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Abstract

We present evidence that noisy financial flows influence financial conditions and
macroeconomic activity. How should monetary policy respond to this noise? We
develop a model where it is optimal for the central bank to target and (partially)
stabilize financial conditions beyond their direct effect on output gaps, even though
stable financial conditions are not a social objective per se. In our model, noise
affects both financial conditions and macroeconomic activity, and arbitrageurs are
reluctant to trade against noise due to aggregate return volatility. Our main result
shows that Financial Conditions Index (FCI) targeting—announcing a (soft) FCI
target and striving to maintain the actual FCI close to the target—triggers an en-
dogeneous return volatility-reducing feedback loop that stabilizes the output gap.
This improvement occurs because the policy allows arbitrageurs to absorb noise
more effectively. We also demonstrate that FCI targeting is strictly superior to
traditional interest rate forward guidance. Finally, we extend recent policy counter-
factual methods to incorporate our model’s endogenous risk reduction mechanism
and apply it to U.S. data. Our estimates indicate that FCI targeting could have
reduced the variance of the output gap, inflation, and interest rates by 36%, 2%,
and 6%, respectively, and decreased the conditional variance of the FCI by 55%.
When compared with interest rate forward guidance, it would have reduced output
gap variance by 21%. The stabilizing role of FCI targeting is particularly salient
during the period from 2000Q1 to 2007Q4, a period dominated by financial noise
shocks.
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1. Introduction

“Financial conditions have tightened significantly in recent months... We remain attentive

to these developments because persistent changes in financial conditions can have impli-

cations for the path of monetary policy.” (Chair Jerome Powell, Economic Club of New

York Luncheon, October 19, 2023)

Monetary policy has been transitioning from a narrow emphasis on short-term in-

terest rates to a significantly wider focus on financial conditions—a summary measure of

aggregate asset prices such as stocks, bonds, real estate, and exchange rates. This shift ac-

knowledges the large role played by the price of risky assets in driving aggregate demand.

In fact, Financial Conditions Indices (FCI), which aggregate asset classes based on their

impact on aggregate spending, identify risky asset prices, especially stock prices, as their

main driver in the U.S. and most major economies (see, e.g., Hatzius et al. (2017)). It is

also well-documented in the finance literature that these types of risky asset prices fluctu-

ate without meaningful changes in underlying fundamentals (see, e.g., Campbell (2014)).

These fluctuations partly reflect noise shocks—changes in asset demand or supply that

are orthogonal to fundamentals—which affect asset prices because sophisticated investors

face constraints or risks that limit their ability to trade against noise (see De Long et al.

(1990); Gabaix and Koijen (2021)). Consistent with this mechanism, we estimate (iden-

tified) vector-autoregression (VAR) models that show noisy financial flows can explain

between up to 55% of the variance of financial conditions and between 20% and 50% of

the variance of output gaps in the U.S. (see Section 2). How should monetary policy react

to this financial noise?

Bernanke and Gertler (2000, 2001) answer this question within a standard New Key-

nesian model. They show that central banks should focus on stabilizing the output gaps

generated by asset price fluctuations but not target asset prices directly. In this paper,

we go one step further and propose a model in which it is optimal for the central bank to

target and (partially) stabilize financial conditions beyond their direct impact on output

gaps. Moreover, we demonstrate that financial conditions targeting is strictly superior

to the traditional interest rate forward guidance. Finally, applying and extending recent

policy counterfactual methods, we find that financial conditions targeting would have

substantially reduced the volatility of output gap and financial conditions in the U.S.

Our model builds upon the “risk-centric” New-Keynesian model developed in Ca-

ballero and Simsek (2023). The distinctive feature of this model is that monetary policy

transmits to macroeconomic activity through financial conditions. Specifically, aggregate
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demand is influenced by the aggregate asset price (the FCI in our model), reflecting a

consumption wealth effect (as a proxy for broader mechanisms linking financial conditions

to aggregate demand). Monetary policy try to steer the aggregate asset price, by changing

the policy interest rate, to influence the aggregate demand and close the output gaps.

The key difference with Caballero and Simsek (2023) is the financial market block,

where the aggregate asset price is influenced by (financial) “noise” shocks, in addition

to the policy rate and other financial forces. These noise shocks stem from households

delegating their portfolio decisions to managers, some of whom are noise traders. Noise

traders create random market flows that need to be absorbed by other investors, some

of whom have inelastic demands. Risk-averse arbitrageurs bridge the gap between these

two type of investors, yet their limited size leaves substantial room for noise to impact

aggregate asset prices. Monetary policy reacts to aggregate noise shocks only with a

delay, preventing it from fully managing financial conditions and, by extension, aggregate

demand.

Our main result in this context is to show that an expanded monetary policy frame-

work, in which the central bank announces a soft Financial Conditions Index (FCI) target

and strives to keep the actual FCI close to the target, is welfare improving. The main

reason is that FCI targeting effectively “recruits” the arbitrageurs to absorb more of the

noise flows in real time (i.e., without the lags of monetary policy).

At the root of this result is an endogenous volatility feedback loop: noise has a greater

impact on aggregate asset prices when return volatility is higher. This occurs because

higher return volatility makes arbitrageurs more reluctant to trade against noise. The

greater price impact of noise leads to an endogenous increase in return volatility, which

in turn causes noise to have an even greater price impact, and so on. This noise-driven

volatility in aggregate asset prices affects macroeconomic activity and leads to “excessive”

fluctuations in the output gap.

In this context, FCI targeting operates through two channels: First, as emphasized

by Bernanke and Gertler (2000, 2001), it directly offsets the aggregate demand impact

of anticipated financial noise shocks. Second, and central to our main result, it reduces

the central bank’s macroeconomic data-dependency since the interest policy is partly

dedicated to achieving the soft FCI target. By reacting to macroeconomic data relatively

less, the central bank effectively reduces return volatility, which emboldens arbitrageurs

to lean more strongly against noisy financial flows. This, in turn, triggers a reversal of the

volatility feedback loop, which lowers the impact of noise on the asset price and output.

The flip side of this positive development is that the policy is less agile with respect

to macroeconomic shocks, which makes these shocks induce larger output gap fluctu-
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ations than without the policy. However, this is a cost worth paying. We show that

starting from a perfect-flexibility (discretionary) benchmark, implementing some degree

of FCI targeting is always optimal. This is because the reduced flexibility with respect to

macroeconomic shocks entails only a second-order loss, while the substantial reduction in

the impact of noise induces first-order gains in terms of stabilizing the output gap.

In our model, FCI targeting is akin to providing forward guidance about the future

path of the FCI, assuming this type of guidance implies some degree of commitment.

We show that FCI forward guidance is strictly superior to providing guidance about the

policy interest rate. This is because FCI forward guidance naturally insulates financial

conditions from anticipated noise shocks, whereas interest rate forward guidance also

reduces the flexibility of the policy to respond to these anticipated noise shocks, creating

a new source of volatility for financial conditions and aggregate demand. In other words,

the optimal policy aims to reduce data-dependency with respect to macroeconomic shocks

and increase data-dependency with respect to noise shocks. FCI targeting achieves both

goals, while interest rate forward guidance only achieves the former.

In the last part of the paper we conduct an empirical evaluation of FCI targeting. To

compute the second moments under various counterfactual policy rules, we modify the

methodology described in McKay and Wolf (2023b) and Caravello et al. (2024) to handle

the endogenous risk mechanism in our model, which generates a non-linearity. The key

methodological step is that in our model the endogenous volatility of returns affects only

the transmission of financial shocks and does so proportionally. With this constraint, we

can estimate policy counterfactuals that trigger volatility-reducing feedbacks.

We examine two different benchmark rules, augmenting each with an FCI targeting

term, and evaluate the extent to which FCI targeting reduces macroeconomic volatility.

The first benchmark is an ad-hoc Taylor rule estimated to fit the volatility of output

gaps, inflation, and interest rates. We find that adding an FCI targeting term to the rule

substantially lowers macroeconomic volatility. Specifically, the variance of the output gap

decreases by 30% and the variance of inflation by 3%. The conditional variance of the FCI

sees a near 34% reduction compared to the benchmark Taylor rule, while the interest rate

variance rises by 8%. The second, and more advanced, benchmark is an optimized dual

mandate rule which includes an empirically supported interest rate smoothing mechanism

(i.e., Flexible Dual Mandate (FDM)). In this setting, we find the optimal degree of FCI

targeting and demonstrate that it yields a reduction in the volatility of all macroeconomic

and financial variables. These reductions are considerable relative to the observed data,

with the variance of the output gap, inflation, and interest rates decreasing by 36%,
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2%, and 6%, respectively, and the conditional variance of the FCI decreasing by 55%.

Compared to FDM, the reductions are more modest: 8% for the output gap and 2% for

inflation (when comparing medians), with interest rate variance still decreasing by 6%.

The reduction in financial conditions variance remains very large, at approximately 34%.

We conclude the empirical counterfactual analysis by showing that output gap variance

is 21% lower under FCI targeting than under optimal interest rate forward guidance. We

also illustrate the implementation and substantial gains from FCI targeting during the

period from 2000Q1 to 2007Q4—a period characterized by a significant contribution of

financial noise shocks to macroeconomic fluctuations.

Literature review. Our paper connects two main literatures: one in macroeconomics and

one in finance. On the macroeconomics side, our paper is part of an emerging literature

on New Keynesian models with risk and asset prices (e.g., Caballero and Farhi (2018);

Caballero and Simsek (2020, 2021, 2023, forthcoming); Pflueger et al. (2020); Kekre and

Lenel (2022); Kekre et al. (2023)). Our main new ingredient is the presence of financial

noise, which interferes with the monetary policy transmission channel. Our main result

demonstrates the benefits of FCI targeting in such an environment.

On the finance side, our paper is related to a large literature that emphasizes asset

price fluctuations driven by noise and limits to arbitrage (see Black (1986); Shleifer and

Summers (1990); De Long et al. (1990) for early contributions). Noise is a catch-all term

for nonfundamental demand or supply by some market participants that might emerge

from a variety of sources such as behavioral biases, institutional frictions, and segmented

markets (see Gromb and Vayanos (2010)). Limits to arbitrage refers to the constraints

faced by sophisticated investors in trading against noise (see Shleifer and Vishny (1997)).

The literature has applied these ingredients to explain asset price fluctuations in many

markets, including aggregate assets that affect financial conditions such as treasury bonds

(Greenwood and Vayanos (2014); Vayanos and Vila (2021)), exchange rates (Gabaix and

Maggiori (2015); Gourinchas et al. (2022); Greenwood et al. (2023)), and the aggregate

stock market (Gabaix and Koijen (2021)). The VAR evidence that we present in Section

2 confirms these findings and indicates that noisy aggregate flows drive not only financial

conditions but also macroeconomic activity. Our main contribution to this literature is

to embed noise and limits-to-arbitrage into a macroeconomic model and show that these

ingredients create a natural rationale for FCI targeting. In our model, FCI targeting works

because it reduces the aggregate return volatility and enables sophisticated investors to

trade against aggregate noise more effectively.

Our paper shares parallels with Itskhoki and Mukhin (2021b), who investigate the in-

teractions between monetary policy and financial noise in the context of exchange rate fluc-
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tuations. Their main result shows that a monetary policy regime that pegs the exchange

rate can stabilize the exchange rate without significantly changing other macroeconomic

variables, providing an explanation of the Mussa puzzle (Mussa (1986)). The mechanism

is that a policy peg reduces exchange rate volatility and enables sophisticated investors to

trade against noise. In similar vein, we show that monetary policy can stabilize financial

conditions by enabling sophisticated investors to absorb noise, but we find this policy

would have different macroeconomic effects. This is because noise-driven fluctuations in

financial conditions have significant effects on macroeconomic activity, as we confirm in

Section 2, while exchange rate fluctuations minimally affect aggregate activity—a phe-

nomenon known as the “exchange rate disconnect” (see Itskhoki and Mukhin (2021a)).

Therefore, “pegging” financial conditions can mitigate the effect of noise on macroeco-

nomic activity, while “pegging” the exchange rate has smaller macroeconomic effects,

although it might be desirable for other reasons (see Itskhoki and Mukhin (2023)).

Our paper is related to Woodford (2003), who shows that adding an interest-rate

smoothing term to central bank objectives might be desirable, even though interest rate

smoothing per se is not a social objective. In similar vein, we show that adding an

FCI targeting to central bank objectives might be desirable, but the mechanism and the

source of welfare gains are different. Interest rate smoothing affects the private sector’s

expectations of future interest rates, which in turn enables the central bank to shift the

long-term interest rate through moderate changes in the short-term rate. In contrast,

FCI targeting affects the private sector’s expectations of aggregate price volatility, which

enables sophisticated investors to trade against noise and keeps financial conditions stable.

Our paper connects with the large literature on forward guidance about the path of

policy interest rates (see, e.g., Campbell et al. (2012); Woodford (2013); Svensson (2014);

Bassetto (2019)). The recent literature emphasizes the role of forward guidance as a

commitment device that might be especially useful when the policy rate is constrained

by the effective lower bound (e.g., Eggertsson and Woodford (2003)). Our model shows

that forward guidance about the FCI, viewed as a soft commitment to an FCI target, can

stabilize financial conditions and output gaps.1

Our paper also belongs to a literature that empirically identifies the macroeconomic

1Caballero and Simsek (2022) show that when central banks and markets disagree, forward guidance
(about interest rates) can be beneficial by communicating the central bank’s beliefs to the market and
preventing misinterpretations. While we do not model disagreements in this paper, we conjecture that
this communication channel would complement the commitment channel that we emphasize. Specifically,
FCI forward guidance would help to communicate the central bank’s beliefs to the market, which would
reduce the policy risk premium (Caballero and Simsek (2023)) and further enable sophisticated investors
to absorb noise.
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effects of financial shocks (Gilchrist et al., 2009; Gilchrist and Zakraǰsek, 2012), and the

transmission of monetary policy via financial markets (Gertler and Karadi, 2015; Caldara

and Herbst, 2019).2 While the previous literature focuses on the effects of shocks to credit

spreads, our financial noise captures the price impact of equity flows. We also relate to

several papers (Hatzius et al., 2017; Hatzius and Stehn, 2018; Ajello et al., 2023a) that

show that i) innovations in various financial conditions indices are strongly correlated

with output growth, ii) equity is the main driver of financial conditions indices for the

United States. Our identification strategy isolates plausibly exogenous variation in flows

to equity, which allows for a causal interpretation of our estimates. Overall, our results

highlight the role of noise shocks in the stock market for macroeconomic fluctuations,

which is related to yet distinct from other financial shocks identified in the literature.

Our paper is also related to a recent literature on semi-structural policy counterfactuals

(Hebden and Winkler, 2021; Barnichon and Mesters, 2023; Beraja, 2023; McKay and Wolf,

2023b; Caravello et al., 2024). We contribute to this literature by showing how, within the

class of models we consider, a simple departure from a purely linear setting is sufficient

to account for the effects of endogenous changes in the level of risk in the counterfactuals.

We use this approach to evaluate the efficacy of FCI targeting to stabilize macroeconomic

and financial fluctuations.

The rest of the paper is organized as follows. Section 2 present facts on the macroeco-

nomic effects of financial noise that motivates our theoretical analysis. Section 3 describes

the model, characterizes the equilibrium with discretionary policy, and demonstrates the

destabilizing effects of noise. Section 4 presents our main theoretical results, which demon-

strate that FCI targeting can reduce financial volatility and improve macroeconomic sta-

bility. This section also compares FCI targeting with interest rate targeting, and discusses

the robustness of FCI targeting to various model extensions including an inflation-output

trade-off. Section 5 extends recent methodology on counterfactual policy analysis to ac-

count for the endogenous volatility feedback loop in our model and uses it to empirically

support the main implications of our model. Section 6 provides final remarks. The theory

appendix A contains the derivations and various model extensions. The data appendix B

presents the details of the empirical analysis and additional results.

2For a more structural approach, see (i.a.) Del Negro et al. (2013); Christiano et al. (2014) .

7



2. The macroeconomic impact of financial noise

In this section, we examine the influence of stock market noise on financial conditions

and macroeconomic activity. We emphasize the stock market because it is the primary

driver of FCI fluctuations in both the U.S. and other major economies. Our findings

indicate that the effects of financial noise shocks are akin to those of a classic demand

shock. These noise shocks account for a substantial portion of the forecast variance of

the FCI, up to 60% upon initial impact. Notably, these shocks also significantly impact

the variance of output gaps, reaching a peak contribution of up to 45% to the forecast

variance for a two-year horizon.

2.1. Data and methodology

Our main sample is 1990Q1:2019Q4. We exclude the Covid period in order to avoid

outliers. Appendix B.1 contains a detailed discussion of our data construction. The

baseline variables are the real potential GDP (estimated by the CBO), the output gap,

real investment, real consumption, annualized PCE inflation, the Excess Bond Premium

of Gilchrist and Zakraǰsek (2012), a Financial Conditions Index and the 3-month nominal

interest rate. For the FCI, we use the index constructed by Ajello et al. (2023a), which

starts in 1990. Aside from the FCI, the rest of the variables are standard in monetary and

financial VAR specifications (Gilchrist and Zakraǰsek, 2012; Gertler and Karadi, 2015).

We use this baseline set of variables to estimate the impulse responses in Section 2.2.

We include two lags in the VAR as suggested by the BIC; and linearly detrend potential

GDP, investment, and consumption, all other variables are included in levels.

For the counterfactuals in Section 5, the assumption of invertibility is crucial. As

we explain below, the share of variance explained by the noise shock is a key statistic

to quantify the potential improvements from FCI targeting. Thus, in order to make the

assumption more plausible and our results informative for Section 5, we include three

more variables in the VAR when computing variance decompositions, all in logs: i) hours

per worker, ii) labor share, iii) (detrended) labor productivity. These are also added in

Caravello et al. (2024).

We use a Granular IV (Gabaix and Koijen, 2020) as a proxy for the financial noise

shock. In particular, we construct the proxy exactly as in Gabaix and Koijen (2021) using

the Flow of Funds data. Appendix B.1.2 reviews the details of the construction. The gist

of the idea is as follows: using flow-of-funds data, we can measure the changes in equity

held by different sectors at different points in time, ∆qit. Since these flows are endogenous,
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we residualize them using fixed effects, sector-specific trends, macro observables, and

principal components, to obtain a residual ∆q̃it of idiosyncratic flow shocks for the different

sectors. This residual can be interpreted as sector-specific financial noise shocks. Finally,

we do an equity-share-weighted-average of these residuals to construct the financial flow

series Zµ
t as:

Zµ
t =

I∑
i=1

Si,t−1∆q̃it (1)

where Si,t−1 is the fraction of total equity held by sector i at time t − 1. Gabaix and

Koijen (2021) argue that this is an appropriate measure of net flows into equities. For

this procedure to be valid, ∆q̃it must be uncorrelated with other aggregate shocks. We

address this issue by residualizing along the lines of Gabaix and Koijen (2021). In the

Appendix, we show that our results are robust across various residualization methods,

providing reassurance that we are effectively controlling for aggregate factors.

Given the shock and the observables, we assume that the data generating process can

be characterized as:

Yt =
L∑
ℓ=1

AℓYt−ℓ + ut, (2)

Z̃µ
t = αεµt + vt, (3)

where Yt is the vector of macro variables of interest (already demeaned and detrended),

ut is the vector of Wold innovations, Z̃µ
t = Zµ

t − L
[
Zµ
t |{Z̃µ

τ , Yτ}τ<t
]
is the proxy shock

after residualizing it with respect to lags of itself and other macro variables (where L(x|y)
denotes the linear projection of variable x onto variables y), εµt is the structural shock

of interest and vt is measurement error. We assume that εµt , vt are white noise, and

independent of each other. Within this framework, different assumptions can be used

to recover impulse responses and variance decomposition from the data. We explain the

details in the following subsections.

2.2. Causal effects of noise shocks

First, we use the constructed proxy Zµ
t to estimate the effect of noise shocks in macro

and financial variables. In order to do so, we use a VAR that includes the baseline set

of macro variables. Following Plagborg-Møller and Wolf (2021), we add the proxy to the

VAR and use a recursive identification scheme, where the proxy is ordered first. That is,

we consider the augmented vector Xt = [Zµ
t , Y

′
t ]

′, run a VAR on Xt, and use recursive
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Figure 1: Red: raw shock, Z̃µ
t as in (3). Blue: shock identified using SVAR-IV as in (4).

Figure 2: Impulse response to a financial shock. Shaded and light shaded grey bands
indicate 68 and 90 confidence sets respectively.
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identification. The red line in Figure 1 depicts the shock we use to obtain the impulse

response. As can be seen, the series is relatively well mixed over different quarters. There

is a large, negative shock around the GFC, but there are also other shocks of comparable

magnitude in other points in the sample, as in the early 1990s or the mid 2000s.

First Stage. In order to evaluate instrument relevance, we perform an F-test for the

relevance of the financial noise shock in explaining movements in the residuals of the FCI

equation. The conventional F-statistic is 20.912, whereas the heteroskedasticity-robust F

equals 14.643. Given that both values are above the conventional level of 10, we proceed

using standard inference.

Impulse Response. Figure 2 depicts the impulse-response of several macroeconomic

outcomes of interests to an expansionary noise shock, i.e., an exogenous inflow into equity.

The shock lowers the FCI index on impact, which implies looser financial conditions. This

generates a positive output gap and inflation in the first few quarters. There is some

positive response of the interest rate, but it is insufficient to fully stabilize the shock.

Overall, the effect of the financial noise shock is that of a textbook demand shock, that

is only imperfectly stabilized by monetary policy.3

2.3. Noise shocks are important drivers of macro fluctuations

In this subsection, we estimate the extent to which output fluctuations in this sample

period are driven by the financial noise shocks. This is the key magnitude that determines

the potential volatility reductions from adopting FCI targeting, since the policy works by

endogenously reducing the impact of noise shocks.

Forecast Variance Ratios. Given its relevance, we present results under several al-

ternative assumptions to estimate the contribution of the shock to forecast variance. The

object of interest is the Forecast Variance Ratio (FVR). Following Plagborg-Møller and

Wolf (2022), we define the FVR for variable i at horizon ℓ as

FV Ri,h = 1− Var (Yi,t+h|{Yτ}τ<t, {εµτ }t≤τ<∞)

Var (Yi,t+h|{Yτ}τ<t)
.

Intuitively, this measures by how much does the forecast error (for variable i at horizon

h) would be reduced if we knew with certainty the realization of the shock at all future

3Appendix B.2 shows that the estimated responses are similar if we used an SVAR-IV procedure.
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dates.

Within the DGPs of the form (2)-(3), there are several alternative assumptions regard-

ing the relation between Z̃µ
t , ε

µ
t and ut, that yield different identified Forecast Variance

Ratios.

(a) (b)

(c) (d)

Figure 3: Identified Forecast Variance Ratios of the noise shock. Blue: SVAR-IV, assum-
ing invertibility. Red: lower bound, assumes perfect measurement of the shocks. Grey:
recoverability-based FVR. VAR includes the full set of macro outcomes (baseline + la-
bor market variables). Dashed lines are 90% confidence intervals of the identified set,
(Plagborg-Møller and Wolf, 2022) computed via bootstrap with 1000 repetitions.

First, the most common assumption is invertibility. Under this assumption, the struc-

tural shock satisfies

εµt = q′ut. (4)

I.e., there exists a linear combination of the (contemporaneous) Wold residuals that spans

the shock of interest. Given that we have a proxy for this shock, we can use a SVAR-

IV procedure (Mertens and Ravn, 2013) to identify q and, therefore, εµt . Intuitively, in

this case we are assuming that the true structural shock can be recovered from the Wold

residuals. But since we can estimate the pattern of comovements that the structural

shock generates using Z̃µ
t , we can back out the correct structural shocks from knowledge

of the residuals and the proxy. The blue line in Figure 1 depicts the identified shock
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under this assumption. The potential problem of this strategy is that, if the invertibility

assumption is violated, it could lead to an overestimation of the identified shock’s variance

contribution.4

A second assumption that gives point identification of the FVR is to rule out mea-

surement error, i.e vt = 0 for all t. In contrast to the previous case, if this assumption

is violated, we would underestimate the shock’s contribution: If Z̃µ
t appears to have low

correlation with Yt, we would attribute that to the shock being unimportant instead of

being caused by measurement error. In fact , this assumption provides a lower bound

for the true FVR of the shock (Plagborg-Møller and Wolf, 2022). The red line in Figure

1 corresponds to the shock identified under this non-measurement error assumption. Of

course, in practice, a prevalent type of measurement error is that we simply do not fully

observe the shock. That is, the Gabaix and Koijen (2021) shock may be only one of

many financial noise shocks. Thus, one interpretation under this assumption is that we

are capturing the importance of the directly measured noise, whereas under the previous

assumption we aim to capture the full importance of the noise shock.

Finally, a third assumption that allows identification of the FVR is recoverability

(Plagborg-Møller and Wolf, 2022; Forni et al., 2023). Under this assumption, the struc-

tural shock satisfies:

εµt = q′
(
L−1

)
ut, (5)

where q(L−1) is now a lead polynomial. Thus, εµt can be recovered from the data, but we

may need future values of ut to do so. This assumption is less stringent than invertibility,

and it provides a tight upper bound on the FVR (Plagborg-Møller and Wolf, 2022).

However, even in this case, we are still assuming we can properly recover the shock based

on observables.

Figure 3 shows the FVRs identified under each of these three assumptions. As we can

see, the standard invertibility-based SVAR-IV produces variance ratios that are almost

indistinguishable to the recoverability-based estimates. Under any of these two assump-

tions, the noise shock explains up to 50% of the forecast error in output gap at a 2 year

horizon, and up to 55% of the contemporaneous variation in FCI. The share of uncondi-

tional volatility explained by the shock is around 35%. The lower bound, obtained under

the perfect measurement assumption, shows lower contributions, but still a sizeable share

of output gap’s forecast variance at a 2 year horizon (20%) is driven by the shock, as well

as a non-trivial portion of the unconditional output gap volatility (15%). The shock also

4See, e.g., Plagborg-Møller and Wolf (2022) for an illustration of this bias in the context of a model
with monetary and oil shocks.
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Figure 4: Alternative time series constructed by setting to zero all shocks other than the
identified noise shock, following (6). Red: raw shock, Z̃µ

t as in (3). Blue: shock identified
using SVAR-IV as in (4).

explains a large share of FCI fluctuations. Overall, even at the lower bound, the evidence

indicates that the shock is a significant driver of FCI and output gap fluctuations.5

Historical decomposition. In order to provide an interpretation of what kind of his-

torical episodes are driven by the shock, we perform the following exercise: we take the

estimated VAR, and feed in only the identified noise shock, setting all other innovations

to zero. More specifically, we create alternative time series Y̌t using:

Y̌t =
L∑
ℓ=1

ÂℓY̌t−ℓ + p̂ε̂µt , Y̌j = 0 for j < 0. (6)

Where {Âℓ} are the estimated VAR coefficients, p̂ is the vector of estimated contem-

poraneous effect of the structural shock in each Wold residual, and ε̂µt is the estimated

time series for the shock. We do this for two identifying assumptions: i) SVAR-IV, ii)

no measurement error. We omit recoverability due to similarity with SVAR-IV. We em-

phasize that this lacks a direct counterfactual interpretation, but it is a useful accounting

5We also note that, for all sets of assumptions, the shock explains a modest amount of inflation
fluctuations (up to 15% under at the upper bound, around 5% at the lower bound), and also a modest
amount of interest rate fluctuations.
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device to see when the shock is important in the sample.

Figure 4 shows the results of this exercise. The dashed line is the raw data, and the

solid lines show the alternative time series Y̌t based on the SVAR-IV identified shock (in

blue), and the shock identified under the perfect measurement assumption (in red). The

alternative series based on the SVAR-IV assumption track the data on FCI quite well for

the 1999-2008 period. Before and after, there is some relation but the gap between the

data and the alternative series is wider. Something similar happens with the output gap:

the blue line tracks the data very well during the 1999-2008 period, just before the GFC.

During the GFC, the noise shock explains some of the drop, but it is far from explaining

the full depth and slow recovery from the recession. Similar patterns are observed with

interest rates and inflation, although in the latter it is less clear since short term inflation

is much noisier than the other series. Overall, the SVAR-identified shock explains most

of the FCI and output fluctuations in the 1999-2008 period, less so before and after. This

is consistent with the narrative that attributes macro fluctuations preceding the GFC to

exuberance in financial markets, i.e as positive noise shocks. When the GFC happened,

this is partially triggered by negative noise shocks, but other factors (such as the binding

ZLB) also must have played a role, since financial noise shocks alone cannot explain the

data after the GFC. Focusing on the shock identified under the perfect measurement

assumption, the overall patterns point to the same direction, but magnitudes are smaller.

From our earlier discussion, this may reflect measurement error, in particular the fact

that the Gabaix and Koijen (2021) shock is only a subset of all financial noise shocks.

3. A macroeconomic model with financial noise

In this section, we present a risk-centric macroeconomic model with the following key

features: (i) (financial) noise can drive the aggregate asset price (FCI) away from the

central bank’s intended target, (ii) a fraction of sophisticated investors (arbitrageurs)

trade against this noise, (iii) the arbitrageurs face uncertainty about the (expected) FCI.

In this setup, we show that noise shocks affect financial conditions and macroeconomic

activity, consistent with our motivating evidence. In the next section, we use this model

to investigate the effects of an explicit FCI targeting policy.

3.1. Environment

We relegate the details of the environment to Appendix A.1. Here, we summarize the real

side of the economy and describe in more detail the financial market side.
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Real economy. On the supply side, (the log of) potential output follows the process:

y∗t = y∗t−1 + εz,t, where σ
2
z ≡ var (εz,t) (7)

and εz,t denotes an i.i.d. aggregate supply shock. Due to nominal price stickiness, (the

log of) output, yt, is determined by aggregate demand and can depart from potential

output. For the baseline model, we assume firms’ prices are fully sticky. Our main results

are robust to allowing for partially flexible prices and a trade-off between inflation and

output stabilization, as we show in Appendix A.5 and discuss in Section 4.6.2.

On the demand side, there are two types of households: hand-to-mouth agents and

(asset holding) households. Hand-to-mouth agents do not play an important role beyond

decoupling the labor supply decisions from household consumption behavior. They supply

all of the labor and spend all of their income (their marginal propensity to consume (MPC)

is equal to one). Since their spending is driven by output, which is endogenous, they create

a Keynesian multiplier effect but they do not drive the aggregate demand.

Aggregate demand is driven by (asset holding) households. These households own

the aggregate risky asset (the market portfolio): a claim on firms’ share of output (αYt).

They have expected log utility and make portfolio allocation and consumption-savings

decisions. They delegate the portfolio decision to the portfolio managers that we describe

later. Their consumption rule is centered around the optimal rule with log utility, but it

can deviate by an amount denoted by δt, which we refer to as an aggregate demand shifter.

This is a modeling device to capture various factors that affect aggregate spending, e.g.,

a consumer sentiment shock, a fiscal policy shock, or a discount rate shock.

The upshot of these assumptions is the output-asset price relation

yt = m+ pt + δt, (8)

where pt denotes (the log of) the price of the market portfolio andm is a derived parameter

that combines households’ MPC and the multiplier. All else equal, higher aggregate asset

prices raise spending and output. In practice, a higher price for aggregate assets such as

stocks, bonds, and real estate raises spending for a variety of reasons including wealth

effects (the explicit channel in the model). Therefore, we view pt as the model counterpart

to an FCI, and Eq. (8) as capturing the broader set of channels that links spending to

asset prices. Naturally, a higher aggregate demand shifter δt also induces higher spending

and output.
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We assume the aggregate demand shifter follows an AR(1) process

δt = φδδt−1 + εδ,t, where σ2
δ ≡ var (εδ,t) (9)

and εδ,t is an i.i.d. aggregate demand shock, which is independent from supply shocks.

Remark 1 (Policy transmits via FCI). Observe that the short-term interest rate does not

enter into the output-asset price relation as a separate variable: the policy interest rate

affects output only through its impact on aggregate asset prices. This feature is driven by

our assumptions (such as log utility) but it is supported by empirical evidence. In Appendix

B.2, we use our empirical estimates from Section 2 to perform counterfactuals that show

that broad financial conditions are a critical pathway for the transmission of monetary

policy. In fact, a monetary policy shock that significantly alters short-term interest rates

without affecting financial conditions does not meaningfully impact the output gap or

inflation. This supports Eq. (8), when we interpret pt as the model counterpart of an

FCI. We caution that pt has the opposite sign-convention of standard FCIs, where an

increase in the index typically means tightening.

Financial markets. Households make a portfolio choice between the aggregate risky

asset and the risk-free asset (normalized to have zero net supply). The (log) return on

the aggregate risky asset, rt+1 = logRt+1, is approximately given by (see the appendix)

rt+1 = ρ− (1− β)m+ (1− β) yt+1 + βpt+1 − pt,

where ρ ≡ − log β is the (log of) households’ discount rate. After substituting the output

asset price relation (8) in it, we can write the return as

rt+1 = ρ+ pt+1 − pt + (1− β) δt+1. (10)

That is, the aggregate return is driven by the (log) price change and the aggregate demand

shock (through its impact on cash flows). The (log) return on the risk-free asset rft =

logRf
t is set by the central bank as we describe later.

Households delegate their portfolio choice to managers. In each period, a fraction η of

these managers are “noise traders” and their portfolio weight is given by ωNt = 1 + 1
η
µt.

That is, they deviate from the optimal portfolio benchmark by an amount given by 1
η
µt.

We refer to µt as the aggregate noise—the total flow that needs to be absorbed by other
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investors. We assume the aggregate noise µt follows an AR(1) process

µt = φµµt−1 + εµ,t, where σ2
µ ≡ var (εµ,t) . (11)

Here, εµ,t is an i.i.d. financial noise shock, which is independent from supply and demand

shocks.

Among the remaining managers, a mass 1 − η − α represent “inelastic funds” and

their portfolio weight is given by ωIt = 1. That is, they simply invest according to the

average optimal portfolio benchmark. Finally, a mass α of managers are “arbitrageurs”

(or elastic funds) who choose their portfolio weights optimally as we describe below. We

make a distinction between inelastic funds and arbitrageurs to capture the insights from a

growing empirical literature documenting that financial markets are inelastic with respect

to aggregate flows (see Gabaix and Koijen (2021)). In view of this literature, we think of α

as small, which creates a large scope for noise to affect aggregate asset prices. Combining

the arbitrageurs’ demand with noise traders’ and inelastic funds’ positions, we obtain the

market clearing condition

αωAt + η

(
1 +

µt
η

)
+ (1− η − α) = 1 =⇒ ωAt = 1− µt

α
. (12)

That is, in equilibrium arbitrageurs must adjust their portfolio weight ωAt to absorb the

aggregate noise.

The arbitrageurs choose their portfolio weight to maximize expected log assets-under-

management, after observing the risk-free rate and the current noise µt:
6

max
ωA
t

Et

[
log
(
αWt

(
Rf
t + ωt

(
Rt+1 −Rf

t

)))]
.

In equilibrium, this implies a standard optimality condition Et

[
Mt+1

(
Rt+1 −Rf

t

)]
= 0,

where Mt+1 = 1

Rf
t +ω

A
t (Rt+1−Rf

t )
. Assuming the market and the portfolio returns are log-

normally distributed, we obtain the approximate optimality condition:

ωAt σt,rt+1 =
Et [rt+1] +

(σt,rt+1)
2

2
− rft

σt,rt+1

. (13)

The arbitrageurs’ demand for risk is equal to their (perceived) equilibrium Sharpe ratio.

6The equilibrium price fully reveals the noise, so the assumption that investors observe the noise is
without loss of generality.
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Combining this with (12), we derive the financial market equilibrium condition:

Et [rt+1] = rft +
1

2

(
σt,rt+1

)2 − (σt,rt+1

)2
α

µt. (14)

Substituting (10) into this condition, we further obtain a present discounted value relation

that describes the equilibrium aggregate asset price:

pt = ρ+ Et [pt+1] + (1− β)Et [δt+1]−
(
rft +

1

2

(
σt,rt+1

)2)
+

(
σt,rt+1

)2
α

µt. (15)

Eqs. (14− 15) show that (all else equal) the impact of noise on expected asset return

and the aggregate asset price increases with return variance: as the market becomes

more volatile, arbitrageurs become more hesitant to counteract the noise traders’ flows.

Additionally, the impact of noise is larger when the mass of arbitrageurs α is smaller and,

therefore, aggregate asset demand is more inelastic.

3.2. Equilibrium with discretionary monetary policy

We next introduce standard discretionary monetary policy and characterize the resulting

equilibrium. The central bank sets the nominal interest rate denoted by ift . Since nominal

prices are sticky, this is the same as the real interest rate, rft = ift , so we assume the central

bank sets rft . Since there is no inflation (until Section 4.6.2), the central bank focuses on

closing the output gap ỹt ≡ yt − y∗t .

3.2.1. Benchmark without policy lags

As a benchmark, we start with the (unrealistic) first-best scenario in which the central

bank can condition its interest rate choice on the realized noise µt. In this case, the central

bank can set ỹt = 0 in all periods and states. Using (8) , (10) and (15), along with the

shock processes in (9), the equilibrium is given by

pt = p∗t ≡ y∗t −m− δt (16)

rft = ρ− 1

2
σ2 + (1− βφδ) δt +

σ2

α
µt

rt+1 = ρ+ δt − βδt+1 + εz,t+1

where σ2 ≡ vart (rt+1) = σ2
z + β2σ2

δ .
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The first line defines p∗t (pstar), which is the aggregate asset price that ensures output is

equal to its potential. The second line describes the interest rate the central bank sets

to achieve pstar (rstar). Note that noise affects the interest rate but it does not affect

the aggregate asset price or output. The central bank fully adjusts the interest rate in

response to noise to prevent noise-driven fluctuations in output. The third line describes

the return conditional on pt = p∗t (and yt = y∗t ) at all times. The last line shows that

the conditional return variance depends on supply and demand variance (macro-induced

variance) but it does not depend on noise variance.

3.2.2. Equilibrium with policy lags

Set against this benchmark, our key assumption is that the central bank chooses rft before

observing the current-period noise µt. Therefore, the central bank cannot condition its

decision on the current noise shock εµ,t. In practice, financial markets are noisy even

over short horizons and central banks adjust their policy with some lags (both the inter-

meeting lags as well as the reaction lags). This creates a large scope for noise to affect

asset prices beyond the central banks’ intentions.

For simplicity only, we assume that the central bank still conditions its decision on the

macroeconomic shocks εδ,t, εz,t. We show in Section 4.6.1 that our main results extend

to an environment in which the central bank sets rft before observing all current-period

shocks εµ,t, εδ,t, εz,t.

Formally, we assume the central bank sets the risk-free interest rate (without commit-

ment) to solve:

Gt = min
rft

Et

[
∞∑
h=0

βhỹ2t+h

]
. (17)

The central bank minimizes the expected discounted sum of quadratic log output gaps

(henceforth, output-gap loss) under its information set. We use the notation Et [·] to
denote expectations in period t before the realization of the noise shock εµ,t (but after the

realization of macroeconomic shocks εδ,t, εz,t).

The first-best equilibrium described in (16) is no longer feasible. Our main result in

this section characterizes the (second-best) equilibrium with discretionary policy. Recall

that εµ,t denotes the surprise component of current-period noise (see (11)).

Proposition 1 (Equilibrium with Discretionary Policy). Suppose the planner sets policy

according to (17) and the parameters satisfy α2 ≥ 4σ2
µ

(
σ2
z + β2σ2

δ

)
. Then, there is a

(locally stable) equilibrium in which the asset price, output, and the interest rate are given
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by

pt = p∗t +
σ2

α
εµ,t, where p∗t ≡ y∗t −m− δt, (18)

yt = y∗t +
σ2

α
εµ,t, (19)

rft = ρ− 1

2
σ2 + (1− βφδ) δt +

σ2

α
φµµt−1. (20)

The return is given by

rt+1 = ρ+ δt + εz,t+1 − βδt+1 +
σ2

α
(εµ,t+1 − εµ,t) , (21)

and its variance σ2 = vart (rt+1) is the smaller positive solution to the following fixed

point problem:

σ2 = σ2
macro +

(σ2)
2

α2
σ2
µ, where σ2

macro = σ2
z + β2σ2

δ. (22)

Greater noise variance σ2
µ increases the total return variance σ2, and the output-gap loss

Gt =

(
σ2

α

)2
σ2
µ

1−β .

We relegate the proof of this Proposition to Appendix A.2 and discuss here the intu-

ition for the equilibrium. Eq. (18) shows that, unlike in the benchmark case, the surprise

component of noise εµ,t affects the aggregate asset price (cf. (16)). Eq. (8) shows that the

noise-driven fluctuations in the aggregate asset price affect output through the output-

asset price relation. Eq. (20) shows that the central bank adjusts the interest rate to

insulate output from the predictable component of noise Et−1 [µt] = φµµt−1.

Eqs. (21− 22) characterize the equilibrium return and its variance. Note that the

total return variance is greater than macro-induced variance because noise shocks are not

fully stabilized by monetary policy. Importantly, the noise variance is endogenous and

increasing with total return variance (see (15)): a greater variance allows noise shocks to

have a greater impact, which then leads to even greater variance, and so on. Eq. (22)

formalizes these feedbacks and shows that the equilibrium variance corresponds to the

solution to a fixed point problem. This problem is a quadratic that has two positive

solutions (under appropriate parametric restrictions). We focus on the smaller solution,

as this solution is locally stable, whereas the larger solution is locally unstable.7

7The larger solution is locally unstable in the sense that a small increase (resp. decrease) in volatility
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The last part of the result shows that greater noise variance raises the total variance.

Moreover, this channel is amplified by the above reinforcement feedbacks. Importantly,

by increasing asset price volatility, greater noise variance also increases the output-gap

loss. That is, financial noise worsens the macroeconomic performance of monetary policy.

Quantifying the impact of noise. How large is the potential impact of noise on the

return and output variance? For a simple calibration, observe that the price impact of a

unit change in asset demand (as a fraction of supply) is given by

I ≡ dpt
dεµ,t

=
σ2

α
.

Recent empirical analyses find that this price impact is large. For instance, Gabaix and

Koijen (2021) suggest that for the stock market it could be as large as 5. For a conservative

calibration, suppose we set the fraction of elastic funds α to target a price impact equal

to one, I =σ2

α
= 1. Combining this with (22), we obtain

α = σ2
macro + σ2

µ = σ2. (23)

With the appropriate choice of α, there is a “candidate” solution in which the price

impact is equal to one and the total variance of the sum of the macro-induced variance

and noise variance. We verify that this corresponds to an actual solution as long as the

noise variance is not too large, σ2
µ ≤ σ2

macro.
8 In this calibration, the variance of noise

affects the return variance additively.

This potentially large effect of noise on market volatility is consistent with the finance

literature emphasizing asset price fluctuations driven by noise and limits to arbitrage (see

De Long et al. (1990)). Proposition 1 shows that, when it concerns the aggregate asset

price, this type of noise destabilizes the macroeconomy in addition to financial markets.

These observations call for an alternative policy framework where the central bank aims

to mitigate the impact of noise.

would further increase (resp. descrease) the price impact, which would further increase (resp. decrease)
the variance, and so on. In contrast, the smaller solution is robust to small fluctuations in volatility.

8In the appendix, we show that a candidate corresponds to the stable solution to (22) only if it satisfies
2σ2

µσ
2 ≤ α2. Together with (23), this implies σ2

µ ≤ σ2
macro. As long as noise variance is not too large

(relative to macro-news variance), the candidate solution with I =σ2

α = 1 corresponds to a locally stable
equilibrium. If σ2

µ > σ2
macro, then noise is so large that when its unit-price impact is equal to one, it

induces destabilizing dynamics. Specifically, there is no locally stable equilibrium in which σ2
µ > σ2

macro

and I =σ2

α = 1.
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4. FCI targeting

In this section, we demonstrate that a framework where the central bank sets a (soft)

FCI target for the upcoming period and strives to maintain the FCI near this target, in

addition to focusing on its conventional objectives, enhances the central bank’s ability

to achieve its standard macroeconomic goals. Compared to the standard discretionary

policy, this approach results in greater FCI stability and allows the market to more ef-

fectively absorb aggregate noise, thereby lessening its impact on economic activity. Fur-

thermore, we illustrate that FCI targeting dominates committing to future interest rates;

in essence, “FCI-based forward guidance” outperforms traditional interest rate forward

guidance. Moreover, despite relying solely on interest rate adjustments as its instrument,

FCI targeting may lower interest rate volatility.

4.1. Equilibrium with FCI targeting

Formally, suppose the central bank solves the following modified problem:

GFCI
t = min

rft ,pt+1

Et

[
∞∑
h=0

βh
[(
yt+h − y∗t+h

)2
+ ψ

(
pt+h − pt+h

)2]]
, (24)

where pt+h denotes an FCI target announced by the central bank in the previous period,

t+h−1 (the initial target p0 is given). That is, in addition to minimizing the output gaps

as usual, the central bank penalizes the deviations of the aggregate asset price from its

pre-announced target. The parameter ψ ≥ 0 captures the strength of the FCI targeting

objective relative to the central bank’s usual objectives. The standard model is a special

case with ψ = 0.

While we change the central bank’s operational objective function, it is important

to note that the true objective function is unchanged and given by the output-gap loss

in (17). That is, merely stabilizing asset prices does not improve welfare or the policy

performance. Our goal is to analyze whether adopting an operational FCI targeting

framework can improve the true policy performance. Our next result characterizes the

equilibrium with ψ ≥ 0.

Proposition 2 (Equilibrium with FCI Targeting). Suppose the planner follows the FCI

targeting policy in (24) with ψ ≥ 0, the parameters satisfy α2 ≥ 4σ2
µ

(
σ2
z + β2σ2

δ

)
(and

β > 1 − β), and the initial target satisfies p0 = E−1 [p
∗
0]. Then, there is a (stable)

equilibrium in which the planner announces the expected “pstar” for the next period as its
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target

pt+1 = Et

[
p∗t+1

]
where p∗t+1 = y∗t+1 −m− δt+1. (25)

The equilibrium asset price, output, and interest rate are

pt = Et−1 [p
∗
t ] +

1

1 + ψ
(εz,t − εδ,t) +

σ2

α
εµ,t, (26)

yt = y∗t +
ψ

1 + ψ
(εδ,t − εz,t) +

σ2

α
εµ,t, (27)

rft = ρ− 1

2
σ2 + (1− βφδ) δt +

σ2

α
φµµt−1 +

ψ

1 + ψ
(εz,t − εδ,t) . (28)

The equilibrium return is

rt+1 = Et [rt+1] +
1

1 + ψ
εz,t+1 −

(
1

1 + ψ
− (1− β)

)
εδ,t+1 +

σ2

α
εµ,t+1, (29)

where the expected return Et [rt+1] is given by (A.36). The return variance σ2 = vart (rt+1)

is the smaller positive solution to the following fixed point problem

σ2 = σ2
macro (ψ) +

(σ2)

α2

2

σ2
µ, (30)

where σ2
macro (ψ) = σ2

z

(
1

1 + ψ

)2

+ σ2
δ

(
1

1 + ψ
− (1− β)

)2

.

Let ψ = argminψ≥0 σ
2
macro (ψ). Over the range ψ ∈ [0, ψ), increasing ψ strictly reduces

σ2 as well as σ2
macro (ψ) and

(σ2)
α2

2

σ2
µ. That is, stronger FCI targeting reduces the return

variance and both of its components.

Here we provide the equilibrium’s intuition and relegate the proof to Appendix A.2.

Eq. (25) says that the central bank optimally announces its expected “pstar” as its target

for the next period. Given this target, the central bank’s optimal (interest rate) policy

implies

Et [pt] =
1

1 + ψ
p∗t +

ψ

1 + ψ
Et−1 [p

∗
t ] . (31)

That is, the central bank’s expected asset price is a weighted average of the current

“pstar” and the last period’s expected “pstar”, which it had announced as a target. This

implies Eq. (26), which says the asset price reflects the surprises in “pstar” but only

partially : A positive supply shock εz,t > 0 raises the asset price but less than in the

case with discretionary policy (ψ = 0); a positive demand shock εδ,t > 0 decreases the
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asset price but less than with discretionary policy. This in turn implies Eq. (27), which

says that the slow adjustment of asset prices to macroeconomic shocks affects output. A

positive supply shock εz,t > 0 has a smaller effect on output than with discretionary policy,

because the policy does not allow asset prices (and demand) to adjust to the higher supply

immediately. Conversely, a positive demand shock εδ,t > 0 has some effect on output,

because the policy does not undo the effect of demand fully. Eq. (28) characterizes the

policy interest rate that induces these outcomes. We discuss this policy rate response

later in Section 4.4.

Eqs. (29− 30) describe the equilibrium return and its conditional variance. As before,

the return variance is larger than macro-induced variance because of noise. Since the

price impact of noise is endogenous, the total return variance is still determined as the

solution to a fixed point problem. The difference is that the macro-induced variance is

now endogenous to the degree of FCI targeting and typically lower than with discretionary

policy. In particular, supply shocks always have a smaller impact on the return. Demand

shocks also have a smaller impact on the return as long as the FCI targeting is not too

strong, ψ < β
1−β .

9

In summary, there is a range
[
0, ψ

]
(where ψ > β

1−β ) over which FCI targeting reduces

the macro-induced variance σ2
macro (ψ). Over the same range, FCI targeting also reduces

the total return variance σ2. In fact, the reduction in total variance is greater than the

reduction in macro-induced variance, because a lower variance reduces the noise-induced

variance
(σ2)
α2

2

σ2
µ. Since the policy keeps the asset price close to the announced target,

the arbitrageurs become more willing to absorb noise shocks, creating a virtuous cycle in

which the total variance declines.

4.2. Macro-stabilization effects of FCI targeting

Proposition 2 demonstrates that a central bank adopting an FCI targeting policy mitigates

market volatility. However, the central bank in our model is not concerned with market

volatility per se. The question then arises: does FCI targeting aids the central bank in

fulfilling its standard macro-stabilization goals? Our main result in this section confirms

this: some FCI targeting always improves macroeconomic stabilization.

We evaluate the policy performance with the output-gap loss function Gt defined in

9The coefficient, 1
1+ψ − (1− β), implies that when ψ < β

1−β a positive demand shock decreases the

return, although less than with discretionary policy. When ψ > β
1−β , a positive demand shock increases

the return since its impact on output (cash flows) dominates its dampened effect on the aggregate asset
price.
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(17). This function might depend on the current realizations of supply and demand shocks

εz,t, εδ,t. To obtain a welfare measure that averages across different shocks, we consider

the expected output-gap loss given by:10

Ge (ψ) = E [Gt (ψ)] = E

[
∞∑
h=0

βh
(
yt+h (ψ)− y∗t+h

)2]
. (32)

Here, E [·] denotes the unconditional distribution over all shocks, which satisfies

E [Et [·]] = E [·]. To evaluate this expectation, observe that Eq. (27) implies the out-

put gap is given by:

ỹt = (εδ,t − εz,t)
ψ

1 + ψ
+ εµ,t

σ2

α
. (33)

Using this expression, we calculate and decompose the expected output gap-loss as follows

Ge (ψ) = Ge
macro (ψ) +Ge

noise (ψ) , (34)

where Ge
macro (ψ) =

(σ2
z + σ2

δ)
(

ψ
1+ψ

)2
1− β

and Ge
noise (ψ) =

σ2
µ

(
σ2

α

)2
1− β

.

Ge
macro (ψ) and G

e
noise (ψ) are the contributions of macroeconomic shocks and noise shocks

to the expected output-gap loss, respectively. Our next result describes how FCI targeting

affects Ge (ψ) and its components.

Proposition 3 (Macrostabilization Effects of FCI Targeting). Consider the equilibrium

in Proposition 2. Then, a small degree of FCI targeting reduces the expected output-gap

loss
dGe (ψ)

dψ
|ψ=0 < 0, with

dGe
macro (ψ)

dψ
|ψ=0 = 0 and

dGe
noise (ψ)

dψ
|ψ=0 < 0.

Therefore, ψ∗ = argminψ≥0G
e (ψ) > 0; i.e., the output-gap loss minimizing policy features

FCI targeting.

For intuition, observe from Eqs. (33− 34) that FCI targeting has competing effects

on output gaps. On the one hand, the policy creates new sources of output gaps as it

does not fully allow output to adjust to supply surprises and it allows demand surprises

to influence output (the terms (εδ,t − εz,t)
ψ

1+ψ
). On the other hand, the policy reduces

return variance σ2, and this mitigates the asset price and output impact of noise surprises

10Our main result qualitatively also holds with the current gap Gt; that is, some degree of FCI targeting
improves welfare for any given realization of shocks εz,t, εδ,t. However, the magnitude of welfare gains
and the optimal degree of FCI targeting depends on εz,t, εδ,t. The expected value Ge (ψ) ensures that we
evalute the welfare gains and the optimal FCI targeting by averaging across a variety of shocks.
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(the term εµ,t
σ2

α
). However, the noise-reduction force always dominates for sufficiently

low levels of ψ because dGmacro(ψ)
dψ

|ψ=0 = 0: starting from the baseline discretionary policy,

allowing macroeconomic surprises to affect the output gap induces only a second-order

increase in the output-gap loss. In contrast, Proposition 2 implies that dσ2

dψ
|ψ=0 < 0 and

thus dGnoise(ψ)
dψ

|ψ=0 < 0: increasing ψ induces a first-order reduction on return variance

induced by noise σ2
µ

(
σ2

α

)2
, and this “excess” variance affects output gaps as well as asset

prices. Therefore, adopting an FCI targeting policy with positive ψ reduces the output-

gap loss.

Although the central bank cannot directly counteract the price fluctuations caused

by market noise, FCI targeting allows it to indirectly alleviate these effects by enabling

rational investors (the market) to absorb more of the noise. Consequently, FCI targeting

reduces the impact of noise on the output gap.

4.3. Numerical illustration of FCI targeting

For a numerical illustration of Propositions 2 and 3, consider the calibration we introduced

in Section 3.2.2 (see (23))

σ2
µ = σ2

macro (0) , (35)

σ2
δ = σ2

z =
σ2
macro (0)

1 + β2 ,

α = σ2
µ + σ2

macro (0) = σ2,

with σ2
macro (0) = (0.01)2 and β = 0.99.

We equalize the noise variance to the macro-induced variance, and set the variances of

demand and supply to be identical. We set α to target a price impact coefficient of

one, I = σ2/α = 1. We consider a quarterly calibration and set the discount rate to

1%. Finally, we set the macro-induced standard deviation to 1% to match (roughly) the

standard deviation of quarterly output growth in the data.11

The left panel of Figure 5 illustrates the impact of FCI targeting on return variance

and its components (see (30)). Stronger FCI targeting reduces the return variance as well

as both of its components. The reduction is substantial: at the optimum level of targeting,

ψ = ψ∗ (illustrated by the vertical line), the total variance decreases by approximately

two-thirds. Notably, the variance due to noise diminishes by more than ninety percent.

11In this calibration, the level of σ2
macro (0) does not change the optimal level of FCI targeting since all

other variances scale with σ2
macro (0).
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Figure 5: The left panel shows the effect of FCI targeting ψ on return variance (solid
black line) and its components induced by noise shocks (dashed orange line) and by
macroeconomic shocks (dotted blue line). The right panel shows the effect on the expected
output gap loss (solid black line) and its components induced by noise shocks (dashed
orange line) and by macroeconomic shocks (dotted blue line). The vertical lines illustrate
the gap-minimizing level of FCI targeting. We use the parameters in (35).
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In essence, optimal FCI targeting nearly eradicates the noise-induced variance, which

significantly lowers the total return variance.

The right panel of Figure 5 shows how FCI targeting affects the output-gap loss and its

components (see (34)). Starting from the discretionary policy, FCI targeting substantially

reduces the noise-component and total output-gap loss, while having a second-order effect

on the macro-induced output-gap loss. As FCI targeting intensity rises, it continues to

reduce noise-induced losses but begins to increase macro-induced losses more rapidly. The

optimal level of FCI targeting, ψ∗ ≃ 0.4, corresponds to a central bank targeting an asset

price that roughly assigns a one-third weight on its pre-announced target and two-thirds

to the current “pstar” (see (31)). Although this represents a relatively mild form of FCI

targeting, it effectively eliminates nearly all noise-driven loss, as depicted in the left panel.

4.4. FCI targeting and interest rate volatility

One concern with FCI targeting is that it might require large movements in the policy

interest rate to keep financial conditions close to the target. However, our model reveals

that FCI targeting has competing effects on interest rate volatility and can, in fact, reduce

it—even though reducing volatility is not an explicit policy goal.

In order to analyze the effects on interest rate volatility, we write Eq. (28) as

rft = Et−1

[
rft

]
+

ψ

1 + ψ
εz,t +

[
1− βφδ −

ψ

1 + ψ

]
εδ,t +

σ2

α
φµεµ,t−1, (36)

where Et−1

[
rft

]
is the expected interest rate when the central bank made a decision in

the previous period t− 1. The remaining terms reflect the interest rate surprises induced

by supply shocks, demand shocks, and financial noise shocks, respectively. FCI targeting

increases the policy rate’s responsiveness to supply shocks. It may also sensitivity to

demand shocks (although in the opposite direction)—this happens when φδ is high and ψ

is not too low. In scenarios of persistent demand shocks, asset prices react in anticipation

of future policy rate changes in response to high demand. Consequently, the central bank

might need to adjust the current policy rate in the opposite direction to counteract these

asset price movements. Conversely, FCI targeting diminishes the policy rate’s sensitivity

to financial noise shocks by reducing both the return variance σ2 and the noise’s impact

on asset prices. The overall effect hinges on the balance between this decreased sensitivity

to financial noise and the generally increased sensitivity to macroeconomic shocks.
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Figure 6: This figure shows the effect of FCI targeting ψ on the conditional interest rate
variance (solid black line) and its components driven by noise shocks (dashed orange line)
and by macroeconomic shocks (doted blue line). The line illustrates the gap-minimizing
level of FCI targeting. We use the parameters in (35) and (37).
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For a quantitative exploration, consider the parameters in (35) along with

φδ = φµ = 0.95. (37)

We set the persistence of demand and noise shocks to match (roughly) the quarterly auto-

correlation of the policy interest rate observed in the data. Figure 6 depicts the impact of

FCI targeting on the conditional interest rate variance, vart−1

(
rft

)
, and its macro-induced

and noise-induced components. Stronger FCI targeting increases the macro-induced rate

variance but significantly reduces the noise-induced rate variance. The reduction in the

noise-induced variance is notably more substantial. As a result, FCI targeting overall

lowers the total interest rate variance. Indeed, at the optimum targeting level, ψ = ψ∗

(vertical line), the total rate variance is reduced to approximately one fifth of what it is

under discretionary policy.

Why is the influence of the financial noise channel so pronounced? Under a discre-

tionary policy (ψ = 0), financial noise shocks are the primary contributors to interest

rate volatility, despite macroeconomic shocks and noise shocks contributing equally to

the return variance (see the left panel of Figure 5). The key difference lies in the fact that

macroeconomic shocks possess a self-regulatory mechanism, which noise shocks lack.

To grasp this distinction, first consider that (persistent) supply shocks do not require

any interest rate adjustment because they shift p∗t and the expected p∗t+1 by a similar

amount. With a positive supply shocks, asset prices rise in anticipation of high output

and asset prices in the future, eliminating the need for central bank intervention in the

policy rate. Similarly, persistent demand shocks necessitate only minimal interest rate

adjustment, as captured by the term (1− βφδ) εδ,t. These shocks shift p
∗
t and the expected

p∗t+1 by the same amount. When a positive demand shock occurs, asset prices drop in

anticipation of higher future rates and lower prices—a “good news is bad news” scenario—

prompting the central bank to make only slight adjustments to the current rate.

In contrast, persistent noise shocks often demand significant rate adjustments, repre-

sented by the term σ2

α
φµεµ,t−1, because they shift pt away from p∗t without altering the

expected p∗t+1 and thus the expected pt+1. Following a positive noise shock, asset prices

increase even though the expected future asset prices remain unchanged, as future noise

will be counterbalanced by the central bank. Consequently, the central bank needs to

adjust the current interest rate substantially, almost one-to-one with the price impact of

the noise, to realign asset prices with p∗t .

In this context, because FCI targeting diminishes the price impact of noise, it also

lessens the need for substantial rate adjustments to counteract noise shocks. Put differ-
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ently, as arbitrageurs absorb the majority of the noise, the burden on the central bank is

reduced, resulting in greater stability of the policy interest rate.

4.5. FCI targeting vs interest rate forward guidance

In our model, FCI targeting functions similarly to issuing forward guidance about the

future trajectory of the FCI, assuming that this type of guidance implies a soft degree of

commitment. This similarity raises the question of whether (more conventional) interest

rate forward guidance, interpreted as a soft commitment to a future interest rate, could

yield similar advantages. We explore this question in Appendix A.3, where we analyze a

policy framework in which the central bank targets the future interest rate rather than the

future FCI. Specifically, suppose the central bank solves the following modified problem:

Grf -target
t = min

rft ,r
f
t+1

Et

[
∞∑
h=0

βh
[(
yt+h − y∗t+h

)2
+ ψ

(
rft+h − rft+h

)2]]
. (38)

In each period, the central bank sets the policy rate rft and announces a target interest

rate for the subsequent period rft+1. This problem leads to a similar equilibrium as in

Proposition 2, with the key distinction that the central bank does not fully respond to

recent noise shocks (in addition to the current noise shock). Consequently, this strategy

leads to a less effective policy performance compared to a similar FCI targeting policy.

The solution is particularly tractable for the special case in which there are no supply

shocks, εz,t = 0, and demand shocks are transitory, φδ = 0. However, the insights

apply more generally. For this special case, Proposition 5 in the appendix shows that the

equilibrium interest rate is given by

rft = ρ− 1

2
σ2 +

εδ,t
1 + ψ

+
σ2

α

(
φ2
µµt−1 +

1

1 + ψ
φµεµ,t−1

)
.

Compared to FCI targeting, the central bank underreacts to not only demand shocks but

also to the predictable part of recent noise shocks φµεµ,t−1 (cf. (27)). As a result, these

recent noise shocks generate greater volatility in asset prices (and output). Moreover,

the impact of current noise shocks on asset prices (and output) is exacerbated because

financial markets anticipate that the future interest rate will underreact to the noise shock.

Specifically, the equilibrium asset price is

pt = y∗t −m− εδ,t
1 + ψ

+
σ2

α

(
ψ

1 + ψ
φµεµ,t−1 +

(
1 +

ψ

1 + ψ
φµ

)
εµ,t

)
,
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and output is described by a similar expression, detailed in the appendix.

Comparing these expressions with those in Proposition 2, it becomes evident that

interest rate targeting results in larger output gaps and achieves a smaller reduction in

return volatility than FCI targeting. In fact, interest rate targeting might even increase

return volatility by amplifying the price impact of noise shocks for a given σ2. Therefore,

the interest rate targeting policy is strictly dominated by a comparable FCI targeting

policy in this environment.

Intuitively, interest rate targeting reduces the flexibility of the central bank to control

the aggregate asset price (FCI). Given that output is driven by the aggregate asset price

rather than the policy interest rate, this loss of control results in a larger output-gap loss.

4.6. Robustness of FCI targeting

Our baseline model is stylized. In this section, we demonstrate that the logic behind the

benefits of FCI targeting survives in richer economic environments. These extensions also

serve as a transition to the empirical counterfactual analysis presented in the next section.

4.6.1. FCI targeting with policy lags to all current shocks

In Appendix A.4, we explore the implications of FCI targeting when the central bank sets

policy before observing all current-period shocks εµ,t, εδ,t, εz,t (as opposed to only εµ,t).

The analysis mirrors that of our baseline model but with the difference that the policy

reacts to macroeconomic shocks with a delay. Nevertheless, since markets are forward-

looking and anticipate future policy responses to shocks, FCI targeting still reduces return

volatility and improves macroeconomic stability as in the baseline model.

The analysis is particularly tractable when there are no supply shocks, εz,t = 0, al-

though the insights apply more generally. For this special case, Proposition 6 in the

appendix demonstrates that the equilibrium asset price is

pt = y∗t −m− φ2
δδt−2 −

1

1 + ψ
φδεδ,t−1 −

(
1

1 + ψ
− (1− β)

)
φδεδ,t +

σ2

α
εµ,t.

Recall that FCI targeting in the baseline model operates via reducing data-dependency

with respect to macroeconomic shocks. The same logic applies here. Under a discretionary

policy (ψ = 0), a positive demand shock εδ,t > 0 still lowers the asset price because(
1

1+ψ
− (1− β)

)
φδ = βφδ > 0, although its effect is less pronounced compared to the

baseline model (cf. (26)). While the policy does not immediately react to the demand

shock, it will respond in the subsequent period, and financial markets immediately price
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in this anticipated response. With FCI targeting (ψ > 0), the future policy response is

dampened, and this reduces the price impact of demand shocks. This leads to reduced

equilibrium volatility σ2 and a lower price impact of noise shocks.

4.6.2. FCI targeting with inflation and output trade-off

In Appendix A.5, we investigate the effects of FCI targeting when prices are partially

flexible and the central bank faces a trade-off between stabilizing inflation and output.

We find that our main results continue to hold in this more realistic setting.

We endogenize inflation via the standard New Keynesian Phillips Curve (NKPC)

πt = κỹt + βEt [πt+1] + ut, (39)

where πt denotes (the log of) nominal price inflation and ut denotes cost-push shocks that

follow an AR(1) process:

ut = φuut−1 + εu,t.

We also adjust the central bank’s true objective function to incorporate the costs of

inflation gaps [cf. (32)]. In particular, with discretion, the central bank targets the real

interest rate rft to solve:12

min
rft

Gt = Et

[
∞∑
h=0

βh
(
ỹ2t+h + ζπ2

t+h

)]
, (40)

where ζ denotes the relative welfare weight for the inflation gaps (we normalize the in-

flation target to zero). The rest of the model is the same as in Sections 3 and 4. The

baseline model is the special case with κ = ut = 0.

In the appendix, we show that the equilibrium with discretion satisfies (see (A.60))

pt = pot +
σ2

α
εµ,t, where pot = y∗t −m− δt − Yuut,

πt = Πuut + κ
σ2

α
εµ,t,

yt = y∗t − Yuut +
σ2

α
εµ,t.

12We adjust the financial market side of the model to allow for nominal bonds in addition to real
bonds. We assume the central bank sets the nominal interest rate ift and show that (under appropriate

assumptions) the central bank can still target the real interest rate rft as implied by problem (40). Along

the equilibrium path, the central bank can implement a particular rft by setting ift after accounting for
expected inflation and the inflation risk premium.
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The parameters Πu, Yu > 0 are derived coefficients [see (A.59)] and the term pot is the

central bank’s optimal asset price target, absent noise. In equilibrium, cost-push shocks

result in positive and negative inflation and output gaps, respectively, and they create

a new source of aggregate asset price volatility. Importantly, noise shocks remain an

important diver of output and (now) inflation gaps.

We then consider an FCI targeting framework in which the central bank minimizes

GFCI
t = min

rft ,pt+1

Et−1

[
∞∑
h=0

βh
[
ỹ2t+h + ζπ2

t+h + ψ
(
1 + κ2ζ

) (
pt+h − pt+h

)2]]
,

where (1 + κ2ζ) is a normalization term. Proposition 7 in the appendix shows that

propositrothe equilibrium satisfies

pt = Et−1 [p
o
t ] +

1

1 + ψ
(εz,t − εδ,t − Yuεu,t) +

σ2

α
εµ,t,

yt = y∗t − Yuut +
ψ

1 + ψ
Yuεu,t +

ψ

1 + ψ
(εδ,t − εz,t) +

σ2

α
εµ,t,

πt = Πuut +
ψ

1 + ψ
κYuεu,t +

ψ

1 + ψ
κ (εδ,t − εz,t) +

σ2

α
κεµ,t.

FCI targeting mitigates the aggregate asset price reaction to cost-push shocks εu,t as

well as to supply and demand shocks. Therefore, FCI targeting still reduces the return

volatility σ2 and the impact of noise shocks εµ,t.
13

Finally, Proposition 8 in the appendix shows that, as in the baseline model, some

degree of FCI targeting always improves the central bank’s true objective function in (40).

Intuitively, while cost-push shocks induce nonzero gaps on average, discretionary policy

is already optimized to minimize the (current-period) losses induced by these shocks.

Therefore, small deviations from this policy generate only second-order losses, while still

inducing first-order gains via the same noise-reduction mechanism as in our baseline model

(see Proposition 3).

5. Policy Counterfactuals

In this section, we discuss the outcomes of policy counterfactuals. We show that FCI

targeting yields large gains with respect to the observed data in terms of output gap,

13Note also that FCI targeting implies that cost-push shocks have a larger impact on inflation gaps
and a smaller effect on output gaps.
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inflation and financial volatility. FCI targeting also outperforms a dual mandate optimal

rule and an interest rate targeting rule (forward guidance), generating lower volatility for

both macroeconomic and financial variables.

5.1. Methodology

We adapt the methodology described in McKay and Wolf (2023b) and Caravello et al.

(2024) to our problem. A direct application of this methodology is not feasible due to a

key complication: our primary mechanism operates through risk, which is a form of non-

linearity. In the subsequent discussion, we outline the necessary extensions to address

this issue.

Set-up and objects of interest. Our baseline set up is similar to Caravello et al.

(2024). In particular, we observe data from a data generating process (DGP) of the form:

Yt =
∞∑
ℓ=0

Θℓεt−ℓ =
∞∑
ℓ=0

Θµ,ℓεµ,t−ℓ +
∞∑
ℓ=0

Θ−µ,ℓε−µ,t−ℓ. (41)

i.e a linear SVMA(∞), where yt is again a vector of macroeconomic aggregates, the shock

vector εt is distributed as

εt ∼ N(0, I), (42)

and the ny × nε-dimensional matrices Θℓ denote the impulse response of the vector of

observables yt at horizon ℓ to a date-t vector of shocks εt. We partition the shock vector

as εt = (εµ,t, ε
′
−µ,t)

′ where εµ,t is the financial noise shock and ε−µ,t stands for the rest of

the structural macroeconomic shocks. Analogously, we partition the full impulse response

matrices Θℓ = (Θµ,ℓ,Θ−µ,ℓ), where Θµ,ℓ is a ny×1 column vector that collects the impulse

response to the financial noise shock, and Θ−µ,ℓ is a ny× (nε− 1) matrix that collects the

response to the rest of the shocks. Define also the Wold representation of (41) as:

Yt =
∞∑
ℓ=0

Ψℓut−ℓ, (43)

where ut are orthogonalized Wold innovations, ut = Pεt for some orthogonal matrix P ,

and Ψℓ = ΘℓP
′.

We assume that the impulse responses Θℓ can be obtained as the solution to a linear

36



system of dynamic equations:

Fwwww + Fxxxx+ Fzzzz + Fµ(σ
2
rεµ,0) = 000, (44)

Hwwww +Hxxxx+Hzzzz +Hεε0 = 000, (45)

Axxxx+Azzzz +Avv0 = 000. (46)

Where xxx = (x0, x1, . . . ) denotes the infinite sequence of variable x (analogously for

www,zzz). As in McKay andWolf (2023b), xxx collects all private sector variables, zzz is the path of

the policy instrument, and www collects variables that are unobserved to the econometrician.

Θ−µ,ℓ includes the impulse response to ε0 (macroeconomic shocks) and v0 (policy shocks),

and Θµ,ℓ collects the impulse responses to εµ,0 (financial noise shocks).

The main departure from the previous literature (McKay and Wolf, 2023b; Caravello

et al., 2024) is the addition of equation (44), which represents the Financial Block of

the model. The key restriction embedded in (44) is that the (endogenous) conditional

variance of returns, σ2
r, only affects the transmission of the financial shock, and it does

it proportionally. In particular, we consider models in which the F ,H or A matrices

do not depend on σ2
r. This condition is satisfied in our model. This is because i) the

portfolio share of arbitrageurs times σ2
r is proportional to the expected excess return, ii)

the shocks directly affects the portfolio share of arbitrageurs, iii) the model is conditionally

homoskedastic, so the conditional variance of returns is constant. Although admittedly

stringent, these assumptions allow us to depart from full linearity to study how asset price

stabilization by the central bank can generate an endogenous feedback in the economy

via risk.

The for a given set of variables of interest, we want to obtain two objects:

1. counterfactual second moments, i.e what would have been the variance of the vari-

ables if policy was different?

2. the counterfactual historical evolution between two dates t1 and t2, i.e what would

have been the realized path of different variables in between those dates had policy

been different?

In particular, we consider alternative policy rules, parameterized by Ãx, Ãz, Ãv, Ãε,

such that

Ãxxxx+ Ãzzzz + Ãvv0 + Ãεε0 = 000. (47)

In equilibrium, this counterfactual rule would induce different impulse response matrices
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Θ̃ℓ, which can be used to compute any counterfactual second moments of interest via:

Γ̃y(ℓ) =
∞∑
m=0

Θ̃mΘ̃
′
m+ℓ, (48)

where Γ̃y(ℓ) is the counterfactual autocovariance function of vector yt. We can compute

the counterfactual historical evolution as:

Ỹt =

t−t1∑
ℓ=0

Θ̃ℓεt−ℓ + Ỹ 1
t , ∀t ∈ [t1, t1 + 1, . . . , t2], (49)

where Ỹ1 = Et1−1[Ỹt] is an initial conditions term.

Accounting for endogenous risk. If we followed Caravello et al. (2024) directly, cou-

pling (47) with (44) and (45) would yield (a rotation) of counter-factual impulse responses

Θ̃ℓ, which can then be used to mechanically construct the counter-factual second moments

using (48) and the historical evolution using (49). However, in the present setting, this

would yield an incorrect counterfactual, since this would not take into account the en-

dogenous reaction of σ2
r. In order to account for the endogenous reduction in risk, we use

the following proposition.

Proposition 4. Suppose that the SVMA(∞) process (41) is invertible; i.e., that

εt ∈ span({Yτ}−∞<τ≤t). (50)

Then knowledge of: (i) the Wold representation yt (i.e., the history of innovations

{ut−ℓ}∞ℓ=0 together with Ψ(L)); (ii) policy causal effects Θν; and iii) and identified time

series for the financial noise shock, {εt,µ} suffices to construct the counterfactuals of

interest—Γ̃y(ℓ) and ỹt.

The essence of the proof begins by implementing the procedure described in Caravello

et al. (2024), followed by rescaling the IRF of the financial noise shock by σ̃2
r/σ

2
r (where σ̃

2
r

is the counterfactual conditional variance, obtained via solving a quadratic analogous to

that in the model section). This rescaling accounts for the endogenous variance reduction,

and allows us to construct the counterfactuals of interest. Appendix C.1 contains the

details.

Implementation. We use the same data as in Section 2, using the augmented set of

variables that includes labor market series. We use CBO output gap as our measure of
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output gap, and PCE inflation as our measure of inflation, the Financial Conditions Index

build by Ajello et al. (2023a) as a proxy for pt, and the 3 month interest rate as a the

policy rate. All variables are demeaned to capture deviations from steady state. For our

measured noise shock, we use the shock identified under SVAR-IV as the baseline, due to

the potential presence of measurement error if we assumed the Gabaix and Koijen (2021)

proxy provides a perfect measure of the shock.

We employ a fully semi-structural approach, using directly measurable impulse re-

sponses to approximate the counterfactual policy, as detailed in McKay and Wolf (2023b);

Caravello et al. (2024). Although this is an approximation, Caravello et al. (2024) show

in their applications for counterfactual second moments and counterfactual historical evo-

lution, the approximation obtained with only one shock is quite good.

We obtain monetary policy impulse responses using the shocks provided by Romer

and Romer (2004) and Aruoba and Drechsel (2022). We use a VAR with the baseline set

of macro variables described in Section 2, but for the extended sample 1973Q1:2019Q4 in

order to exploit a longer time series for monetary policy shocks. We include both shocks

in the VAR, and use a recursive identification scheme as suggested in Plagborg-Møller

and Wolf (2021) and implemented in McKay and Wolf (2023b). In particular, the Aruoba

and Drechsel (2022) shock is ordered first, then output gap, potential output, investment,

consumption, inflation, then the Romer and Romer (2004) shock, and then the rest of

the variables. Appendix B.2.1 depicts the estimated impulse responses to the variables of

interest.

We take the Wold innovations and identified noise shock as given, but account for

estimation uncertainty in the monetary IRFs. Specifically, we estimate the confidence

bands for the IRFs using a parametric bootstrap method. Subsequently, for each boot-

strap sample of the IRFs, we construct the relevant counterfactual. We then report the

distribution of these counterfactual outcomes as a means to assess the significance of es-

timation uncertainty. This is analogous to the procedure outlined in McKay and Wolf

(2023b) or Caravello et al. (2024).

5.2. Counterfactual Second Moments

In this subsection, we explore the extent to which macroeconomic volatility could have

been reduced if the Fed had implemented FCI targeting during our sample period. Specif-

ically, we focus on V ar(ỹt), V ar(π), V ar(it), V art(FCIt). I.e., the unconditional variances

of the output gap, inflation, and interest rates, along with the conditional variance of the

FCI, the latter being the primary channel through which FCI targeting influences the
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economy.

We consider two different benchmark rules and add FCI targeting terms to each,

reporting the extent to which FCI reduces macroeconomic variance. Additionally, we

compare FCI targeting with interest rate targeting (forward guidance) and generate a

counterfactual historical evolution for the period from 2000Q1 to 2007Q4.

5.2.1. Taylor Rule

We begin by considering Taylor rules of the form:

it = ρiit−1 + (1− ρi)(ϕππt + ϕyỹt + ψ(FCI t − FCIt)), (51)

where it is nominal interest rates, πt is inflation, ỹt is output gap, FCIt is the value of the

FCI index at time t, and FCI t is the optimal FCI target. We explain how to construct

FCI t in the next subsection.

We consider Taylor Rules because they are widely used in estimated models, and

provide a reasonable fit for some moments of the data. Furthermore, this is the class of

rules considered by Bernanke and Gertler (2000, 2001). Thus, this is a natural first step

in studying the effects of FCI targeting.

Setting ψ = 0, we obtain the benchmark with no FCI targeting term. Under the

benchmark (ψ = 0), we compute the counterfactual and make it fit the unconditional

variance of the output gap, inflation and interest rates by choosing ρi, ϕπ, and ϕy.
14

We compare the benchmark case with a case where ψ > 0. We parameterize ψ =

ψ̃(ϕπ + ϕy), where ψ̃ can be interpreted as how much weight we give to FCI stabilization

compared to macro stabilization. We set ψ̃ = 5, which is an arbitrary number as the

goal of this subsection is mostly to illustrate the direction of the changes induced by FCI

targeting (larger values generate larger gains).

Figure 7 presents the results. As expected, the benchmark Taylor Rule (red dashed)

aligns closely with the targeted unconditional standard deviations observed in the data

(black dashed), though it predicts somewhat lower FCI conditional variance. Relative

to this benchmark, FCI targeting substantially reduces the variance of macroeconomic

outcomes. Comparing medians, the variance of the output gap drops by 30% and the

variance of inflation drops by 3%. Conversely, the variance of interest rates increases by

8%. Regarding the conditional variance of the FCI, it sees a 34% reduction compared to

the benchmark Taylor rule, which is already markedly lower than the levels observed in

14We obtain ρ̂i = 0.76, ϕ̂π = 1.53 and ϕ̂ỹ = 0.76.
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Figure 7: Counterfactual Standard Deviations. For Output Gap, Inflation and interest
rates, this is the unconditional standard deviation, for FCI this is the conditional SD.
Black dashed: data. Dashed lines the median. Red: baseline, Taylor Rule in 51 with
ψ = 0. Blue: Taylor Rule with ψ = 5(ϕ̂π + ϕ̂ỹ). Beige: Taylor Rule with ψ = 5(ϕ̂π +

ϕ̂ỹ), but without accounting for the endogenous reduction in risk when constructing the

counterfactual. Solid Line: posterior density for the counterfactual with ψ = 5(ϕ̂π + ϕ̂ỹ).

the data. Overall, these findings demonstrate that an expanded Taylor rule targeting asset

prices can notably enhance macroeconomic outcomes. The small reduction on inflation

variance relative to output gap variance is due to the small and delayed the response of

inflation to monetary policy shocks, consistent with a flat Phillips curve. Conversely, the

real effects of monetary policy are significant, so most of the variance gains come from

output gaps.

To highlight the critical role of the risk-reduction mechanism at the heart of our model,

Figure 7 displays, in beige, the median outcomes of the counterfactual if we omit the ben-

eficial effects of risk reduction. Specifically, this scenario follows the methodology outlined

in Caravello et al. (2024), without incorporating the extension discussed in section 5.1.

The results show no improvement in FCI variance, while inflation and interest rates ex-

hibit substantially higher variance compared to the full, correct counterfactual. Although

there is some reduction in output gap variance, it is significantly less pronounced than that

achieved with the correct counterfactual. From these observations, we conclude that the

substantial reductions in volatility observed under FCI targeting are indeed attributable

to the risk-reduction mechanism proposed in our model.
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Baseline No it smoothing term
Loss Median 10th Perc. 90th Perc. Median 10th Perc. 90th Perc.
Data 5.45 5.09

Dual Mandate (ψ = 0) 4.47 4.14 4.80 4.12 3.74 4.50
FCI T. (ψ∗ = 19.37) 4.25 3.95 4.62 3.90 3.59 4.25

Table 1: Central bank loss function in the data, and median, 10th and 90th percentiles
under the counterfactual policy rules. The policy rules always include the interest rate
smoothing term. The first set of columns shows the baseline loss, E[L] = σ2

ỹ+σ
2
π+λ∆iσ

2
∆i.

The second set of columns shows the values of E[L̃] = σ2
ỹ + σ2

π

5.2.2. Dual Mandate

The second set of policies we consider come from the minimization of a quadratic loss

function. In particular, we consider losses of the form:

L =
∞∑
t=0

βt
[
π2
t + ỹ2t + λ∆i(it − it−1) + ψ(FCI t − FCIt))

2
]
. (52)

The benchmark has ψ = 0. This kind of policies is considered, for example, in the Federal

Reserve Tealbook (2016). The main departure from the theoretical model is the inclusion

of an interest rate smoothing term, λ∆i(it − it−1), as in Woodford (2003). We refer to

policies that arise from minimizing (52) as “Flexible Dual Mandate” (FDM). We choose

the degree of smoothing λ∆i to match the interest rate variance observed in the data.15

We compare this benchmark to what happens at ψ∗, i.e the value of ψ that minimizes the

(true social) loss omitting the FCI term.

Policy with timing constraints and time-varying targets. To align our analysis

with the theoretical model, we introduce a timing constraint: policy responses are de-

termined with a one-period lag to the shock. When constructing counterfactual impulse

responses, we implement the timing restriction by assuming that, at time t = 0, the plan-

ner targets i0 = 0, and then from t = 1 onwards it sets its policy optimally in order to

minimize a quadratic loss as in McKay and Wolf (2023a). We also need to obtain the

optimal FCI target. This is achieved by solving for the policies that minimize (52) as a

function of the target. We then select this target to minimize (52) subject to the timing

constraints. Appendix C.2 explains the details.

15The obtained value is λ̂∆i = 2.5965.
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Figure 8: Counterfactual Standard Deviations. For Output Gap, Inflation and interest
rates, this is the unconditional standard deviation, for FCI this is the conditional SD.
Black dashed: data. Dashed lines the median. Red: Flexible Dual Mandate, i.e minimize
52 with ψ = 0. Blue: FCI targeting, i.e minimize 52 with ψ = ψ∗. Beige: FCI targeting,
i.e minimize 52 with ψ = ψ∗, but without accounting for the endogenous reduction in risk
when constructing the counterfactual. Solid Line: posterior density for the counterfactual
with FCI targeting counterfactual.
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Figure 9: Counterfactual Standard Deviations. For Output Gap, Inflation and interest
rates, this is the unconditional standard deviation, for FCI this is the conditional SD.
Black dashed: data. Dashed lines the median. Red: Pure Dual Mandate with Forward
Guidance in interest rates. Blue: FCI targeting, i.e minimize 53 with ψ = ψ∗. Solid Line:
posterior density for the counterfactual with FCI targeting counterfactual.

Results. Figure 8 displays the counterfactual second moments for FDM (i.e, minimize

(52) with ψ = 0) in red, and contrasts these with FCI targeting, shown in blue. Under FCI

targeting, the volatility of all macroeconomic variables is reduced. Relative to the data,

these reductions are substantial: the variance of the output gap, inflation, and interest

rates fall by 36%, 2%, and 6%, respectively, and the conditional variance of the FCI falls

by 55%. When compared to FDM, the reductions are more modest, with the output gap

and inflation decreasing by 8% and 2% respectively (when comparing medians), while

the interest rate variance reduction is still 6% (recall that FDM is calibrated to fit the

observed interest rate volatility). However, the decrease in financial conditions variance

remains substantial, at approximately 34%.

Finally, Table 1 presents the loss (52) with and without the interest rate smoothing

term. As expected, the loss is lower under FCI targeting, and this is not driven by the

interest rate smoothing term.

5.2.3. FCI targeting vs interest rate forward guidance

Following the discussion of Section 4.5, we now compare the performance of FCI targeting

with a version of interest rate forward guidance. In particular, we consider losses of the

form:
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L =
∞∑
t=0

βt
[
π2
t + ỹ2t + ψif (i

f
t − i

f

t ))
2 + ψ(FCI t − FCIt))

2
]
, (53)

and compare interest rate forward guidance (ψif > 0, ψ = 0) with FCI targeting (ψif =

0, ψ > 0). We pick ψif and ψ∗ to minimize the pure dual mandate loss
∑∞

t=0 β
t[π2

t + ỹ2t ].

Notice that we omit the interest rate smoothing term, in order to make the comparison

between both “pure” regimes.

Figure 9 shows the results. The inflation variance is roughly the same, but the output

gap variance is 21% lower under FCI targeting compared to interest rate forward guidance.

Unsurprisingly, FCI is less volatile under FCI targeting, while interest rates are less volatile

under interest rate targeting. Overall, this shows that FCI targeting is superior (in terms

volatility of macroeconomic outcomes) than standard forward guidance in interest rates.

5.3. Counterfactual Historical Evolution

In this subsection, we show how FCI targeting would have altered the realized paths of

output gap, inflation, FCI and interest rates in the period before the GFC. We choose

this period because our historical decomposition in Section 2.3 shows that the financial

noise shock was a significant driver of the 2001 recession and the main driver of the later

expansion. We consider the period 2000Q1-2007Q4, starting at the peak of the expansion

preceding the 2001 recession and continuing until the start of the GFC. We use the version

of FCI with the interest rate smoothing term employed in 5.2.2, with the same values of

λ∆i and ψ
∗ estimated in that subsection.

Figure 10 shows the results. First, the initial part of the recession appears unavoid-

able. However, thanks to FCI targeting, the recession is less deep, with the output gap

plateauing between 2001Q4 and 2003Q2 instead of falling. During this period, FCI tar-

geting makes financial conditions less restrictive than in the data. Interestingly, this is not

due to extra interest rates cuts in that period; if anything, interest rates are higher than

in the data starting on 2001Q4. Thus, we can attribute these looser financial conditions

to the positive effects of announcing the FCI target.

Turning to the expansionary phase of the cycle stating in 2004Q1, the data shows

that financial conditions became quite loose, a positive output gap opened up, and this

was accompanied by above-target inflation. If policy had followed FCI targeting, looser

financial conditions would have been counteracted by policy, both via announcements

and interest rate hikes. This would have generated somewhat tighter financial conditions,

which would have helped achieve lower output gaps, and consequently, inflation closer to
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Figure 10: Counterfactual Historical Evolution for 2000Q1-2007Q4. Black dashed: data.
For output gap, this is demeaned CBO output gap. Inflation is in year-on-year terms.
The rest of the variables are in levels. Blue: FCI targeting, i.e minimize 52 with ψ = ψ∗.
Solid: median. Shaded area: 16 and 84 confidence bands. Dashed line in the FCI panel
indicates the target ¯FCI t.

the 2% target. Overall, the adoption of FCI targeting would have meaningfully smoothed

both phases of the cycle.

6. Final Remarks

This paper theoretically and empirically investigates how monetary policy should respond

to macroeconomic fluctuations driven by financial noise.

We motivate our analysis by using (identified) vector-autoregression (VAR) models

to demonstrate that financial noise shocks can account for up to 55% of the variance in

financial conditions and up to 50% of the variance in output gaps in the U.S.

We then develop a model with financial noise and limits to arbitrage wherein it is

optimal for the central bank to stabilize financial conditions beyond their direct impact on
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output gaps, even though stable financial conditions themselves are not a social objective.

Our primary finding reveals that an FCI targeting framework—in which the central bank

announces a (soft) FCI target and tries to keep the actual FCI close to this target—triggers

an endogenous volatility-reducing feedback loop that stabilizes the output gap. This

improvement occurs because FCI targeting reduces the macroeconomic data-dependency

of monetary policy, which reduces volatility and enables arbitrageurs to absorb noise more

effectively, which reduces volatility even more, and so on. We further demonstrate that

in our model FCI targeting is more effective than interest rate forward guidance, because

it retains the flexibility of monetary policy to respond to anticipated noise shocks.

Finally, we extend recent policy counterfactual methods to incorporate our model’s

endogenous risk reduction mechanism. We use this method to perform a series of coun-

terfactual experiments to assess the potential effects of FCI targeting on macroeconomic

volatility in the U.S. Our findings indicate that FCI targeting could decrease the vari-

ance of the output gap and inflation by 36% and 2%, respectively. While not primary

objectives, the policy could also significantly reduce the variance of the FCI and interest

rates by 55% and 6%, respectively. We also empirically confirm that FCI targeting out-

performs interest rate forward guidance, and conclude by illustrating how FCI targeting

would have stabilized the macroeconomy during the period from 2000Q1 to 2007Q4, a

period dominated by financial noise shocks.
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Online Appendices: Not for Publication

A. Theory Appendix

This appendix contains details related to the theoretical model. Section A.1 provides the mi-

crofoundations for the model. Section A.2 contains the proofs omitted from the main text. The

remaining Sections A.3-A.5 provide the details of various extensions that we discuss in the main

text.

A.1. Microfoundations of the model

In this section, we provide the microfoundations of the model that we summarize in Section 3.1

and use throughout the paper. The real side of the economy is the same as the baseline model in

Caballero and Simsek (2023). The financial market side is different and allows for noise shocks.

The economy is set in discrete time t ∈ {0, 1, ..}. The model consists of four key agent

types: asset-holding households (households), hand-to-mouth agents, portfolio managers, and

the central bank. The hand-to-mouth agents primarily serve to decouple labor supply decisions

from household consumption behavior. The asset-holding households are the main drivers of

aggregate demand through their consumption and savings choices. The portfolio managers act

on behalf of these households by making portfolio allocation decisions that determine asset prices

in financial markets. The central bank conducts monetary policy.

A.1.1. Supply side

Hand-to-mouth agents provide all of the labor supply and spend all of their income (they do

not save). Their problem is

max
Lt

logCHMt − χ
L1+φ
t

1 + φ
, (A.1)

QtC
HM
t =WtLt + Tt.

Here, φ denotes the Frisch elasticity of labor supply, Qt denotes the nominal price for the final

good, Wt denotes the nominal wage, and Tt denotes lump-sum transfers from the government

(described subsequently). The optimality condition implies a standard labor supply equation

Wt

Qt
= χLφt C

HM
t . (A.2)

The rest of the supply side is similar to the standard New Keynesian Model. A competitive
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final goods producer combines the intermediate goods according to the CES technology,

Yt =

(∫ 1

0
Yt (ν)

εt−1
εt dν

)εt/(εt−1)

where Yt (ν) = ZtLt (ν)
1−α . (A.3)

Here, εt > 1 denotes the elasticity of substitution that determines the firm markups in equi-

librium. We assume it is stochastic around a steady-state level ε∗ > 1, which allows us to

accommodate cost-push shocks. With these technologies, the demand for intermediate good

firms satisfies,

Yt (ν) ≤
(
Qt (ν)

Qt

)−εt
Yt, (A.4)

where Qt =

(∫ 1

0
Qt (ν)

1−εt dν

)1/(1−εt)

. (A.5)

Qt (ν) denotes the nominal price set by the intermediate good firm ν and Qt is the ideal price

index.

The goods market clearing condition is:

Yt = CHt + CHMt . (A.6)

Here, CHt and CHMt denote consumption by the asset holding households and the hand-to-mouth

agents, respectively.

The labor market clearing condition is∫ 1

0
Lt (ν) dν = Lt. (A.7)

Finally, to simplify the distribution of output across factors, we assume the government

taxes part of the firms’ profits lump-sum and redistributes to the hand-to-mouth agents to

ensure they receive their production share of output. Specifically, each intermediate firm pays

lump-sum taxes determined as follows:

Tt = (1− α)QtYt −WtLt. (A.8)

This ensures that in equilibrium hand-to-mouth agents receive and spend their production share

of output, (1− α)QtYt, and consume [see (A.1)]

CHMt = (1− α)Yt. (A.9)
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Substituting this into the goods market clearing condition (A.6), we further obtain

Yt =
CHt
α

. (A.10)

Hand-to-mouth agents create a Keynesian multiplier effect, but output is ultimately determined

by (asset-holding) households’ spending, CHt .

Flexible-price equilibrium. Consider a benchmark without nominal rigidities. In this

benchmark, the intermediate good firm ν solves

Π = max
Q,L

QY −WtL− Tt, (A.11)

where Y = ZtL
1−α =

(
Q

Qt

)−εt
Yt.

The firm takes as given the aggregate price, wage, and output, Qt,Wt, Yt, and chooses its price,

labor input, and output Q,L, Y .

The optimal price is given by

Q =
εt

εt − 1
Wt

1

(1− α)ZtL−α . (A.12)

The firm sets an optimal markup over the marginal cost, where the markup depends (inversely)

on the elasticity of substitution and the marginal cost depends on the wage and (inversely) on

the marginal product of labor.

In equilibrium, all firms choose the same prices and allocations, Qt = Q and Lt = L.

Substituting this into (A.12), we obtain a labor demand equation,

Wt

Qt
=
εt − 1

εt
(1− α)ZtL

−α
t . (A.13)

Combining this with the labor supply equation (A.2), and substituting the hand-to-mouth con-

sumption (A.9), we obtain the equilibrium labor as the solution to,

χ (L∗
t )
φ (1− α)Y ∗

t =
εt − 1

εt
(1− α)Zt (L

∗
t )

−α .

In equilibrium, output is given by Y ∗
t = Zt (L

∗)1−α. Therefore, the flexible-price equilibrium

conditions are given by:

χ (L∗
t )

1+φ =
εt − 1

εt
, (A.14)

Y ∗
t = Zt (L

∗
t )

1−α .
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Potential output. Consider the flexible-price allocation in which the firms’ markups are at

their steady-state level, εt = ε∗, that is:

χ (L∗)1+φ =
ε∗ − 1

ε∗
, (A.15)

Y ∗
t = Zt (L

∗)1−α .

We refer to L∗ as the potential labor supply and Y ∗ = Zt (L
∗)1−α as the potential output. In the

main text, we assume the central bank attempts to keep labor and output demand at these levels.

In particular, the central bank attempts to stabilize the output fluctuations driven by shocks to εt

(or markups), because these shocks are distortionary. This enables us to accommodate cost-push

shocks that create a trade-off for the central bank for stabilizing inflation and output.16

Sticky prices and demand-driven output. We next describe the equilibrium with nom-

inal rigidities. We start with the special case with full price stickiness and then extend the

analysis to partially flexible prices. With fully sticky prices, intermediate good firms have a

preset nominal price that remains fixed over time, Qt (ν) = Q∗. This implies the nominal price

for the final good is also fixed and given by Qt = Q∗. Then, each intermediate good firm ν at

time t solves the following version of problem (A.11),

Π = max
L

Q∗Y −WtL− Tt (A.16)

where Y = AL1−α ≤ Yt.

Since the firm operates with a markup, for small aggregate demand shocks (which we assume)

it optimally chooses to meet the demand for its goods, Y = ZL1−α = Yt. Therefore, each

firm’s output is determined by aggregate demand, which is driven by households’ spending CHt

according to (A.10).

Partially flexible prices and the New Keynesian Phillips curve. We next allow for

partially flexible prices. With partially flexible prices, each firm still optimally serves the demand

and output is still determined by aggregate demand. However, inflation is also endogenous and

reacts to output gaps as well as other (cost-push) shocks. We derive a Phillips curve that

describes inflation.

We consider the setup in the textbook New Keynesian model in which in each period a

randomly selected fraction, 1 − θ, of firms reset their nominal prices. The firms that do not

adjust their price in period t, set their labor input to meet the demand for their goods.

16The central bank does not attempt to stabilize the distortions generates by the average markup,
because this would induce an average inflationary bias. In practice, these average distortions should
ideally be corrected by other policy tools rather than monetary policy.
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Consider the firms that adjust their price in period t. Let Qadjt denote the optimal price set

by these firms. We assume Qadjt solves the following version of problem (A.11)

max
Qadj

t

∞∑
h=0

θhEt

{
Mt,t+h

(
Yt+h|tQ

adj
t −Wt+hLt+h|t − Tt

)}
, (A.17)

where Yt+h|t = Zt+hL
1−α
t+h|t =

(
Qadjt
Qt+h

)−εt+h

Yt+h

and Mt,t+h = βh
1/Pt+h
1/Pt

Qt
Qt+h

.

The terms Lt+h|t and Yt+h|t denote the input and the output of the firm (that resets its price

in period t) in a future period t + h. The term Mt,t+h is the stochastic discount factor (SDF)

between periods t and t + h. Here, Pt denotes the end-of-period price of the market portfolio

which we describe later in the appendix.17

The optimality condition for problem (A.17) is given by

∞∑
h=0

θhEt

{
Mt,t+hQ

εt+h

t+h Yt+h

(
Qadjt − εt+h

εt+h − 1

Wt+h

(1− α)Zt+hL
−α
t+h|t

)}
= 0, (A.18)

where Lt+h|t =

(
Qadjt
Qt+h

)−εt+h
1−α (

Yt+h
Zt+h

) 1
1−α

.

We next combine Eq. (A.18) with the remaining equilibrium conditions to derive the New-

Keynesian Phillips curve. Specifically, we log-linearize the equilibrium around the allocation

that features real potential outcomes (with constant markups) and zero inflation, that is, Lt =

L∗, Yt = Y ∗
t ,

εt
εt−1 = ε∗

ε∗−1 , Qt = Q∗ for each t, where recall that L∗ is given by (A.15) and

Y ∗
t = Zt(L

∗)1−α. Throughout, we use the notation x̃t = log (Xt/X
∗
t ) to denote the log-linearized

version of the corresponding variable Xt and we use µ̃t =
εt
εt−1 − ε∗

ε∗−1 to denote the deviation

of the desired markup from its steady-state level level. We also let Wnorm
t = Wt

ZtQt
denote the

normalized (productivity-adjusted) real wage.

We first log-linearize the labor-supply equilibrium condition (A.2) and use CHMt = (1− α)Yt

to obtain

w̃normt = φl̃t + ỹt. (A.19)

17Consistent with the financial market side of our model, we assume the SDF is determined by asset-
holding households’ wealth rather than their consumption. In equilibrium, asset-holding households’
wealth is equal to the value of the market portfolio. The exact specification does not affect our analysis
because we log-linearize the equation and the interaction of the SDF and prices, Mt,t+hQ

adj
t , generates

second-order terms that drops out of the log linearization.
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Log-linearizing Eqs. (A.3) and (A.7), we also obtain

ỹt = (1− α) l̃t. (A.20)

Finally, we log-linearize Eq. (A.18) (and linearize for µ̃t) to obtain

∞∑
h=0

(θβ)hEt

{
q̃adjt −

(
w̃normt+h + αl̃t+h|t + q̃t+h

)
− µ̃t+h

}
= 0, (A.21)

where l̃t|t+h =
−ε∗

(
q̃adjt − q̃t+h

)
1− α

+ l̃t+h.

The second line uses ỹt = (1− α) l̃t.

We next combine Eqs. (A.19−A.21) and rearrange terms to obtain a closed-form solution

for the price set by adjusting firms

q̃adjt = (1− θβ)
∞∑
h=0

(θβ)hEt
[
Θỹt+h + q̃t+h + µ̃t+h

]
,

where Θ =
1 + φ

1− α+ αε

Since the expression is recursive, we can also write it as a difference equation

q̃adjt = (1− θβ) (Θỹt + q̃t + µ̃t) + θβEt

[
q̃adjt+1

]
. (A.22)

Here, we have used the law of iterated expectations, Et [·] = Et [Et+1 [·]].
Next, we consider the aggregate price index (A.5)

Qt =

(
(1− θ)

(
Qadjt

)1−ε
+

∫
St

(Qt−1 (ν))
1−ε dν

)1/(1−ε)

=

(
(1− θ)

(
Qadjt

)1−ε
+ θQ1−ε

t−1

)1/(1−ε)
,

where we have used the observation that a fraction θ of prices are the same as in the last period.

The term, St, denotes the set of sticky firms in period t, and the second line follows from the

assumption that adjusting terms are randomly selected. Log-linearizing the equation, we further

obtain q̃t = (1− θ) q̃adjt + θq̃t−1. After substituting inflation, πt = q̃t − q̃t−1, this implies

πt = (1− θ)
(
q̃adjt − q̃t−1

)
. (A.23)

Hence, inflation is proportional to the price change by adjusting firms.

Finally, note that Eq. (A.22) can be written in terms of the price change of adjusting firms
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as

q̃adjt − q̃t−1 = (1− θβ) (Θỹt + µ̃t) + q̃t − q̃t−1 + θβEt

[
q̃adjt+1 − q̃t

]
.

Substituting πt = q̃t − q̃t−1 and combining with Eq. (A.23), we obtain the New-Keynesian

Phillips curve (39) that we use in the main text

πt = κỹt + βEt [πt+1] + ut, (A.24)

where κ =
1− θ

θ
(1− θβ)

1 + φ

1− α+ αε

and ut =
1− θ

θ
(1− θβ) µ̃t, where µ̃t =

εt
εt − 1

− ε∗

ε∗ − 1
.

A.1.2. Demand side and financial markets

We next describe households’ consumption-savings and portfolio allocation decisions. In equilib-

rium, together with monetary policy, these decisions determine aggregate demand, asset prices,

and output.

Financial assets. There are two assets. There is a market portfolio, which is a claim on firms’

profits αYt (the firms’ share of output). We let Pt denote the ex-dividend price of the market

portfolio (which we also refer to as “the aggregate asset price” or “aggregate asset prices”). The

gross return of the market portfolio is

Rt+1 =
αYt+1 + Pt+1

Pt
. (A.25)

There is also a risk-free asset in zero net supply. Its gross return Rft is set by the central bank,

as we describe in the main text.

Households’ consumption-savings decisions. Households have standard preferences:

Et

[ ∞∑
h=0

βt+h logCHt+h

]
, (A.26)

along with the budget constraint

Wt+1 + CHt+1 = Wt

(
(1− ωt)R

f
t + ωtRt+1

)
= Dt+1 +Kt+1, (A.27)

where Dt+1 = Wt

[
(1− ωt)

(
Rft − 1

)
+ ωt

αYt+1

Pt

]
and Kt+1 = Wt

[
1− ωt + ωt

Pt+1

Pt

]
.
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Wt denotes the end-of-period wealth and ωt denotes the market portfolio weight in period t. The

term Wt

(
(1− ωt)R

f
t + ωtRt+1

)
is the beginning-of-period wealth in period t + 1. The second

line breaks this term into a component that captures the interest and dividend income (Dt+1)

and a residual component that captures the capital (Kt+1).

Households take their portfolio allocation as given (delegated to the portfolio managers) and

make a consumption-savings decision. We assume their consumption follows the rule

CHt = (1− β) (Dt +Kt exp (δt)) . (A.28)

When δt = 0, this is the optimal rule given the log preferences in (A.26). When δt > 0 (resp.

δt < 0), households spend more (resp. less) than the optimal rule. We refer to δt as an aggregate

demand shock and view it as a modeling device to capture various factors that affect aggregate

spending in practice, e.g., a consumer sentiment shock, a fiscal policy shock, or a discount rate

shock. Having the demand shock multiply Kt rather than Dt +Kt does not play an important

role beyond simplifying the expressions.18

The portfolio managers (the market) and the portfolio allocation. Households

delegate their portfolio choice to managers. In each period, a fraction η of these managers are

“noise traders” and their portfolio weight is given by ωNt = 1+ 1
ηµt. That is, they deviate from

the optimal portfolio benchmark by an amount given by 1
ηµt. We refer to µt as the aggregate

noise—the total amount of flow that needs to be absorbed by other investors. Among the

remaining managers, a mass 1 − η − α represent “inelastic funds” and their portfolio weight is

given by ωIt = 1. Finally, a mass α of managers are “arbitrageurs” (or elastic funds) who choose

their portfolio weights to maximize expected log assets-under-management, after observing the

risk-free rate rft = logRft and the current noise µt:
19

max
ωA
t

Et

[
log
(
αWt

(
Rft + ωt

(
Rt+1 −Rft

)))]
.

18We could alternatively capture demand shocks as shocks to households’ discount factor β in a fully
optimizing framework. We prefer our approach where we view demand shocks as small consumption
“mistakes” because doing so simplifies the analysis and gives us greater flexibility in specifying the
process for δt.

19We assume arbitrageurs maximize log-wealth in line with the households’ preferences in (A.26). In
the special case where households follow the optimal rule (σ2

δ = 0), this problem results in portfolio
allocations that maximize the households’ utility. We formulate the portfolio problem in terms of wealth,
rather than consumption, because we allow consumption to deviate from the optimal rule. In our setup,
wealth is a more accurate representation of welfare, as it captures the ideal consumption a household
could choose if she followed the optimal rule.
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As we describe in the main text, the optimality condition is approximately given by (13)

ωAt σt,rt+1 =
Et [rt+1] +

(σt,rt+1)
2

2 − rft
σt,rt+1

.

Financial market clearing. For simplicity, each household invests with a continuum of

managers randomly sampled from all managers; that is, there is no portfolio heterogeneity

across the households. Therefore, financial market clearing conditions are given by

Wt = Pt and ωt = αωAt + η

(
1 +

µt
η

)
+ (1− η − α) = 1. (A.29)

Financial markets are in equilibrium when the households in the aggregate hold the market

portfolio, both before and after the portfolio allocation.

Output-asset price relation. We next derive the equilibrium condition (8) that we use in

the main text. Combining Eqs. (A.27) and (A.29), we obtain Dt = αYt,Kt = Pt. In equilibrium,

dividends are equal to the firms’ share of output. Capital is equal to the (ex-dividend) value of

the market portfolio. Substituting these observations into the consumption rule in (A.28), we

obtain

CHt = (1− β) (αYt + Pt exp (δt)) .

Substituting Eq. (A.10) (CHt = αYt) into this expression yields Eq. (8)

Yt = (1− β)
1

αβ
Pt exp (δt)

=⇒ yt = m+ pt + δt, where m ≡ log

(
1− β

αβ

)
. (A.30)

We refer to this as the output-asset price relation. In equilibrium, output depends on aggregate

wealth, Pt, the MPC out of wealth, 1− β, the demand shock, δt, and the Keynesian multiplier,

1/ (αβ). The second line describes the relation in logs and obtains the derived parameter m.

Financial market equilibrium condition. We next derive the equilibrium condition

(14) that we use in the main text. Eq. (A.29) implies ωAt = 1− µt
α . Substituting this into (13),

we obtain (14)

Et [rt+1] = rft +

(
σt,rt+1

)2
2

+ µt

(
σt,rt+1

)2
α

.

In equilibrium, the expected return on the market portfolio depends on the risk premium, return

variance, and noise. The impact of noise is increasing in the return variance and decreasing in

the mass of arbitrageurs.
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Campbell-Shiller approximation to the equilibrium return. We next derive the

Campbell-Shiller approximation in (10). First note that Eq. (A.25) implies

rt+1 = log

(
αYt+1

Pt+1

Pt+1

Pt
+
Pt+1

Pt

)
= log

(
αYt+1

Pt+1
+ 1

)
+ log

(
Pt+1

Pt

)
= log (1 +Xt+1) + pt+1 − pt. (A.31)

Here, we have defined the dividend price ratio, Xt = αYt/Pt.

Setting the demand shifter to zero (δt = 0) and output equal to its potential Y = Y ∗, Eq.

(A.30) implies Y ∗ = (1− β) 1
αβP

∗. This implies X∗ = αY ∗
t /P

∗
t = 1−β

β .

Finally, log-linearize (A.31) around Xt+1 = X∗. Let xt+1 = log (Xt+1/X
∗) denote the

log deviation of the dividend price ratio from its steady-state level. Consider the term,

log (1 +Xt+1) = log (1 +X∗ exp (xt+1)). Using a Taylor approximation around xt+1 = 0, we

obtain

log (1 +Xt+1) ≈ log (1 +X∗) +
X∗

1 +X∗xt+1

≈ log

(
1

β

)
+ (1− β)

(
log

(
αYt+1

Pt+1

)
− log

(
1− β

β

))
.

Substituting this into (A.31) and collecting the constant terms, we obtain Eq. (10)

rt+1 = ρ− (1− β)m+ (1− β) yt+1 + βpt+1 − pt

= ρ+ pt+1 + (1− β) δt+1 − pt,

where the second line substitutes the output asset price relation (8) to simplify the expression.

Present discounted value relation. Substituting Eq. (10) into the financial market equi-

librium condition (14), we also obtain the present discounted value relation (15) that describes

the equilibrium asset price

pt = ρ+ Et [pt+1] + (1− β)Et [δt+1]−
(
rft +

1

2

(
σt,rt+1

)2)
+ µt

(
σt,rt+1

)2
α

.
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A.2. Omitted proofs

This section contains the proofs omitted from the main text.

Proof of Proposition 1. To characterize the equilibrium, first observe that the central bank’s

problem is

Gt = min
rft

Et

[
(yt − y∗t )

2
]
+ βEt [Gt+1] .

The expected future gaps Et [Gt+1] do not depend on the current policy rate rft , because the

model is forward looking without any endogenous state variables. Thus, the optimality con-

dition is given by Et

[
dyt
drft

ỹt

]
= 0. We conjecture (and verify) that in equilibrium dyt

drft
= −1.

Consequently, the optimality condition implies

Et [ỹt] = 0 =⇒ Et [yt] = Et [y
∗
t ] = y∗t . (A.32)

Since the central bank sets policy before observing the noise, it cannot ensure output is equal

to its potential in every state, yt = y∗t . Instead, it does so in expectation. Combining this with

Eq. (8), we also obtain

Et [m+ pt + δt] = y∗t =⇒ Et [pt] = p∗t ≡ y∗t −m− δt. (A.33)

That is, the central bank sets the asset price equal to “pstar” in expectation.

We next conjecture (and verify) that there is an equilibrium in which the return volatility σ2

is constant and the aggregate asset price is given by (18). Substituting this into the output asset

price relation (8), we obtain (19). Note that Eqs. (18− 19) satisfy the optimality conditions

(A.32−A.33) since Et [εµ,t] = 0. Substituting (18) into (10), we also obtain

rt+1 = ρ+ pt+1 + (1− β) δt+1 − pt

= ρ+ p∗t+1 +
σ2

α
εµ,t+1 + (1− β) δt+1 −

(
p∗t +

σ2

α
εµ,t

)
= ρ+ y∗t+1 −m− δt+1 +

σ2

α
εµ,t+1 + (1− β) δt+1 −

(
y∗t −m− δt +

σ2

α
εµ,t

)
= ρ+ δt + εz,t+1 − βδt+1 +

σ2

α
(εµ,t+1 − εµ,t) .

The third line substitutes for p∗t+1 and p∗t , the fourth line uses (7) and simplifies the expressions.
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This proves (21). Combining this with (14), we also characterize the interest rate as

rft = Et [rt+1]−
1

2
σ2 +

σ2

α
µt

= ρ+ δt − βφδδt +
σ2

α
Et [µt − εµ,t]

= ρ+ (1− βφδ) δt + φzzt +
σ2

α
φµµt−1.

The second line substitutes the AR(1) process for δt and the last line substitutes the AR(1)

process for µt. This proves (20).

We next characterize the return volatility corresponding to this equilibrium. Using (21),

along with the observation that all shocks are conditionally independent, we obtain

σ2 = vart (rt+1) = σ2macro +

(
σ2
)2

α2
σ2µ, where σ2macro = σ2z + β2σ2δ .

In particular, the conditional volatility is a root of a quadratic, P
(
σ2
)
= 0, given by

P (x) =
σ2µ
α2
x2 − x+ σ2macro. (A.34)

As long as the parameters satisfy α2 > 4σ2µσ
2
macro, which we assume, this polynomial has two

positive roots. The larger root is unstable in the sense that small changes in volatility induce

further changes in volatility that move the equilibrium away from this point. The smaller root

corresponds to a stable equilibrium. This verifies that the equilibrium volatility is the smaller

solution to the fixed point equation in (22). To assist with the calibrations, we observe that the

smaller root is associated with a negative derivative for the polynomial,

P ′ (x) = 2
σ2µ
α2
x− 1

∣∣∣∣∣
x=σ2

≤ 0.

This shows that a candidate solution that satisfies P
(
σ2
)
= 0 is stable as long as it also satisfies

2σ2µσ
2 ≤ α2. In contrast, the positive root has 2σ2µσ

2 ≥ α2.

It remains to verify our conjecture that dyt
drft

= −1. Along the equilibrium path, output

satisfies yt = m+ pt + δt, where the asset price satisfies (15)

pt = ρ+ Et [pt+1] + (1− β)Et [δt+1]−
(
rft +

1

2
σ2
)
+
σ2

α
µt.

This shows dyt
drft

= −1 and completes the characterization of equilibrium.

We next establish the comparative statics with respect to the noise variance σ2µ. Observe that

P (x) in (A.34) corresponds to an upward-sloping parabola with two positive roots. Observe also
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that increasing σ2µ increases P (x) for each x and therefore lifts the parabola upward. Therefore,

increasing σ2µ increases the smaller root (while reducing the larger root). Since the equilibrium

volatility σ2 corresponds to the smaller root, increasing σ2µ increases σ2.

Finally, we characterize the output-gap loss Gt = Et
[∑∞

h=0 β
hỹ2t+h

]
along the equilibrium

path. Note that the output gaps are given ỹt+h = εµ,t+h
σ2

α . This implies Gt =
σ2
µ(σ2)

2

1−β . In

particular, increasing σ2µ also increases Gt both directly by increasing noise and also indirectly

by increasing the impact of noise. This completes the proof of the proposition.

Proof of Proposition 2. To characterize the equilibrium, observe that the central bank’s

modified problem can be written as

GFCIt (pt) = min
rft ,pt+1

Et

[
(yt − y∗t )

2 + ψ (pt − pt)
2
]
+ βEt

[
GFCIt+1

(
pt+1

)]
.

The expected future gaps Et
[
Gt+1

(
pt+1

)]
depend on the announced target pt+1 but not on the

current policy rate rft (because the model is forward looking). Thus, the optimality condition

for rft is given by

Et

[
dyt

drft
(yt − y∗t )

2 + ψ
dpt

drft
(pt − pt)

2

]
= 0.

We conjecture (and verify) that in equilibrium dyt
drft

= dpt
drft

= −1. Therefore, the optimality

condition implies

Et [yt − y∗t ] + ψEt [pt − pt] = 0.

Substituting yt = m+ pt + δt and y
∗
t = p∗t +m+ δt, we obtain

Et [pt]− p∗t + ψ (Et [pt]− pt) = 0.

After rearranging, we obtain the optimality condition

Et [pt] =
1

1 + ψ
p∗t +

ψ

1 + ψ
pt = p∗t +

ψ

1 + ψ
(pt − p∗t ) . (A.35)

Under FCI targeting, the central bank’s expected asset price is a weighted average of its pre-

announced target pt and the current “pstar” p∗t .

We next conjecture an equilibrium in which σ2t,rt+1
≡ σ2 is constant over time, the central

bank announces the expected “pstar” as its target pt = Et−1 [p
∗
t ], and the aggregate asset price

satisfies

pt =
ψ

1 + ψ
pt +

1

1 + ψ
p∗t +

σ2

α
εµ,t.

Taking the expectation of this expression and using Et [εµ,t] = 0, we obtain (A.35). Hence, the
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conjectured allocation satisfies the optimality condition. Note also that this expression implies

pt = Et−1 [p
∗
t ] +

1

1 + ψ

(
p∗t − Et−1 [p

∗
t ]
)
+
σ2

α
εµ,t

= Et−1 [p
∗
t ] +

1

1 + ψ

(
y∗t − δt − Et−1 [y

∗
t − δt]

)
+
σ2

α
εµ,t

= Et−1 [p
∗
t ] +

1

1 + ψ
(εz,t − εδ,t) +

σ2

α
εµ,t.

The first line substitutes the optimal target for period t−1 using (25), pt = Et−1 [p
∗
t ], the second

line substitutes for p∗t , and the last line uses the definition of supply and demand surprises,

y∗t = Et−1 [y
∗
t ] + εz,t and δt = Et−1 [δt] + εδ,t. This proves Eq. (26).

Substituting (26) into (8), we further obtain

yt = m+ δt + Et−1 [y
∗
t − δt −m] +

1

1 + ψ
(εz,t − εδ,t) +

σ2

α
εµ,tx

= εδ,t + y∗t − εz,t +
1

1 + ψ
(εz,t − εδ,t) +

σ2

α
εµ,t

= y∗t +
ψ

1 + ψ
(εδ,t − εz,t) +

σ2

α
εµ,t

The last line substitutes the definition of demand shocks εδ,t = δt −Et−1 [δt]. This proves (27).

We substitute the aggregate asset price into (10) to characterize the equilibrium return,

rt+1 = ρ+ pt+1 + (1− β) δt+1 − pt

= ρ+ Et
[
p∗t+1

]
+

1

1 + ψ
(εz,t+1 − εδ,t+1) +

σ2

α
εµ,t+1 + (1− β) δt+1

−
(
Et−1 [p

∗
t ] +

1

1 + ψ
(εz,t − εδ,t) +

σ2

α
εµ,t

)
= ρ+ Et

[
y∗t−1 + εz,t + εz,t+1 − δt+1

]
+

1

1 + ψ
(εz,t+1 − εδ,t+1) +

σ2

α
εµ,t+1 + (1− β) δt+1

−
(
Et−1

[
y∗t−1 + εz,t − δt

]
+

1

1 + ψ
(εz,t − εδ,t) +

σ2

α
εµ,t

)
= ρ+

(
φδδt−1 +

εδ,t
1 + ψ

)
−
(
φδδt +

εδ,t+1

1 + ψ

)
+ (1− β) (φδδt + εδ,t+1)

+
εz,t+1

1 + ψ
+

(
εz,t −

1

1 + ψ
εz,t

)
+
σ2

α
(εµ,t+1 − εµ,t) .

The third equation substitutes p∗t+1 and p∗t . We also replace E [·] with E [·] since the realization

of noise does not affect the terms inside the expectation. The last equation substitutes the

AR(1) process for δt and collects similar terms together. This proves (29) where the expected
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return is given by

Et [rt+1] = ρ+ φδδt−1 +
εδ,t

1 + ψ
− βφδδt +

ψεz,t
1 + ψ

− σ2

α
εµ,t. (A.36)

We next combine the expression for the expected return with (14) to calculate the interest

rate,

rft = ρ− 1

2
σ2 + φδδt−1 +

εδ,t
1 + ψ

− βφδδt +
ψεz,t
1 + ψ

+
σ2

α
φµµt−1,

where we substituted the AR(1) process for µt from (11). This proves (28).

We next use (29) to calculate the conditional return volatility as

σ2 = vart (rt+1) = σ2macro (ψ) +

(
σ2

α

)2

σ2µ

where σ2macro (ψ) = σ2z

(
1

1 + ψ

)2

+ σ2δ

(
1

1 + ψ
− (1− β)

)2

.

In particular, the conditional volatility is a root of a quadratic, P
(
σ2;ψ

)
= 0, given by

P (x;ψ) =
σ2µ
α2
x2 − x+ σ2macro (ψ) . (A.37)

Note that σ2macro (ψ) is convex, minimized at some ψ > 0, and satisfies σ2macro (0) = σ2z + β2σ2δ
and limψ→∞ σ2macro (ψ) = (1− β)2 σ2δ . Since β > 1− β, this implies σ2macro (0) ≥ σ2macro (ψ) for

each σ2macro (ψ) Therefore, the assumed parametric condition α2 > 4σ2µ
(
σ2z + β2σ2δ

)
implies that

α2 > 4σ2µσ
2
macro (ψ) for each ψ ≥ 0. Consequently, the polynomial in (A.37) has two positive

roots for each ψ ≥ 0. The smaller root corresponds to the stable equilibrium. This proves (30).

Along the equilibrium path, output satisfies yt = m+ pt + δt where the asset price satisfies

(15)

pt = ρ+ Et [pt+1] + (1− β)Et [δt+1]−
(
rft +

1

2
σ2
)
+
σ2

α
µt.

This verifies our conjectures dyt
drft

= dpt
drft

= −1.

It remains to verify our conjecture that it is optimal for the central bank to announce the

target in (25). Fix period t−1 and consider the optimal choice of pt. This is chosen to minimize

the objective function Et−1

[
GFCIt (pt)

]
(since pt does not affect the gaps in period t − 1). To

characterize this, note that Eq. (A.35) applies for an arbitrary target pt,

Et [pt] = p∗t +
ψ

1 + ψ
(pt − p∗t ) = pt +

1

1 + ψ
(p∗t − pt) .

Combining this with yt = m+pt+δt and y
∗
t = p∗t+m+δt, we also obtain the following expression
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for output that applies for an arbitrary target pt,

Et [yt] = y∗t +
ψ

1 + ψ
(pt − p∗t ) .

Substituting these expressions into the objective function, we obtain

Et−1

[
GFCIt (pt)

]
= Et−1

[
(yt − y∗t )

2 + ψ (pt − pt)
2
]
+ βEt−1

[
GFCIt+1

(
pt+1

)]
=

((
ψ

1 + ψ

)2

+ ψ

(
1

1 + ψ

)2
)
Et−1

[
(pt − p∗t )

2
]
+ βEt−1

[
GFCIt+1

(
pt+1

)]
.

Taking the derivative with respect to pt and observing that GFCIt+1

(
pt+1

)
does not depend on pt,

we find pt = Et−1 [p
∗
t ]. This verifies (25) and completes the characterization of equilibrium.

Next consider the comparative statics of return variance with respect to ψ. Recall that

x = σ2 corresponds to the smaller (positive) root of the polynomial P (x;ψ) in (A.37). This is

an upward sloping parabola with two positive roots and the solution corresponds to the smaller

root. Note that P (0;ψ) = σ2macro (ψ). Note also that σ2macro (ψ) is convex with a minimum that

satisfies ψ > β
1−β > 0. Therefore, increasing ψ over the range

[
0, ψ

]
shifts the parabola upward

and reduces the smaller root. This proves that increasing ψ over the range
[
0, ψ

]
reduces both

σ2macro (ψ) and σ2. Conversely, increasing ψ over the range
(
ψ,∞

)
increases both σ2macro (ψ)

and σ2.

Proof of Proposition 3. Note that Eq. (27) implies (33). After substituting this into (32) and

calculating the variances, we further obtain (34). Differentiating with respect to ψ, we obtain
dGe

macro(ψ)
dψ = 0 and

dGe (ψ)

dψ
|ψ=0 =

dGenoise(ψ)

dψ
|ψ=0 =

2

1− β

(
σ2µσ

2dσ
2

dψ
|ψ=0

)
< 0.

The inequality follows since Proposition 2 shows that dσ2

dψ < 0 over the range ψ ∈
[
0, ψ

]
. This

completes the proof.
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A.3. FCI targeting vs interest rate targeting

This section analyzes the extension we discuss in Section 4.5 where the central bank targets the

future interest rate rather than the future FCI. We show that FCI targeting is strictly superior

to interest rate targeting.

To capture interest rate targeting, consider the baseline model from Section 4 but suppose

the central bank solves problem (38), which we replicate here:

GR-target
t = min

rft ,r
f
t+1

Et

[ ∞∑
h=0

βh
[(
yt+h − y∗t+h

)2
+ ψ

(
rft+h − rft+h

)2]]
,

where rft+h denotes an interest rate target that the central bank announces in the previous

period, t + h − 1 (the initial target rf0 is given). Similarly to FCI targeting, the central bank

penalizes the deviations of the interest rate (rather than the FCI) from a pre-announced target.

As before, the central bank’s true objective function is unchanged and still given by (32).

The following result characterizes the equilibrium with interest rate targeting. We focus

on the case in which there are no supply shocks, εz,t = 0, and demand shocks are transitory,

φδ = 0. This case makes the analysis tractable and directly comparable to FCI targeting, but

the qualitative results also hold with supply shocks and more general processes for demand

shocks.

Proposition 5 (Equilibrium with Interest Rate Targeting). Suppose the planner fol-

lows the interest rate targeting policy in (38) with ψ ≥ 0, there are no supply shocks

εz,t = 0 and demand shocks are transitory φδ = 0, the parameters satisfy α2 >

4σ2δ

(
1

1+ψ − (1− β)
)2
σ2µ

(
1 + ψ

1+ψφµ

)2
, and the initial target satisfies r0 = E−1

[
rf0

]
. There

is a (stable) equilibrium in which the planner announces the expected interest rate for the next

period as its target rft+1 = Et

[
rft+1

]
. The equilibrium, asset price, output, and interest rate are

given by

pt = y∗t −m−
εδ,t

1 + ψ
+
σ2

α

(
ψ

1 + ψ
φµεµ,t−1 +

(
1 +

ψ

1 + ψ
φµ

)
εµ,t

)
, (A.38)

yt = y∗t +
ψεδ,t
1 + ψ

+
σ2

α

(
ψ

1 + ψ
φµεµ,t−1 +

(
1 +

ψ

1 + ψ
φµ

)
εµ,t

)
, (A.39)

rft = ρ− 1

2
σ2 +

εδ,t
1 + ψ

+
σ2

α

(
φ2
µµt−1 +

1

1 + ψ
φµεµ,t−1

)
. (A.40)

The equilibrium return is

rt+1 = Et [rt+1]− εδ,t+1

(
1

1 + ψ
− (1− β)

)
+
σ2

α

(
1 +

ψ

1 + ψ
φµ

)
εµ,t+1,(A.41)

where Et [rt+1] = ρ+
εδ,t

1 + ψ
−
[
εµ,t +

ψ

1 + ψ
φµεµ,t−1

]
σ2

α
.
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The return variance σ2 = vart (rt+1) is the smaller positive solution to the fixed point problem

σ2 = σ2macro (ψ) +

(
σ2
)

α2

2(
1 +

ψ

1 + ψ
φµ

)2

σ2µ, (A.42)

where σ2macro (ψ) = σ2δ

(
1

1 + ψ
− (1− β)

)2

For a fixed ψ, the solution satisfies σ2 >
(
σFCI

)2
where

(
σFCI

)2
is the equilibrium return

variance with FCI targeting characterized in Proposition 2.

Comparing Eqs. (A.39) and (27) shows that for a given return variance σ2 interest rate

targeting generates greater output gap volatility than FCI targeting. The last part of the result

shows that interest rate targeting also induces greater return variance σ2, which further increases

output gap volatility. It follows that interest rate targeting is inferior to FCI targeting (it achieves

higher expected squared output gaps). Intuitively, as we discuss in the main text, interest rate

targeting stabilizes the incorrect financial variable and reduces the central bank’s flexibility to

respond to recent noise shocks, φµεµ,t−1. This reduced flexibility implies that recent noise shocks

affect asset prices and output gaps (captured by the term φµεµ,t−1). Moreover, current noise

shocks have a larger price impact, because financial markets anticipate that the central bank

will not fully offset noise shocks (captured by the term 1 + ψ
1+ψφµ).

Proof of Proposition 5. We conjecture and verify an equilibrium in which the return volatility

σ2 is constant, the central bank announces the expected future rate as its target rft =Et−1

[
rft

]
,

and the asset price and the interest rate satisfies

pt = y∗t −m+Dpεδ,t +
(
Mp,1φµεµ,t−1 +Mp,0εµ,t

) σ2
α
, (A.43)

rft = ρ− 1

2
σ2 +Drεδ,t +

(
φ2
µµt−2 +Mr,1φµεµ,t−1

) σ2
α

for undetermined coefficients Dp, Dr,Mp,1,Mp,0,Mr,1. Note that we allow the asset price and

interest rate to react to the past period noise surprise as well as the current-period noise sur-

prise εµ,t. However, the interest rate cannot respond to the current noise surprise εµ,t.We also

conjecture that the interest rate will fully stabilize the current price impact of the noise shock

from two periods before.

The optimality condition for rft is given by

Et

[
dyt

drft
(yt − y∗t )

2 + ψ
(
rft − rft

)2]
= 0.

As before, we conjecture (and verify later) that dyt
drft

= −1. Therefore, the optimality condition
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implies

Et [yt]− y∗t = ψEt

[
rft − rft

]
.

Using the conjecture Et−1

[
rft

]
= rft , observing that Et

[
rft

]
= rft , this further implies

Et [yt]− y∗t = ψ
(
rft − Et−1

[
rft

])
.

The pre-noise output is centered around y∗t but it shifts with the information that shifts rft

between periods t− 1 and t due to the policy pre-commitment. Substituting yt = m+ pt + εδ,t

(since demand shocks are i.i.d.), we further obtain

Et [pt] = y∗t −m− εδ,t + ψ
(
rft − Et−1

[
rft

])
. (A.44)

Combining this with (A.43), we find

Dpεδ,t +Mp,1φµεµ,t−1
σ2

α
= −εδ,t + ψ

(
Drεδ,t +Mr,1φµεµ,t−1

σ2

α

)
.

The optimality condition holds for all shocks if the undetermined coefficients satisfy

Dp = −1 + ψDr, (A.45)

Mp,1 = ψMr,1.

We next substitute the conjectured price into (10) to calculate the equilibrium return

rt+1 = ρ+ pt+1 + (1− β) εδ,t+1 − pt

= ρ+ [Dp + 1− β] εδ,t+1 −Dpεδ,t

+
[(
Mp,1φµ −Mp,0

)
εµ,t +Mp,0εµ,t+1 −Mp,1φµεµ,t−1

] σ2
α

= Et [rt+1] + εδ,t+1 [Dp + 1− β] + εµ,t+1Mp,0
σ2

α
,

where the expected return is given by

Et [rt+1] = ρ−Dpεδ,t +
[(
Mp,1φµ −Mp,0

)
εµ,t −Mp,1φµεµ,t−1

] σ2
α
.

We combine this expression with (14) to calculate the interest rate,

rft = ρ− 1

2
σ2 −Dpεδ,t +

[
µt +

(
Mp,1φµ −Mp,0

)
εµ,t −Mp,1φµεµ,t−1

] σ2
α

= ρ− 1

2
σ2 −Dpεδ,t +

[
φ2
µµt−1 +

(
1 +Mp,1φµ −Mp,0

)
εµ,t + (1−Mp,1)φµεµ,t−1

] σ2
α
.
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Here, the second line substitutes µt = φ2
µµt−1 + φµεµ,t−1 + εµ,t and collects terms. Comparing

this with the conjectured interest rate in (A.43), the undetermined coefficients must satisfy

Dr = −Dp, (A.46)

Mr,1 = 1−Mp,1,

1 +Mp,1φµ −Mp,0 = 0.

Combining Eqs. (A.45) and (A.46), we solve for the equilibrium coefficients

Dp = − 1

1 + ψ
and Dr =

1

1 + ψ
,

Mp,1 =
ψ

1 + ψ
and Mr,1 =

1

1 + ψ
,

Mp,0 = 1 + φµ
ψ

1 + ψ
.

Substituting the solution into (A.43) verifies that the equilibrium asset price and interest rate

are given by (A.38) and (A.40). Combining the asset price expression with yt = m + pt + εδ,t

verifies that output is given by (A.39). Substituting the solution into the expression for the

return verifies that the return is given by (A.41).

Finally, observe that Eq. (29) implies that σ2 solves the fixed point problem (A.42). Un-

der the assumed parametric condition, this problem has two positive roots. The smaller root

corresponds to the stable equilibrium.

It remains to verify our conjectures that dyt
drft

= −1 and the central bank optimally announces

the expected interest rate as its target Et−1

[
rft

]
= rft . These follow from similar steps as in the

proof of Proposition 2.

Finally, consider the comparative statics exercise. Note that σ2 and
(
σFCI

)2
are the smaller

root of the following two polynomials, respectively:

P (x) =

(
1 +

ψ

1 + ψ
φµ

)2 σ2µ
α2
x2 − x+ σ2macro (ψ) ,

PFCI (x) =
σ2µ
α2
x2 − x+ σ2macro (ψ) .

Observe that P (x) > PFCI (x) for each x > 0. Since P
(
σ2
)
= 0, this implies PFCI

(
σ2
)
< 0.

This in turn implies
(
σFCI

)2
< σ2 because

(
σFCI

)2
is the smaller positive root of PFCI (x).
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A.4. FCI targeting with policy lags to all current shocks

This section analyzes the extension we discuss in Section 4.6.1 the central bank sets policy

before observing all current-period shocks εµ,t, εδ,t, εz,t (rather than only εµ,t). We show that

macroeconomic shocks still induce asset price volatility due to the anticipated policy reaction

to these shocks. Therefore, as in the main text, an appropriate FCI targeting policy reduces

return volatility and the price impact of noise shocks.

Formally, consider the baseline model from Section 4 but suppose the central bank solves

the following modified problem

GFCIt = min
rft ,pt+1

Et−1

[ ∞∑
h=0

βh
[(
yt+h − y∗t+h

)2
+ ψ

(
pt+h − pt+h

)2]]
. (A.47)

The policy sets the interest rate rft and next-period’s price target pt+1 under the information

set of period t − 1, before observing the shocks in period t. The following result characterizes

the equilibrium for the case without supply shocks, εz,t = 0 (results qualitatively hold also with

supply shocks).

Proposition 6 (Equilibrium with policy lags to all current shocks). Suppose the planner sets

policy before observing all current-period shocks and it follows the FCI targeting policy in (A.47)

with ψ ∈ [0, ψ) where ψ is defined below. Suppose there are no supply shocks εz,t = 0, the

parameters satisfy α2 ≥ 4σ2δσ
2
µ (βφδ − (1− β))2, and the initial target satisfies p0 = E−2 [p

∗
0].

There is a (stable) equilibrium in which the planner announces the expected “pstar” for the next

period as its target pt+1 = Et−1

[
p∗t+1

]
where p∗t+1 = y∗t+1 − m − δt+1. The equilibrium asset

price, output, and interest rate are given by

pt = y∗t −m− φ2
δδt−2 −

1

1 + ψ
φδεδ,t−1 −

(
1

1 + ψ
− (1− β)

)
φδεδ,t +

σ2

α
εµ,t, (A.48)

yt = y∗t +
ψ

1 + ψ
φδεδ,t−1 +

[
1−

(
1

1 + ψ
− (1− β)

)
φδ

]
εδ,t +

σ2

α
εµ,t, (A.49)

rft = ρ− 1

2
σ2 + (1− βφδ)φ

2
δδt−2 +

(
1

1 + ψ
− βφδ

)
φδεδ,t−1 + µt−1

σ2

α
. (A.50)

The equilibrium return is

rt+1 = Et [rt+1]− εδ,t+1

[
φδ

(
1

1 + ψ
− (1− β)

)
− (1− β)

]
+ εµ,t+1

σ2

α
, (A.51)

where Et [rt+1] = ρ+ (1− βφδ)φ
2
δδt−2 +

(
1

1 + ψ
− βφδ

)
φδεδ,t−1 − εµ,t

σ2

α
.
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The return variance σ2 = vart (rt+1) is the smaller positive solution to the fixed point problem

σ2 = σ2macro (ψ) + σ2µ

(
σ2
)

α2

2

, (A.52)

where σ2macro (ψ) = σ2δ

[
φδ

(
1

1 + ψ
− (1− β)

)
− (1− β)

]2
.

Let ψ = argminψ≥0 σ
2
macro (ψ). Over the range ψ ∈ [0, ψ), increasing ψ strictly reduces σ2. That

is, stronger FCI targeting reduces the return variance.

Proof of Proposition 6. We conjecture and verify an equilibrium in which the return volatil-

ity σ2 is constant, the central bank announces the expected future “pstar” as its target

pt = Et−2 [p
∗
t ], and the asset price and the interest rate satisfies

pt = y∗t −m− φ2
δδt−2 +Dp,1φδεδ,t−1 +Dp,0εδ,t + εµ,t

σ2

α
, (A.53)

rft = ρ− 1

2
σ2 + (1− βφδ)φ

2
δδt−2 +Dr,1φδεδ,t−1 + µt−1

σ2

α

for appropriate coefficients Dp,1, Dp,0, Dr,1. Note that we allow the asset price to react to the

past period demand shocks as well as the current-period demand shock. However, the interest

rate cannot react to the current period demand shock since the central bank sets the policy

before observing δt. We also conjecture that the central bank will fully stabilize the current

price impact of the demand shock from two periods before as well as the noise shock from the

last period.

Following similar steps as in the proof of Proposition 2, we obtain

Et−1 [pt] =
1

1 + ψ
Et−1 [p

∗
t ] +

ψ

1 + ψ
pt.

Substituting pt = Et−2 [p
∗
t ] , p

∗
t = y∗t −m− δt and the AR(1) process for δt, we further obtain

Et−1 [pt] =
1

1 + ψ
Et−1 [p

∗
t ] +

ψ

1 + ψ
Et−2 [p

∗
t ]

= y∗t −m− 1

1 + ψ
Et−1 [δt] +

ψ

1 + ψ
Et−2 [δt]

= y∗t −m− φ2
δδt−2 −

1

1 + ψ
φδεδ,t−1.

The central bank’s expected asset price partially incorporates the recent demand shock εδ,t−1.

Combining this with (A.53), we find that the optimality condition holds if the coefficient on past

demand satisfies:

Dp,1 = − 1

1 + ψ
. (A.54)
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We next substitute the conjectured price into (10) to calculate the equilibrium return

rt+1 = ρ+ pt+1 + (1− β) δt+1 − pt

= ρ− φ2
δδt−1 +Dp,1φδεδ,t +Dp,0εδ,t+1 + εµ,t+1

σ2

α

+φ2
δδt−2 −Dp,1φδεδ,t−1 −Dp,0εδ,t − εµ,t

σ2

α
+(1− β)

[
φ2
δδt−1 + φδεδ,t + εδ,t+1

]
= Et [rt+1] + εδ,t+1 [Dp,0 + 1− β] + εµ,t+1

σ2

α
,

where the expected return is given by

Et [rt+1] = ρ+ φ2
δδt−2 − βφ2

δδt−1

+(Dp,1φδ −Dp,0 + (1− β)φδ) εδ,t −Dp,1φδεδ,t−1 − εµ,t
σ2

α
= ρ+ (1− βφδ)φ

2
δδt−2 + (Dp,1φδ −Dp,0 + (1− β)φδ) εδ,t

−
(
Dp,1φδ + βφ2

δ

)
εδ,t−1 − εµ,t

σ2

α
.

Here, the second line substitutes δt−1 = φδδt−2 + εδ,t−1 and collects terms. We combine this

expression with (14) and substitute µt − εµ,t = φµµt−1 to calculate the interest rate

rft = ρ− 1

2
σ2 + (1− βφδ)φ

2
δδt−2 + (Dp,1φδ −Dp,0 + (1− β)φδ) εδ,t

−
(
Dp,1φδ + βφ2

δ

)
εδ,t−1 + φµµt−1

σ2

α
.

Comparing this with the equilibrium conjecture in (A.53), we solve for the undetermined coef-

ficients as

Dp,0 = (1− β)φδ +Dp,1φδ = φδ

(
1− β − 1

1 + ψ

)
, (A.55)

Dr,1 = − (Dp,1 + βφδ) =
1

1 + ψ
− βφδ.

Substituting (A.54) and (A.55) into (A.53) verifies that the equilibrium asset price and

interest rate are given by (A.48) and (A.50). Combining the asset price expression with yt =

m + pt + δt verifies that output satisfies (A.49). Substituting the solution into the expression

for the return, we also find that the return satisfies (A.51).

Finally, observe that Eq. (A.51) implies that σ2 solves the fixed point problem (A.52). Under

the assumed parametric condition, this problem has two positive roots for each ψ ∈ [0, ψ). The

smaller root corresponds to the stable equilibrium. The rest of the proof follows from similar

steps as in the proof of Proposition 2.
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A.5. FCI targeting with inflation and output trade-off

This section analyzes the extension we discuss in Section 4.6.2 where prices are partially flexible

and the central bank might face a trade-off between stabilizing inflation and output. In this case,

cost-push shocks result in positive inflation and negative output gaps and create a new source

of aggregate asset price volatility that further deters arbitrageurs. Moreover, noise shocks affect

inflation gaps as well as output gaps. FCI targeting reduces the aggregate return volatility and

enables arbitrageurs to absorb noise more effectively, reducing the impact of noise on inflation

and output. Moreover, some degree of FCI targeting is still optimal and enables the central

bank to achieve lower output gap and inflation losses. Intuitively, while cost-push shocks induce

nonzero gaps on average, discretionary policy is already optimized to minimize the (current-

period) losses induced by these shocks. Therefore, small deviations from this policy generate

only second-order losses, while still inducing first-order gains via the noise-reduction mechanism.

Environment with inflation. Formally, consider the baseline model from Section 4 but

suppose inflation is not necessarily zero and follows the New Keynesian Phillips Curve (NKPC)

that we derived in Appendix A.1 (see (A.24))

πt = κỹt + βEt [πt+1] + ut,

where ut = φuut−1 + εu,t and σ
2
u ≡ var (εu,t) .

Here, πt ≃ log Qt

Qt−1
denotes inflation measured as the log change of the nominal price index Qt.

We assume the cost-push shocks ut follow an AR(1) process that is independent from all other

(supply, demand, and noise) shocks.

We adjust the financial market side of the model to allow for a nominal interest rate (which

is what the Fed sets) in addition to the real interest rate. There is a nominal risk-free asset with

nominal rate denoted by exp
(
ift

)
, in addition to the real risk-free asset with real rate exp

(
rft

)
,

and the market portfolio with real return Rt+1. Both risk-free assets are in zero net supply.

There are three sets of investors as in Section 3: noise traders, arbitrageurs, and inelastic funds.

Noise traders and arbitrageurs are the same as before; in particular, they do not trade the

nominal bonds. Likewise, inelastic funds are constrained to hold the average market portfolio

weight ωIt = 1. These assumptions ensure that we still have the financial market equilibrium

condition in (14)

Et [rt+1] +
1

2

(
σt,rt+1

)2
= rft +

(
σt,rt+1

)2 (
1− µt

α

)
.

There is a second financial equilibrium condition that describes the relationship between the

nominal and the real rates. To derive this condition, we assume for simplicity that only the

inelastic funds can trade the nominal bond in exchange for the real bond. They maximize the

expected wealth under management similar to arbitrageurs. In equilibrium, their optimization
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problem implies

Et

M I
t+1

exp
(
ift

)
Qt+1/Qt

− exp
(
rft

) = 0, where M I
t+1 =

1

Rt+1
.

Assuming Rt+1 and inflation Qt+1

Qt
are (approximately) log-normally distributed, we obtain

ift = rft +

[
Et [πt+1]−

1

2
σ2t (πt+1)

]
− covt (πt+1, rt+1) . (A.56)

This equation is like the Fisher equation except that it also accounts for inflation risk. The

nominal interest rate is equal to the real rate plus the expected inflation (adjusted for a Jensen’s

term) and an inflation risk premium. The latter depends on the covariance between the inflation

and the real return, −covt (πt+1, rt+1). Our assumption that nominal bonds are traded only by

the inelastic funds ensures that the current noise µt does not affect the wedge between the

nominal and the real rate (future noise can still affect the wedge via the covariance term). Thus,

even though the Fed decides before observing µt, it can effectively still target a particular real

interest rate rft by setting the nominal rate ift according to (A.56). In the rest of this appendix,

we will assume the Fed “sets” the real interest rate rft and verify that the implied nominal rate

ift does not depend on µt.

Finally, we modify the central bank’s (true) objective function to capture the costs of infla-

tion:

Gt = Et

[ ∞∑
h=0

βh
[
ỹ2t+h + ζπ2t+h

]]
. (A.57)

We normalize the inflation target to zero. The parameter ζ captures the cost of inflation gaps

relative to output gaps. The rest of the environment is the same as in Sections 3 and 4. The

baseline model is the special case with κ = ut = 0.

Equilibrium with discretionary policy. We first characterize the discretionary equilib-

rium. Suppose the central bank (effectively) sets rft to maximize (A.57) subject to the equi-

librium conditions and taking its future actions as given. The solution is as in the textbook

New Keynesian model (see Clarida et al. (1999)) with the difference that noise also affects the

equilibrium outcomes. In particular, the central bank may no longer target a zero output gap

on average. Its optimality condition is given by:

Et [ỹt] = −κζEt [πt] . (A.58)

With a positive cost-push shock, the central bank targets a negative average output gap to

stabilize inflation. The output gap is more negative when it has a greater impact on inflation
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(higher κ) and when the central bank puts a greater weight on inflation (high ζ). To solve for

the equilibrium, we conjecture that the (pre-noise) output and inflation gaps are linear functions

of the cost-push shock

Et [πt] = Πuut and Et [ỹt] = −Yuut.

Combining this conjecture with the NKPC (and the AR(1) process for the cost-push shocks),

we obtain the closed-form solutions

Πu =
1

1 + κ2ζ − βφu
and Yu =

κζ

1 + κ2ζ − βφu
. (A.59)

The rest of the equilibrium is similar to Section 3.2 and is given by:

pt = pot +
σ2

α
εµ,t where pot ≡ y∗t −m− δt − Yuut, (A.60)

yt = y∗t − Yuut +
σ2

α
εµ,t,

πt = Πuut + κ
σ2

α
εµ,t,

rft = ρ− 1

2
σ2 + (1− βφδ) δt + (1− φu)Yuut +

σ2

α
φµµt−1.

pot is the central bank’s optimal asset price target, which is different from p∗t due to cost-push

shocks. Noise creates additional gaps from central bank’s targets and its impact depends on σ2,

which is the smaller solution to:

σ2 = σ2macro +

(
σ2
)2

α2
σ2µ, where σ

2
macro = σ2z + Y 2

u σ
2
u + β2σ2δ .

In this case, the impact of noise is higher because cost-push shocks create a new source of asset

price and return volatility.

Equilibrium with FCI targeting. We next consider the equilibrium with FCI targeting.

In particular, suppose the central bank instead solves

GFCIt = min
rft ,pt+1

Et−1

[ ∞∑
h=0

βh
[(
yt+h − y∗t+h

)2
+ ζπ2t+h + ψ

(
1 + κ2ζ

) (
pt+h − pt+h

)2]]
. (A.61)

Here, the term 1 + κ2ζ is a normalizing factor for the FCI targeting objective that helps to

simplify the expression. The next result characterizes the equilibrium.

Proposition 7 (Equilibrium with Inflation and FCI Targeting). Consider the setup with in-

flation described above and suppose the planner follows the FCI targeting policy in (A.61)

with ψ ≥ 0. Let Πu, Yu denote the coefficients in (A.59), and suppose the parameters satisfy

α2 ≥ 4σ2µ
(
σ2z + Y 2

u σ
2
u + β2σ2δ

)
(and β > 1 − β) and the initial target satisfies p0 = E−1 [p

o
0].
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Then, there is a (stable) equilibrium in which the planner announces as its target the expected

optimal asset price for the next period

pt+1 = Et
[
pot+1

]
where pot+1 = y∗t+1 −m− δt+1 − Yuut+1. (A.62)

The equilibrium asset price, output, inflation, and real and nominal interest rates are

pt = Et−1 [p
o
t ] +

1

1 + ψ
(εz,t − εδ,t − Yuεu,t) +

σ2

α
εµ,t, (A.63)

yt = y∗t − Yuut −
ψ

1 + ψ
(εz,t − εδ,t − Yuεu,t) +

σ2

α
εµ,t, (A.64)

πt = Πuut −
ψ

1 + ψ
κ (εz,t − εδ,t − Yuεu,t) +

σ2

α
κεµ,t, (A.65)

rft = ρ− 1

2
σ2 + (1− βφδ) δt + Yu (1− φu)ut +

ψ

1 + ψ
(εz,t − εδ,t − εu,t) +

σ2

α
φµµt−1.(A.66)

The equilibrium return is

rt+1 = Et [rt+1] +
1

1 + ψ
(εz,t+1 − Yuεu,t+1)−

(
1

1 + ψ
− (1− β)

)
εδ,t+1 +

σ2

α
εµ,t+1, (A.67)

where Et [rt+1] is given by (A.36). The return variance σ2 = vart (rt+1) is the smaller positive

solution to the following fixed point problem

σ2 = σ2macro (ψ) +

(
σ2
)

α2

2

σ2µ, (A.68)

where σ2macro (ψ) =
(
σ2z + Y 2

u σ
2
u

)( 1

1 + ψ

)2

+ σ2δ

(
1

1 + ψ
− (1− β)

)2

.

Let ψ = argminψ≥0 σ
2
macro (ψ). Over the range ψ ∈ [0, ψ), increasing ψ strictly reduces σ2 as

well as σ2macro (ψ) and
(σ2)
α2

2

σ2µ. The equilibrium nominal interest rate ift is given by (A.74) and

it does not depend on the current noise shock µt.

We relegate the proof of this result to the end of the theory appendix. The equilibrium

with FCI targeting has a similar structure as before, with the difference that FCI targeting

mitigates the policy response to cost-push shocks ut as well as to supply and demand shocks

(cf. Proposition 2). Consequently, cost-push shocks have a greater effect on inflation than with

discretion. Moreover, since supply and demand shocks affect the output gaps, they also affect

inflation unlike the case with discretion (cf. (A.60)). On the other hand, FCI targeting exerts a

stabilizing influence on inflation, by mitigating the return volatility and the impact of noise on

inflation as well as on output gaps.
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Macro-stabilization effects of FCI targeting. We next explore the macro-stabilization

effects of FCI targeting more systematically. As before, we evaluate the policy performance with

the true loss function Gt in (A.57). This function might depend on the current supply, demand,

and cost-push shocks as well as the expected level of the cost-push shock, εz,t, εδ,t, εu,t, φuut−1.

To evaluate performance across a variety of shocks, we consider the unconditional expectation

of this function given by

Ge (ψ) = E [Gt (ψ)] = E

[ ∞∑
h=0

βh
[
ỹ2t+h (ψ) + ζπ2t+h (ψ)

]]
. (A.69)

Using Eqs. (A.64) and (A.65), output and inflation gaps are given by:

ỹt = −Yu (φuut−1 + εu,t) +
ψ

1 + ψ
Yuεu,t −

ψ

1 + ψ
(εz,t − εδ,t) +

σ2

α
εµ,t,

πt = Πu (φuut−1 + εu,t) +
ψ

1 + ψ
κYuεu,t −

ψ

1 + ψ
κ (εz,t − εδ,t) +

σ2

α
κεµ,t.

We substitute ỹt and πt into (A.69) to calculate and decompose Ge (ψ) into two components:

Ge (ψ) = Gemacro (ψ) +Genoise (ψ) . (A.70)

Genoise (ψ) is the expected loss driven by noise shocks, which is given by a similar expression as

before (cf. (34))

(1− β)Genoise (ψ) = σ2µ

(
σ2

α

)2 (
1 + ζκ2

)
. (A.71)

Gemacro (ψ) is the expected loss driven by macroeconomic shocks, which is given by

(1− β)Gemacro (ψ) =
(
Y 2
u + ζΠ2

u

) φ2
uσ

2
u

1− φ2
u

(A.72)

+

[(
Yu −

ψ

1 + ψ
Yu

)2

+ ζ

(
Πu +

ψ

1 + ψ
κYu

)2
]
σ2u

+

[(
ψ

1 + ψ

)2 (
σ2z + σ2δ

)] (
1 + ζκ2

)
.

The first line uses the observation that the unconditional distribution of φuut−1 is given by

N
(
0, φ

2
uσ

2
u

1−φ2
u

)
to evaluate the losses driven by the conditionally expected level of the cost-push

shock φuut−1. The second line evaluates the losses driven by the surprise component of cost-

push shocks εu,t. The last line evaluates the losses driven by the supply and demand shocks.

Our next result describes how FCI targeting affects Ge (ψ) and its components.

Proposition 8 (Macrostabilization Effects of FCI Targeting with Inflation). Consider the equi-
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librium in Proposition 2. Then, a small degree of FCI targeting reduces the output-gap loss

dGe (ψ)

dψ
|ψ=0 < 0, with

dGemacro (ψ)

dψ
|ψ=0 = 0 and

dGenoise (ψ)

dψ
|ψ=0 < 0.

Thus, ψ∗ = argminψ≥0Gt (ψ) > 0, i.e., the gap loss minimizing policy features FCI targeting.

Proof of Proposition 8. We differentiate Eq. (A.72) with respect to ψ to obtain

dGemacro(ψ)

dψ
|ψ=0 =

2σ2u
1− β

[
−Y 2

u + ζκYuΠu
]
= 0,

where we have used the observation that the coefficients satisfy Yu = ζκΠu in view of the central

bank’s optimality condition [see (A.59) and (A.58)]. It follows that

dGe (ψ)

dψ
|ψ=0 =

dGenoise(ψ)

dψ
|ψ=0 =

2
(
1 + ζκ2

)
1− β

(
σ2µσ

2dσ
2

dψ
|ψ=0

)
< 0.

The inequality follows since Proposition 7 shows that dσ2

dψ < 0 over the range ψ ∈
[
0, ψ

]
.

In this case, unlike in the baseline model without inflation, Gemacro (0) is not necessarily

zero: even absent FCI targeting, macroeconomic (cost-push) shocks induce some gap losses.

Nonetheless, it is still the case that small degrees of FCI targeting has a second-order effect

on these losses, dGe
macro(ψ)
dψ |ψ=0 = 0. Intuitively, while cost-push shocks create nonzero gaps on

average, discretionary policy is already optimized to minimize the (current-period) losses induced

by the cost-push shocks, ut, captured by the condition Yu = ζκΠu [see (A.58) and (A.59)]. Thus,

small deviations from this policy generate only second-order losses, while still inducing first-order

gains by reducing the impact of noise on inflation and output.

Proof of Proposition 7. The central bank’s modified problem is given by

GFCIt (pt) = min
rft ,pt+1

Et

[
(yt − y∗t )

2 + ζπ2t + ψ
(
1 + κ2ζ

)
(pt − pt)

2
]
+ βEt

[
GFCIt+1

(
pt+1

)]
.

The optimality condition for rft is given by

Et

[
dyt

drft
(yt − y∗t )

2 + ζ
dπt

drft
πt + ψ

(
1 + κ2ζ

) dpt
drft

(pt − pt)
2

]
= 0.

We conjecture (and verify) that in equilibrium dyt
drft

= dpt
drft

= −1 and dπt

drft
= κ. Therefore, the

optimality condition implies

Et [yt − y∗t ] + κζEt [πt] + ψ
(
1 + κ2ζ

)
Et [pt − pt] = 0. (A.73)
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We next conjecture and verify an equilibrium in which the return volatility σ2 is constant,

the central bank announces the expected future asset price target pt = Et−1 [p
o
t ], the expected

next-period inflation is the same as in the case with discretion Et [πt+1] = Πuφuut [see (A.60)],

and the equilibrium asset price is given by

pt = Et−1 [p
o
t ] + Pzεz,t − Pδεδ,t − PuYuεu,t +

σ2

α
εµ,t,

for appropriate coefficients Pδ, Pz, Pu that describes the central bank’s response new information.

Substituting this conjecture into the output and asset price relation and using pot = y∗t −m −
δt − Yuut we obtain

yt = y∗t − Yuut − (1− Pz) εz,t + (1− Pδ) εδ,t + (1− Pu)Yuεu,t +
σ2

α
εµ,t,

where we have used y∗t = Et−1 [y
∗
t ]+zt, δt = Et−1 [δt]+εδ,t and ut = Et−1 [ut]+εu,t. Substituting

this into the NKPC and using Et [πt+1] = Πuφuut, we further obtain

πt = −κYuut + βΠuφuut

−κ (1− Pz) εz,t + κ (1− Pδ) εδ,t + κ (1− Pu)Yuεu,t + κ
σ2

α
εµ,t

= Πuut − κ (1− Pz) εz,t + κ (1− Pδ) εδ,t + κ (1− Pu)Yuεu,t + κ
σ2

α
εµ,t.

Here, we have used −κYu+ βφuΠu = Πu which holds from the definition of Yu,Πu (see (A.59)).

Substituting these expressions into the optimality condition (A.73), and using Yu = κζΠu, we

obtain [ (
1 + κ2ζ

)
(− (1− Pz) εz,t + (1− Pδ) εδ,t + (1− Pu)Yuεu,t)

+ψ
(
1 + κ2ζ

)
(Pzεz,t − Pδεδ,t − PuYuεu,t)

]
= 0.

Solving for the undetermined coefficients, we obtain

Pz = Pδ = Pu =
1

1 + ψ
.

This proves Eqs. (A.63−A.65). We verify that the solution for inflation satisfies the conjecture

for expected inflation since Et [πt+1] = ΠuEt [ut+1] = Πuφuut.
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We next substitute the aggregate asset price into (10) to characterize the equilibrium return,

rt+1 = ρ+ pt+1 + (1− β) δt+1 − pt

= ρ+ Et
[
pot+1

]
+

1

1 + ψ
(εz,t+1 − εδ,t+1 − Yuεu,t+1) +

σ2

α
εµ,t+1 + (1− β) δt+1

−
(
Et−1 [p

o
t ] +

1

1 + ψ
(εz,t − εδ,t − Yuεu,t) +

σ2

α
εµ,t

)
= Et [rt+1] +

1

1 + ψ
(εz,t+1 − Yuεu,t+1)−

(
1

1 + ψ
− (1− β)

)
εδ,t+1 +

σ2

α
εµ,t+1

where

Et [rt+1] = ρ+ (1− β)φδδt + Yu (1− φu)ut +
ψ

1 + ψ
(εz,t − εδ,t − εu,t)−

σ2

α
εµ,t.

This proves Eq. (A.67). Combining this with (14) proves (A.66).

Eq. (29) implies the conditional return volatility is the solution to the following quadratic

σ2 = vart (rt+1) = σ2macro (ψ) +

(
σ2

α

)2

σ2µ,

where σ2macro (ψ) =
(
σ2z + Y 2

u σ
2
u

)( 1

1 + ψ

)2

+ σ2δ

(
1

1 + ψ
− (1− β)

)2

.

Under the assumed parametric condition, this quadratic has two positive roots for each ψ ≥ 0.

The smaller root corresponds to the stable equilibrium. This proves (A.68).

We verify the conjectures dyt
drft

= dpt
drft

= −1 and pt = Et−1 [p
o
t ] as in the proof of Proposition

2. To verify the conjecture dπt

drft
= κ, observe that along the equilibrium path inflation satisfies

the NKPC

πt = κỹt + βEt [πt+1] + ut,

where the expected inflation Et [πt+1] = Πuφuut is exogenous to the current policy rate. There-

fore, we have dπt

drft
= dyt

drft
= κ, verifying the remaining conjecture.

Finally, we characterize the equilibrium nominal interest rate ift . Combining Eqs. (A.56)
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with (A.65) and (A.67), we have

ift = rft +

[
Et [πt+1]−

1

2
σ2t (πt+1)

]
− covt (πt+1, rt+1) , (A.74)

where Et [πt+1] = Πuφuut

σ2t (πt+1) =

(
Πu + κYu

ψ

1 + ψ

)2

σ2u +

(
ψ

1 + ψ

)2

κ2
(
σ2z + σ2δ

)
+

(
σ2

α

)2

κ2σ2µ

−covt (πt+1, rt+1) =

(
Πu + κYu

ψ

1 + ψ

)
1

1 + ψ
Yu

+
ψ

1 + ψ
κ

[
1

1 + ψ
σ2z +

(
1

1 + ψ
− (1− β)

)
σ2δ

]
−
(
σ2

α

)2

κσ2µ.

Note that ift does not depend on the current noise shock µt (although it depends on the variance

of the future noise shocks σ2µ). This verifies that the central bank can implement the equilibrium

by setting the nominal rate ift under its information set and completes the proof.
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B. Empirical Appendix

B.1. Data

B.1.1. Macroeconomic data

We download the following data from FRED (FRED series name in parenthesis): nominal poten-

tial GDP (NGDPPOT), nominal GDP (GDP), nominal investment (GPDI), nominal personal

consumption expenditures (PCEC), GDP deflator (GDPDEF), PCE price index (PCEPI), the

Chicago Fed National Financial Conditions Index (NFCI), the 3-month yield (TB3), labor pro-

ductivity (OPHNFB), labor share (PRS85006173), weekly hours (PRS85006023), employment

(CE16OV) and population (CNP16OV). We obtain the updated series for the Excess Bond

Premium from Favara et al. (2016). In order to compute real variables, we divide the nominal

variables by the GDP deflator. For the new FCI index from Ajello et al. (2023b), we use the

baseline construction, that allows shocks to have effects up to 3 years. Using the 1-year version

does not alter the results. We compute hours per worker as weekly hours times employment

divided over population. Inflation is computed as 400 times the log-difference in the PCE price

index. Since the FCI index is available from 1990 onwards, we use the Chicago Fed FCI (NFCI)

for the sample period 1973-1990 when computing the IRFs of monetary policy shocks. Ajello

et al. (2023b) show that their index is similar in sample to the Chicago Fed FCI, and estimated

IRFs are similar if we use that FCI for the full sample.

B.1.2. Construction of the financial noise shock

In order to construct the shock, we follow Gabaix and Koijen (2021) closely. We use quarterly

data (sample: 1990Q1 to 2023Q2) from the Flow of Funds.20 We use unadjusted flows (FU),

and for the levels we use unadjusted market values when available (LM), and otherwise the

estimated level. We collect data on flows for the following sectors: 15 (households), 21 (state

and local governments), 22 (state and local retirement funds), 26 (rest of the world), 34 (federal

retirement funds), 51 (property and casualty insurance), 54 (life insurance companies), 55 (closed

end funds), 56 (ETFs), 57 (private pension funds), 63 (money market funds), 65 (mutual funds),

66 (securities brokers and dealers), and 76 (us chartered deposit institutions). As in Gabaix and

Koijen (2021), we use data on three asset classes: 30611 (treasury securities), 30630 (corporate

and foreign bonds), 30641 (corporate equities). Notice that the monetary authority does not

hold equity in our data, so we drop it to build the flows into equity. For returns data, we use

ex-dividend returns on the CRSP value-weighted market portfolio. For GDP growth, we use

the log difference of real GDP obtained from FRED. We adjust the data on flows for foreign

holdings following Appendix C.1.3 in Gabaix and Koijen (2021).

20Raw data is downloaded from here.
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We follow the same notation and conventions as Appendix C.1.2 in Gabaix and Koijen (2021).

We construct a measure of the proportional change of the quantity of equity in sector i between

t − 1 and t (∆qEit) as follows: In the FoF, equity flows are defined by ∆F E
it = W E

it −W E
i,t−1R

X
t .

We assume the securities are adjusted at the end of the period, so ∆F E
it = (∆QE

it)P
E
t , where

Qit is the amount of equities held by sector i at time t, and P E
t is the price of each share. The

relative flow in equities is ∆fEit =
∆F E

it

W E
i,t−1

. The proportional change in quantity of equity is

∆qEit = ∆fEit(R
X
t )

−1 =
∆QE

it

QE
i,t−1

.

With our measure of ∆qEit in hand, we proceed exactly as in Appendix B of Gabaix and

Koijen (2021) in order to construct the financial flow shock series. We briefly expand on each

of the steps below:

1. Construct pseudo-equal value weights Ẽi as in Gabaix and Koijen (2021).

2. Run the panel regression:

∆qit = αi + βt + γi∆yt + δit+∆q̌it (B.1)

using Ẽi as weights. Here ∆yt is quarter-on-quarter real GDP growth. We implement

the weighting scheme by multiplying each observation by Ẽ
1/2
i and then running a normal

regression. Denote the residuals of this transformed regression as Ẽ
1/2
i ∆q̌it

3. We run PCA on Ẽ
1/2
i ∆q̌it. In our baseline specification, we control for aggregate factors by

removing the first N principal components (ordered in terms of share of variance explained)

from Ẽ
1/2
i ∆q̌it. That is, we construct:

∆q̃it = Ẽ
1/2
i ∆q̌it −

N∑
n=1

λi,nη
PC
t,n (B.2)

where ηPCt,n is principal component n at time t, and λi,n is the loading of sector i on that

principal component. Our baseline uses N = 2. Our results are essentially unchanged if

we use N = 3 or N = 4 instead.

4. Finally, we construct the financial flow shock as:

Zµt =

I∑
i=1

Si,t−1∆q̃it

where Si,t−1 =
WE

it∑I
j=1W

E
jt

is the share of total equity held by sector i at time t− 1.
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Figure 11: Impulse response to a financial noise shock, where the shock is identified
controlling for 3 Principal Components in (B.2). Shaded and light shaded grey bands
indicate 68 and 90 confidence sets respectively.

B.2. Additional Empirical results.

Figures 11 and 12 show the estimated IRFs when we control for 3 and 4 Principal components

(respectively) in equation (B.2). As we can see, results are virtually identical, which is strong

evidence that the procedure followed adequately controls for aggregate factors in this setting

(Gabaix and Koijen, 2020). Figure 13 depicts the IRF estimated using an SVAR-IV procedure.

Results are similar to the baseline, but with tighter confidence bands, which is expected.

B.2.1. Monetary Policy Shocks IRFs

Figures 14 and 15 contain the impulse-response to monetary policy shocks identified by Aruoba

and Drechsel (2022) and Romer and Romer (2004) respectively. The responses are standard.

Interestingly, the time pattern of the response of FCI is somewhat different in both specifications,

with FCI spiking more strongly for the Romer and Romer (2004) IRF.

B.2.2. Counterfactual propagation of monetary policy shocks

One of the key observation of risk-centric models (Caballero and Simsek (2020)) is that monetary

policy affects the economy via asset prices. Given our setting, we can test this claim empirically

using the tools developed in McKay and Wolf (2023b).
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Figure 12: Impulse response to a financial noise shock, where the shock is identified
controlling for 4 Principal Components in (B.2). Shaded and light shaded grey bands
indicate 68 and 90 confidence sets respectively.

Figure 13: Impulse response to a financial noise shock, where the shock is identified using
and SVAR-IV procedure. Light shaded grey bands indicate 90 confidence sets.
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Figure 14: Impulse response to the Aruoba and Drechsel (2022) monetary policy shock.
Shaded and light shaded grey bands indicate 68 and 90 confidence sets respectively.

Figure 15: Impulse response to the Romer and Romer (2004) monetary policy shock.
Shaded and light shaded grey bands indicate 68 and 90 confidence sets respectively.
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Figure 16: Counterfactual impulse response to a monetary policy shock, identified fol-
lowing Aruoba and Drechsel (2022). The orange line is the original point estimate, black
line is the best approximation to the counterfactual impulse response. Shaded and light
shaded grey bands indicate 68 and 90 confidence sets respectively.

In particular, we consider the following counterfactual question: how would a monetary

policy shock have propagated if financial conditions were irresponsive to monetary policy? To

answer that question, we take the impulse-response of the Aruoba and Drechsel (2022) monetary

policy shock, and use the identified response to a financial flow shock to approximately enforce

FCIt = 0 on impact and in expectation. Importantly, although the methodology is the same as

in McKay and Wolf (2023b), this is not a policy counterfactual. Instead, we are asking how a

given policy shock would have propagated under a different mapping between monetary policy

and financial conditions.21

Figure 16 shows the results. As we can see, the approximation is good for the first 12 quarters,

but we still get some delayed response of financial conditions at longer horizons approximation

error. Crucially, the path of interest rates is basically unchanged. Turning to output gap, the

response is essentially zero at all horizons.22 The real effect of the monetary policy shock is

much smaller for the first two years. Regarding inflation, except for a positive initial response

attributable in part to a price-puzzle-type response in the original monetary impulse-response,

21The assumptions required for this to yield the correct counterfactual are analogous to the ones in
McKay andWolf (2023b): we need that financial conditions enter in the rest of the private sector equations
and in the monetary policy rule only through its expected values.

22Only the response on impact is marginally significant at the 90% level.
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the path for inflation is essentially zero at all horizons. Overall, the result is consistent with the

key tenet of the risk-centric view of monetary policy: monetary policy affects the economy via

financial conditions. Our results indicate that in a counterfactual economy where short-term

interest rates and broader Financial Conditions are disconnected, monetary policy shocks would

have essentially no impact in output gap or inflation.
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C. Policy Counterfactuals

C.1. Proof of Proposition 4

First, partition P ′ in two: the first column (known) (P
′
)•,1, and the rest of the matrix (P

′
•,−1,

which does not need to be fully identified. The first column identifies the financial flow shock,

which is the only one whose transmission is affected by risk. For the rest of macroeconomic

shocks, we only identify some rotation of them, following the arguments in Caravello et al.

(2024) that is all we need.

We then apply the same procedure as in Caravello et al. (2024). This yields the correct

counterfactual for (a rotation of) Θ̃−µ,ℓ. We only have left to construct the correct Θ̃µ,ℓ. Ap-

plying McKay and Wolf (2023b) to Θµ,ℓ yields Θ̂µ,ℓ, which is the solution to a unit-size shock

for the impulse response system that satisfies:

FwΘ̂µ,w + FxΘ̂µ,x + FzΘ̂µ,z + Fµ(σ2r × 1) = 000,

HwΘ̂µ,w +HxΘ̂µ,x +HzΘ̂µ,z = 000,

ÃxΘ̂µ,x + ÃzΘ̂µ,z = 000.

However, the true counterfactual solves that system with σ̃2r instead of σ2r . By linearity of

the solution, if we knew σ̃2r , we can obtain the true counterfactual as Θ̃µ,ℓ = Θ̂µ,ℓ
σ̃2
r
σ2
r
. Finally, in

order to obtain σ̃2r , note that the true conditional volatility satisfies:

σ2r =
(
θr,µ,0/σ

2
r

)2
σ4r +Θr,−µ,0Θ

′
r,−µ,0

=
(
θr,µ,0/σ

2
r

)2
σ4 +Ψr,0P•,−1P

′
•,−1Ψ

′
r,0

where θr,µ,0 is the response on impact of returns to the financial noise shock, Θr,−µ,0 is a 1 ×
(nε − 1) row vector that contains all the responses to structural shocks other than εµ, Ψr,−µ,0

is the analogous object for Wold innovations, and P•,−1 is a ny × (ny − 1) matrix obtained by

taking P and deleting the first column, which corresponds to the financial noise shock. Note,

therefore, that the original volatility is the root of a quadratic of the form P (x) = ax2 − x + c

where a =
(
θr,µ,0/σ

2
r

)2
, and c = Ψr,0P•,−1P

′
•,−1Ψ

′
r,0, and that c is the same for any rotation of

the Wold shocks since P•,−1P
′
•,−1 always equals a matrix that has a zero in the (1,1) element,

ones along the diagonal and zeros everywhere else, given that P is orthogonal and because of

our identification assumption on εµ,t, the first column and row of P are equal to the ny vector

(1, 0, . . . ).23

23In our implementation, we pick the first shock to correspond to εµ, and then build the rest of the
rotation recursively by imposing that the shock εn has to be orthogonal to the past n− 1 shocks.
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In order to find the counterfactual conditional variance, we solve the quadratic:

ãx2 − x+ c̃

where ã =
(
θ̃r,µ,0/σ

2
r

)2
and c̃ = Ψ̃r,0P•,−1P

′
•,−1Ψ̃

′
r,0 can be both constructed from the initial

step.

Given that, we obtain the correct Θ̃µ,ℓ, and a rotation of the correct Θ−µ,ℓ as in Caravello

et al. (2024). With those objects in hand, we can proceed as in Caravello et al. (2024) to

obtain the counterfactuals of interest. Note that, for the counterfactual historical evolution,

the treatment of the initial condition is the same as in Caravello et al. (2024): since the policy

change is unanticipated, whatever extra volatility the reaction to the initial condition generates

is unanticipated, and moving forward future conditional volatility is not affected by this term.

C.2. Policy with a time-varying target set one period in ad-

vance

The building block of our counterfactuals is the counterfactual response to a particular shock.

Intuitively, once we know how to obtain this, we can collect the response to multiple shocks to

obtain a full counterfactual.

Consider the response to a shock. We assume the policy minimizes a quadratic loss. Define

λiW̃i as a matrix that collects proper discount factors (in W̃i) and weights (in λi) for variable i.

For example, using W̃i with terms βt along the diagonal defines the standard loss as in McKay

and Wolf (2023a). Putting a zero in the first element of such matrix means that the planner

ignores that variable in the first period. As explained, we account for the transmission lags by

having a planner that targets i0 = 0 in the first period (no reaction), and then optimal policy

from then onwards. Let yyy = (ỹ0, ỹ1, . . . ) denote the sequence of output gaps, πππ denote the

sequence of inflation, iii denote the sequence of interest rates, and fff denote the sequence of FCI.

The problem of the central bank can be written in two steps. First, an “operational” central

bank, who picks policy to minimize its loss subject to an FCI target. Second, a “long run”

central bank who optimally chooses the target for the future periods.

First, the operational central bank solves:

min
vvv

∑
i

λixxx
′
iW̃ixxxi + λf (fff − f̄̄f̄f)′W̃f (fff − f̄̄f̄f)

s.t. xxxi = Θxi,vvvv +Θxi,εεεε,

fff = Θf,vvvv +Θf,εεεε.
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The first order condition is:∑
i

λiΘ
′
xi,vW̃ixxxi + λfΘ

′
f,vW̃f (fff − f̄̄f̄f̄f̄f̄f̄f̄f̄f) = 0, (C.1)

and the shock that solves this is:

ṽ∗(f̄̄f̄f̄f̄f̄f̄f̄f̄f) = −

(∑
i

λiΘ
′
xi,vW̃iΘxi,v + λfΘ

′
f,vW̃iΘf,v

)−1

︸ ︷︷ ︸
A−1

(∑
i

λiΘ
′
xi,vW̃iΘxi,εεεε+ λfΘ

′
f,vW̃f (Θf,εεεε− f̄̄f̄f̄f̄f̄f̄f̄f̄f)

)

ṽ∗(f̄̄f̄f̄f̄f̄f̄f̄f̄f) = −A−1

(
∑
i

λiΘ
′
xi,vW̃iΘxi,v) (

∑
i

λiΘ
′
xi,vW̃iΘxi,v)

−1(
∑
i

λiΘ
′
xi,vW̃iΘxi,εεεε)︸ ︷︷ ︸

−v∗∗

+λfΘ
′
f,vW̃f (Θf,εεεε− f̄̄f̄f̄f̄f̄f̄f̄f̄f)


ṽ∗(f̄̄f̄f̄f̄f̄f̄f̄f̄f) = −A−1

(
−Av∗∗ + λfΘ

′
f,vW̃fΘf,vv

∗∗ + λfciΘ
′
f,vW̃f (Θf,εεεε− f̄̄f̄f̄f̄f̄f̄f̄f̄f)

)
ṽ∗(f̄̄f̄f̄f̄f̄f̄f̄f̄f) = ṽ∗∗ −

(∑
i

λiΘ
′
xi,vW̃1Θxi,v + λfΘ

′
f,vW̃fΘf,v

)−1

λfciΘ
′
f,vW̃f (f

∗∗ − f̄̄f̄f)

where ṽ∗∗ = −
(∑

i λiΘ
′
xi,vW̃iΘxi,v

)−1 (∑
i λiΘ

′
xi,vW̃iΘxi,εεεε

)
is the shock that would

solve the pure dual mandate problem, and f∗∗ = Θf,εεεε + Θf,vv
∗∗ is the value of

f∗∗ that a pure dual mandate CB would choose. From now on, denote Θf̄ =(∑
i λiΘ

′
xi,vW̃iΘxi,v + λfΘ

′
f,vW̃fΘfci,v

)−1
λfΘ

′
f,vW̃f .

Secondly, we have the “long-run” central bank, who chooses f̄̄f̄f in order to minimize the loss,

conditional on their timing constraints:

min
f̄̄f̄f

∑
i

λixxx
′
iW̃ixxxi + λf (fff − f̄̄f̄f)′W̃f (fff − f̄̄f̄f)

s.t . xxxi = Θxi,v(ṽ
∗∗ −Θf̄ (f

∗∗ − f̄)) + Θxi,εεεε,

fff = Θf,v(ṽ
∗∗ −Θf̄ (f

∗∗ − f̄)) + Θf,εεεε,

Rf̄̄f̄f = 0,

where R is a N × T matrix that incorporates timing restrictions, in this case that f̄̄f̄f has to

be equal to zero in the first N + 1 periods.24 Forming a Lagrangian with vector of multipliers

24Take, for example, N = 1. In the first period, the target is preset at the SS value of 0. The target in
the second period is chosen in the first period before observing any shock, thus it also equals zero.
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γ′ = (γ1, γ2, . . . ), the first order condition is:

R′γ +
∑
i

λiΘ
′
f̄Θ

′
x,vW̃i

(
Θxi,v(ṽ

∗∗ −Θf̄ (f
∗∗ − f̄)) + Θxi,εεεε

)
+

λfΘ
′
f̄Θ

′
f,vW̃f (Θf,v(ṽ

∗∗ −Θf̄ (f
∗∗ − f̄)) + Θf,εεεε− f̄)− λfW̃f (Θf,v(ṽ

∗∗ −Θf̄ (f
∗∗ − f̄)) + Θf,εεεε− f̄)− f̄) = 0

and the constraint. Working with the first equation:

R′γ +Θ′
f̄

(∑
i

λiΘ
′
x,vW̃i(xxx

∗∗
i −Θxi,vΘf̄ (fff

∗∗ − f̄̄f̄f)) + λfΘ
′
f,vW̃f (I −Θf,vΘf̄ )((fff

∗∗ − f̄̄f̄f))

)
+

−λfW̃f (I −Θf,vΘf̄ )(fff
∗∗ − f̄̄f̄f) = 0

R′γ +Θ′
f̄

(∑
i

λiΘ
′
x,vW̃ixxx

∗∗
i

)
−Θ′

f̄ (
∑
i

λiΘ
′
x,vW̃iΘxi,v + λfΘ

′
f,vW̃fΘf,v)Θf̄ (fff

∗∗ − f̄̄f̄f)+

λfΘ
′
f̄Θ

′
f,vW̃f (fff

∗∗ − f̄̄f̄f)− λfW̃f (I −Θf,vΘf̄ )(fff
∗∗ − f̄̄f̄f) = 0

Define the following matrices:

A1 = −

(
Θ′
f̄ (
∑
i

λiΘ
′
x,vW̃iΘxi,v + λfΘ

′
f,vW̃fΘf,v)Θf̄ + λf (W̃f − W̃fΘf,vΘf̄ −Θ′

f̄Θ
′
f,vW̃f )

)
,

A2 = Θ′
f̄

(∑
i

λiΘ
′
x,vW̃ixxx

∗∗
i

)
,

then the equations can be written more compactly as:

−A1(f̄̄f̄f − fff∗∗) +A2 +R′γ = 0, (C.2)

A1(f̄̄f̄f − fff∗∗) = (A2 +R′γ). (C.3)

If the matrix A1 is invertible, we can solve for f̄ as:

f̄̄f̄f = fff∗∗ +A−1
1 [A2 +R′γ],

and then using the constraint:

0 = Rf̄̄f̄f = Rfff∗∗ +RA−1
1 [A2 +R′γ] (C.4)

γ = −
[
RA−1

1 R′]−1
[Rfff∗∗ +RA−1

1 A2] (C.5)

which fully characterizes the target.

If transmission lags are included, then A1 is not invertible. In particular, if the Central Bank

95



reacts with a lag of N periods, the first N rows and columns are zeros. Furthermore, the first

N ×N submatrix of A2 is also full of zeros. Thus, this implies that we can solve this by setting

γ1, . . . , γN = 0, and then in find γN+1 by deleting the rows and columns of zeros of A1, A2 and

the first N equations in R. We obtain:

A1,(N+1:•,N+1:•)(f̄̄f̄f − fff∗∗) = (A2,(N+1:•) +R′
•,N+1γN+1)

and then we can proceed as before to find γ. With γ, the elements N + 1, . . . of f̄ are uniquely

determined by C.3, and the first N elements are zeros thanks to the constraint.
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