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ABSTRACT

This article reviews recent work on how automation and task displacement have contributed to labour share declines and inequality in
the US labour market. We summarize the basic building blocks of a task-based framework in which a set of tasks is allocated between
capital, skilled labour and unskilled labour. Automation, which corresponds to the use of new technologies expanding the set of tasks
that can be performed by capital, always reduces the labour share in value added and may depress overall wages and employment. The
negative effects of automation on labour share and its potentially adverse consequences for labour demand can be counterbalanced by
the creation of new labour-intensive tasks, which can reinstate labour into the production process. We also show that when automation
displaces unskilled labour from the tasks in which they used to specialize (which has been its modal impact so far), it increases the
demand for skills and inequality. New tasks may or may not limit the increase in the demand for skills depending on whether they
are mostly targeted at skilled workers. We then provide a range of evidence supporting the basic predictions and implications of this
framework. Most importantly, the decline in the share of labour in national income and the increase in the demand for skills appear to be
related to an acceleration in the pace of automation and a deceleration in technological changes complementing humans during the last
30 years. We end with a discussion of the potential bias towards automation in the development and adoption of digital technologies,
and how this will affect the nature of work in the face of recent advances in artificial intelligence.

Key words: automation; capital; demands for skills; displacement effect; labour demand; labour share; inequality; productivity;
reinstatement effect; tasks; technology; wages

1. Introduction
Recent breakneck-paced advances in artificial intelligence (AI)
have intensified concerns about the future of work and inequality.
The optimistic scenario is that tools such as large language mod-
els can increase productivity and provide resources for workers
to perform their jobs more successfully. More concerning are
scenarios where AI technologies will automate a large number
of jobs, boost inequality and even reduce wages for many worker
groups. Any understanding of whether these concerns are well
placed and whether there is any validity to the optimistic scenario
must start with a clear conceptual framework in which new
technologies can simultaneously substitute for and complement
human work.

In this article, we review such a framework that we and other
researchers have developed, how this framework accounts for
changes in the wage structure in the industrialized world over
the last several decades and draw out its implications for the
adjustment of labour markets to existing and oncoming advances
in AI and other digital technologies.

The background to this discussion is by now familiar. Labour
market inequality has risen significantly in many industrialized
economies, and especially in the USA and the UK, over the last
4 decades (Acemoglu and Autor 2011; Peterson Institute 2020).
Simultaneously, many of these economies have also experienced
a decline in the labour share in national income.1 Despite a

1 See, for example, Elsby et al. (2013), Karabarbounis and Neiman (2013),
Piketty (2014), Dao et al. (2019) and Autor et al. (2020). However, Gutierrez and
Piton (2020) argue that the decline in the labour share is a US phenomenon.

voluminous literature on both topics, these trends remain imper-
fectly understood. The leading explanations for both relate to
the changing nature of technological progress. For example, new
technologies, such as computers, are argued to be skill-biased and
to have raised the productivity of skilled workers (e.g. those with
college or post-graduate degrees) more than those of less skilled
workers (see Krueger 1993; Autor et al. 1998).

In the most canonical approach to this problem, which dates
back to the path-breaking work of Tinbergen (1974), output is
assumed to be produced with an aggregate production function
of the form: G (AHH, ALL). Here, H and L are employment levels
of skilled and unskilled (or high- and low-skill) workers, respec-
tively, and AH and AL represent technologies augmenting these
two types of workers. Skill-biased technical change (SBTC) in
this framework corresponds to an increase AH (relative to AL).2

Likewise, most economists think of capital–labour substitution
and the effects of productivity on the shares of these two factors
using a similar production function with factor-augmenting tech-
nologies, F (AKK, ALL), where K is capital and L is now total labour.

These popular and influential frameworks face several short-
comings, however. First of all, they lack descriptive realism. The
assumption that technologies take a factor-augmenting form as
posited in these production functions does not have a clear empir-
ical counterpart. Most technologies improve the productivity of

2 This requires that the elasticity of substitution between H and L is greater
than one. This framework is developed in detail in pioneering work by Katz and
Murphy (1992) and Goldin and Katz (2008).
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a factor in some tasks (e.g. a better paintbrush makes a worker
better at painting, but not necessarily in other tasks), improve the
productivity of some industry, reallocate some tasks from one fac-
tor to another (as with the spinning and weaving technologies that
started the British Industrial Revolution in the middle of the 18th
century), or create new tasks, invent new goods or introduce com-
pletely new ways of combining existing tasks or intermediates.
None of these easily fits into the factor-augmenting framework
(see Acemoglu and Restrepo 2019).

Second, and perhaps more importantly, these frameworks
make a range of counterfactual predictions. For example,
assuming that there is no technological regress, new technologies
should not reduce the productivity of any of the factors. For
example, skill-biased technological change can benefit college
graduates more than high school graduates, but should never
reduce the real wages of high school graduates. But declining real
wages of low-educated men has been a persistent trend in the US
labour market over the last 4 decades (as we show further below;
see also Acemoglu and Autor 2011; Autor 2019). Similarly, with
just factor-augmenting technological changes, it is difficult to
have instances in which new technologies reduce labour demand,
employment and wages. Yet again, we have important examples
of new technologies, especially automation technologies such as
industrial robots, that have been associated with lower wages and
employment (e.g. Acemoglu and Restrepo 2020a).

Third, and relatedly, a framework based on factor-augmenting
technologies does not generate meaningful changes in the
labour share (as we will argue below). For realistic values of the
elasticity of substitution, generating the changes in the share
of labour experienced in manufacturing in the USA via factor-
augmenting technologies would necessitate huge changes in
technology. These improvements would be associated with very
large and counterfactual increases in total factor productivity
(TFP). Likewise, a problem of the standard SBTC model, which
is omitted, is that to match the observed changes in the skill
premium, the model would need unrealistically large TFP changes
(Acemoglu and Restrepo 2020b).

Fourth, new advances in AI also highlight the inadequacy of
a framework that relies on factor-augmenting technologies. The
possibility that different types of AI applications can automate
work, or remedy for expertise inadequacies for some specialized
workers (e.g. Noy and Zhang 2023; Brynjolfsson et al. 2023), or
create complementarities for the highest-skill employees can-
not be incorporated into this type of benchmark model, and
instead calls for a framework in which new technologies can
have very different effects on specific tasks, as well as introduce
new tasks.

In a series of papers, we have argued that these problems
can be overcome with a more micro-based approach in which
we start modelling the production process at the task level and
allow for technologies that automate certain tasks, displacing
workers and replacing them with machines or algorithms (see
Acemoglu and Restrepo 2018, 2019, 2020a, 2022).3 While the SBTC
framework and the standard capital–labour aggregate production
function focus on how technology complements various factors,
our task-based approach emphasises how several major types of
technologies replace and displace labour from the production
process. In addition to its stronger microfoundations, our

3 These papers build on Zeira (1998), Acemoglu and Zilibotti (2001), Hellwig
and Irmen (2001), Autor et al. 2003 and Acemoglu and Autor (2011).

framework makes a range of more realistic predictions—for
example, linking the impact of automation technologies on
labour to whether the negative displacement effect is outweighed
by the positive productivity effect. This framework also allows
us to think about new labour-intensive tasks, which reinstate
labour into the production process, and explains how the
evolution of labour demand depends on the balance between the
displacement effect created by automation technologies and the
reinstatement brought by new tasks. Large changes in the labour
share (at the industry or the economy level) are telltale signs
in this framework of an imbalance between displacement and
reinstatement.

In this article, we present a tractable version of the framework
that we have developed in past work. In Section 2, we start
with a version of this framework with three factors: capital,
skilled labour and unskilled labour. In Section 3, we specialize
this framework to include only capital and one type of labour,
and study how different types of technologies affect the demand
for labour and the share of labour in value added. We also
emphasise how a countervailing set of technological changes—
which introduce new labour-intensive tasks—are important both
conceptually and empirically, and we explore their implications.
In Section 4, we return to the full framework from Section 2
and explore how automation and new tasks affect inequality. We
emphasize in this section how these types of changes, which alter
the allocation of tasks to factors and change the ‘task content
of production’, can have major effects on inequality without
generating much productivity or TFP changes. This contrasts with
the implications of factor-augmenting technologies as we also
document.

In Section 5, we consider a multi-sector extension of our frame-
work in order to clarify how the extent of displacement and
reinstatement can be measured. In Section 6, we estimate changes
in the task content of production, and especially the extent of
displacement and reinstatement, in the USA since World War II,
based on the approach outlined in Section 5. The most important
results in this section are as follows. First, we find that measures
of displacement and reinstatement are meaningful and strongly
related to proxies for automation and new tasks, respectively. Sec-
ond, we uncover a striking change in the extent of displacement
and reinstatement in the US economy. The extent of displace-
ment and reinstatement used to be balanced in the 4 decades
after World War II. Starting in the 1980s, a very different pat-
tern emerged: rapid displacement and very little countervailing
reinstatement. It is this imbalance that accounts for the decline
in the share of labour in the aggregate economy and in man-
ufacturing. Finally, we also substantiate the claim that without
major changes in the task content of production, it would take
gargantuan changes in TFP to account for the observed changes
in the labour share.

In Section 7, we turn to the empirics of the changes in the
demand for skills. Using the measures of displacement and rein-
statement estimated in Section 6, we show that displacement has
been far from neutral. Industries undergoing rapid displacement
have been exactly the ones increasing their demand for skills.
Interestingly, we find that reinstatement was counterbalancing
the increase in the demand for skills coming from automation
until the 1980s, but has itself become an additional force towards
greater demand for skills and inequality since the 1980s. We
provide a number of possible explanations for this pattern. We
conclude in Section 8 by summarizing the main elements of our
framework and drawing out its implications for future work and
inequality in the face of AI advances.
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2. Conceptual framework
At the centre of our conceptual framework are tasks that need
to be performed for production, and they can be performed using
different types of labour or capital. For this article, we focus on two
types of labour: unskilled and skilled (low- and high-skill) labour.
Automation corresponds to an expansion of the set of tasks that
can be produced by capital, which can come at the expense of
either skilled or unskilled labour. We also allow the introduction of
new tasks in which (skilled or unskilled) labour has a comparative
advantage relative to capital. We start with a model for a single
sector. We then embed this structure in a multi-sector set-up.

The unique final good is produced from a mass M of tasks x ∈ T
combined via a CES aggregator,

Y =
(

1
M

∫
T

(
My(x)

)(λ−1)/λdx
)λ/(λ−1)

,

where λ ≥ 0 is the elasticity of substitution between tasks. Tasks
are performed by unskilled labour, �(x), skilled labour h(x) or
capital k(x),

y(x) = ψL(x)�(x) + ψH(x)h(x) + ψK(x)k(x),

where ψj(x) ≡ Aj· γj(x) for j ∈ {L, H, K} denotes the productivity of
factor j at task x. If a particular task cannot be performed by a
factor, then we set the corresponding ψj(x) = 0.

We assume that skilled and unskilled labour are supplied
inelastically, with market-clearing conditions L = ∫

T �(x)dx and
H = ∫

T h(x)dx, and also take the supply of capital, K, as given and
impose the market-clearing condition K = ∫

T k(x)dx. We denote
by TL, TH and TK the set of tasks performed by each factor.4 A
competitive equilibrium is represented by an allocation of tasks
to factors and production of capital goods that maximizes output.
It can be shown that equilibrium output can then be expressed as

Y =
(
�

1/λ

K (AKK)
(λ−1)/λ + �

1/λ

L (ALL)
(λ−1)/λ + �

1/λ

H (AHH)
(λ−1)/λ

)λ/(λ−1)

,

where the share parameters, �K, �L and �H, are endogenously
determined and summarize the task content of production. More
specifically, they represent the range of tasks performed by the
two types of labour and are given as

�j = 1
M

∫
Tj

ψj(x)λ−1dx for j ∈ {K, L, H} .

The effects of various technologies on the skill premium can be
expressed as

d ln
(

wH

wL

)
= − 1

σ
d ln

(
H
L

)
+σ − 1

σ
d ln

(
AH

AL

)
+ 1

λ
d ln

(
�H

�L

)∣∣∣∣
(AHH)/(ALL)

,

(1)

where the last term represents changes in the task content of pro-
duction coming from technological changes. Indeed, the canoni-

4 Formally, these sets are given from cost minimization as

TL =
{

x :
wL

ψL(x)
<

wH

ψH(x)
,

wL

ψL(x)
<

1
ψK(x)

}
,

TH =
{

x :
wH

ψH(x)
≤ wL

ψL(x)
,

wH

ψH(x)
<

1
ψK(x)

}
,

TK =
{

x :
1

ψK(x)
≤ wL

ψL(x)
,

1
ψK(x)

≤ wH

ψH(x)

}
.

cal model generates a relationship between technology and the
skill premium given by the first line of equation (1).5 Moreover,
as opposed to the canonical model, the elasticity of substitu-
tion between skilled and unskilled labour, σ , is not an exoge-
nous parameter, but reflects the competition between skilled and
unskilled labour for tasks (and the corresponding changes in the
allocation of these tasks between skilled and unskilled labour
in response to changes in factor-augmenting technologies and
relative supplies). Namely,

σ = λ

/(
1 − ∂ ln (�H/�L)

∂ ln (AHH/ALL)

)
≥ λ.

This elasticity reflects two types of substitution: substitution
between tasks, represented by λ (with more productive skilled
labour, there is greater production of skill-intensive tasks); and
substitution at the extensive margin whereby some tasks are
reallocated from unskilled labour and capital to skilled labour. It
is because of this second type of substitution that σ ≥ λ.6

In addition to factor-augmenting changes—the AL, AH and AK

terms—that increase the productivity of a factor in all tasks,
this framework enables us to analyse the impact of technologies
that affect the productivity of a factor in some tasks. Particularly
relevant is ‘automation’—changes that enable capital to be used
in tasks that were previously performed by labour (or equivalently
increase the productivity of capital in such tasks). For example,
robots can become more productive in welding, a task previously
performed by human welders, who will now be displaced from
the tasks in which they specialized. The effects of automation
and other technological changes affecting the allocation of tasks
to factors work through the last term in equation (1). Formally,
automation will correspond to an increase in ψK(x) for a set of
tasks currently not in TK. This type of advance in automation
technology will lead to an expansion in the set of tasks allocated to
capital, TK, and a contraction in the set of tasks allocated to work-
ers. The left panel of Fig. 1 illustrates the direct effect of automa-
tion on the allocation of tasks to workers and capital. The figure
shows the effects of automating a subset of tasks D performed by
low-skill labour, though one could model the automation of tasks
performed by high-skill labour in the same way.

In addition to automation, we are interested in the effects of
new labour-intensive tasks. The addition of new tasks that are
performed by high-skill labour can be thought of as an expansion
of the set T to T ′ = T +N such that N ⊂ T ′

H, as shown in the right
panel of Fig. 1. The addition of new tasks performed by low-skill
labour can be modelled analogously.

Before we study the effects of automation on inequality, we
clarify how automation affects labour as a whole. To do this, in
the next section we specialize the model to include only one type
of labour, and we discuss in some detail how automation affects
wages and employment—and labour demand.

3. Effects of automation and new tasks on
labour demand
Suppose that there is only one type of labour, denoted by L. The
equilibrium in this case is simply a special instance of the one

5 As derived in Acemoglu and Restrepo (2020b). A more general framework
is analysed in Acemoglu and Restrepo (2022). For brevity, we refer the reader to
these two papers and do not repeat the proofs of the claims here.

6 Put differently, if we kept �H/�L constant, then the first line of this
equation would also have λ instead of σ .
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Figure 1: Effects of automation and new task creation on the share of tasks performed by workers and capital

characterized in the previous subsection. To further simplify our
derivations, we assume that the allocation of tasks to factors is
fully determined by technology and does not respond to changes
in factor supplies (see Acemoglu and Restrepo (2022), for a com-
plete treatment of the more general case).7 Because the allocation
of tasks remains unchanged following small changes in factor
supplies, the elasticity of substitution between capital and labour
is equal to λ.

To understand the effects of automation, consider an improve-
ment in the productivity of capital ψk(x) as a set of tasks D (which
we assume is small) currently in TL, as shown in Fig. 1. Suppose
also that, following these improvements, the tasks in D are real-
located from labour to capital. As a result of this displacement,
the share of tasks performed by labour falls by

d ln �D
L = −

∫
D ψL(x)λ−1dx∫
TL

ψL(x)λ−1dx
≤ 0,

and the share of tasks performed by capital rises to

d ln �D
K =

∫
D ψK(x)λ−1dx∫
TK

ψK(x)λ−1dx
≥ 0.

The superscript D in both expressions indicates that these are
tasks directly lost to automation.

Likewise, the creation of new tasks in N , where labour has a
comparative advantage, will expand the share of tasks performed
by labour by

d ln �N
L =

∫
N ψL(x)λ−1dx∫
TL

ψL(x)λ−1dx
≥ 0.

The superscript N indicates that these are new tasks.
As we will see, the effects of technology on labour demand

will be mediated by the labour share in value added. In this
framework, the labour share can be written as

sL (K, L) = �1/λ(ALL)
(λ−1)/λ

�1/λ(ALL)
(λ−1)/λ + (AKK)

(λ−1)/λ
, (2)

7 Formally, this entails assuming that capital is sufficiently abundant as to
perform all tasks where it has a positive productivity. In general, as emphasized
in the previous section, TK and TL are endogenously determined given capital
and labour productivities. Here, we are simplifying the notation and exposition
by varying the realized allocation of tasks to factors.

where

� = �L

�K

captures the task content of production – the relative importance
of tasks allocated to labour in the production process. �, and thus
the labour share, is decreasing in automation and increases with
the creation of new labour-intensive tasks.

Labour demand in this economy can be written as

Wd (L, K) = Y (L, K)

L
× sL (K, L) .

Naturally, labour demand Wd (L, K) is decreasing in L and
increasing in K. We next analyse the effects of different types
of technologies on labour demand.8

We start with automation:

d ln Wd (L, K) = d ln Y
(
productivity effect

)
+ 1

λ

(
1 − sL) d ln �D

d

(
displacement effect

)
.

This formula shows that automation has two distinct effects on
labour demand. First, there is a ‘productivity effect’, as automa-
tion increases productivity—i.e. d ln y > 0—and raises the demand
for labour in non-automated tasks. If nothing else happened,
this increase in productivity would directly, and by the same
amount, increase labour demand. However, the ‘displacement
effect’, which automation creates, reduces labour demand. This
reflects the fact that automation displaces labour from certain
tasks and squeezes it into fewer non-automated tasks. Automa-
tion raises labour demand when the productivity effect dominates
displacement, but reduces it otherwise.

We can also compute the productivity effect as

d ln y = sL (−d ln �D
L

)
π > 0,

8 Once the effects of technology on labour demand are determined, how
this translates into employment and wage changes is partly regulated by labour
supply and partly by labour market imperfections, neither of which we model
explicitly in this article (see Acemoglu and Restrepo 2018). It suffices to note
that with an upward-sloping (quasi-) labour supply schedule, lower labour
demand will translate into both lower employment and lower wages.
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where π > 0 are the average cost-saving gains generated by
automation in all tasks in D:

π =
∫

D

ψL(x)λ−1∫
D ψL(u)λ−1du

1
1 − λ

[(
W

ALψL(x)

)1−λ

−
(

R
AKψK(x)

)1−λ
]

dx.

This expression is intuitive. The productivity gains from
automation depend on the difference in the cost of producing
the automated tasks with labour, W/ [ALψL(x)], and the cost
of producing them with capital, R/ [AKψK(x)]. The productivity
effect will be stronger when automation significantly increases
productivity (because capital is more productive than labour in
these tasks).9 This last point, though simple, is important. Not
only does it show that when the effective wage is similar to the
effective rental rate, the productivity effect will be small and thus
automation will reduce labour demand, but it also implies that,
contrary to a common presumption in popular debates, it is not
‘brilliant’ automation technologies but those that are ‘so-so’ and
generate only small productivity improvements that will tend
to worsen the prospects of labour (see Acemoglu and Restrepo
2019).10

If the world was one of just automation technologies, this
analysis shows that the share of labour in value added would be
continuously declining. This, of course, has not been the case for
much of the last 200 years of growth in the industrialized world.
Acemoglu and Restrepo (2018) argued that this is because of the
introduction of new labour-intensive tasks, which have also been
a major driver of productivity growth. For example, design tasks,
most manufacturing engineering tasks, most back-office activi-
ties and all programming occupations are new relative to the first
half of the 20th century, and have been major drivers of the growth
of labour demand. We now study the labour demand implications
of new tasks in which labour has a comparative advantage.

The effects of creation of new tasks can be determined
similarly:

d ln Wd (L, K) = d ln Y
(
productivity effect

)
+ 1

λ

(
1 − sL) d ln �N

d

(
reinstatement effect

)
.

The new item here is the ‘reinstatement effect’, which rein-
states labour into additional tasks and, via this channel, increases
labour demand and the labour share.

Finally, we can also determine the effects of factor-augmenting
technologies:

d ln Wd (L, K) = sLd ln AL
(
productivity effect

)
+ λ − 1

λ

(
1− sL) d ln AL

(
quality substitution effect

)
,

d ln Wd (L, K) = (
1 − sL) d ln AK

(
productivity effect

)
+ 1 − λ

λ

(
1−sL) d ln AK

(
quality substitution effect

)
.

9 In addition to the productivity effect, automation may generate addi-
tional countervailing forces, raising labour demand. First, automation is likely
to induce additional usage of capital in the sector or additional capital accu-
mulation, which can increase labour demand (Acemoglu and Restrepo 2018).
Second, there could be ‘deepening of automation’, meaning increases in the
productivity of capital and tasks already automated, which also increases
labour demand (Acemoglu and Restrepo 2019). Even factoring in these changes,
in this framework, automation always reduces the labour share.

10 An implication of this analysis is that the productivity effects of different
types of technologies can have potentially very different magnitudes, and thus,
we cannot generally presume that one set of automation technologies will
affect labour demand in exactly the same way as another set—this will depend
on their respective productivity effects.

Critically, there is no displacement or reinstatement effect
here because there is no reallocation of tasks to factors and
hence no change in the task content of production. The new
items are the ‘quality substitution effects’, which capture the
change in the pattern of capital–labour substitution resulting
from changes in technology. This is because factor-augmenting
technologies affect the ‘quality’ (effective productivity) of the
factors, inducing a substitution between capital-intensive and
labour-intensive tasks and production when λ �= 1—but crucially
‘without’ a change in the allocation of tasks to factors. Whether
this substitution increases or reduces labour demand (and the
labour share) depends on whether the elasticity of substitution
λ is greater than or less than 1.

4. Effects of automation and new tasks on
inequality
Let us now return to the inequality implications of automation
and new tasks. Automation can, in principle, displace skilled or
unskilled labour. In the context of industrial robotics technology,
the evidence presented in Acemoglu and Restrepo (2020b, 2022)
suggests that most of the automated tasks used to be performed
by less skilled workers, and we start with this case.

To do this, suppose that there is an improvement in automation
technologies such that the productivity of capital in a set of tasks
in D ⊂ TL leads to the displacement of labour from these tasks,
as in Fig. 1. Then we can show (see the appendix of Acemoglu and
Restrepo 2020b) that inequality changes by

d ln
(

wH

wL

)
= − 1

σ
d ln �D

L > 0.

Moreover, following such an automation advance, wL may
increase or decrease (which again reflects the countervailing
displacement and productivity effects, this time focusing on
unskilled workers).11

Several points are worth noting. First, the effect of automation
technologies on the skill premium is completely driven by the set
of tasks (weighted by their effective productivity) unskilled labour
loses relative to the entire set of tasks previously performed by
these workers (this effect is not mediated by the elasticity of
substitution, and σ does not need to be greater than one). This
close connection between the set of task reallocations and factor
price changes is the main conceptual insight of this class of
models.

Second, advances in automation technologies increase TFP, but
this impact, coming from cost savings due to automation, may be
small (Acemoglu and Restrepo 2020b, 2022). In fact, we will see
below that, in our estimates, this boost to TFP is often quite small,
and the reason for this is explained in the next paragraph.

Third, the magnitude of the change in the skill premium is
decoupled from productivity increases. Specifically, in the canon-
ical model (with no changes in the task content of production),
we have

d ln TFP
d ln (wH/wH)

∣∣∣∣
AL

= sH· σ/ (σ − 1) ,

11 Notice, again, that the relevant elasticity is σ , which reflects the fact that
changes in technology will trigger a reallocation of tasks between skilled and
unskilled labour. If factor supplies do not alter the allocation of tasks to factors
of production, then σ = λ.
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where sH is the share of skilled labour in value added. Thus, to get
the demand for skilled labour to increase by 1%, one needs a 0.83%
increase in productivity. In contrast, in our task-based framework,
the effect of automation on TFP is

d ln TFP
d ln wH/wL

= σ · sL·π ,

where π > 0 is the average proportional cost reduction in auto-
mated tasks. This expression shows that when π → 0, our
model generates large swings in the skill premium from very
small changes in TFP. Because of this difference, our framework
generates sizeable changes in the skill premium for reasonable
changes in TFP. For example, if automation reduces the cost of
producing tasks by π = 30%, as in the case of industrial robots
(Acemoglu and Restrepo 2020b), then the increase in the college
premium between 1963 and 1987 can be explained with as little
as 0.6% per annum growth in TFP.

Fourth, the unskilled wage may decline, and this happens
precisely when the increase in TFP is small, but the skilled wage
always increases because tasks produced by other factors, which
are q-complements to those produced by skill workers, are becom-
ing cheaper.12

To analyse the effects of new tasks on inequality, suppose a
small set of new tasks is introduced, as in the right panel of Fig. 1.
If skilled workers have comparative advantage in these tasks—i.e.
wH/ψH(x) < wL/ψL(x) at current wages—then the skill premium
increases by

d ln
(

wH

wL

)
= 1

σ
d ln �N

H > 0.

If, however, unskilled workers have comparative advantage in
these tasks—i.e. wL/ψL(x) < wH/ψH(x) at current wages—then the
skill premium would decline.

To interpret these expressions, note that the effect on the
skill premium is again a function of the set of tasks reallocated
across factors. Analogously, these changes always increase TFP.
Also notable is that new tasks may increase or reduce the skill
premium, depending on whether they are allocated to skilled or
unskilled labour.

Two other types of technological changes can be studied in
this framework. The first is ‘standardization’, which involves the
simplification of previously complex, skilled tasks so that they can
now be more cheaply performed by unskilled workers (Acemoglu
and Restrepo 2018). The second is ‘skill upgrading’, which involves
the transformation of unskilled tasks so that they can be more
productively performed by skilled workers (see the appendix of
Acemoglu and Restrepo 2020b).

5. The multi-sector economy
In order to measure displacement and reinstatement—driven by
automation and new tasks—we need to consider a multi-sector
version of our economy, which we now develop. Once again, we
simplify the exposition by focusing on the case with a single
type of labour and where the task allocation does not respond
to changes in factor supplies. Relative to the previous sections,

12 Some of the automated tasks in D may be previously performed by
skilled workers: artificial intelligence may replace tasks currently employing
skilled workers, and many of the iconic innovations of the Industrial Revolution
automated the spinning, weaving and knitting tasks previously performed by
skilled artisans. If so, automation may have the opposite effect on the skill
premium.

we now assume that there are sectors, each one of which has a
production function—with its own task-specific productivity for
different factors and the possibility of automation, introduction
of new tasks and factor-augmenting technologies.

We index sectors by subscript i and let �i represent the task
content in industry i. We denote the price of the goods produced
by sector i by Pi, while its factor prices are denoted by Wi and Ri.
Note that we can write the labour share in a sector as a function
of technology and factor prices:

sL
i = �i

(
Wi/Ai,L

)1−λ

�i
(
Wi/Ai,L

)1−λ + (
Ri/Ai,K

)1−λ
.

This shows that sectoral labour shares are decreasing in
automation in that sector and increase with the introduction
of new tasks (holding factor prices constant).

Total value added (GDP) in the economy is Y = ∑
i∈IPiYi, and we

define χi = (PiYi) /Y as the share of sector i in total value added.
Denoting the average wage by W and aggregate employment by

L, total labour demand is

WL =
∑
i∈I

WiLi =
∑
i∈I

Y × χi × sL
i .

The effects of a change—of any type—in technology can then
be summarized as follows:13

d ln(WL) = d ln Y
(
productivity effect

)
+

∑
i∈I

�i
(
1−sL

i

) [
d ln �D

i + d ln �N
i

] (
change in task

content
)

+
∑
i∈I

�i(1−λ)
(
1−sL

i

) (
d ln Wi−d ln Ri

) (
price substitution

effect
)

−
∑
i∈I

�i(1−λ)
(
1−sL

i

) (
d ln Ai,L−d ln Ai,K

) (
quality substitution

effect
)
. (3)

Here, �i = (WiLi) /(WL) is the share of the wage bill generated in
sector i. This decomposition is formally derived in the appendix of
Acemoglu and Restrepo (2019) and showcases the several distinct
impacts of technology on labour demand. First, there is the multi-
sector equivalent of the ‘productivity effect’: technology raises
productivity, which tends to increase aggregate value added, Y,
raising the demand for labour.14 Second, there is a ‘composition
effect’ resulting from sectoral reallocation in response to changes
in technology (and this reallocation in turn depends on con-
sumer preferences, among other things). The composition effect
increases labour demand when economic activity is reallocated
towards labour-intensive sectors (those with sL

i > sL) and has the
opposite effect when the reallocation is towards capital-intensive
sectors (those with sL

i < sL). Third, we come to the main notable
feature of our framework: the ‘change in task content’ resulting
from changes in the allocation of tasks to factors. Mathematically,
this change in task content is captured by changes in the share
parameters represented by the �j terms. Finally, there are changes

13 Because, as in Section 3, the allocation of tasks between capital and
labour is also independent of factor supplies, the relevant elasticity of sub-
stitution between capital and labour is the elasticity of substitution between
tasks, λ.

14 More generally, d ln Y = d ln TFP + sLd ln L + ∑
i
[(

RiKi
)
/Y

]
d ln Ki. In our

set-up, technological improvements increase TFP but their overall impact on
GDP depends on the adjustment of labour and capital as well.
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resulting from variations in capital–labour substitution; these
are themselves a consequence of the same ‘quality substitution
effect’, already emphasized in Section 3, as well as a multi-sector
generalization of this effect, the ‘price substitution effect’, which
results from changes in wage to rental rate ratio at the sectoral
level. The direction of the impact of these last two effects on
labour demand depends on the elasticity of substitution across
tasks, λ.

This general decomposition can be applied to study the impact
of specific technologies on labour demand. For illustration pur-
poses, consider the introduction of a new automation technology
in sector j. This will first generate a displacement effect in the
same sector, given by (

1 − sL
i

)
d ln �D

j < 0,

which reduces labour demand. In addition, the substitution of
(effectively) cheaper capital for labour increases TFP by

d ln TFP = χjs
L
j

( − d ln �D
j

)
πj,

where πj are the average cost-saving gains per task generated by
automation in this sector. This change in TFP produces a produc-
tivity effect partially restoring labour demand, and typically also
generates a series of sectoral reallocations in response to changes
in sectoral prices.

The implications of different types of technologies can be
analysed similarly. The creation of new tasks in a sector continues
to generate the reinstatement effect, increasing the task content
of production (i.e.

(
1 − sL

j

)
d ln �N

j > 0) and thus labour demand;
it also generates similar productivity and reallocation effects.
Factor-augmenting technological changes generate productivity
and relocation effects as well, but do not affect the task content
of production.

In summary, the implications of ‘any’ technological change will
work through, and can be decomposed into, a productivity effect,
composition effects, price and quality substitution effects and
changes in the task content of production. We next proceed to
implement this decomposition.

6. Measuring displacement and
reinstatement
In this section, we estimate the extent of displacement and
reinstatement in the US economy during the last 70 years. Our
methodology builds on the approach outlined in the previous
section and uses a number of different sources of data, which we
describe below.

6.1. Inferring changes in the allocation of tasks to
factors
Our point of departure is equation (3). We use a discrete approxi-
mation to this equation using yearly changes; i.e. we approximate
dX by �Xt = Xt+1 − Xt. On the basis of this, we construct:

observed change in wage billt = �ln
(

WtLt

Popt

)
;

productivity effectt = �ln
(

Yt

Popt

)
;

composition effectt =
∑
i∈I

(
sL

i,t

sL
t

− 1

)
�χi,t;

price substitution effectt = (1−λ)
∑
i∈I

�i,t

(
1−sL

i,t

)
�ln

(
Wi,t

Ri,t

)
.

Here, Popt denotes the US population in year t, Yt is GDP and
WtLt is the total wage bill, which is an inclusive measure of overall
labour demand and thus our main object of interest. Relative to
equation (3), we are normalizing the wage bill and GDP by popula-
tion to account for population growth during our sample period.
Note also that we are using sector-specific measures of wages
and returns to capital from the US Bureau of Labor Statistics
(Acemoglu and Restrepo 2019).

We take a baseline value for λ of 0.8 (which is in line with
the estimates in Oberfield and Raval (2021)).15 We discuss below
how the overall qualitative and even quantitative implications of
our approach are very similar for different values of λ (see also
the appendix of Acemoglu and Restrepo 2019). Throughout, we
impose ‘no technological regress’, meaning that no component
of θi will become worse over time. Furthermore, in the text, we
start with the assumption that Ai,L/Ai,K in all sectors improves
at the rate of GDP per worker (e.g. by 1.5% a year between 1987
and 2017) so that without any changes in the task content and
capital-augmenting technologies, labour-augmenting technologi-
cal change can account for the entire growth of productivity. We
can then compute the quality substitution effect as

quality substitution effectt = (1−λ)
∑
i∈I

�i,t

(
1 − sL

i,t

)
�ln

(
Ai,L,t/Ai,K,t

)

= 0.015 (1 − λ)
∑
i∈I

�i,t

(
1 − sL

i,t

)
.

Under these assumptions, we can compute an estimate for the
change in task content at the industry level as

change in task contenti,t = (
1 − sL

i

) [
��D

i + �ln�N
i

]

= �lnsL
i,t − (1 − λ)

(
1 − sL

i,t

)

×[(�ln
(
Wi,t/Ri,t

)−(
�ln

(
Ai,L,t/Ai,K,t

)]
.

That is, changes in task content are obtained from the
behaviour of the labour share, once we adjust for the influence of
factor prices and factor-augmenting technologies.

The change in the task content of the entire economy is then
given by

change in task contentt =
∑
i∈I

�i,tchange in task contenti,t.

Using this approach, we can decompose observed changes in
labour demand (wage bill) during any sample period into a pro-
ductivity effect, a composition effect, a change in task content, a
price substitution effect and a quality substitution effect. We now
proceed to apply this decomposition to various sample periods.

We further note that our estimates should be interpreted as
upper bounds for the quality substitution effect (because, in gen-
eral, growth in GDP per worker will be driven not just by labour-
augmenting technological changes) and thus for changes in the
task content of production (meaning that when our estimates
are negative, the actual changes may be even larger). Neverthe-
less, reasonable variations on the magnitude of relative labour-
augmenting technological change have very small effects on our
decomposition results, as we discuss below.

15 The relevant λ in our model is the elasticity of substitution between
capital and labour at the industry level. This tends to be greater than the firm-
level elasticity because of output substitution between firms.
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Figure 2: The labour share and sectoral evolutions, 1987–2017.
Note: The top panel shows the labour share in value added in services, manufacturing, construction, transportation, mining and agriculture between
1987 and 2017, while the bottom panel shows the share of value added in these sectors relative to GDP.
Source: Data from the BEA industry accounts.

6.2. Changes in the task content of production:
1987–2017
Let us start with the most recent 30-year period, 1987–2017, for
which we have detailed data at the sectoral level (and where
we will also be able to relate changes in the task content of
production to measures of automation and creation of new tasks).
For this period, we use data from the Bureau of Economic Analysis
(BEA) for 61 NAICS industries. We start in the top panel of Fig. 2
by presenting the evolution of the labour share at the level of
(roughly) one-digit sectors—for construction, services, transporta-
tion, manufacturing, agriculture and mining. We see a sharp
decline in the labour share for manufacturing and mining, with
much less change for the other industry groupings. The bottom
panel of the figure shows the evolution of the share of value added
of these sectors, highlighting the reallocation of economic activity
away from manufacturing.

The top panel of Fig. 3 reports the implied decomposition for
the entire economy. Several points are worth noting. First, com-
paring this figure with Fig. 10 for the period 1947–87, we see that
overall labour demand grows much more slowly during the more
recent 30 years—its annual growth rate is 1.33% compared with
2.44% between 1947 and 1987. Second, labour demand follows
productivity fairly closely until the late 1990s, so the slow growth

of labour demand in the first half of the sample is in large
part because of the slow growth of productivity. Third, after the
late 1990s, the gap between labour demand and productivity
opens up sharply. Fourth, our estimates of composition and price
substitution effects are quite small (and so are the quantity
substitution effects implied by factor-augmenting technological
changes, which are not shown in the figure). The small magni-
tude of the composition effect is particularly noteworthy because
several popular mechanisms work entirely through sectoral real-
location captured by this composition effect.16 Finally and most
importantly, we see a sizeable decline in the task content of
production, reflecting the fact that production is becoming less
labour-intensive. The figure makes it clear that it is this change in
task content that accounts for the decoupling of labour demand
and productivity after 2000.

The large decline in labour share in manufacturing depicted
in Fig. 2 suggests that changes in the task content of production
in manufacturing may be playing a particularly important role.
To investigate these changes, the bottom panel of the figure

16 These include any effects from international trade in final goods, mech-
anisms emphasizing the Baumol effect (Aghion et al. 2017), and any non-
homotheticities in preferences and structural transformation (Hubmer 2020).
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Figure 3: Sources of changes in labour demand, 1987–2017.
Note: This figure presents the decomposition of labour demand (wage bill) between 1987 and 2017 based on equation (3). The top panel is for the
entire economy and the bottom panel is for the manufacturing sector. In both panels, we assume an elasticity of substitution between capital and
labour equal to λ = 0.8 and relative labour-augmenting technological change at the rate of 1.5% a year.

applies the same decomposition to just manufacturing indus-
tries, with the only difference being that there is now an addi-
tional term corresponding to the price effect, which captures the
movement in the relative price of manufacturing. The results
from this decomposition for manufacturing are similar but even
more pronounced. Notably, during this period, labour demand
in manufacturing exhibits an absolute decline, which is in stark
contrast to what we see in the previous 40 years in Fig. 10. Our
decomposition shows that this is accounted for by sizeable neg-
ative changes in the task content of manufacturing production,
again with a very limited role for composition, price substitution
and quality substitution effects. In addition, during this period
there is no contribution to labour demand from the produc-
tivity effect in manufacturing, reflecting the fact that manu-
facturing output has grown at roughly the same rate as the
rest of the economy, but the relative prices of manufacturing
goods have declined sharply, creating a sizeable negative price
effect.17

Finally, Fig. 4 shows that the pattern of within-manufacturing
changes is similar when we focus on 452 four-digit industries, for
which we estimate our decomposition using data from the BEA
input–output tables for 1977–2007.

17 As pointed out in the previous section, in our framework, rapid automa-
tion can go hand-in-hand with slow productivity growth if new automation
technologies are ‘so-so’, or take place in tasks where the effective wage of
labour is not much higher than the effective cost of capital—hence again
implying little cost-reduction gain from automation.

6.3. Estimating displacement and reinstatement
effects
Under the assumption of no technological regress, negative
changes in the task content of production of an industry indicate
that there is faster automation than creation of new tasks, and
likewise positive changes are evidence of faster creation of new
tasks than automation. We can thus estimate the extent of
displacement (automation) and reinstatement (new task) effects
at the industry level under the additional assumption that when
there is faster automation, there will be no creation of new tasks
in that industry during that same time period, and vice versa.
To reduce the influence of measurement error, here we compute
estimates for displacement and reinstatement effects for 5-year
time windows using the following equations:

displacementt =
∑
i∈I

�i,t min

{
0,

1
5

t+2∑
τ=t−2

change in task contenti,τ

}
;

(4)

reinstatementt =
∑
i∈I

�i,t max

{
0,

1
5

t+2∑
τ=t−2

change in task contenti,τ

}
.

The resulting estimates are depicted in Fig. 5.18 In the top panel,
we see that both the displacement and reinstatement effects are

18 These estimates should be interpreted as ‘lower bounds’ because, within
a 5-year time window, there are likely to be both automation and new tasks
created in some industries, and this procedure only considers the difference
between these two. Indeed, when we analogously estimate displacement and
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Figure 4: Sources of changes in manufacturing labour demand, 1977–2007.
Note: This figure presents the decomposition of labour demand (wage bill) between 1987 and 2007 based on equation (3). The figure uses detailed data
for 452 manufacturing industries from the BEA input–output tables available every 5 years. We assume an elasticity of substitution between capital
and labour equal to λ = 0.8 and relative labour-augmenting technological change at the rate of 1.5% a year.

sizeable, so both automation and new tasks appear to be ongoing
at the industry level at all times. Nevertheless, the displacement
effect is significantly larger, explaining the net negative change in
the task content of production. In the bottom panel, we show the
same decomposition for just manufacturing industries. Now the
displacement effect is considerably larger, plausibly reflecting the
greater extent of automation within manufacturing.19

6.4. Robustness and the role of
factor-augmenting technologies
The patterns reported in the previous two subsections are robust
and fairly insensitive to the assumptions on the elasticity of sub-
stitution and the rate of factor-augmenting technological change
we have imposed. In the appendix of Acemoglu and Restrepo
(2019), we verified that the results are very similar for different
values of the elasticity of substitution (in particular, with λ = 0.6,
λ = 1 and λ = 1.2). They are also very similar when we assume
different rates of factor-augmenting technological changes.

Even more telling is a complementary exercise on the impor-
tance of factor-augmenting technologies we report here; we com-
pute the extent of factor-augmenting technological change at the
industry level that would be necessary to account for the changes
in the labour share we observe without any change in the task
content of technology. These results, depicted in Fig. 6, show that
explaining industry-level changes in labour shares with constant
task content of production would require huge changes in tech-
nology, with TFP growth several-folds larger than what is observed
over the same time period. This again underscores the need for
major changes in the task content of production to account for
the evolution of labour demand during recent decades.

There is a simple reason why the exact rate of factor-
augmenting technological change does not affect the labour
share by much (while at the same time the magnitude of changes
necessary to account for observed task contents is huge). The
formula for the quality substitution effect in equation (3) implies
that a 1% increase in labour-augmenting technologies reduces
the labour share by (1 − λ)

(
1 − sL

i

)
%. This implies a very small

elasticity (between −0.08 and 0.08), given plausible values for the
elasticity of substitution between capital and labour (between 0.8

reinstatement effects at the yearly frequency, these are larger than the 5-year
averaged estimates presented in Fig. 5.

19 Recent papers have applied this methodology to European countries with
comparable results. See Graetz (2019) and Nardis and Parente (2021).

and 1.2) and the observed labour share in most industries (∼60%).
Thus, only very large changes in technology—accompanied
by sizeable changes in TFP—can move industry–labour shares
meaningfully.

6.5. What does the change in task content
capture?
As we are computing the change in task content as a residual, a
natural concern is that it corresponds to something completely
different from the displacement and reinstatement effects. In
this subsection, we provide suggestive evidence to support our
interpretation. We show that our measure of change in task
content at the industry level is correlated negatively with several
measures of the introduction of automation technologies, and
positively with some proxies of new tasks.

The results are presented in Figs 7 and 8, and in Table 1.20

Figure 7 provides the bivariate cross-industry associations
between change in task content 1987–2017 and proxies for
industry-level automation technologies. The first one is the
adjusted penetration of robots measure from Acemoglu and
Restrepo (2020a) for our 61 industries (matched to 19 industries
as classified by the International Federation of Robotics). A strong
negative correlation is visible in the top-left panel, and Table 1
verifies this relationship. The coefficient estimate is −1.40 (SE
= 0.38) and this variable accounts for 18% of cross-industry
variation in change in task content. The second column of the
table confirms that this relationship is not driven by the contrast
of manufacturing to non-manufacturing sectors; the coefficient
estimate is similar, −0.99 (SE = 0.37), when we control for a
manufacturing dummy. The third column further controls for
import competition from China (Autor et al. 2013) and for the
extent of offshoring (Feenstra and Hanson 1999), with very similar
results.21 Because industrial robots are a clear and important
exemplar of automation technologies, this negative association is
reassuring for our interpretation.

The top-right panel uses a broader measure of the potential
for automation technologies. Acemoglu and Autor (2011) measure
the share of routine jobs in our 61 industries using their distribu-

20 Further details on all of the variables discussed in this subsection are
provided in the appendix of Acemoglu and Restrepo (2019).

21 This reflects the fact that import competition from China does not
predict changes in the task content of production, which is noteworthy in and
of itself. Instead, imports from China affect aggregate labour demand via the
composition and productivity effects (Acemoglu and Restrepo 2019).
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Figure 5: Estimates of the displacement and reinstatement effects, 1987–2017.
Note: This figure presents our baseline estimates of the displacement and reinstatement effects based on equation (4). The top panel is for the entire
economy and the bottom panel is for the manufacturing sector. In both panels, we assume an elasticity of substitution between capital and labour
equal to λ = 0.8 and relative labour-augmenting technological change at the rate of 1.5% a year.

Figure 6: Counterfactual TFP changes.
Note: This figure presents the counterfactual TFP changes that would be implied if our estimates of the displacement and reinstatement effect in
1987–2017 were accounted for by industry-level changes in labour-augmenting and capital-augmenting technological changes alone, respectively. For
comparison, the figure also reports the observed increase in TFP for both periods. We assume an elasticity of substitution between capital and labour
equal to λ = 0.8.

tion of employment across occupations in 1990. There is a similar
negative relationship, even conditioning on covariates.

The bottom-left panel uses measures of other automation
technologies from the Survey of Manufacturing Technologies
(SMT) for 1988 and 1993 (specifically the share of firms using
automation technologies). These technologies include automatic
guided vehicles, automatic storage and retrieval systems, sensors
on machinery, computer-controlled machinery, programmable

controllers and industrial robots (see Doms et al. 1997). These
technology measures are available only for 148 ‘technology-
intensive’ manufacturing industries (which are all part of the
two-digit manufacturing industries: fabricated metal products,
industrial machinery, electronics, transportation equipment and
controlling instruments). This panel therefore uses estimates of
changes in task content for 1987–2007 for these 148 more detailed,
four-digit SIC industries. There is once again a strong negative
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Figure 7: Automation technologies, offshoring and changes in the task content of production.
Note: Each panel presents the bivariate relationship at the industry level between change in task content and the indicated proxy for automation
technologies or offshoring. Diamond markers designate manufacturing industries and circles denote non-manufacturing industries. The proxies are:
adjusted penetration of robots, 1993–2014 (from Acemoglu and Restrepo (2018)), share of employment in routine occupations in 1990 (Acemoglu and
Autor 2011), share of firms (weighted by employment) using automation technologies, from the 1988 and 1993 SMT and exposure to imports of
intermediate goods (from Feenstra and Hanson (1999)). See text for details.

association, which is confirmed in Table 1. Finally, the bottom-
right panel shows a similar negative relationship for offshoring,
which could create the same type of displacement as automation.

We next turn to proxies for new tasks. Even though these
are almost certainly less well measured than our proxies for
automation, Fig. 8 shows strong and very suggestive correlations
between our measures of new tasks and the task content of
reduction (especially reinstatement). The top-left panel uses the
share of new job titles from the 1991 Dictionary of Occupational
Titles as compiled by Lin (2011), which we then project to our
61 industries, again using their employment distribution across
occupations in 1990. As expected, there is a positive correlation
between this measure of new tasks and change in task content,
and the relevant coefficient estimate is 1.60 (SE = 0.52).

Table 1 shows that this relationship is essentially unchanged
when we control for manufacturing, imports from China and
offshoring. The top-right panel uses a related proxy based on
‘emerging tasks’ as classified by the Occupational Information
Network (O∗NET) projected to industries. The results are similar
and equally strong. The two bottom panels use two measures of
increased occupational diversity in an industry with very similar
results. The first is the share of employment growth in an industry
accounted for by ‘new occupations’ defined as four-digit occupa-
tions appearing for the first time in that industry in 2016, while the
second is the percentage increase in the number of occupations
in an industry between 1990 and 2016.

These patterns suggest that our measure contains valuable
information about changes in task content of production and

also support the interpretation that the rapid displacement effect
of the last 3 decades is related to the introduction of modern
automation technologies such as industrial robots and computer
numerical control.

6.6. Changes in the task content of production:
1947–87 and 1850–1910
We next turn to the 4 decades following World War II, 1947–
87. For this period, we have data for 60 SIC industries. Figure 9
shows changes in the labour share and value-added distribution
for the same six sectors as in Fig. 2. Particularly noteworthy is
that there are no significant changes in the labour share for any
of these industries. Figure 10 depicts the observed changes in
labour demand together with our decomposition, separately for
the whole economy and for the manufacturing sector.22 During
this period, labour demand grew more rapidly than in the last
30 years (notice that the vertical scale here is different than in
Fig. 3). Our decomposition shows that there is a more robust pro-
ductivity effect and a tighter relationship between labour demand
and productivity during this time period. This more pronounced
productivity effect underscores our conceptual conclusion that
rapid productivity growth is an important contributor to growth
in labour demand, even if it comes from automation technologies.

22 We now assume that AL
i,t/AK

i,t grows at 2% a year to match the growth of
GDP per worker during the sample period. The results are similar if we continue
to assume an annual growth of 1.5%.
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Figure 8: New tasks and change in task content of production.
Note: Each panel presents the bivariate relationship at the industry level between change in task content and the indicated proxy for new tasks.
Diamond markers designate manufacturing industries and circles denote non-manufacturing industries. The proxies are: share of new job titles (from
Lin 2011), number of emerging tasks (from O∗NET), share of employment growth between 1990 and 2016 in ‘new occupations’ (i.e. those that were not
present in the industry in 1990) and the percentage increase in the number of occupations present in the industry between 1990 and 2016. See text for
details.

Also noteworthy is the steady growth of labour demand in manu-
facturing, at least until the 1980s, which contrasts with its sharp
contraction after the late 1990s in Fig. 3. Furthermore, consistent
with the stable patterns of the labour share during this period, the
change in the task content is small both for the entire economy
and for manufacturing. Figure 11 confirms that this is because
the displacement effect is more limited (0.5% per year compared
with 0.66% per year in the later period, as shown in Fig. 5), and
the reinstatement effect is more sizeable during this period than
in the last 30 years (0.5% per year compared with 0.4% in the later
period).23

Finally, we turn to the period 1850–1910, which witnessed rapid
automation of a range of manual tasks in the context of the
mechanization of agriculture. Figure 12 reports results from an
analogous exercise during this period, but using only variation
between agriculture and industry from data reported in Budd
(1960). Because we do not have information on factor prices at
the industry level for this period, in this figure we are forced to
impose λ = 1, thus setting the quality and price substitution
effects equal to zero. During this critical period of mechanization
of agriculture, we see a decline in the labour share of agriculture—
a telltale sign of automation in that sector—but a corresponding
large increase in the labour share in industry. As a result, the
change in the task content of production of the overall economy,
though negative, is not very large. Our decomposition suggests
that this in turn reflects the fact that the displacement effect in

23 These results are similar for different values of the elasticity of substitu-
tion and different assumed rates of factor-augmenting technological changes
(Acemoglu and Restrepo 2019).

agriculture is being counterbalanced by a powerful reinstatement
effect in manufacturing. In addition, in this case we estimate a
composition effect that is somewhat larger, and this plausibly
captures the sizeable reallocation of labour away from agriculture
towards the more labour-intensive (manufacturing) industry.

The patterns reported in this subsection thus contrast with
those of the last 3 decades and highlight the fact that the major
difference setting the recent period apart from other epochs
is not just the more anemic productivity effect but a sizeable
displacement effect driven by automation and the absence of a
powerful, countervailing reinstatement effect.

6.7. Summary of direct evidence
We have so far discussed how changes in displacement (due to
automation) and reinstatement (due to the introduction of new
tasks) can be inferred from data. We then depicted the evolution
of these quantities in the USA over the last 70 years and provided
evidence that our measures capture the relevant underlying eco-
nomic concepts. In addition, the framework we have developed
can also be used as the basis of empirical work directly estimating
the effects of automation technologies (and new tasks, though
there is much less work on estimating the impact of new tasks).

Here, we briefly discuss two lines of work. The first investi-
gates the effects of automation technologies at the firm level.
We pursued this strategy using detailed data on robot adoption
in French manufacturing in Acemoglu et al. (2020b). The main
prediction of our conceptual framework is that the adoption of
automation technologies—in this instance, industrial robots—
should be associated with a significant decline in the labour share
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Table 1: Relationship between change in task content of production and proxies for automation and new
tasks.

Bivariate relationship Controlling for
manufacturing

Controlling for Chinese
import and offshoring

(1) (2) (3)

Proxies for automation technologies:
Adjusted penetration of robots, 1993–2014 −1.404 −0.985 −1.129

(0.377) (0.369) (0.362)
Observations 61 61 61
R2 0.18 0.21 0.27

Share of routine jobs in industry, 1990 −0.394 −0.241 −0.321
(0.122) (0.159) (0.164)

Observations 61 61 61
R2 0.14 0.19 0.27

Detailed manufacturing industries (SMT):
Share of firms using automation −0.390 −0.397
technologies, 1988–93 (0.165) (0.166)
Observations 148 148
R2 0.08 0.09

Proxies for new tasks:
Share of new job titles, based on 1991 DOT 1.609 1.336 1.602
and 1990 employment by occupation (0.523) (0.530) (0.541)
Observations 61 61 61
R2 0.12 0.23 0.32

Number of emerging tasks, 8.423 7.108 7.728
based on 1990 employment by occupation (2.261) (2.366) (2.418)
Observations 61 61 61
R2 0.14 0.25 0.33

Share of growth between 1990 and 2016 2.121 1.638 1.646
in occupations not in industry in 1990 (0.723) (0.669) (0.679)
Observations 61 61 61
R2 0.08 0.20 0.26

Percent increase in number of occupations 0.585 0.368 0.351
represented in industry (0.156) (0.207) (0.215)
Observations 61 61 61
R2 0.14 0.19 0.25

Note: The table reports estimates of the relationship between the change in task content of production between 1987 and
2017, and proxies for automation technologies and new tasks. Column 1 reports estimates of the bivariate relationship
between change in task content of production and the indicated proxy at the industry level. Column 2 includes a dummy for
manufacturing industries as a control. In addition, Column 3 controls for the increase in Chinese imports (defined as the
increase in imports relative to US consumption between 1991 and 2011, as in Acemoglu et al. 2016) and the increase in
offshoring (defined as the increase in the share of imported intermediates between 1993 and 2007, as in Feenstra and Hanson
(1999)). Except for the panels using the SMT, all regressions are for the 61 industries used in or analysis of the 1987–2017
period. When using the SMT, the regressions are for 148 detailed manufacturing industries. Standard errors robust against
heteroscedasticity are given in parentheses. When using the measure of robot penetration, we cluster standard errors at the
19 industries for which this measure is available.

of value added. This is what Acemoglu et al. (2020a) find. In French
manufacturing, growth adoption is associated with about a four
percentage point decline in the labour share.

What about effects on employment? The impacts of robot
adoption on employment (and wages) at the firm level can be
very different from those characterized here. At the economy
or industry level, as we have seen, labour demand responds
to automation via a displacement effect that is negative and a
productivity effect that is positive. At the firm level, there is an
additional channel at work: a firm that adopts robots reduces
its marginal cost and thus can expand at the expense of its
competitors. The appendix of Acemoglu et al. (2020a) develops
an extended model that incorporates this ‘competition effect’.
Empirically, they report significant increases in sales, value added
and employment among firms adopting robots. However, this is
accompanied by even larger declines in firms competing with
these robot-adopters. Combining these two opposing effects, they

find that the total impact on industry employment is negative and
similar to industry-level estimates in the USA.24

The second strategy is developed and pursued in Acemoglu
and Restrepo (2020a), and aims at estimating the local equilibrium
effects of automation. In particular, this local equilibrium effect
incorporates the displacement of workers due to automation as
well as the creation of jobs in other tasks due to productivity ben-
efits (cost reductions) brought about by automation. Acemoglu
and Restrepo (2020a) consider a multi-industry version of the
framework developed here and prove that local employment and
wage effects of adoption of automation technologies (again, in

24 There are several other papers using this firm-level strategy with data
from other countries. Most notably, Dinlersoz and Wolf (2018), Bessen et al.
(2019), Bonfiglioli et al. (2020), Humlum (2020) and Koch et al. (2021) find
patterns that are broadly consistent with those discussed here. Graetz and
Michaels (2018) use a related empirical strategy, focusing on cross-industry and
cross-country variation. They find lower labour shares associated with robot
adoption as well, and negative employment effects for unskilled workers.
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Figure 9: The labour share and sectoral evolutions, 1947–87.
Note: The top panel shows the labour share in value added in services, manufacturing, construction, transportation, mining and agriculture between
1947 and 1987, while the bottom panel shows the share of value added in the sectors relative to GDP.

this instance, industrial robots) can be estimated by linking local
employment and wage outcomes to a measure of ‘exposure to
robots’. This measure of exposure to robots, for a local labour
market/commuting zone c, is computed as

exposure to robotsc =
∑
i∈I

�ci· APRi,

where �ci is the ‘baseline share’ of industry i in commuting zone
c, and APRi is the ‘adjusted penetration of robots’ in industry i.25

Thus, this is a simple Bartik measure combining industry-level
variation in the usage of robots and baseline employment shares.
The adjusted penetration of robots, APRi, measures how much
robot adoption has been going on in that particular industry, but
adjusted to account for the overall expansion in the output of
an industry (which would normally increase the use of inputs).
Because variation in US industries is likely to be endogenous

25 Namely, this measure is defined as

APRi = dRobotsi

Li
− dYi

Yi

Robotsi

Li
,

where the last term is a correction factor for the increase in the number of
robots per worker that would be implied by the expansion of the industry’s
value added.

to a variety of other factors that might affect labour demand,
Acemoglu and Restrepo (2020a) compute this measure from
robot adoption in several European economies that are somewhat
ahead of the USA in terms of use of robotics in manufacturing.

Their estimates using data from 722 commuting zones in the
USA show precisely estimated and sizeable (but not huge) nega-
tive employment and wage effects from the adoption of robots. For
example, the adoption of one more industrial robot per 1000 work-
ers in a commuting zone is associated with a 0.38 percentage point
decline in employment to population ratio and a 0.71% decline
in average wages relative to a commuting zone with no increase
in robots (though the effects, once we take national adjustments
into account, are somewhat less). In terms of the framework in
their paper (and here), this is because the displacement effects
are larger than the productivity effects. Acemoglu and Restrepo
(2020a) document that these results are robust, they are not
driven by other changes in technology, trade or offshoring, have no
equivalent in the period before 1990 (before robots started being
adopted in large numbers in US industry) and have been driven
by declines in blue-collar occupations and especially in industries
most exposed to robotics.26

26 Dauth et al. (2021) adopt the same strategy in Germany. They estimate
declines in manufacturing employment but not in overall employment across
German regions.
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Figure 10: Sources of changes in labour demand, 1947–87.
Note: This figure presents the decomposition of labour demand (wage bill) between 1947 and 1987 based on equation (3). The top panel is for the
entire economy and the bottom panel is for the manufacturing sector. In both panels, we assume an elasticity of substitution between capital and
labour equal to λ = 0.8 and relative labour-augmenting technological change at the rate of 2% a year.

Overall, our conceptual framework lends itself to various
different types of empirical strategies, and several of these
avenues have already been used fruitfully. Most of this work
indicates that the task-based approach provides a useful set
of lenses to understand the effects of new technologies on the
labour market. It also confirms that automation technologies
create large displacement effects, which typically outweigh their
productivity benefits, thus reducing labour demand—in stark
contrast to the common presumption based on the standard
framework in which new technologies typically tend to benefit
labour.

7. Displacement, reinstatement and
inequality
We now return to a discussion of inequality, linking the measures
of displacement and reinstatement estimated in the previous
section to the demand for skills. Our main objective is to uncover
the statistical association between changes in task content of
production—due to automation and new tasks—and the demand
for skills.

7.1. Displacement, reinstatement and industry
demand for skills
Using the industry-level measures of displacement and reinstate-
ment obtained in the previous section, we estimate the following

model separately for the same two subperiods:

�demand for skillsi = βddisplacementi + βrreinstatementi + εi.
(5)

Here, �demand for skillsi (i.e. our measure of industry-level
increase in the demand for skills) is the change in the log of
the college wage bill relative to the high school wage bill in each
industry during the relevant period. All regressions are weighted
by the average share of the aggregate wage bill accounted by the
industry during the period. Regression results are presented in
Table 2, and we also depict them visually in Fig. 13.

Figure 13 summarizes the most important patterns. It shows a
strong association between industry-level demand for skills and
our measures of displacement (due to automation) and reinstate-
ment (due to new tasks). During both subperiods, displacement is
associated with increases in the demand for skills of the industry,
though displacement changes are larger and the relationship
becomes steeper in 1987–2016, shown in Panel (b). A 10% increase
in displacement during 1987–2016 is associated with an increase
of 8% in the relative demand for college workers (SE = 0.015). This
estimate implies that displacement alone explains ∼30% of the
variation in the demand for skills across industries during this
period. We also note that the 0.55% increase in displacement per
annum at the aggregate level during this period could account
for an increase of as much as 0.44% in the demand for college
skills (out of an estimated shift in the relative demand of 2.4 per
annum; see Acemoglu and Autor 2011). As commented above, this
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Figure 11: Estimates of the displacement and reinstatement effects, 1947–87.
Note: This figure presents our baseline estimates of the displacement and reinstatement effects based on equation (4). The top panel is for the entire
economy and the bottom panel is for the manufacturing sector. In both panels, we assume an elasticity of substitution between capital and labour
equal to λ = 0.8 and relative labour-augmenting technological change at the rate of 2% a year.

large effect on the demand for skills can happen with minimal
changes in TFP. For example, when π = 30% (consistent with
the evidence in Acemoglu and Restrepo (2020a)), this substantial
increase in the relative demand for college skills is consistent with
new technologies increasing TFP by as little as 0.16% per annum
between 1987 and 2016.

Figure 13c and d depict the relationship between reinstatement
and the demand for skills. Greater reinstatement is associated
with lower demand for skills during 1947–87, presumably because
unskilled labour had a comparative advantage in many of the new
tasks introduced during this period. In contrast, reinstatement
goes hand-in-hand with greater demand for skills in 1987–2016,
which we interpret as new tasks being allocated more to skilled
workers during the last 3 decades. Our estimates suggest that
during this latter period, an increase of 10% in reinstatement is
associated with a 7% increase in the relative demand for college
workers (SE = 0.035).

Table 2 provides more details on relationships summarized in
Fig. 13. Panels A–C provide estimates for 1947–87 and Panels D–F
provide estimates for 1987–2016. In Panels A and D, we use the
wage bill of college workers relative to high school workers as our
measure for the demand for skills in an industry. In Panels B and E,
we use the hours worked by college workers relative to high school
workers as our measure for the demand for skills in an industry.
In Panels C and F, we use the number of college workers relative
to high school workers as our measure for the demand for skills in
an industry. Columns 1–3 present estimates of equation (5) for all

workers, and columns 4–7 present estimates separately for men,
women and workers in different age groups.

Tables 3 and 4 provide estimates using alternative measures of
changes in the task content of industries and the resulting mea-
sures of displacement and reinstatement. For this exercise, we use
relative wage bill (columns 1–3) and relative hours (columns 4–6)
as our measures of skill demand. Table 3 focuses on the 1947–
87 period. Panel A provides results obtained by setting λ = 1 in
our computation of the displacement and reinstatement effects,
instead of λ = 0.8 as in the baseline estimates in Table 2. Panel
B reverts to λ = 0.8, but we now use a 10-year moving average,
rather than a 5-year moving average in our calculation of the
displacement and reinstatement effects. Finally, in Panel C, we
implement both changes simultaneously.

Table 4 focuses on the 1987–2016 period. Panel A provides
results obtained by setting λ = 1 in our computation of the
displacement and reinstatement effects. Panel B reverts to λ =
0.8, but we now use a 10-year moving average, rather than a 5-
year moving average in our calculation of the displacement and
reinstatement effects. In Panel C, we implement both changes
simultaneously. In Panels D–F, we repeat these exercises, but now
we use data from the BEA KLEMS accounts for 1987–2016. These
data provide the labour share for each industry inclusive of self-
employment.

Overall, the results in Tables 2, 3 and 4 confirm the patterns we
see visually in Fig. 13. Automation is associated with significant
declines in the demand for skills in both periods, regardless of the
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Figure 12: Labour share and sectoral evolutions during the mechanization of agriculture, 1850–1910.
Note: The top panel shows the labour share in value added in industry (services and manufacturing) and agriculture between 1850 and 1910, while the
bottom panel shows the share of value added in these sectors relative to GDP.
Source: Data from Budd (1960).

specification or measure we use (and for different subgroups, such
as men, women and younger workers). Reinstatement between
1947 and 1987 is associated with lower demand for skills, whereas
between 1987 and 2016, it is associated with higher demand for
skills. This pattern is robust as well. One additional finding is
worth noting: even between 1947 and 1987, reinstatement does
not appear to increase the demand for unskilled men by much,
likely reflecting the fact that less-skilled women may have been
the ones with comparative advantage in new tasks introduced
during this period. We do not know why the reinstatement effect
has become more favourable to skill workers during the last
30 years. One possibility is that many new tasks have been intro-
duced in more skill-intensive sectors, which is consistent with
the fact that there is very little reinstatement in manufacturing
(as shown in the bottom panel of Fig. 5). Another possibility is
that various institutional and other changes have made firms
and researchers completely turn away from workers without
college degrees, and thus firms have also been discouraged from
introducing new tasks complementary to these workers.

What do these findings imply for the demand for skills, and
hence for the increase in labour market inequality? To shed some
light on this question, we now perform a very simple counterfac-
tual exercise. We compute what the demand for skills in the USA
would have been between 1987 and 2016 if: (1) displacement did

not accelerate from the earlier period, 1947–87; (2) reinstatement
did not decelerate again from 1947–87; and (3) the effect of
reinstatement on the demand for skills remained the same as in
1947–87. Performing these exercises, out of the 35% increase in the
skill premium between 1987 and 2016, we find that: (1) accounts
for a 3.5% increase in the demand for skills, (2) accounts for a
3% increase in the demand for skills and (3) accounts for a 12%
increase in the demand for skills.

7.2. Summary of direct evidence
More direct evidence on the importance of automation and
changes in the task content of production for inequality is
provided in Acemoglu and Restrepo (2022), who extend the
framework presented here to include many types of labour
and a richer menu of technologies.27 The main conceptual
breakthrough of that paper is to derive a simple equation linking
the real-wage change of a group of workers (interpreted as a
different factor of production that is imperfectly substitutable to
other groups) to the task displacement it experiences. This task
displacement is in turn predicted to be related to the baseline

27 This paper in turn builds on Autor et al. (2003), who provided the first
evidence that automation of routine jobs was an important factor in the
changes in the demand for skills in the USA.
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Table 2: Changes in task content and relative demand for skills, 1947–87 and 1987–2016.

All employees Men Women Aged 25–34 Aged 35–64

(1) (2) (3) (4) (5) (6) (7)

Panel A: college wage bill relative to high school wage bill, 1947–87
Displacement 0.504 0.470 0.108 0.384 0.764 0.293

(0.193) (0.184) (0.352) (0.423) (0.225) (0.273)
Reinstatement −0.585 −0.546 0.023 −0.639 −0.594 −0.544

(0.306) (0.278) (0.482) (0.501) (0.430) (0.261)
Observations 44 44 44 44 44 44 44
R2 0.06 0.06 0.12 0.00 0.05 0.08 0.07

Panel B: college hours relative to high school hours, 1947–87
Displacement 0.686 0.644 0.315 0.458 0.738 0.608

(0.219) (0.165) (0.301) (0.401) (0.252) (0.194)
Reinstatement −0.723 −0.670 −0.361 −0.630 −0.707 −0.633

(0.343) (0.304) (0.431) (0.434) (0.463) (0.234)
Observations 44 44 44 44 44 44 44
R2 0.09 0.08 0.16 0.04 0.07 0.11 0.15

Panel C: college employees relative to high school employees, 1947–87
Displacement 0.873 0.834 0.587 0.536 0.941 0.769

(0.204) (0.158) (0.323) (0.337) (0.224) (0.206)
Reinstatement −0.697 −0.629 −0.368 −0.575 −0.596 −0.644

(0.352) (0.292) (0.363) (0.415) (0.422) (0.256)
Observations 44 44 44 44 44 44 44
R2 0.15 0.07 0.21 0.09 0.07 0.15 0.17

Panel D: college wage bill relative to high school wage bill, 1987–2016
Displacement 0.800 0.764 1.053 1.061 0.353 0.947

(0.152) (0.159) (0.288) (0.247) (0.209) (0.186)
Reinstatement 0.707 0.483 0.299 0.299 0.850 0.390

(0.348) (0.340) (0.401) (0.506) (0.391) (0.384)
Observations 44 44 44 44 44 44 44
R2 0.31 0.06 0.34 0.34 0.40 0.16 0.37

Panel E: college hours relative to high school hours, 1987–2016
Displacement 0.558 0.520 0.754 0.778 0.185 0.697

(0.137) (0.141) (0.220) (0.227) (0.179) (0.169)
Reinstatement 0.658 0.506 0.196 0.404 0.768 0.431

(0.310) (0.317) (0.329) (0.431) (0.349) (0.371)
Observations 44 44 44 44 44 44 44
R2 0.19 0.07 0.22 0.29 0.33 0.12 0.25

Panel F: college employees relative to high school employees, 1987–2016
Displacement 0.546 0.514 0.696 0.793 0.257 0.657

(0.134) (0.135) (0.195) (0.214) (0.154) (0.166)
Reinstatement 0.582 0.431 0.100 0.345 0.540 0.450

(0.326) (0.325) (0.335) (0.409) (0.323) (0.376)
Observations 44 44 44 44 44 44 44
R2 0.19 0.05 0.22 0.29 0.34 0.11 0.24

Note: The table provides regression estimates of changes in the relative demand for skills across industries on measures of displacement
and reinstatement. The appendix in Acemoglu and Restrepo (2020b) provides a description of the construction of these explanatory
variables. Panels A–C provide estimates for 1947–87. Panels D–F provide estimates for 1987–2016. Each panel uses a different measure of
changes in the relative demand for skills across industries. Panels A and D use the change in the log of the college wage bill relative to the
high school wage bill in each industry as outcome. Panels B and E use the change in the log of college hours relative to high school hours in
each industry as outcome. Panels C and F use the change in the log of the number of college employees relative to high school employees in
each industry as outcome. In columns 1–3, the measures of changes in relative demand for skills are computed for all employed in an
industry; in column 4, only for men; in column 5, only for women; in column 6, for employees aged 25–34 years; and in column 7, for
employees aged 35–64 years. Standard errors robust against heteroscedasticity are given in parentheses.

distribution of employment of this demographic group across
different industries and different types of jobs (in particular,
routine vs non-routine occupations) and the overall amount of
automation and task content change experienced by the industry
in question.28

Acemoglu and Restrepo (2022) then estimate this new wage
equation in the USA between 1980 and 2016. Their results indicate

28 More precisely, this relationship is d ln wg = controls +
β· task displacementg, where

task displacementg = ∑
g∈G ωi

g·
(
ωR

gi/ω
R
i

)
· (−d ln sL

i

)
.

that between 50 and 70% of all changes in the US wage struc-
ture are directly related to automation-related changes in task
displacement. These relationships are robust to changes in speci-
fication, to focusing on subperiods and to the inclusion of various

In this expression, ωi
g is the share of wages earned by workers of group g in

industry i, d ln sL
i is the change in the labour share of industry i, which is related

to automation (or this could be replaced by direct measures of industry-level
automation) and ωR

gi/ω
R
i measures the relative specialization of group g in

industry i’s routine jobs, where displacement takes place.
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Figure 13: Change in relative demand for skills 1947–87 and 1987–2016 versus displacement and reinstatement.
Note: Relative demand for skills is measured as the log of the college wage bill relative to the high school wage bill. See the appendix of Acemoglu and
Restrepo (2020b) for details and derivation of the estimates for displacement and reinstatement.

controls. Other factors, related to direct measures of skill-biased
technological change, import competition from China, other types
of technologies, changes in markups and economic concentra-
tion and de-unionization appear to be much less important. For
example, according to their estimates, the reason why young men
without a high school degree have experienced a 15% real-wage
decline since 1980 is because they were concentrated in various
routine occupations in manufacturing, mining, retail and whole-
sale industries. It is exactly these industries that experienced the
largest declines in labour share or the most pronounced adoption
of automation technologies, and these developments reduced the
demand for labour for workers specializing in tasks that can
be automated in these industries—proxied by routine occupa-
tions. Another implication of these findings is that previous work
inferred a major role for SBTC (technologies increasing the relative
productivity of more educated workers) precisely because it did
not incorporate task displacement. Once we include an estimate
of the effects of task displacement, we find no additional role for
SBTC for college versus high school, though there is still some
additional growth of post-graduate earnings, most likely reflect-
ing their complementary skills to some of these technologies and
perhaps winner-takes-all dynamics in some occupations.

Acemoglu and Restrepo (2022) also develop an extended
framework in which general equilibrium interactions triggered
by automation can be estimated. Briefly, these interactions
incorporate both the productivity effects that are common across
groups (and thus go into the constant term) and the ‘ripple effects’
that are created as one group is displaced from the tasks in which
it has a comparative advantage and starts competing with other
demographic groups for tasks in which they have secondary

comparative advantage. We estimate that these ripple effects
also contribute significantly to changes in the US wage structure.
Productivity effects are important as well, but do not change the
fact that automation leads to significant real-wage declines for
groups who are experiencing task displacement.

8. Conclusion and implications for future
work
This article has reviewed the task-based approach to production,
capital–labour substitution and inequality. We have argued that
this framework has better microfoundations and provides a more
powerful and empirically accurate description of how technolo-
gies impact production in practice. Equally importantly, it leads
to a range of new comparative statics (in particular, about when
and how new technology will reduce labour demand, employment
and wages) and to new empirical strategies. After reviewing some
of these conceptual underpinnings, we have shown how this
framework can be estimated and some of its basic economic
objects can be inferred from data.

Most importantly, this framework and our past empirical work
suggest that much of the decline in labour share in value added
and slowdown of wage growth (and employment growth) in the
USA is due to an acceleration in the adoption of automation
technologies. It is not only that there has been a lot of automation.
We also find that the introduction of new tasks and the associated
reinstatement of labour has slowed down. We also estimate
that automation technologies and the task displacement they
generate account for the bulk—up to 70%—of all changes in US
wage structure.
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Table 3: Robustness to measures of task content, 1947–87.

College wage bill relative to College hours relative to
high school wage bill high school hours

(1) (2) (3) (4) (5) (6)

Panel A: BEA data with λ = 1 and 5-year moving averages
Automation 0.447 0.446 0.647 0.646

(0.207) (0.161) (0.249) (0.165)
Reinstatement −0.484 −0.483 −0.580 −0.578

(0.226) (0.205) (0.256) (0.228)
Observations 44 44 44 44 44 44
R2 0.06 0.07 0.13 0.10 0.08 0.18

Panel B: BEA data with λ = 0.8 and 10-year moving averages
Automation 0.536 0.410 0.774 0.624

(0.224) (0.219) (0.220) (0.183)
Reinstatement −0.660 −0.595 −0.806 −0.708

(0.265) (0.262) (0.303) (0.294)
Observations 44 44 44 44 44 44
R2 0.04 0.09 0.11 0.07 0.11 0.16

Panel C: BEA data with λ = 1 and 10-year moving averages
Automation 0.488 0.352 0.759 0.601

(0.235) (0.204) (0.245) (0.190)
Reinstatement −0.577 −0.529 −0.698 −0.618

(0.203) (0.200) (0.230) (0.224)
Observations 44 44 44 44 44 44
R2 0.04 0.10 0.12 0.08 0.12 0.17

Note: The table provides regression estimates of changes from 1947 to 1987 in the relative demand for skills across industries
on measures of displacement and reinstatement. The appendix in Acemoglu and Restrepo (2020b) provides a description of
the construction of these explanatory variables. Columns 1–3 use the change in the log of the college wage bill relative to the
high school wage bill in each industry as outcome. Columns 4–6 use the change in the log of college hours relative to high
school hours in each industry as outcome. Each panel presents results for a different construction of the displacement and
reinstatement measures, as explained in the appendix in Acemoglu and Restrepo (2020b). Standard errors robust against
heteroscedasticity are given in parentheses.

Empirical work on this approach is still in its infancy, and
many directions of fruitful research are open. Most importantly,
exercises similar to those reported here can be carried out with
data from other economies, which would be very useful, both
to validate the patterns found in US data and to start provid-
ing a comparative perspective on the effects of task displace-
ment. There is also much more that can be done with micro-
data on robots and other technology adoption. Most importantly,
both additional reduced-form and structural approaches to how
automation technologies affect competition between different
firms—and via this channel affect productivity, labour demand
and inequality—are important new horizons for this research.

There are several new areas for theoretical research as well.
Most importantly, our evidence suggests that there has been a
marked shift in the nature of technological progress towards
much greater automation and much less reinstatement over the
last 3 decades. Why this has happened is still poorly understood.
Acemoglu and Restrepo (2018) provide a framework in which the
direction of technological change—whether it automates or intro-
duces new tasks—is endogenous. This framework reveals several
economic forces that can affect the direction of technology (factor
supplies, new breakthroughs affecting the innovation possibilities
frontier, but also labour market institutions, distortions, taxes
and research fads). While they show that under some condi-
tions the long-run equilibrium may feature balanced advances
in automation and new tasks, the equilibrium is in general not
efficient, and may feature excessive automation. For example, the
presence of labour market distortions that increase equilibrium
wages above the social opportunity cost of labour implies that
the equilibrium direction of technology will be biased towards too
much automation.

Acemoglu et al. (2020a) argue, in addition, that US tax policy
has created an inefficient bias towards automation—by taxing
labour much more than capital, especially capital involved in
automation, such as equipment and software. Whether the same
is true for other industrialized economies is a question that
requires further investigation. Even in the US context, much more
can be done to estimate the implications of tax-induced changes
in the direction of technology adoption and innovation.

Another interesting direction for future work is to explore
the joint determination of rent-sharing and the task content of
production. Bargaining or other sources of rent-sharing will be
influenced by automation or even the threat of automation. In
turn, high-rent tasks or workers may be more attractive targets for
automation. The form of bargaining—and the power of unions—
may also determine how easy it is for firms to automate certain
tasks. There is little theoretical work and even less empirical work
on these issues, and they may be important both for understand-
ing changes in the direction of technological change in recent
decades and the efficiency and distributional implications of
these changes.

Equally important might be the direction of innovations when
it comes to artificial intelligence (AI). AI is a broad technolog-
ical platform that can be used for automation or for creating
new labour-complementary tasks. Acemoglu and Restrepo (2020c)
have argued that AI research has been inefficiently biased towards
automation. In addition to the effects of tax policy and labour
market imperfections, they have emphasized the business models
of Big Tech companies and the ‘values’ and ‘fads’ in the AI
industry. Acemoglu et al. (2022) provide some preliminary evi-
dence that AI adoption has been targeted at replacing certain
well-defined human tasks. This work, of course, does not deny
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Table 4: Robustness to measures of task content, 1987–2016.

College wage bill relative to College hours relative to
high school wage bill high school hours

(1) (2) (3) (4) (5) (6)

Panel A: BEA data with λ = 1 and 5-year moving averages
Automation 0.620 0.535 0.412 0.335

(0.138) (0.154) (0.120) (0.136)
Reinstatement 0.931 0.606 0.755 0.551

(0.333) (0.350) (0.301) (0.329)
Observations 44 44 44 44 44 44
R2 0.23 0.12 0.27 0.12 0.10 0.17

Panel B: BEA data with λ = 0.8 and 10-year moving averages
Automation 0.773 0.928 0.500 0.645

(0.153) (0.210) (0.131) (0.188)
Reinstatement 0.122 0.873 0.296 0.818

(0.516) (0.522) (0.424) (0.466)
Observations 44 44 44 44 44 44
R2 0.22 0.00 0.27 0.11 0.01 0.17

Panel C: BEA data with λ = 1 and 10-year moving averages
Automation 0.630 0.807 0.385 0.537

(0.149) (0.195) (0.130) (0.169)
Reinstatement 0.593 1.195 0.627 1.028

(0.557) (0.563) (0.486) (0.512)
Observations 44 44 44 44 44 44

R2 0.16 0.03 0.27 0.07 0.04 0.17
Panel D: KLEMS data with λ = 0.8 and 5-year moving averages

Automation 0.520 0.550 0.366 0.379
(0.143) (0.140) (0.117) (0.118)

Reinstatement 0.024 0.321 −0.072 0.132
(0.368) (0.333) (0.355) (0.344)

Observations 44 44 44 44 44 44
R2 0.24 0.00 0.26 0.15 0.00 0.15

Panel E: KLEMS data with λ = 1 and 5-year moving averages
Automation 0.521 0.404 0.331 0.251

(0.167) (0.199) (0.142) (0.182)
Reinstatement 0.957 0.666 0.632 0.451

(0.351) (0.382) (0.299) (0.362)
Observations 44 44 44 44 44 44
R2 0.14 0.11 0.19 0.07 0.06 0.10

Panel F: KLEMS data with λ = 1 and 10-year moving averages
Automation 0.444 0.558 0.243 0.322

(0.200) (0.199) (0.170) (0.165)
Reinstatement 1.196 1.535 0.865 1.060

(0.716) (0.719) (0.670) (0.673)
Observations 44 44 44 44 44 44
R2 0.08 0.07 0.18 0.03 0.04 0.09

Note: The table provides regression estimates of changes from 1987 to 2016 in the relative demand for skills across industries
on measures of displacement and reinstatement. The appendix in Acemoglu and Restrepo (2019) provides a description of
the construction of these explanatory variables. Columns 1–3 use the change in the log of the college wage bill relative to the
high school wage bill in each industry as outcome. Columns 4–6 use the change in the log of college hours relative to high
school hours in each industry as outcome. Each panel presents results for a different construction of the displacement and
reinstatement measures, as explained in the appendix in Acemoglu and Restrepo (2019). Standard errors robust against
heteroscedasticity are given in parentheses.

that AI has also been used for technologies that increase pro-
ductivity and labour demand as well as for reorganizing work.
It certainly leaves open the possibility that its use can more
strongly target more human complementary activities in the
future.

The framework we have reviewed here and its implications
become even more important in the context of rapid advances
in AI technologies. AI is an example of a technological platform
that will likely have pervasive effects throughout the economy
and can be used for many different purposes. Our framework is
well suited for incorporating these different types of uses of AI,
for instance, in the form of automating certain tasks, improving

worker decision-making in a range of knowledge tasks or creating
new tasks for diverse skills.

Our framework emphasises that the consequences of these
different uses of AI will be quite distinct, both for inequality
and productivity. For one, greater automation powered by AI
technologies could amplify the already high levels of inequality
in industrialized labour markets. In contrast, however, AI has
significant potential for creating new tasks for workers with
diverse skills and remedying certain shortages of skills and exper-
tise. For instance, AI-based technologies can generate new tasks
for educators, nurses and even blue-collar workers, as detailed
in Acemoglu and Restrepo (2020c) and Johnson and Acemoglu
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(2023). Generative AI also has great potential for helping remedy
skill shortages of knowledge workers, as already documented in
small-scale settings by Noy and Zhang (2023) and Brynjolfsson
et al. (2023). It may be particularly useful for building new plat-
forms that bring together diverse skills and rich sets of tasks and
demands together, as suggested by Acemoglu et al. (2021).

Our framework goes beyond clarifying the wage and inequality
implications of these different uses of AI. We have also pointed
out how certain types of automation may have disappointing pro-
ductivity gains, especially if it is indeed the case that many digital
technologies have been excessively focused on automation (and
thus running into diminishing returns and not realizing produc-
tivity gains that exist via complementing humans). This may be
driven by the business models of Big Tech companies or demands
from automation. It may also be related to the powerful vision in
the AI research community that places emphasis on ‘autonomous
machine intelligence’ (Acemoglu and Restrepo 2020c; Johnson and
Acemoglu 2023). If so, we may be concerned that the direction of
development of new and promising AI technologies may go too
much into the automation path as well. Acemoglu et al. (2022)
provide some evidence consistent with this interpretation for (pre-
generative) AI by documenting that AI activity has concentrated
in establishments that have tasks that can be replaced by AI, and
this activity has also come hand-in-hand with reduced hiring of
non-AI workers in these establishments.

This evidence notwithstanding, our framework also stresses
how new tasks created by AI could be quite transformative for
the labour market and reduce, rather than increase, inequality.
This may be especially relevant if generative AI has the capability
to complement specialized workers with certain skill or expertise
shortages (e.g. programmers who need help with some of the com-
plex subroutines and programming steps, or electricians who can
benefit from additional inputs for better diagnosis of problems).
This type of use would both facilitate greater productivity and
enable workers with diverse skills to start performing newer tasks,
lowering inequality. By emphasizing the very different implica-
tions of AI depending on its path of development, and the endo-
geneity of this path, our framework raises several new areas for
research and policy.
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