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1 Introduction

The prescription of standard New Keynesian theory is to conduct stabilization policy through

changes in short-term interest rates. Over the past decade, much policy and academic interest

has centered on the question of whether—and if so, how—alternative policy tools could be

used to replicate monetary stimulus when nominal interest rates are constrained by a zero or

effective lower bound (ELB).1 Prior work has in particular identified tax policy, often labeled

unconventional fiscal policy, as an attractive option (Correia et al., 2008, 2013): time-varying

tax rates manipulate intertemporal prices just like monetary policy and thus can replicate

any desired monetary allocation.

In this paper I ask whether conventional fiscal policy—that is, fiscal instruments that are

already part of the standard stabilization policy toolkit—is similarly sufficient to replicate

any given monetary policy. The setting for much of my analysis is a textbook business-cycle

model with nominal rigidities and without capital, extended to allow for more general, non-

Ricardian household consumption behavior. The fiscal stabilization tool that I consider are

uniform, deficit-financed transfers (“stimulus checks”), an instrument used in all recent U.S.

recessions. I make three contributions. First, I identify a general sufficient condition under

which any time paths of aggregate output and inflation that are implementable via interest

rate policy are also implementable solely by adjusting the time path of such uniform lump-

sum taxes and transfers. Second, I check this condition in an analytical model of occasionally-

binding household borrowing constraints (e.g., as in Woodford, 1990; Farhi & Werning, 2019;

Angeletos et al., 2023), and prove that it holds generically—borrowing constraints just need

to bind some of the time. Third, I then numerically verify the sufficient condition in a rich

quantitative heterogeneous-agent (HANK) model. In this environment, the stimulus check

policy that closes any given demand shortfall is furthermore well-characterized by a small

number of measurable “sufficient statistics.” Finally, I establish that all of these conclusions

extend to richer models with investment as long as stimulus checks are supplemented by a

second, similarly conventional fiscal tool: bonus depreciation.

Environment & general equivalence condition. My model economy features a

policymaker with access to two instruments: nominal interest rates and uniform, lump-sum

taxes and transfers. My objective is to characterize the space of allocations implementable

1A notable early example is Bernanke (2002). Important recent contributions include Correia et al.
(2008), Correia et al. (2013), Gaĺı (2020), and Reis & Tenreyro (2022).
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through manipulation of these two instruments. All results apply to (linearized) perfect

foresight transition paths, or equivalently to the model’s first-order perturbation solution

with aggregate risk. Key for me are properties of the two matrices Cib and Cτ , whose (t, s)th
entries are, respectively, the derivatives of partial equilibrium consumption demand at time t

with respect to a) a change in the time-s rate of interest on bonds and b) a uniform lump-sum

transfer paid out at time s. Note that Cτ is a matrix of intertemporal marginal propensities

to consume (iMPCs), as studied first in Auclert et al. (2018).

I establish that, if Cτ is invertible—a condition that I refer to as strong Ricardian non-

equivalence—, then any sequence of aggregate output and inflation that can be attained via

interest rate policy is similarly implementable by only adjusting the time profile of uniform

lump-sum taxes and transfers. The proof begins with the household consumption-savings

problem. A feasible monetary policy is a path of interest rates together with a path of lump-

sum taxes or transfers that ensures a balanced government budget. Through the household

problem, this policy induces some path of net excess consumption demand. Can a transfer-

only policy—that is, a policy that only changes the time profile of taxes or transfers, again

subject to budget balance—engineer the same path of demand? For Ricardian households,

the answer is clearly no: for them, only the net present value of transfers matters, so any

budget-feasible transfer policy leaves spending unchanged. Mathematically, this is reflected

in Cτ being rank-1. If instead the timing of transfers matters (in the strong sense that Cτ
is invertible), then there does exist some path of transfers alone that perturbs demand in

exactly the same way as the baseline monetary policy. Since this monetary policy was by

assumption budget-balanced, the equivalent transfer policy is feasible as well. The argument

is completed by showing that, in my environment, two policies that generate the same net

excess consumption demand paths must be accommodated in general equilibrium through

the same market-clearing adjustments in prices and quantities.2

Under the conditions of my equivalence result, transfer payments can serve as a perfect

substitute for interest rate policy in the eyes of a conventional “dual mandate” policymaker.

Formally, my results imply that systematic policy rules (e.g., flexible inflation forecast target

criteria, as discussed in Woodford, 2011) continue to be implementable even if nominal rates

are constrained by a binding lower bound. In particular, this conclusion holds completely

independently of the menu of non-policy disturbances hitting the economy.

2Though revenue-equivalent in net present value terms, the two policies do invariably induce different
short-run government debt dynamics: while interest rate policy can in principle have aggregate effects
even if outstanding debt is fixed, uniform stimulus checks work only because they change the time path of
government bonds held by the private sector.
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Analytical equivalence result. I next verify the condition underlying my equiva-

lence result in an analytically tractable model of occasionally-binding household borrowing

constraints. Building on Farhi & Werning (2019), I consider a perpetual-youth model of

household consumption-savings decisions (à la Blanchard, 1985), where the survival proba-

bility θ ∈ [0, 1] can be re-interpreted as one minus the probability of borrowing constraints

binding at any given date (see also Woodford, 1990; Angeletos et al., 2023). I further gener-

alize this environment by allowing for an arbitrary number of household types i that differ

in θi—i.e., the extent to which they are subject to binding borrowing constraints.

My main result is that, for policy equivalence to hold, it suffices for borrowing constraints

to bind some of the time. The argument proceeds in two steps. First, I begin by considering

a model with only one household type and a borrowing constraint coefficient of θ. I here can

prove that, as long as θ < 1—i.e., borrowing constraints that just bind some of the time—Cτ
is invertible. The intuition is straightforward: occasionally-binding borrowing constraints

shorten spending horizons, and so transfers today financed by taxes in the future lead to a

front-loading of spending, mimicking the effects of interest rate cuts. Second, I go back to the

general environment featuring a mixture of household types, with potentially heterogeneous

θi’s. I here establish that, if θi for all types i is below—but potentially arbitrarily close to—1,

then the equivalence result yet again holds.3

Finally, I establish that the policy equivalence result is not just theoretically general, but

also empirically relevant. In my environment, transfer policy can induce any desired path of

net excess demand if and only if the economywide average MPC strictly exceeds r̄
1+r̄

, where

r̄ is the real rate of interest—i.e., an MPC above the classical permanent-income level. This

requirement is well-known to receive ample support in the data (e.g., see Parker et al., 2013;

Fagereng et al., 2018; Borusyak et al., 2021).4

Quantitative explorations. I complement my analytical discussion with a quantita-

tive exploration in a rich HANK model (Kaplan et al., 2018). This analysis serves a dual

purpose. First, it allows me to verify that—as expected given my analytical results—the

sufficient condition for policy equivalence also holds in state-of-the-art quantitative models

3The formal proposition does not cover the limit case of some households with θi exactly equal to 1 due
to economically inessential technicalities (see the discussion after Proposition 2).

4My derivations throughout assume that β(1+ r̄) = 1, as in Farhi & Werning (2019). If instead β(1+ r̄) >
1, then consumers have a natural tendency to postpone spending, so my results instead require that borrowing
constraints bind often enough. Importantly, however, this generalized condition is still equivalent to MPCs
above the annuity value of income gains, and thus testable in the same way.

4



of the consumption-savings decision. Second, I document that the policy equivalence result

is also practically relevant, in the following sense. Building on Auclert et al. (2018), I find

that, in my quantitative HANK model, the inverse C−1
τ not only exists, but also can be char-

acterized to a very high degree of accuracy with just three empirically measurable numbers:

the economy’s average MPC ω; the slope θ of how consumers spend a lump-sum income gain

over time; and the steady-state rate of interest r̄. Crucially, for empirically relevant levels

of these three statistics, my formula for the inverse matrix C−1
τ reveals that even moderate

increases in transfers suffice for meaningful aggregate cyclical stabilization.

Extensions & limitations. My results extend to environments that also feature capital.

Monetary policy here now operates through two levers: by directly affecting (i) the household

consumption-savings decision and (ii) the firm investment decision. Transfer policy is still

enough to replicate arbitrary stimulus to consumer excess demand. For firm investment, it

is straightforward to show that a second, similarly conventional fiscal instrument will suffice:

bonus depreciation stimulus. I thus conclude that, even in this extended environment, two

entirely conventional fiscal tools suffice to replicate any desired monetary stimulus.

While most of my analysis is concerned with aggregates, I also briefly discuss important

limitations to my equivalence result in the presence of microeconomic heterogeneity. First,

I emphasize that—for my equivalence result to also apply to HANK-type models—I require

particular (though standard) assumptions on wage-setting. These assumptions are consistent

with arbitrary levels of wealth effects in labor supply, but not with cross-sectional dispersion

in those wealth effects. I review the empirical evidence on such dispersion and conclude

that the scope for this channel to materially affect the equivalence result is limited as long as

stimulus checks are moderate in size, with magnitudes on the order of what has been observed

in practice. Second, my macro-equivalent interest rate and lump-sum transfer policies are

generally not equivalent household-by-household: nominal interest rate cuts mostly act by

directly stimulating consumption at the top of the liquid wealth distribution, whereas the

macro-equivalent transfer stimulus almost exclusively acts at the bottom. Thus, compared to

a given interest rate policy, the macro-equivalent transfer delivers the same macro stimulus at

smaller cross-sectional consumption dispersion. The normative implications of this positive

observation are studied in McKay & Wolf (2022a).

Related literature. The paper relates and contributes to several strands of literature.

First, the analysis is motivated by the recent experience of limits to conventional mone-

tary policy space. Prior work has argued that unconventional fiscal instruments can be used
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to substitute for monetary stimulus if needed (Correia et al., 2008, 2013); I instead clarify

the conditions under which more conventional fiscal stimulus tools can do the same.5

Second, I relate to prior work on the stimulative effects of transfer payments in the absence

of Ricardian equivalence. Blanchard (1985), Woodford (1990) and Bilbiie et al. (2013) all

emphasize that, if private planning horizons are finite (due to death) or borrowing constraints

bind, then public debt can stimulate spending through its role as private liquidity. Bilbiie

et al. (2021) furthermore show that redistribution from savers to spenders in a two-type

model can perfectly mimic monetary stimulus. Relative to this line of work, my contribution

is to: (i) identify a general condition under which uniform, time-varying taxes and transfers

are stimulative in the precise sense that they can replicate monetary policy; (ii) verify this

condition in a quite general analytical model of occasionally-binding borrowing constraints;

and (iii) show that the required paths of taxes and transfers can, in quantitatively relevant

models, be characterized as a function of a small number of empirically measurable statistics.

Third, my proof of policy equivalence relies heavily on equilibrium characterizations in

sequence space (see Boppart et al., 2018; Auclert et al., 2019). So far, the sequence-space set-

up has been used to analytically characterize general equilibrium effects (Auclert & Rognlie,

2018; Auclert et al., 2018) or to construct general equilibrium counterfactuals for unobserved

shocks (Wolf, 2020). I instead use the same observations to sidestep constraints on policy

space. Echoing classical general equilibrium theory (Arrow & Debreu, 1954), the sequence-

space perspective reveals that two policies are equivalent if they induce the same net excess

demand paths. As such, my equivalence results are conceptually distinct from Correia et al.

(2013) and Farhi et al. (2014)—there, equivalence is shown via identical wedges in optimality

conditions. The advantage of my approach is that it can be applied readily to conventional

fiscal instruments (like stimulus checks); the obvious challenge is that characterization of the

equivalent policy requires additional arguments (my formulas for C−1
τ ).

Outlook. The rest of the paper proceeds as follows. Section 2 sets up the baseline model,

and Section 3 presents the main theoretical results on policy equivalence. The quantitative

analysis, including in particular my sufficient statistics formula, follows in Section 4. I discuss

the role of micro heterogeneity in Section 5, and finally extend my results to a model with

investment in Section 6. Section 7 concludes.

5Another related policy tool that has received both academic as well as substantial policy interest are
helicopter drops of money—that is, money-financed transfer payments (e.g., see Bernanke, 2002; Gaĺı, 2020;
Reis & Tenreyro, 2022). My results reveal that, under natural assumptions on consumer spending behavior,
even deficit-financed, uniform transfer payments are sufficient to replicate monetary stimulus.
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2 Environment

I begin with a description of the model environment in Section 2.1. My assumptions on con-

sumption behavior will be purposefully general, requiring only the existence of an aggregate

consumption function. Section 2.2 then discusses the particular analytical and quantitative

consumption-savings problems that I will consider in Sections 3 and 4.

2.1 Model outline

Time is discrete and runs forever, t = 0, 1, . . .. The model economy is populated by house-

holds, unions, firms, and a government, and is initially at its deterministic steady state. I

study linearized perfect foresight transition paths.6 The set-up is kept deliberately close to

the textbook New Keynesian business-cycle framework (Woodford, 2011; Gaĺı, 2015).

At time t = 0, the policymaker announces paths for her policy instruments. My objective

is to characterize the set of allocations that she can implement. The realization of a variable

x at time t along the equilibrium perfect foresight transition path will be denoted xt, while

the entire time path will be denoted xxx = {xt}∞t=0. Hats denote (log-)deviations from the

deterministic steady state and bars denote steady-state values.

The aggregate consumption function. Households consume and supply labor, with

total consumption and hours worked denoted by ct and ℓt, respectively. Due to frictions

in the labor market, hours worked are taken as given by households and set by optimizing

labor unions, to be discussed in detail later.7 Given paths of income, households then decide

on their consumption and savings. Rather than specifying the details of this consumption-

savings problem, I here simply summarize its solution in the form of an aggregate consump-

tion function. Section 2.2 will consider several particular models of household consumption

behavior that fit into this general framework.

Before stating and discussing the aggregate consumption function I begin with the house-

hold budget constraint. Total income et of the household sector consists of: labor earnings

(1− τℓ)wtℓt, where wt is the real wage and τℓ is the (assumed fixed) labor tax rate; uniform

6My results can thus equivalently be interpreted as applying to the first-order perturbation solution of
an analogous model with aggregate risk (e.g. Boppart et al., 2018; Auclert et al., 2019).

7I allow for unions in the interest of generality and empirical relevance. For all models except for the
quantitative heterogeneous-household model of Section 4, the alternative standard case of frictionless labor
supply will correspond to the flexible-wage limit of my union model. I further discuss the role of labor supply
in HANK models in Section 5.1.
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lump-sum transfer receipts τt; and dividends dt. Households can invest in nominally risk-free

liquid bonds with nominal returns ib,t. The real return to saving is affected by the inflation

rate πt. The period-t budget constraint of the aggregated household sector is thus

ct + bt =

total income et︷ ︸︸ ︷
(1− τℓ)wtℓt + τt + dt +

1 + ib,t−1

1 + πt
bt−1︸ ︷︷ ︸

total cash on hand xt

(1)

where bt denotes real bond holdings. Given any sequence of total household income and asset

returns, optimal household behavior yields time paths of aggregate consumption demand ccc

and asset supply bbb. I summarize optimal household consumption behavior in the form of an

aggregate consumption function C(•) (Farhi & Werning, 2019; Auclert et al., 2018):8

ccc = C( www,ℓℓℓ,πππ,ddd︸ ︷︷ ︸
eq’m aggregates

; τττ , iiib︸︷︷︸
policy

) (2)

By definition, the aggregate consumption function evaluated at steady state satisfies

c̄̄c̄c = C
(
w̄̄w̄w, ℓ̄̄ℓ̄ℓ, π̄̄π̄π, d̄̄d̄d; τ̄̄τ̄τ , ī̄īib

)
In my linearized environment, policy equivalence will be fully governed by the properties of

C(•) around this deterministic steady state. Linearizing (2), we can write

ĉcc = Cwŵww + Cℓℓ̂ℓℓ + Cππ̂ππ + Cdd̂dd + Cτ τ̂ττ + Cibîiib (3)

where, for each q ∈ {w, ℓ, π, d, τ, ib}, I have defined

Cq ≡ ∂C(•)
∂qqq

, (4)

with the derivative evaluated at the deterministic steady state. The (t, s)th entry of each of

those infinite-dimensional linear maps is the response of aggregate consumption demand at

time t to a marginal change in input q at time s. The linear map Cτ—which indicates how

aggregate consumption demand will respond to changes in lump-sum transfers—will play

a central role in characterizing the allocations implementable by the policymaker through

stimulus check policy. To build further intuition I will in Section 2.2 provide closed-form

characterizations of this map in various familiar models of household consumption decisions.

8To be precise, I, as in Auclert et al. (2018), assume that this consumption function is Fréchet-differentiable
around the steady state, and its derivatives in (4) are bounded linear operators from ℓ∞ to ℓ∞.
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Unions & firms. I summarize the production and wage bargaining block through three

key relations. First, a unit continuum of firms produces the final output good:

yt = y(ℓt)

Second, price-setting is subject to the usual Rotemberg adjustment costs, giving a textbook

New Keynesian Phillips Curve (NKPC) in prices (Gaĺı, 2015):

π̂t = κp × χp(ŵt, ℓ̂t)︸ ︷︷ ︸
deviation from price target

+ βπ̂t+1 (5)

where χp(•) gives the deviation from the price target and κp is the slope of the price-NKPC.

Third, wage bargaining is similarly subject to adjustment costs and so induces a general

wage-NKPC, linking wage inflation to the static labor optimality wedge (Erceg et al., 2000):

π̂w
t = κw × χw(ŵt, ℓ̂t, ĉt)︸ ︷︷ ︸

deviation from wage target

+ βπ̂w
t+1 (6)

where 1+πw
t = wt

wt−1
(1+πt) denotes wage inflation, χw(•) gives the deviation from the wage

target, and κw is the slope of the wage-NKPC. I discuss the derivation of (6) for particular

assumptions on union behavior and household preferences in Appendices B.2 and B.3.

Policy. The government flow budget constraint is

1 + ib,t−1

1 + πt
bt−1 + τt = τℓwtℓt + bt (7)

The policymaker sets nominal interest rates ib,t and uniform lump-sum taxes and transfers

τt subject to the flow budget constraint (7) and the requirement that limt→∞ bt = b̄.

The remainder of this paper studies the implications of constraints on this policy toolkit.

I focus on two kinds of restrictions: transfer-only policies and interest rate-only policies.

Definition 1. A transfer-only policy is a policy that sets ib,t = īb for all t.

In a transfer-only policy, the policymaker is forced to keep nominal interest rates fixed,

perhaps due to a binding effective lower bound. In light of the ELB’s empirical relevance,

most discussion in this paper will center on the extent to which a restriction to transfer-only

policies meaningfully constrains the policymaker. I note that, for such a policy, the direct

mapping from policy instrument to consumer spending is fully governed by the matrix Cτ .
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Definition 2. An interest rate-only policy is a policy that sets, for all t = 0, 1, . . . ,

τt = τℓwtℓt + (1− 1 + ib,t−1

1 + πt
)b̄. (8)

Definition 2 gives the natural opposite to a transfer-only policy: in an interest rate-only

policy, the policymaker is free to adjust the path of nominal rates, but forced to passively ad-

just lump-sum transfers/taxes to balance the budget period-by-period. This policy thus op-

erates by manipulating intertemporal prices, without any time variation in the total amount

of government debt in the hands of households.9 For such a policy, the direct mapping from

policy instrument to consumer spending is governed by the following map:

C̃ib ≡ Cib − b̄× Cτ,•,−1, (9)

Intuitively, C̃ib combines the direct effect of the nominal rate change itself (Cib) together with
the implied movement in taxes required to balance the budget (second term).

Equilibrium. I am now in a position to define a perfect foresight transition equilibrium in

this economy. As usual, I throughout restrict attention to equilibria in which all sequences

of policies and macroeconomic aggregates are bounded (Woodford, 2011).

Definition 3. An equilibrium is a set of government policies {ib,t, τt, bt}∞t=0 and a set of

macroeconomic aggregates {ct, ℓt, yt, wt, πt, dt}∞t=0 such that:

1. Consumption is consistent with the aggregate consumption function (2).

2. Wage inflation {πw
t }∞t=0 and {ℓt, ct, wt}∞t=0 are consistent with the wage-NKPC (6).

3. The paths {πt, wt, ℓt}∞t=0 are consistent with the price-NKPC (5), and dividends are given

as dt = yt − wtℓt.

4. The output market clears: yt = ct for all t ≥ 0, the government budget constraint (7)

holds at all t, and limt→∞ bt = b̄. The bond market then clears by Walras’ law.

An allocation of macroeconomic aggregates {ct, ℓt, yt, wt, πt, dt}∞t=0 is said to be implementable

if it can be supported as an equilibrium sequence.

9More generally, an interest rate policy is a policy that freely sets nominal rates ib,t and then ensures bud-

get balance in net present value terms (i.e., limt→∞ b̂t = 0) through some fixed tax-and-transfer adjustment
rule. (8) is simply a particularly transparent example of such a financing rule.
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Note that Definition 3 specifies policy simply as a path of policy instruments {ib,t, τt, bt}∞t=0.

As is well-known, policies of this sort generically do not induce unique equilibria (Sargent &

Wallace, 1975). To address this challenge, I will later also discuss equilibria induced by pol-

icy rules for interest rates and transfers. I call an allocation {ct, ℓt, yt, wt, πt, dt}∞t=0 uniquely

implementable if it is the only equilibrium sequence consistent with those rules.

2.2 Detailed models of household consumption behavior

This section gives examples of several canonical models of household behavior that are con-

sistent with the general aggregate consumption function (2). The purpose of this is threefold:

first, to illustrate the generality of the model set-up in Section 2.1; second, to introduce the

analytical and quantitative models that I will later study in Sections 3 and 4; and third, to

already give some intuition for the shape and properties of the key matrix Cτ .

Analytical model. All analytical results in the remainder of the paper rely on a general

yet tractable model of household consumption decisions, building very closely on Woodford

(1990), Farhi & Werning (2019), and Angeletos et al. (2023). My presentation of the model

will be brief, focusing mostly on what the model implies for the key derivative matrix Cτ .
Supplementary details are provided in Appendix B.2.

There is a unit continuum of households, split into N distinct types with mass µi, where∑N
i=1 µi = 1. Households of each type i form a perpetual-youth block (e.g., as in Blanchard,

1985) with survival probability θi ∈ [0, 1]. Preferences of a household j of type i are

Et

[
∞∑
k=0

(βθi)
k [u(cijt+k)− v(ℓijt+k)]

]
(10)

where the expectation operator captures idiosyncratic mortality risk, and I will assume that

preferences take the standard form u(c) = (c1−γ − 1)/(1− γ) and ν(ℓ) = χℓ1+
1
φ/(1+ 1

φ
). For

each type i of household, the aggregate type budget constraint is exactly like (1), i.e.,

cit + bit =

total income eit︷ ︸︸ ︷
(1− τℓ)wtℓt + τt + dt+

1 + ib,t−1

1 + πt
bit−1︸ ︷︷ ︸

cash-on-hand xit

(11)

Note that all types receive the same income, but may differ in their consumption and wealth

holdings. Within types, households trade in actuarially fair, risk-free nominal annuities, with
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β(1+ r̄) = 1. Newborns furthermore receive a transfer that facilitates aggregation, exactly as

in Angeletos et al. (2023). As argued in Woodford (1990) and Farhi & Werning (2019), this

perpetual-youth set-up can be re-interpreted as a model of occasionally-binding borrowing

constraints, with 1−θi ∈ [0, 1] giving the probability that the borrowing constraint will bind

in any given time period. For N = 1, my model is identical to theirs, with all households

subject to binding borrowing constraints with some common probability 1− θ. For N > 1,

borrowing constraints can in principle bind differentially often for different types.

Following the derivations of Angeletos et al., it can be shown that total consumption of

households of type i satisfies the following linearized demand function:

ĉit =

(
1− θi

1 + r̄

)
︸ ︷︷ ︸

MPC

·

{
x̂it +

∞∑
k=1

(
θi

1 + r̄

)k

êit+k

}
︸ ︷︷ ︸
current cash-on-hand + future income

−σi

∞∑
k=0

(
θi

1 + r̄

)k (̂
ib,t+k − π̂t+k+1

)
︸ ︷︷ ︸

interest rate effects

(12)

where σi is a function of primitives. For the purposes of this paper, what matters most is the

first part of (12)—the mapping from current and expected future income, including in partic-

ular transfer income, to consumer demand. Consistent with the borrowing-constraint inter-

pretation of Farhi & Werning, we see that θi < 1—i.e., occasionally-binding constraints—has

two important effects: first, the contemporaneous MPC 1−θi/(1+ r̄) is elevated; and second,

future income is subject to additional discounting relative to the steady-state rate of interest.

These two features of (12) will loom large throughout the paper.

Combining the demand relation (12) with the budget constraint (11) yields a type-specific

consumption function Ci(•)—i.e., a mapping from perfect-foresight sequences of equilibrium

aggregates {www,ℓℓℓ,πππ,ddd} and policy variables {τττ , iiib} into sequences of type-specific consumption

ccci. Aggregating across types, we obtain the aggregate consumption function C(•) in (2), and

in particular

Cq ≡
N∑
i=1

µi · Ci
q, q ∈ {w, ℓ, π, d, τ, ib}. (13)

The main results in Sections 3 and 4 of this paper concern Cτ . The remainder of this section

thus characterizes the type-specific matrix Ci
τ under different assumptions on θi.

1. Permanent-income consumer: θi = 1. The familiar case of θi = 1 corresponds to standard

permanent-income consumers, with borrowing constraints never binding. We see from

(12) that, in this case, the MPC is simply equal to r̄
1+r̄

—in response to any lump-sum

income gain, households increase their consumption by the annuity value of that gain at

each date. This is true both for contemporaneous income gains as well as for future income
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gains, with those future income gains discounted at the steady-state rate of interest, but

not any further. Combining (12) with (11) we arrive at the following expression for Cτ in

the permanent-income case, denoted CR
τ for future reference:

CR
τ =


r̄

1+r̄
r̄

(1+r̄)2
r̄

(1+r̄)3
. . .

r̄
1+r̄

r̄
(1+r̄)2

r̄
(1+r̄)3

. . .
r̄

1+r̄
r̄

(1+r̄)2
r̄

(1+r̄)3
. . .

...
...

...
. . .

 (14)

We see that CR
τ is rank-1, and in particular that any sequence of transfers with zero net

present value does not affect household consumption at all—i.e., the familiar Ricardian

equivalence result (Barro, 1974).

2. Hand-to-mouth consumer: θi = 0. The case of θi = 0 corresponds to perpetually-binding

borrowing constraints—households immediately and fully consume any lump-sum income

gain, i.e., they are hand-to-mouth. It is straightforward to see that Cτ , for future reference
here denoted as CH

τ , is given as

CH
τ = I (15)

where I is the identity matrix. Any sequence of taxes and transfers is thus passed through

one-to-one into consumption; in particular, this means that even transfer sequences with

zero net present value will affect consumer demand.

3. Occasionally-binding constraints: θi ∈ (0, 1). The intermediate case θi ∈ (0, 1)—which is

the one studied, for example, in Farhi & Werning (2019) or Angeletos et al. (2023)—is one

of occasionally-binding constraints, leading to elevated MPCs and partial discounting of

future income. Appendix C.1 provides the full expression for Cτ , denoted COLG
τ . For the

purposes of the discussion here it suffices to consider the following approximate expression,

with the sense of the approximation made precise in Appendix C.1 (see Lemma C.1):

COLG
τ ≈

(
1− θi

1 + r̄

)
︸ ︷︷ ︸
baseline MPC

·


1 θi

1+r̄
( θi
1+r̄

)2 . . .

θi 1 θi
1+r̄

. . .

θ2i θi 1 . . .
...

...
...

. . .


︸ ︷︷ ︸
intertemporal spending profile

. (16)

As discussed above, if θi < 1, then MPCs are elevated. The second term in (16) tells us
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about the implied intertemporal consumer spending profile. First, because of current and

anticipated future binding borrowing constraints, households frontload spending, decaying

at rate θi (i.e., entries below the main diagonal of COLG
τ ). Second, borrowing constraints

binding between now and the future also means that future income receipt only partially

affects spending today, leading to anticipation effects (i.e., entries above the main diagonal

of COLG
τ ) that similarly decay, now at rate θi/(1+r̄). It follows that even transfer sequences

with zero present value affect consumer spending, unlike the permanent-income baseline;

compared to the simple hand-to-mouth limit, however, the passthrough from transfers to

demand is now not immediate (i.e., COLG
τ ̸= I), instead exhibiting the more complicated,

geometrically decaying dynamics displayed in the far-right part of (16).

My general multi-type analytical model nests each of these canonical models as special

cases, as well as arbitrary mixtures between them. The theoretical results in Section 3 will all

apply to such general mixtures. Notable special examples include the spender-saver model

of Campbell & Mankiw (1989) and the OLG-spender hybrid of Angeletos et al. (2023). The

latter will in particular be important in my quantitative analysis of Cτ in Section 4.10

A quantitative “HANK”-type model. The set-up of Section 2.1 is similarly consistent

with quantitative heterogeneous-agent models of the consumption-savings problem. In a

canonical “HANK” model, a unit continuum of households i ∈ [0, 1] has preferences

Et

[
∞∑
k=0

βk [u(cit+k)− v(ℓit+k)]

]
(17)

where expectations are now taken over idiosyncratic household productivity εit, with
∫ 1

0
εitdi =

1 for all t. The individual household budget constraint is

cit + bit = (1− τℓ)wtεitℓt + τt + dt +
1 + ib,t−1

1 + πt
bit−1, bit ≥ b (18)

where household borrowing is now subject to an-hoc (tight) borrowing constraint b.

The household consumption-savings decision is to choose sequences of consumption and

savings, {ccci, bbbi} to maximize (17) subject to (18). Aggregating across all households, we yet

10My analytical results extend with rather little change to the most popular alternative model of tractable,
non-Ricardian consumer behavior: bond-in-utility models, as considered for example in Michaillat & Saez
(2018). I provide a discussion of such models in Appendices B.4 and C.1.
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again obtain an aggregate consumption function (2). This consumption function—and in

particular the derivative matrix Cτ—now does not admit any closed-form characterization.

However, these objects can be recovered straightforwardly using the computational methods

developed by Boppart et al. (2018) and Auclert et al. (2019). The numerical explorations in

Section 4 will study the properties and shape of Cτ in such models.

3 Interest rate cuts vs. stimulus checks

This section presents my core theoretical results on how stimulus checks can replicate nominal

interest rate policy. I proceed in three steps. First, in Section 3.1, I present a general sufficient

condition for policy equivalence. This general condition only uses the aggregate consumption

function of Section 2.1. Second, in Section 3.2, I show that, in my analytical model, stimulus

checks can generically replicate arbitrary interest rate policy, in the sense that borrowing

constraints only need to bind some of the time.

My analysis in Sections 3.1 and 3.2 is couched in terms of linearized perfect-foresight

transition sequences. Section 3.3, building on discussions in Auclert et al. (2019) and McKay

& Wolf (2022b), translates these conclusions to equivalence in terms of policy rules in models

with aggregate risk, solved using standard first-order perturbation techniques.

3.1 A sufficient condition for aggregate policy equivalence

I begin with a preliminary definition: a high-level property of the consumption derivative

map Cτ that I refer to as strong Ricardian non-equivalence. This property will turn out to

be a general sufficient condition for my core equivalence result.

Definition 4. A consumption function C(•) exhibits strong Ricardian non-equivalence if the

linear map Cτ is invertible. I denote its inverse by C−1
τ .

Under the Barro (1974) definition of Ricardian equivalence, the time path of (lump-sum)

taxes used to finance any given fiscal expenditure is completely irrelevant for consumption—

only the present value matters. We already saw this in the expression for Cτ in the permanent-

income model (see (14)): there Cτ is rank-1, and so in particular it is not invertible. With

non-Ricardian households, on the other hand, the timing of transfers also begins to matter,

thus increasing the rank of Cτ ; strong Ricardian non-equivalence corresponds to the limit case

of invertibility. Section 3.2 will establish that perpetual-youth models satisfy this property

as soon as θ < 1—i.e., as soon as borrowing constraints bind at least occasionally.
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The equivalence result. I am now in a position to state the policy equivalence result.

Proposition 1. Consider the model of Section 2.1, and let ĉcc be a path of household con-

sumption with zero net present value, i.e.,
∑∞

t=0

(
1

1+r̄

)t
ĉt = 0. Suppose that

ĉ̂ĉc ∈ image(Cτ ) ⇔ ĉ̂ĉc ∈ image(C̃ib) (19)

Then τ and ib are macro-equivalent: any aggregate allocation that is implementable with

interest rate-only policy is also implementable with transfer-only policy, and vice-versa.

An easy-to-interpret condition ensuring the direction “⇐” in (19) is strong Ricardian

non-equivalence: if Cτ is invertible, then the space of aggregate allocations implementable

using transfer-only policies is at least as large that implementable using rate-only policies.

Proof sketch. Key to the proof of Proposition 1 is the insight that both interest rate

as well as transfer policies only directly perturb the model’s equilibrium conditions in two

places: first, the left-hand side of the output market-clearing condition C(•) = yyy(ℓℓℓ); and

second, the sequence of government budget constraints (7).

In partial equilibrium—i.e., prior to general equilibrium price and quantity adjustments—

a feasible monetary policy is simply a budget-neutral perturbation of relative intertemporal

prices, inducing a path of net excess consumption demand

ĉccPE
ib

≡ C̃ib × îiib

Note that, since my definition of an interest rate policy includes its financing, this demand

path necessarily has zero net present value. By (19), we can find some transfer sequence τ̂ττ (̂iiib)

that induces the exact same perturbation of net excess demand. Since the initial monetary

policy was consistent with fiscal budget balance, and so since ĉccPE
ib

has zero net present value,

it then follows from the household budget constraint (1) that the equivalent transfer also

necessarily has zero net present value,

∞∑
t=0

(
1

1 + r̄

)t

ĉPE
t,ib

=
∞∑
t=0

(
1

1 + r̄

)t

τ̂t(̂iiib) = 0

Thus, prior to any general equilibrium feedback, τ̂ττ (̂iiib) is also consistent with budget balance,

in the sense that the induced debt path b̂bb satisfies limt→∞ b̂t = 0. Finally note that the argu-

ment also works in reverse: any transfer-only policy that is consistent with the government
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budget constraint (7) (i.e., limt→∞ b̂t = 0) necessarily induces a perturbation of consumption

demand with zero net present value, and so by (19) we can always find an equivalent interest

rate-only policy. To summarize, this first step leverages the fact that both policies equally

flexibly manipulate the same lever: the consumption-savings decision of households.

Given that the transfer and nominal interest rate policies are both budget-feasible and

both perturb the output market-clearing condition by exactly the same amounts time period

by time period, it then follows via the implicit function theorem that they must also induce

the same general equilibrium paths of inflation, hours worked, wages, and dividends. The

intuition is simple: if, for example, the excess demand path induced by some monetary pol-

icy is accommodated in general equilibrium through increases in inflation and hours worked,

then the same inflation and hours worked paths are also consistent with agent optimality and

market-clearing after the equivalent transfer policy. This proof strategy is a simple applica-

tion of the Arrow & Debreu (1954) approach to general equilibrium characterization using

state-by-state (here t-by-t) net excess demand functions. Finally, the proof also reveals that

the two policies are revenue-equivalent in general equilibrium: e.g., if increases in economic

activity and inflation lead to an additional budget surplus after a rate cut, then the exact

same budget surplus also opens up after the equivalent transfer stimulus.

Discussion of assumptions. The first step of my argument relied on two assumptions:

(i) the existence of an aggregate consumption function C(•), and (ii) the restriction that both

policies operate only by manipulating that function. Many macroeconomic models induce

such consumption functions—e.g., ranging from the models reviewed in Section 2.2 to those

with behavioral biases (like Laibson et al., 2020; Lian, 2021)—, and so strong Ricardian

non-equivalence is a useful, quite widely applicable sufficient condition. By (ii), however,

my conclusions do not immediately extend to models in which monetary policy acts through

multiple levers, e.g., firm investment. I discuss such extensions in Section 6.

The second (general equilibrium) step of my proof requires that two policies with identical

effects on partial equilibrium net excess consumer demand are accommodated in the same

way in general equilibrium. The shape of the wage-NKPC (6) plays an important role in

ensuring that this is indeed the case. While this shape is entirely standard for representative-

agent models and for those in particular nests the limiting special case of flexible labor supply,

it requires additional assumptions in the case of cross-sectional household heterogeneity (e.g.,

as in quantitative HANK models). I will return to this point in Section 5.1.
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3.2 Strong Ricardian non-equivalence in analytical models

I now investigate whether the high-level condition stated in Proposition 1 holds in particular

models of household consumption behavior. The key takeaway will be that, in the analytical

model of occasionally-binding borrowing constraints of Section 2.2, uniform lump-sum taxes

and transfers can generically be used to replicate arbitrary interest rate policy, in the precise

sense that borrowing constraints only need to bind some of the time.

Cτ when borrowing constraints bind. I begin by studying Ci
τ for an individual type

i. My first result is that strong Ricardian non-equivalence holds—that is, Ci
τ is invertible—if

and only if θi < 1, i.e., type i is subject to occasionally-binding borrowing constraints. The

proof is constructive, involving a direct characterization (Ci
τ )

−1.

Lemma 1. Consider the analytical model of occasionally-binding borrowing constraints of

Section 2.2. If θi < 1, then the transfer derivative matrix Ci
τ satisfies strong Ricardian

non-equivalence, with its inverse given as

(Ci
τ )

−1 =
1

1− θi
1+r̄

·



1−θi(1−
θi

1+r̄
)

1−θi
− 1

1+r̄
θi

1−θi
0 . . .

− θi
1−θi

1+
θ2i
1+r̄

1−θi
− 1

1+r̄
θi

1−θi
. . .

0 − θi
1−θi

1+
θ2i
1+r̄

1−θi
. . .

...
...

...
. . .


(20)

Note that the expression in (20) is exact, and not approximate as in (16)—characterizing

(Ci
τ )

−1 is actually easier than characterizing Ci
τ itself. The particular shape of (Ci

τ )
−1 is also

intuitive. First, as θi → 1, we see that its entries diverge, reflecting the lack of invertibil-

ity in the permanent-income limit. Second, the constant probability of binding borrowing

constraints—which led to the simple geometric shape of intertemporal spending displayed in

(16)—means that the inverse also has a simple shape. Intuitively, to engineer one dollar of

additional spending at some date t, a policymaker would need to give money to households

at date t and then take money away at dates t− 1 and t+ 1, exactly offsetting the leakage

of date-t income to demand in adjacent periods.11 Finally, if θi = 0 (i.e., hand-to-mouth

spending), then there is no cross-period leakage, so we just have (Ci
τ )

−1 = I, as expected.

Lemma 1 reveals that occasionally-binding borrowing constraints suffice to ensure that

11As I show in Appendix C.1, C−1
τ has (almost) the exact same shape in bond-in-utility models.
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(bounded) sequences of taxes and transfers can be used to induce arbitrarily complicated

(bounded) paths of consumer demand. It thus follows that the popular models of occasionally-

binding constraints considered in previous work—e.g., Farhi &Werning (2019) and Angeletos

et al. (2023), which correspond to a single-type, N = 1 case of my general model—indeed

satisfy policy equivalence. I now go one step further and return to the general model.

Proposition 2. Consider the analytical model of occasionally-binding borrowing constraints

of Section 2.2, and let ĉcc be a square-summable path of consumption with zero net present

value. Then, if θi < 1 for all i, and if r̄ is sufficiently close to 0,

ĉ̂ĉc ∈ image(Cτ ), (21)

and any aggregate allocation that is implementable with interest rate-only policy is also im-

plementable with transfer-only policy.

The proof of Proposition 2 reveals that, for uniform transfer policy to be able to engineer

any possible (square-summable, zero net present value) path of aggregate demand, it suffices

if borrowing constraints bind some of the time for some households—i.e., that θi < 1 for

some i with µi > 0. The restriction that θi is (at least marginally) below 1 for all types i is

then just added for technical reasons, to ensure that the monetary policy-induced net excess

demand path ĉccPE
ib

is in fact also square-summable.12 Intuitively, as soon as there is at least

one non-Ricardian type, consumer spending at date t becomes anchored to consumer income

at date t, moving Cτ away from the flat permanent-income shape and towards an identity

matrix. As a result, the policymaker has all the leeway needed to flexibly manipulate excess

demand through transfers, as required for my equivalence results.

Connection to empirical evidence. Proposition 2 has established that the high-level

condition underlying Proposition 1 is a generic feature of a particular class of popular models.

It turns out to also be empirically relevant. To show this I now map the conditions underlying

Proposition 2 into empirically testable properties of the matrix Cτ .

Proposition 3. Consider the analytical model of occasionally-binding borrowing constraints

of Section 2.2. Then the condition in (21) is equivalent to either of the following two (inter-

changeable) properties of Cτ :

12In the presence of permanent-income consumers, the net excess demand path induced by a given target
monetary policy is generally not square-summable, by the usual unit-root property. This limitation, however,
is of only limited practical relevance, as even a marginal deviation from permanent-income behavior (i.e.,
θi < 1) breaks the unit-root property and restores square-summability.
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1. The average contemporaneous MPC is strictly above the permanent-income level, i.e.,

Cτ (1, 1) >
r̄

1 + r̄
(22)

2. The average consumer spending response to a lump-sum income gain is front-loaded, i.e.,

Cτ (1, 1) > Cτ (2, 1) (23)

The two conditions in Proposition 3 capture the same intuition. In the permanent-income

limit, the impact MPC Cτ (1, 1) is equal to the annuity value of the income gain, and the

dynamic MPC profile is flat. Binding borrowing constraints elevate the impact MPC beyond

the annuity value—condition (22)—and thus at the same time front-load overall consumption

demand—condition (23). Importantly, both of these conditions are testable using evidence

on how consumers spend lump-sum income gains (e.g., see Parker et al., 2013; Fagereng et al.,

2018; Borusyak et al., 2021). A consistent finding here is that impact MPCs are elevated

and that dynamic spending profiles are front-loaded and peak at income receipt. The policy

equivalence result is thus not just theoretically general but also empirically relevant.

Extensions and limitations. In Appendix C.1 I extend the analysis to an even richer

consumption function. Relative to (12), this alternative specification of consumer demand is

more general in that it disentangles the impact MPC from the dynamic discounting factor

θ. This extension is economically interesting for at least two reasons.

First, it nests the case β(1 + r̄) ̸= 1.13 If β(1 + r̄) < 1 (e.g., as is the case in models with

precautionary savings), then relative household impatience increases MPCs and front-loads

consumer spending even more, and so my conclusions about invertibility of Cτ are entirely

unaffected. If instead β(1+r̄) > 1, then invertibility of Ci
τ requires that borrowing constraints

are binding enough; e.g., with log preferences, the condition becomes

θi ≤
1

β(1 + r̄)
< 1 (24)

Intuitively, β(1 + r̄) > 1 leads households to back-load their spending. This is problematic

for my invertibility requirement, for the following reason. Suppose a policymaker wishes to

13With β(1 + r̄) ̸= 1 the analytical model need not have a well-defined steady-state level of consumption.
I thus simply consider a first-order approximation to the partial equilibrium consumption-savings problem,
characterize the implied Cτ , and ask when it is invertible (see Farhi & Werning, 2019).
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increase spending by $1 today. If consumers postpone their spending, then the transfer that

suitably increases demand today at the same time increases demand by even more tomorrow,

thus necessitating further—and larger—transfer movements tomorrow. In Appendix C.1 I

discuss a specific example in which this iteration diverges, breaking invertibility even though

variations in the timing of transfers do invariably impact spending.14 Borrowing constraints

binding often enough—as ensured by the bound on θi in (24)—counteracts this effect, front-

loads spending, and thus returns us to invertibility. Importantly, (24) is implied by either of

the two testable conditions in Proposition 3, thus further reinforcing the practical relevance

of the equivalence result.

3.3 From perfect foresight transitions to policy rules

The equivalence result in Proposition 1 was phrased in terms of perfect foresight transition

paths, or equivalently in terms of impulse responses to policy shocks in a linearized model

with aggregate risk. By the results in McKay & Wolf (2022b), such equivalence in terms of

responses to policy shocks also implies equivalence in terms of policy rules : in response to

any set of non-policy shocks, the aggregate outcomes implied by any given nominal interest

rate rule can equivalently be implemented using a transfer-only rule. This subsection briefly

elaborates on this observation, with further details provided in Appendix D.

A sketch of policy rule equivalence. Consider an extended version of the baseline

model that features a rich menu of non-policy shocks—wedges to the aggregate consumption

function (2) as well as the two Phillips curves (5) - (6), corresponding to simple reduced-form

representations of canonical demand and supply shocks. Given such a menu of shocks, I now

ask whether the space of aggregate allocations that the policymaker can implement through

commitment to policy rules is affected by constraints on nominal rates ib,t (e.g., a binding

ELB). Under the conditions of Proposition 1, the answer turns out to be “no”.

The core intuition for this policy rule equivalence result is straightforward and follows

from McKay & Wolf (2022b). In a general linearized system, a policy rule is nothing but a

mapping from lagged, current, and future expected macroeconomic outcomes to current and

expected future values of the policy instrument. Under the conditions of Proposition 1, for

every path of current and expected nominal interest rates, we can find a path of current and

14Formally, in this example, the linear map Cτ is injective—variations in the timing of transfers affect
consumption—but not surjective—there exist bounded paths of consumption that cannot be induced through
bounded paths of transfers. I thank an anonymous referee for suggesting the insightful counterexample.
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expected future transfers that perturbs all equilibrium conditions by the same amount, thus

ensuring that current and expected future values of all macroeconomic outcomes—including

in particular output and inflation—are identical. For a concrete, canonical example, consider

the “forecast targeting rule” of a textbook dual-mandate policymaker (Woodford, 2011),

π̂t + λ(ŷt − ŷt−1) = 0, t = 0, 1, 2, . . . (25)

where λ is a function of policymaker preferences and model primitives. Under the conditions

of Proposition 1, if the rule (25) induces a unique equilibrium when implemented through an

interest rate-only policy, then (25) implemented through a transfer-only policy also induces a

unique equilibrium, featuring the exact same aggregate allocation.15 Appendix D substanti-

ates the claims made here; in particular, I there show how transfers can replicate a general set

of interest rate-only rules, including both implicit rules—like the forecast targeting criterion

(25)—and explicit rules—like Taylor-type rules.

I note that my arguments on mapping one policy rule into an equivalent alternative policy

rule sensitively rely on the invariance of the aggregate consumption function—including in

particular Cτ—with respect to changes in policy rules. This model property is an immediate

implication of linearity: I study the response of the economy to “small” incremental business-

cycle shocks, linearizing around a deterministic steady state that is not affected by the

change from one policy rule to the other. Naturally, focusing on such linearized dynamics

could be misleading if my policy equivalence construction maps a given (moderately sized)

nominal interest rate path into very large tax-and-transfer movements—i.e., policy changes

that will plausibly move households far away from or meaningfully towards binding borrowing

constraints, and are thus likely to materially change Cτ . This could happen if households are

almost Ricardian: for example, if the economy is populated by just one consumer type, and

if that consumer type has θ below but close to 1, then C−1
τ takes the form displayed in (20),

with its entries diverging as θ → 1. As a result, to move consumer demand by a given target

15I picked (25) as my example because of its clear practical relevance. Notably, Bernanke (2015) summa-
rizes the salience of the implicit targeting perspective embedded in (25) for Federal Reserve policymaking:

“The Fed has a rule. The Fed’s rule is that we will go for a 2 percent inflation rate. We will
go for the natural rate of unemployment. We put equal weight on those two things. We will
give you information about our projections about our interest rates. That is a rule and that is
a framework that should clarify exactly what the Fed is doing.”

My main result simply states that, under my assumptions, this rule can equivalently be implemented using
a different policy instrument, giving exactly the same equilibrium outcomes of inflation and output.
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amount, impractically large changes in lump-sum transfers would be required, invalidating

my linear approximations. I will return to this important point in Section 4.

Taking stock. The analysis in this section has argued that my policy equivalence results

are quite general: they hold under economically weak and empirically relevant assumptions,

and they suffice for equivalence in the strong sense of delivering identical aggregate outcomes

for an arbitrary menu of shocks hitting the economy.

Where the analysis in this section has fallen short, however, is on characterization of the

equivalent stimulus check policies. In particular, while existence of the inverse C−1
τ may be

general, a similarly important piece of information for a policymaker is the shape of that

inverse—only with this knowledge can she figure out the particular policy that provides the

desired macroeconomic stabilization. Section 4 will provide that characterization.

4 Quantitative analysis and policy characterization

The objective of this section is to provide a simple yet empirically relevant characterization

of C−1
τ —the potentially complicated infinite-dimensional object that governs the mapping

from any possible shortfall in consumer spending to the transfer policy that would offset it.

To this end I study the properties of C−1
τ in a quantitative HANK model.

Overall, this section establishes three main results. First, I verify numerically that Cτ in

my HANK model is indeed invertible, consistent with the theoretical discussion surrounding

Proposition 2. Second, I show that C−1
τ takes a simple form, being robustly well-characterized

by a small number of measurable sufficient statistics. Both results hold across a range of

model parameterizations. Third, for empirically relevant values of the sufficient statistics, I

find that moderately sized transfers already suffice for meaningful aggregate stabilization.

4.1 Heterogeneous-household model

My analysis relies on a relatively standard one-asset HANK model. This section presents

the parameterization and discusses the model-implied consumption behavior.

Parameterization. I consider a calibrated version of the model of Section 2.1, with the

aggregate consumption function coming from the heterogeneous-household consumption-

savings problem described in Section 2.2. I only present a very brief overview of the (stan-

dard) parameterization here, and relegate further details to Appendix B.3.
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Households face the same income process as in Kaplan et al. (2018), and can self-insure

by saving, but not borrowing. I calibrate total liquid bond holdings to the amount of liquid

wealth in the U.S. economy; corporate wealth, instead, is perfectly illiquid, with households

receiving dividend payments as a function of their labor productivity (so that dit is actually

i-specific). For my robustness exercises, I consider alternative—less empirically relevant—

parameterizations with materially higher or lower wealth holdings, thus delivering materially

lower or higher average marginal propensities to consume, respectively.

The economy is closed with a constant-returns-to-scale production function as well as

conventional degrees of nominal wage and price stickiness. This general equilibrium closure

is irrelevant for all of the main results of this section (which only concern partial equilibrium

consumer behavior, i.e. Cτ ); rather, the model closure will only start to matter once I report

general equilibrium experiments (as I do at the end of Section 4.2 as well as in Section 5).

Properties of Cτ . In an important contribution, Auclert et al. (2018) establish that the

first column of Cτ in HANK models—i.e., the response of consumption demand over time to

a lump-sum income gain today—is consistent with empirical evidence on consumer spending

behavior (e.g., see Parker et al., 2013; Fagereng et al., 2018). They furthermore show that,

in both model and data, this first column actually has a rather simple shape: the impact

MPC—say, within quarter of income receipt—is elevated; the MPC in the following period is

then meaningfully smaller; and finally, from thereon out, intertemporal MPCs approximately

decline at a constant, geometric rate.16 This second observation suggests that the first

column of Cτ in quantitatively relevant HANK-type models may be parameterized with three

“sufficient statistics”: the impact MPC ω; the dynamic rate of decay θ from horizon t = 2

onwards; and finally the interest rate r̄ which—via the fact that discounted lifetime MPCs

necessarily add up to 1—delivers the delayed date-1 MPC. The sufficient statistics formula

developed in the next section shows that these three numbers in fact suffice to provide an

accurate characterization of the entirety of Cτ in HANK, and thus also of C−1
τ .

4.2 A three-coefficient sufficient statistics approximation

The analysis in this section proceeds in three steps. First, I propose a simple three-parameter

sufficient statistics formula for C−1
τ , leveraging the analytical models of Section 3.2. Second,

16Empirical evidence and some quantitative HANK modeling suggest that this rate of decay of intertem-
poral MPCs may slow down at longer horizons, in the tail. I investigate this point in Appendix C.3 and find
that those tail MPCs are essentially irrelevant for my characterization of C−1

τ .
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I document the accuracy of that formula in my quantitative HANK model. Third, I discuss

some practical policy implications.

The sufficient statistics formula. The proposed sufficient statistics formula lever-

ages a special case of the general analytical model of Section 2.2—a simple two-type version

that is rich enough to agree with both empirical evidence and quantitative HANK models on

the shape of the first column of Cτ . Specifically, I consider a model populated by perpetual-

youth consumers (i.e., with θ ∈ (0, 1)) together with a residual margin µ of spenders. By the

discussion in Section 2.2 and Appendix C.1, the first column of Cτ in such a simple mixture

model satisfies

Cτ (•, 1) = µ ·
(
1− θ

1 + r̄

)
·


1

θ

θ2

...


︸ ︷︷ ︸

perpetual-youth part

+ (1− µ) ·


1

0

0
...


︸ ︷︷ ︸
hand-to-mouth part

(26)

We see from (26) that the two-type hybrid model is rich enough to match arbitrary values of

the three statistics {ω, θ, r̄}—θ and r̄ are given directly, and µ is then recovered residually to

match the impact MPC ω. Importantly, however, in my hybrid model, these three statistics

then characterize the entirety of Cτ ≡ (1− µ) · COLG
τ (θ, r̄) + µ · I and thus also C−1

τ . This is

my proposed three-parameter sufficient statistics approximation Cτ (ω, θ, r̄)−1.

The inverse Cτ (ω, θ, r̄)−1 has a simple and intuitive shape, displayed as the orange dashed

lines in Figure 1. Recall from the discussion in Section 3.2 that, for a single perpetual-youth

consumer type, C−1
τ is tridiagonal—to engineer a dollar of excess demand at some arbitrary

date t, it suffices to hand out a transfer at date t and then reduce transfers at the adjacent

dates t− 1 and t+1, to prevent any cross-period leakage. In the two-type model underlying

my sufficient statistics formula the shape of Cτ (ω, θ, r̄)−1 is similar: it has peaks along the

main diagonal, just now the off-diagonal entries decay to zero more gradually, simply because

the cross-period spending leakage takes a more complicated (i.e., non-geometric) form.

Approximation accuracy. The main result of this section is that the proposed three-

dimensional approximation Cτ (ω, θ, r̄)−1 actually provides a quite accurate description of C−1
τ

in quantitative HANK-type models. This conclusion closely echoes the findings of Auclert

et al. (2018), who show that a mixture of spender-saver and bond-in-utility models can match
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Figure 1: Entries of C−1
τ in the quantitative heterogeneous-agent model (shades of grey) and in the

sufficient statistics approximation Cτ (ω, θ, r̄)−1 (shades of orange, dashed). Here r̄ is set as in the
heterogeneous-agent model, and {ω, θ} are set to match Cτ (1, 1) and Cτ (2, 1). The lines correspond
to columns {1, 6, 11, 16}, with lighter shades indicating farther-out columns.

HANK reasonably well on the entirety of Cτ .17 While the analysis in this section will only look

at the preferred calibration of my HANK model, I in Appendix C.3 document the robustness

of my conclusions by also looking at alternative, materially different parameterizations.

Figure 1 begins by displaying several individual columns of C−1
τ taken from both (i) the full

heterogeneous-agent model (shades of grey) and (ii) the sufficient statistics approximation

(orange dashed), with {ω, θ, r̄} set to agree with the heterogeneous-agent model: ω = 0.30,

θ = 0.82, and r̄ = 0.01—all values that are broadly consistent with the empirical evidence.18

The key takeaway from the figure is that the orange lines are throughout quite close to the

grey ones.19 The intuition is that, in the HANK model, some households are up against the

17Relative to Auclert et al., the further value-added of my analysis here is to provide an explicit mapping
from {ω, θ, r̄} into C−1

τ , and to discuss how these three statistics affect the shape of C−1
τ .

18To be precise, I set r̄ to its value in the heterogeneous-agent model, ω = Cτ (1, 1), and finally θ is set to
ensure that Cτ (ω, θ, r̄)(2, 1) = Cτ (2, 1).

19The figure reveals that there is some inaccuracy above the main diagonal of C−1
τ , reflecting the fact that

anticipation effects in the hybrid model somewhat differ from those in HANK. In principle, a generalized
four-parameter sufficient statistics formula could better capture these effects, as discussed in Appendix C.3.
In practice, however, the simpler three-parameter formula already provides an excellent approximation, as
in particular is visible in my policy applications in Figure 2.
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Figure 2: Three desired net excess demand paths ĉccPE (grey) and the required sequences of uniform
lump-sum taxes and transfers, C−1

τ × ĉccPE , as implied by the full heterogeneous-agent model (black)
and my sufficient statistics formula (orange dashed).

borrowing constraint (so they act like spenders), while others will be up against it in the

future with positive probability, so they act like perpetual-youth consumers with intermediate

θ. Importantly, three simple (and measurable!) parameters are already enough to capture

these spending dynamics—and their implications for C−1
τ —quite well.

Next, Figure 2 shows several different “typical” target paths of net excess demand that

a policymaker may wish to implement (grey) together with the sequences of transfers and

taxes that do so (black and orange dashed). More precisely, given the three distinct paths

of desired net excess demand ĉccPE
τ (grey), the figure plots

τ̂ττ (̂cccPE
τ ) ≡ C−1

τ × ĉccPE
τ ,

where C−1
τ is either taken from the full quantitative HANK model (black) or from my simple

sufficient statistics approximation (orange dashed). The three time paths of desired spending

that I consider all have a peak of one per cent of steady-state consumption, but they are

quite distinct in shape: short-lived in the left panel, more persistent in the middle panel, and

hump-shaped in the right panel, capturing a range of policy-relevant scenarios. As expected

in light of Figure 1, I find that, for all three paths, the actual required transfer sequence and

the sufficient statistics prediction are close. I will return to the magnitudes of the required

stimulus check policies when discussing practical policy implications.

Appendix C.3 repeats the exercises of Figures 1 and 2 for two possible alternative cali-

brations of the HANK model: one with much lower household wealth and thus higher MPCs,
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Figure 3: Impulse responses of nominal interest rates, transfers, and debt to interest rate (green)
and transfer (black) policies in the calibrated HANK model, chosen to generate the net excess
demand path displayed in the middle panel (grey). For transfers and debt I show the differences
between their paths under the two policies as the black line.

and the other one with very high wealth and so low MPCs. The matrix C−1
τ and so the time

paths τ̂ττ (̂cccPE
τ ) materially differ across all of these models, but crucially my three-parameter

sufficient statistics approximation remains accurate for all of them.

Practical policy implications. So far I have emphasized that my sufficient statistics

formula yields an approximation Cτ (ω, θ, r̄)−1 that accurately reflects consumer behavior in

HANK models, across a range of parameterizations. A second important point is that, for

empirically relevant values of the “sufficient statistics” {ω, θ, r̄}, the entries of this inverse

are moderate in size. We can see this in Figure 1, with the diagonal entries of Cτ (ω, θ, r̄)−1

somewhat larger than ω−1, and the off-diagonal entries relatively small and quickly converg-

ing to zero away from the main diagonal. Given that empirical evidence suggests elevated

average MPCs ω, it follows that even moderately sized transfer stimulus suffices to close

meaningful aggregate spending shortfalls. We also see this in Figure 2, which reveals that

stimulus checks of the magnitudes observed in practice (e.g., around $600, as in 2008), are

predicted to close aggregate demand shortfalls of around one per cent.20

Figure 3 provides a final illustration by studying stabilization policy in response to a

contractionary demand shock—that is, a shock that temporarily depresses partial equilibrium

consumer spending, here with a peak effect of -1 per cent. By the classical divine coincidence

20Appendix C.3 elaborates further: there, I repeat the exercises in Figure 2 for a range of credible values
of my sufficient statistics, and find that moderately sized checks throughout deliver meaningful stabilization.
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logic, it is possible to perfectly stabilize inflation and output in the face of such a shock. To do

so, policy needs to increase consumer spending to offset the 1 per cent contraction in demand

(= $150 per household), shown in the middle (grey). The usual policy prescription would

be to do so through a cut in rates (left panel, green); in my heterogeneous-agent model, this

requires a relatively short-lived rate cut with a cumulative total of around 150 basis points.21

The black lines indicate how to achieve the same stabilization instead using lump-sum tax-

and-transfer policy alone: transfers initially go up (here by around $600), before then being

financed through higher taxes down the line. Unsurprisingly (in light of Figures 1 and 2),

this time path is again predicted almost perfectly by my sufficient statistics formula (orange,

dashed). Finally, the right panel shows that the moderate stimulus check policy brings with it

a moderate, transitory increase in government debt. Cyclical stabilization through stimulus

check policy thus here requires no implausibly large or erratic fluctuations in taxes, deficits,

or aggregate government debt. This is important: had meaningfully larger stimulus check

policies been required, then the linearity assumption underlying my theoretical derivations

in Section 3 would have been much less plausible.

Finally, while my experiments here throughout assumed uniform transfers, I emphasize

that all results extend without any change if transfers are instead targeted at particular sub-

populations of households, more similar to the more recent rounds of stimulus check policies

observed in U.S. policy practice. A detailed discussion is provided in Appendix C.7.

5 The role of microeconomic heterogeneity

My analysis so far has been concerned exclusively with policy instrument equivalence at the

aggregate level. Microeconomic heterogeneity played a role only to the extent that popular

heterogeneous-agent consumption models are a natural (and empirically relevant) candidate

to satisfy my sufficient condition of strong Ricardian non-equivalence.

This section sheds further light on the scope and the limitations of the policy equivalence

result in the face of microeconomic heterogeneity. First, in Section 5.1, I gauge the extent

to which microeconomic heterogeneity in labor supply decisions can break the equivalence

result. I argue that, while this is possible in theory, it is unlikely to matter too much in

practice. Second, in Section 5.2, I then note that equivalence at the aggregate level does not

necessarily imply equivalence household-by-household.

21This implied direct mapping from interest rates to consumer net excess demand is broadly consistent
with recent empirical evidence (e.g., see Table 4 in Crawley & Kuchler, 2021).
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5.1 Wealth effects and household labor supply

To understand how household heterogeneity and wealth effects in labor supply can in princi-

ple challenge my equivalence result, it will be useful to recall the proof sketch of Proposition 1.

As the first step of the argument, I consider nominal interest rate and transfer policies that

induce identical paths of spending. This however is in general not enough to ensure equiva-

lence in general equilibrium—the two policies also need to induce identical responses of total

household labor supply. In my environment, the specific wage-NKPC (6)—which impor-

tantly depends only on aggregate consumption ct—ensures that interest rate and stimulus

check policies with identical direct effects on consumer spending indeed also induce identical

labor supply responses, as required.

I conclude from this discussion that it is not wealth effects in labor supply per se that

threaten the equivalence result; rather, a potential challenge are heterogeneous wealth effects,

which would allow two policies with identical effects on total spending to potentially lead to

different responses of total labor supply. I here use two experiments to argue that the scope

for such heterogeneity to materially threaten the equivalence result is likely to be limited,

at least for stimulus check policies of the size considered in my applications.

An alternative union bargaining protocol. Some form of nominal wage rigidity is

widely argued to be necessary to match business-cycle dynamics in general (Christiano et al.,

2005; Smets & Wouters, 2007) and consumption responses to macro shocks in particular

(Auclert et al., 2020; Broer et al., 2020); importantly, it is also consistent with microeconomic

evidence (Grigsby et al., 2019). The derivation of my wage-NKPC (6) relies on one particular

union bargaining protocol that only responds to changes in aggregate consumption, thus

ensuring that my two candidate interest rate and stimulus check policies also lead to identical

responses of labor supply. The exact same bargaining protocol has also been used in other

recent contributions to the HANK literature (Auclert et al., 2021; Aggarwal et al., 2022;

McKay & Wolf, 2022a). An alternative union bargaining protocol (used e.g. in Auclert et al.,

2018) instead has the union respond to a weighted average of individual household marginal

utilities (rather than marginal utility at the average, as in my protocol). Appendix C.4

extends my HANK model environment to such an alternative protocol.

The main takeaway from my analysis in Appendix C.4 is that the equivalence result

continues to hold almost exactly even under the alternative protocol. Intuitively, equivalence

is now not exact because the interest rate and transfer policies that induce identical responses

of consumer spending will generically not induce identical changes in the weighted average
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of consumer marginal utilities that enters the union problem. As a result, the adjustments

in labor supply—ℓ̂ℓℓ
PE

ib
and ℓ̂ℓℓ

PE

τ —are not the same, and equivalence fails. However, marginal

utility at the average and average marginal utility still co-move closely, so ℓ̂ℓℓ
PE

ib
and ℓ̂ℓℓ

PE

τ remain

quite similar, and aggregate outcomes are still nearly identical under the two policies.22

Matching empirical evidence on labor supply responses. Empirical evidence on

household labor supply suggests that marginal propensities to earn (MPE)—that is, the

response of earned income to a one-time, unexpected lump-sum transfer—are moderate in

size, ranging from around 1% - 3% (Cesarini et al., 2017; Golosov et al., 2021), and somewhat

increasing in household income, roughly doubling from the lowest to the highest income

quartile (Golosov et al., 2021). Standard heterogeneous-household models with flexible labor

supply struggle with both observations (Auclert et al., 2020): MPEs are predicted to be of the

same order of magnitude as MPCs, and MPEs tend to be highest for high-MPC households.

My solution is to adjust household preferences: I consider a hybrid of standard separable and

Greenwood et al. (1988) GHH preferences (as originally proposed by Auclert et al., 2020)

to match average MPEs, and then allow for preference heterogeneity across households to

also match the cross-sectional MPE gradient. To make the heterogeneity particularly stark I

consider a simple two-type model with low-MPC savers and high-MPC spenders, with their

MPEs matched to the first and fourth quartiles of income reported in Golosov et al.. Full

results are again reported in Appendix C.4.

In the model with empirically relevant and heterogeneous MPEs, I find that the policy

equivalence result again holds almost exactly. The intuition is simply that heterogeneity in

MPEs is small relative to the level of the average MPC. For example, with an MPC of 30%

(an empirically relevant number for checks of the size studied in Section 4) and MPEs of 2%

for spenders and 4% for savers (in line with Golosov et al.), the direct demand stimulus asso-

ciated with either transfers or the equivalent rate cut is an order of magnitude larger than the

difference in the labor supply response across households. Aggregate equilibrium dynamics

are thus still dominated by the demand effects that are at the heart of Proposition 1.

Takeaways & qualifiers. The analysis in this section suggests that dispersion in wealth

effects in labor supply is unlikely to materially affect the aggregate policy equivalence result.

22Furthermore, even if the two policies were to induce quite heterogeneous wealth effects in labor supply,
nominal wage rigidity of the degree usually assumed in quantitative work would mean that this heterogeneity
would matter little in general equilibrium, at least for transitory policy shocks (Christiano, 2011).
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However, it is important to acknowledge that this conclusion is sensitively tied to the fact

that throughout I am looking at stimulus check policies that are relatively moderate in size

and transitory. For larger stimulus checks the cross-sectional heterogeneity in labor supply

responses would likely become larger relative to the size of the demand stimulus (i.e., bigger

MPE relative to MPC), thus moving the economy further away from policy equivalence.

5.2 Non-equivalence at the household level

It is important to note that the equivalence result of this paper applies to macroeconomic

aggregates, but does not necessarily hold household-by-household.

Household-level consumption. Consider the general heterogeneous-household envi-

ronment described in Section 2.2. Consumption of an individual household i is given as

ccci = Ci(www,ℓℓℓ,πππ,ddd;τττ , iiib)

where the individual consumption function Ci(•) is the solution to individual i’s consumption-

savings problem, indexed by that individual’s initial asset holdings and productivity. Now

consider two macro-equivalent interest rate and stimulus check policies îiib and τ̂ττ (̂iiib), con-

structed as in the proof of Proposition 1, and let ∆i(̂iiib) denote the difference in household

i’s consumption under the two policies; that is, let

∆i(̂iiib) ≡ ĉcci,ib − ĉcci,τ(ib)

where ib and τ subscripts indicate transition paths corresponding to interest rate and transfer

policy, respectively. Since by construction both policies induce the same general equilibrium

price and quantity responses (notably {www,ℓℓℓ,πππ,ddd}), we find that this difference satisfies

∆i(̂iiib) = C̃i,ibîiib − Ci,τ τ̂ττ (̂iiib)

where C̃i,ib and Ci,τ are defined like C̃ib and Cτ , just now for each i. In words, the two poli-

cies may result in differences in consumption household-by-household because of potentially

differential direct effects on consumer spending. Intuitively, while the two policies by design

induce the same total direct stimulus (i.e., C̃ibîiib = Cτ τ̂ττ (̂iiib) and so
∫ 1

0
∆i(̂iiib)di = 000), they may

do so by affecting consumption at different points in the cross-section of households (i.e., we

can have C̃i,ibîiib ̸= Ci,τ τ̂ττ (̂iiib) and so ∆i(̂iiib) ̸= 000 for individual i).
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Distributional outcomes in quantitative HANK models. I provide a numerical

illustration of this non-equivalence at the household level by returning to the quantitative

HANKmodel of Section 4. In this environment I compute the evolution of consumption along

the household wealth distribution in response to the macro-equivalent nominal interest rate

and stimulus check policies displayed in Figure 3. I only briefly discuss the main results here,

with all further details relegated to Appendix C.5.

The headline result is that, while macro-equivalent, interest rate and transfer stimulus

policies can have quite materially different effects in the cross-section of households. As dis-

cussed above, both policies induce the same general equilibrium feedback effects, household-

by-household. The direct effects, however, are heterogeneous. On the one hand, rate cuts

work mostly by directly stimulating the consumption of the rich. This is not surprising:

wealthy households substitute intertemporally, while poor households are close to their bor-

rowing constraint and so do not. On the other hand, the equivalent lump-sum transfer policy

mostly acts at the bottom: it relaxes borrowing constraints and so stimulates consumption of

the poor, while rich households barely respond (since the policy has zero present value). Rel-

ative to a given rate cut, stimulus checks that deliver the same aggregate stabilization thus

do so at strictly smaller cross-sectional consumption dispersion. The normative implications

of this positive observation are explored in McKay & Wolf (2022a).

6 Extension to investment

As the final step in my argument, I show that the policy equivalence result extends straight-

forwardly to a richer environment with investment if stimulus checks are complemented by

a second, similarly standard fiscal tool: bonus depreciation stimulus.

6.1 A brief sketch of the environment

I augment the model of Section 2.1 to allow for productive capital. The firm block in this

extended environment closely follows the tradition of standard business-cycle modeling (e.g.,

Smets & Wouters, 2007; Justiniano et al., 2010). I provide a brief sketch of this familiar

model here, and relegate further details to Appendix B.5.

Production. A unit continuum of identical, perfectly competitive firms j ∈ [0, 1] produces

a homogeneous intermediate good, sold at real relative price pIt . The problem of firm j along
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the perfect foresight transition path is to

max
{djt,ℓjt,kjt,bfjt}∞t=0

∞∑
t=0

(
t−1∏
q=0

1 + πq−1

1 + ib,q

)
djt

subject to the flow budget constraint

djt = pIt y(ℓjt, kjt−1)−wtℓjt−[kjt − (1− δ)kjt−1]︸ ︷︷ ︸
≡ ijt

+τf,t({ijt−q}tq=0)−ϕ(kjt, kjt−1, ijt, ijt−1) (27)

where ϕ(•) captures costs on either stock (capital) or flow (investment) adjustment. Inter-

mediate goods producers thus hire labor on spot markets, invest, and pay out dividends.

My only twist to this familiar production block is that I allow for a general fiscal investment

stimulus policy τττ f (•), mapping investment today into future payments to the firm. Impor-

tantly, this set-up nests the popular bonus depreciation stimulus policy, in which investment

today reduces tax liabilities in the future (Zwick & Mahon, 2017; Koby & Wolf, 2020). I will

index time-t investment stimulus policies by a single parameter τf,t.

Proceeding exactly as in Section 2.1, we can define an aggregate investment function

I(•); I relegate a discussion of the arguments of this function to Appendix B.5, as it is not

essential here. For my purposes, the only important consideration is that fiscal stimulus is

one of those arguments, with the direct effects of such stimulus summarized by the following

derivative matrix:

Iτf ≡ ∂I(•)
∂τττ f

Statements about the degree to which conventional fiscal instruments can be used to replicate

monetary stimulus will be statements about the properties of Iτf (and of course Cτ , as before).

Rest of the economy. The intermediate good is sold to monopolistically competitive

retailers subject to nominal rigidities, summarized again with a general price-NKPC:

π̂t = κp × p̂It + βπ̂t+1 (28)

The remainder of the model is unchanged. The extension of the equilibrium definition in

Definition 3 is then straightforward, and provided in Appendix B.5.
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6.2 Policy equivalence with conventional fiscal instruments

In this extended model, monetary policy operates through two channels: first, as before, it

affects household consumption demand, and second, it changes firm investment and so labor

hiring as well as intermediate goods production. Thus, transfer stimulus policy alone is now

insufficient to replicate the effects of (infeasible) conventional monetary policy—exactly as in

Correia et al. (2013), an additional instrument is needed. In a straightforward generalization

of Proposition 1, Proposition 4 shows that invertibility of Cτ and Iτf is sufficient to leave the

space of implementable output-inflation allocations unchanged.

Proposition 4. Consider the extended model of Section 6.1. Suppose that Cτ and Iτf are

both invertible, and consider an allocation {π∗
t , y

∗
t }∞t=0 that is implementable using an interest

rate-only policy. Then it is similarly implementable through time-varying uniform transfer

and bonus depreciation policies alone.

Transfer stimulus now only replicates the consumption channel of monetary policy trans-

mission. If additionally Iτf is invertible, then the general form of investment stimulus consid-

ered in (27) suffices to replicate the investment channel, and so leave the set of implementable

aggregate allocations unchanged. The final step of my argument is to ascertain that bonus

depreciation stimulus can indeed perturb firm investment demand over time as required in

Proposition 4. Unlike the stimulus check case, however, this logic is now entirely straightfor-

ward and in particular can closely follow the work of Correia et al. (2013). Since my model

features no firm-level financial frictions, it is straightforward to see that bonus depreciation

is equivalent to a standard investment subsidy (e.g., see the discussion in Winberry, 2021;

Koby & Wolf, 2020). The analysis of Correia et al. (2013) now applies unchanged: interest

rates ib,t and the subsidy τf,t both enter investment optimality conditions as wedges, and so

the investment channel of monetary policy can be replicated by matching those wedges.

Taking stock. Taken together, the results in this section as well as in Section 4 give the

headline practical takeaway of my paper: even in quite large-scale quantitative business-cycle

models, a conventional mix of fiscal instruments—lump-sum transfers together with bonus

depreciation tax stimulus—suffice to replicate the effects of any desired monetary policy on

macroeconomic aggregates. The investment side of the argument is straightforward: bonus

depreciation as the standard fiscal tool is sufficiently close to an investment subsidy that I

was able to adapt the original results of Correia et al. with little change. On the consumption
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side, on the other hand, an entirely different argument was needed—one that I provided in

Sections 3 and 4, constituting the main contribution of the paper.

7 Conclusion

Over the past decade, much academic and applied policy interest has centered on the question

of how to replicate monetary stimulus when nominal interest rates are constrained.

The central contribution of this paper is to show that, in business-cycle models that are

entirely standard except for the presence of non-Ricardian consumers, a conventional mix

of fiscal instruments—in particular including uniform lump-sum stimulus checks—suffices

to replicate the aggregate effects of an arbitrary interest rate policy. The core insight is

a formalization of the notion that interest rate and stimulus check policies can manipulate

consumer demand “equally flexibly.” My main theoretical result is to establish that, in a rich

but analytically tractable model of occasionally-binding borrowing constraints, this condition

holds generically. As a secondary contribution, I provide an explicit characterization of the

transfer policy that is needed to close any given shortfall in demand; in particular I show that,

even in state-of-the-art quantitative heterogeneous-household models, this transfer policy is

well-characterized by a very small number of measurable sufficient statistics.

I leave several important extensions for future work. First, it would be interesting to

compare interest rate and stimulus check policies in a full Ramsey problem. Steps in this

direction are taken in McKay & Wolf (2022a). Second, to the extent that the linear map Cτ
changes over the cycle, the required transfer stimulus will also depend on the aggregate state

of the economy. Future empirical work should try to better measure that state dependence.
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A Appendix

A.1 Proof of Proposition 1

Linearizing the government budget constraint (7), we find

b̄̂ib,t−1 − (1 + r̄)b̄π̂t + (1 + r̄)̂bt−1 + τ̂t = τℓw̄ℓ̄(ŵt + ℓ̂t) + b̂t (A.1)

Using (A.1), I will decompose total transfers into two parts: an endogenous “general equilibrium”

component related to labor tax revenue and inflation debt servicing costs,

τ̂ et ≡ τℓw̄ℓ̄(ŵt + ℓ̂t) + (1 + r̄)b̄π̂t (A.2)

and an exogenous “policy” component

τ̂xt ≡ τ̂t − τ̂ et (A.3)

I now present a constructive proof of Proposition 1: leveraging (19) I will show how to construct

a transfer-only policy replicating any interest rate-only policy, and vice-versa. The decomposition

in (A.2) and (A.3) will prove useful in this constructive proof.

1. An interest rate-only policy is a tuple {ib,t, τt}∞t=0 with

τ̂t = τ̂ et − b̄̂ib,t−1

so that τ̂xt = −b̄̂ib,t−1. By (19), there exists a path of transfers {τ∗t }∞t=0 such that

Cτ × τ̂̂τ̂τ∗ = C̃ib × î̂îib = Cib × î̂îib + Cτ × τ̂̂τ̂τx (A.4)

Since the interest rate-only policy by construction has zero net present value, it follows that the

transfer-only policy τ̂̂τ̂τ∗—which induces the exact same (zero-NPV) consumption sequence—also

has zero NPV:
∞∑
t=0

(
1

1 + r̄

)t

τ̂∗t = 0 (A.5)

Now consider the transfer-only policy tuple {̄ib, τ̄ + τ̂ et + τ̂∗t }∞t=0. I will verify that, at the initial

{ct, ℓt, yt, wt, πt, dt}∞t=0, all markets still clear and all agents still behave optimally. First, by

(A.5) and the definition of τ̂ et , we still have that limt→∞ b̂t = 0. Second, by construction of τ̂∗t in

(A.4), the path ĉ is still consistent with optimal household behavior given {wt, ℓt, πt, dt; īb, τ̄ +

τ̂ et + τ̂∗t }∞t=0. Finally, all other model equations are unaffected, so the guess is verified, because
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the initial allocation was an equilibrium.

2. A transfer-only policy is a tuple {̄ib, τt}∞t=0 with

∞∑
t=0

(
1

1 + r̄

)t

τ̂xt = 0

By (19), there exists a path of interest rates {i∗b,t}∞t=0 with τ̂∗t = −b̄̂i∗b,t−1 such that

Cτ × τ̂̂τ̂τx = C̃ib × î̂îi∗b = Cib × î̂îi∗b + Cτ × τ̂̂τ̂τ∗ (A.6)

and where by construction {̂îîi∗b , τ̂̂τ̂τ∗} has zero NPV:

∞∑
t=0

(
1

1 + r̄

)t

τ̂∗t +

∞∑
t=0

(
1

1 + r̄

)t

b̄̂i∗b,t−1 = 0 (A.7)

Now consider the interest rate-only policy tuple {i∗b,t, τ̄+ τ̂ et + τ̂∗t }∞t=0. As before I will verify that,

at the initial {ct, ℓt, yt, wt, πt, dt}∞t=0, all markets still clear and all agents still behave optimally.

First, by (A.7) and the definition of τ̂ et , we have that b̂t = 0 for all t, so indeed the policy

is a valid interest rate-only policy. Second, by construction of î∗b,t in (A.6), the path ĉ is still

consistent with optimal household behavior given {wt, ℓt, πt, dt; i
∗
b,t, τ̄ + τ̂ et + τ̂∗t }∞t=0. Finally, all

other model equations are unaffected, so the guess is verified, because the initial allocation was

an equilibrium.
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Online Appendix for:

Interest Rate Cuts vs. Stimulus Payments:

An Equivalence Result

This online appendix contains supplemental material for the article “Interest Rate Cuts vs.

Stimulus Payments: An Equivalence Result”. I provide (i) details for the various structural

models used in the paper, (ii) supplementary theoretical results, and (iii) a detailed discussion

of equivalence in terms of policy rules. The end of this appendix contains further proofs.

Any references to equations, figures, tables, assumptions, propositions, lemmas,

or sections that are not preceded “B.”—“E.” refer to the main article.
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B Model details

This appendix contains supplementary model details. I begin in Appendix B.1 by discussing

in more detail the price-NKPC (5). Appendices B.2 and B.3 provide further details regarding

the consumption-savings models of Section 2.2, including in particular a discussion of labor

supply. In Appendix B.4 I sketch an alternative model of non-Ricardian consumer behavior—

a model with bonds in the utility function—, and in particular discuss a variant of that model

with generalized Greenwood et al. preferences. Finally, Appendix B.5 presents the extended

model with investment.

B.1 Sticky-price retailers

To derive the price-NKPC (5), I let 1−α denote the elasticity of output with respect to total

labor input at the steady state, 1− θp ∈ (0, 1) denote the probability of a price re-set, and ϵp

the substitutability between different retail varieties in aggregation to the final good. We can

then follow the standard derivations in Gaĺı (2015) to arrive at the following log-linearized

aggregate price-NKPC:

π̂t =
(1− θp)(1− θp

1+r̄
)

θp

1− α

1− α + αεp

(
ŵt + αℓ̂t

)
+ βπ̂t+1 (B.1)

(B.1) is a special case of (5).

B.2 Further details on the analytical model

I first provide some additional details on the household consumption-savings problem—i.e.,

the mapping from sequences of income and interest rates to consumer demand. I then discuss

household labor supply decisions.

Consumption-savings decisions. Consider an individual household type i. I write their

steady-state consumption level as c̄i and their steady-state wealth holdings as b̄i. Under my

stated assumptions on transfers to newborns, the consumption-savings problem of type i is

identical to the consumer demand block studied in Angeletos et al. (2023). In particular, the

aggregate demand relation in their equation (11) is my linearized optimality relation (12),
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reproduced below for convenience:

ĉit =

(
1− θi

1 + r̄

)
·

{
x̂it +

∞∑
k=1

(
θi

1 + r̄

)k

êit+k

}
− σi

∞∑
k=0

(
θi

1 + r̄

)k (̂
ib,t+k − π̂t+k+1

)
(B.2)

where σi ≡ βθiγ
−1 − (1− βθi)βb̄i/c̄i. The second equation that is needed to characterize the

consumption function Ci(•) of a consumer type i is the budget constraint. Here we have

cit + bit = (1− τℓ)wtℓt + τt + dt +
1 + ib,t−1

1 + πt
bit−1 (B.3)

Linearizing (B.3) and combining with (B.2), we obtain a mapping from {www,ℓℓℓ,πππ,ddd, τττ , iiib} to

the type-i consumer demand sequence ccci—i.e., the matrices {Ci
w, Ci

ℓ, Ci
π, Ci

d, Ci
τ , Ci

ib
}.

Labor supply. I begin by considering a model with a single household type i. I assume

that labor is assigned so that all households work the same amount of hours, and furthermore

that unions bargain as described in Auclert et al. (2018). Then, since all households have the

same steady-state consumption level, we get the following standard aggregate log-linearized

wage-NKPC, exactly as in Erceg et al. (2000):

π̂w
t = κw ×

[
1

φ
ℓ̂t − (ŵt − γĉt)

]
︸ ︷︷ ︸
wedge in labor supply

+βπ̂w
t+1 (B.4)

where κw is a function of model primitives, satisfying

κw =
(1− 1

1+r̄
ϕw)(1− ϕw)

ϕw(εw
1
φ
+ 1)

,

with ϕw indicating the degree of wage stickiness, and εw indicating the elasticity of substi-

tution between different types of labor. As in the price-NKPC case, (B.4) is a special case

of the general relation (6).

Matters are slightly more subtle in my most general multi-type model. There, if different

types have different steady-state wealth holdings, then their steady-state consumption also

invariably differs, implying that standard union wage bargaining does not exactly map into

a representation like (B.4).23 Type-specific transfers that equalize steady-state consumption

23For example, in a two-type spender-saver model with types R and H, the static wedge in labor supply
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across types i would thus be needed to return the model to a standard wage-NKPC. I inves-

tigate the importance of labor supply wedges in empirically relevant models in Section 5.1.

B.3 Further details on the heterogeneous-household model

This section completes the description of the quantitative heterogeneous-agent model in-

troduced in Section 2.2 and studied in Section 4. I first discuss my assumptions on union

bargaining (which are revisited in Section 5.1) and then describe the model calibration.

Union bargaining. I assume that unions order aggregate consumption and employment

streams according to “as-if” representative-agent preferences:

∞∑
t=0

βt

c1−γ
t − 1

1− γ
− ψ

ℓ
1+ 1

φ

t

1 + 1
φ

 (B.5)

Given this particular choice of union preferences, we can yet again follow the same steps as

in Erceg et al. (2000) or Auclert et al. (2018) to arrive at (B.4).

Note that, if unions instead maximized an equal-weighted average of household utility

(i.e., the baseline specification of Auclert et al., 2018),

∞∑
t=0

βt

∫ 1

0

c1−γ
it − 1

1− γ
− ψ

ℓ
1+ 1

φ

it

1 + 1
φ

 di =
∞∑
t=0

βt

∫ 1

0

c1−γ
it − 1

1− γ
− ψ

ℓ
1+ 1

φ

t

1 + 1
φ

 di (B.6)

then a weighted average of household marginal consumption utilities—rather than marginal

consumption utility evaluated at the aggregate consumption level ct—would enter the static

labor wedge and thus (B.4). The model would thus be inconsistent with a wage-NKPC of

my assumed form (6). I discuss this case further in Section 5.1 and Appendix C.4.

Model calibration. I first discuss the parameterization of the steady state. Recall that

this is all that matters for the consumption function C(•), and so in particular for Cτ .

would be
1

φ
ℓ̂t − (ŵt − γĉt) + γ [µRĉR,t + µH ĉH,t − ĉt] ,

where the last term in brackets is evidently equal to zero if c̄R = c̄H = c̄, but not in general. Prior work in such
models thus often assumes identical steady-state consumption shares, allowing straightforward aggregation
to (B.4) (e.g., Bilbiie et al., 2021).
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Parameter Description Value Target Value

Households

ρε, σε Income Risk - Kaplan & Violante (2018) -

ep, χ0, χ1 Dividend Endowment - Illiquid Wealth Shares -

β Discount Rate 0.97 b̄/ȳ 1.5

r̄ Average Return 0.01 Annual Rate 0.04

ϱ Death Rate 1/180 Average Age 45

γ Preference Curvature 1 Standard

φ Labor Supply Elasticity 0.5 Standard

εw Labor Substitutability 10 Standard

b Borrowing Limit 0 McKay et al. (2016)

Firms

1− α Returns to Scale 1 Standard

εp Goods Substitutability 16.67 Profit Share 0.06

Government

τℓ Labor Tax 0.3 Average Labor Tax 0.30

τ̄ /ȳ Transfer Share 0.05 Transfer Share 0.05

Table B.1: HANK model, steady-state calibration.

The values of all parameters relevant for the model’s deterministic steady state are dis-

played in Table B.1. For my quantitative analysis I slightly enrich the preferences displayed

in (17) to allow for exogenous household death at rate ϱ. Preference parameters {γ, φ, ϱ}
as well as the labor substitutability εw are set to standard values. The average return on

(liquid) assets is set in line with standard calibrations of business-cycle models, and the

discount rate is then disciplined through the total amount of liquid wealth. As in McKay

et al. (2016), I assume that households cannot borrow in the liquid asset. Next, for income

risk, I adopt the 33-state specification of Kaplan et al. (2018), ported to discrete time. For

share endowments, I assume that

dit =

0 if εpit ≤ εp

χ0(ε
p
it − εp)χ1 × dt otherwise

where εpit is the permanent component of household i’s labor productivity. I set the param-
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eters {εp, χ0, χ1} as in Wolf (2020). On the firm side, I assume constant returns to scale

in production, and set the substitutability between goods to a standard value. Finally, the

average government tax take, transfers, and debt issuance are all set in line with direct em-

pirical evidence. Relative to Definition 3, I slightly generalize the model to allow for non-zero

government spending, giving the new market-clearing condition

yt = ct + gt (B.7)

Note that, for all experiments, I keep government expenditure fixed at gt = ḡ, so its presence

only matters for the steady-state fiscal tax-and-transfer system, and does not directly show

up anywhere in equilibrium dynamics.

In the second step I set the remaining model parameters (which exclusively govern dy-

namics around the deterministic steady state). For the baseline interest rate-only policy

studied in Section 4.2, I consider an interest rate rule of the form

îb,t = ϕππ̂t +mt

where mt is the monetary shock, set to give the gradually decaying path of nominal rates

displayed in Figure 3. In a slight generalization of Definition 2, I assume that the baseline

interest rate-only policy is not financed through taxes and transfers adjusting period-by-

period (as in (8)), but instead consider a more general fiscal financing rule of the form

b̂t = ρbb̂t−1 +
[
(1 + r̄)b̄(̂ib,t−1 − π̂t)− τℓ(w̄ℓ̂t + ℓ̄ℓ̂t)

]
, (B.8)

and with ρb ∈ (0, 1). Total transfers adjust residually to balance the government budget.

Since bt evolves gradually over time, it follows that a nominal interest rate cut at time t only

feeds through to higher transfers with a delay. While the financing rule in Definition 2 was

conceptually simpler, the alternative fiscal rule (B.8) has the advantage that nominal interest

rate movements are not accompanied by (counterfactual) large contemporaneous changes in

transfers. This completes the specification of policy for the baseline monetary experiment.

I present the rule parameterizations as well as all other model parameters in Table B.2.

Alternative calibrations. For my robustness checks in Appendix C.3 I consider two

alternative model calibrations: one with less liquid wealth (b̄/ȳ = 0.5, implying substan-

tially larger MPCs, with ω = 0.64), and one with more liquid wealth (b̄/ȳ = 7.5, implying
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Parameter Description Value

ϕp Price Calvo Parameter 0.85

ϕw Wage Calvo Parameter 0.70

ϕπ Taylor Rule Inflation 1.5

ρb Financing Rule Persistence 0.85

Table B.2: HANK model, parameters governing dynamics.

substantially smaller MPCs, with ω = 0.12).

B.4 Bond-in-utility models

While my main analysis considers (mixtures of) perpetual-youth overlapping-generations

models as particularly convenient models of non-Ricardian consumer behavior, I emphasize

that my results extend with very little change to an alternative popular model variant:

bond-in-utility models, as considered in Michaillat & Saez (2018).

A baseline bond-in-utility model. Household preferences are now

∞∑
t=0

βt

c1−γ
t − 1

1− γ
+ α

b1−η
t−1 − 1

1− η
− ψ

ℓ
1+ 1

φ

t

1 + 1
φ

 (B.9)

The budget constraint is still exactly as in Section 2.2. The log-linearized optimality condi-

tions are then

c̄ĉt + b̄̂bt = (1− τℓ)w̄ℓ̄(ŵt + ℓ̂t) + (1 + r̄)b̄(̂bt−1 + îb,t−1 − π̂t) + τ̄ τ̂t + d̄d̂t (B.10)

ĉt = β(1 + r̄)ĉt+1 +
η

γ
[1− β(1 + r̄)] b̂t −

1

γ
β(1 + r̄)

(̂
ib,t − π̂t+1

)
(B.11)

where β(1 + r̄) < 1 as long as α, η > 0. Together, the two relations (B.10) - (B.11) fully

characterize the model-implied consumption derivative matrix CBiU
τ . I provide a closed-form

expression for its inverse (CBiU
τ )−1 in Appendix C.1.

Finally I also note that, since there is a single representative household with separa-

ble preferences over consumption, wealth, and hours worked, union bargaining again gives

(B.4). The analytical bond-in-utility model is thus also consistent with all of the high-level

assumptions on labor supply made in Section 2.1.
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Parameter Description Value

α Wealth preference level 0.10

η Wealth preference curvature 0.50

δR Savers GHH+ coefficient 0.03

δH Spenders GHH+ coefficient 0.95

µ Share of spenders 0.25

Table B.3: Mixture model with heterogeneous wealth effects, parameterization of preferences.

GHH+ preferences. For my second investigation of the role of wealth effects in labor

supply in Section 5.1, I consider a two-type model with generalized Greenwood et al. pref-

erences, as originally proposed in Auclert et al. (2020). I assume that savers have bonds in

their utility function; that is, their preferences are24

∞∑
t=0

βt


(
ct − ψRδR

ℓ
1+ 1

φ
t

1+ 1
φ

)1−γ

− 1

1− γ
+ α

b1−η
t−1 − 1

1− η
− ψR(1− δR)

ℓ
1+ 1

φ

t

1 + 1
φ

 (B.12)

while spenders have static per-period preferences(
ct − ψHδH

ℓ
1+ 1

φ
t

1+ 1
φ

)1−γ

− 1

1− γ
− ψH(1− δH)

ℓ
1+ 1

φ

t

1 + 1
φ

(B.13)

Here the two coefficients {δR, δH} control the strength of wealth effects in labor, with δ = 0

corresponding to standard separable preferences and δ = 1 corresponding to GHH prefer-

ences. I calibrate the consumer part of the model to induce consumption behavior similar

to my baseline HANK model—matching in particular ω = 0.3—and MPEs consistent with

Golosov et al. (2021)—an MPE of $3.5 for savers and an MPE of $1.8 for spenders. The

model parameterization is reported in Table B.3. All other parameters are set exactly as

in my baseline HANK model, as reported in Tables B.1 and B.2.25 Detailed results on the

24The perpetual-youth model with generalized Greenwood et al. preferences is substantially less tractable,
so I consider the bond-in-utility variant instead.

25Except for δH and δR and thus their wealth effects in labor supply, I treat spenders and savers entirely
symmetrically, ensuring in particular identical steady-state consumption.
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accuracy of my policy equivalence result in this alternative model environment are discussed

in Appendix C.4.

B.5 Adding investment

All firms are identical, so I drop the j subscript. Analogously to the discussion in Section 2.1,

we can summarize the solution to the firm problem with an investment demand function,

i = I
(
w,pI ,πππ;τττ f , ib

)
(B.14)

a production function,

y = Y
(
w,pI ,πππ;τττ f , ib

)
(B.15)

a labor demand function,

ℓℓℓ = L
(
w,pI ,πππ;τττ f , ib

)
(B.16)

and a dividend function

d = D
(
w,pI ,πππ;τττ f , ib

)
(B.17)

where the dividend function aggregates over both intermediate goods producers and sticky-

price retailers. Note that, since intermediate goods firms hire labor on a competitive spot

market, and since all firms j are identical, two sequences ibibib and τττ f that induce the same paths

of investment also invariably induce the same paths of output and labor hiring. However,

since interest rates and investment subsidies enter the firm budget constraint differently, the

implied dividend paths may be different.

Given investment subsidies to firms, the government budget constraint is adjusted to give

1 + ib,t−1

1 + πt
bt−1 + τt + τf,t({it−q}tq=0) = τℓwtℓt + bt (B.18)

All other parts of the model are unchanged relative to Section 2.1. We thus arrive at the

following equilibrium definition:

Definition 5. An equilibrium is a set of government policies {ib,t, τt, τf,t, bt}∞t=0 and a set of

aggregates {ct, ℓt, yt, it, kt, wt, πt, dt, p
I
t}∞t=0 such that:

1. Consumption is consistent with the aggregate consumption function (2).
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2. Aggregate investment, output, hours worked and dividends satisfy

iii = I
(
www,pppI ,πππ;τττ f , iiib

)
yyy = Y

(
www,pppI ,πππ;τττ f , iiib

)
ℓℓℓ = L

(
www,pppI ,πππ;τττ f , iiib

)
ddd = D

(
www,pppI ,πππ;τττ f , iiib

)
3. Wage inflation {πw

t }∞t=0 and {ℓt, ct, wt}∞t=0 are consistent with the wage-NKPC (6).

4. The paths {πt, pIt}∞t=0 are consistent with the adjusted aggregate price-NKPC (28).

5. The output market clears: yt = ct + it for all t ≥ 0, the government budget constraint

(B.18) holds at all t, and limt→∞ bt = b̄. The bond market then clears by Walras’ law.
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C Supplementary results

This section presents supplementary theoretical results. Appendices C.1 and C.2 characterize

Cτ , C−1
τ as well as C̃ib in the analytical model of Section 2.2. Appendix C.3 elaborates on my

sufficient statistics formula and discusses its accuracy in other models. Results supplementing

my discussion of wealth effects in labor supply and non-equivalence at the household level

are provided in Appendices C.4 and C.5. Finally Appendices C.6 and C.7 extend the policy

equivalence result to some richer model environments and to targeted transfers.

C.1 Cτ and C−1
τ in analytical models

I here characterize the matrix Cτ as well as its inverse C−1
τ in my analytical models of non-

Ricardian consumption behavior. I first present results for a perpetual-youth consumer block

(as in Section 2.2, with some general θ) and then consider a further extended model with an

arbitrary contemporaneous MPC, thus allowing me to nest environments with β(1 + r̄) ̸= 1

and/or behavioral frictions. Finally I sketch results for bond-in-utility models.

Characterizing Cτ . I begin with the shape of COLG
τ as displayed in (16). From the

discussion in Appendix B.2 it follows that the matrix COLG
τ is fully characterized by the

following pair of equations:

ĉt + b̂t −
1

β
b̂t−1 = τ̂t, (C.1)

[1− θ(1− βθ)] ĉt − βθĉt+1 − (1− βθ)(1− θ)
1

β
b̂t−1 = (1− βθ)(1− θ)τ̂t, (C.2)

where (C.2) is the Euler equation representation of the aggregate demand relation (B.2).

From this system we arrive at the following characterization of COLG
τ . First, it is straight-

forward to see that the first column and the first row of COLG
τ are respectively given as

COLG
τ (•, 1) =

(
1− θ

1 + r̄

)
×
{
1, θ, θ2, . . .

}′
and

COLG
τ (1, •) =

(
1− θ

1 + r̄

)
×

{
1,

θ

1 + r̄
,

(
θ

1 + r̄

)2

, . . .

}
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Second, all higher-order columns are given recursively as

COLG
τ (•, h) = COLG

τ (1, h)×

(
1

−COLG
τ (•, 1)(1 + r̄)

)
+

(
0

COLG
τ (•, h− 1)

)
, h = 2, 3, 4, . . .

This expression—which is straightforward to verify from (C.1) - (C.2)—reflects the intuition

of the “fake-news” algorithm of Auclert et al. (2019): the first term is the response of

households to a date-h income shock announced at date-0 but then reversed at date 1; the

second term then undoes that date-1 reversal, ensuring that the sum gives us the actual

response to a date-h income shock—that is, COLG
τ (•, h). This somewhat complicated exact

shape of COLG
τ corresponds to the approximate shape displayed in (16), as established in the

following result.

Lemma C.1. Consider the consumption-savings problem of a perpetual-youth household

block, as described in Section 2.2. Then, for any ℓ > 0 the impulse response path ĉH to an

income shock at time H satisfies

lim
H→∞

ĉH,H = const., lim
H→∞

ĉH+ℓ,H

ĉH+ℓ−1,H

= θ, lim
H→∞

ĉH−ℓ−1,H

ĉH−ℓ,H

=
θ

1 + r̄
(C.3)

In words, for large H, the intertemporal spending profile in Cτ looks as indicated in (16).

This is the sense of the approximation ≈ in that relation.

Characterizing C−1
τ . Given an arbitrary target consumption sequence ĉcc, we can solve

the system (C.1) - (C.2) for {τ̂ττ , b̂bb}, with b̂−1 = 0. This gives the solution displayed in (20).

The detailed steps are provided in the proof of Lemma 1.

Extension to arbitrary MPCs. I next consider an even further-generalized aggregate

demand relation of the following form:

ĉt =M ·

{
x̂t +

∞∑
k=1

(
θ

1 + r̄

)k

êt+k

}
− σ

∞∑
k=0

(
θ

1 + r̄

)k (̂
ib,t+k − π̂t+k+1

)
. (C.4)

Relative to (B.2), (C.4) additionally disentangles the impact MPC M from the discounting

factor θ applied to future income. This allows me to study two meaningful extensions of

the baseline model. First, in an environment with β(1 + r̄) ̸= 1, and under the simplifying

assumption of log preferences, (C.4) applies with M = 1 − βθ (see Farhi & Werning, 2019,
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for the continuous-time analogue).26 Second, in a model with cognitive discounting and

occasionally-binding borrowing constraints, we have M = 1 − θ1
1+r̄

and θ = θ1 · θ2, where θ1
and θ2 are the borrowing constraint and behavioral discounting coefficients, respectively.

The following result characterizes existence and shape of C−1
τ in this environment.

Lemma C.2. Consider a variant of the analytical consumption-savings problem of Sec-

tion 2.2 with generalized aggregate demand relation (C.4). Suppose that M ∈
[

r̄
1+r̄

, 1− θ
1+r̄

]
.

Then, if θ < 1, Cτ is invertible, with

C−1
τ =

1

M
·


1−Mθ
1−θ

− 1
1+r̄

θ
1−θ

0 . . .

− (1−M)(1+r̄)
1−θ

1+θ(1−M)
1−θ

− 1
1+r̄

θ
1−θ

. . .

0 − (1−M)(1+r̄)
1−θ

1+θ(1−M)
1−θ

. . .
...

...
...

. . .

 (C.5)

Note that Lemma C.2 imposes bounds on M . Here, the upper bound corresponds to the

baseline perpetual-youth model—so all discounting of future income θ also increases contem-

poraneous MPCs—while the lower bound ensures that Cτ is actually a bounded operator.27

Importantly, Lemma C.2 allows me to substantiate two claims made in Section 3.2. First,

for the special case of a perpetual-youth model with β(1 + r̄) > 1 and with log preferences,

the requirement on M that M ≥ r̄
1+r̄

becomes

θ ≤ 1

β(1 + r̄)
< 1,

—a condition that is strictly tighter than my baseline perpetual-youth requirement of θ < 1.

In words, borrowing constraints now need to bind often enough. This is precisely what is

needed to counteract the backloading implied by β(1+ r̄) > 1, implying that Cτ is a bounded

operator whose inverse takes the shape (C.5). Second, a standard model with behavioral

discounting corresponds to the special case whereM = r̄
1+r̄

as well as θ < 1. By Lemma C.2,

this is again sufficient to ensure invertibility of Cτ , further underscoring my claims about the

generality of this property of aggregate consumption functions.

26Without log preferences, a consumption function like (C.4) still obtains, but the mapping intoM is more
complicated—we have M = γ−1[1− βθ] + (1− γ−1)[1− θ

1+r̄ ] (see Appendix 1.2 of Farhi & Werning, 2019).

The characterization of C−1
τ in Lemma C.2 of course continues to apply, however, and so my conclusions are

unchanged—invertibility obtains if MPCs are large enough and spending is front-loaded.
27To see this, consider for example the first column of Cτ . It is straightforward to see that its entries grow

at rate (1−M)(1 + r̄). Thus, if M < r̄
1+r̄ , the implied consumption path diverges.
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Front-loaded spending and a counterexample. To even more clearly see the im-

portance of front-loading in consumer spending it will prove useful to consider a particularly

transparent case: a simple two-period OLG model in which households have log preferences

and receive income (including transfers) only when young.28 In that case we have

Cτ =


1

1+β
0 0 . . .

β(1+r̄)
1+β

1
1+β

0 . . .

0 β(1+r̄)
1+β

1
1+β

. . .
...

...
...

. . .


Note that spending here is back-loaded if and only if β(1+ r̄) > 1. In that case, the majority

of a dollar of income received at date t is spent at date t+ 1, not t.

Straightforward algebra reveals that, if C−1
τ exists, it is lower-triangular, with off-diagonal

elements that (in absolute value) decay at rate β(1+ r̄). β(1+ r̄) ≤ 1 is thus necessary (and

here also sufficient) for invertibility. Intuitively, if households have a natural tendency to

postpone their spending, then a transfer today designed to induce spending today will re-

quire ever-larger transfers in the future to offset it. As a result, for a given target sequence of

consumption, it becomes impossible to find a bounded sequence of transfers that induces it.

This instructive example reveals that Cτ may well be injective—changing the timing of trans-

fers invariably affects consumption—yet fail to be surjective—certain bounded sequences of

demand cannot be induced via bounded sequences of transfers. Households front-loading

their spending—which is ensured in my headline environment by occasionally-binding bor-

rowing constraints, and which is a robust feature of actual consumer behavior—prevents the

divergence that here is causing non-invertibility.29

Bond-in-utility model. Recall from the discussion in Appendix B.4 that the consump-

tion derivative matrix CBiU
τ is fully characterized by the following pair of equations:

ĉt + b̂t − (1 + r̄)̂bt−1 = τ̂t (C.6)

ĉt − β(1 + r̄)ĉt+1 −
c̄

b̄

η

γ
[1− β(1 + r̄)] b̂t = 0 (C.7)

28I thank an anonymous referee for bringing this illuminating example to my attention.
29An elevated impact MPC, on the other hand, is not sufficient to rule out a linear map like Cτ . This is

why, in Proposition 3, I highlight both the elevated MPC as well as the front-loaded spending profile, even
though in my particular model of occasionally-binding borrowing constraints the two are interchangeable.
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We see that the factor c̄
b̄
simply scales the last term in the Euler equation, so I will without

loss of generality set this term equal to 1. Algebra similar to that in the proof of Lemma 1

then yields the following exact expression for C−1
τ :

(CBiU
τ )−1 =


1 + 1

ω̃
1

1+r̄
θ

1−βθ2
− 1

ω̃
βθ

1−βθ2
0 . . .

− 1
ω̃

θ
1−βθ2

1 + 1
ω̃

θ
1−βθ2

[
β(1 + r̄) + 1

1+r̄

]
− 1

ω̃
βθ

1−βθ2
. . .

0 − 1
ω̃

θ
1−βθ2

1 + 1
ω̃

θ
1−βθ2

[
β(1 + r̄) + 1

1+r̄

]
. . .

...
...

...
. . .


(C.8)

where ω = CBiU
τ (1, 1), θ = CBiU

τ (2, 1)/CBiU
τ (1, 1), and ω̃ is given via

1 = ω̃

[
(1 + r̄)βθ

1− (1 + r̄)βθ
+ ω−1

]
We see that (CBiU

τ )−1 has the same tridiagonal shape as (COLG
τ )−1, as claimed.

C.2 C̃ib in analytical models

This section offers additional results on the shape and properties of C̃ib in the one-type

perpetual-youth OLG model. I proceed in two steps. First, I provide a closed-form expression

for C̃ib . Second, I establish that, if θ > 0 (i.e., not pure spender behavior), then interest rate

policy can similarly be used to induce any sequence of net excess consumption demand with

zero net present value.

A closed-form expression for C̃ib. Recall that the matrices Cτ and C̃ib in the baseline

(one-type) perpetual-youth model are characterized by the following pair of equations:

ĉt + b̂t −
1

β
b̂t−1 = τ̂t, (C.9)

[1− θ(1− βθ)] ĉt − βθĉt+1 − (1− βθ)(1− θ)
1

β
b̂t−1 = (1− βθ)(1− θ)τ̂t − γβθ̂ib,t. (C.10)

From here it is straightforward to see that

C̃ib = −1

γ
(I − Cτ )


1 1 1 . . .

0 1 1 . . .

0 0 1 . . .
...

...
...

. . .

 . (C.11)
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To formally establish this relation, I will define ĉ∗t ≡ ĉt − τ̂t. Now consider first an income

shock at date 0. Plugging this into the optimality conditions and re-arranging, we see that

the impulse response of c∗ is identical to the impulse response of c to a date-0 interest rate

change scaled by γ. That is, we have

C∗
τ (•, 1) = Cτ (•, 1)− e1 = γC̃ib(•, 1)

where e1 = (1, 0, 0, . . . )′. This gives the first column of (C.11):

C̃ib(•, 1) = −1

γ
(e1 − Cτ (•, 1))

Similarly, for date-1 shocks, we have

C∗
τ (•, 2) = Cτ (•, 2)− e2 = −γC̃ib(•, 1) + γC̃ib(•, 2)

where e2 = (0, 1, 0, . . . )′. Thus we get

C̃ib(•, 2) = −1

γ
(e1 − Cτ (•, 1) + e2 − Cτ (•, 2))

giving the second column of (C.11). All other columns follow analogously. We thus see that

the perpetual-youth model admits a straightforward relation between Cτ and C̃ib , with the

mapping between the two fully governed by γ.

Establishing equivalence. Consider an arbitrary consumption sequence ĉcc such that∑∞
t=0

(
1

1+r̄

)t
ĉt = 0—i.e., it has zero net present value. I will now provide a constructive

argument showing that we can find a bounded sequence of interest rates îii
∗
b such that C̃ibîii

∗
b = ĉcc.

For this I first of all note that, from (C.9), we must have that

b̂t =
1

β
b̂t−1 − ĉt

Since ĉcc has zero net present value, it follows that b̂t → 0. Next, from (C.10), it follows that

it suffices to set

îb,t = − 1

γβθ
·
(
[1− θ(1− βθ)] ĉt − βθĉt+1 − (1− βθ)(1− θ)

1

β
b̂t−1

)
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Since ĉcc is bounded by construction and b̂t → 0 by the argument above, it follows that—if

θ > 0—we can find a bounded sequence îii
∗
b that induces net excess demand ĉcc, as claimed.

C.3 The sufficient statistics formula and its accuracy

I begin with some additional details on the sufficient statistics formula. The formula maps

the three observables {ω, θ, r̄} into the matrix Cτ (and thus its inverse C−1
τ ). The formula

proceeds in two steps.

First, given {θ, r̄}, I construct a matrix C(1)
τ that has the same shape as in a one-type

perpetual-youth model. By the discussion in Appendix C.1, this means that

C(1)
τ (•, 1) =

(
1− θ

1 + r̄

)
︸ ︷︷ ︸

MPC

×
{
1, θ, θ2, . . .

}′︸ ︷︷ ︸
spending decay

and

C(1)
τ (1, •) =

(
1− θ

1 + r̄

)
︸ ︷︷ ︸

MPC

×

{
1,

θ

1 + r̄
,

(
θ

1 + r̄

)2

, . . .

}
︸ ︷︷ ︸

anticipation effects

together with

C(1)
τ (•, h) = C(1)

τ (1, h)×

(
1

−C(1)
τ (•, 1)(1 + r̄)

)
+

(
0

C(1)
τ (•, h− 1)

)
, h = 2, 3, 4, . . .

This specifies the entire matrix C(1)
τ as a function only of {θ, r̄}.

Second, I add a margin of spenders to disentangle the MPC ω and the spending slope

θ. Note that, in my construction of C(1)
τ , the MPC is mechanically given as

(
1− θ

1+r̄

)
. To

match any desired arbitrary MPC ω I then simply set

Cτ =
θ − (1− ω)(1 + r̄)

θ
× I +

(1− ω)(1 + r̄)

θ
× C(1)

τ

It is straightforward to verify that the resulting Cτ matches the desired MPC ω. I have thus

mapped my three sufficient statistics {ω, θ, r̄} into a matrix Cτ (ω, θ, r̄) that (i) matches the

average MPC ω and spending slope θ, and (ii) is by construction consistent with lifetime

household budget constraints. From here I can then also construct C−1
τ (ω, θ, r̄). Note that

this inverse exists as long as θ < 1 and ω ≥ 1− θ
1+r̄

, by the proof Proposition 2.
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Figure C.1: Left panel: cumulative MPCs in the data (taken from Fagereng et al., 2018) and in
the three-type model of Angeletos et al. (2023). Right panel: model-implied entries of C−1

τ (blue)
vs. predicted values from my sufficient statistics formula (orange dashed).

The role of tail MPCs. The sufficient statistics formula imposes a constant rate of

decay θ of intertemporal marginal propensities to consume. As discussed in Angeletos et al.

(2023), empirical evidence on the other hand suggests that this rate of iMPC decay slows

down in the far tails, at long horizons. To gauge whether this mismatch in the tails actually

matters for the purposes of my results here, I consider the model used in Angeletos et al.

to match empirical evidence on the entire intertemporal MPC profile—a hybrid model with

two types of perpetual-youth consumers, together with a margin of spenders. The left panel

of Figure C.1, taken from Angeletos et al., shows that this model indeed matches empirical

evidence on far-ahead MPCs very well. The right panel then compares the true model-

implied C−1
τ with the prediction from my sufficient statistics formula.30 We see that the two

are almost indistinguishable—i.e., for the purposes of the analysis here, a mild mismatch in

the far-ahead tails is essentially irrelevant.

Perturbing the sufficient statistics. I here further substantiate my claim that, for

empirically relevant values of the sufficient statistics, even moderately sized stimulus check

30I recover the coefficients for the sufficient statistics formula exactly as done for my quantitative HANK
model: I set r̄ to its true model-implied value, and then set ω and θ so that Cτ (ω, θ, r̄)(1, 1) and Cτ (ω, θ, r̄)(2, 1)
match the extended hybrid model.
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Figure C.2: Three desired net excess demand paths ĉccPE (grey) and the required sequences of
uniform lump-sum taxes and transfers, C−1

τ (ω, θ, r̄) × ĉccPE for a range of values of my sufficient
statistics (orange dashed, see text), with lighter shades indicating lower MPCs ω.

policies suffice to close meaningful shortfalls in aggregate spending. To do so I repeat the

exercise of Figure 2 for a range of values of my sufficient statistics {ω, θ, r̄}. Specifically,

I continue to fix r̄ = 0.01, consider ω ∈ {0.2, 0.3, 0.4, 0.5} and then pin down the slope θ

by requiring the same ratio θ
1−ω

as in my quantitative heterogeneous-household model. The

range of MPCs ω that I consider is chosen to contain and in fact go beyond the range of

estimates available from the literature (e.g. Parker et al., 2013; Fagereng et al., 2018).

Results are displayed in Figure C.2. The figure illustrates my claim: across the range of

empirically relevant values for my sufficient statistics, the stimulus check policies that close

the indicated shortfalls in aggregate consumer spending are moderate in size. As discussed

in Section 4.2, this finding is important to ensure that my theoretical results—which rely on

linearization at the aggregate level—are actually practically relevant.

C−1
τ in alternative HANK calibrations. The analysis in Section 4.2 confirmed the

accuracy of the sufficient statistics formula for Cτ and C−1
τ in the baseline calibration of my

heterogeneous-household model. I here repeat the same exercise for two materially different

model calibrations: one with very low liquid wealth (implying a counterfactually large aver-

age MPC of ω = 0.64) and one with a lot of liquid wealth (implying a counterfactually small

average MPC of ω = 0.12). Results are reported in Figures C.3 and C.4.

The takeaways from these figures are twofold. First, changing the model calibration

materially affects the model-implied consumption map Cτ and its inverse C−1
τ . As expected,

for low liquid wealth, the inverse C−1
τ looks closer to a simple spender-saver model and

the required transfer stimulus policies are even smaller than in my baseline analysis. For
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(a) Low liquid wealth calibration (b) High liquid wealth calibration

Figure C.3: See the caption of Figure 1.

high liquid wealth, the inverse C−1
τ looks closer to a perpetual-youth overlapping-generations

model, and the transfer stimulus policies required to close a given shortfall in demand are now

much larger. Second, even though Cτ looks very different across calibrations, my sufficient

statistics formula throughout approximates C−1
τ and thus the implied equivalent transfer

stimulus policies very well.

A generalized sufficient statistics formula. My three-parameter sufficient statis-

tics formula imposes that the same coefficient θ governs both the decay of intertemporal

MPCs after spending receipt as well as the strength of anticipation effects. It is in principle

straightforward to disentangle the two by allowing for an additional degree of freedom in the

first row of Cτ . For example, one simple and natural choice would be to set31

C(1)
τ (1, •) =

(
1− θ

1 + r̄

)
︸ ︷︷ ︸

MPC

×

{
1, ψ · θ

1 + r̄
, ψ ·

(
θ

1 + r̄

)2

, . . .

}
︸ ︷︷ ︸

anticipation effects

where the coefficient ψ could be recovered from empirical evidence on the strength of antici-

pation effects in MPCs (e.g., Ganong & Noel, 2019). The rest of Cτ would then be completed

exactly as in the baseline sufficient statistics formula. Unsurprisingly, with this additional de-

31Here anticipation effects are additionally discounted by a constant factor ψ. An alternative—which I
have found to be less accurate in my quantitative HANK models—is to discount future income receipts at
some constant rate ψ (that is allowed to be different from θ).
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Low liquid wealth calibration

High liquid wealth calibration

Figure C.4: See the caption of Figure 2.

gree of freedom, the approximation becomes even more accurate, with the difference between

actual and approximate Cτ now barely visible (figure available upon request). However, as

argued in Section 4.2, my simpler three-coefficient formula already provides a very accurate

approximation, so I focus on results from that simpler specification instead. Intuitively, at

least in my HANK model, anticipation effects are not particularly far from being governed

by the iMPC decay rate θ, and so the simpler three-parameter formula suffices.
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C.4 Heterogeneous wealth effects in labor supply

This section elaborates on my discussion of the role of heterogeneity in wealth effects in labor

supply across households (see Section 5.1). I first present results for an alternative union

bargaining protocol and then consider an alternative model with preference heterogeneity,

designed to match empirical evidence on heterogeneity in marginal propensities to earn (from

Golosov et al., 2021). Results for both are reported in Figure C.5.

Alternative bargaining results. I return to my main quantitative HANK model, but

with one twist: the wage-NKPC (B.4) is replaced by the alternative formulation

π̂w
t = κw ×

[
1

φ
ℓ̂t − (ŵt − γĉ∗t )

]
+ βπ̂w

t+1 (C.12)

where

c∗t ≡
[∫ 1

0

eitc
−γ
it di

]− 1
γ

(C.13)

This is the specification of the wage-NKPC originally derived in Auclert et al. (2018) and

implied by the union objective (B.6). I note that, in this case, my policy equivalence result

will not hold exactly : two nominal interest rate and stimulus check policies with identical

direct effects on net excess demand (and so ct) will not necessarily have identical direct effects

on c∗t , thus inducing different wedges in the economy’s aggregate supply relation (C.12).

Are these differential labor supply effects likely to materially undermine the policy equiv-

alence result? The left panel Figure C.5 suggests that the answer is “no”. To construct the

panel, I first compute impulse responses to a gradual monetary policy shock (with persis-

tence 0.6), normalized to in general equilibrium increase consumption on impact by one per

cent (grey). I then follow the steps in the proof of Proposition 1 to construct a stimulus

check policy with identical effects on partial equilibrium consumer spending. The general

equilibrium impulse response of consumption to this policy is displayed as the blue dashed

line. The main takeaway is that the two lines are very close, with the stimulus check policy

overall slightly more stimulative than the (not-quite-)equivalent interest rate cut.

The intuition for the results displayed in Figure C.5 is somewhat subtle. Both policies

by design lead to a response of partial equilibrium consumption demand with zero present

value—initially positive and then later on negative. Under my baseline wage-NKPC (6),

this initial decrease and later increase in the average marginal utility of consumption leads

to an initial decrease and later increase of union labor supply. With the alternative formu-
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(a) Alternative union bargaining (b) Matching MPEs

Figure C.5: Left panel: impulse response of consumption to a monetary policy shock with per-
sistence ρm = 0.6 and peak effect of 1% (grey) and the “equivalent” stimulus check policy (blue
dashed) in a HANK model with labor supply relation (C.12). Right panel: analogous figure for my
hybrid spender-saver model described below.

lation (C.12), on the other hand, the labor supply response is governed by average marginal

utility. Since most of the consumption adjustment following the transfer policy comes from

high-MPC households (who tend to consume less), average marginal utility of consumption

changes by more than after the equivalent rate cut—it drops by more initially and expands

by more later on. It then follows that labor supply also contracts by more initially and

expands by more later on, so the overall partial equilibrium net excess demand path (which

equals consumption demand less labor supply) is more front-loaded after the stimulus check

policy. But we know from Auclert et al. (2018) that more front-loaded excess demand paths

lead to a bigger boom in general equilibrium, so stimulus check policy will stimulate output

by more—exactly as we see in Figure C.5. This effect however is moderate in size, for two

reasons. First, average marginal utility and marginal utility at the average are still not too

different, so the desired labor supply response is also not too different. Second, any such

transitory differences in desired labor supply matter even less in general equilibrium as long

as wages are at least moderately sticky (Christiano, 2011), as is the case in my model.

Mixture model results. My second exercise is designed to speak as closely as possible

to the empirical evidence reported in Golosov et al. (2021). Those authors report marginal

propensities to earn (MPEs)—defined as the response of labor income to an unearned lump-

sum wealth gain—of up to $3 per additional $100 in wealth, with the response roughly
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two times larger for the highest-income households compared to the lowest-income ones (see

their Table 3.2). These estimates are roughly twice as large as those reported in prior work,

notably Cesarini et al. (2017) (see Table J.1 of Golosov et al.). While it is straightforward

to match such average MPEs in heterogeneous-agent models (see Auclert et al., 2020), it is

much harder to match the cross-sectional dispersion in MPEs (which is what matters for my

policy equivalence result). Intuitively, the challenge is that, in standard models of household

consumption and labor supply, MPEs are increasing (in absolute value) with MPCs.32 Since

poorer households tend to have higher MPCs, this would also imply that they have higher

MPEs (in absolute value), inconsistent with the empirical evidence reviewed above.

My solution is to consider a two-type spender-saver model with preference heterogeneity

chosen to ensure higher MPEs for low-MPC households—i.e., the model sketched in Ap-

pendix B.4. As discussed there, that model is calibrated to be consistent with empirical

evidence on household MPEs. Importantly, since the model features cross-sectional hetero-

geneity in wealth effects in labor supply, the policy equivalence result will not hold exactly.

The right panel of Figure C.5 however reveals that it continues to approximately hold. I

already in the main text gave the intuition for why the magnitude of the inaccuracy is so

small (recall Section 5.1). I here instead focus on the direction of the error. The intuition is

exactly opposite to that of the adjusted HANK model studied above. Savers have a larger

MPE, so labor supply initially contracts by relatively more after an interest rate cut, and

later on increases by relatively more. The total implied net excess demand path is thus more

frontloaded after the interest rate policy, and so now the interest rate cut is slightly more

expansionary, as seen in the right panel of Figure C.5.

Summary. My conclusion from the previous two experiments is that cross-sectional het-

erogeneity in wealth effects in labor supply is unlikely to materially threaten my headline

policy equivalence result. However, it is important to note that this takeaway hinges on the

equivalent stimulus check policy being moderate in size: by the evidence in Golosov et al.

(2021), for very large transfers, we would expect the cross-sectional heterogeneity in labor

supply responses to become larger relative to the demand stimulus of the policy (i.e., MPEs

are larger relative to MPCs). The fact that equivalent stimulus check policies are moderate

in size—the key takeaway of Section 4—is thus an integral part of my argument.

32This follows straightforwardly from the standard labor supply optimality condition with separable pref-
erences over consumption and labor supply. See Auclert et al. (2020) for details.
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Figure C.6: Left panel: The green line shows the time-0 direct household spending response by
liquid wealth percentile to the nominal interest rate policy of Figure 3. The shaded purple area
gives the corresponding indirect general equilibrium effects. Right panel: Analogous figure for the
equivalent uniform transfer stimulus (dark blue and shaded purple).

C.5 Non-equivalence at the household level

As discussed in Section 5.2, macro-equivalent interest rate and transfer stimulus policies

need not and generally will not be equivalent in the cross-section of households. Figure C.6

provides an illustration.

The figure shows the evolution of consumption along the household wealth distribution in

response to the macro-equivalent nominal interest rate and stimulus check policies displayed

in Figure 3. The impact consumption response is split by household liquid wealth percentile

(x-axis) into (a) the direct effects of the policy instrument (green and blue)—defined as the

response of consumption demand to the policy instruments {iiib, τττ} alone, fixing all non-policy

variables at their steady state values forever—and (b) the residual indirect effects (shaded

purple) coming from general equilibrium feedback. We see that the direct and thus overall

effects are very heterogeneous in the cross-section of households.

C.6 Other model extensions

I consider two further model extensions: durable consumption, and a richer network produc-

tion structure.
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Durable goods. My results extend without change to a model with durables as long as

durables and non-durables can be produced costlessly out of some common final good; that

is, if real relative prices of the two goods are always one and we can write the aggregate

resource constraint as

yt = ct + dht − (1− δ)dht︸ ︷︷ ︸
et

(C.14)

where et is total household expenditure, ct is non-durables consumption, dht is the stock of

durables, and δ is the depreciation rate. Letting Eτ denote the analogous derivative map

for the response of total spending to lump-sum income, the key condition for my results to

extend to this model is that Eτ is invertible—strong Ricardian non-equivalence now applied

to total spending. The details of the argument are straightforward and thus omitted: interest

rate and transfer policies can perturb net excess demand for the common final good equally

flexibly and are thus also equivalent in general equilibrium, by exactly the same argument

as in the proof of Proposition 1.33

I emphasize that the assumptions underlying this extended equivalence result are empir-

ically relevant: relative durable goods prices tend to not respond much to standard business-

cycle fluctuations (House & Shapiro, 2008; McKay & Wieland, 2019; Beraja & Wolf, 2020),

suggesting that the aggregation to a common aggregate resource constraint (C.14) is sensi-

ble. It is furthermore also an assumption made in recent quantitative structural explorations

of durable goods spending (e.g., Berger & Vavra, 2015).

Network production. The policy equivalence result leverages properties of consumer

spending behavior and as such is robust to many different possible model extensions on the

production side of the economy. I here provide one illustration using a simple model of

roundabout production (e.g., see Phaneuf et al., 2018).

Differently from my baseline model, intermediate goods firms now produce using both

labor as well as the intermediate good itself, with production function

yt = qϕt ℓ
(1−α)(1−ϕ)
t

33If non-durables and durables were not produced out of a common final good (and so their relative prices
could fluctuate), then it would of course still be possible to engineer a sequence of transfers that mimics a
given interest rate policy’s effect on total spending. Nothing guarantees, however, that the composition of
that spending would be the same. If relative prices can move then the composition will matter in general
equilibrium, thus breaking equivalence.
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where ϕ ∈ [0, 1) denotes the share of intermediates in production. A standard cost mini-

mization problem gives marginal costs as

mct =

(
1

(1− α)(1− ϕ)ϕ
ϕ

1−ϕ

)1−ϕ

w1−ϕ
t ℓ

α(1−ϕ)
t

and so, in log deviations,

m̂ct = (1− ϕ)
(
ŵt + αℓ̂t

)
Following the same steps as in the derivation of (B.1) we thus find that

π̂t =
(1− θp)(1− θp

1+r̄
)

θp

(1− α)(1− ϕ)

1− α + αεp

(
ŵt + αℓ̂t

)
+ βπ̂t+1 (C.15)

The only effect of roundabout production is thus to flatten the price-NKPC, leaving the

headline policy equivalence result entirely unchanged.

C.7 Targeted transfers

My analysis throughout was focussed on uniform lump-sum taxes and transfers. This was by

design: my objective was to establish that, in standard models of non-Ricardian consumption

behavior, manipulating taxes and transfers over time can manipulate spending just like

changes in intertemporal prices—that is, stimulus checks are stimulative even without any

redistribution. In models with microeconomic heterogeneity (like HANK), it is of course

also possible to consider transfer policies aimed at sub-populations of households and thus

(in part) operational through redistribution. My results extend with little change to such

alternative policy experiments.

Recall from the proof of Proposition 1 that the key requirement for policy equivalence is

that, for any excess demand sequence ĉcc with zero net present value, we can find a transfer

policy that induces a net excess demand path of ĉcc. To see how this can be done using

targeted transfers, consider a transfer targeted at some subgroup of households (group a)

and financed using taxes on another subgroup (group b). I denote the transfer to group a

by τ̂ττx and write the corresponding tax financing as τ̂ττ e ≡ Tτ τ̂ττ
x, where Tτ is such that

∞∑
t=0

(
1

1 + r̄

)t

(τ̂xt + τ̂ et (τ̂ττ
x)) = 0
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Letting C(a)
τ and C(b)

τ denote the consumption derivative matrices for subgroups a and b,

respectively, the effect of any given transfer policy τ̂ττx on net excess demand is given as

(
C(a)
τ + C(b)

τ Tτ

)︸ ︷︷ ︸
≡Cx

τ

τ̂ττx

Analogously to the proof of Proposition 1, a sufficient condition for policy equivalence is now

simply that every net excess demand path with zero net present value lies in the image of

Cx
τ . Differently from my main analysis, characterizing Cx

τ does not require MPCs averaged

across the entire household cross-section, but MPCs averaged across the subgroups a and b.

For practical policy purposes, there are two key differences between my uniform policies

and such targeted policies. First, the latter also work explicitly through redistribution across

households, and thus in particular can affect net excess demand even with period-by-period

budget balance and without any fluctuations in aggregate government debt. Second, it is

unclear ex ante whether targeted transfers need to be larger or smaller in per capita terms.

On the one hand, to engineer a given spending response by targeting a smaller group of

households, the required transfer size per capita increases mechanically. On the other hand,

if targeted households have larger MPCs, the required transfer decreases in size. I leave a

detailed characterization of such macro-equivalent targeted transfers to future work.
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D Equivalence in terms of policy rules

This appendix elaborates on the implications of my equivalence results for systematic policy

rules. Appendix D.1 begins by formalizing the claims made in Section 3.3 from a sequence-

space perspective. Appendix D.2 then translates all arguments to recursive notation. Finally,

in Appendix D.3, I provide a worked-out example, deriving the transfer rule that replicates

a standard Taylor rule in the context of the perpetual-youth consumption-savings model.

D.1 From policy paths to rules

I augment the baseline model of Section 2.1 to additionally feature wedges {εεεc, εεεp, εεεw} to the

aggregate consumption function (2) as well as the Phillips curves (5) - (6), corresponding to

reduced-form representations of canonical demand and supply shocks. Given a specification

of policy in the form of policy rules, a bounded perfect-foresight transition path in response

to any of these wedges corresponds to impulse response functions in the analogous linearized

economy with aggregate risk (Boppart et al., 2018; Auclert et al., 2019). I will argue that,

for any interest rate-only policy rule, there exists a transfer-only policy rule that implies the

exact same impulse response of macroeconomic aggregates, including in particular aggregate

output and inflation.

I will present my equivalence results for two particular kinds of interest rate policy rules:

implicit targeting rules and explicit instrument rules (Giannoni & Woodford, 2002).

Implicit rules. A classical implicit targeting rule specifies a relationship between policy

targets. For a standard dual-mandate policymaker, and written in perfect-foresight notation

(e.g., see McKay & Wolf, 2022b), such a rule takes the general form

Bππ̂ππ + Byŷyy = 000 (D.1)

(D.1) specifies a relationship between inflation and output along the perfect-foresight transi-

tion path. It nests as special cases strict inflation targeting (π̂t = 0 and so Bπ = I, By = 000),

strict output targeting (ŷt = 0 and so Bπ = 000, By = I), as well as the canonical optimal

implicit targeting rule of a dual-mandate policymaker, (25), mentioned in the main text.

Strong Ricardian non-equivalence is sufficient to ensure that, if a rule of the general form

(D.1) can be (uniquely) implemented using an interest rate-only policy (i.e., with a policy

as in Definition 2), then the same is true for a transfer-only policy.
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Corollary D.1. Suppose that, given a sequence of shocks {εεεc, εεεp, εεεw}, the implicit targeting

rule (D.1) implemented through an interest rate-only policy induces a unique equilibrium.

Then, under the conditions of Proposition 1 and strong Ricardian non-equivalence, the rule

(D.1) implemented through a transfer-only policy also induces a unique equilibrium featuring

the same aggregate allocation.

When implementing the targeting rule (D.1) through interest rate policy, the policymaker

in the background sets nominal interest rates so that aggregate demand is consistent with

output and inflation sequences satisfying (D.1). By my high-level assumption of strong

Ricardian non-equivalence, she can engineer that exact same required time path of aggregate

excess demand through transfers—she simply needs to set transfers equal to

τ̂ττ = C−1
τ × demand target

The proof of Corollary D.1 formalizes this argument.

Explicit rules. The same logic as above extends to explicit instrument rules—that is,

rules that explicitly specify the value of the policy instrument as a function of observables.

Again written in linearized perfect-foresight notation, a typical explicit interest rate rule

takes the general form

îiib = Bππ̂ππ + Byŷyy (D.2)

(D.2) here specifies a mapping from inflation and output into nominal interest rates along

the perfect-foresight transition path. For example, a simple Taylor rule would take the form

îb,t = ϕππ̂t + ϕyŷt, t = 0, 1, 2, . . .

and so Bπ = ϕπ × I, By = ϕy × I. With interest rates set according to (D.2), taxes under my

definition of an interest rate-only policy rule adjust in the background to ensure a balanced

government budget (recall Definition 2). In particular, for my environment in Section 2.1,

taxes by (8) follow

τ̂ττ = τℓw̄ℓ̄(ŵww + ℓ̂ℓℓ)− b̄̂iiib,−1 + (1 + r̄)b̄π̂ππ (D.3)

As before, strong Ricardian non-equivalence is sufficient to ensure that the equilibrium dy-

namics induced by a rule of the form (D.2)-(D.3) can equivalently be implemented uniquely

through an explicit transfer-only policy rule.
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Corollary D.2. Suppose that, given a sequence of shocks {εεεc, εεεp, εεεw}, the explicit interest rate
rule (D.2)-(D.3) induces a unique equilibrium. Then, under the conditions of Proposition 1

and strong Ricardian non-equivalence, the transfer-only policy rule

τ̂ττ = τℓw̄ℓ̄(ŵww + ℓ̂ℓℓ) + (1 + r̄)b̄π̂ππ︸ ︷︷ ︸
deficit response

+ C−1
τ C̃ib (Bππ̂ππ + Byŷyy)︸ ︷︷ ︸

active demand management

(D.4)

together with îiib = 000 uniquely implements the exact same aggregate allocation.

(D.4) is an explicit instrument rule for taxes and transfers. Just like (D.2) did for interest

rates, (D.4) is a rule that gives the time path of taxes and transfers as a function of time

paths of inflation and output (as well as the deficit). Intuitively, the rules (D.2) and (D.4)

are equivalent because they both imply the same mapping from macroeconomic aggregates—

output and inflation—into aggregate demand. The only difference is the instrument that is

used to achieve that mapping.

D.2 A recursive aggregate-risk perspective

The equivalent policy rules characterized in Appendix D.1 were written in sequence-space

perfect-foresight notation. Here I discuss how to interpret such rules in the analogous lin-

earized economy with aggregate risk. For implicit rules no further arguments are needed,

simply because the policy rule does not directly involve the instrument. For example, written

in recursive aggregate-risk notation, suppose the economy was closed with either the interest

rate-only rule

π̂t + λ(ŷt − ŷt−1) = 0

τ̂t = (1 + r̄)b̄π̂t + τℓw̄ℓ̄(ŵt + ℓ̂t) + b̂t

or the transfer-only rule

π̂t + λ(ŷt − ŷt−1) = 0

îb,t = 0.

Combining Corollary D.1 with the equivalence of linearized perfect-foresight solutions and

linearized shock impulse responses (e.g., Boppart et al., 2018; Auclert et al., 2019), we can

conclude that aggregate outcomes in the stochastic linearized economy with aggregate risk
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would be exactly the same under the two specifications of policy given above. I will thus

from now on focus on explicit rules, where additional arguments are needed.

The interest rate rule. Consider first the general perfect-foresight explicit interest

rate rule (D.2), re-stated here for convenience:

îiib = Bππ̂ππ + Byŷyy

This rule specifies a relationship between sequences of interest rates—the policy instrument—

and sequences of output and inflation—the arguments of the policy rule—along the perfect-

foresight transition path. My objective now is to provide an interpretation of that rule in

the analogous linearized economy with aggregate risk.

The key building block result is yet again that linearized perfect-foresight transition paths

are identical to shock impulse responses—i.e., to conditional expectations—in analogous

linearized economies with aggregate risk. Specifically, begin by considering the analogous

linearized economy with aggregate risk at its initial date 0, subject to some initial date-0

shocks. The explicit nominal interest rate rule (D.2) then simply says that current and

expected future rates at date 0 satisfy

E0

(̂
iii
0

b

)
= E0

[
Bππ̂ππ

0 + Byŷyy
0] (D.5)

where the notation xxxt = (xt, xt+1, . . . )
′ indicates time paths from date t onwards. That is,

current and future expected interest rates are given as a simple function of date-0 expecta-

tions of current and future output. At date 1 additional shocks hit the economy; adding up

impulse responses to the initial date-0 shocks and the new date-1 shocks, we see that interest

rates at date 1 satisfy

E1

(̂
iii
1

b

)
= E0

(̂
iii
1

b

)
︸ ︷︷ ︸

response to date-0 shocks

+ Bπ ×
[
E1

(
π̂ππ1)− E0

(
π̂ππ1)]+ By ×

[
E1

(
ŷyy1
)
− E0

(
ŷyy1
)]︸ ︷︷ ︸

response to date-1 shocks

(D.6)

or more compactly

Ê1,0

(̂
iii
1

b

)
= Bπ × Ê1,0

(
π̂ππ1) + By × Ê1,0

(
ŷyy1
)

(D.7)

where Êt,t−1 denotes the change in expectations between t and t−1. Continuing recursively,

we in general find that interest rates in the linearized economy with aggregate risk satisfy
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the recursion

Êt,t−1

(̂
iii
t

b

)
= Bπ × Êt,t−1

(
π̂ππt) + By × Êt,t−1

(
ŷyyt
)

(D.8)

In words, at each t, the policymaker revises current and expected future paths of nominal

interest rates in line with revisions about expectations of future inflation and output. This

is an explicit instrument rule in the sense of Giannoni & Woodford (2002): it specifies, at

each date t, the current and expected future values of the policy instrument as a function of

lagged, current, and expected future values of macro aggregates. Note that the dependence

on lagged aggregates is here encoded in the lagged instrument term Et−1

(̂
iii
t

b

)
.

The preceding discussion applies for arbitrarily complicated matrices {Bπ,By} specify-

ing the mapping from expectations of macro aggregates to expectations of interest rates.

Canonical recursive policy rules—like textbook Taylor rules—on the other hand restrict this

mapping to have a particularly simple form. A standard Taylor rule maps into the general

explicit rule form (D.2) with Bπ = ϕπ × I and By = ϕy × I, where I denotes the identity

map. If {Bπ,By} take such a simple diagonal form, then the in principle very complicated

expectational revisions embedded in (D.8) are equivalent to one simple static equation—the

familiar relation

îb,t = ϕππ̂t + ϕyŷt (D.9)

Both (D.8) and (D.9) are valid explicit rules: at each date t, they specify a mapping from

lagged, current, and expected future inflation and output into current and expected future

policy instruments. The only difference is that in one case this mapping is restricted to have

a very simple form, while in the other it is allowed to be much more general.

The equivalent transfer rule. Now consider the macro-equivalent transfer rule, writ-

ten in perfect-foresight sequence-space notation as (D.4). By exactly the same arguments

as above, it corresponds to the following recursive formulation in the analogous linearized

economy with aggregate risk:

Êt,t−1

(
τ̂ττ t
)

= Êt,t−1

[
τℓw̄ℓ̄(ŵww

t + ℓ̂ℓℓ
t
) + (1 + r̄)b̄π̂ππt + C−1

τ C̃ib
(
Bππ̂ππ

t + Byŷyy
t)] (D.10)

Equation (D.10) is an explicit instrument rule in exactly the same way as (D.8): it specifies, at

each date t, the current and expected future values of the policy instrument—here transfers—

as a function of lagged, current, and expected future values of macro aggregates. Of course,

since at this point I am imposing no further restrictions on the product C−1
τ C̃ib , a rule that

may be “simple” in interest rate space—like a conventional Taylor rule, as discussed above—
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may be complicated in transfer space, in the sense that the general set of restrictions (D.10)

cannot be reduced to a single static relation like (D.9). The next subsection provides an

explicit worked-out example in the special case of a one-type perpetual-youth economy. In

that particular setting, policy rules that are simple in interest rate space also turn out to be

simple in transfer space, and vice-versa, simply because the matrix product C−1
τ C̃ib takes a

very simple form.

D.3 A worked-out example

I consider a special case of my economy in Section 2.1 where the aggregate consumption

function C(•) is that implied by a one-type perpetual-youth consumer demand structure, as

discussed in Section 2.2. I suppose that the monetary policymaker wishes to replicate the

outcomes implied by the Taylor-type rule (D.9) by relying on transfers instead. By (D.10),

the recursively written explicit transfer rule that does so is

Êt,t−1

(
τ̂ττ t
)

= Êt,t−1

[
τℓw̄ℓ̄(ŵww

t + ℓ̂ℓℓ
t
) + (1 + r̄)b̄π̂ππt + C−1

τ C̃ib
(
ϕππ̂ππ

t + ϕyŷyy
t)] (D.11)

The particular one-type perpetual-youth structure allows us to now further simplify the term

C−1
τ C̃ib . Putting together the results from Appendices C.1 and C.2, we obtain

C−1
τ × C̃ib =

1

γ

1

1− θ
1+r̄


−

θ
1+r̄

1−θ
0 0 . . .

θ
1−θ

−
θ

1+r̄

1−θ
0 . . .

0 θ
1−θ

−
θ

1+r̄

1−θ
. . .

...
...

...
. . .

 (D.12)

Plugging (D.12) into (D.11), we see that mapping the simple Taylor rule (D.9) into transfer

space does indeed result in an almost equally simple explicit transfer-only rule:

τ̂t = τℓw̄ℓ̄(ŵt + ℓ̂t) + (1 + r̄)π̄π̂t︸ ︷︷ ︸
deficit response

+
1

γ
(
1− θ

1+r̄

) [− θ
1+r̄

1− θ
(ϕππ̂t + ϕyŷt) +

θ

1− θ
(ϕππ̂t−1 + ϕyŷt−1)

]
︸ ︷︷ ︸

active demand management

(D.13)

If transfers are set according to this simple policy rule, then they in the linearized equilibrium

with aggregate risk indeed satisfy the general recursion (D.11). Thus, in this particular

environment, an interest rate policy that responds to contemporaneous macro aggregates is

equivalent to a still quite simple transfer-only policy that responds to current and one-period-
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lagged aggregates, with the response coefficients given from (D.12). The rule representation

here is so simple because the map C−1
τ C̃ib—while not proportional to an identity matrix, like

{Bπ,By}—is nevertheless quite special: it is tridiagonal with repeating rows, and so we can

summarize the potentially very complicated expectation revisions in (D.11) with just one

simple equation, (D.13). This is exactly analogous to the Taylor rule (D.9) being equivalent

to the more complicated general expression (D.8) when Bπ = ϕπ × I and By = ϕy × I.
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E Proofs and auxiliary lemmas

E.1 Proof of Lemma 1

Re-arranging (C.2) we obtain

τ̂t +
1

β
b̂t−1 =

[1− θ(1− βθ)]ĉt − βθĉt+1

(1− βθ)(1− θ)
.

From the budget constraint (C.1) it follows that the left-hand side equals ĉt + b̂t. Re-

arranging, we thus obtain

b̂t =
βθ

(1− βθ)(1− θ)
(ĉt − ĉt+1)

and so, from the Euler equation (C.2),

τ̂t =
[1− θ(1− βθ)]ĉt − βθĉt+1

(1− βθ)(1− θ)
− θ

(1− βθ)(1− θ)
(ĉt−1 − ĉt).

Stacking these coefficients as the matrix C−1
τ (with β(1 + r̄) = 1), we obtain (20).

E.2 Proof of Proposition 2

Key to the proof is the following auxiliary lemma.

Lemma E.1. If θi < 1, then, for r̄ is sufficiently close to (but weakly above) zero, Ci
τ is a

positive operator (i.e., τττ ′Ci
ττττ > 0 for any τττ ̸= 000).

Proof. Ci
τ is positive if and only if its inverse is positive, so I will instead establish that (Ci

τ )
−1

is positive. Recall that

(Ci
τ )

−1 =



ai ci 0 0 . . .

bi di ci 0 . . .

0 bi di ci . . .

0 0 bi di . . .
...

...
...

...
. . .


where

ai =
1− θi

(
1− θi

1+r̄

)(
1− θi

1+r̄

)
(1− θi)
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ci = −
θi
1+r̄(

1− θi
1+r̄

)
(1− θi)

bi = − θi(
1− θi

1+r̄

)
(1− θi)

di =
1 +

θ2i
1+r̄(

1− θi
1+r̄

)
(1− θi)

From now on, to simplify notation, I will suppress all i subscripts. To prove that C−1
τ is

positive I will decompose C̃−1
τ ≡ 1

2

(
C−1
τ + C−1′

τ

)
or

C̃−1
τ =



a b+c
2

0 0 . . .
b+c
2

d b+c
2

0 . . .

0 b+c
2

d b+c
2

. . .

0 0 b+c
2

d . . .
...

...
...

...
. . .


as C̃−1

τ = L′L, where L is upper-triangular with real and positive diagonal entries. If I can

find such an operator then C̃−1
τ (and so C−1

τ ) is positive. For this consider the candidate

L =


√
δ1

α√
δ1

0 0 . . .

0
√
δ2

α√
δ2

0 . . .

0 0
√
δ3

α√
δ3

. . .
...

...
...

. . .


where α ≡ b+c

2
and δj follows the recursion

δj = d− α2

δj−1

with initial condition δ1 = a > 0. If δi > 0 for all i and if the δi’s are bounded, then it is

straightforward to verify that C̃−1
τ = L′L, and so that C̃−1

τ as well as C−1
τ (and so Cτ ) are

positive, bounded operators. To establish these properties of the δi’s, note first of all that

α =
b+ c

2
= −1

2

θ + θ
1+r̄(

1− θ
1+r̄

)
(1− θ)

< 0

is a well-defined, finite number. Now consider the recursion for δj. Write δj = f(δj−1) and
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note that, for δj−1 > 0, f(•) is a strictly increasing, strictly concave function. The fixed

points δ̄ and δ satisfy

δ̄ =
d

2
+

√(
d

2

)2

− α2, δ =
d

2
−

√(
d

2

)2

− α2

Let me first establish that the argument under the square root is indeed strictly positive.

For this it suffices to show that d > |b+ c|, or that

1 +
θ2

1 + r̄
> θ +

θ

1 + r̄

which holds for r̄ ≥ 0 and θ < 1. Next I will argue that a > δ. This requires

1− θ

(
1− θ

1 + r̄

)
>

1

2

(
1 +

θ2

1 + r̄

)
− 1

2

√(
1 +

θ2

1 + r̄

)2

−
(
θ +

θ

1 + r̄

)2

Note that, for r̄ = 0, this becomes

1− θ(1− θ) >
1

2
(1 + θ2)− 1

2

√
(1 + θ2)2 − 4θ2

which holds for θ < 1. Thus a > δ, and so this also holds for r̄ ∈ (0, r∗) for some upper

bound r∗. Proceeding identically we can show that a < δ̄ for r̄ sufficiently close to zero. But

then it follows from the properties of f(•) that the sequence {δj} will converge monotonically

from δ1 = a to δ̄ > a > 0. Thus the entire sequence consists of well-defined, finite, strictly

positive numbers. We conclude that the candidate operator L exists and is well-defined. It

follows that C−1
τ and so Cτ are positive, as claimed.

The proof of Proposition 2 leverages Lemma E.1.34 I will first of all show that the presence

of some constrained households (i.e., θi < 1 for at least some i with µi > 0) suffices to ensure

that transfer policy can induce any square-summable ĉcc. I decompose

Cτ =
N∑
i=1

µiCi
τ︸ ︷︷ ︸

≡|I|×CI
τ

+(1− |I|)CR
τ

where I denotes the set of groups with θi < 1, and where |I| ≡
∑

i∈I µi > 0 by assumption. I

34I thank an anonymous referee for several suggestions that helped fix technical issues with the proof.
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begin by studying CI
τ . This operator maps square-summable sequences into square-summable

sequences, so from now on I will operate in ℓ2, not ℓ∞.35 First suppose that r̄ = 0. CI
τ is then

the sum of linear operators that are, by Lemmas 1 and E.1, both invertible and positive.

Since r̄ = 0 they are also symmetric, and so we can conclude from Proposition 1.5 in Mortad

(2020) that the sum CI
τ is also invertible. Next, by the representation of Ci

τ in Appendix C.1,

CI
τ is continuous in r̄. Since in any Banach space the set of invertible operators is open, it

follows that CI
τ is also invertible for r̄ sufficiently close to (but above) 0.

Now return to Cτ . It remains to establish that any square-summable sequence ĉcc with

zero net present value lies in the image of Cτ . By the previous results it follows that we can

find a square-summable τ̂ττI (̂ccc) such that

CI
τ · τ̂ττI (̂ccc) = ĉcc

Note that τ̂ττI (̂ccc) necessarily has zero net present value, since CI
τ embeds all individual agents’

budget constraints (C.1). Now consider setting

τ̂ττ (̂ccc) =
1

|I|
· τ̂ττI (̂ccc)

Then, since τ̂ττ (̂ccc) also has zero net present value, it follows from the properties of CR
τ that

Cτ · τ̂ττ (̂ccc) = |I|CI
τ · 1

|I|
· τ̂ττI (̂ccc)︸ ︷︷ ︸

=ĉcc

+(1− |I|)CR
τ · 1

|I|
· τ̂ττI (̂ccc)︸ ︷︷ ︸

=000

= ĉcc.

It finally remains to note that, if θi < 1, then C̃i
ib
·̂iiib is square-summable (for square-summable

îiib), and thus so is ĉcc = ĉccPE
ib

= C̃ibîiib (if θi < 1 ∀i).36 This completes the argument.

E.3 Proof of Proposition 3

It follows from the discussion in Appendix C.1 that

Cτ (1, 1) =
N∑
i=1

µi

(
1− θi

1 + r̄

)

35With the entries of Ci
τ decaying exponentially in rows and columns away from the main diagonal (recall

Lemma C.1 with θi < 1), Ci
τ is a bounded linear operator on ℓ2; see also Auclert et al. (2023, Section 3.3).

36By (C.11), the off-diagonal entries of C̃i
ib

also decay exponentially in rows and columns away from the
main diagonal, like Ci

τ .
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Cτ (2, 1) =
N∑
i=1

µiθi

(
1− θi

1 + r̄

)

We thus see that θi < 1 for at least one i with µi > 0 suffices to ensure that both Cτ (1, 1) >
r̄

1+r̄
and Cτ (1, 1) > Cτ (2, 1), as claimed.

E.4 Proof of Proposition 4

By assumption, the allocation {π∗
t , y

∗
t }∞t=0 is implementable using an interest rate-only policy

tuple {i∗b,t, τ ∗t , 0}∞t=0. Now consider the alternative policy tuple {̄ib, τ ∗t + τ̂ †t , τ̂
†
f,t}∞t=0 where

τ̂ττ †f = I−1
τf

Iib î
∗
b (E.1)

and

τ̂ττ † = C−1
τ

[
Cib î∗b + Cd

(
Dib î

∗
b −Dτf τ̂ττ

†
f

)]
(E.2)

I now claim that this policy tuple similarly engineers the allocation {π∗
t , y

∗
t }∞t=0. First, with

τ̂ττ †f set as in (E.1), the investment, output and labor demand paths are unchanged; however,

as remarked in Appendix B.5, the dividend paths may be different. The transfer path τ̂ττ † is

constructed to offset both the missing monetary stimulus as well as neutralize any potential

dividend-related effects: to see this, note that we have

ĉ† = Cτ (τ̂ττ ∗ + τ̂ττ †) + CdDτf τ̂ττ
†
f + non-policy terms

= Cτ τ̂ττ ∗ + Cib î∗b + CdDib î
∗
b + non-policy terms = ĉ∗

Next note that, since they induce the same paths of consumption, investment, hours worked

and production, and since by assumption wages are unchanged, the initial policy {i∗b,t, τ ∗t , 0}∞t=0

and the new policy {̄ib, τ ∗t + τ̂
†
t , τ̂

†
f,t}∞t=0 have the same present value in the augmented govern-

ment budget constraint (B.18), exactly as in the proof of Proposition 1. With limt→∞ b̂t = 0

in the initial equilibrium, it then follows that we must also have limt→∞ b̂t = 0 in the new

one, as required. All other model equations are unaffected, so the guess is verified.
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E.5 Proof of Lemma C.1

I will guess and verify that lagged wealth is the only endogenous state, so the decision rules

take the general form

ĉt = ϑcbb̂t−1 +
H∑

h=0

ϑcyhτ̂t−h

b̂t = ϑbbb̂t−1 +
H∑

h=0

ϑbyhτ̂t−h

Plugging into the optimality conditions (C.1) - (C.2) and matching coefficients, we get the

following system of equations characterizing behavior in response to an anticipated income

shock H periods into the future:

ϑcb + ϑbb −
1

β
= 0 (E.3)

ϑcτh + ϑbτh = 0, h = 0, 1, . . . , H − 1 (E.4)

ϑcτH + ϑbτH = 1 (E.5)

[1− θ(1− βθ)]ϑcb − βθϑcbϑbb − (1− βθ)(1− θ)
1

β
= 0 (E.6)

[1− θ(1− βθ)]ϑcτh − βθ [ϑcbϑbτh + ϑcτh+1] = 0, h = 0, 1, . . . , H − 1 (E.7)

[1− θ(1− βθ)]ϑcτH − βθϑcbϑbτH = (1− βθ)(1− θ) (E.8)

I will begin by characterizing the solution of this system. From (E.3) and (E.6) we have

ϑbb = θ

ϑcb =
1

β
− θ

Next, from (E.5) and (E.8), we have that

ϑcτH = 1− βθ

ϑbτH = βθ

Finally, from (E.4) and (E.7),

ϑcτh = βθϑcτh+1 = (βθ)H−h(1− βθ)
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ϑbτh = −βθϑcτh+1 = −(βθ)H−h(1− βθ)

This characterizes the full solution.

I can now prove the various asymptotic statements of Lemma C.1. First we have that

ĉH,H = ϑcb

H−1∑
ℓ=0

ϑℓ
bbϑbτH−ℓ−1 + ϑcτH

Plugging in from the closed-form expressions above and simplifying:

lim
H→∞

cH,H =
(1− θ)(1− βθ)

1− βθ2
= const.

Next looking below the main diagonal:

ĉH+1,H = ϑcb

H∑
ℓ=0

ϑℓ
bbϑdτH−ℓ

and so
1

θ
ĉH+1,H =

ϑcb

ϑbb

(ϑbbb̂H−1,H + ϑbτH) = ϑcbb̂H−1,H + (1− θβ) = ĉH,H

Similarly
1

θ
ĉH+ℓ,H =

ϑcb

ϑbb

ϑbbb̂H+ℓ−2,H = ĉH+ℓ−1,H

The proof reveals that the result holds for any H, not just H → ∞.

Finally I look above the main diagonal. Here we have

ĉH−1,H = ϑcb

H−2∑
ℓ=0

ϑℓ
bbϑbτH−ℓ−2 + ϑcyH−1

We thus have that

1

βθ
ĉH−1,H = ϑcb

H−2∑
ℓ=0

ϑℓ
bbϑbτH−ℓ−1 + ϑcτH = ĉH,H − ϑcbϑ

H−1
bb ϑbτ0

The last term goes to zero as H → ∞. Similarly we have

ĉH−ℓ,H = ϑcb

H−ℓ−1∑
ℓ=0

ϑℓ
bbϑbτH−ℓ−2 + ϑcτH−ℓ
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and so

1

βθ
ĉH−ℓ,H = ϑcb

H−ℓ−1∑
ℓ=0

ϑℓ
bbϑbτH−ℓ−1 + ϑcτH−ℓ+1 = ĉH−ℓ+1,H − ϑcbϑ

H−ℓ
bb ϑbτ0

where the last term again goes to zero as H → ∞, completing the argument.

E.6 Proof of Lemma C.2

I begin with the budget constraint and the Euler equation. For notational convenience I

suppress all i subscripts. The budget constraint is

ĉt + b̂t − (1 + r̄)̂bt−1 = τ̂t. (E.9)

Combining budget constraint and the sequential formulation of aggregate demand in (C.4),

we obtain the following Euler equation:

(1−Mθ)ĉt −
θ

1 + r̄
ĉt+1 −M(1− θ)(1 + r̄)̂bt−1 =M(1− θ)τ̂t. (E.10)

I now proceed by combining (C.1) and (E.10) as in the proof of Lemma 1. First, we have

τ̂t + (1 + r̄)̂bt−1 =
(1−Mθ)ĉt − θ

1+r̄
ĉt+1

M(1− θ)

which again also equals ĉt + b̂t, from the budget constraint. Thus

b̂t =
1−M

M(1− θ)
ĉt −

θ
1+r̄

M(1− θ)
ĉt+1

and so

τ̂t =
(1−Mθ)ĉt − θ

1+r̄
ĉt+1

M(1− θ)
− (1 + r̄)(1−M)

M(1− θ)
ĉt−1 −

θ

M(1− θ)
ĉt.

Stacking, we obtain (C.5).

E.7 Proof of Corollary D.1

I begin with some preliminary simplifications. The non-policy block of the economy can be

summarized by the following system of equations, now written in compact sequence-space
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notation (as in Auclert et al., 2019). First, the price-NKPC,

π̂ππ = Πwŵww +Πℓℓ̂ℓℓ+ βπ̂ππ+1 + εεεp

Second, the production function

ŷyy = Yℓℓ̂ℓℓ

Third, firm dividends,

d̂dd = Dyŷyy +Dwŵww +Dℓℓ̂ℓℓ

Fourth, consumer demand

ĉcc = Cwŵww + Cℓℓ̂ℓℓ+ Cππ̂ππ + Cdd̂dd+ Cτ τ̂ττ + Cibîiib + Ccεεεc

Fifth, the wage-NKPC,

ℓ̂ℓℓ = Lwŵww + Lππ̂ππ + Lcĉcc+ εεεw

And sixth, the output market-clearing condition

ŷyy = ĉcc

Using the price-NKPC, the production function, the equation for firm dividends, and the

output market-clearing condition, we can substitute out {ccc,www,ℓℓℓ,ddd} in the consumer demand

relation. This gives

C̄yŷyy + C̄ππ̂ππ = C̄ibîiib + C̄τ τ̂ττ + C̄cεεεc (E.11)

where C̄ib = Cib , C̄τ = Cτ , C̄c = Cc and {C̄y, C̄π} are functions of model primitives. Similarly,

using the price-NKPC as well as the production function and the output market-clearing

condition, we can substitute out {ℓℓℓ,www,ccc} in the wage-NKPC to write it as

L̄yŷyy + L̄ππ̂ππ = L̄pεεε
p + L̄wεεε

w (E.12)

where {L̄y, L̄π, L̄p, L̄w} are functions of model primitives.

Now consider first the case where the desired implicit targeting rule (D.1) is implemented

using an interest rate-only policy. Plugging the price-NKPC and the production function

into the financing rule (8), we can write the financing rule compactly as

τ̂ττ = T̄yŷyy + T̄ππ̂ππ + T̄ibîiib (E.13)
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where {T̄y, T̄π, T̄ib} are functions of the financing rule (8) and model primitives. Using the

simplifications in (E.11), (E.12) and (E.13), we can write the equilibrium system as the

following stacked linear system:
C̄y C̄π −C̄ib −C̄τ
L̄y L̄π 000 000

By Bπ 000 000

−T̄y −T̄π −T̄ib I



ŷyy

π̂ππ

îiib

τ̂ττ

 =


C̄cεεεc

L̄pεεε
p + L̄wεεε

w

000

000

 (E.14)

By assumption, the system (E.14) has a unique, bounded solution. Denote that solution by

{ŷyy∗, π̂ππ∗, îii
∗
b , τ̂ττ

∗}.
Now consider the question of whether the same implicit targeting rule can be imple-

mented using a transfer-only policy. Using the simplifications from above, we can write the

equilibrium system as
C̄y C̄π −C̄ib −C̄τ
L̄y L̄π 000 000

By Bπ 000 000

000 000 I 000



ŷyy

π̂ππ

îiib

τ̂ττ

 =


C̄cεεεc

L̄pεεε
p + L̄wεεε

w

000

000

 (E.15)

It remains to show that {ŷyy∗, π̂ππ∗} are also part of the unique bounded solution of (E.15). To

see this, consider first the candidate solution {ŷyy∗, π̂ππ∗,000, τ̂ττ ∗∗} where τ̂ττ ∗∗ solves

(
C̄ib + C̄τ T̄ib

)
îii
∗
b + C̄τ

(
T̄yŷyy

∗ + T̄ππ̂ππ
∗) = C̄τ τ̂ττ ∗∗

We know by the conditions of Proposition 1 (which recall are assumed for Corollary D.1)

that such a τ̂ττ ∗∗ exists. Plugging into (E.11), we get

C̄yŷyy∗ + C̄ππ̂ππ∗ − C̄ib000− C̄τ τ̂ττ ∗∗ = C̄cεεεc

⇔
(
C̄y − C̄τ T̄y

)
ŷyy∗ +

(
C̄π − C̄τ T̄π

)
π̂ππ∗ −

(
C̄ib + C̄τ T̄ib

)
îii
∗
b = C̄cεεεc

⇔ C̄yŷyy∗ + C̄ππ̂ππ∗ − C̄ibîii
∗
b − C̄τ τ̂ττ ∗ = C̄cεεεc

Thus (E.11) still holds. It is immediate that all other relations in (E.15) hold, so we can

conclude that {ŷyy∗, π̂ππ∗,000, τ̂ττ ∗∗} is indeed a solution of (E.15).

To show uniqueness, suppose for a contraction that (E.15) has a distinct bounded solution

{ŷyy†, π̂ππ†,000, τ̂ττ †} with ŷyy† ̸= ŷyy∗ and/or π̂ππ† ̸= π̂ππ∗. By the assumptions of Proposition 1 we can
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thus find a bounded tuple {ŷyy†, π̂ππ†, îii
†
b, τ̂ττ

††} where

(
C̄ib + C̄τ T̄ib

)
îii
†
b + C̄τ

(
T̄yŷyy

† + T̄ππ̂ππ
†
)
= C̄τ τ̂ττ †

and

τ̂ττ †† = T̄yŷyy
† + T̄ππ̂ππ

† + T̄ibîii
†
b

Then, following the same steps as above but in reverse, we can conclude that {ŷyy†, π̂ππ†, îii
†
b, τ̂ττ

††}
is a bounded solution of (E.14). Contradiction.

E.8 Proof of Corollary D.2

Proceeding as in the proof of Corollary D.1, we arrive at the following equilibrium system

for the explicit interest rate rule:
C̄y C̄π −C̄ib −C̄τ
L̄y L̄π 000 000

−By −Bπ I 000

−T̄y −T̄π −T̄ib I



ŷyy

π̂ππ

îiib

τ̂ττ

 =


C̄cεεεc

L̄pεεε
p + L̄wεεε

w

000

000

 (E.16)

By assumption, the system (E.16) has a unique, bounded solution. Denote that solution by

{ŷyy∗, π̂ππ∗, îii
∗
b , τ̂ττ

∗}.
Now consider the equilibrium system corresponding to the proposed transfer-only rule

(D.4). Using the simplifications from above, we can write that system as
C̄y C̄π −C̄ib −C̄τ
L̄y L̄π 000 000

000 000 I 000

−T̄y − C−1
τ CibBy −T̄π − C−1

τ CibBπ −T̄ib I



ŷyy

π̂ππ

îiib

τ̂ττ

 =


C̄cεεεc

L̄pεεε
p + L̄wεεε

w

000

000

 (E.17)

It remains to show that {ŷyy∗, π̂ππ∗} are also part of the unique bounded solution of (E.17). To

see this, consider first the candidate solution {ŷyy∗, π̂ππ∗,000, τ̂ττ ∗∗} where

τ̂ττ ∗∗ = T̄yŷyy
∗ + T̄ππ̂ππ

∗ + T̄ibîii
∗
b + C−1

τ Cibîii
∗
b
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Plugging the candidate solution into the consumer demand function (E.11), we get

C̄yŷyy∗ + C̄ππ̂ππ∗ − C̄ib000− C̄τ τ̂ττ ∗∗ = C̄cεεεc

⇔
(
C̄y − C̄τ T̄y

)
ŷyy∗ +

(
C̄π − C̄τ T̄π

)
π̂ππ∗ −

(
C̄ib + C̄τ T̄ib

)
îii
∗
b = C̄cεεεc

⇔ C̄yŷyy∗ + C̄ππ̂ππ∗ − C̄ibîii
∗
b − C̄τ τ̂ττ ∗ = C̄cεεεc

Thus (E.11) still holds. It is immediate that all other relations in (E.17) hold, so we can

conclude that {ŷyy∗, π̂ππ∗,000, τ̂ττ ∗∗} is indeed a solution of (E.17).

To show uniqueness, suppose for a contraction that (E.17) has a distinct bounded solution

{ŷyy†, π̂ππ†,000, τ̂ττ †} with ŷyy† ̸= ŷyy∗ and/or π̂ππ† ̸= π̂ππ∗. Now consider the tuple {ŷyy†, π̂ππ†, îii
†
b, τ̂ττ

††} where

îii
†
b = Byŷyy

† + Bππ̂ππ
†

and

τ̂ττ †† = T̄yŷyy
† + T̄ππ̂ππ

† + T̄ibîii
†
b

Then, following the same steps as above but in reverse, we can conclude that {ŷyy†, π̂ππ†, îii
†
b, τ̂ττ

††}
is a bounded solution of (E.16). Contradiction.
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