tm
ij,k}, export

taxes {tx
ij,k}, and employment subsidies {sj,k}. These taxes create wedges between the

prices and wages faced by consumers {pij,k, wj} and those faced by firms {qij,k, vj,k},

pij,k = (1 + tm
ij,k) p̄ij,k, (2)

qij,k = (1 − tx
ij,k) p̄ij,k, (3)

vj,k = (1 − sj,k)wj (4)

4In our working paper (Bartelme et al., 2019), we have allowed each sector to comprise multiple goods,
each potentially produced by heterogeneous firms. In this more general environment, the critical assump-
tion is constant returns to scale at the level of each good, but not at the level of firms. As is well understood,
constant returns to scale at the good level may reflect the free entry of heterogeneous firms, each subject to
decreasing returns to scale, as in Hopenhayn (1992).

5For expositional purposes, we have restricted economies of scale to operate through physical produc-
tivity. As shown in our working paper (Bartelme et al., 2019) one can easily extend our analysis to allow
sector size to affect quality. Formally, if we were to assume more generally that yij,k = Aij,kEy

k (Li,k)ℓij,k
and uj({Ec

k(Li,k)cij,k}), then external economies of scale would affect quality-adjusted productivity via
Ek(Li,k) ≡ Ec

k(Li,k)Ey
k (Li,k), without any further implication for our analysis.
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where p̄ij,k denotes the world (untaxed) price of a good k produced by country i and sold
in country j. Net revenues from all taxes and subsidies imposed in any country j are
rebated through a lump-sum transfer, Tj, to the representative agent in that country.

2.2 Competitive Equilibrium

In a competitive equilibrium, firms maximize profits; consumers maximize their utility;
good and labor markets clear; and governments balance their budgets.

Profit Maximization. For any origin country i, any destination country j, and any sector
k, profit maximization requires

(ℓij,k, yij,k) ∈ argmax(ℓ,y){qij,ky − vi,kℓ|y = Aij,kEk(Li,k)ℓ}. (5)

We let πij,k(qij,k, vi,k, Li,k) denote the value function associated with (5), i.e. the profit func-
tions of firms from country i selling good k in country j.

Utility Maximization. For any destination country j, utility maximization requires

cj ∈argmaxc{uj(c)|∑
i,k

pij,kcij,k = wjLj + ∑
i,k

πji,k + Tj}. (6)

We let Vj(pj, wjLj + ∑i,k πji,k + Tj) denote the value function associated with (6), i.e. the
indirect utility function in country j, with pj ≡ {pij,k}i,k the vector of good prices faced by
consumers in that country.

Market Clearing. All good and labor markets clear,

cij,k = yij,k, (7)

∑
j,k

ℓij,k = Li. (8)

Government Budget Balance. For any country i, the government’s budget is balanced,

Ti = −∑
k

si,kwiLi,k + ∑
j ̸=i,k

tm
ji,k p̄ji,kcji,k + ∑

j ̸=i
tx
ij,k p̄ij,kyij,k. (9)
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Definition. A competitive equilibrium with employment subsidies, {sj,k}, import tar-
iffs, {tm

ij,k}, and export taxes, {tx
ij,k} corresponds to an allocation, {cij,k, ℓij,k, yij,k}, with sec-

tor sizes, {Li,k}, good prices, {pij,k, qij,k, p̄ij,k}, wages, {wi, vi,k}, and lump-sum transfers,
{Tj}, such that equations (1)-(9) hold.

2.3 Optimal Industrial and Trade Policy

The Government’s Problem. Let τ ≡ {sj,k, tm
ij,k, tx

ij,k} denote the full vector of employ-
ment subsidies and trade taxes around the world. Each competitive equilibrium with
taxes τ induces equilibrium utility levels {Uj(τ)}. The government’s problem in any
country j is to choose its policy τj ≡ {sj,k, tm

ij,k, tx
ji,k}i ̸=j,k to maximize the utility of its rep-

resentative agent,
max

τj
Uj(τ), (10)

taking employment subsidies and trade taxes in other countries as given. In the rest of
our analysis, an optimal industrial and trade policy τ∗

j ≡ {s∗j,k, tm∗
ij,k, tx∗

ji,k}i ̸=j,k refers to an
interior solution to (10).

To simplify the characterization of the optimal trade policy, we assume that country
j is “small” in the sense that import prices, { p̄ij,k}i ̸=j,k, and other foreign equilibrium
variables, {cim,k, ℓim,k, yim,k, Li,k, pim,k, qim,k, p̄im,k, wi, vi,k, Tm}i ̸=j,m ̸=j,k, are treated as inde-
pendent of τj, while export prices, { p̄ji,k}i ̸=j,k, are allowed to vary with its exports, p̄ji,k =

p̃ji,k(yji,k), reflecting the fact that goods may be differentiated by country of origin. 6

The Structure of Optimal Taxes. To characterize the structure of optimal taxes in coun-
try j, it is convenient to start from the following identity,

Uj(τ) = Vj(pj(τ), Ij(τ)),

where both country j’s consumer prices pj and its income Ij ≡ wjLj + ∑i,k πji,k + Tj are
expressed as functions of τ. For a small change in country j’s employment subsidies and
trade taxes dτj that generates changes in equilibrium prices and quantities, a standard

6The small economy assumption is an implicit restriction on the primitives—preferences, technology,
and labor endowments—described in Section 2.1. It holds if preferences are weakly separable across sectors
and rest-of-the-world expenditure shares on goods from country j converge to zero within each sector, as
we will assume in the quantitative analysis of Sections 5 and 6. In the context of a simple Armington model,
Costinot and Rodríguez-Clare (2014) show that the optimal import tariff is very close to the one predicted
by the small economy approximation, reflecting the fact that even the largest countries account for a very
small fraction of expenditure in the rest of the world.
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envelope argument implies that

dUj/λj = −∑
k

sj,kwjdLj,k + ∑
i ̸=j,k

tm
ij,k p̄ij,kdcij,k + ∑

i ̸=j,k
tx

ji,k p̄ji,kdyji,k

+ ∑
k

ϵE
j,k(1 − sj,k)wjdLj,k + ∑

i ̸=j,k
ϵ

p
ji,k p̄ji,kdyji,k. (11)

where λj denotes the marginal utility of income in country j, ϵE
j,k ≡ d ln Ek(Lj,k)/d ln Lj,k

denotes the elasticity of productivity with respect to sector size, which we will simply
refer to as the scale elasticity, and ϵ

p
ji,k ≡ d ln p̃ji,k(yji,k)/d ln yji,k denotes the elasticity of

export prices with respect to export volumes.7

The first three terms in equation (11) represent the marginal increases in the dead-
weight loss from employment subsidies, import tariffs, and export taxes, respectively,
whereas the final two terms represent the gains for country j of correcting the two sources
of distortions: external economies of scale, as captured by ∑k ϵE

j,k(1 − sj,k)wjdLj,k, and
monopoly power in world markets, as captured by ∑i ̸=j,k ϵ

p
ji,k p̄ji,kdyji,k. At the optimal

policy mix, changes in utility associated with any tax variation should be zero, leading to
the following necessary condition,

∑
k

s∗j,kw∗
j dLj,k − ∑

i ̸=j,k
tm∗
ij,k p̄∗ij,kdcij,k − ∑

i ̸=j,k
tx∗

ji,k p̄∗ji,kdyji,k

= ∑
k

ϵE∗
j,k (1 − s∗j,k)w

∗
j dLj,k + ∑

i ̸=j,k
ϵ

p∗
ji,k p̄∗ji,kdyji,k, (12)

where asterisks denote variables in the equilibrium with optimal policy in country j. Con-
dition (12) states that the marginal cost from taxation should be equal to its marginal ben-
efit in terms of reducing distortions. It is immediate that (12) holds for (i) s∗j,k = ϵE∗

j,k /(1 +
ϵE∗

j,k ), (ii) tm∗
ij,k = 0; and (iii) tx∗

ji,k = −ϵ
p∗
ji,k. Distortions caused by external economies of

scale are best targeted by employment subsidies, whereas those caused by endogenous
export prices are best targeted by export taxes. Since the prices of foreign goods are not
manipulable, no import tariffs are necessary.

More generally, optimal industrial and trade policies can be characterized as follows:

Proposition 1. In our baseline environment the optimal industrial and trade policy are such that:
(i) s∗j,k = (s̄j + ϵE∗

j,k )/(1 + ϵE∗
j,k ); (ii) tm∗

ij,k = t̄j; and (iii) tx∗
ji,k = 1 − (1 + t̄j)(1 + ϵ

p∗
ij,k) for some s̄j

and t̄j.

The formal proof can be found in Appendix A.2. The two shifters, s̄j and t̄j, reflect

7Details are provided in Appendix A.1. Similar variational arguments can be found in Greenwald and
Stiglitz (1986) and Costinot and Werning (2018), among many others.
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two distinct sources of tax indeterminacy. First, since labor supply is perfectly inelastic,
a uniform employment subsidy s̄j only affects the level of wages in country j, but leaves
the equilibrium allocation unchanged. Second, a uniform change in all trade taxes again
affects the level of prices in country j, but leaves the trade balance condition and the
equilibrium allocation unchanged, an expression of Lerner Symmetry. In the rest of our
analysis, we normalize both s̄j and t̄j to zero.

It is worth noting that many assumptions imposed previously can be relaxed with-
out affecting Proposition 1. In terms of technology, our proof does not require the exis-
tence of a single factor and a linear production function. It can accommodate arbitrary
convex technologies, a feature that we will use in Section 6 when introducing multiple
factors of production and input-output linkages. Our proof can also accommodate ex-
ternal economies of scale Ej,k(·) that are both country-and-sector specific; the restriction
that Ej,k(·) = Ek(·) will only be used for identification in Section 3. Finally, our focus
on a small economy is only relevant for the structure of optimal trade policy. For a large
country, the optimal trade trade taxes would depend on the elasticities of export and im-
port prices with respect to the entire vector of imports and exports, as described in Dixit
(1985), not just exports within a given sector and destination, as described in Proposition
1. But regardless of whether country j is small or not, the optimal industrial policy, which
is the main focus of our analysis, is given by ϵE∗

j,k /(1 + ϵE∗
j,k ).

8

The Welfare Gains from Optimal Taxes. We define the welfare gains from optimal
taxes, W∗

j , as the variation in country j’s income under laissez-faire that would be equiv-
alent to moving from laissez-faire, τj = 0, to the optimal policy mix, τj = τ∗

j . Omitting
foreign taxes for notational convenience, W∗

j is implicitly given by the solution to

Vj(pj(τ
∗
j ), Ij(τ

∗
j )) = Vj(pj(0), Ij(0) + W∗

j ). (13)

Likewise, we define the gains from optimal industrial policy, W I
j , as the gains from intro-

ducing optimal employment subsidies s∗j ≡ {s∗j,k} conditional on having already imposed
optimal trade taxes t∗j ≡ {tm∗

ij,k, tx∗
ji,k}i ̸=j,k, and conversely, the welfare gains from optimal

trade policy, WT
j , as the gains from introducing the optimal trade taxes t∗j conditional on

8This derives from the fact that the welfare impact of marginal changes in sector sizes would still be
equal to ∑k[ϵ

E∗
j,k (1 − s∗j,k)− s∗j,k]w

∗
j dLj,k. The critical assumption for the structure of industrial policy is that

external economies of scale are country-and-sector specific. More generally, if productivity in a given coun-
try and sector were allowed to vary with the size of other sectors, then optimal industrial policy would
depend on the elasticities of productivity with respect to the full vector of sector size, not just own-sector
size. This is analogous to the issue that arises for trade policy as we go from a small to a large country.
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having already imposed optimal employment subsidies s∗j ,

Vj(pj(τ
∗
j ), Ij(τ

∗
j )) = Vj(pj(0, t∗j ), Ij(0, t∗j ) + W I

j ), (14)

Vj(pj(τ
∗
j ), Ij(τ

∗
j )) = Vj(pj(s∗j , 0), Ij(s∗j , 0) + WT

j ). (15)

By definition, W∗
j , W I

j , and WT
j are all positive since the underlying changes in policy

bring the economy towards full efficiency.9

Building on the first-order necessary conditions used to characterize optimal policies,
our next result offers a second-order approximation to these gains.

Proposition 2. In our baseline environment, up to a second-order approximation, the welfare
gains from optimal taxes satisfy

W∗
j

Ij
≃ 1

2 ∑
k

wjLj,k

Ij
·
(∆Lj,k)

∗

Lj,k
· ϵE∗

j,k +
1
2 ∑

i ̸=j,k

p̄ji,kyji,k

Ij
·
(∆yji,k)

∗

yji,k
· ϵ

p∗
ji,k, (16)

where (∆Lj,k)
∗ and (∆yji,k)

∗ denote the employment and export changes associated with impos-
ing τ∗

j and all other variables are evaluated under laissez-faire. Likewise, up to a second-order
approximation, gains from industrial and trade policy satisfy

W I
j

Ij
≃ 1

2 ∑
k

wjLj,k

Ij
·
(∆Lj,k)

I

Lj,k
· ϵE∗

j,k , (17)

WT
j

Ij
≃ 1

2 ∑
i ̸=j,k

p̄ji,kyji,k

Ij
·
(∆yji,k)

T

yji,k
· ϵ

p∗
ji,k, (18)

where (∆Lj,k)
I denotes the employment change associated with imposing s∗j , conditional on hav-

ing already imposed optimal trade taxes, and (∆yji,k)
T denotes the export change associated with

imposing t∗j , conditional on having already imposed optimal employment subsidies.

The formal proof can be found in Appendix A.3. Like the proof of Proposition 1, it
remains valid for arbitrary convex technologies, including those featuring multiple fac-

9In contrast, starting from laissez-faire and only imposing the industrial or trade policy characterized
in Proposition 1 may reduce welfare, as policies that only target a subset of distortions may aggravate the
others. As an extreme example, imagine an economy that: (i) exports all of its output, so that employment
subsidies and export taxes are perfect substitutes; and (ii) features ϵ

p∗
ij,k = −ϵE∗

j,k /(1 + ϵE∗
j,k ) for all i, j, and k

under laissez-faire. In this case, laissez-faire replicates the optimal allocation because the optimal employ-
ment subsidy exactly cancels out the export tax. Thus only imposing s∗j,k = ϵE∗

j,k /(1 + ϵE∗
j,k ) in the absence of

trade taxes or only imposing tx∗
ji,k = −ϵ

p∗
ij,k in the absence of employment subsidies would necessarily lower

welfare.
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tors and input-output linkages as in Section 6, and it only uses the restriction to a small
economy in order to characterize the welfare gains from trade policy.

Proposition 2 can be viewed as the mathematical counterpart, in general equilibrium,
of Figure 1. In each of the second-order approximations displayed in equations (16)-(18),
the welfare gains correspond to a weighted sum of the areas of Harberger triangles, with
weights given by employment shares, wjLj,k/Ij, for industrial policy and export shares,
p̄ji,kyji,k/Ij, for trade policy. The height of each triangle is equal to the magnitude of the
underlying distortion, either ϵE∗

j,k or ϵ
p∗
ji,k, whereas the base of each triangle is equal to the

changes in employment and exports generated by the policies targeting those distortions,
∆Lj,k/Lj,k and ∆yji,k/yji,k.10

For gains from industrial policy to be large, Proposition 2 highlights two conditions.
First, production processes need to display large external economies of scale—such that
a nation’s productivity in a given sector is increasing in the size of that sector—and scale
economies that differ in strength across sectors—such that any productivity-enhancing
expansion of scale in one sector does not just lead to an equal and opposite decline in pro-
ductivity elsewhere in the economy.11 Second, countries need to produce highly substi-
tutable and tradable goods—such that a country can simultaneously expand employment
in one sector and find useful domestic or foreign substitutes for the sector that it chooses
to shrink. These are the conditions that lead to large changes in employment, ∆Lj,k/Lj,k.
Likewise, for gains form trade policy to be large, world prices need to be highly manipu-
lable, as reflected in high values of ϵ

p∗
ji,k, and trade flows need to be responsive to changes

in trade policy, as reflected in high values of ∆yji,k/yji,k.

3 Empirical Strategy

We aim now to quantify the benefits that a country can be expected to enjoy if it enacted
the optimal industrial and trade policy described above. Doing so relies on estimates of
scale and export price elasticities, {ϵE∗

j,k , ϵ
p∗
ji,k}i ̸=j,k. The latter can be directly recovered from

existing estimates of so-called “gravity equations”, as we discuss in detail below. In this
section, we describe a procedure for obtaining estimates of Ek(·) and, in turn, {ϵE∗

j,k }.

10Although we refer to our triangles as Harberger triangles, it is worth pointing one important concep-
tual distinction between Proposition 2 and the standard Harberger triangle analysis (see e.g. Hines, 1999).
The standard analysis fixes the primitives of the economy and introduces small exogenous taxes in order to
evaluate their welfare cost. Our exercise instead varies the primitives of the economy in order to generate
small endogenous optimal taxes and evaluate their welfare gains. At a technical level, this distinction is
reflected in the fact that the terms appearing in our Taylor expansion are ϵE∗

j,k or ϵ
p∗
ji,k and not s∗j,k or tx∗

ji,k.
11If ϵE∗

j,k = ϵE∗
j for all k, then ∑k

wj Lj,k
Ij

· ∆Lj,k
Lj,k

· ϵE∗
j,k =

wj
Ij

ϵE∗
j ∑k ∆Lj,k = 0.
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3.1 General Idea

Our empirical strategy for estimating external economies of scale builds on two observa-
tions. First, the presence of external economies of scale should be reflected in prices. Ev-
erything else being equal, if there are positive external economies of scale, larger sectors
should tend to sell their products at lower prices. Second, lower prices should themselves
be reflected in higher quantities demanded for goods in that sector. Combining these two
observations, one can therefore identify the presence of external economies by tracing out
the impact of exogenous variation in sector size on quantities demanded.

Formally, the profit-maximization condition (5) implies the equality of producer price
and marginal cost for any good k produced by country i for destination j,

qij,k =
vi,k

Aij,kEk(Li,k)
. (19)

Similarly, the utility-maximization condition (6) implies the equality of relative consumer
price and the marginal rate of substitution for any good k sold by two countries in desti-
nation j. That is,

pij,k

p1j,k
=

uij,k(cj)

u1j,k(cj)
, (20)

where uij,k(cj) is the partial derivative of uj(·) with respect to the quantity cij,k evaluated
at the consumption vector cj and prices are expressed relative to those of goods from
country 1. Combining these expressions, using the non-arbitrage conditions (2)-(4) relat-
ing producer and consumer prices, and averaging across destination countries implies

1
J ∑

j
DDi0,k0{ln uij,k(cj)} = −DDi0,k0{ln Ek(Li,k)} −

1
J ∑

j
DDi0,k0{ln αij,k}, (21)

where αij,k ≡ Aij,k(1 − tx
ij,k)/[(1 − si,k)(1 + tm

ij,k)] is the tax-adjusted productivity of firms
from country i exporting good k to destination j, DDi0,k0 {·} is the double difference
relative to a reference country i0 and a reference sector k0, e.g., DDi0,k0{ln uij,k(cj)} ≡
[ln uij,k(cj) − ln ui0 j,k(cj)] − [ln uij,k0(cj) − ln ui0 j,k0(cj)], and J is the number of destina-
tions.12

In this cross-sectional difference-in-differences, the first difference, taken between coun-
try i and country i0, reflects the fact that, as in equation (20), consumer choices reveal only
relative prices, whereas the second difference, taken between sector k and sector k0, de-

12It should be clear that the absence of internal decreasing returns to labor at the sector-level plays a key
role in establishing equations (19) and (21). If such forces were active, our empirical strategy would only
identify the combination of external and internal scale effects.
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rives from a desire to eliminate the endogenous wage wi that is part of vi,k in equation
(19). Lastly, the average over destinations j on the left-hand side is introduced to focus
on the fact that, when buying from a given origin i and sector k, consumers in many lo-
cations j are facing potentially distinct prices and have distinct preferences, but they all
face a price that is influenced by the origin-sector’s size Li,k, to the extent that external
economies of scale are active.13

Equation (21) is the starting point of our empirical analysis. Given existing estimates
of consumer’s preferences, uj(·), this equation corresponds to a nonparametric regression
of the form, y = h(x) + ξ. The left-hand side variable “y” can be measured using data
on consumption choices cij,k or, as we do below, data on expenditures, Xij,k ≡ pij,kcij,k.
The first term on the right-hand side, which depends on external economies of scale,
Ek(·), is the unknown function “h” to be estimated; it is evaluated at observable industry
sizes Li,k, corresponding to “x”. And the second term, which depends on 1

J ∑j ln αij,k,
is the structural error term “ξ”. While Li,k is endogenous and hence may be correlated
with 1

J ∑j ln αij,k, suitable instrumental variables can be used to achieve nonparametric
identification of Ek(·), as in Newey and Powell (2003).14

3.2 Parametric Model

In theory, one could point-identify external economies of scale, Ek(·), by tracing out non-
parametrically the impact of exogenous changes in sector sizes {Li,k} on consumption
choices {cj}. In practice, our dataset will include only 61 countries. So, estimation in-
evitably needs to proceed parametrically, as we now describe.

Functional Form Assumptions. We assume that external economies of scale satisfy

Ek(Li,k) = Lγk
i,k. (22)

13While equation (21) focuses on averages across all destinations, it would be equally valid from a theo-
retical standpoint to use averages across any subsets of destinations with positive trade flows. For instance,
our model also implies

1
J ∑

j ̸=i
DDi0,k0{ln uij,k(cj)} = −DDi0,k0{ln Ek(Li,k)} −

1
J ∑

j ̸=i
DDi0,k0{ln αij,k}.

In practice, this “leave-out” specification, excluding domestics sales, leads to estimates of external
economies of scale that are very similar to the baseline estimates reported in Table 1 below.

14The interested reader can find further details in our working paper, Bartelme et al. (2019).
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Hence, scale elasticities are constant within each sector, ϵE∗
i,k = γk, but may vary across

sectors, as is critical for industrial policy considerations, as seen in Propositions 1 and 2.
Similarly, we restrict preferences to be nested CES,

uj = (∑
k

β
1

ρ+1
j,k C

ρ
ρ+1
j,k )

ρ+1
ρ , (23)

Cj,k = (∑
i

c
θk

1+θk
ij,k )

1+θk
θk , (24)

with 1 + θk the elasticity of substitution between goods from different origins, 1 + ρ the
elasticity of substitution between goods from different sectors, and the taste shifters β j,k

normalized such that ∑k β j,k = 1 for all j.15 As is well known, such preferences give rise
to a so-called “gravity equation” for within-sector trade flows, with θk the (sector-level)
trade elasticity.16

Baseline Specification. As established in Appendix B.1, substituting for uj and Ek using
equations (22)-(24), we can rewrite equation (21) as

Yi,k = δi + δk + γk ln Li,k + εi,k, (25)

where Yi,k ≡ (1
J ∑j ln Xij,k)/θk is the log expenditure Xij,k on goods from country i in sector

k averaged across all destinations and adjusted by the trade elasticity θk, and δi and δk are
country and sector fixed effects, respectively. The productivity shock, εi,k ≡ 1

J ∑j ln αij,k −
E[1

J ∑j ln αij,k|i]−E[1
J ∑j ln αij,k|k]+E[1

J ∑j ln αij,k], is demeaned so that E[εi,k|i] = 0 for all i
and E[εi,k|k] = 0 for all k, where E[εi,k|i] refers to expectation holding i fixed (and hence
the expectation is taken across k only), and analogously for E[εi,k|k].

To gain intuition about how equation (25) identifies scale elasticities, consider a hypo-
thetical dataset with only two sectors, k ∈ {Food,Textiles}, three exporters, i ∈ {Canada,
Costa Rica, France}, and one importer, j ∈ {United States}. Suppose that these three ex-
porters have the same productivity in all sectors, εi,k = 0, but that because of demand-side
considerations, they have different sector sizes: LFra,Food/LCan,Food > LFra,Text/LCan,Text =

15The absence of bilateral taste shifters βij,k in equation (24) is without loss of generality, as units of
account can always be chosen such that it holds, with the productivity term Aij,k adjusted accordingly. We
come back to this point briefly in Section 3.4.

16While the preferences in (23) and (24) correspond to an Armington model of trade, Costinot et
al.’s (2012) multi-sector extension of Eaton and Kortum’s (2002) Ricardian model delivers observationally
equivalent “gravity equations”. The same micro-foundations can be invoked in the presence of external
economies of scale, as in Kucheryavyy et al. (2017), with identical implications for our analysis, as shown
in our working paper, Bartelme et al. (2019).
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1 and LCos,Text/LCan,Text > LCos,Food/LCan,Food = 1.17 Differencing out the country and
sector fixed effects in equation (25) then implies

γFood =
(ln XFraUS,Food − ln XCanUS,Food)/θFood − (ln XFraUS,Text − ln XCanUS,Text)/θText

ln LFra,Food − ln LCan,Food
,

γText =
(ln XCosUS,Text − ln XCanUS,Text)/θText − (ln XCosUS,Food − ln XCanUS,Food)/θFood

ln LCos,Text − ln LCan,Text
.

Intuitively, for a given difference in sector size, ln LFra,Food − ln LCan,Food > 0, the scale
elasticity in the food sector γFood is larger if: (i) the country with a large food sector
exports more to the US than the country with a small food sector, i.e, ln XFraUS,Food −
ln XCanUS,Food is larger; (ii) US imports in the food sector are less responsive to changes in
prices, i.e., θFood is lower; and (iii) the country with a large food sector has a higher wage,
as revealed by its relative exports in the textile sector, i.e., (ln XFraUS,Text − ln XCanUS,Text)/θText

is lower. The scale elasticity in the textiles sector γText is identified in a similar manner by
comparing the exports of Costa Rica and Canada to the US.

This example operationalizes the general idea, described in Section 3.1, that one can
identify scale elasticities, i.e., by how much increases in employment lowers unit costs
and, in turn, prices, by tracing out how changes in employment affect consumption
choices and, in turn, expenditures. All that is required to go from the latter to the for-
mer is an estimate of demand that maps changes in expenditures into changes prices.
Under our parametric assumptions, this boils down to knowledge of the trade elasticities
θk.

In practice, of course, bilateral trade flows may depend on productivity shocks, εi,k ̸=
0, and as noted at the end of Section 3.1, sector size ln Li,k may respond endogenously
to these shocks, E[ln Li,k × εi,k|k] ̸= 0 for all k. Estimation of the vector of supply-side
parameters {γk} thus requires at least as many demand-side instrumental variables. We
now describe a procedure for constructing such variables.

3.3 Instrumental Variables

In our model, sector size Li,k is an endogenous object determined by countries’ factor
supply, preferences, technology and taxes. In addition, the adjusted productivity resid-
ual εi,k in our baseline specification (25) depends on technology and taxes. To construct
instrumental variables, we propose to exploit variation in countries’ factor supply and

17The assumption that France and Costa Rica have the same employment as Canada in the textile and
food sectors, respectively, simplifies the algebra, but is not critical for identification. All that matters is that
France and Costa Rica have different distributions of employment, LFra,Food/LFra,Text ̸= LCos,Food/LCos,Text.
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preferences, which we will assume to be orthogonal to the unobserved variation in tech-
nology and taxes.

To fix ideas, consider first the special case where upper-level preferences are Cobb-
Douglas (ρ → 0). In the absence of trade, the level of sectoral employment Li,k predicted
by our model would then be βi,k × Li, where βi,k can be directly obtained as the share of
expenditure by country i on goods from sector k across all origins, xi,k ≡ ∑j Xji,k/ ∑j,l Xji,l,
and Li can be proxied by country i’s population, L̂i. Given the magnitude of trade costs
in practice, we would expect xi,k × L̂i to remain a good predictor of Li,k in the presence of
trade in this Cobb-Douglas special case.

Our instrumental variables generalize the previous idea to the case where ρ may be
different from zero. The key difference between the Cobb-Douglas and CES case is that
the demand shifters βi,k used to predict sectoral employment no longer satisfy βi,k = xi,k.
Under CES, equations (23) and (24) instead imply

βi,k =
xi,k/(Pi,k)

−ρ

∑l xi,l/(Pi,l)−ρ , (26)

where Pi,k ≡ (∑j p−θk
ji,k )

−1/θk is sector k’s price index in country i. Provided that ρ is differ-
ent from zero, the adjustment by 1/(Pi,k)

−ρ is required to purge expenditure shares from
prices and, in turn, the technological and tax considerations that may affect them. Section
4.2 describes in detail how we obtain estimates of sector-level price indices, P̂i,k, and the
elasticity of substitution, ρ̂, in order to recover estimates of the demand residuals β̂i,k via
equation (26). Given such estimates, we then construct a measure of demand-predicted
sector size as L̂i,k ≡ β̂i,k × L̂i, which will serve as the basis for constructing our IVs as the
interaction of sector indicator variables and L̂i,k. This will deliver consistent estimates of
the parameters {γk} under the exclusion restriction,

E[ln L̂i,k × εi,k|k] = 0 for all k. (27)

This requires that there be no systematic relationship, within any sector k, between a
country’s demand-predicted sector size ln L̂i,k and the productivity shock εi,k.18

3.4 Threats to the Exclusion Restriction

By construction, the (log) demand-predicted sector size variable consists of two parts,
ln L̂i,k = ln L̂i + ln β̂i,k. There are therefore two potential sources of violation for the above

18Appendix B.1 explicitly describes the two stages of our IV strategy using dummy variable notation.
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exclusion restriction,

E[ln L̂i × εi,k|k] ̸= 0, for some k, (28)

E[ln β̂i,k × εi,k|k] ̸= 0, for some k. (29)

Though condition (27) may, in principle, hold when both violations exactly compensate
each other, it is hard to imagine such a situation being relevant in practice. We therefore
discuss each of these two sources of violation separately.

The first violation (28) arises, for instance, if there are country-wide scale effects that
are heterogeneous across sectors, as in Aij,k ∝ (L̂i)

Γk . As demonstrated in Appendix B.2,
this leads to an overestimate of the extent of external economies of scale γk in any sector
k with higher than average values of country-wide scale effects, Γk > E[Γk]. It should be
clear, however, that the source of bias in this scenario is not the existence of country-wide
scale effects, but their heterogeneity across sectors.

The second violation arises if countries that have a higher propensity to buy in some
sectors, because of preference considerations, also tend to have a higher propensity to sell
in those same sectors, because of technological or tax considerations. More specifically,
suppose that β̂i,k ∝ (ᾱi,k)

ϕ, with ln ᾱi,k ≡ 1
J ∑j ln αij,k − E[1

J ∑j ln αij,k|i]. As demonstrated
in Appendix B.2, if ϕ > 0, this leads to an overestimate of the extent of economies of scale,
and more so in sectors where Var(εi,k|k) is higher. It is worth noting that the issue here is
not the standard concern about supply and demand residuals being correlated because of
quality considerations. Such a correlation would affect the structural interpretation of our
tax-adjusted productivity measures αij,k, but leave the rest of our analysis unchanged.19

The source of bias here is more subtle. It requires, for instance, countries with lower costs
in a given sector k to develop tastes that are tilted towards goods from that sector (which
may be important for cultural goods subject to habit formation, like particular food items
in Atkin (2013), but is not something we expect to be prevalent among the 15 manufactur-
ing sectors that we consider) or countries with stronger tastes for consumption in sector
k to impose policies set to favor production in that sector (despite optimal policy in our
model being only a function of the elasticities θk and γk, as discussed in Section 5).

The previous discussion implicitly focuses on biases arising from the structural pa-
rameters, Li and βi,k, being systematically correlated with the productivity shocks, εi,k.

19Formally, suppose that preferences take the form uj({Bij,kcij,k}i,k), with Bij,k a measure of the qual-
ity of good k sold by country i in country j. The standard concern is that Aij,k and Bij,k may be pos-
itively correlated. To see that this is irrelevant for our empirical analysis, note that starting from this
more general model, one can always define quality-and-tax-adjusted measures of productivity, α̃ij,k ≡
Aij,kBij,k(1 − tx

ij,k)/[(1 − si,k)(1 + tm
ij,k)], without any further implication.
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Even if they are not, our exclusion restriction may also fail if the difference between the
true parameters, Li and βi,k, and our proxies for these parameters, L̂i and β̂i,k, is itself cor-
related with εi,k, perhaps because of misspecification of preferences in equations (23) and
(24), bias in the estimation of ρ, or some other form of measurement error. To alleviate
concerns about these potential sources of biases in our estimates of scale elasticities, Sec-
tion 4.4 reports the robustness of our results to the inclusion of controls for various sources
of productivity differences across countries and sectors. Section 6 further introduces con-
trols for cost differences deriving from multiple factors of production and tradable inputs.

4 Empirical Results

4.1 Data

To estimate scale elasticities γk in equation (25) and construct our instrumental variables
we need measures of bilateral trade flows Xij,k, population L̂i, and sector size Li,k. We
discuss each of these in turn.

Bilateral Trade Flows. We obtain data on bilateral trade flows Xij,k from the OECD’s
Inter-Country Input-Output (ICIO) tables. This source documents bilateral trade among
61 major exporters i and importers j, listed in Table C.1. ICIO tables report all bilateral
flows, including domestic sales Xii,k, in each sector, a feature that we use below to con-
struct aggregate measures of expenditure, Xj,k ≡ ∑i Xij,k and Xj ≡ ∑i,k Xij,k, as well as
sales, Si,k ≡ ∑j Xij,k and Si ≡ ∑j,k Xij,k. We focus our empirical analysis on 15 manufac-
turing sectors k defined at a similar level to the 2-digit SIC and listed in Table 1.20 Our
baseline estimates use ICIO data from 2010 but we report similar estimates from other
available cross-sections (1995, 2000, and 2005).

Population. We take our measure of population L̂i from the “POP” variable in the Penn
World Tables version 9.0. In practice this variable is highly correlated with alternative
measures such as the total labor force.

Sector Size. According to the baseline model developed here, the total wage bill in a
sector is equal to total sales across all destinations, wiLi,k = Si,k. In turn, the share of total
employment allocated to a given sector k is equal to the share of its sales, Si,k/Si. Using

20We omit a 16th manufacturing sector, “Recycling and manufacturing not elsewhere classified”, from
the estimation, as this label covers a small amount of output in a range of highly heterogeneous activities.
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country i’s population L̂i as a measure of its labor supply Li, we can therefore construct
sector size Li,k as (Si,k/Si)L̂i.21

4.2 Estimates of Auxiliary Elasticities

Our estimation of scale elasticities γk via equation (25) requires estimates of two auxiliary
parameters: (i) trade elasticities θk in each sector, to construct the dependent variable;
and (ii) the elasticity of substitution between manufacturing sectors ρ + 1, to construct
our demand-side instruments. We begin with a discussion of these auxiliary estimates.

Trade Elasticities. Nested CES preferences in (23) and (24) imply the following log-
linear relationship between expenditure shares Xij,k/Xj,k and relative prices pij,k/Pj,k within
any sector k:

ln(Xij,k/Xj,k) = −θk ln(pij,k/Pj,k). (30)

Equation (30) is at the core of a vast “gravity” literature, reviewed in Head and Mayer
(2013), that provides estimates of trade elasticities θk by finding exogenous sources of
variation in pij,k and using fixed effects or other strategies to control for Pj,k. Rather than
reestimating trade elasticities θk ourselves by combining the data on bilateral trade flows
Xij,k presented in Section 4.1 with additional data on prices pij,k or shifters of these prices,
such as import tariffs and shipping costs, we use recent estimates from Giri, Yi and Yil-
mazkuday (2021). Although the structural model considered by these authors does not
feature external economies of scale, the empirical procedure that they use starts from
equation (30) and is fully consistent with our model. This is because productivity levels,
regardless of whether they are exogenous (as in Giri et al.’s (2021) model) or endogenous
(as in ours), are differenced out in their empirical procedure.22 As such, the trade elas-
ticities that they estimate are fully portable into our analysis. For convenience, we report
these estimates in column (6) of Table 1, along with their standard errors.

21Given this measure of sector size, any discrepancy between population and labor supply in efficiency
units is therefore also implicitly part of the error term εi,k in equation (25). That is, if Li = (exp χi)L̂i, then
εi,k also includes χiγk − E[χiγk|i]− E[χiγk|k] + E[χiγk], with our exclusion restriction (27) applying to this
term as well—though, as we describe in Section 4.3, our estimates are robust to the inclusion of controls for
per-capita GDP interacted with sector indicators, which lends support to this assumption.

22Formally, equation (30) implies

θk = −
∑i,j[ln(Xij,k/Xj,k)− ln(Xii,k/Xi,k)]

∑i,j[ln(pij,k/Pj,k)− ln(pii,k/Pi,k)]
,

which is the starting point of Giri et al.’s (2021) SMM estimation using micro-level price data, as in Si-
monovska and Waugh (2012).
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Elasticity of Substitution Between Sectors. Nested CES preferences in (23) and (24)
further imply that the share of expenditure in country j on sector k is given by

ln(Xj,k/Xj) = −ρ ln(Pj,k/Pj) + ln β j,k, (31)

where Pj = (∑s β j,sP−ρ
j,s )−1/ρ is the overall price index for country j. We estimate ρ via the

following specification
ln Xj,k = ϕj + ϕk − ρ ln P̂j,k + ϕj,k, (32)

where ϕj is treated as a country fixed effect and ϕk is treated as a sector fixed effect. In the
absence of data on the price index Pj,k, we use a proxy obtained by averaging equation
(30) across all origins, ln P̂j,k ≡ 1

J ∑i ln(Xij,k/Xj,k)/θk. This means that, after controlling
for ϕj and ϕk, the structural error term, ϕj,k, comprises both the preference shock from
equation (31), ln β j,k, and the average of the log-productivity across all origin countries
for that sector and destination, ln α̂j,k ≡ 1

J ∑i ln αij,k, each demeaned across countries and
sectors, as further described in Appendix B.3. Our price proxy P̂j,k captures the fact that,
everything else being equal, an exporter i should tend to have a larger share of sales in
destination j and sector k when the price index Pj,k in that same destination and sector
is high, with the trade elasticity θk controlling the steepness of this relationship, Pj,k ∝
(Xij,k/Xj,k)

1/θk . The logic is the same as in the formula for the welfare gains from trade
in Arkolakis et al. (2012), with the market share of domestic producers and the trade
elasticity revealing the CES price index in a destination, Pj,k ∝ (Xjj,k/Xj,k)

1/θk . Since the
previous logic can be applied to any exporter, our proxy instead uses the simple average
across all i in order to minimize the role of idiosyncratic productivity differences.23

For standard reasons, OLS estimates of the demand elasticity ρ based on this expres-
sion would suffer from simultaneity bias. We therefore use an IV procedure in which
the instruments for ln P̂j,k in (32) are formed from the product of country j’s log popu-
lation ln L̂j and a full set of sector indicators. The relevance of such instruments draws
on the supply-side logic of our economies of scale model. In particular, we expect large
countries to be relatively productive (and hence have relatively low price indices Pj,k) in
sectors with relatively large scale elasticities, γk; this, in turn, means that the impact of
population on prices should vary in distinct ways across sectors. The validity of this IV
procedure relies on the exclusion restriction: E[ln L̂j × ϕj,k|k] = 0. Recalling that the error
term includes both ln β j,k and ln α̂j,k, it requires no systematic tendency for larger coun-

23Summing across all i also allows us to control for the impact of wages and sector sizes on expenditure
shares through the sector fixed effect ϕk, as shown in Appendix B.3. We come back to the choice of our price
proxies in the sensitivity analysis of Section 4.4.
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tries (those with higher values of ln L̂j) to have stronger preferences for a given sector k
(higher values of ln β j,k) or access to better technologies to source good k (higher values
of ln α̂j,k).24

Our estimate of ρ is reported in Table B.2, with the corresponding first-stage results
in Table B.1. The IV estimate is ρ̂ = −0.13, implying an elasticity of substitution ρ̂ + 1 =

0.87 in the complements range, though not statistically different from the Cobb-Douglas
case (i.e. ρ = 0). This IV estimate is lower than the OLS estimate (of ρ̂ = 2.44), as
is consistent with the presence of increasing returns at the sector level. When supply
curves slope downwards, positive demand shocks lead to reductions in prices. Hence,
the OLS estimate of the impact of prices on expenditure shares, which confounds a truly
downward-sloping demand curve with the negative correlation between demand shocks
and prices, will be an underestimate of −ρ, leading to an overestimate of ρ.

Reassuringly, our IV estimate of ρ̂ = −0.13 is in the same range as estimates seen in
prior work using alternative sources of variation. Across 2-digit sectors, Oberfield and
Raval (2021) obtain estimates of ρ that range from −0.14 to 0.27 depending on the specifi-
cation. At higher levels of aggregation (that is, across the broad categories of agriculture,
manufacturing, and services), Herrendorf et al. (2013) obtain −0.19 using US time se-
ries consumption data and Comin et al. (2021) estimate −0.50 using cross-country panel
data. At lower levels of aggregation (that is, across 4-digit U.S. import data), Redding
and Weinstein (2018) estimate ρ = 0.36. Sections 4.4 and 5.4 demonstrate how our broad
conclusions about the effects of industrial policy are insensitive to using a range of al-
ternative values for ρ that spans the estimates from other work discussed here, both for
constructing IVs and conducting counterfactual analysis.

4.3 Estimates of Scale Elasticities

We now return to the estimation of scale elasticities γk. We begin by reporting OLS esti-
mates of γk in column (1) of Table 1.

All of these estimates imply precisely-estimated economies of scale, i.e. γk > 0, but
as previously discussed, we expect OLS to deliver biased estimates of true economies
of scale. For this reason we turn to the IV procedure described in Section 3.3, which
relies on the demand-side instruments constructed from L̂i,k ≡ β̂i,k × L̂i, with β̂i,k =

[xi,k/(P̂i,k)
−ρ̂]/[∑l xi,l/(P̂i,l)

−ρ̂] and ρ̂ = −0.13 (see Table B.2).

24This second condition mirrors the orthogonality condition between population and productivity
shocks, E[ln L̂i × εi,k|k] = 0, discussed in Section 3.4. There we were ruling out systematic advantages
of larger countries as sellers in specific sectors, i.e. higher values of 1

J ∑j ln αij,k. Here we are also ruling out
systematic advantages of larger countries as buyers in those same sectors, i.e. higher values of 1

J ∑i ln αij,k.

23



Table 1: Estimates of Sector-Level Scale Elasticities (γk)

Reduced- First-stage SW Trade
OLS IV form F-stat F-stat Elasticity

Sector (1) (2) (3) (4) (5) (6)

Food, Beverages and Tobacco 0.26 0.24 0.28 192.4 1678.9 3.57
(0.02) (0.02) (0.03) (0.27)

Textiles 0.22 0.21 0.24 117.9 2216.8 4.43
(0.02) (0.02) (0.03) (0.31)

Wood Products 0.20 0.19 0.22 218.8 1383.6 4.32
(0.04) (0.04) (0.04) (1.03)

Paper Products 0.32 0.31 0.35 138.1 1608.7 2.97
(0.05) (0.05) (0.05) (0.42)

Coke/Petroleum Products 0.10 0.11 0.15 14.8 472.8 8.94
(0.05) (0.05) (0.06) (5.33)

Chemicals 0.23 0.22 0.26 70.1 1192.6 3.75
(0.03) (0.03) (0.04) (0.51)

Rubber and Plastics 0.21 0.20 0.23 154.9 1595.4 4.13
(0.05) (0.05) (0.05) (1.18)

Mineral Products 0.20 0.19 0.22 301.6 1485.0 5.14
(0.04) (0.03) (0.04) (1.17)

Basic Metals 0.12 0.11 0.13 137.1 1342.2 8.94
(0.05) (0.05) (0.06) (5.33)

Fabricated Metals 0.19 0.18 0.21 191.1 2321.4 5.07
(0.08) (0.09) (0.09) (2.46)

Machinery and Equipment 0.28 0.26 0.31 136.8 1764.6 3.27
(0.05) (0.04) (0.05) (0.52)

Computers and Electronics 0.28 0.27 0.32 71.8 612.5 3.27
(0.04) (0.04) (0.05) (0.52)

Electrical Machinery, NEC 0.27 0.25 0.30 109.7 1474.2 3.27
(0.04) (0.04) (0.05) (0.52)

Motor Vehicles 0.20 0.19 0.26 80.4 1392.2 4.47
(0.04) (0.04) (0.04) (0.78)

Other Transport Equipment 0.20 0.20 0.24 25.7 846.8 4.47
(0.03) (0.04) (0.04) (0.78)

Notes: Column (1) reports the OLS estimate, and column (2) the IV estimate, of γk in equation (25). Column
(3) reports the reduced form coefficients. The instruments are the log of (country population × sectoral de-
mand shifter), interacted with sector indicators. All regressions in columns (1)-(3) include exporter and sec-
tor fixed effects. Column (4) reports the conventional F-statistic, and column (5) the Sanderson-Windmeijer
F-statistic, from the first-stage regression corresponding to the endogenous regressor formed by interacting
the log of sector size with an indicator for the sector named in each row. Column (6) reports the estimate of
θk from Giri et al. (2021) used to construct Yi,k in equation (25). Standard errors in columns (1)-(3) are clus-
tered at the exporter level and adjusted to account for the uncertainty in the estimates of θk, as described in
Appendix B.5. All standard errors are reported in parentheses.
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The IV estimates of γk are reported in column (2) of Table 1, with summary statistics
indicating the strength of the instruments in columns (4) and (5) and the first-stage coef-
ficients themselves summarized in Table B.3.25 These are our preferred estimates of the
strength of economies of scale within each of the 15 manufacturing sectors in our sample.
The results point to substantial economies of scale—with an average scale elasticity of
0.21—that are statistically significantly different from zero in every sector. At the same
time, there is widespread heterogeneity, with estimates ranging from γk = 0.11 in the
Coke/Petroleum and Basic Metals sectors to γk = 0.31 in the Paper Products sector.26 We
can reject the hypothesis of coefficient equality at the 1% level.

To understand what moments in the data lead us to the previous conclusion, note that
estimating γk in our baseline specification is equivalent to estimating ξk ≡ θkγk in the
following alternative specification,

1
J ∑

j
ln Xij,k = θkδi + θkδk + ξk ln Li,k + θkεi,k,

where we have multiplied both the left- and right-hand side variables of equation (25) by
the trade elasticity θk. Our IV estimates in Basic Metals and Paper Products are ξMetals =

0.98 and ξPaper = 0.92. Since estimates of trade elasticities in these two sectors are
θMetals = 8.94 and θPaper = 2.97 (see column 6 of Table 1) we conclude that the scale elas-
ticities must be significantly smaller in Metals than Paper: γMetals = 0.98/8.94 = 0.11 ≪
γPaper = 0.92/2.97 = 0.31. Intuitively, if changes in employment have similar effects on
bilateral trade flows in the two sectors (ξMetals ≃ ξPaper), but bilateral trade flows are much
less sensitive to changes in costs in Paper than in Metals (θPaper ≪ θMetals), then the impact
of changes in employment on costs must be much smaller in Metals (γMetals ≪ γPaper).27

25For each first-stage regression, Table B.3 reveals that the demand-based IV for any given sector has a
strong correlation with its own sector size and a far weaker correlation with any other sector’s size. Con-
sequently, as seen in column (4) of Table 1, the conventional F-statistic from the 15 instruments in each
first-stage equation is large and the Sanderson and Windmeijer (2016) F-statistic in column (5), which as-
sesses the extent to which each first-stage is affected by independent variation in the instruments from that
in the other 14 first-stages, is considerably larger. Figure B.1 provides a visualization of the first-stage rela-
tionships for each sector and Figure B.2 does the same for the corresponding reduced-form relationships.

26This finding of significant economies of scale in manufacturing is consistent with prior estimates us-
ing alternative empirical strategies. For example, Caballero and Lyons (1992) estimate a scale elasticity for
(pooled) US manufacturing sectors of 0.07-0.29 depending on the instrument used, Basu and Fernald (1997)
estimate that the equivalent of γk for (a weighted average of) US manufacturing sectors is 0.06, Antweiler
and Trefler (2002) use international trade data and a Heckscher-Ohlin-Vanek approach to estimate scale
elasticities ranging from 0-0.40 among the set of manufacturing sectors in which precise estimates are ob-
tained, and Costinot et al. (2019) estimate a value of γk = 0.25 for the global pharmaceutical sector.

27Across sectors, our empirical results imply less variation in the elasticities ξk of average bilateral trade
flows with respect to employment, which range from 0.82 to 0.98, than in the estimates of trade elastici-
ties θk, which range from 2.97 to 8.94. As a result, the correlation between scale elasticities γk and trade
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Another feature of these estimates is that, in all sectors but one, the OLS estimate of
γk is larger than its corresponding IV estimate. This upward OLS bias is to be expected in
an open economy in which countries specialize in sectors where they have a comparative
advantage. However, since ρ is close to zero and trade volumes are low for the average
country, the OLS bias is not large, ranging between 0 and 0.02 across sectors in Table 1.

Finally, column (3) reports the reduced-form parameter estimates of the impact of pre-
dicted (log) domestic demand ln L̂i,k in each sector on the dependent variable, Yi,k ≡
(1

J ∑j ln Xij,k)/θk. We see that countries with higher predicted domestic demand in a
sector tend to have larger values of Yi,k in that sector. This is again consistent with the
existence of increasing returns at the sector level, which implies that positive shocks to
domestic demand cause lower prices and, in turn, greater exports. This is a manifestation
of the home-market effect.

4.4 Sensitivity to Alternative Samples and Specifications

As characterized by Propositions 1 and 2, the estimates of scale economies γk in Table
1 shape both the structure of and the gains from optimal industrial policy. Before turn-
ing to such implications of our γk estimates, we describe three exercises that probe their
sensitivity to alternative samples and specifications.

Heterogeneity over time. The estimates of γk in Table 1 are obtained from a single cross-
section (2010). As a first robustness check, we re-estimate the scale elasticity parameters
γk in three additional cross-sections (from 1995, 2000, and 2005), as well as a specification
that pools across all years, 1995-2010. These estimates, displayed in Table B.4, are very
similar to each other and to those reported in Table 1—indeed, in all three years the cor-
relation with our 2010 baseline is 0.99. This finding highlights how our conclusions are
not specific to one particular year.

Alternative Instrumental Variables. To construct our instrumental variables, we use
demand residuals β̂i,k = [xi,k/(P̂i,k)

−ρ̂]/[∑l xi,l/(P̂i,l)
−ρ̂] whose value depends both on

our estimate of the upper-level elasticity ρ̂ as well as our price proxies, P̂i,k. Our second
robustness exercise explores the sensitivity of our estimates of γk to using alternative
demand residuals. We start by recomputing β̂i,k under alternative values of ρ̂ = −0.9, 0
and 3, a wide range that spans prior estimates from the literature. It includes the Cobb-
Douglas special case, ρ̂ = 0, for which no price proxies are required. Even if there were no

elasticities θk is −0.91.
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measurement error in our price proxies, P̂i,k = Pi,k, using a value of ρ̂ that is distinct from
its true value ρ creates a wedge between the estimated and the true demand residuals,
β̂i,k/βi,k = (Pi,k)

ρ̂−ρ/[∑l βi,l(Pi,l)
ρ̂−ρ]. Thus, even if the true demand residuals satisfy the

exclusion restriction, E[ln βi,k × εi,k|k] = 0, this restriction may not be satisfied for the
estimated demand residuals, E[ln β̂i,k × εi,k|k] ̸= 0, leading to a bias in our IV estimates
of scale elasticities γk whose magnitude would scale up with the difference between ρ̂

and ρ. The estimates of γk displayed in columns (2)-(4) of Table B.5 conform with that
observation, though they are all close to our baseline estimates, also reported in column
(1) of Table B.5. These small differences are consistent with the small difference between
the OLS and IV estimates of γk documented in Table 1.

The fact that we use price proxies P̂i,k rather than the true prices Pi,k is another source
of measurement error in the construction of the demand residuals β̂i,k and a potential
source of bias in the IV estimation of γk. Equation (30) implies that the log difference
between the two prices is equal to the average of the log prices across exporters in a
given sector and destination, ln P̂i,k − ln Pi,k = −1

J ∑jlnpji,k. Hence, even if we knew the
true upper-level elasticity, ρ̂ = ρ, there would still be a wedge between the estimated
and the true demand residuals, β̂i,k/βi,k = exp(−1

J ∑jlnpji,k)
ρ/[∑ βi,l exp(−1

J ∑jlnpjl,k)
ρ].

This would lead to upward bias in the estimates of γk if consumers in more productive
countries also tend to face lower average prices (for example because country i’s local
productivity in sector k, Aii,k, mechanically lowers domestic prices pii,k) or downward
bias if the opposite pattern prevails (for example because country i’s higher productivity
in sector k tends to lower its neighbors’ employment, Lj,k, and in turn, to raise their export
prices, pji,k). To address this endogeneity concern, we consider an alternative price proxy
P̂alt

i,k ≡ 1
J ∑j∈D(i) ln(Xji,k/Xi,k)/θk that builds on the same strategy as in Section 4.2 of

inferring price indices from exporters’ markets shares, but only incorporates the exporters
located in a “doughnut” D(i) that excludes all countries whose distance to country i is less
than half the median distance between countries in our sample. The estimates of γk using
these alternative price proxies are reported in column (5) of Table B.5. Reassuringly, they
are very similar to the baseline estimates reported in column (1).

Additional Controls. As discussed above, our estimation procedure requires that each
country’s comparative advantage—deriving from cost differences across sectors k and
exporting countries i, which are absorbed in the error term εi,k of equation (25)—is or-
thogonal to our demand-side instruments. One test of this requirement is that adding
observable proxies for comparative advantage should not substantially change our es-
timates of γk. We report here several variants of this idea that are based on Ricardian
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comparative advantage, deriving from productivity differences alone, consistent with the
model of Section 2. Section 6 presents additional robustness checks based on other sources
of cost differences (coming from multiple factors of production and tradable intermediate
inputs) across countries and sectors.

A prominent source of Ricardian comparative advantage stems from heterogeneity in
institutions across countries and the differential implications that those institutions have
for productivity across sectors. Following the empirical literature surveyed by Nunn and
Trefler (2014), we model this as an interaction between two components: (i) country-
level proxies for institutional quality and (ii) sector-level characteristics. For the country
component, we use both a measure of contract enforcement and a measure of financial
development, thereby encompassing the sources of comparative advantage stressed in
Levchenko (2007) and Nunn (2007) as well as Beck (2002) and Manova (2008).28 For the
sector component, we use a full set of sector indicator variables, which has the benefit of
controlling for any form of systematic Ricardian comparative advantage based on con-
tract enforcement or financial development. As an extension to this procedure we add
regressors formed from interactions between the exporter’s per capita GDP and sector
indicators, which hence controls for any potential reason for relatively rich countries to
be differentially productive in certain sectors.29

The results from both of these exercises are reported in Table B.6. In each case, we
see only minor changes in the estimates of γk as compared to our baseline (a correlation
of 0.99 in both extensions), suggesting that our IV strategy utilizes variation in sector
size driven by factors that are orthogonal to observable sources of Ricardian comparative
advantage. This lends credence to the view that our estimates draw only on demand-side
variation in order to identify the supply-side scale economies γk.

Discussion. The findings in this section underscore how our estimates of scale elastic-
ities γk are highly insensitive to alternative samples and specifications. However, before
turning to our counterfactual analysis, it is important to stress again that these estimates
are directly affected by the auxiliary estimates of trade elasticities θk used in our empirical
analysis for the reasons discussed in Section 4.3.30 This issue is critical for the exact struc-

28Following Nunn (2007), we measure contract enforcement by the “rule of law” variable due to Kauf-
mann, Kraay and Mastruzzi (2003) (in 1997-98) and financial development by the (log of the) ratio of private
bank credit to GDP (in 1997).

29We obtain data on per-capita GDP by dividing the real output variable, “RGDPO”, in the Penn World
Tables by L̂i.

30Our working paper Bartelme et al. (2019) presents estimates of scale elasticities obtained using alter-
native estimates of trade elasticities from Caliendo and Parro (2015) and Shapiro (2016). Given the long-run
focus of our analysis, we prefer the estimates in Giri et al. (2021) that use cross-sectional variation to those
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ture of optimal policy, as described in Proposition 1, since the rankings of scale and trade
elasticities determine the ranking of employment and export subsidies, respectively. It
is not a priori obvious, however, that precise knowledge of which sectors have high and
low trade elasticities is equally important for the aggregate welfare consequences of opti-
mal policies, as described in Proposition 2. We will come back to this important point in
Section 5.4.

5 The Textbook Gains from Industrial Policy

5.1 The Calibrated Economy

We focus on a world economy that comprises the 61 countries from the ICIO dataset,
the 15 manufacturing sectors for which we have estimated scale economies, as well as
the 17 non-manufacturing sectors also included in the ICIO dataset. Throughout our
quantitative exercise, we maintain the parametric restrictions imposed in equations (22)-
(24). Thus, scale elasticities are given by γk, whereas trade elasticities are given by θk and
the elasticity of substitution between sectors is given by 1 + ρ.

To calibrate γk, we use the IV estimates reported in column (2) of Table 1 for all manu-
facturing sectors and set γk = 0 for all non-manufacturing sectors. This implies that there
are welfare gains from reallocating resources from non-manufacturing to manufacturing
sectors which have γk > 0, and so the overall gains from industrial policy will be higher
than if we had set γk in non-manufacturing to some positive value. To calibrate θk, we use
the trade elasticities from Giri et al. (2021) reported in column (6) of Table 1 for each man-
ufacturing sector, in line with the empirical analysis of Section (4), and we set θk = 4.32 for
all non-manufacturing sectors, which is the median trade elasticity throughout manufac-
turing. Finally, we set ρ = −0.13, in line with the IV estimate for manufacturing sectors
reported in column (2) of Table B.2. This implies the same elasticity of substitution be-
tween manufacturing and non-manufacturing sectors as within the set of manufacturing
sectors. We consider alternative cases in the sensitivity analysis of Section 5.3.

Following the theoretical analysis of Section 2.3, we treat each country as small. Un-
der the assumption of nested CES preferences, as a given country j becomes arbitrarily
small relative to other countries, sector-level prices and expenditures, Pj,k and Xj,k, be-
come independent of the prices of its exports, pji,k, and the price elasticities ϵ

p∗
ij,k converge

in Shapiro (2016) that use high-frequency variation. We also prefer not to rely on the orthogonality as-
sumption invoked by Caliendo and Parro (2015), which precludes (the levels of) tariffs from responding
systematically to (the levels of) imports (because of lobbying or other political-economy considerations).
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Table 2: Gains from Optimal Policies, Selected Countries

Fully Optimal Policy Trade Policy Industrial Policy
Country (1) (2) (3)

United States 0.82% 0.51% 0.59%
China 0.91% 0.74% 0.76%
Germany 1.35% 1.51% 1.08%
Ireland 2.72% 2.35% 2.06%
Vietnam 2.07% 1.88% 1.19%

Avg., Unweighted 1.67% 1.46% 1.08%
Avg., GDP-weighted 1.06% 0.87% 0.76%
Notes: Column (1) reports the gains associated with fully optimal policies, as defined in equation (13);
column (2) reports the gains associated with optimal trade policy, as defined in equation (15); and column
(3) reports the gains associated with optimal industrial policy, as defined in equation (14). All gains are
reported as a share of initial income.

to −1/(1 + θk). Under the normalization s̄j = t̄j = 0, the optimal industrial and trade
policy described in Proposition 1 are therefore given by

s∗j,k =
γk

1 + γk
, for all k, (33)

tx∗
ji,k =

1
1 + θk

, for all k and i ̸= j, (34)

tm∗
ij,k = 0, for all k and i. (35)

Given estimates of the optimal policies, we compute counterfactual equilibria under
those policies using exact hat algebra, as in Dekle, Eaton and Kortum (2008), under the
assumption that the initial equilibrium observed in the data (corresponding to 2010, the
final year in the ICIO dataset) features neither taxes nor subsidies and that trade deficits
Di correspond to transfers across countries which we hold fixed in the counterfactual
equilibria. The full non-linear system of equations that determines these counterfactual
changes can be found in Appendix C.1.

5.2 Baseline Results

Table 2 shows the gains from optimal trade and industrial policy for a subset of countries
as well as the average across countries, both unweighted and weighted by GDP. Results
for each of the 61 countries in our dataset can be found in Table C.1 in Appendix C.2.

Column (1) reports the gains from the fully optimal policy, defined in equation (13)
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and expressed as a share of initial income. This corresponds to the welfare gains of going
from laissez-faire to export taxes equal to 1/(1 + θk) and employment subsidies equal
to γk/(1 + γk). The separate gains from optimal industrial and trade policy, defined in
equations (14) and (15) and again expressed as a share of initial income, are reported in
columns (2) and (3) respectively.

The results in Table 2 reveal that the gains from fully optimal policy (column 1) are
on average 1.67%. The gains from optimal industrial policy (column 3) are smaller than
those from optimal trade policy (column 2): focusing on the unweighted average across
countries, these gains are 1.08% and 1.46%, respectively. Interestingly, the gains from fully
optimal policy are sometimes lower than the gains from optimal trade policy, reflecting
the fact that using only industrial policy ignoring their terms-of-trade implications leads
to large welfare losses in some countries.

The gains from industrial policy are closely aligned with those predicted by the areas
of Harberger triangles in Proposition 2, as can be seen in Figure 2, which reports the exact
gains from industrial policy generated by the model plotted against the second-order
approximation in equation (17). A linear regression of the exact gains on our second-
order approximation yields a slope equal to 0.93 and an R2 equal to 0.97.31

Modest gains from industrial policy do not reflect modest “wedges.” According to
our estimates of scale elasticities, if all labor were to reallocate to the manufacturing sector
with the largest scale elasticity γk = 0.31, the average welfare gains predicted by the area
of the Harberger triangles would be equal to 12.4%.32 Modest gains instead reflect the
fact that only modest labor reallocations take place from “low-wedge” to “high-wedge”
sectors. This is due to a relatively low elasticity of substitution between sectors and to
trade elasticities that are far from infinity. Going back to the textbook case for industrial
policy illustrated in Figure 1, our empirical analysis points to Harberger triangles that
have non-trivial heights, but small bases.

Across countries, our quantitative results nevertheless exhibit substantial heterogene-
ity. Smaller countries, in particular, tend to gain more from industrial policy than larger
ones. This is revealed by the fact that the simple average in column (3) is higher than the
corresponding GDP-weighted average. As an example, Ireland has gains from industrial

31Harberger triangles also provide good approximations for the gains from fully optimal policy and
optimal trade policy, with corresponding slope and R2 given by 1.49 and 0.87 for the fully optimal policy
and 0.66 and 0.84 for optimal trade policy.

32Specifically, the sector with the largest elasticity γk = 0.31 is Paper Products. If labor were to fully
reallocate to that sector, the welfare change in a given country j predicted by equation (17) would be 1

2 ×
[(1 − Lj,Paper/Lj)× 0.31 − ∑k ̸=Paper(Lj,k/Lj)γk]. The average of the previous number across all countries in
our dataset is equal to 0.124.
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Figure 2: Exact Policy Gains versus Areas of Harberger Triangles

Notes: Figure 2 reports the exact gains from industrial policy (as a share of initial income) on the y-axis,
as defined in equation (14), against the second-order approximation from Proposition 2 on the x-axis, as
described in equation (17). The solid line is the line of best fit and the dashed line is the 45◦ line.

policy that are over three times higher than those of the United States (2.06% vs 0.59%).33

A key difference between small and large countries is their degree of openness to
trade. Smaller countries are more open and more open countries gain more from opti-
mal industrial policy. This is illustrated in Figure 3, which shows a scatter plot of the
gains from industrial policy (vertical axis) against openness measured as exports plus
imports over gross output (horizontal axis). Intuitively, inelastic domestic demand exerts
a weaker restraint on labor reallocation in more open economies, and so their Harberger
triangles have larger bases, leading to bigger gains from industrial policy. In line with
the previous intuition, a cross-country regression of ∑k |(∆Lj,k)

I/Lj| on openness yields a
strong positive relationship with an R2 of 0.93.

An additional implication of the Harberger formula described in equation (17) is that,
for given elasticities (∆Lj,k)

I/Lj,k, countries with higher employment in sectors with stronger
scale economies should benefit more from industrial policy. Our quantitative results are

33Smaller countries also gain more from trade policy and the fully optimal policy, as can also be seen
by comparing the simple averages in column (1) and (2) to the corresponding GDP-weighted averages.
The reason why smaller countries gain more from optimal trade policy is simple: such a policy improves
a country’s terms-of-trade, and since small countries tend to trade more, they benefit more from that im-
provement.
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Figure 3: Industrial Policy Gains versus Openness

Notes: Figure 3 reports the exact gains from industrial policy (as a share of initial income) on the y-axis,
as defined in equation (14), against openness on the x-axis, measured as exports plus imports over gross
output.

also consistent with this observation: countries with a higher correlation between Lk/L
and γk do indeed have higher gains from optimal industrial policy. However, this chan-
nel accounts for a smaller fraction of the cross-country variation in the gains compared
to the openness channel discussed above: a regression of the gains from industrial policy
on openness yields R2 = 0.74, while adding the variable ∑k Lk/L · γk as a predictor only
increases the R2 to 0.87.

5.3 Gains from Industrial Policy in the Presence of Trade Agreements

The previous quantitative results assume that countries are free to pursue their unilat-
erally optimal trade policies. In practice, explicit trade agreements or implicit threats of
foreign retaliation may prevent countries from doing so. How would such considerations
affect the gains from industrial policy?

We address this issue under two benchmark scenarios. In the first case, countries are
forced to set zero trade taxes, but still face incentives to manipulate their terms-of-trade
using industrial policy, as in Lashkaripour and Lugovskyy (2018). In the second, we
assume that, despite the availability of other policy instruments, trade agreements have
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Table 3: Gains from Constrained and Globally Efficient Industrial Policies, Selected
Countries

Baseline Constrained Globally Efficient
Industrial Policy Industrial Policy Industrial Policy

Country (1) (2) (3)

United States 0.59% 0.48% 0.62%
China 0.76% 0.49% 0.02%
Germany 1.08% 0.60% -0.63%
Ireland 2.06% 1.64% -2.14%
Vietnam 1.19% 1.28% 1.66%

Avg., Unweighted 1.08% 0.97% 0.35%
Avg., GDP-Weighted 0.76% 0.59% 0.23%
Notes: Each column reports the gains, expressed as a share of initial real national income, that could be
achieved by each type of policy. See the text for detailed descriptions of the exercises.

been designed to internalize terms-of-trade externalities and restore global efficiency, as
in Bagwell and Staiger (2001).34

Under the first scenario, we numerically find the employment subsidies that maxi-
mize utility in a given country conditional on zero trade taxes. As mentioned above, these
constrained-optimal employment subsidies involve a compromise between the textbook
Pigouvian motive of internalizing production externalities and the goal of improving the
country’s terms-of-trade.35 Column (2) of Table 3 reports the gains from industrial pol-
icy under this first scenario.36 For convenience, column (1) reports again the gains from
industrial policy when trade policy is unconstrained as well, i.e., column (2) of Table 2.
On average, the gains from this type of constrained industrial policy are a bit lower than
those from the optimal industrial policy reported in our baseline, with the unweighted
world average decreasing from 1.08% to 0.97%.

34Another potentially interesting scenario would be to consider the gains from industrial and trade pol-
icy in an environment where all countries simultaneously impose policies non-cooperatively. Although we
stop short of analyzing such Nash equilibria, we expect countries to be less open when they all choose trade
taxes in a non-cooperative manner and, in turn, the gains from industrial policy to be smaller, consistent
with the results of Figure 3. Indeed, when considering counterfactual autarkic economies, we find gains
from industrial policy that are 0.41% on average.

35As an example, consider an economy that exports all its output. In this case employment subsidies
equal to 1 − ( 1

1+γk
)( 1+θk

θk
) would perfectly replicate the effect of both the employment subsidies and export

taxes in the unconstrained policy case. As long as there is some sector in which part of domestic production
is sold at home, however, the constrained-optimal employment subsidies will deviate from those and the
corresponding gains will be strictly lower than those when policy is unconstrained.

36Results for all countries in our dataset can be found in Table C.2.
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Under the second scenario, we assume that employment subsidies are chosen in a
Pareto-efficient manner, with lump-sum transfers between countries available if neces-
sary. Hence, only the Pigouvian motive remains and all countries set employment sub-
sidies satisfying sj,k = γk/(1 + γk) for all j, k. The gains from industrial policy (gross
of lump-sum transfers between countries, if any) in this case are reported in column (3)
of Table 3. The GDP-weighted average of the gains associated with this policy is 0.23%,
but with (gross of transfer) gains of 1.66% in Vietnam and losses of 2.14% in Ireland. Such
welfare losses derive from adverse terms-of-trade effects: larger employment subsidies in
sectors with high scale elasticities cause an expansion of these sectors and a deterioration
of the terms-of-trade of countries specializing in them.37

5.4 Sensitivity to Calibrated Parameters

We conclude this section by exploring the sensitivity of our findings with respect to the
main parameters used in our quantitative exercise: trade elasticities θk, scale elasticities
γk, and the elasticity of substitution between sectors ρ.

Trade Elasticities. Trade elasticities play a dual role in our analysis. First, they affect
the demand functions that we use to estimate scale elasticities γk in equation (25), and
in turn the structure of optimal industrial policy. Second, they shape the magnitude of
the reallocations associated with industrial policy for any value of γk, and in turn the
associated welfare gains. Our baseline estimates used θk from Giri et al. (2021). We now
explore the sensitivity of the gains from industrial policy to alternative calibrations of θk

that do not rely on the heterogeneity uncovered by Giri et al. (2021).
For our first exercise, we vary the extent of heterogeneity in trade elasticities across

sectors by setting θk = λθk,baseline + (1 − λ)median{θs,baseline}, where θk,baseline denotes
the estimate of the trade elasticity in sector k from Giri et al. (2021) and λ controls the
dispersion in trade elasticities across sectors. When λ = 1, this dispersion is as estimated
by Giri et al. (2021). When λ = 0, there is none. For each alternative value of the vector
of trade elasticities {θk}, we then repeat the entire two-step estimation procedure from
Section 4 to estimate new scale elasticities {γk}, before recomputing the counterfactual
equilibria from Section 5.1. The results of this exercise are reported in Figure 4a, with the
standard deviation of θk corresponding to each λ on the x-axis. Although the extent of

37The correlation between the gains from the coordinated industrial policy considered in column (3) of
Table 3 and the comparative advantage of countries in high scale elasticity sectors (which we measure sim-
ply as the correlation, within each country, between its sector-level net exports and sector scale elasticities),
is equal to −0.54.
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Figure 4: Gains from Industrial Policy, Alternative Trade Elasticities

Notes: Figure 4a reports the (global, unweighted average) gains from industrial policy, as defined in equa-
tion (14), for different values of the standard deviation of trade elasticities achieved by varying λ ∈ [0, 1] in
θk = λθk,baseline + (1 − λ)median{θs,baseline}. The large circle indicates the trade elasticities used in Table 2,
i.e. λ = 1. Figure 4b does the same for different values of a common trade elasticity θk = θ. The large circle
indicates the median of the estimates from Giri et al. (2021), i.e. θ = 4.32.

heterogeneity across sectors varies widely across simulations, we see that it has very little
effect on the magnitude of the gains from industrial policy.

For our second exercise, we start from the case where there is no heterogeneity in trade
elasticities, θk = θ, and vary the common level of the trade elasticity θ around the median
value of 4.32 estimated by Giri et al. (2021), from their minimum estimate (θk = 2.97) to
their maximum (θk = 8.94). We then again repeat the estimation from Section 4 and coun-
terfactual analysis from Section 5.1. Figure 4b shows that gains from industrial policy
are more sensitive to the level of the (common) trade elasticity than to its standard devi-
ation, with smaller trade elasticities associated with larger gains from industrial policy.
Intuitively, there are two forces at play. On the one hand, smaller trade elasticities lead to
more modest labor reallocations, which imply Harberger triangles with smaller bases. On
the other hand, smaller trade elasticities also require larger scale elasticities to rationalize
the response of exports to sector size observed in the data, which implies Harberger tri-
angles with higher heights. Around our calibrated economy, the second effect dominates
the first. For a common trade elasticity of θ = 2.97, which is at the low end of existing
estimates in the literature, gains from industrial policy are around 2% on average.38

38In our working paper Bartelme et al. (2019), we also report gains from industrial policy using alternate
trade elasticities from Caliendo and Parro (2015) and Shapiro (2016). The average gains from industrial
policy in the case of Shapiro (2016) remain very similar to those in our baseline calibration, but are around
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Figure 5: Gains from Industrial Policy, Other Parameter Values

Notes: Figure 5a reports the (global, unweighted average) gains from industrial policy, as defined in equa-
tion (14), for different values of the scale elasticity outside manufacturing, γNM. Figure 5b does the same
for different values of the elasticity of substitution between sectors, 1 + ρ. Large circles indicate baseline
parameter values used in Table 2.

Scale Economies in Non-Manufacturing. We next consider the implications of the value
of scale economies in non-manufacturing sectors, a parameter that we denote γNM. Our
baseline assumption of γNM = 0—in which only manufacturing sectors exhibit economies
of scale—fits the traditional view behind industrial policy. But in the absence of strong ev-
idence to suggest that industrial sectors have superior economies of scale, it is important
to explore the quantitative implications of this assumption.

To shed light on this issue, Figure 5a plots the average of the estimated gains from
optimal industrial policy (across all countries in the world) as a function of γNM.39 Not
surprisingly, as we start raising γNM from zero, the relative size of manufacturing and
non-manufacturing sectors in the competitive equilibrium gets closer to its optimal value
and the gains from industrial policy fall. Indeed, the gains are minimized when γNM is
around 0.17, close to the average of the manufacturing sector γk values of 0.21. Our base-
line finding that the gains from optimal industrial policy are relatively modest therefore
appears to hold across a range of reasonable values for scale elasticities outside manufac-
turing, in line with the fact that these modest gains derive from Harberger triangles with
modestly sized bases rather than heights.

3.28% on average in the case of Caliendo and Parro (2015) because of extremely low trade elasticity esti-
mates in a small number of sectors.

39We continue to calculate the gains from optimal policy as described in equations (33)-(35); that is, now
that γNM > 0 the optimal policy includes an employment in non-manufacturing sectors.
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Elasticity of Substitution Across Sectors. Finally, we consider the role played by the
elasticity of substitution 1+ ρ. In our baseline analysis, we have used our IV estimate 1+
ρ̂ = 0.87. In Figure 5b, we plot the average gains from optimal industrial policy for a wide
range of alternative parameters. As discussed above, we expect that a higher ρ would lead
to larger reallocations in response to optimal industrial policy and, in turn, larger welfare
gains. Qualitatively, this is confirmed in Figure 5b. Quantitatively, however, we see that
even for an elasticity of substitution of 1 + ρ = 2, much higher than the recent estimates
in Cravino and Sotelo (2019) and Comin, Lashkari and Mestieri (2021), the average gains
from industrial policy are only 1.76%.

6 Beyond Ricardian Economies

In previous sections, we have explored the structure and welfare consequences of optimal
industrial and trade policy in a Ricardian environment in the tradition of Graham (1923),
Chipman (1970), and Ethier (1982). In this final section, we extend our earlier analysis to
richer environments featuring multiple factors of production and input-output linkages.

6.1 General Environment

Consider a generalized version of the environment of Section 2.1. Each country is now
endowed with both labor and physical capital, Li and Ki, and all production functions
now use labor, physical capital, and intermediate goods from other countries and sectors,

yij,k = Aij,kEk(Zi,k)zij,k,

zij,k = fk(ℓij,k, kij,k, mij,k),

where mij,k ≡ {moij,sk} denotes the vector of intermediate inputs, moij,sk, from a given
origin country o and source sector s used by firms producing good k in country i and
exporting it to country j, kij,k denotes the amount of physical capital that they use, and fk

is homogeneous of degree one in all inputs.40 The relevant measure of sector size is now

40We allow for Hicks-neutral differences across countries and sectors, but restrict sector-level production
functions, fk, to be constant across countries. In our theoretical analysis, this restriction can be dispensed
with. In our quantitative analysis, the assumption of a common fk across countries helps to avoid compu-
tational problems arising from the combination of economies of scale and very imbalanced input-output
tables in some countries, while still allowing differences in factor endowments to act as a source of compar-
ative advantage.
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given by the total use of the composite input in country i and sector k,

Zi,k = ∑
j

zij,k. (36)

In terms of policy, each country j’s government can still tax imports and exports, at rates
tm
ij,k and tx

ji,k, as well as subsidize purchases of the composite input at rate sj,k, leading to
the arbitrage condition

vj,k = (1 − sj,k)wj,k, (37)

where wj,k denotes the price received by firms from country j producing sector k’s com-
posite input and vj,k denotes the price paid by the firms purchasing it. The rest of the
equilibrium conditions can be found in Appendix A.4.

6.2 Revisiting the Structure of Optimal Policy

Within this environment, we can use the same strategy as in Section 2.3 to characterize
the optimal production subsidies, s∗j,k, and trade taxes, tx∗

ji,k and tm∗
ij,k. The same Pigouvian

logic leads to the following generalization of Proposition 1.

Proposition 3. In the general environment of Section 6.1 the optimal industrial and trade policy
are such that: (i) s∗j,k = ϵE∗

j,k /(1 + ϵE∗
j,k ); (ii) tm∗

ij,k = t̄j; and (iii) tx∗
ji,k = 1 − (1 + t̄j)(1 + ϵ

p∗
ij,k) for

some t̄j.

The formal proof can be found in Appendix A.4.2. The only difference between Propo-
sitions 1 and 3 comes from the level of industrial policy. Since the total supply of the com-
posite input generating the externality, ∑k Zi,k, is elastic, the absolute level of the scale
elasticity is no longer irrelevant and there is no longer an indeterminacy in the level of
the input subsidy, s̄j: optimal subsidies now require s̄j = 0.

To go from theory to data, we maintain the same parametric restrictions as in Section
3.2—that is, Ek and uj satisfy equations (22)-(24)—and assume that fk is nested CES,

fk(ℓij,k, kij,k, mij,k) = [(ℓij,k)
ak(kij,k)

1−ak ]bk ∏
s
[Ms({moij,sk}o)]

bsk , (38)

Ms({moij,sk}o) = (∑
o

m
θs

1+θs
oij,sk)

1+θs
θs , (39)

with bk + ∑s bsk = 1 and ak ∈ [0, 1], with average shares consistent with the OECD’s ICIO
tables. The estimation of scale elasticities γk can then proceed following the same steps
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Figure 6: Optimal Industrial Policy, Beyond Ricardian Economies

Notes: The y-axis reports the optimal industrial policy s∗j,k = γk/(1 + γk) estimated for 15 manufacturing
sectors in the environment with capital and input-output linkages, as described in Section 6.1, whereas the
x-axis reports the optimal industrial policy s∗j,k = γk/(1 + γk) estimated in the baseline environment, as
described in Section 2.1.

as in Section 3 given knowledge of the sector-level production function fk that maps la-
bor, physical capital, and intermediate goods into a country-and-sector specific composite
factor. The counterpart of our baseline specification (25) is

YIO
i,k = δi + δk + γk ln Zi,k + εi,k, (40)

where YIO
i,k ≡ 1

J ∑j(ln Xij,k/θk) + (1 − ak)bk ln(ri/wi) + ∑s bsk ln(Pi,s/wi) now also con-
trols for differences in relative factor prices, ri/wi, and relative intermediate good prices,
Pi,s/wi, as described in Appendix B.6. This adjustment is necessary to isolate the impact
of external economies of scale on quantities demanded.

Figure 6 plots the optimal industrial policy s∗j,k = γk/(1+ γk) estimated in the general
environment of Section 6.1 against the optimal industrial policy s∗j,k = γk/(1 + γk) esti-
mated in the Ricardian environment of Section 2.1 for the same 15 manufacturing sectors.
All observations are close to but below the 45-degree line (illustrated in green).41 The

41All estimates of γk remain statistically significant at the 5% level (except Basic Metals) and the instru-
ments remain strong by conventional standards (with the lowest first-stage SW F-statistic equal to 100.7).

40



CHN
DEU

IRL

USA

VNM

0

5

10
Be

yo
nd

 R
ic

ar
di

an
 E

co
no

m
ie

s

0 2 4 6 8 10
Ricardian Economies

Figure 7: Gains from Industrial Policy, Beyond Ricardian Economies

Notes: Figure 7 reports the gains from industrial policy, as defined in equation (14), in the environment
with capital and input-output linkages, as described in Section 6.1, on the y-axis, against the gains from
industrial policy in the baseline environment, as described in Section 2.1, on the x-axis.

average optimal subsidy in manufacturing sectors is about 28% lower in the presence of
physical capital and input-output linkages. This reflects the fact that our baseline estima-
tion does not control for variation in the price of intermediate goods. Since each sector
and country sources a large fraction of its inputs from itself, countries with larger sectors
also tend to have lower input prices. Controlling for input prices in our modified esti-
mating equation (40) removes this source of upward bias in our baseline estimation. Re-
markably, the identity of the sectors that should be subsidized remains unchanged, with
a correlation between the optimal policies estimated in the two models equal to 0.98.42

6.3 Revisiting the Gains from Optimal Policy

While the structure of optimal policy is very similar to that in our baseline environment,
the consequences of such policy are not. As can be seen from Figure 7, the gains from
optimal industrial policy are significantly larger in the presence of physical capital and

Full estimates are reported in Table B.7.
42Since none of the estimates of trade elasticities are affected by the presence of physical capital and

input-output linkages, the structure of optimal trade policy is trivially unchanged.
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input-output linkages. The average gains estimated here are equal to 4.06%, almost four
times larger than in a Ricardian environment.43 To understand why the gains from opti-
mal policy are higher in this more general environment, it is useful to turn to the following
generalization of Proposition 2.

Proposition 4. In the general environment of Section 6.1, up to a second-order approximation,
the welfare gains from optimal taxes satisfy

W∗
j

Ij
≃ 1

2 ∑
k

wj,kZj,k

Ij
·
(∆Zj,k)

∗

Zj,k
· ϵE∗

j,k +
1
2 ∑

i ̸=j,k

p̄ji,kyji,k

Ij
·
(∆yji,k)

∗

yji,k
· ϵ

p∗
ji,k, (41)

where (∆Zj,k)
∗ and (∆yji,k)

∗ denote the input and export changes associated with imposing τ∗
j and

all other variables are evaluated under laissez-faire. Likewise, up to a second-order approximation,
gains from industrial and trade policy satisfy

W I
j

Ij
≃ 1

2 ∑
k

wjZj,k

Ij
·
(∆Zj,k)

I

Zj,k
· ϵE∗

j,k , (42)

WT
j

Ij
≃ 1

2 ∑
i ̸=j,k

p̄ji,kyji,k

Ij
·
(∆yji,k)

T

yji,k
· ϵ

p∗
ji,k, (43)

where (∆Zj,k)
I denotes the input change associated with imposing s∗j , conditional on having al-

ready imposed optimal trade taxes, and (∆yji,k)
T denotes the export change associated with impos-

ing t∗j , conditional on having already imposed optimal employment subsidies.

The formal proof can be found in Appendix A.4.3. The key distinction between Propo-
sitions 2 and 4 comes from the “shares”, wj,kZj,k/Ij and p̄ji,kyji,k/Ij, appearing in equations
(41)-(43). The numerators, wj,kZj,k and p̄ji,kyji,k, are gross flows, since gross output is what
is being subsidized by industrial policy and taxed by trade policy. In contrast, the de-
nominator, Ij, still measures total value added in country j. Thus “shares” now add up to
numbers that are strictly greater than one, which mechanically raises the gains associated
with both industrial and trade policy.

Quantitatively, the mechanical adjustment from value added to gross flows plays an
important role in generating these larger gains. Starting from the second-order approxi-
mations in Proposition 2 and substituting the “shares” from Proposition 4, while keeping
everything else constant, reduces the difference between the gains from industrial policy

43The counterpart of the exact hat algebra of Section 5 used for the counterfactual analysis in this section
can be found in Appendix C.4, whereas the gains from industrial policy for all countries can be found in
Table C.3 in Appendix C.4.2, along with the gains from trade policy and the fully optimal policy.
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in the two environments by over 80%.44

Overall, though, gains from industrial policy remain significantly smaller than the po-
tential gains that one might have expected given the magnitude of scale elasticities that
we have estimated (12.4% in the simple back-of-the-envelope calculations of Section 5.2).
This reflects the fact that while the wedges that we have estimated empirically are sub-
stantial, the cross-sectoral reallocations taking place under the optimal policy are fairly
modest in all our quantitative exercises.

7 Concluding Remarks

In this paper, we have evaluated the textbook case for industrial policy in an open econ-
omy. We have shown how to use commonly available trade and production data to esti-
mate economies of scale at the sector-level and, in turn, how to characterize the structure
and consequences of optimal industrial policy.

Our estimates imply that, even under the optimistic assumption that governments
maximize welfare and have full knowledge of the underlying economy, gains from opti-
mal industrial policy are hardly transformative, ranging from an average across countries
of 1.08% of GDP in our baseline analysis to 4.06% in the general environment with phys-
ical capital and input-output linkages.

To put these numbers in perspective, recall that South Korea, a country often presented
as an industrial policy success story, experienced gains in real GDP per capita of 6.82%
per year from 1960 to 1989, as documented in Rodrik (1995). A 4.06% long-run welfare
increase is nothing to spit at, but a miracle it is not.

Intuitively, for the textbook gains from industrial policy to be large, two sets of condi-
tions should hold. First, production processes should exhibit significant external economies
of scale that differ in strength across sectors—conditions that would give rise to a Har-
berger triangle with a large height in Figure 1. Second, high elasticities of substitu-
tion and trade openness should allow significant reallocations of resources across sec-
tors—conditions that would give rise to a Harberger triangle with a large base in Figure
1. Across our quantitative exercises, given low elasticities of demand, the non-trivial gap
between social and marginal costs that we estimate remains too small to generate large
gains from industrial policy, even for the most open economies.

There are, of course, many other market failures that industrial policy may target.
Alleviating financial distortions, as in Itskhoki and Moll (2019) and Liu (2019), solving

44Like in the baseline Ricardian environment, our second-order formulas provide good approximations
in the general environment of Section 6.1. This can be seen from Figure C.1 in Appendix C.4.3.
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coordination failures, as in Murphy et al. (1989), Rodrik (1996) and Buera et al. (2021),
and fostering sectors with positive spillovers to the rest of the economy, as in Greenwald
and Stiglitz (2006), may all, in theory, generate transformative gains from industrial pol-
icy. Our results, however, offer little empirical support for the notion that these gains can
arise from the textbook case based on external economies of scale, at least at the level of
aggregation considered in our analysis. An interesting open question is whether allowing
for more granular economies of scale, within both more narrowly defined sectors and re-
gions, may magnify the gains from policy intervention by combining features of optimal
industrial and trade policy, as emphasized in this paper, with those of optimal place-
based policy, as emphasized in Fajgelbaum and Gaubert (2020) and Rossi-Hansberg et al.
(2019). We hope that the combination of theory and empirics developed in this paper will
prove useful in making progress on this and other related questions.
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A Online Appendix: Theory

A.1 Derivation of Equation (11)

Proof. Start from the identity,

Uj(τ) = Vj(pj(τ), Ij(τ)), (A.1)

with the total income of country j’s representative agent equal to

Ij(τ) = wjLj + ∑
i,k

πji,k − ∑
k

sj,kwjLj,k + ∑
j ̸=i,k

tm
ij,k p̄ij,kcij,k + ∑

j ̸=i
tx

ji,k p̄ji,kyji,k.

Totally differentiating (A.1) implies

dUj = ∑
i,k

∂Vj

∂pij,k
× dpij,k +

∂Vj

∂Ij
×
{

Ljdwj + ∑
i,k

[
∂πji,k

∂qji,k
dqji,k +

∂πji,k

∂vj,k
dvj,k +

∂πji,k

∂Lj,k
dLj,k

]
+∑

k
(dvj,k − dwj)Li,k + ∑

k
(vj,k − wj)dLi,k + ∑

i,k
(dpij,k − dp̄ij,k)cij,k

+∑
i,k
(pij,k − p̄ij,k)dcij,k +∑

i,k
(dp̄ji,k − dqji,k)yji,k + ∑

i,k
( p̄ji,k − qji,k)dyji,k

}
. (A.2)

Next, apply the Envelope Theorem to the utility maximization problem of country j’s representa-

tive agent and the profit maximization problem of its firms. This implies

∂Vj

∂pij,k
= −

∂Vj

∂Ij
cij,k, for all i and k, (A.3)

∂πji,k

∂qji,k
= yji,k, for all i and k, (A.4)

∂πji,k

∂vj,k
= −ℓji,k for all i and k. (A.5)

Substituting (A.3)-(A.5) into (A.2) gives

dUj =
∂Vj

∂Ij
×
{

∑
k
(vj,k − wj)dLj,k + ∑

i,k
(pij,k − p̄ij,k)dcij,k + ∑

i,k
( p̄ji,k − qji,k)dyji,k

+ ∑
i,k

∂πji,k

∂Lj,k
dLj,k − ∑

i ̸=j,k
cij,kdp̄ij,k + ∑

i ̸=j,k
yji,kdp̄ji,k

}
, (A.6)
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where we have also used the good market clearing condition (7) for local goods, cjj,k = yjj,k, as

well as country j’s labor market clearing condition (8). To conclude, note that

∂πji,k

∂Lj,k
= vj,k

E′
k(Lj,k)

Ek(Lj,k)
ℓji,k for all i and k, (A.7)

dp̄ij,k = 0 for all i ̸= j and k, (A.8)

dp̄ji,k = p̃′ji,k(yji,k)dyji,k for all i ̸= j and k. (A.9)

Combining (2)-(4) with (A.6)-(A.9) and letting λj ≡ ∂Vj/∂Ij, ϵE
j,k ≡ d ln Ek(Lj,k)/d ln Lj,k, and ϵ

p
ji,k ≡

d ln p̃ji,k(yji,k)/d ln yji,k, (A.6) simplifies into (11).

A.2 Proof of Proposition 1

Proof. Start from equation (12),

∑
k

s∗j,kw∗
j dLj,k − ∑

i ̸=j,k
tm∗
ij,k p̄∗ij,kdcij,k − ∑

i ̸=j,k
tx∗

ji,k p̄ji,kdyji,k

= ∑
k

ϵE∗
j,k w∗

j (1 − s∗j,k)dLj,k + ∑
i ̸=j,k

ϵ
p∗
ji,k p̄∗ji,kdyji,k.

Since the previous condition must hold for any feasible variation, it must hold, in particular, for

variations that: (i) decrease domestic sales in sector 1 and increase domestic sales in sector k so

that dLj,k = −dLj,1, holding all other equilibrium variables fixed; (ii) increase the imports of good

1 from country 1 and increase the imports of good k from country i, dcij,k = − p̄∗1j,1
p̄∗ij,k

dc1j,1, holding all

other equilibrium variables fixed; or (iii) decrease the imports of good 1 from country 1, increase

the exports of good k to country i, dyji,k =
p̄∗1j,1

p̄∗ji,k
(

1+ϵ
p∗
ji,k

)dc1j,1, and decrease its domestic sales of good

k, dyjj,k = −
A∗

jj,k
A∗

ji,k
dyji,k, holding all other equilibrium variables fixed. Specializing (12) to variations

(i)-(iii), respectively, imply

s∗j,k = [s∗j,1 − ϵE∗
j,1 (1 − s∗j,1) + ϵE∗

j,k ]/(1 + ϵE∗
j,k ),

tm∗
ij,k = tm∗

1j,1,

tx∗
ji,k = 1 − (1 + tm∗

1j,1)(1 + ϵ
p∗
ji,k).

Setting s̄j = s∗j,1 − ϵE∗
j,1 (1 − s∗j,1) and t̄j = tm∗

1j,1 concludes the proof of Proposition 1.

A.3 Proof of Proposition 2

Proof. We first approximate the gains from fully optimal policies, W∗
j , and then show how a similar

argument can be used to approximate the gains from industrial and trade policy, W I
j and WT

j .
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Part I: Derivation of Equation (16).

Proof. Consider a set of world economies, each associated with distinct external economies of

scale, {Ek(·)}, and inverse import demand functions, { p̃ji,k(·)}i ̸=j,k, that generate distinct optimal

policies τ∗
j ≡ {s∗j,k, tm∗

ij,k, tx∗
ji,k}i ̸=j,k in country j as well as distinct elasticities ϵ∗j ≡ {ϵE∗

j,k , ϵ
p∗
ji,k}i ̸=j,k

in the equilibrium associated with these optimal policies. Let Ŵ∗
j (ϵ

∗
j ) denote country j’s welfare

gains from optimal policy for each of these world economies. It varies with ϵ∗j for two reasons:

(i) through the direct effect of the underlying changes in {Ek(·)} and { p̃ji,k(·)}i ̸=j,k on equilibrium

prices and quantities, and (ii) the indirect effect of these changes on the value of the optimal

taxes, τ∗
j ≡ {ŝj,k(ϵ

∗
j ), t̂m

ij,k(ϵ
∗
j ), t̂x

ji,k(ϵ
∗
j )} ≡ τ̂j(ϵ

∗
j ), with ŝj,k(ϵ

∗
j ) ≡ ϵE∗

j,k /(1 + ϵE∗
j,k ), t̂m

ij,k(ϵ
∗
j ) ≡ 0, and

t̂x
ji,k(ϵ

∗
j ) ≡ −ϵ

p∗
ji,k, as shown in Proposition 1 under the normalization s̄j = t̄j = 0. To keep track of

these direct and indirect effects, rewrite equation (13) as

Vj( p̂j(τ̂j(ϵ
∗
j ), ϵ∗j ), Îj(τ̂j(ϵ

∗
j ), ϵ∗j )) = Vj( p̂j(0, ϵ∗j ), Îj(0, ϵ∗j ) + Ŵ∗

j (ϵ
∗
j )), (A.10)

with the second argument of p̂j(τ̂j(ϵ
∗
j ), ϵ∗j ) and Îj(τ̂j(ϵ

∗
j ), ϵ∗j ) capturing the direct effect on prices

and income of {Ek(·)} and { p̃ji,k(·)}i ̸=j,k. The goal is to show that as ϵ∗j → 0, the difference between

Ŵ∗
j (ϵ

∗
j ) and 1

2 ∑k wj∆Lj,kϵE∗
j,k + 1

2 ∑i ̸=j,k p̄ji,k∆yji,kϵ
p∗
ji,kn goes to zero at a rate no slower than |ϵ∗j |3,

Ŵ∗
j (ϵ

∗
j ) =

1
2 ∑

k
wj(∆Lj,k)

∗ϵE∗
j,k +

1
2 ∑

i ̸=j,k
p̄ji,k(∆yji,k)

∗ϵ
p∗
ji,k + O(|ϵ∗j |3), (A.11)

which is the formal counterpart of the approximation displayed in equation (16).

To establish this result, start from the second-order Taylor expansion,

Ŵ∗
j (ϵ

∗
j ) = Ŵ∗

j (0) + [DϵŴ∗
j ]

′
ϵ∗j =0ϵ∗j +

1
2
(ϵ∗j )

′[HϵŴ∗
j ]ϵ∗j =0ϵ∗j + O(|ϵ∗j |3), (A.12)

with DϵŴ∗
j ≡ {dŴ∗

j /dϵ∗j,n} the vector of first derivatives with respect to all elasticities, ϵ∗j ≡
{ϵ∗j,n}, with the convention ϵ∗j,n = ϵE∗

j,k if n = (k, E) and ϵ∗j,n = ϵ
p∗
ji,k if n = (i, k, p), and HϵŴ∗

j ≡
{d2Ŵ∗

j /(dϵ∗j,ndϵ∗j,m)} the associated Hessian. First, note that gains from optimal policy are zero if

ϵ∗j = 0,

Ŵ∗
j (0) = 0. (A.13)

Second, differentiate (A.10) with respect ϵ∗j,n,

∂V̂j(τ̂j(ϵ
∗
j ), ϵ∗j , 0)

∂τj,n

dτ̂j,n

dϵ∗j,n
+

∂V̂j(τ̂j(ϵ
∗
j ), ϵ∗j , 0)

∂ϵ∗j,n
=

∂V̂j(0, ϵ∗j , Ŵ∗
j (ϵ

∗
j ))

∂ϵ∗j,n
+

∂V̂j(0, ϵ∗j , Ŵ∗
j (ϵ

∗
j ))

∂Wj

dŴ∗
j

dϵ∗j,n
, (A.14)

with V̂j(τj, ϵ∗j , Wj) ≡ Vj( p̂j(τj, ϵ∗j ), Îj(τj, ϵ∗j ) +Wj) and τ̂j,n is the policy associated with the elasticity

ϵ∗j,n, i.e., τ̂j,n(ϵ
∗
j ) = ŝj,k(ϵ

∗
j ) if n = (k, E) and τ̂j,n(ϵ

∗
j ) = t̂x

ij,k(ϵ
∗
j ) if n = (i, k, p). At the optimal policy

mix, τ∗
j = τ̂j(ϵ

∗
j ), we know that ∂V̂j(τ̂j(ϵ

∗
j ), ϵ∗j , 0)/∂τj,n = 0. Noting that (∂V̂j/∂Wj)(τj,ϵ∗j ,Wj)=0 =
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λj ̸= 0, where λj denotes the marginal utility of income in the laissez-faire equilibrium with

ϵ∗j = 0, equations (A.13) and (A.14) then imply

[DϵŴ∗
j ]ϵ∗j =0 = 0. (A.15)

Third, differentiate (A.14) with respect to ϵ∗j,m,

∂V̂2
j (τ̂j(ϵ

∗
j ), ϵ∗j , 0)

∂τj,m∂τj,n

dτ̂j,n

dϵ∗j,n

dτ̂j,m

dϵ∗j,m
+

∂V̂2
j (τ̂j(ϵ

∗
j ), ϵ∗j , 0)

∂ϵ∗j,m∂τj,n

dτ̂j,n

dϵ∗j,n
+

∂2V̂j(τ̂j(ϵ
∗
j ), ϵ∗j , 0)

∂τj,m∂ϵ∗j,n

dτ̂j,m

dϵ∗j,m
+

∂2V̂j(τ̂j(ϵ
∗
j ), ϵ∗j , 0)

∂ϵ∗j,m∂ϵ∗j,n

=
∂2V̂j(0, ϵ∗j , Ŵ∗

j (ϵ
∗
j ))

∂ϵ∗j,m∂ϵ∗j,n
+

∂2V̂j(0, ϵ∗j , Ŵ∗
j (ϵ

∗
j ))

∂Wj∂ϵ∗j,n

dŴ∗
j

dϵ∗j,m
+

∂2V̂j(0, ϵ∗j , Ŵ∗
j (ϵ

∗
j ))

∂ϵ∗j,m∂Wj

dŴ∗
j

dϵ∗j,n

+
∂2V̂j(0, ϵ∗j , Ŵ∗

j (ϵ
∗
j ))

∂W2
j

dŴ∗
j

dϵ∗j,m

dŴ∗
j

dϵ∗j,n
+

∂V̂j(0, ϵ∗j , Ŵ∗
j (ϵ

∗
j ))

∂Wj

d2Ŵ∗
j

dϵ∗j,mdϵ∗j,n
.

Evaluated at ϵ∗j = 0, the previous expression implies

d2Ŵ∗
j (0)

dϵ∗j,mdϵ∗j,n
=

1
λj

[
∂V̂2

j

∂τj,m∂τj,n

dτ̂j,n

dϵ∗j,n

dτ̂j,m

dϵ∗j,m
+

∂V̂2
j

∂ϵ∗j,m∂τj,n

dτ̂j,n

dϵ∗j,n
+

∂2V̂j

∂τj,m∂ϵ∗j,n

dτ̂j,m

dϵ∗j,m

]
(τj,ϵ∗j ,Wj)=0

, (A.16)

where we have used (A.15) and (∂V̂j/∂Wj)(τj,ϵ∗j ,Wj)=0 = λj. Next, compute the cross-derivatives

of V̂j. We start from equation (11). Using the present notation and the fact that optimal tariffs are

zero, it can be rearranged as

1
λ∗

j

∂V̂j(τ̂j(ϵ
∗
j ), ϵ∗j , 0)

∂τj,n
= −∑

k
s∗j,kŵj

∂L̂j,k

∂τj,n
+ ∑

i ̸=j,k
tx∗

ji,k ˆ̄pji,k
∂ŷji,k

∂τj,n
+ ∑

k
ϵE∗

j,k (1 − s∗j,k)ŵj
∂L̂j,k

∂τj,n
+ ∑

i ̸=j,k
ϵ

p∗
ji,k

ˆ̄pji,k
∂ŷji,k

∂τj,n
,

where λ∗
j is the marginal utility of income under the optimal policy mix and all equilibrium prices

and quantities appearing on the right-hand side with hats are treated as functions of (τ̂j(ϵ
∗
j ), ϵ∗j ).

Differentiating a second time with respect to ωj,m ∈ {τj,m, ϵj,m} and using τ∗
j = τ̂j(ϵ

∗
j ), we obtain

∂
(

1/λ∗
j

)
∂ωj,m

∂V̂j

∂τj,n
+

1
λ∗

j

∂2V̂j

∂ωj,m∂τj,n
= ∑

k

(
−

∂s∗j,k
∂ωj,m

+
∂[ϵE∗

j,k (1 − s∗j,k)]

∂ωj,m

)(
ŵj

∂L̂j,k

∂τj,n

)

+ ∑
i ̸=j,k

(
∂tx∗

ji,k

∂ωj,m
−

∂(−ϵ
p∗
ji,k)

∂ωj,m

)(
ˆ̄pji,k

∂ŷji,k

∂τj,n

)
.
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Since ∂V̂j(τ̂j(ϵ
∗
j ), ϵ∗j , 0)/∂τj,n = 0 at the optimal policy mix, this yields

1
λj

(
∂2V̂j

∂sj,k∂τj,n

)
(τj,ϵ∗j ,Wj)=0

=

(
−ŵj(1 + ϵE∗

j,k )
∂L̂j,k

∂τj,n

)
(τj,ϵ∗j )=0

, (A.17)

1
λj

(
∂2V̂j

∂ϵE∗
j,k ∂τj,n

)
(τj,ϵ∗j ,Wj)=0

=

(
ŵj(1 − s∗j,k)

∂L̂j,k

∂τj,n

)
(τj,ϵ∗j )=0

, (A.18)

1
λj

(
∂2V̂j

∂tx
ji,k∂τj,n

)
(τj,ϵ∗j ,Wj)=0

=

(
ˆ̄pji,k

∂ŷji,k

∂τj,n

)
(τj,ϵ∗j )=0

, (A.19)

1
λj

(
∂2V̂j

∂ϵ
p∗
ji,k∂τj,n

)
(τj,ϵ∗j ,Wj)=0

=

(
ˆ̄pji,k

∂ŷji,k

∂τj,n

)
(τj,ϵ∗j )=0

. (A.20)

By definition, τ̂j(ϵ
∗
j ) ≡ {ŝj,k(ϵ

∗
j ), t̂m

ij,k(ϵ
∗
j ), t̂x

ji,k(ϵ
∗
j )} satisfies

dτ̂j,n

dϵ∗j,n
=

dŝj,k(ϵ
∗
j )

dϵE∗
j,k

=
1

(1 + ϵE∗
j,k )

2
, if n = (k, E), (A.21)

dτ̂j,n

dϵ∗j,n
=

dt̂x
ji,k(ϵ

∗
j )

dϵ
p∗
ji,k

= −1, if n = (i, k, p). (A.22)

Equations (A.12)-(A.22) imply

Ŵ∗
j (ϵ

∗
j ) =

1
2 ∑

k,n

(
ŵj(1 − ŝj,k)

∂L̂j,k

∂τj,n

dτ̂j,n

dϵ∗j,n

)
(τj,ϵ∗j )=0

ϵ∗j,nϵE∗
j,k

+
1
2 ∑

i ̸=j,k,n

(
ˆ̄pji,k

∂ŷji,k

∂τj,n

dτ̂j,n

dϵ∗j,n

)
(τj,ϵ∗j )=0

ϵ∗j,nϵ
p∗
ji,k + O(|ϵ∗j |3). (A.23)

To simplify the previous expression, note that a zero-order Taylor approximation implies

wj ≡ ŵj(0, ϵ∗j ) = ŵj(0, 0) + O(|ϵ∗j |), (A.24)

p̄ji,k ≡ ˆ̄pji,k(0, ϵ∗j ) = ˆ̄pji,k(0, 0) + O(|ϵ∗j |). (A.25)

Note also that

(∆Lj,k)
∗ ≡ L̂j,k(τ̂j(ϵ

∗
j ), ϵ∗j )− L̂j,k(0, ϵ∗j ) = L̂j,k(τ̂j(ϵ

∗
j ), ϵ∗j )− L̂j,k(0, 0) + L̂j,k(0, 0)− L̂j,k(0, ϵ∗j ),

(A.26)

(∆yji,k)
∗ ≡ ŷji,k(τ̂j(ϵ

∗
j ), ϵ∗j )− ŷji,k(0, ϵ∗j ) = ŷji,k(τ̂j(ϵ

∗
j ), ϵ∗j )− ŷji,k(0, 0) + ŷji,k(0, 0)− ŷji,k(0, ϵ∗j ).

(A.27)
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First-order Taylor approximations therefore imply

L̂j,k(τ̂j(ϵ
∗
j ), ϵ∗j )− L̂j,k(0, 0) = ∑

n

(
∂L̂j,k

∂τj,n

dτ̂j,n

dϵ∗j,n
+

∂L̂j,k

∂ϵ∗j,n

)
(τj,ϵ∗j )=0

ϵ∗j,n + O(|ϵ∗j |2), (A.28)

L̂j,k(0, ϵ∗j )− L̂j,k(0, 0) = ∑
n

(
∂L̂j,k

∂ϵ∗j,n

)
(τj,ϵ∗j )=0

ϵ∗j,n + O(|ϵ∗j |2), (A.29)

ŷji,k(τ̂j(ϵ
∗
j ), ϵ∗j )− ŷji,k(0, 0) = ∑

n

(
∂ŷji,k

∂τj,n

dτ̂j,n

dϵ∗j,n
+

∂ŷji,k

∂ϵ∗j,n

)
(τj,ϵ∗j )=0

ϵ∗j,n + O(|ϵ∗j |2), (A.30)

ŷji,k(0, ϵ∗j )− ŷji,k(0, 0) = ∑
n

(
∂ŷji,k

∂ϵ∗j,n

)
(τj,ϵ∗j )=0

ϵ∗j,n + O(|ϵ∗j |2). (A.31)

Combining equations (A.23)-(A.31) as well as noting that ŝj,k, (∆Lj,k)
∗, (∆yji,k)

∗, ϵE∗
j,k , ϵ

p∗
ji,k = O(|ϵ∗j |)

and aO(|ϵ∗j |b)O(|ϵ∗j |c) = O(|ϵ∗j |b+c) for any a, b, and c, we obtain (A.11).

Part II: Derivation of Equation (17).

Proof. Like in Part I, to keep track of the direct and indirect effects associated with changes in ϵ∗j ,

rewrite equation (14) as

Vj( p̂j(τ̂j(ϵ
∗
j ), ϵ∗j ), Îj(τ̂j(ϵ

∗
j ), ϵ∗j )) = Vj( p̂j((0, t̂j(ϵ

∗
j )), ϵ∗j ), Îj((0, t̂j(ϵ

∗
j )), ϵ∗j ) + Ŵ I

j (ϵ
∗
j )), (A.32)

with t̂j(ϵ
∗
j ) ≡ {t̂m

ij,k(ϵ
∗
j ), t̂x

ji,k(ϵ
∗
j )}. The goal is now to show that as ϵ∗j → 0, the difference between

Ŵ I
j (ϵ

∗
j ) and 1

2 ∑k wj(∆Lj,k)
IϵE∗

j,k goes to zero at a rate no slower than |ϵ∗j |3,

Ŵ I
j (ϵ

∗
j ) =

1
2 ∑

k
wj(∆Lj,k)

IϵE∗
j,k + O(|ϵ∗j |3), (A.33)

which is the formal counterpart of the approximation displayed in equation (17).

The first part of the proof is unchanged with

Ŵ I
j (ϵ

∗
j ) = Ŵ I

j (0) + [DϵŴ I
j ]
′
ϵ∗j =0ϵ∗j +

1
2
(ϵ∗j )

′[HϵŴ I
j ]ϵ∗j =0ϵ∗j + O(|ϵ∗j |3), (A.34)

Ŵ I
j (0) = 0. (A.35)
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Compared to Part I, differentiating (A.32) with respect ϵ∗j,n now implies

∂V̂j(τ̂j(ϵ
∗
j ), ϵ∗j , 0)

∂τj,n

dτ̂j,n

dϵ∗j,n
+

∂V̂j(τ̂j(ϵ
∗
j ), ϵ∗j , 0)

∂ϵ∗j,n

=
∂V̂j((0, t̂j(ϵ

∗
j )), ϵ∗j , Ŵ I

j (ϵ
∗
j ))

∂ϵ∗j,n
+

∂V̂j((0, t̂j(ϵ
∗
j )), ϵ∗j , Ŵ I

j (ϵ
∗
j ))

∂Wj

dŴ I
j

dϵ∗j,n

+ ∑
m

∂V̂j((0, t̂j(ϵ
∗
j )), ϵ∗j , Ŵ I

j (ϵ
∗
j ))

∂tj,m

dt̂j,m

dϵ∗j,n
, (A.36)

which still yields

[DϵŴ I
j ]ϵ∗j =0 = 0. (A.37)

Compared to Part I, differentiating (A.36) and evaluating it at ϵ∗j = 0 then implies

d2Ŵ I
j (0)

dϵ∗j,mdϵ∗j,n
=



1
λj

[
∂V̂2

j
∂τj,m∂τj,n

dτ̂j,n
dϵ∗j,n

dτ̂j,m
dϵ∗j,m

+
∂V̂2

j
∂ϵ∗j,m∂τj,n

dτ̂j,n
dϵ∗j,n

+
∂2V̂j

∂τj,m∂ϵ∗j,n

dτ̂j,m
dϵ∗j,m

]
(τj,ϵ∗j ,Wj)=0

if ϵ∗j,n = ϵE∗
j,k , ϵ∗j,m = ϵE∗

j,l ,

1
λj

[
∂V̂2

j
∂τj,m∂τj,n

dτ̂j,n
dϵ∗j,n

dτ̂j,m
dϵ∗j,m

+
∂V̂2

j
∂ϵ∗j,m∂τj,n

dτ̂j,n
dϵ∗j,n

]
if ϵ∗j,n = ϵE∗

j,k , ϵ∗j,m = ϵ
p∗
ji,l ,

1
λj

[
∂V̂2

j
∂τj,m∂τj,n

dτ̂j,n
dϵ∗j,n

dτ̂j,m
dϵ∗j,m

+
∂2V̂j

∂τj,m∂ϵ∗j,n

dτ̂j,m
dϵ∗j,m

]
(τj,ϵ∗j ,Wj)=0

if ϵ∗j,n = ϵ
p∗
ji,k, ϵ∗j,m = ϵE∗

j,l ,

0 if ϵ∗j,n = ϵ
p∗
ji,k, ϵ∗j,m = ϵ

p∗
jd,l .

Since the cross-derivatives of V̂j and the derivatives of τ̂j displayed in equations (A.17)-(A.22) are

unchanged, the previous expression yields

d2Ŵ I
j (0)

dϵ∗j,mdϵ∗j,n
=


(

ŵj(1 − s∗j,k)
∂L̂j,k
∂τj,m

dτ̂j,m
dϵ∗j,m

)
(τj,ϵ∗j )=0

if ϵ∗j,n = ϵE∗
j,k , ϵ∗j,m = ϵE∗

j,l ,

0 otherwise.

(A.38)

Combining equations (A.34), (A.35), (A.37), and (A.38), we obtain

Ŵ I
j (ϵ

∗
j ) =

1
2 ∑

k,l

(
ŵj(1 − ŝj,k)

∂L̂j,k

∂sj,l

dŝj,l

dϵE∗
j,l

)
(τj,ϵ∗j )=0

ϵE∗
j,l ϵE∗

j,k + O(|ϵ∗j |3).

The final part of the argument is the same as in Part I, now applied to

(∆Lj,k)
I ≡ L̂j,k(τ̂j(ϵ

∗
j ), ϵ∗j )− L̂j,k((0, t̂j(ϵ

∗
j )), ϵ∗j ),
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using the first-order Taylor approximations,

L̂j,k(τ̂j(ϵ
∗
j ), ϵ∗j )− L̂j,k(0, 0) = ∑

n

(
∂L̂j,k

∂τj,n

dτ̂j,n

dϵ∗j,n
+

∂L̂j,k

∂ϵ∗j,n

)
(τj,ϵ∗j )=0

ϵ∗j,n + O(|ϵ∗j |2),

L̂j,k((0, t̂j(ϵ
∗
j )), ϵ∗j )− L̂j,k(0, 0) = ∑

n

(
∑
m

∂L̂j,k

∂tj,m

dt̂j,m

dϵ∗j,n
+

∂L̂j,k

∂ϵ∗j,n

)
(τj,ϵ∗j )=0

ϵ∗j,n + O(|ϵ∗j |2).

Part III: Derivation of Equation (15).

Proof. Like in Parts I and II, rewrite equation (15) as

Vj( p̂j(τ̂j(ϵ
∗
j ), ϵ∗j ), Îj(τ̂j(ϵ

∗
j ), ϵ∗j )) = Vj( p̂j((ŝj(ϵ

∗
j ), 0), ϵ∗j ), Îj((ŝj(ϵ

∗
j ), 0), ϵ∗j ) + ŴT

j (ϵ
∗
j )), (A.39)

with ŝj(ϵ
∗
j ) ≡ {ŝj,k(ϵ

∗
j )}. The goal is now to show that as ϵ∗j → 0, the difference between ŴT

j (ϵ
∗
j )

and 1
2 ∑i ̸=j,k p̄ji,k(∆yji,k)

Tϵ
p∗
ji,k goes to zero at a rate no slower than |ϵ∗j |3,

ŴT
j (ϵ

∗
j ) =

1
2 ∑

i ̸=j,k
p̄ji,k(∆yji,k)

Tϵ
p∗
ji,k + O(|ϵ∗j |3), (A.40)

which is the formal counterpart of the approximation displayed in equation (18).

The first part of the proof is again unchanged with

ŴT
j (ϵ

∗
j ) = ŴT

j (0) + [DϵŴT
j ]

′
ϵ∗j =0ϵ∗j +

1
2
(ϵ∗j )

′[HϵŴT
j ]ϵ∗j =0ϵ∗j + O(|ϵ∗j |3), (A.41)

ŴT
j (0) = 0. (A.42)

Compared to Parts I and II, differentiating (A.39) with respect ϵ∗j,n implies

∂V̂j(τ̂j(ϵ
∗
j ), ϵ∗j , 0)

∂τj,n

dτ̂j,n

dϵ∗j,n
+

∂V̂j(τ̂j(ϵ
∗
j ), ϵ∗j , 0)

∂ϵ∗j,n

=
∂V̂j((ŝj(ϵ

∗
j ), 0), ϵ∗j , ŴT

j (ϵ
∗
j ))

∂ϵ∗j,n
+

∂V̂j((ŝj(ϵ
∗
j ), 0), ϵ∗j , ŴT

j (ϵ
∗
j ))

∂Wj

dŴT
j

dϵ∗j,n

+ ∑
m

∂V̂j((ŝj(ϵ
∗
j ), 0), ϵ∗j , ŴT

j (ϵ
∗
j ))

∂sj,m

dŝj,m

dϵ∗j,n
, (A.43)

which still yields

[DϵŴT
j ]ϵ∗j =0 = 0. (A.44)
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Compared to Parts I and II, differentiating (A.43) and evaluating it at ϵ∗j = 0 then implies

d2ŴT
j (0)

dϵ∗j,mdϵ∗j,n
=



0 if ϵ∗j,n = ϵE∗
j,k , ϵ∗j,m = ϵE∗

j,l ,

1
λj

[
∂V̂2

j
∂τj,m∂τj,n

dτ̂j,n
dϵ∗j,n

dτ̂j,m
dϵ∗j,m

+
∂2V̂j

∂τj,m∂ϵ∗j,n

dτ̂j,m
dϵ∗j,m

]
(τj,ϵ∗j ,Wj)=0

if ϵ∗j,n = ϵE∗
j,k , ϵ∗j,m = ϵ

p∗
ji,l ,

1
λj

[
∂V̂2

j
∂τj,m∂τj,n

dτ̂j,n
dϵ∗j,n

dτ̂j,m
dϵ∗j,m

+
∂V̂2

j
∂ϵ∗j,m∂τj,n

dτ̂j,n
dϵ∗j,n

]
(τj,ϵ∗j ,Wj)=0

if ϵ∗j,n = ϵ
p∗
ji,k, ϵ∗j,m = ϵE∗

j,l ,

1
λj

[
∂V̂2

j
∂τj,m∂τj,n

dτ̂j,n
dϵ∗j,n

dτ̂j,m
dϵ∗j,m

+
∂V̂2

j
∂ϵ∗j,m∂τj,n

dτ̂j,n
dϵ∗j,n

+
∂2V̂j

∂τj,m∂ϵ∗j,n

dτ̂j,m
dϵ∗j,m

]
(τj,ϵ∗j ,Wj)=0

if ϵ∗j,n = ϵ
p∗
ji,k, ϵ∗j,m = ϵ

p∗
jd,l .

Using again the fact that the cross-derivatives of V̂j and the derivatives of τ̂j displayed in equations

(A.17)-(A.22) are unchanged, this yields

d2ŴT
j (0)

dϵ∗j,mdϵ∗j,n
=


(

ˆ̄pji,k
∂ŷji,k
∂τj,m

dτ̂j,m
dϵ∗j,m

)
(τj,ϵ∗j )=0

if ϵ∗j,n = ϵ
p∗
ji,k, ϵ∗j,m = ϵ

p∗
jd,l ,

0 otherwise.

(A.45)

Combining equations (A.41), (A.42), (A.44), and (A.45), we obtain

ŴT
j (ϵ

∗
j ) =

1
2 ∑

d ̸=j,i ̸=j,k,l

(
ˆ̄pji,k

∂ŷji,k

∂tx
jd,l

dt̂x
jd,l

dϵ
p∗
jd,l

)
(τj,ϵ∗j )=0

ϵ
p∗
jd,lϵ

p∗
ji,k + O(|ϵ∗j |3).

The final part of the argument is the same as in Parts I and II, now applied to

(∆yji,k)
T ≡ ŷji,k(τ̂j(ϵ

∗
j ), ϵ∗j )− ŷji,k((ŝj(ϵ

∗
j ), 0), ϵ∗j ),

using the first-order Taylor approximations,

ŷji,k(τ̂j(ϵ
∗
j ), ϵ∗j )− ŷji,k(0, 0) = ∑

n

(
∂ŷji,k

∂τj,n

dτ̂j,n

dϵ∗j,n
+

∂ŷji,k

∂ϵ∗j,n

)
(τj,ϵ∗j )=0

ϵ∗j,n + O(|ϵ∗j |2),

ŷji,k(0, ϵ∗j )− ŷji,k(0, 0) = ∑
n

(
∑
m

∂ŷji,k

∂sj,m

dŝj,m

dϵ∗j,n
+

∂ŷji,k

∂ϵ∗j,n

)
(τj,ϵ∗j )=0

ϵ∗j,n + O(|ϵ∗j |2).
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A.4 Beyond Ricardian Economies

A.4.1 Competitive Equilibrium with Physical Capital and Input-Output Linkages.

For any origin i, any destination j, and any sector k, the profit maximization condition (5) gener-

alizes to

(ℓij,k, kij,k, mij,k, zs
ij,k) ∈ argmax(ℓ,k,m,z){wi,kz − wiℓ− rik − ∑

o,s
poi,smo,s|z = fk(ℓ, k, m)}, (A.46)

(zd
ij,k, yij,k) ∈ argmax(z,y){qij,ky − vi,kz|y = Aij,kEk(Zi,k)z}, (A.47)

with ri the rental rate of capital in country i. Below we let π
input
ij,k (wi,k, wi, ri, {poi,s}o,s) denote the

value function associated with (A.46) and π
output
ij,k (qij,k, vi,k, Zi,k) denote the value function associ-

ated with (A.47), with πij,k ≡ π
input
ij,k + π

output
ij,k . The market clearing conditions generalize to

cij,k + ∑
d,l

mijd,kl = yij,k, (A.48)

zd
ij,k = zs

ij,k, (A.49)

∑
j,k

ℓij,k = Li, (A.50)

∑
j,k

kij,k = Ki. (A.51)

The government’s budget constraint generalizes to

Ti = −∑
k

si,kwi,kZi,k + ∑
j ̸=i,k

tm
ji,k p̄ji,k(cji,k + ∑

d,l
dmjid,kl) + ∑

j ̸=i
tx
ij,k p̄ij,kyij,k. (A.52)

In the environment with physical capital and input-output linkages, a competitive equilibrium

with input subsidies, {sj,k}, import tariffs, {tm
ij,k}, and export taxes, {tx

ij,k} corresponds to an al-

location, {cij,k, ℓij,k, kij,k, mij,k, zs
ij,k, zd

ij,k, yij,k}, with sector sizes, {Zi,k}, good prices, {pij,k, qij,k, p̄ij,k},

and input prices, {wi, ri, wi,k, vi,k}, and lump-sum transfers, {Tj}, such that equations (2), (3), (6),

(36), (37), and (A.46)-(A.52) hold.

A.4.2 Proof of Proposition 3

Let us first show that in the environment with physical capital and input-output linkages, equation

(11) generalizes to

dUj/λj = −∑
k

sj,kwj,kdZj,k + ∑
i ̸=j,k

tm
ij,k p̄ij,k(dcij,k + ∑

d,l
dmijd,kl) + ∑

i ̸=j,k
tx

ji,k p̄ji,kdyji,k

+ ∑
k

ϵE
j,k(1 − sj,k)wj,kdZj,k + ∑

i ̸=j,k
ϵ

p
ji,k p̄ji,kdyji,k, (A.53)
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where the extra term, ∑d,l dmijd,kl , captures the changes in the imports of intermediate goods from

country i in sector k. We follow the same steps as in Appendix A.1 and start from the identity,

Uj(τ) = Vj(pj(τ), Ij(τ)), (A.54)

The total income of country j’s representative agent is now

Ij(τ) =wjLj + rjKj + ∑
i,k

π
input
ji,k + ∑

i,k
π

output
ji,k

− ∑
k

sj,kwj,kZj,k + ∑
j ̸=i,k

tm
ij,k p̄ij,k(cij,k + ∑

d,l
mijd,kl) + ∑

j ̸=i
tx

ji,k p̄ji,kyji,k.

Totally differentiating (A.54) therefore implies

dUj = ∑
i,k

∂Vj

∂pij,k
× dpij,k

+
∂Vj

∂Ij
×
{

Ljdwj + Kj drj + ∑
i,k

∂π
input
ji,k

∂wj,k
dwj,k +

∂π
input
ji,k

∂wj
dwj +

∂π
input
ji,k

∂rj
drj + ∑

o,s

∂π
input
ji,k

∂poj,s
dpoj,s


+∑

i,k

∂π
output
ji,k

∂qji,k
dqji,k +

∂π
output
ji,k

∂vj,k
dvj,k +

∂π
output
ji,k

∂Zj,k
dZj,k


+∑

k
(dvj,k − dwj,k)Zj,k + ∑

k
(vj,k − wj,k)dZj,k + ∑

i,k
(dpij,k − dp̄ij,k)(cij,k + ∑

d,l
mijd,kl)

+∑
i,k
(pij,k − p̄ij,k)(dcij,k + ∑

d,l
dmijd,kl)− ∑

i,k
(dqji,k − dp̄ji,k)yji,k − ∑

i,k
(qji,k − p̄ji,k) dyji,k

}
. (A.55)
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Applying the Envelope Theorem to the utility maximization problem of country j’s representative

agent and the profit maximization problem of the firms now implies

∂Vj

∂pij,k
= −

∂Vj

∂Ij
cij,k, for all i and k, (A.56)

∂π
input
ji,k

∂wj,k
= zs

ji,k, for all i and k, (A.57)

∂π
input
ji,k

∂wj
= −ℓji,k, for all i and k, (A.58)

∂π
input
ji,k

∂rj
= −k ji,k, for all i and k, (A.59)

∂π
input
ji,k

∂poj,s
= −moji,sk, for all i, k, o, and s, (A.60)

∂π
output
ji,k

∂qji,k
= yji,k, for all i and k, (A.61)

∂π
output
ji,k

∂vj,k
= −zd

ji,k, for all i and k. (A.62)

Substituting (A.56)-(A.62) into (A.55) then gives an equation analogous to equation (A.6),

dUj =
∂Vj

∂Ij
×
{

∑
k
(vj,k − wj,k)dZj,k + ∑

i,k
(pij,k − p̄ij,k)(dcij,k + ∑

d,l
dmijd,kl)− ∑

i,k
(qji,k − p̄ji,k)dyji,k

+∑
i,k

∂π
output
ji,k

∂Zj,k
dZj,k − ∑

i ̸=j,k
(cij,k + ∑

d,l
mijd,kl)dp̄ij,k + ∑

i ̸=j,k
yji,kdp̄ji,k

}
,

where we have also used the good market clearing condition (A.48) for local goods, cjj,k = yjj,k +

∑d,l mjjd,kl , as well as country j’s market clearing conditions (A.49)-(A.50) for composite inputs,

labor, and capital. The final part of the argument is the same as in Appendix A.1 and omitted.

Proof. Since changes in utility associated with any tax variation should be zero at the optimal

policy mix, equation (A.53) implies

∑
k

s∗j,kw∗
j,kdZj,k − ∑

i ̸=j,k
tm∗
ij,k p̄∗ij,kdcij,k − ∑

i ̸=j,k
tx∗

ji,k p̄∗ji,kdyji,k

= ∑
k

ϵE∗
j,k (1 − s∗j,k)w

∗
j,kdZj,k + ∑

i ̸=j,k
ϵ

p∗
ji,k p̄∗ji,kdyji,k, (A.63)

where now ϵE
j,k ≡ d ln Ek(Zj,k)/d ln Zj,k. Now consider a variation that lowers final consumption

of the domestic good in sector k and raises the use of that good as an intermediate by firms in that

sector so that dZj,k > 0, holding all other equilibrium variables fixed. Specializing (A.63) to this
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variation implies

s∗j,k = ϵE∗
j,k /(1 + ϵE∗

j,k ).

The variations leading to the characterization of optimal import and export taxes are the same as

in the proof of Proposition 1 and omitted.

A.4.3 Proof of Proposition 4

Proof. The only difference between the environment with and without physical capital and input-

output linkages comes from the expression for the first-order welfare change. Without physical

capital and input-output linkages, the proof of Proposition 2 uses the fact that

1
λ∗

j

∂V̂j(τ̂j(ϵ
∗
j ), ϵ∗j , 0)

∂τj,n

= −∑
k

s∗j,kŵj
∂L̂j,k

∂τj,n
+ ∑

i ̸=j,k
tx∗

ji,k ˆ̄pji,k
∂ŷji,k

∂τj,n
+ ∑

k
ϵE∗

j,k (1 − s∗j,k)ŵj
∂L̂j,k

∂τj,n
+ ∑

i ̸=j,k
ϵ

p∗
ji,k

ˆ̄pji,k
∂ŷji,k

∂τj,n
.

With physical capital and input-output linkages, equation (A.53) instead implies

1
λ∗

j

∂V̂j(τ̂j(ϵ
∗
j ), ϵ∗j , 0)

∂τj,n

= −∑
k

s∗j,kŵj,k
∂Ẑj,k

∂τj,n
+ ∑

i ̸=j,k
tx∗

ji,k ˆ̄pji,k
∂ŷji,k

∂τj,n
+ ∑

k
ϵE∗

j,k (1 − s∗j,k)ŵj,k
∂Ẑj,k

∂τj,n
+ ∑

i ̸=j,k
ϵ

p∗
ji,k

ˆ̄pji,k
∂ŷji,k

∂τj,n
.

Going through the same steps as in the proof of Proposition 2 delivers equations (41)-(43).
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B Online Appendix: Empirics

B.1 Baseline Specification

Given our parametric assumptions in (22), (23) and (24), equation (21) implies

1
J ∑

j
[

1
θk
(ln Xij,k − ln Xi0 j,k)−

1
θk0

(ln Xij,k0 − ln Xi0 j,k0)]

= γk(ln Li,k − ln Li0,k)− γk0(ln Li,k0 − ln Li0,k0) +
1
J ∑

j
[ln αij,k − ln αi0 j,k − (ln αij,k0 − ln αi0,k0)].

This can be written equivalently as

Yi,k = δi + δk + γk ln Li,k + ε i,k,

with the following definitions

Yi,k ≡(
1
J ∑

j
ln Xij,k)/θk,

ε i,k ≡
1
J ∑

j,t
ln αij,k − E[

1
J ∑

j
ln αij,k|i]− E[

1
J ∑

j
ln αij,k|k] + E[

1
J ∑

j
ln αij,k],

δi ≡− γk0 ln Li,k0 + Yi,k0 − ε i,k0 ,

δk ≡− γk ln Li0,k + Yi0,k − ε i0,k + γk0 ln Li0,k0 − Yi0,k0 + ε i0,k0 .

By construction of the productivity shocks ε i,k, we have

E[ε i,k|i] = 0 for all i,

E[ε i,k|k] = 0 for all k.

In dummy variable notation, the second and first stages corresponding to our IV estimator can be

expressed as,

Yi,k = ∑
n∈I

δn × 1n=i + ∑
n∈K

δn × 1n=k + ∑
n∈K

γn × (1n=k × ln Li,n) + ε i,k, (B.1)

(1n=k × ln Li,n) = ∑
m∈I

δ̃m,n × 1m=i + ∑
m∈K

δ̃m,n × 1m=k + ∑
m∈K

γ̃m,n × (1m=k × ln L̂i,m) + ε̃n
i,k, for all n ∈ K,

(B.2)

where I and K denote the set of countries and sectors, respectively; {1n=i}n∈I is a vector of

country-specific dummy variables; {1n=k}n∈K is a vector of sector-specific dummy variables; and

ε̃n
i,k is the first-stage residual. In equation (B.2) the coefficient γ̃m,n represents the (conditional on

other regressors) projection of the endogenous variable (1n=k × ln Li,n) on the instrument (1m=k ×
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ln L̂i,m). Table B.3 reports the “diagonal” element (i.e. γ̃n,n) of the matrix of these first-stage

coefficients, as well as the maximum (in absolute value) of the “off-diagonal” coefficients (i.e.

maxm ̸=n |γ̃m,n|), for each sector n ∈ K.

B.2 Threats to the Exclusion Restriction

Condition (28). By definition, we have

ε i,k ≡
1
J ∑

j
ln αij,k − E[

1
J ∑

j
ln αij,k|i]− E[

1
J ∑

j
ln αij,k|k] + E[

1
J ∑

j
ln αij,k],

αij,k ≡ Aij,k(1 − tx
ij,k)/[(1 − si,k)(1 + tm

ij,k)].

Suppose that Aij,k ∝ (L̂i)
Γk and that other determinants of productivity as well as taxes and subsi-

dies are orthogonal to L̂i. Then,

E[ln L̂i × ε i,k|k]

= E[ln L̂i × {1
J ∑

j
ln Aij,k − E[

1
J ∑

j
ln Aij,k|i]− E[

1
J ∑

j
ln Aij,k|k] + E[

1
J ∑

j
ln Aij,k]}|k]

= ΓkE[(lnL̂i)
2|k]− E(Γk|i)E[(ln L̂i)

2|k]− Γk(E[ln L̂i|k])2 + E[Γk ln L̂i]E[ln L̂i|k]

= ΓkE[(ln L̂i)
2]− E(Γk)E[(ln L̂i)

2]− Γk(E[ln L̂i])
2 + E[Γk ln L̂i]E[ln L̂i].

By the Law of Iterated Expectations, E[Γk ln L̂i] = E[E(Γk ln L̂i|k)] = E[ΓkE(ln L̂i|k)] = E[Γk]E[ln L̂i].

Thus, the previous expression simplifies into

E[ln L̂i × ε i,k|k] = [Γk − E(Γk)]× Var(ln L̂i).

Condition (29). Similarly, suppose that β̂i,k ∝ (ᾱi,k)
ϕ, with ln ᾱi,k ≡ 1

J ∑j ln αij,k −E[ 1
J ∑j ln αij,k|i]

and other determinants of β̂i,k orthogonal to ε i,k. Then

E[ln β̂ik × ε i,k|k]

=ϕE[(ε i,k + E[
1
J ∑

j
ln αij,k|k]− E[

1
J ∑

j
ln αij,k])× ε i,k|k]

= ϕE[(ε2
i,k|k)] + ϕE[ε i,k|k]× (E[

1
J ∑

j
ln αij,k|k]− E[

1
J ∑ lnj αij,k]).

Since E[ε i,k|k] = 0, this simplifies into

E[ln β̂ik × ε i,k|k] = ϕ × Var(ε i,k|k).
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B.3 Estimation of Elasticity of Substitution Between Sectors

B.3.1 Baseline Specification

Equation (30) implies

ln Pj,k =
1
J ∑

i

1
θk

ln(Xij,k/Xj,k) +
1
J ∑

i
ln pij,k.

From equations (2), (3), (4), and (19), we also know that

pij,k =
wi

αij,kEk(Li,k)
,

with αij,k ≡ Aij,k(1 − tx
ij,k)/[(1 − si,k)(1 + tm

ij,k)]. Letting ln P̂j,k ≡ 1
J ∑i ln(Xij,k/Xj,k)/θk, ln α̂j,k ≡

1
J ∑i ln αij,k, and ln χk ≡ 1

J ∑i ln[Ek(Li,k)/wi], we can therefore rearrange equation (31) as

ln Xj,k = ϕj + ϕk − ρ ln P̂j,k + ϕj,k,

where ϕj, ϕk, and ϕj,k are such that

ϕj ≡ ln(XjP
ρ
j ) + E[ln(β j,kα̂

ρ
j,k)|j],

ϕk ≡ ln χk + E[ln(β j,kα̂
ρ
j,k)|k]− E[ln(β j,kα̂

ρ
j,k)],

ϕj,k ≡ ln(β j,kα̂
ρ
j,k)− E[ln(β j,kα̂

ρ
j,k)|j]− E[ln(β j,kα̂

ρ
j,k)|k] + E[ln(β j,kα̂

ρ
j,k)].

By construction, the error term ϕj,k is demeaned so that

E[ϕj,k|j] = 0 for all j,

E[ϕj,k|k] = 0 for all k.

The additional orthogonality conditions imposed by our IV estimator are

E[ln L̂j × ϕj,k|k] = 0 for all k.

In dummy variable notation, the second and first stages corresponding to our IV estimator can be

expressed as,

ln Xj,k = ∑
n∈I

ϕn × 1n=i + ∑
n∈K

ϕn × 1n=k − ρ ln P̂j,k + ϕj,k, (B.3)

ln P̂j,k = ∑
n∈I

ϕ̃n × 1n=i + ∑
n∈K

ϕ̃n × 1n=k + ∑
n∈K

ρ̃n × (1n=k × L̂j) + ϕ̃j,k. (B.4)
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B.3.2 Estimates

Table B.1: First-Stage Estimates from Upper-Level Preference Parameter (ρ)

Sector Coeff. Sector Coeff.

Food, Beverages and Tobacco -0.04 Basic Metals 0.03
(0.02) (0.01)

Textiles -0.02 Fabricated Metals 0.01
(0.02) (0.01)

Wood Products -0.01 Machinery and Equipment 0.00
(0.02) (0.01)

Paper Products -0.02 Computers and Electronics 0.01
(0.02) (0.01)

Coke/Petroleum Products 0.02 Electrical Machinery, NEC -0.01
(0.01) (0.01)

Chemicals 0.01 Motor Vehicles -0.04
(0.01) (0.01)

Rubber and Plastics -0.03 Other Transport Equipment 0.00
(0.01) (0.00)

Mineral Products -0.01
(0.01)

Within R2 0.07
Observations 915

Notes: This table reports the first-stage coefficients corrresponding to {ρ̃n} in equation (B.4). Standard errors
clustered at the country-sector level.

Table B.2: Estimate of Upper-Level Preference Parameter (ρ)

log (sectoral log (sectoral
expenditure share) expenditure share)

OLS IV
(1) (2)

Log Prices 2.44 -0.13
(0.19) (0.56)

Within R2 0.35
Observations 915 915
First-state F-statistic 13.8

Notes: This table reports OLS and IV estimates of ρ from equation (B.3). Table B.2 reports the first-stage
coefficients from the IV specification. Standard errors in parentheses are clustered at the country level.
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B.4 Scale Elasticities

Table B.3: Summary of First-Stage Regressions, Sector-Level Scale Elasticities (γk)

Diagonal Max. (Abs) Off-
Coeff. Diagonal Coeff. F-Stat SW F-Stat

Sector (1) (2) (3) (4)

Food, Beverages and Tobacco 1.14 0.01 192.41 1678.9
(0.06) (0.01)

Textiles 1.17 0.02 117.91 2216.8
(0.03) (0.01)

Wood Products 1.19 0.02 218.81 1383.6
(0.06) (0.02)

Paper Products 1.11 -0.01 138.10 1608.7
(0.05) (0.01)

Coke/Petroleum Products 1.41 -0.08 14.82 472.8
(0.14) (0.05)

Chemicals 1.20 0.00 70.11 1192.6
(0.07) (0.01)

Rubber and Plastics 1.17 0.01 154.86 1595.4
(0.05) (0.01)

Mineral Products 1.17 0.01 301.62 1485.0
(0.04) (0.01)

Basic Metals 1.17 0.02 137.08 1342.2
(0.07) (0.01)

Fabricated Metals 1.16 0.01 191.14 2321.4
(0.05) (0.01)

Machinery and Equipment 1.19 0.01 136.75 1764.6
(0.04) (0.01)

Computers and Electronics 1.23 0.04 71.84 612.5
(0.07) (0.05)

Electrical Machinery, NEC 1.22 0.02 109.66 1474.2
(0.05) (0.01)

Motor Vehicles 1.32 -0.01 80.44 1392.2
(0.06) (0.03)

Other Transport Equipment 1.15 -0.07 25.69 846.8
(0.07) (0.02)

Notes: This table summarizes the first-stage coefficients {γ̃m,n} in equation (B.2). Column (1) reports the
diagonal coefficient (γ̃n,n) and column (2) the maximum (in absolute value) among the 14 off-diagonal
coefficients ({γ̃m,n}m ̸=n) for each of the first-stage regressions corresponding to the endogenous regressor
formed by interacting the log of sector size with an indicator for the sector named in each row. Standard
errors in parentheses are clustered at the exporter level. Column (3) reports the corresponding conventional
F-statistic, and column (4) the Sanderson-Windmeijer F-statistic, from each first-stage.
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Table B.4: Estimates of Sector-Level Scale Elasticities (γk), Heterogeneity over Time

IV IV IV IV
1995 2000 2005 All Years

Sector (1) (2) (3) (4)

Food, Beverages and Tobacco 0.22 0.24 0.24 0.23
(0.03) (0.03) (0.03) (0.02)

Textiles 0.22 0.22 0.21 0.21
(0.02) (0.02) (0.02) (0.02)

Wood Products 0.14 0.19 0.18 0.18
(0.05) (0.05) (0.05) (0.04)

Paper Products 0.29 0.26 0.31 0.29
(0.05) (0.06) (0.05) (0.05)

Coke/Petroleum Products 0.11 0.10 0.11 0.11
(0.04) (0.04) (0.04) (0.04)

Chemicals 0.22 0.22 0.22 0.22
(0.03) (0.03) (0.03) (0.03)

Rubber and Plastics 0.21 0.20 0.21 0.21
(0.05) (0.05) (0.05) (0.05)

Mineral Products 0.19 0.20 0.20 0.20
(0.04) (0.04) (0.04) (0.04)

Basic Metals 0.10 0.11 0.11 0.11
(0.05) (0.05) (0.05) (0.05)

Fabricated Metals 0.18 0.18 0.18 0.18
(0.09) (0.09) (0.09) (0.09)

Machinery and Equipment 0.25 0.24 0.25 0.25
(0.04) (0.04) (0.04) (0.04)

Computers and Electronics 0.26 0.27 0.27 0.27
(0.05) (0.05) (0.05) (0.05)

Electrical Machinery, NEC 0.26 0.25 0.25 0.25
(0.04) (0.04) (0.04) (0.04)

Motor Vehicles 0.20 0.20 0.20 0.20
(0.04) (0.04) (0.04) (0.04)

Other Transport Equipment 0.18 0.20 0.18 0.19
(0.04) (0.04) (0.04) (0.04)

Observations 915 914 913 3,657

Notes: Columns (1)-(3) report the IV estimates of equation (25) when the sample is a single cross-section
of countries and sectors from the indicated year; column (4) does the same for a sample that pools across
all years. The instruments are the log of (country population × sectoral demand shifter), interacted with
sector indicators. The regressions in columns (1)-(3) include exporter and sector fixed effects, while the
regression in column (4) includes exporter-year and sector-year fixed effects. Standard errors in parentheses
are clustered at the exporter level and adjusted to account for the uncertainty in the estimates of trade
elasticities, as described in Appendix B.5.
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Figure B.1: First-Stage Fit, Scale Elasticity Estimation

Notes: Each sub-figure corresponds to a sector. To construct the figure for any given sector, n, we proceed
as follows. Step 1: project the endogenous variable corresponding to sector n (an interaction between ln Li,k
and an indicator for k = n) on all other regressors in equation (25), namely a country fixed effect, a sector
fixed effect, and the 14 other interactions between sector indicators and (log) sector size. Step 2: project the
instrument corresponding to sector n (an interaction between ln L̂i,k and an indicator for k = n) on the same
regressors as in the previous step. The figure for sector n then plots the residuals from step 1 on the y-axis
against those from step 2 on the x-axis, for the I observations with k = n.

70



-1

-.5

0

.5

1

1.5

-4 -2 0 2 4

(a) Food, Beverages and Tobacco

-2

-1

0

1

2

-5 0 5

(b) Textiles

-2

-1

0

1

-5 0 5

(c) Wood Products

-2

-1

0

1

2

-4 -2 0 2 4

(d) Paper Products

-1

-.5

0

.5

1

-4 -2 0 2 4

(e) Coke/Petroleum Products

-1

0

1

2

-4 -2 0 2 4

(f) Chemicals

-1

-.5

0

.5

1

-5 0 5

(g) Rubber and Plastics

-1

-.5

0

.5

1

-4 -2 0 2 4 6

(h) Mineral Products

-1

-.5

0

.5

1

-5 0 5

(i) Basic Metals

-1.5

-1

-.5

0

.5

1

-4 -2 0 2 4

(j) Fabricated Metals

-2

-1

0

1

2

-5 0 5

(k) Machinery and Equipment

-2

-1

0

1

2

-4 -2 0 2 4

(l) Computers and Electronics

-2

-1

0

1

2

-4 -2 0 2 4 6

(m) Electrical Machinery, NEC

-2

-1

0

1

-5 0 5

(n) Motor Vehicles

-1.5

-1

-.5

0

.5

1

-4 -2 0 2 4

(o) Other Transport Equipment

Figure B.2: Reduced-Form Fit, Scale Elasticity Estimation

Notes: Each sub-figure corresponds to a sector. To construct the figure for any given sector, n, we pro-
ceed as follows. Step 1: project Yi,k on a country fixed effect, a sector fixed effect, and the 14 instruments
(interactions between sector indicators and ln L̂i,k) defined for all sectors apart from n. Step 2: project the
sector-n instrument (an interaction between ln L̂i,k and an indicator for k = n) on the same regressors as in
the previous step. The figure for sector n then plots the residuals from step 1 on the y-axis against those
from step 2 on the x-axis, but only for the I observations with k = n.
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Table B.5: Estimates of Sector-Level Scale Elasticities (γk), Alternative IVs

Baseline ρ=-.9 ρ=0 ρ=3 Top 50% Distances
Sector (1) (2) (3) (4) (5)

Food, Beverages and Tobacco 0.24 0.25 0.24 0.23 0.24
(0.02) (0.02) (0.02) (0.03) (0.02)

Textiles 0.21 0.21 0.21 0.20 0.20
(0.02) (0.02) (0.02) (0.02) (0.02)

Wood Products 0.19 0.19 0.19 0.17 0.17
(0.04) (0.04) (0.04) (0.05) (0.05)

Paper Products 0.31 0.31 0.31 0.30 0.30
(0.05) (0.05) (0.05) (0.05) (0.05)

Coke/Petroleum Products 0.11 0.11 0.11 0.10 0.10
(0.05) (0.05) (0.05) (0.04) (0.04)

Chemicals 0.22 0.23 0.22 0.22 0.22
(0.03) (0.03) (0.03) (0.03) (0.03)

Rubber and Plastics 0.20 0.20 0.20 0.19 0.20
(0.05) (0.05) (0.05) (0.05) (0.05)

Mineral Products 0.19 0.19 0.19 0.18 0.19
(0.03) (0.03) (0.03) (0.04) (0.03)

Basic Metals 0.11 0.11 0.11 0.11 0.11
(0.05) (0.05) (0.05) (0.05) (0.05)

Fabricated Metals 0.18 0.19 0.18 0.17 0.18
(0.09) (0.09) (0.09) (0.08) (0.09)

Machinery and Equipment 0.26 0.27 0.26 0.25 0.26
(0.04) (0.04) (0.04) (0.04) (0.04)

Computers and Electronics 0.27 0.28 0.27 0.27 0.27
(0.04) (0.04) (0.04) (0.05) (0.04)

Electrical Machinery, NEC 0.25 0.26 0.25 0.24 0.25
(0.04) (0.04) (0.04) (0.04) (0.04)

Motor Vehicles 0.19 0.20 0.19 0.19 0.19
(0.04) (0.04) (0.04) (0.04) (0.04)

Other Transport Equipment 0.20 0.20 0.20 0.19 0.19
(0.04) (0.04) (0.04) (0.04) (0.04)

Notes: IV estimates of equation (25) for alternative values of the demand residuals β̂i,k entering demand-
predicted sector size L̂i,k ≡ β̂i,k × L̂i. Column (1) repeats column (2) from Table 1 for purposes of compari-
son. Columns (2)-(4) construct demand residuals β̂i,k using alternative values of the upper-level preference
parameter ρ. Column (5) constructs demand residuals β̂i,k using alternative price proxies P̂i,k, as described
in Section 4.4. All regressions include exporter and sector fixed effects. Standard errors in parentheses are
clustered at the exporter level and adjusted to account for the uncertainty in the estimates of trade elastici-
ties, as described in Appendix B.5.
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Table B.6: Estimates of Sector-Level Scale Elasticities (γk), Additional Controls

Sector (1) (2) (3)

Food, Beverages and Tobacco 0.24 0.23 0.22
(0.02) (0.03) (0.03)

Textiles 0.21 0.20 0.19
(0.02) (0.03) (0.03)

Wood Products 0.19 0.19 0.18
(0.04) (0.05) (0.06)

Paper Products 0.31 0.33 0.33
(0.05) (0.05) (0.06)

Coke/Petroleum Products 0.11 0.07 0.06
(0.05) (0.05) (0.06)

Chemicals 0.22 0.22 0.22
(0.03) (0.03) (0.04)

Rubber and Plastics 0.20 0.20 0.19
(0.05) (0.06) (0.07)

Mineral Products 0.19 0.19 0.19
(0.03) (0.05) (0.05)

Basic Metals 0.11 0.07 0.06
(0.05) (0.05) (0.06)

Fabricated Metals 0.18 0.18 0.18
(0.09) (0.10) (0.10)

Machinery and Equipment 0.26 0.26 0.27
(0.04) (0.04) (0.05)

Computers and Electronics 0.27 0.26 0.26
(0.04) (0.05) (0.05)

Electrical Machinery, NEC 0.25 0.27 0.27
(0.04) (0.04) (0.05)

Motor Vehicles 0.19 0.19 0.19
(0.04) (0.04) (0.04)

Other Transport Equipment 0.20 0.18 0.18
(0.04) (0.03) (0.04)

(Contract enforcement)×(sector fixed-effects) ✓ ✓
(Financial development)×(sector fixed-effects) ✓ ✓
(GDP per capita)×(sector fixed-effects) ✓

Notes: IV estimates of equation (25). All regressions include exporter and sector fixed effects. Column (1)
repeats column (2) from Table 1 for purposes of comparison. Standard errors in parentheses are clustered
at the exporter level and adjusted to account for the uncertainty in the estimates of trade elasticities, as
described in Appendix B.5. The number of observations for column (1) is 915 and for columns (2) and (3) it
is 735.
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B.5 Estimation Uncertainty

In this appendix, we describe how we adjust the standard errors of the scale elasticities γk to take

into account the uncertainty in the estimates of the trade elasticities θk.

Let Ỹi,k(θ) ≡ 1
J ∑j ln Xij,k/θk denote the dependent variable in (B.1), expressed as a function of

the vector of true trade elasticities θ ≡ {θk}, and let Yres
i,k (θ) denote the residual from a regression of

Ỹi,k(θ) on a vector of country-specific dummy variables, {1n=i}n∈I , and a vector of sector-specific

dummy variables, {1n=k}n∈K. Similarly, let (1n=k × ln Li,n)
res denote the residual from a regression

of (1n=k × ln Li,n) on the same vector of dummy variables. Using the previous notation, our IV

estimators of the scale elasticities are given by the solution to

gm(θ, γ) ≡ ∑
i∈I ,k∈K

(1m=k × ln L̂i,m)[Yres
i,k (θ)− ∑

n∈K
γn(1n=k × ln Li,n)

res] = 0 for all m ∈ K. (B.5)

We let γ̂(θ) ≡ {γ̂k(θ)} denote the previous solution, again expressed as a function of the vector of

true trade elasticities θ.

We assume that the asymptotic distributions of γ̂(θ) and θ̂ are such that

√
I(γ̂(θ)− γ) → N (0, Σγ) , (B.6)
√

I(θ̂ − θ) → N (0, Σθ) , (B.7)

with γ̂(θ) and θ̂ independent, Σγ obtained from clustering at the exporter level, and Σθ a diagonal

matrix with standard errors estimated by Giri et al. (2021). We are interested in solving for the

asymptotic distribution of γ̂(θ̂) under the previous assumptions. A first-order Taylor expansion

now implies

√
I(γ̂(θ̂)− γ) =

√
I(γ̂(θ)− γ) +

√
I
(
γ̂(θ̂)− γ̂(θ)

)
=

√
I(γ̂(θ)− γ) +

√
I[Dθγ̂(θ)]

(
θ̂ − θ

)
+ o(1) (B.8)

with Dθγ̂(θ) ≡ {∂γ̂m(θ)/∂θk}. Totally differentiating (B.5), we can compute the previous Jacobian

matrix as

Dθγ̂(θ) = −[Dθ g]−1[Dγg], (B.9)

with Dθ g ≡ {∂gm/∂θk} and Dγg ≡ {∂gm/∂γk}. The asymptotic distribution of γ̂(θ̂) follows from

(B.6)-(B.9).

B.6 Beyond Ricardian Economies

Like in Appendix C.4, we assume that production functions take the nested CES form as in equa-

tions (38) and (39). Maintaining our other parametric restrictions described in equations (22)-(24),
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this leads to the following generalization of equation (25),

YIO
i,k = δi + δk + γk ln Zi,k + ε i,k, (B.10)

where the left-hand side variable now also controls for differences in input costs across sectors,

YIO
i,k ≡ 1

J ∑
j
(ln Xij,k/θk) + (1 − ak)bk ln(ri/wi) + ∑

s
bsk ln(Pi,s/wi). (B.11)

To measure YIO
i,k and Zi,k, we first draw on trade and national accounts data in order to obtain

{ak, bk, bsk, ri, wi}. We use the OECD’s ICIO tables to compute bsk as the share of total input costs of

firms from sector k spent on intermediate goods from sector s. This also gives us the value added

share bk = 1 − ∑s bsk. Unfortunately, this dataset does not report labor shares of value added ak,

so we obtain those from the World Input Output Database (after creating an industry concordance

with our dataset) by computing the ratio of total labor spending by firms from sector k to total

value added by those firms.45 We next compute factor prices wi and ri by using the formulas

wi = (∑k akbkSi,k)/L̂i and ri = (∑k(1 − ak)bkSi,k)/K̂i, with L̂i and K̂i as in the Penn World Tables

9.0 (the variables “POP” and “CK”, respectively), and with Si,k ≡ ∑j Xij,k representing total sales

by country i in sector k.

In order to measure YIO
i,k and Zi,k, we also need proxies of price indices in both traded sectors,

k ∈ T , and non-traded sectors, k ∈ N . For traded sectors, we use the same approach as in Section

4.2 and use as our proxy for ln Pi,k,

ln P̂i,k ≡
1
J ∑

j
ln(Xji,k/Xi,k)/θk, for all k ∈ T . (B.12)

For non-traded sectors k ∈ N , we turn to the zero-profit conditions,

ln Pi,k = akbk ln wi + (1 − ak)bk ln ri + ∑
s

bsk ln Pi,s + φi,k, for all k ∈ N ,

with φi,k ≡ −[ln Aii,k + akbk ln ak + (1 − ak)bk ln(1 − ak) + bk ln bk + ∑s bsk ln bsk], where we have

invoked our baseline assumption of no scale economies in non-manufacturing sectors, which in-

clude all non-tradable sectors. The vector of non-tradable prices, ln PN
i ≡ {ln Pi,k}k∈N , that solves

the previous system of linear equations is equal to

ln PN
i = (I − BNN)−1[ln wi × AB + ln ri × (1 − A)B + BNT ln PT

i + Φi]

where I is the identity matrix with dimension the number of non-traded sectors, BNN ≡ {bsk}(s,k)∈N×N ,

BNT ≡ {bsk}(s,k)∈T ×N , AB ≡ {akbk}k∈N , (1 − A)B ≡ {(1 − ak)bk}k∈N , ln PT
i ≡ {ln Pi,k}k∈T , and

45We use data from 2005-2007, since there are minor discrepancies between total value added and the
sum of labor and capital compensation in the data for later years. Results are not sensitive to this choice.
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Φj ≡ {φi,k}k∈N . We then use as our proxy for non-tradable prices,

ln P̂N
i = (I − BNN)−1[ln wi × AB + ln ri × (1 − A)B + BNT ln P̂T

i ]. (B.13)

We are now ready to derive measures of YIO
i,k and Zi,k. Substituting for {ln Pi,k} in equation

(B.11) using (B.12) and (B.13), we can express YIO
i,k as

YIO
i,k = ŶIO

i,k − ζi,k − Êk, (B.14)

where ŶIO
i,k is only a function of observables, ζi,k captures potential sources of discrepancies be-

tween tradable and non–tradable prices and our proxies that are related to primitive productivity

differences, and Êk captures those related to endogenous wages and scale effects,

ŶIO
i,k ≡ 1

J ∑
j
(ln Xij,k/θk) + (1 − ak)bk ln(ri/wi) + ∑

s
bsk ln(P̂i,s/wi),

ζi,k ≡ ∑
s∈KT

bsk ln α̂i,s + ∑
s∈KN

bskξi,s

Êk ≡ ∑
s∈KT

bskĒs + ∑
s∈KN

bskẼs,

Ēk ≡
1
J ∑

i
ln
(

Ek(Zi,k)

vi,k

)
{ξi,k} ≡ (I − BNN)−1[−Φi + BNT{ln α̂i,k}]

{Ẽk} ≡ (I − BNN)−1[BNT{Ēk}].

Similarly, in order to measure Zi,k, we can use the fact that

wi,kZi,k = Si,k,

wi,k =

[
(akbk)

−akbk ((1 − ak) bk)
−(1−ak)bk ∏

s
b−bsk

sk

]
(wak

i r1−ak
i )bk ∏

s
Pbsk

i,s .

The same algebra that we used to get (B.14), in turn, implies

ln Zi,k = ln Ẑi,k + ζi,k + Êk,

with

ln Ẑi,k ≡ ln(Si,k/wi)− (1− ak)bk ln(ri/wi)−∑
s

bsk ln(P̂i,s/wi)− ln

[
(akbk)

−akbk ((1 − ak) bk)
−(1−ak)bk ∏

s
b−bsk

sk

]
.

Combining (B.10) and (B.14), we obtain

ŶIO
i,k = δ̂i + δ̂k + γk ln Ẑi,k + ε̂ i,k (B.15)
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with

ε̂ i,k ≡ε i,k + (γk + 1)ζi,k − E[(γk + 1)ζi,k|i]− E[(γk + 1)ζi,k|k] + E[(γk + 1)ζi,k],

δ̂i ≡δi + E[(γk + 1)ζi,k|i]− E[(γk + 1)ζi,k],

δ̂k ≡δk + E[(γk + 1)ζi,k|k] + (γk + 1)Êk.

Our estimation of γk then proceeds via the instrumental variable procedure described in Sec-

tion 3.3. The only difference comes from the way we estimate the demand parameters β̂i,k to

construct demand-predicted sector size L̂i,k ≡ β̂i,k × L̂i. Rather than using (26), which depends on

the share xi,k of expenditure by country i on goods from sector k across all origins, we use

βi,k =
xF

i,k/(Pi,k)
−ρ

∑l xF
i,l/(Pi,l)−ρ

,

which only depends on the share xF
i,k of final expenditure by country i on goods from sector k

across all origins. The exclusion restriction then continues to be given by

E[ln L̂i,k × ε̂ i,k|k] = 0, for all k,

with the error term ε̂ i,k in (B.15) now comprising the productivity of country i in both sector k and

in other sectors (via the IO linkages due to non-tradable sectors that gives rise to ζi,k).

OLS and IV estimates of the scale elasticity parameters γk from equation (B.10) are reported in

Table B.7.
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Table B.7: Estimates of Sector-Level Scale Elasticities (γk), Beyond Ricardian
Economies

First-stage SW
OLS IV F-stat F-stat

Sector (1) (2) (3) (4)

Food, Beverages and Tobacco 0.22 0.17 34.73 151.7
(0.02) (0.03)

Textiles 0.18 0.14 63.98 205.4
(0.02) (0.03)

Wood Products 0.15 0.12 13.60 100.7
(0.04) (0.04)

Paper Products 0.31 0.22 24.64 410.1
(0.05) (0.05)

Coke/Petroleum Products 0.06 0.07 13.82 174.6
(0.04) (0.03)

Chemicals 0.21 0.16 28.27 215.9
(0.04) (0.03)

Rubber and Plastics 0.18 0.13 29.19 299.5
(0.05) (0.04)

Mineral Products 0.15 0.12 17.97 277.4
(0.04) (0.03)

Basic Metals 0.07 0.06 14.76 151.3
(0.05) (0.04)

Fabricated Metals 0.16 0.12 33.05 277.3
(0.10) (0.06)

Machinery and Equipment 0.27 0.19 24.18 212.7
(0.05) (0.04)

Computers and Electronics 0.26 0.21 18.61 155.2
(0.05) (0.04)

Electrical Machinery, NEC 0.26 0.21 39.25 405.3
(0.05) (0.04)

Motor Vehicles 0.17 0.14 33.01 286.2
(0.04) (0.03)

Other Transport Equipment 0.17 0.14 21.14 198.3
(0.04) (0.04)

Notes: Column (1) reports the OLS estimate, and column (2) the IV estimate, of equation (B.10). The in-
struments are the log of (country population × sectoral demand shifter), interacted with sector indicators.
Column (3) reports the conventional F-statistic, and column (4) the Sanderson-Windmeijer F-statistic, from
the first-stage regression corresponding to the endogenous regressor formed by interacting the log of sector
size with an indicator for the sector named in each row. All regressions include exporter and sector fixed
effects. Standard errors in parentheses are clustered at the exporter level and adjusted to account for the
uncertainty in the estimates of trade elasticities, as described in Appendix B.5.
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C Online Appendix: Counterfactuals

C.1 Construction of Counterfactual Equilibria

We first describe a competitive equilibrium as the solution to a system of non-linear equations. We

then show how to use this system to conduct counterfactual and welfare analysis.

Competitive Equilibrium with Taxes and Subsidies. Starting from (1)-(9), we can de-

scribe a competitive equilibrium with employment subsidies, {sj,k}, import tariffs, {tm
ij,k}, export

taxes, {tx
ij,k}, as a set of sector sizes, {Li,k}, within-sector expenditure shares, {xij,k ≡ Xij,k/Xj,k},

between-sector expenditure shares, {xj,k ≡ Xj,k/ ∑l∈K Xj,l}, consumer prices, {pij,k}, price indices,

{Pj,k}, wages, {wj}, and lump-sum transfers, {Tj}, such that

wiLi,k =
1

(1 − si,k)
∑

j

1 − tx
ij,k

1 + tm
ij,k

xij,kxj,k(wjLj + Tj + Dj),

xij,k =
p−θk

ij,k

∑i′ p−θk
i′ j,k

,

xj,k =
β j,kP−ρ

j,k

∑k′ β j,k′P
−ρ
j,k′

,

pij,k =
(1 + tm

ij,k)(1 − si,k)wi

(1 − tx
ij,k)Aij,kLγk

i,k
,

Pj,k = (∑
i

p−θk
ij,k )

−1/θk ,

Li = ∑
k

Li,k,

Tj = ∑
i,k

tm
ij,k

1 + tm
ij,k

xij,kxj,k(wjLj + Tj + Dj) + ∑
i,k

[
tx

ji,k −
sj,k(1 − tx

ji,k)

1 − sj,k

]
xji,k

1 + tm
ji,k

xi,k(wiLi + Ti + Di),

where Dj denotes the trade deficit of country j, with ∑j Dj = 0, and where we use the convention

tm
ii,k = tx

ii,k = 0 for all i and k.

Counterfactual Changes. Suppose that the initial equilibrium has no taxes or subsidies. We

are interested in a counterfactual equilibrium with taxes, subsidies, and transfers:

tx
ij,k, tm

ij,k, si,k, Tj ̸= 0 for some i, j, k.

For any endogenous variable with value x in the initial equilibrium and x′ in the counterfactual

equilibrium, we let x̂ = x′/x denote the proportional change in this variable. We assume that Djs

are fixed and do not change as we move to the counterfactual equilibrium. After simplifications,
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counterfactual changes are given by the solution to

ŵi L̂i,kSi,k =
1

(1 − si,k)
∑

j

(1 − tx
ij,k)x̂ij,k

1 + tm
ij,k

x̂j,k

(
ŵjSj + Tj + Dj

Sj + Dj

)
Xij,k, (C.1)

x̂ij,k =
p̂−θk

ij,k

∑i′ p̂−θk
i′ j,k xi′ j,k

, (C.2)

x̂j,k =
P̂−ρ

j,k

∑k′ P̂−ρ
j,k′ xj,k′

, (C.3)

p̂ij,k =
(1 + tm

ij,k)(1 − si,k)ŵi

(1 − tx
ij,k)L̂γk

i,k
, (C.4)

P̂j,k = (∑
i

p̂−θk
ij,k xij,k)

−1/θk , (C.5)

Si = ∑
k

L̂i,kSi,k, (C.6)

Tj =∑
i,k

tm
ij,k x̂ij,k x̂j,k

1 + tm
ij,k

(
ŵjSj + Tj + Dj

Sj + Dj

)
Xij,k

+ ∑
i,k

[
tx

ji,k −
sj,k(1 − tx

ji,k)

1 − sj,k

]
x̂ji,k x̂i,k

1 + tm
ji,k

(
ŵiSi + Ti + Di

Si + Di

)
Xji,k, (C.7)

where bilateral trade flows Xij,k, sectoral sales, Si,k ≡ ∑j Xij,k, and total sales Si = ∑j,k Xij,k are all

observed in the initial equilibrium. Once changes in the previous variables have been computed

using (C.1)-(C.7), welfare changes are given by

Ûj =
ŵjSj + Tj + Dj

Sj + Dj

1
P̂j

,

P̂j = (∑
k

P̂−ρ
j,k xj,k)

−1/ρ.

Under the assumption that country i0 is small and that only country i0 imposes trade taxes and

employment subsidies, the system is as described above for country i0; that is, equations (C.1)-

(C.7) continue to hold if either i or j is equal to i0. For all other countries, we set ŵi = P̂i,k = L̂i,k = 1

for all k and drop equations (C.1)-(C.7).46

46Since foreign wages are unaffected by changes in country i0’s policies, our assumption that Djs are
fixed is equivalent to assuming that Djs are constant fractions of foreign GDP.
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C.2 Gains from Optimal Policies

Table C.1: Gains from Optimal Policies

Fully Optimal Policy Trade Policy Industrial Policy
Country (1) (2) (3)

Argentina 1.23 0.73 0.79
Australia 1.24 0.55 0.63
Austria 1.54 1.69 1.16
Belgium 1.60 1.20 0.96
Brazil 0.88 0.39 0.60
Brunei Darussalam 3.35 1.17 1.19
Bulgaria 1.72 2.09 1.17
Cambodia 2.61 1.15 1.32
Canada 1.24 1.24 0.90
Chile 1.55 1.01 0.86
China 0.91 0.74 0.76
China, Hong Kong SAR 2.12 1.77 0.83
Colombia 1.18 0.77 0.63
Costa Rica 1.79 2.61 1.26
Croatia 1.80 0.88 0.91
Cyprus 2.57 1.93 1.00
Czech Republic 1.54 1.79 1.32
Denmark 1.76 1.51 1.12
Estonia 2.11 1.94 1.52
Finland 1.30 1.79 1.16
France 1.10 1.00 0.80
Germany 1.35 1.51 1.08
Greece 1.36 0.46 0.74
Hungary 1.79 2.74 1.92
Iceland 1.66 2.30 1.05
India 1.16 0.58 0.67
Indonesia 1.41 0.77 0.84
Ireland 2.72 2.35 2.06
Israel 1.39 1.32 1.02
Italy 1.07 1.00 0.82
Japan 0.79 0.56 0.64
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Table C.1 (Continued): Gains from Optimal Policies

Fully Optimal Policy Trade Policy Industrial Policy
Country (1) (2) (3)

Latvia 1.45 1.27 0.98
Lithuania 1.80 1.31 1.21
Luxembourg 4.19 3.82 1.66
Malaysia 1.94 2.84 1.87
Malta 2.68 1.71 1.36
Mexico 1.27 1.90 0.98
Netherlands 1.30 0.93 0.81
New Zealand 1.28 0.96 0.82
Norway 2.20 1.43 1.02
Philippines 1.55 1.50 1.15
Poland 1.33 1.71 1.06
Portugal 1.25 1.08 0.91
Republic of Korea 1.35 1.61 1.05
Romania 1.13 1.41 0.88
Russian Federation 1.54 0.73 0.78
Saudi Arabia 2.95 2.04 1.23
Singapore 2.65 2.78 1.78
Slovakia 1.46 2.08 1.49
Slovenia 1.68 1.65 1.26
South Africa 1.30 -0.76 0.83
Spain 1.30 1.01 0.87
Sweden 1.53 1.97 1.26
Switzerland 1.85 1.70 1.50
Taiwan 1.78 2.81 1.54
Thailand 1.69 2.06 1.33
Tunisia 2.07 1.94 1.34
Turkey 1.10 0.68 0.72
United Kingdom 1.33 1.21 0.91
United States 0.82 0.51 0.59
Viet Nam 2.07 1.88 1.19

Avg., Unweighted 1.67% 1.46% 1.08%
Avg., GDP-weighted 1.06% 0.87% 0.76%
Notes: Column (1) reports the gains associated with fully optimal policies, as defined in equation (13);
column (2) reports the gains associated with optimal trade policy, as defined in equation (15); and column
(3) reports the gains associated with optimal industrial policy, as defined in equation (14). All gains are
reported as a share of initial income.
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C.3 Gains from Constrained and Globally Efficient Industrial Policies

Table C.2: Gains from Constrained and Globally Efficient Industrial Policies

Baseline Constrained Globally Efficient
Industrial Policy Industrial Policy Industrial Policy

Country (1) (2) (3)

Argentina 0.79 0.72 0.23
Australia 0.63 0.83 0.91
Austria 1.16 0.73 -0.16
Belgium 0.96 0.84 -0.02
Brazil 0.60 0.56 0.50
Brunei Darussalam 1.19 2.79 1.41
Bulgaria 1.17 0.85 0.78
Cambodia 1.32 1.77 1.80
Canada 0.90 0.63 0.79
Chile 0.86 0.95 0.50
China 0.76 0.49 0.02
China, Hong Kong SAR 0.83 1.69 1.66
Colombia 0.63 0.80 1.23
Costa Rica 1.26 1.04 0.69
Croatia 0.91 1.20 1.30
Cyprus 1.00 1.92 2.89
Czech Republic 1.32 0.72 -0.50
Denmark 1.12 0.99 -0.23
Estonia 1.52 1.12 0.51
Finland 1.16 0.59 -0.69
France 0.80 0.54 0.47
Germany 1.08 0.60 -0.63
Greece 0.74 0.85 1.39
Hungary 1.92 0.76 -0.64
Iceland 1.05 0.94 -0.25
India 0.67 0.72 0.58
Indonesia 0.84 0.88 0.61
Ireland 2.06 1.64 -2.14
Israel 1.02 0.77 0.04
Italy 0.82 0.53 0.13
Japan 0.64 0.47 -0.05
Latvia 0.98 0.75 1.05
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Table C.2 (Continued): Gains from Constrained and Globally Efficient Industrial
Policies

Baseline Constrained Globally Efficient
Industrial Policy Industrial Policy Industrial Policy

Country (1) (2) (3)

Lithuania 1.21 0.96 0.82
Luxembourg 1.66 2.59 0.83
Malaysia 1.87 0.90 -0.99
Malta 1.36 1.74 1.13
Mexico 0.98 0.72 0.80
Netherlands 0.81 0.67 -0.41
New Zealand 0.82 0.72 0.26
Norway 1.02 1.47 0.78
Philippines 1.15 0.84 0.19
Poland 1.06 0.61 0.35
Portugal 0.91 0.63 0.82
Republic of Korea 1.05 0.61 -0.84
Romania 0.88 0.58 0.76
Russian Federation 0.78 1.07 0.74
Saudi Arabia 1.23 2.39 1.15
Singapore 1.78 1.48 -2.10
Slovakia 1.49 0.54 -0.30
Slovenia 1.26 0.80 -0.02
South Africa 0.83 0.72 0.89
Spain 0.87 0.68 0.51
Sweden 1.26 0.71 -0.63
Switzerland 1.50 1.01 -0.55
Taiwan 1.54 0.72 -1.19
Thailand 1.33 0.77 -0.83
Tunisia 1.34 1.17 1.28
Turkey 0.72 0.63 0.88
United Kingdom 0.91 0.73 0.77
United States 0.59 0.48 0.62
Viet Nam 1.19 1.28 1.66

Avg., Unweighted 1.08% 0.97% 0.35%
Avg., GDP-Weighted 0.76% 0.59% 0.23%
Notes: Each column reports the gains, expressed as a share of initial income, that could be achieved by each
type of policy. See the text for detailed descriptions of the exercises.
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C.4 Beyond Ricardian Economies

C.4.1 Construction of Counterfactuals

Competitive Equilibrium with Taxes and Subsidies. Starting from equations (2), (3), (6),

(36), (37), and (A.46)-(A.52), we can describe a competitive equilibrium with production subsidies,

{sj,k}, import tariffs, {tm
ij,k}, and export taxes, {tx

ij,k}, as a set of sector sizes, {Li,k, Ki,k, Zi,k}, within-

sector expenditure shares, {xij,k}, between-sector final expenditure shares, {xF
j,k}, between-sector

expenditures, {Xj,k}, consumer prices, {pij,k}, sector price indices, {Pj,k}, wages, {wj}, rental rates,

{rj}, and lump-sum transfers, {Tj}, such that

wi,kZi,k =
1

(1 − si,k)
∑

j

1 − tx
ij,k

1 + tm
ij,k

xij,kXj,k,

wiLi,k = akbkwi,kZi,k

riKi,k = (1 − ak)bkwi,kZi,k

xij,k =
p−θk

ij,k

∑i′ p−θk
i′ j,k

,

xF
j,k =

β j,kP−ρ
j,k

∑k′ β j,k′P
−ρ
j,k′

,

Xj,k = xF
j,k
(
wjLj + rjKj + Tj + Dj

)
+ ∑

i,s
bks

1 − tx
ji,s

1 + tm
ji,s

xji,sXi,s,

pij,k =
(1 + tm

ij,k)(1 − si,k)wi,k

(1 − tx
ij,k)Aij,kZγk

i,k
,

Pj,k = (∑
i

p−θk
ij,k )

−1/θk ,

wi,k =

[
(akbk)

−akbk ((1 − ak) bk)
−(1−ak)bk ∏

s
b−bsk

sk

]
(wak

i r1−ak
i )bk ∏

s
Pbsk

i,s ,

Li = ∑
k

Li,k,

Ki = ∑
k

Ki,k,

Tj = ∑
i,k

tm
ij,k

1 + tm
ij,k

xij,kXj,k + ∑
i,k

[
tx

ji,k −
sj,k(1 − tx

ji,k)

1 − sj,k

]
xji,kXi,k.

Counterfactual Changes. The counterfactual changes associated with moving from laissez-

faire to a counterfactual equilibrium with employment subsidies, export taxes, and import tariffs
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are given by the solution to

ŵi,kẐi,kSi,k =
1

(1 − si,k)
∑

j

(1 − tx
ij,k)x̂ij,k

1 + tm
ij,k

xij,kX′
j,k, (C.8)

ŵi L̂i,k = ŵi,kẐi,k, (C.9)

r̂iK̂i,k = ŵi,kẐi,k, (C.10)

x̂ij,k =
p̂−θk

ij,k

∑l p̂−θk
l j,k xl j,k

, (C.11)

x̂F
j,k =

P̂−ρ
j,k

∑s P̂−ρ
j,s xF

j,s

, (C.12)

X′
j,k = x̂F

j,kxF
j,k

(
ŵj ∑

k
akbkSj,k + r̂j ∑

k
(1 − ak)bkSj,k + Tj + Dj

)
+ ∑

i,s
bks

1 − tx
ji,s

1 + tm
ji,s

x̂ji,sxji,sX′
i,s,

(C.13)

p̂ij,k =
(1 + tm

ij,k)(1 − si,k)ŵi,k

(1 − tx
ij,k)Ẑγk

i,k
, (C.14)

P̂j,k = (∑
i

p̂−θk
ij,k xij,k)

−1/θk , (C.15)

ŵi,k = (ŵak
i r̂1−ak

i )bk ∏
s

P̂bsk
i,s (C.16)

∑
k

akbkSi,k = ∑
k

L̂i,kakbkSi,k, (C.17)

∑
k
(1 − ak)bkSi,k = ∑

k
K̂i,k(1 − ak)bkSi,k, (C.18)

Tj = ∑
i,k

tm
ij,k x̂ij,kxij,k

1 + tm
ij,k

X′
j,k + ∑

i,k

[
tx

ji,k −
sj,k(1 − tx

ji,k)

1 − sj,k

]
x̂ji,kxji,kX′

i,k. (C.19)

We solve this system of equations using trade data as in the baseline analysis, augmented with

data on factor and input shares from the OECD ICIO and WIOD datasets, as described in Ap-

pendix B.6, for 2010.47 Once changes in the previous variables have been computed using (C.8)-

(C.19), counterfactual welfare changes are given by

Ûj =
ŵj ∑k akbkSj,k + r̂j ∑k(1 − ak)bkSj,k + Tj + Dj

∑k bkSj,k + Dj

1
P̂j

,

P̂j = (∑
k

P̂−ρ
j,k xF

j,k)
−1/ρ.

47In practice, with factor and input shares set to their global levels, a small number of country-sectors
have implied domestic consumption that is negative. In such cases we increase domestic consumption
entries to zero and recalculate the resulting global factor and input shares.
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Under the assumption that country i0 is small and that only country i0 imposes trade taxes and

employment subsidies, we follow the same procedure as in Appendix C.1 and impose ŵi = r̂i =

P̂i,k = L̂i,k = K̂i,k = 1 for all k and i ̸= i0.
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C.4.2 Gains from Optimal Policies

Table C.3: Gains from Optimal Policies, Beyond Ricardian Economies

Fully Optimal Policy Trade Policy Industrial Policy
Country (1) (2) (3)

Argentina 3.92 2.76 3.55
Australia 3.11 1.53 2.34
Austria 3.60 8.13 4.11
Belgium 4.01 5.42 3.70
Brazil 3.37 1.03 3.07
Brunei Darussalam 5.86 3.07 3.03
Bulgaria 3.23 6.38 3.04
Cambodia 5.38 3.50 4.48
Canada 2.67 4.66 2.68
Chile 3.64 2.25 2.95
China 4.13 4.18 4.63
China, Hong Kong SAR 3.49 3.18 1.98
Colombia 2.99 1.28 2.27
Costa Rica 3.26 9.31 3.05
Croatia 4.06 3.98 3.28
Cyprus 3.71 6.69 2.00
Czech Republic 4.13 9.25 5.75
Denmark 4.04 7.01 3.77
Estonia 3.99 11.01 3.89
Finland 3.68 6.92 4.69
France 2.75 4.52 3.02
Germany 4.11 7.34 5.16
Greece 2.56 2.29 2.01
Hungary 3.72 12.48 5.55
Iceland 3.53 6.72 2.78
India 3.64 1.85 3.23
Indonesia 4.23 3.27 3.67
Ireland 8.40 12.25 9.17
Israel 3.47 7.06 3.97
Italy 3.00 3.83 3.46
Japan 3.24 2.74 3.79
Latvia 2.65 6.07 2.26
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Table C.4 (Continued): Gains from Optimal Policies, Beyond Ricardian Economies

Fully Optimal Policy Trade Policy Industrial Policy
Country (1) (2) (3)

Lithuania 4.02 6.44 3.85
Luxembourg 6.77 15.79 4.11
Malaysia 5.09 13.15 6.36
Malta 7.55 7.63 6.89
Mexico 3.01 7.57 3.24
Netherlands 3.64 3.94 3.23
New Zealand 2.92 2.03 2.54
Norway 4.99 8.28 3.77
Philippines 4.90 6.58 5.95
Poland 2.96 6.84 3.37
Portugal 2.59 5.29 2.75
Republic of Korea 5.29 8.02 6.94
Romania 2.58 6.40 2.84
Russian Federation 4.24 2.07 3.23
Saudi Arabia 4.96 3.93 3.29
Singapore 9.85 11.18 11.32
Slovakia 3.15 10.81 4.44
Slovenia 3.65 9.30 4.36
South Africa 3.37 3.19 3.07
Spain 3.10 4.51 3.20
Sweden 4.01 9.18 4.92
Switzerland 5.10 9.77 6.04
Taiwan 5.51 9.83 7.81
Thailand 4.91 10.89 5.96
Tunisia 4.54 10.38 4.44
Turkey 3.51 2.43 3.46
United Kingdom 2.88 5.21 2.79
United States 2.48 2.05 2.55
Viet Nam 4.55 8.27 4.31

Avg., Unweighted 4.06% 6.27% 4.06%
Avg., GDP-weighted 3.25% 3.87% 3.47%
Notes: Column (1) reports the gains associated with fully optimal policies, as defined in equation (13);
column (2) reports the gains associated with optimal trade policy, as defined in equation (15); and column
(3) reports the gains associated with optimal industrial policy, as defined in equation (14). All gains are
reported as a share of initial income.
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C.4.3 Comparison Between Exact Gains and Harberger Triangles
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Figure C.1: Exact Gains from Industrial Policy versus Areas of Harberger Triangles,
Beyond Ricardian Economies

Notes: Figure C.1 reports the exact gains from industrial policy on the y-axis, as defined in equation (14),
against the second-order approximation from Proposition 4 on the x-axis, as described in equation (42). All
gains are computed under the assumptions of Section 6.1 and reported as a share of initial income.
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