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effect of testing on infections is nonmonotone. This nonmonotonicity also implies that the 
optimal testing policy may leave some of the testing capacity of society unused.
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1. Introduction
The COVID-19 pandemic has reignited interest in mod-
els of epidemics and their control. A point of broad 
agreement among different approaches is that ramping 
up testing capacity is one of the most effective ways of 
combating the pandemic (Brumfiel 2020, BruSoe-Lin 
and Hecht 2020, Searchinger et al. 2020). One issue that 
has not received much attention, however, is whether 
and how different testing strategies impact voluntary 
social distancing decisions of individuals.

In this paper, we develop a simple model to investi-
gate the effects of testing on infections and provide 
insights into optimal testing strategies. We model social 
activity and voluntary distancing as a network forma-
tion problem and use a simple percolation process to 
represent the spread of a virus over the endogenous 
social network. Motivated by tractability considerations, 
we choose a model of percolation rather than the SIR 
(susceptible, infected, and recovered) setup more com-
monly used in the analysis of COVID-19. As we explain 
here, our percolation model leads to the same behavior 
of cumulative infections as a discrete version of a stan-
dard SIR model, but enables a much more tractable and 
general analysis of the spread of the virus and its depen-
dence on the endogenous social network.1

Our main results confirm the major benefit society can 
reap from testing and isolating infected individuals and 

leads to two new insights.2 First, greater testing can lead 
to more social activity (less social distancing) and thus a 
denser social network, because when infected indivi-
duals are more likely to be identified and isolated, 
agents feel more secure to initiate contacts. We show 
that, for a nontrivial set of parameters, greater testing 
can increase infections. This happens, in particular, when 
the equilibrium involves some groups choosing an inter-
mediate level of social activity because of their fear of 
infection. Second, we demonstrate that when the testing 
capacity of society is limited, optimal policy may involve 
leaving some of this capacity unused in order to avoid 
adverse effects on social distancing. This result also 
implies that testing should be combined with manda-
tory social distancing measures to avoid these adverse 
behavioral effects.

More formally, our model consists of n individuals of 
two types, high-type agents with greater value from 
social activity and low-type agents with lower values 
(more than two types are considered as an extension). 
Each individual i chooses a social activity level, xi ∈

[0, 1], and the vector of social activities defines a contact 
(social) network among individuals. Specifically, there 
will be contact between agents i and j with probability 
ηxixj, where η < 1 captures the probability of a match 
conditional on activities. The utility of each individual 
is their utility gain from social activity minus their 
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infection probability. The virus spreads over the social 
network following a cascade process, whereby each 
infected and nonisolated individual transmits the infec-
tion to each one of its neighbors with probability 
β ∈ (0, 1]. We assume that although an infected individ-
ual does not transmit the virus after isolation, transmis-
sion still occurs before testing detects and isolates an 
infected agent. More specifically, we assume that an 
infected individual who is detected transmits the virus 
with a smaller probability, βp, where p ∈ [0, 1).

Our analysis relies on a key lemma that establishes 
that the stochastic process for the spread of the virus 
satisfies natural monotonicity and concavity (submo-
dularity) properties: More social activity leads to more 
infections but an individual’s probability of infection 
increases less in their own social activity when they 
already have a high activity level.

We first prove that, as often maintained in prior anal-
yses, more testing reduces infections when we take 
activity levels (and thus the social network) as given. 
Our key results concern the case in which the social 
activity levels are endogenous. We show that when 
testing probabilities are large, both types of individuals 
(high value and low value) choose maximal social 
activity (which can be interpreted as the same level of 
activity as the prepandemic period). In this region, the 
equilibrium behaves in an identical fashion to the exog-
enous social network case, and testing always reduces 
infections. More interestingly, however, for lower test-
ing probabilities, either high-value or low-value indivi-
duals choose intermediate levels of social activity, and 
greater testing increases their infection probability.

We next turn to an analysis of optimal testing where 
the objective is to maximize the value of social activity 
minus the cost of infections. We assume that there is a 
fixed supply of tests and investigate how these should 
be allocated. Because high-value agents are socially more 
active, they are more likely to be infected and thus they 
should be tested first. If there is sufficient testing capac-
ity, it is optimal to test all agents. However, most inter-
estingly, we prove that for intermediate or low testing 
capacity, it is socially optimal not to use all available 
tests. The social planner should either test all high-value 
agents, but not the low-value agents, to discourage them 
from high levels of social activity. Or they should have 
no testing, even though there is capacity to test some 
of the high-value agents. The intuition can again be 
obtained by considering the impact of testing on volun-
tary social distancing: additional testing over this range 
reduces voluntary social distancing so much that it has 
no benefit in terms of containing the infection.

As already emphasized, these nonmonotonicity results 
are due to the impact of testing on equilibrium social 
activity (social distancing). If the social planner can man-
date social distancing, then there is no nonmonotonicity 

and it is always optimal to use all of the available testing 
capacity.

In addition, we show that uniform testing policies, 
where tests are allocated without reference to the type 
of agents, are worse than targeted testing policies. In 
our baseline model, high-value agents should be tested 
first because they are more active and thus more likely 
to transmit the virus. In an extension where we allow 
individuals to choose type-specific social activity levels 
(e.g., how much to socialize with high-value and low- 
value agents), we show that not testing high-value 
agents may, however, have an additional strategic 
benefit—It discourages low-value agents from socializ-
ing with high-value agents, slowing down the spread 
of the virus. Although this is not our main goal, we 
hope that our analysis is also helpful for the study and 
design of mitigation policies for pandemics, including 
COVID-19.

1.1. Related Literature
Our paper is related to three distinct literatures. First, 
ours is a model of endogenous social network forma-
tion. Seminal papers in this area include Jackson and 
Wolinsky (1996), Bala and Goyal (2000), and Currarini 
et al. (2009) (see Jackson (2008) and Vega-Redondo (2007) 
for book-length treatments of issues of network forma-
tion and contagion in networks). Differently from the 
most common approach in this literature, which is to 
look at pairwise or coalition-wise stable outcomes, we 
adopt a noncooperative approach to network formation 
(Bollobás and Béla 2001, Newman et al. 2001, Cabrales 
et al. 2011). In particular, we model the probability of 
connection between two agents as being proportional to 
the product of their levels of social activity, which leads 
to a tractable but rich set of interactions, in part because 
activity levels are neither strategic substitutes nor com-
plements. The probability of a link between two agents 
depends on the action of both agents, which is also dif-
ferent from Goyal (1993), Bala and Goyal (2000), and 
Acemoglu et al. (2017b), who assume that players can 
unilaterally create directed links to others.

Second, there is a large amount of literature spanning 
various areas of economics where precautionary tools 
increase risk taking, as first emphasized by Peltzman 
(1975). An iconic example is hydraulic breaks increas-
ing driving speed, thus undoing some or all of its bene-
ficial effects on accidents (Lindgren and Stuart 1980, 
Crandall and Graham 1984, Keeler 1994). Relatedly, 
Philipson (2000) explores the interplay between the 
spread of an epidemic, which is reduced by preventa-
tive measures, and the demand for prevention, which 
is higher when the epidemic is more widespread (Phi-
lipson and Posner 1993). Philipson points out that the 
initial containment of an epidemic may make its ulti-
mate eradication harder because it discourages preven-
tative measures. Lakdawalla et al. (2006) show that 
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advances in HIV treatment have raised risky sexual 
behaviors and have slowed down the containment of 
the HIV virus (Bauch and Galvani 2013). Differently 
from other works in this vein, we establish that coun-
tervailing effects can outweigh the direct impacts and 
thus more testing can lead to higher infections.

Third, our paper is related to the recent literature on 
the effects of pandemics, especially of COVID-19. See, 
for example, Kruse and Strack (2020), Atkeson (2020), 
Jones et al. (2020), Glover et al. (2020), Berger et al. 
(2020), and Birge et al. (2020). More closely related are 
several papers endogenizing behavior and social dis-
tancing in the context of SIR models, such as Leung et al. 
(2018), Toxvaerd (2020), Eichenbaum et al. (2020), Far-
boodi et al. (2021), Maloney and Taskin (2020), and 
Gans (2020b). In particular, Eichenbaum et al. (2020) 
extend the canonical SIR model to study the interaction 
between economic decisions and pandemics, whereas 
Leung et al. (2018), Toxvaerd (2020), Farboodi et al. 
(2021), and Maloney and Taskin (2020) incorporate sim-
ple social distancing behavior in an otherwise standard 
SIR model.3

A few recent papers in this literature, which study the 
effects of lockdown and testing strategies, are more 
closely related. For example, Alvarez et al. (2020), Ace-
moglu et al. (2021), Piguillem and Shi (2020), Brother-
hood et al. (2020), and Eshragh et al. (2020) explore the 
effects of different testing and isolation policies on the 
dynamics of infections and optimal lockdowns, whereas 
Deb et al. (2020) consider targeted testing combined 
with transfers. Even more closely related to our paper 
are Drakopoulos and Randhawa (2020) and Ely et al. 
(2021), who study optimal testing policy when tests are 
inaccurate, (and Kasy and Teytelboym (2020), who in 
vestigate the implications of false quarantine). None of 
these papers analyzes the impact of testing on voluntary 
social distancing and behavior. In addition, different 
from the previous papers, we provide a full characteri-
zation of social activity and show how it depends on 
infection probabilities and testing strategies.

Various other issues, such as estimation, testing, and 
control related to COVID-19 and more broadly pan-
demics have also been studied. Dasaratha (2020), in an 
SIR model, studies theoretical conditions for risk compen-
sation to overcome the direct benefits of safety-enhancing 
interventions; Kaplan (2020) considers a statistical model 
for estimating the effectiveness of isolation and quaran-
tine; and Drakopoulos et al. (2017) study the open-loop 
control of epidemics on a network and show how the net-
work structure affects the number of resources required 
to contain the spread of infection. Finally, Wang et al. 
(2009) study the strategic interaction among states in allo-
cating their resources, whereas Sun et al. (2009) examine 
the strategic considerations in allocating drugs during a 
pandemic. To the best of our knowledge, no other work 
has pointed out or studied the nonmonotonic impacts of 

testing on infections. For a survey of recent advances see, 
for example, McAdams (2020) and Gans (2020).

The rest of the paper is organized as follows. In Sec-
tion 2, we present our model, describing the formation 
of contact network and the stochastic process governing 
the spread of infection. We also show that for a given 
(exogenous) network, increasing the testing capability 
decreases the infection probability. In Section 3, we 
characterize the equilibrium outcome and show that 
increasing testing probabilities may adversely increase 
the (equilibrium) infection probability. In Section 4, we 
characterize the optimal testing policy and show it may 
be optimal to have underused testing capacity. Section 5
considers three extensions: multiple groups of agents, 
costly tests, and social activity differentially targeted 
toward different groups. Section 6 concludes. The ap-
pendix contains the proofs of the main results, and the 
online appendix contains the remaining proofs and 
additional results.

2. Environment
We study the spread of an infection among n indivi-
duals (also referred to as agents or nodes) represented 
by the set V � {1, : : : , n}. Each agent i ∈ V decides about 
its level of social activity, denoted by xi ∈ [0, 1]. Higher 
social activity provides greater utility to agents but also 
leads to faster spread of the infection. Agents are hetero-
geneous in terms of their value of social interaction. In 
our main model, we assume that the agent’s type (value 
of interaction) is either vH ∈ [0, 1] or vL ∈ [0, 1], where 
vL<vH. We also use H and L to denote individuals with 
high and low values, respectively, and rH and rL to 
denote the population fractions of high- and low-value 
agents. Section 5 extends our results to a setting with 
m>2 types of agents.

A virus infects a random individual and then spreads 
to others through a stochastic process described in Sec-
tion 2.2. We analyze the implications of testing (for infec-
tion), represented by testing probabilities for two types 
of agents, αL,αH ∈ [0, 1], and study the optimal testing 
policy, (αL,αH), of a (benevolent) social planner. Each 
infected individual who tests positive will be isolated 
from the rest of society. If an individual is infected and 
not isolated, it will expose its neighbors to the infection. 
If it is isolated, it still has a (smaller) chance to infect its 
neighbors and expose them to the infection.

We let x � (x1, : : : , xn) denote the social activity pro-
file of all individuals. We also let x�i represent the 
social activity profile of all individuals except agent i. 
In what follows, for any vector x ∈ Rn and set S ⊆ V, xS 
denotes the elements of x for the indices in set S, and 
x�S denotes the elements of x for the indices outside S.

We next describe how social activity levels determine 
the (endogenous) social network in this community 
and how the infection spreads over this social network.
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2.1. Network of Contacts
The social activity profile x � (x1, : : : , xn) of agents gener-
ates a social (contact) network in which agents i and j are 
connected with a probability that depends on xi and xj. 
Let G � (V, E) be a random network where E ∈ {0, 1}n×n 

denotes the random edges (thus, Eij � Eji), where Eij for 
i, j ∈ V are independent binary random variables with

P[Eij � 1] � ηxixj, 

for some η ∈ (0, 1]. This parameter η�captures the proba-
bility of match between two individuals conditional on 
activity levels. We denote a realized network by G � (V, E), 
where Eij is a realization of Eij, and thus Eij�1 means that 
there is a link between agents i and j.

We next describe the stochastic process governing 
the spread of infection and define the infection proba-
bility of agents.

2.2. Spread of the Infection
Let us denote the neighbors of node i by N(i) � {j ∈ V :

Eij � 1}. For a given network G � (V, E), there is a sto-
chastic process that governs the spread of infection as 
follows. One of the individuals uniformly at random 
becomes infected, and the infection then spreads to 
others via a percolation process over the social network 
that is a generalization of the independent cascade 
model (Kempe et al. 2015).4

We can describe the dynamics of infection as follows: 
At time 0, one of the agents (chosen uniformly at ran-
dom) s ∈ V gets infected. At any round t ≥ 0 for any 
agent i ∈ V, we let d(t)i denote the number of neighbors of 
agent i who are infected and tested at time t and d̂

(t)
i 

denote the number of neighbors of agent i that are 
infected at time t but not tested. For each agent i, these 
two variables are initially zero and then evolve over 
time as described next. At time 0, node s will be tested 
with probability αi, in which case, at time 1 for each 
neighbor j of agent s, we have d(1)j � 1. Here, αi is either 
αH or αL depending on whether agent s belongs to H or 
L. With probability 1� αi, however, agent s will not be 
tested, in which case, at time 1 for all neighbors of agent 
s, such as j, we have d̂

(1)
j � 1. If an infected node is not 

tested (and therefore not isolated), it will be active for 
one round and transmits infection to its neighbors with 
transmission probability β ∈ (0, 1]. If an infected node is 
tested, it can be isolated and prevented from transmit-
ting the virus. However, before isolation takes place, 
some social contacts may occur and spread infection. 
We represent this possibility with a smaller probability 
of infection, βp, where p ∈ [0, 1). From active agents, the 
infection simultaneously and independently transmits 
to each of their uninfected neighbors. If an uninfected 
agent is a neighbor to multiple infected individuals (i.e., 
there exists at least two i and i′ such that j ∈N(i) and 
j ∈N(i′)), then the infection is transmitted to agent j in 

an order-independent fashion. This implies, for exam-
ple, that if j is uninfected and a neighbor to two active 
agents who are not tested, then j becomes infected with 
probability 1� (1� β)2. If a neighbor of an active node 
does not become infected at time t, then it will never 
again become infected via that node. Given this pro-
cess, for each node i, the probability of getting infected 
at time t+1 becomes

1� (1� β)d̂
t
i (1� βp)d

t
i , 

where we recall that d̂
t
i is the number of i’s neighbors who 

are infected and not tested at time t and dt
i is the number 

of i’s neighbors who are infected and tested at time t.

Definition 1. For any agent i ∈ V, network G � (V, E), 
and testing policy (αL,αH) we let Pinf

i (G,αL,αH) denote 
the probability of infection reaching agent i. This 
probability is over the randomness in the source of 
infection, the randomness in testing, and the random-
ness in the stochastic process described above.

We next illustrate the stochastic process and the 
infection probability by means of an example.

Example 1. We consider a setting with three agents {1, 
2, 3} who are fully connected to each other with test-
ing probabilities αH � αL � α�and find the infection 
probability of agent 3. We list the three cases for the 
source of infection and find this probability: 
• With probability 1/3, the infection hits agent 3. In 

this case, agent 3 gets infected.
• With probability 1/3, the infection hits agent 1. In 

this case, there are two possibilities: 
(i) Node 1 will get tested, with probability α. Here, 
there are two further cases. In the first, the infection 
reaches node 3 directly through the edge between 
nodes 1 and 3 with probability βp (i.e., through the 
solid path in Figure 1). In the second case (with 

Figure 1. (Color online) From Agent 1, the Infection Can 
Reach Agent 3 Through Two Paths 

Notes. (i) Directly via the edge between them whose probability 
depends on whether agent 1 will be tested or not. (ii) Through agent 2 
that, again, depends on whether agents 1 and 2 will be tested.
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probability 1� βp), this edge is not active, and the 
infection reaches node 3 through node 2 with prob-
ability (1� α)β2p+ αβ2p2 (i.e., through the dashed 
path in Figure 1). The first term is the probability of 
node 2 not being tested, in which case the infection 
reaches node 3 with probability βp × β, and the sec-
ond term is the probability of node 2 being tested, 
in which case the infection reaches node 3 with 
probability βp × βp.
(ii) Node 1 will not get tested, with probability 
(1� α), and proceeding as in the previous case, we 
can find the infection probability to be (β+ (1� β)
((1� α)β2 +αβ2p)).

Therefore, starting from the infection of agent 1 the 
overall infection probability of node 3 is

α
�
βp + (1� βp)

�
(1� α)β2p + αβ2p2

��

+ (1� α)
�
β + (1� β)

�
(1� α)β2 + αβ2p

��
:

• With probability 1/3, the infection hits agent 2. 
This case is identical to the previous one by swapping 
the role of nodes 1 and 2.

Putting these three cases together, the infection 
probability of agent 3, Pinf

3 (G,αL � α,αH � α), is

1
3+

2
3

�
α
�
βp+ (1� βp)

�
(1� α)β2p+ αβ2p2

��

+(1� α)
�
β+ (1� β)

�
(1� α)β2 + αβ2p

���
:

Definition 2. For a given social activity profile x and 
testing policy (αL,αH), we denote the infection proba-
bility of individual i in the random network of con-
tacts by Pinf

i (x,αL,αH), that is,

Pinf
i (x,αL,αH) � EG�(V, E): Eij~Bernoulli(ηxixj)[P

inf
i (G,αL,αH)]:

This probability is over the randomness in the formed 
network, the randomness in the source of infection, 
the randomness in testing, and the randomness in the 
stochastic process governing the spread of infection.

2.3. Utility of Agents and Solution Concept
The utility function of agent I is given by

ui(x,αL,αH) � vixi � Pinf
i (x,αL,αH)

� c (αL1{i ∈ L} + αH1{i ∈ H}), (1) 

where vi ∈ {vL, vH}, and c>0 is a (possibly small) cost of 
testing for an agent. The first term, vixi, represents the 
utility gain from social activity. The second term, �Pinf

i 
(x,αL,αH), is the loss caused by getting infected. The 
third term is the expected cost of getting tested.5

As a solution concept, we use symmetric pure- 
strategy or mixed-strategy (Nash) equilibrium.

Definition 3. A pure-strategy social activity profile xe 

is a (pure-strategy) Nash equilibrium if
ui(xe,αL,αH) ≥ ui((xi,xe

�i),αL,αH), for all i∈V,xi ∈ [0,1]:

A mixed-strategy social activity profile takes the form 
µe �

Qn
i�1 µ

e
i , where µe

i is a probability distribution 
over [0, 1]. A mixed-strategy social activity profile is 
an equilibrium if

Exe~µe[ui(xe,αL,αH)] ≥ Exe
�i~µ

e
�i
[ui((xi, xe

�i),αL,αH)],
for all i ∈ V, xi ∈ [0, 1]:

A symmetric pure (mixed) strategy equilibrium is a 
pure (mixed) strategy equilibrium in which the deci-
sion of each agent i only depends on its value vi and 
its infection probability and not on its identity.

2.4. Monotonicity and Concavity of Infection 
Probability

As illustrated in Example 1, the infection probability 
depends on the graph structure and testing policy in a 
complex way. Nevertheless, the next lemma shows that 
the stochastic process of the spread of the infection 
satisfies natural monotonicity and concavity properties. 
In what follows for two vectors a, b ∈ Rm, we write a ≥
b to denote ai ≥ bi for i � 1, : : : , m.

Lemma 1. The infection probability satisfies the following 
relations. 

(a) For any agent i ∈ V, we have

Pinf
i (x̂,αL,αH) ≥ Pinf

i (x,αL,αH), for all x̂ ≥ x: (2) 

(b) For any agent i ∈ V, and any social activity profile 
x�i ∈ [0, 1]n�1, Pinf

i ((xi, x�i),αL,αH) is concave in xi.

Part (a) of Lemma 1 shows that the infection probabil-
ity for an agent is increasing in the social activity levels 
of all agents in society, because higher social activity 
leads to a denser social network over which the virus 
spreads. Part (b) shows that this probability is concave 
in the individual’s own social activity level, because 
additional social activity brings the virus to the individ-
ual only if its existing links did not do so already.

Proof Sketch of Lemma 1. In the appendix, we prove a 
somewhat more general version of this lemma. Namely, 
we demonstrate that for any set of nodes S ⊆ V that are 
infected at time 0, the probability of infection reaching 
node i is increasing in x and concave in xi. We denote 
this probability by Pinf

i (x,αL,αH |source � S), and define 
the following auxiliary infection probability: for any set 
of nodes S, P̃inf

i (x,αL,αH |source � S) denotes the proba-
bility of infection reaching node i in one round (i.e., 
only through the nodes in S). We prove the lemma 
by induction on the size of S that for any set S and 
i ∈ V, the probability P̃inf

i (x,αL,αH |source � S) is in-
creasing in x and concave in xi. Next, we express 
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Pinf
i (x,αL,αH |source � S) recursively in terms of the 

auxiliary probabilities of infection and complete the 
proof of the lemma using induction on the number of 
nodes.

2.5. Exogenous Activities: Impact of Testing 
Policy on Infection Probability

We first analyze the case in which social activity levels 
are fixed and thus the social (contact) network G is 
given. The next proposition shows that more testing 
always reduces the spread of the infection in this case.

Proposition 1. For any network G � (V, E), the infection 
probability of each agent is decreasing in (αL,αH). In par-
ticular, we have

Pinf
i (G,α′L,α′H) ≤ Pinf

i (G,αL,αH),
for all i ∈ V, (α′L,α′H) ≥ (αL,αH):

The testing policy changes the dynamics of the indepen-
dent cascade process, affecting the infection probability 
of agents in a nontrivial way. To prove Proposition 1, we 
first reformulate the independent cascade process gov-
erning the spread of infection in terms of a sequence of 
independent and identically distributed random vari-
ables and then use a coupling argument to relate the 
infection probabilities under testing policy (αL,αH) to the 
infection probabilities under (α′L,α′H). This proposition 
establishes that when social activity levels are given and 
do not respond to testing, greater testing, that is, higher 
(αL,αH), slows down the spread of the virus and reduces 
all infection probabilities. This result is intuitive: greater 
testing enables the detection and isolation of infected 
individuals, preventing the rapid spread of the virus.

3. Endogenous Activities
With endogenous networks, each individual has a stra-
tegic decision: the social activity level (or conversely, 
her social distancing), which determines the expected 
number of neighbors this individual will have. Lemma 
1 establishes that the utility of each agent i is convex in 
her social activity xi. This implies that agents do not 
choose an intermediate level of activity because the 
convexity of utility makes mixing between zero and 
one (strictly) preferable. This observation is formally 
stated in the next lemma.

Lemma 2. Given an agent i ∈ V and action profile x�i, let 
xe

i denote the best response social activity of agent i, that is,

xe
i ∈ arg max

x∈[0,1]
ui(x, x�i,αL,αH):

Then, we have xe
i ∈ {0, 1}.

3.1. Equilibrium Characterization
We first introduce some additional notation that will be 
used in the rest of the paper. We let 1 and 0 denote the 

vectors of all 1 s and all 0s, respectively, where their 
dimension will be clear from the context. We also let l 
and h be a low- and high-value agent, respectively, and 
define the following sets:

A1 �

�

(αL,αH) ∈ [0, 1]2 : Pinf
l (xH � 1, xL � 1,αL,αH) ≤ vL +

1
n

,

Pinf
h (xH � 1, xL � 1,αL,αH) ≤ vH +

1
n

�

A2 �

�

(αL,αH) ∈ [0, 1]2 : Pinf
l (xH � 1, xL � 1,αL,αH) ≥ vL +

1
n ,

Pinf
l (xH � 1, xl � 1, xL\{l} � 0,αL,αH) ≤ vL +

1
n ,

Pinf
h (xH � 1, xL � 0,αL,αH) ≤ vH +

1
n

�

A3 �

�

(αL,αH) ∈ [0, 1]2 : Pinf
l (xH � 1, xL � 1,αL,αH) ≥ vL +

1
n

,

Pinf
l (xH � 1, xl � 1, xL\{l} � 0,αL,αH) ≥ vL +

1
n

,

Pinf
h (xH � 1, xL � 0,αL,αH) ≤ vH +

1
n

�

A4 �

�

(αL,αH) ∈ [0, 1]2 : Pinf
l (xH � 1, xL � 1,αL,αH) ≥ vL +

1
n ,

Pinf
h (xH � 1, xL � 0,αL,αH) ≥ vH +

1
n

�

:

Recall that H denotes the set of agents with a high value 
vH for social activity and L denotes the set of agents 
with a low value vL for social activity.

Proposition 2. There exist M ∈ N+ and functions γL :

[0, 1]2→ [0, 1] and γH : [0, 1]2→ [0, 1] such that for n ≥M 
and (αL,αH), there are four possibilities for the equilibrium: 

(a) For (αL,αH) ∈A1, there exists a unique symmetric 
equilibrium, where xe

i � 1 for all i ∈ V.
(b) For (αL,αH) ∈A2, there exists a unique symmetric 

equilibrium, where xe
i � 1 for all i ∈H and a mixed-strategy 

µe
j for all j ∈ L that puts probability γL(αL,αH) on one and 

probability 1� γL(αL,αH) on zero.
(c) For (αL,αH) ∈A3, there exists a unique symmetric 

equilibrium, where xe
i � 1 for all i ∈H and xe

j � 0 for all 
j ∈ L.

(d) For (αL,αH) ∈A4, there exists a unique symmetric 
equilibrium, where xe

j � 0 for all j ∈ L and a mixed-strategy 
µe

i for all i ∈H that puts probability γH(αL,αH) on one and 
probability 1� γH(αL,αH) on zero.

Proposition 2 characterizes the equilibrium outcome 
for different testing policies (αL,αH). For the case in 
which the number of agents in society is greater than a 
threshold, it divides testing policies into four regions, 
each leading to a different type of equilibrium behav-
ior. For example, when testing policy is in region A1, 
the infected are sufficiently likely to be identified and 
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isolated, so that all individuals choose full social activity— 
as if social contacts did not increase their probability of 
infection. Outside this region, individuals take precaution-
ary action by reducing their social activity.6 In region A2, 
high-value agents (who receive greater utility from social 
activity) still choose full activity, but now low-value agents 
mix between no activity and full activity. The other regions 
are defined similarly. In the proof of Proposition 2, we 
show that the four regions A1, A2, A3, and A4 cover all 
possible testing policies (αL,αH) ∈ [0, 1]2 (for sufficiently 
large n).

The regions (or sets) A1 to A4 are functions of the 
model primitives, but they depend on the infection 
probability in the stochastic process governing the 
spread of infection, which is a complex quantity. None-
theless, the next lemma shows that as n→∞, these sets 
have a simple characterization. For this lemma, recall 
that rH and rL denote the fractions of the two types of 
individuals. This characterization will be used in Sec-
tion 4 to study the optimal testing policy.

Lemma 3. There exist α(1)H ≥ α
(2)
H ≥ α

(3)
H such that as n→∞

the sets A1,A2,A3,A4 converge to7

A∗1�{(αL,αH) ∈ [0,1]2 : αLrL+αHrH ≥α
(1)
H rH},

A∗2�{(αL,αH) ∈ [0,1]2 : αLrL+αHrH ≤α
(1)
H rH,αH ≥α

(2)
H },

A∗3�{(αL,αH) ∈ [0,1]2 : αLrL+αHrH ≤α
(1)
H rH,α(3)H ≤

αH ≤α
(2)
H }, and

A∗4�{(αL,αH) ∈ [0,1]2 : αLrL+αHrH ≤α
(1)
H rH,αH ≤α

(3)
H }, 

respectively.

The four sets in Lemma 3 are depicted in Figure 2. 
This figure additionally shows the equilibrium action 

profiles of high- and low-value agents as a function of 
the pair (αL,αH).

To obtain an intuition of the proof of Lemma 3, let us 
consider set A1 for which both type of agents are play-
ing one; therefore, their testing probability affects the 
infection probabilities of other agents. The convergence 
of the sets to these asymptotic objects follows from the 
fact that for large enough n, the number of tests will be 
concentrated around its mean, which is αLrL + αHrH 
and the infection probability is decreasing in the num-
ber of tests. The proof does not readily follow from the 
law of large numbers, however, because the infection 
probability is a nonlinear function of the number of 
tests. To establish the lemma, we develop a “peeling 
argument” that uses the properties of the infection 
probability (such as submodularity) together with a 
concentration bound. More precisely, consider a society 
with n agents and let Q(n, k) denote the infection proba-
bility of agents when x � 1 and k out of n agents are 
tested. We show that

lim
n→∞
|Pinf

i (x � 1,αL,αH)�Q(n, ⌈(αLrL + αHrH)n⌉) | � 0,

for all i:

To establish this result, we first use the Chernoff- 
Hoeffding inequality, showing with a high probability 
the number of tested individuals is around ⌈n(αLrL+

αHrH)⌉. We then use the submodularity of the infection 
probability combined with the peeling argument to prove 
that for any small ɛ > 0 and k ∈ (⌊n(αLrL +αHrH � ɛ)⌋, 
⌈n(αLrL +αHrH + ɛ)⌉), we have

|Q(n, k)�Q(n, ⌈n(αLrL + αHrH � ɛ)⌉) | ≤ ɛ

+
ɛ

1� (αLrL +αHrH)
:

In our baseline analysis, we focus on symmetric equi-
libria to simplify the notation (i.e., the strategy of an 
agent depends on the infection probability from its per-
spective and not its identity). In the online appendix, 
we show that the equilibrium characterization given in 
Proposition 2 is essentially unique. In particular, we 
show that the pure-strategy equilibrium in parts (a) 
and (c) are unique. We then characterize the asymmet-
ric pure-strategy equilibrium (for parts (b) and (d)) and 
show that for large n, the expected number of infected 
individuals in any asymmetric pure-strategy equilib-
rium is the same as the expected number of infected 
individuals in the symmetric equilibrium characterized 
in Proposition 2.

3.2. Impact of Testing Policy on Infection 
Probability

The next theorem presents one of our main results: the 
nonmonotonic impact of greater testing on infections.

Figure 2. (Color online) Regions A1,A2,A3, and A4 (as 
n→∞) That Determine the Equilibrium in Proposition 2
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Theorem 1. There exists M ∈ N+ such that for n ≥M, in 
the unique symmetric equilibrium we have: 

(a) Higher (αL,αH) in the interior of A1 decreases the 
infection probabilities of both types of agents.

(b) Higher (αL,αH) in the interior of A2 increases the 
infection probability of low-value agents and does not change 
the infection probability of high-value agents.

(c) Higher (αL,αH) in the interior of A3 decreases the 
infection probabilities of both types of agents.

(d) Higher (αL,αH) in the interior of A4 increases the 
infection probability of high-value agents and does not 
change the infection probability of low-value agents.

Moreover, infection probabilities are continuous in (αL, 
αH) at the boundaries of the previous sets.

Theorem 1 establishes that whenever we have a 
mixed-strategy equilibrium, as in regions A2 and A4, 
the effects of greater testing on infections are nonmono-
tone. Intuitively, this is because greater testing and iso-
lation makes agents who are mixing wish to go to full 
activity. However, when we are (and remain) in the 
interior of the sets A2 and A4, full activity is not an 
equilibrium (either for the low-value or the high-value 
agents). Hence, equilibrium is restored by some more 
of the relevant agents choosing high activity at the mar-
gin, which increases contacts and thus restores the 
incentives for mixing by increasing infection probabili-
ties. In both cases, as Proposition 1 highlights, with 
given activity levels, greater testing would reduce the 
spread of the infection. The reason why the infection 
spreads more is because greater social activity levels 
make the social network denser. To see that the infec-
tion probability increases as testing rises, let us consider 
(αL,αH) ∈A4. As we showed in Proposition 2, in this 
region, low-value agents play zero and high-value 
agents play a mixed strategy that puts probability 
γH(αL,αH) on activity level 1 and probability 1� γH 
(αL,αH) on activity level 0. Therefore, in this region the 
infection probability of high-value agents is Ph(xH �

γH(αL,αH)1, xL � 0,αL,αH). Changing the testing policy 
(αL,αH) affects this probability in two ways: (i) it alters 
the testing probability of agents in the governing stochas-
tic process of the infection, and (ii) it changes the equilib-
rium social activity of high-value agents. Using the fact 
that mixing with probability γH(αL,αH) is an equilibrium 
strategy for high-value agents, we show that this infection 
probability can be written in closed form as γH(αL, 
αH)vH +

1
n. The proof is completed by showing that 

γH(αL,αH) is increasing in the testing policy (αL,αH).
In practice, it may not be possible to test different 

types of agents at different rates. If so, we would have 
to impose αL � αH � α�for some α ∈ [0, 1]. Figure 3
depicts the infection probability of both types as a func-
tion of α, confirming that infection probabilities con-
tinue to be nonmonotonic in testing probabilities (in 
this case α).

Theorem 1 reiterates the importance of the sets 
A1, : : : ,A4 in our analysis. We next provide a compara-
tive statics for these sets as η�(the probability of match 
conditional on activities), β�(the transmission rate of the 
infection), and p (where βp is the transmission rate of 
tested individuals) vary.

Lemma 4. Let A1(η,β, p) and A4(η,β, p) denote the sets 
A1 and A4, respectively, as a function of the parameters η, 
β, and p. We have: 

(a) Higher η�shrinks the set A1 and expands the set A4. 
That is,

A1(η
′,β, p) ⊆A1(η,β, p) and A4(η,β, p) ⊆A4(η

′,β, p),
for all η′ ≥ η,β, p:

(b) Higher β�shrinks the set A1 and expands the set A4. 
That is,

A1(η,β′, p) ⊆A1(η,β, p) and A4(η,β, p) ⊆A4(η,β′, p),
for all β′ ≥ β,η, p:

(c) Higher p shrinks the set A1 and expands the set A4. 
That is,

A1(η,β, p′) ⊆A1(η,β, p) and A4(η,β, p) ⊆A4(η,β, p′),
for all p′ ≥ p,β,η:

This lemma directly follows from the definition of the 
sets A1 and A4 and the fact that the infection probabili-
ties are increasing in η, β, and p. The boundary between 
sets A2 and A3 (for large enough n) also shift up as we 
increase either η, β, or p. Conversely, the sets A2 and A3 
can either shrink or expand.

We conclude this section by noting that all the results 
presented thus far, as well as the broad outlines of the 
optimal testing results in the next section, hold for any 
contagion process that satisfies the properties stated in 
Lemma 1 and Proposition 1. Put differently, provided 
that for any i ∈ V, Pinf

i (x,αL,αH) is increasing in x, 

Figure 3. (Color online) Schematic View of the Infection 
Probability of High- and Low-Value Agents in the Limit as 
n→∞ for Uniform Policy (i.e., αH � αL � α) as α�Increases 
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concave in xi, and decreasing in (αL,αH), the equilibrium 
characterization and the nonmonotonicity of infection 
probability in testing policy continue to apply.

4. Optimal Testing Policy
We now discuss the design of testing policy to maxi-
mize social welfare.

4.1. Fully Optimal Testing Policy
Throughout, we assume that there is a limited capacity 
to test, represented by θn, where θ ∈ [0, 1] and n is the 
number of individuals. We refer to θ�as testing capacity. 
Social welfare is

W(x,αL,αH) �
Xn

i�1
ui(x,αL,αH):

The choice of testing policy induces a two-stage game 
between the planner and the agents, with the following 
timing: 

1. The social planner chooses the testing policy (αL,αH).
2. Given the testing policy, the unique symmetric 

equilibrium from Proposition 2 is played by the agents.
With this timing and notation, the social planner’s 

problem becomes
max

(αL,αH)∈[0, 1]2
W(xe,αL,αH)

s:t: xe is the unique (symmetric) equilibrium,
αH |H | + αL |L | ≤ θn:

Our main result of this section, stated next, charac-
terizes the optimal testing policy.

Theorem 2. There exist M ∈ N+, c ∈ R+, and θ(1) ≥ θ(2) ≥
θ(3) such that for c ≤ c and n ≥M we have: 

(a) If θ > θ(1), then the optimal testing policy is to test all 
individuals with probability θ, and in the corresponding 
equilibrium, all agents are fully active; that is, xe

i � 1 for all 
i ∈ V.

(b) If θ(2) < θ < θ(1), then the optimal testing policy is to 
test only high-value individuals with probability θ(2)rH

, and in 
the corresponding equilibrium, high-value agents are fully 
active, and low-value agents are inactive; that is, xe

i � 1 for 
all i ∈H, and xe

j � 0 for all j ∈ L.
(c) If θ(3) < θ < θ(2), then the optimal testing policy is to 

test only high-value individuals with probability θrH
, and in 

the corresponding equilibrium, high-value agents are fully 
active, and low-value agents are inactive; that is, xe

i � 1 for 
all i ∈H, and xe

j � 0 for all j ∈ L.
(d) If θ < θ(3), then the optimal testing policy is to have 

zero tests, and in the corresponding equilibrium, all agents 
are inactive; that is, xe

i � 0 for all i ∈ V.8

The most important result in Theorem 2 is that the 
optimal policy does not necessarily use all available 
tests. In particular, when there are enough tests so that 

all agents can be fully active with the appropriate test-
ing in isolation, the social planner is happy to deploy 
all testing and allow all agents to be fully active (see 
Figure 4). This is the case when θ > θ(1). However, when 
θ(2) < θ < θ(1), the social planner prefers not to use all 
available tests. The intuition for this result is related to 
the nonmonotonicity of the comparative statics derived 
in Theorem 1: greater testing will encourage more 
social activity, in this case from low-value agents. The 
social planner, on the other hand, prefers zero activity 
from low-value agents so as to slow down the spread 
of the virus. Therefore, they opt for a policy that does 
not test low-value agents, thus discouraging their social 
activity and keeping the social network less dense. 
When θ < θ(3), the optimal policy is even more extreme. 
It does not test any agents. This is because just testing 
high-value agents would encourage sufficient social 
activity to lead to faster spread of the virus, which the 
social planner prefers to avoid.

One implication of our model, highlighted in Theo-
rem 2, is that testing high-value agents ahead of low- 
value agents is optimal. In Section 5, we show that this 
is a consequence of individuals choosing a general 
social activity level. If, instead, the individuals could 
target their social activity to low-value and high-value 
agents separately, then the social planner might want 
to test low-value agents and refrain from testing high- 
value agents in order to discourage agents from inter-
acting with these “super spreaders” (who are socially 
very active).

4.2. Optimal Uniform Testing Policy
It may be impossible for authorities to discriminate 
between or identify high-value and low-value agents, 
in which case, testing policy would have to be uniform, 
αL � αH � α. With a uniform testing policy the social 
planner’s problem becomes

max
α∈[0,1]

W(xe,αL � α,αH � α)

s:t: xe is the unique (symmetric) equilibrium,
α ≤ θ:

The following corollary follows from Proposition 2 and 
characterizes the optimal uniform policy.

Corollary 1. Let θ(1) ≥ θ(2) ≥ θ(3) be thresholds found in 
Theorem 2. There exist c ∈ R+ and M ∈ N+ such that for 
c ≤ c and n ≥M, we have: 

(a) If θ > θ(1), then the optimal policy is to test all indivi-
duals with probability θ, and in the corresponding equilib-
rium, both agent types have full social activity; that is, xe

i � 1 
for all i ∈ V.

(b) If min θ(2)

rH
,θ(1)

n o
< θ < θ(1), then the optimal policy 

is to test all individuals with probability min θ(2)

rH
,θ(1)

n o
, 

and in the corresponding equilibrium, high-value agents 
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have full social activity, whereas low-value agents have zero 
social activity; that is, xe

i � 1 for all i ∈H, and xe
j � 0 for all 

j ∈ L.
(c) If min θ(3)

rH
,θ(1)

n o
< θ <min θ(2)

rH
,θ(1)

n o
, then the op-

timal policy is to test all agents with probability θ, and in the 
corresponding equilibrium, high-value agents have full social 
activity, whereas low-value agents have zero social activity; 
that is, xe

i � 1 for all i ∈H, and xe
j � 0 for all j ∈ L.

(d) If θ <min θ(3)

rH
,θ(1)

n o
, then the optimal policy is to 

have zero tests in the corresponding equilibrium, and all 
agents have zero social activity; that is, xe

i � 0 for all i ∈ V.

Comparing Corollary 1 with Theorem 2, we see that 
the top region, in which all agents are fully active, does 
not change. The second region shrinks (because 
θ(2)

rH
> θ(2)) and involves greater spread of the virus, be-

cause uniform policies are less effective at identifying and 
isolating the “super spreader” agents who are socially 
more active thus more likely to be infected and then 
spread the virus (because of their greater social activity). 
The third region may expand, but in this case, individuals 
continue to have the same infection probability as they 
did under targeted policies. Finally, the fourth region 
expands, and in this region, individuals have the same 
infection probability as under a targeted testing policy. 
Overall, uniform policies make testing less effective, but 
do not change our qualitative conclusions.

4.3. Optimal Testing Policy with Mandatory 
Social Distancing

The nonmonotonicity in our comparative statics and 
the unwillingness of the social planner to always use all 
testing capacity are related to the fact that greater test-
ing reduces voluntary social distancing. This naturally 
suggests that testing should be combined with manda-
tory social distancing. The next proposition establishes 
that when this is the case, the social planner would 
always like to use all available testing capacity and 
would then deploy mandatory social distancing mea-
sures to limit the adverse behavioral effects of testing.

Formally, we suppose the social planner, in addition 
to the testing policy (αL,αH), can choose xL and xH indi-
cating the maximum social activity levels of low- and 
high-value agents, respectively. We refer to such a pol-
icy, denoted by (αL,αH, xL, xH), as a testing policy with 
mandatory social distancing. With this notation, the social 
planner’s problem becomes

max
(αL,αH,xL,xH)∈[0,1]4

W(xe,αL,αH)

s:t: xe is the unique (symmetric) equilibrium,
xi≤xH for i∈H,xj≤xL for j∈L,
αH |H | +αL |L | ≤θn:

For a given testing capacity θ, we denote the first best by 
(αFB

L (θ),αFB
H (θ), xFB

l (θ), xFB
h (θ)), which is the solution of

max
(αL,αH,xl,xh)∈[0, 1]4

W((xH � xh1, xL � xl1),αL,αH)

s:t: αH |H | + αL |L | ≤ θn:

Proposition 3. For any testing capacity θ, a testing policy 
with mandatory social distancing with

(αL,αH, xL, xH) � (α
FB
L (θ),αFB

H (θ), xFB
l (θ), xFB

h (θ))

achieves the social welfare of the first best. Moreover, with 
this policy, the social planner uses all the testing capacity.

5. Extensions
In this section, we consider three extensions. First, we 
show that all of our results extend to an environment 
with multiple types, and nonmonotonicities become 
more likely in this case. Second, we allow for social 
activity levels directed to different types of agents (for 
example, individuals choosing how much to interact 
with more active/popular agents and how much to 
interact with other agents). We show that with such 
directed social activity behavior, optimal policy can try 
to discourage individuals from interacting with high- 
value agents who are more likely to spread the virus. 
Third, we characterize the optimal testing policy when 
there is no limit on the number of tests, but the tests are 
costly. We establish that the nonmonotonicity of the 
infection probability in testing implies that even when 
the cost of testing is small, the optimal policy may not 
involve testing all agents.

5.1. Multiple Type of Individuals
In our baseline model, we considered two types of indi-
viduals with different values for social activity. Here, 
we show that our main results and similar insights 
carry over to a more general setting with m different 
values for individuals. In particular, we let v1 < v2 <⋯ 
< vm denote the social activity value of different indi-
vidual types and let Vk for k � 1, : : : , m denote the set of 
individuals of type k (therefore, 

Sm
k�1 Vk � V). We also 

denote the testing probability of type k individuals by 
αk for k � 1, : : : , m and let a � (α1, : : : ,αm) ∈ [0, 1]m 

denote the testing policy.
In the online appendix, in Section B.2, we extend 

Proposition 2 and Theorem 1 to m ∈ N types of indivi-
duals. In particular, we establish that the nonmonotoni-
city of infection probability in testing policy continues 
to hold, and there will now be more regions where 
greater testing increases the spread of the infection.

5.2. Directed Social Interactions
Here, we show that if agents choose two levels of social 
activity, one directed to low-value and the other to 
high-value agents, then the optimal policy may involve 
testing low-value agents with a higher probability than 
high-value agents. In particular, we let the social 
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activity of each agent i be a pair xi � (xL
i , xH

i ), where xL
i 

denotes agent i’s social activity directed to low-value 
agents, and xH

i denotes her social activity directed to 
high-value agents. In the network of contacts, the prob-
ability of an edge between agents i and j is therefore

P[Eij � 1] �

ηxH
i xH

j , i, j ∈H,
ηxH

i xL
j , i ∈H, j ∈ L,

ηxL
i xH

j , i ∈ L, j ∈H,
ηxL

i xL
j , i, j ∈ L:

8
>>>>><

>>>>>:

The utility of agent i is similar to our baseline model 
and is given by

ui(xi, x�i,αL,αH) � vi(xL
i + xH

i )� P
inf
i (xi, x�i,αL,αH)

�c (αL1{i ∈ L} + αH1{i ∈ H}):

The next proposition provides conditions under which 
it is optimal to test only low-value agents.

Proposition 4. If rH >max 1
1+β , vH

β , 1� vL

n o
and θ < rH 

� vH
β , then there exist c and M ∈ N+ such that for n ≥M 

and c ≤ c, the optimal policy is to only test low-value 
agents; in the corresponding symmetric unique equilibrium, 
all low-value agents play xj � (1, 0), and all high-value 
agents play a mixed-strategy between (1, 0) and (1, 1).

Proposition 4 proves that, for a sufficiently small test-
ing capacity θ�and a sufficiently large population frac-
tion of high-value agents rH, it is optimal to only test 
low-value agents; in the corresponding equilibrium, 
low-value agents will not interact with high-value 
agents. The intuition is that high-value agents, who are 
socially more active, act as “super spreaders,” and the 
social planner would like to reduce their interactions 
with low-value agents. This was not possible in our 
baseline model because agents could not direct their 
social activity toward different groups. When such 
directed behavior is introduced, this encourages the 
social planner to reduce the testing of high-value agents 
to discourage low-value agents from interacting with 
them too much.

5.3. Optimal Testing Policy with Costly Tests
Our analysis thus far has considered a situation with a 
limited number of available tests. In this section, we 
study optimal testing policy (αL,αH) when the social 
planner has access to an unlimited supply of tests at a 
fixed marginal cost (i.e., the cost is linear in the (ex-
pected) number of agents who are tested). Social wel-
fare in this case is simply

W(x,αL,αH) �

 
Xn

i�1
ui(x,αL,αH)

!

� t (αH |H | + αL |L | ), 

where t is the per capita cost of testing.
The game among the planner and the agents is iden-

tical to before, and the social planner’s problem is
max

(αL,αH)∈[0, 1]2
W(xe,αL,αH)

s:t: xe is the unique (symmetric) equilibrium, 

which only differs from our baseline social welfare 
maximization problem because the objective incorpo-
rates costs of testing, and the capacity constraint is 
removed.

The following proposition characterizes the optimal 
policy.

Proposition 5. There exist M ∈ N+, c, t̂, and r̂ ∈ R+ such 
that for n ≥M and c ≤ c, we have: 

(a) If t > t̂, then the optimal policy is to have zero tests.
(b) If t < t̂ and rH > r̂, then the optimal testing is to test 

only high-value individuals, and in the corresponding equi-
librium, high-value agents are fully active, and low-value 
agents are inactive; that is, xe

i � 1 for all i ∈H, and xe
j � 0 

for all j ∈ L.
(c) If t < t̂ and rH < r̂, then the optimal policy is to test all 

individuals, and in the corresponding equilibrium, all agents 
are fully active; that is, xe

i � 1 for all i ∈ V.

Proposition 5 establishes that when the cost of testing 
is not too large and testing occurs in the optimal policy, 
it is always optimal to ensure that high-value agents 
are fully active. If the fraction of high-value agents is 
large, then it is optimal to choose a testing policy 

Figure 4. (Color online) Depending on θ, the Fraction of Society That Can Be Tested, There Are Four Possibilities for the 
Optimal Testing Policy and Corresponding Social Activity Profile in Equilibrium 
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whereby only high-value agents can be fully active, 
while low-value agents remain inactive. Otherwise, if 
the fraction of high-value agents is small, then it is opti-
mal to choose a testing policy that guarantees full social 
activity for all agents. There is no testing capacity left 
unused in this case, since producing this capacity is 
costly.

6. Concluding Remarks
This paper studied the effects of testing on social activ-
ity and voluntary social distancing in the context of an 
epidemic. Social activity levels determine the (endoge-
nous) social network over which contacts take place 
and an infection spreads. Testing enables authorities to 
identify and isolate infected individuals who spread 
the virus and has been identified by the recent literature 
on COVID-19 and policymakers as a key tool for com-
bating epidemics. Our analysis, however, shows that 
the impact of testing on the spread of an epidemic may 
be more complex because knowing that tests will lead 
to the isolation of infected individuals, agents can in-
crease their social activity levels and refrain from vol-
untary social distancing. As a result, our analysis has 
established that the effects of testing on the spread of 
the infection can be nonmonotonic—greater testing can 
lead to higher infection probabilities.

Our analysis has also characterized the optimal test-
ing policies. The same forces that lead to nonmonotonic 
comparative statics also imply that a benevolent social 
planner may prefer to leave their testing capacity par-
tially or fully unused—because increasing testing can 
make the spread of the virus more likely. This implies 
that testing should often be combined with mandatory 
social distancing measures, which ensure that the ad-
verse behavioral effects of testing can be countered by 
preventing excessively high social activity levels.

Our paper is part of a growing literature on the interac-
tion between economic incentives and epidemiological 
dynamics. Two high-level contributions of our approach 
are to conceptualize the problem of endogenous behavior 
as one of social network formation and to use the percola-
tion model rather than the SIR dynamic model. Both of 
these contributions can be useful beyond the confines of 
our specific question, but the robustness of our conclu-
sions to relaxing both assumptions and adopting different 
modeling strategies needs to be investigated. Other inter-
esting areas for research include the analysis of optimal 
testing and tracing when tests lead to type I and type II 
errors and policy is constrained by privacy considerations 
and nonobedience (both in acquiescing to testing and fol-
lowing mandatory social distancing guidelines). Another 
interesting direction is to consider different types of activ-
ities with different values for individuals. Finally, a fruit-
ful avenue would be to enrich the setup to incorporate 
more heterogeneity and richer economic, social and 

epidemiological interactions so as to enable quantitative 
policy analysis.
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Appendix A. Proofs
This appendix includes the proof of the main results. The 
rest of the proofs and additional results are presented in 
the online appendix.

Proof of Proposition 2. We first prove that the best res-
ponse decision of each individual is either one or zero 
(i.e., the best response social activity of each agent is at 
the boundaries of [0, 1]).

Lemma 2 also shows that in any mixed-strategy equilib-
rium each agent i must be mixing between playing one 
and playing zero. In what follows, we let x � γ�for some 
γ ∈ [0, 1] to denote a mixed strategy that puts probability 
γ�on one and puts probability 1� γ�on zero. We also let 
αi denote the testing probability of agent I, which is equal 
to αL if i ∈ L and is equal to αH if i ∈H.

We now proceed with the proof of proposition.

Proof of Part (a). We first establish that xi� 1 for all i ∈ V 

is an equilibrium and then show that it is the unique sym-
metric equilibrium. Consider i ∈H. The utility of i with 
action profile x � 1 is vH �Pinf

i (xi � 1, x�i � 1,αH,αL)� cαH. 
If agent i deviates and plays xi�0 (using Lemma 2, this is the 
only candidate for a profitable deviation), then its utility 
becomes �Pinf

i (xi � 0, x�i � 1,αH,αL)� cαH �
�1
n � cαH, where 

we used the fact that if xi�0, then the only way for agent i 
to get infected is be the source of infection. Therefore, given 
(αH,αL) ∈A1 we have ui(xi � 1, x�i,αL,αH) > ui(xi � 0, x�i, 
αL,αH). Similarly, any j ∈ L does not have a profitable 
deviation.

We next prove that this is the unique symmetric equi-
librium. First, for a high-value agent i ∈H no matter what 
the strategy of other agents are, the dominant strategy is 
to play xi�1. This is because for any x�i, we can write ui 
(xi � 1, x�i,αL,αH) � vH � Pinf

i (xi � 1, x�i,αL,αH)� cαH ≥ vH�

Pinf
i (xi � 1, x�i � 1,αL,αH) � cαH >�

1
n� cαH � ui(xi � 0, x�i, 

αL,αH), where the first inequality follows from Part (a) of 
Lemma 1 and the second inequality follows from (αL, 
αH) ∈A1 and vH>vL. Therefore, there are two other candi-
dates for a symmetric equilibrium: (i) the action profile 
xi�1 for all i ∈H and xj�0 for all j ∈ L and (ii) xi�1 for 
all i ∈H and xj � γL for all j ∈ L and some γL ∈ (0, 1). We 
next show that none of these can be an equilibrium 
because an agent j ∈ L has a profitable deviation to one. 
This is because uj(xj � 1, xL\{j}, xH � 1,αH,αL) � vL �Pinf

j (xj �

1, xL\{j}, xH � 1,αH,αL)� cαL > vL �Pinf
j (xj � 1, xL\{j} � 1, xH �

1,αH,αL) � cαL ≥
�1
n � cαL � uj(xj � 0, xL\{j} � 0, xH � 1, αH, 

αL), where the first inequality follows from Part (a) of 
Lemma 1 and the fact that we have either xL\{j} � 1 or 
xL\{j} � γL1, which are both below xL\{j} � 1 and the second 
inequality follows from (αL,αH) ∈A1, completing the proof 
of Part (a).
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Proof of Part (b). Before proceeding with the proof of this 
part, as we decrease (αL,αH), one of the constraints of A1 
will be violated because the infection probability increases 
(using Proposition 1). For any ɛ > 0, there exists M ∈ N+ such 
that for n ≥M, we have |Pinf

l (xH � 1, xL � 1,αH,αL)�Pinf
h 

(xH � 1, xL � 1,αH,αL) | < ɛ. In what follows, we let ɛ < vH�vL
2 . 

Therefore, the constraint Pinf
l (xH � 1, xL � 1,αH,αL) ≤ vL +

1
n will 

be violated first, resulting in (αL,αH) that belongs to the set A2.
We now proceed with the proof of Part (b). Consider 

any symmetric mixed strategy for agents i ∈H. Using 
Lemma 2, this mixed strategy must have only two atoms 
{0, 1}. We let γH (and similarly γL) denote the probability 
of being 1 for high-value agents (and similarly for low- 
value agents). With the abuse of notation whenever we 
write xi � γH this means expectation over xi, which is one 
with probability γH and zero with probability 1� γH.

We define γL : [0, 1]2→ [0, 1] such that for any pair 
(αL,αH), we have Pinf

l (xH � 1, xl � 1, xL\{l} � γL(αL,αH),αL, 
αH) �

1
n+ vL. For any (αL,αH) ∈A2, there exists γL(αL,αH) in 

[0, 1] that satisfies the previous equality. This is because 
by using Part (a) of Lemma 1, the function f : [0, 1] → [0, 1]
where f (y) � Pinf

l (xH � 1, xl � 1, xL\{l} � y1,αL,αH) is increas-
ing in y. For y�0, we have f (0) � Pinf

l (xH � 1, xl � 1, xL\{l} �

0,αL,αH) ≤
1
n+ vL where the inequality follows from (αL, 

αH) ∈A2. For y�1, we have f (1) � Pinf
l (xH � 1, xl � 1, xL\{l} �

1,αL,αH) ≥
1
n+ vL, where the inequality follows from (αL, 

αH) ∈A2. Mean-value theorem shows that γL(αL,αH) ∈

[0, 1] exists.
We first prove that xi� 1 for all i ∈H and xj � γL(αL,αH)

for all j ∈ L is an equilibrium. For i ∈H, we have

ui(xi�1,xH\{i} �1,xL�1γL(αL,αH),αH,αL)

�vH�Pinf
i (xi�1,xH\{i} �1,xL�1γL(αL,αH),αH,αL)�cαH

≥
(a)

vH�Pinf
l (xl�1,xH�1,xL\{l} �1γL(αL,αH),αH,αL)�ɛ�cαH

�
(b)vH� vL+

1
n

� �

�ɛ�cαH≥
(c)
�

1
n
�cαH �ui(xi�0,xH\{i}

�1,xL�1γL(αL,αH),αH,αL), 

where (a) follows from n ≥M, (b) follows from the defini-
tion of γL(αL,αH), and (c) follows from ɛ < vH�vL

2 . This 
shows that high-value agents do not have a profitable devi-
ation. For j ∈ L, we have uj(xj � 1, xL\{j} � 1γL(αL,αH), xH �

1,αH,αL) � vL �Pinf(xj � 1, xL\{j} � 1γL(αL,αH), xH � 1,αH,αL)

� cαL �
�1
n � cαL � uj(xj � 0, xL\{j} � 1γL(αL,αH), xH � 1, αH, 

αL), where the last equality follows from the definition of 
γL(αL,αH). This proves that each low-value agent is indif-
ferent between playing zero and one given the action pro-
file of others in this equilibrium.

We next prove that there exists no other symmetric 
equilibrium by listing all possibilities: 

1. (xl � 0, xh � 0): This is not an equilibrium because any 
agent i can deviate and receive 1� 1

n� cαi instead of �1
n � cαi.

2. (xl � 0, xh � 1): This is not an equilibrium because any 
agent j ∈ L has a profitable deviation. This is because uj(xj �

1, xL\{j} � 0, xH � 1,αL,αH) � vL�Pinf
j (xj � 1, xL\{j} � 0, xH � 1, 

αL,αH)� cαL ≥
�1
n �cαL � uj(xj � 0, xL\{j} � 0, xH � 1,αL,αH), 

where the inequality follows from (αL,αH) ∈A2.
3. (xl � 0, xh � γH): This is not an equilibrium for a similar 

reason to case 2.

4. (xl � 1, xh � 0): This is not an equilibrium because any 
agent i ∈H has a profitable deviation for a similar reason because
ui(xi � 1, xH\{i} � 0, xL � 1,αL,αH) � vH �Pinf

h
(xh � 1, xH\{h} � 0, xL � 1,αL,αH)� cαH

≥
(a)

vH �Pinf
l (xl � 1, xH � 0, xL\{l} � 1,αL,αH)� ɛ� cαH ≥

(b)

vH � ɛ� vL�
1
n� cαH

≥
(c)�1

n � cαH � ui(xi � 0, xH\{i} � 0, xL � 1,αL,αH), 
where (a) follows from n being large, (b) follows from xl�1 
being equilibrium, and (c) follows from vH>vL and ɛ < vH � vL.

5. (xl � 1, xh � 1): This is not an equilibrium because, given 
(αH,αL) ∈A2, uj(xj � 0, xL\{j} � 1, xH � 1,αL,αH) �

�1
n � cαL ≥ vL 

�Pinf
l (xj � 1, xL\{j} � 1, xH � 1,αL,αH)� cαL � uj(xj � 1, xL\{j} �

1, xH � 1,αL,αH), implying that any j ∈ L has a profitable 
deviation.

6. (xl � 1, xh � γH): This is not an equilibrium for a similar 
reason as case 5.

Proof of Part (c). By further decreasing the pair (αL,αH), 
using Proposition 1, the infection probabilities increase and 
therefore one of the inequalities Pinf

l (xH � 1, xl � 1, xL\{l} �

0,αL,αH) ≤ vL +
1
n ,Pinf

h (xh � 1, xH\{h} � 1, xL � 0,αL,αH) ≤ vH+
1
n 

will be violated first. For n ≥M, the first constraint that will be 
violated is Pinf

l (xH � 1, xl � 1, xL\{l} � 0,αL,αH) ≤ vL +
1
n, result-

ing in the set A3. In region A3, we next list all the candidate sym-
metric equilibria and conclude that xi�1 for i ∈H and xj�0 for 
all j ∈ L is the only symmetric equilibrium. 

1. (xl � γL, xh � 1): This is not equilibrium because if this 
was equilibrium we would have been in region A2. More pre-
cisely, because Pinf

l (xH � 1, xl � 1, xL\{l} � 0,αL,αH) ≥ vL +
1
n.

2. (xl � γL, xh � γH): This cannot be equilibrium for large 
enough n. This is because if it is equilibrium then we must 
have Pinf

l (xl � 1, xL\{l} � 1γL, xH � 1γH,αL,αH) � vL +
1
n and 

Pinf
h (xh � 1, xH\{h} � 1γH, xL � 1γL,αL,αH) � vH +

1
n. For large 

enough n, the difference between the left-hand side of the 
previous equations becomes smaller than vH � vL, which is a 
contradiction.

3. (xl � γL, xh � 0): This cannot be equilibrium for large 
enough n. This is because if it is equilibrium then we must have 
Pinf

l (xl � 1, xL\{l} � 1γL, xH � 0,αL,αH) � vL +
1
n and Pinf

h (xh � 1, 
xH\{h} � 0, xL � 1γL,αL,αH) ≥ vH +

1
n. For large enough n, the 

difference between the left-hand side of the previous equations 
becomes smaller than vH � vL, which again is a contradiction.

4. (xl � 0, xh � 1): This is a symmetric equilibrium because 
a low-value agent has no profitable deviation. This follows 
from ul(xl � 0, xL\{l}, xH,αL,αH) ��

1
n� cαL ≥ vL�Pinf

l (xl � 1, xL\{l}xH, 
αL,αH)� cαL � ul(xl � 1, xL\{l}, xH,αL,αH), where the inequal-
ity follows from (αL,αH) ∈A3. Also, a high-value agent has 
no profitable deviation. This is because uh(xh � 1, xH\{h} �

1, xL � 0,αL,αH) � vH �Pinf
h (xh � 1, xH\{h} � 1, xL � 0,αL,αH)�

cαH ≥
�1
n � cαH � uh(xh � 1, xH\{h} � 1, xL � 0,αL,αH), where 

the inequality follows from (αL,αH) ∈A3.
5. (xl � 0, xh � γH): This cannot be equilibrium for large 

enough n. This is because if it is equilibrium then we must 
have Pinf

l (xl � 1, xL\{l} � 0, xH � 1γH,αL,αH) ≥ vL +
1
n and Pinf

h 
(xh � 1, xH\{h} � 1γH, xL � 0,αL,αH) � vH +

1
n. For large enough 

n, the difference between the left-hand side of the previous 
equations becomes smaller than vH � vL, which again is a 
contradiction.
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6. (xl � 0, xh � 0): This cannot be equilibrium because any 
agent i can deviate and increase its utility from �1

n � cαi to 
vi �

1
n� cαi.

7. (xl � 1, xh � 1): This cannot be equilibrium because if it 
was, we would be in region A1.

8. (xl � 1, xh � γH): This is not equilibrium because if it 
was, then Pinf

h (xh � 1, xH\{h} � 1γH, xL � 1,αL,αH) �
1
n+ vH and 

Pinf
l (xH � 1γH, xL � 1,αL,αH) ≤

1
n+ vL. For large n, the differ-

ence between the left-hand side of the previous inequalities is 
below ɛwhich is a contradiction.

9. (xl � 1, xh � 0): This is equilibrium because if it was, 
then Pinf

h (xh � 1, xH\{h} � 1γH, xL � 1,αL,αH) ≥
1
n+ vH and Pinf

l 
(xH � 1γH, xL � 1,αL,αH) ≤

1
n+ vL. For large n, the difference 

between the left-hand side of the previous inequalities is 
below ɛwhich is a contradiction.

Proof of Part (d). By further decreasing the pair (αL,αH), 
the infection probabilities increase and therefore the con-
straint Pinf

h (xh � 1, xH\{h} � 1, xL � 0,αL,αH) ≤ vH +
1
n will be 

violated and we get to region A4. We define γH : [0, 1]2→
[0, 1] such that for any pair (αL,αH), we have Pinf

h (xh � 1, 
xH\{h} � γH(αL,αH)1, xl � 0, xL\{l} � 0,αL,αH) �

1
n+ vH. For 

any (αL, αH) ∈A4, there exists γH(αL,αH) in [0, 1] that 
satisfies the previous equality. This is because by using 
Part (a) of Lemma 1, the function f : [0, 1] → [0, 1], where 
f (y) � Pinf

h (xh � 1, xH\{h} � y1, xL � 0,αL,αH) is increasing in 
y. For y�0, we have f (0) � Pinf

h (xh � 1, xH\{h} � 0, xL � 0, 
αL,αH) �

1
n ≤

1
n+ vH. For y�1, we have f (1) � Pinf

h (xh � 1, 
xH\{h} � 1, xL � 0,αL,αH) ≥

1
n+ vH, where the inequality fol-

lows from (αL,αH) ∈A4. Using mean-value theorem shows 
that γH(αL,αH) ∈ [0, 1] exist.

We first establish that xj� 0 for all j ∈ L and xi �

γH(αL,αH) for all i ∈H is an equilibrium. For j ∈ L, we have
uj(xj � 1, xH � 1γH(αL,αH), xL\{j} � 0,αH,αL)

� vL �Pinf
j (xH � 1γH(αL,αH), xj � 1, xL\{j} � 0,αH,αL)� cαL

≤
(a)

vL �Pinf
h (xh � 1, xH\{h} � 1γH(αL,αH), xL � 0,αH,αL) + ɛ

�cαL �
(b)vL�

1
n� vH + ɛ� cαL

≤
(c)�1

n � cαL � uj(xj � 0, xH � 1γH(αL,αH), xL � 0,αH,αL), 

where (a) follows from n ≥M, (b) follows from the defini-
tion of γH(αL,αH), and (c) follows from ɛ < vH�vL

2 . This 
shows that low-value agents do not have a profitable devi-
ation. For i ∈H, we have ui(xi � 1, xH\{i} � 1γH(αL,αH), xL �

0, αH, αL) � vH � Pinf
i (xi � 1, xH\{i} � 1γH(αL,αH), xL � 0,αH, 

αL)� cαH �
�1
n � cαH � ui(xi � 0, xH\{i} � 1γH(αL,αH), xL � 0, 

αH,αL), showing that high-value agents are indifferent 
between playing one and zero with this activity profile, 
where the last equality follows from the definition of 
γH(αL,αH). Similar to the proof of previous parts, listing all 
possible symmetric equilibria shows this is the unique sym-
metric equilibrium. w

Proof of Theorem 1

Proof of Part (a). Using Proposition 2, the unique sym-
metric equilibrium for (αL,αH) ∈A1 is xi�1 for all i ∈ V 

and therefore the infection probability of agent i becomes 
Pinf

i (x � 1,αL,αH), which is decreasing in (αL,αH) as shown 
in Proposition 1.

Proof of Part (b). Using Proposition 2, the unique sym-
metric equilibrium for (αL,αH) ∈A2 is xi�1 for all i ∈H 

and mixed action for all j ∈ L where xj�1 with probability 
γL(αL,αH) and xj�0 with probability 1� γL(αL,αH). Here, 
γL(αL,αH) is such that low-value agent are indifferent 
between playing x�1 and x�0, which implies

Pinf
l (xl�1,xL\{l} �1γL(αL,αH),xH�1,αL,αH)�

1
n
+vL: (A.1) 

The infection probability of low value agents is

γL(αL,αH)Pinf
l (xl�1,xL\{l} �1γL(αL,αH),xH�1,αL,αH)

+(1�γL(αL,αH))Pinf
l (xl�0,xL\{l} �1γL(αL,αH),xH�1,αL,αH)

�γL(αL,αH)
1
n+vL

� �

+(1�γL(αL,αH))
1
n�γL(αL,αH)vL�

1
n :

We next prove that the γL(αL,αH), which is the solution to 
(A.1) is increasing in (αL,αH). We prove this by assuming 
the contrary and reaching a contradiction. In particular, 
suppose that (α′L,α′H) > (αL,αH) and γL(α

′
L,α′H) < γL(αL,αH). 

We can write

vL+
1
n�
(a)Pinf

l (xl�1,xL\{l} �1γL(αL,αH),xH �1,αL,αH)

>
(b)
Pinf

l (xl�1,xL\{l} �1γL(α
′
L,α′H),xH �1,αL,αH)

>
(c)
Pinf

l (xl�1,xL\{l} �1γL(α
′
L,α′H),xH�1,α′L,α′H) �

(d)vL+
1
n , 

which is a contradiction. In the previous derivation, (a) and 
(d) follow by invoking (A.1), (b) follows from the assump-
tion that γL(α

′
L,α′H) < γL(αL,αH) and part (a) of Lemma 1, 

and (c) follows from (α′L,α′H) > (αL,αH) and Proposition 1. 
The infection probability of high-value agents is given in 
(A.1), which remains equal to 1

n+ vL.

Proof of Part (c). Using Proposition 2, the unique sym-
metric equilibrium for (αL,αH) ∈A3 is xj�0 for all j ∈ L 

and xi�1 for all i ∈H, and therefore the infection proba-
bility of an agent k becomes Pinf

k (xH � 1, xL � 0,αL,αH), 
which is decreasing in (αL,αH) as shown in Proposition 1.

Proof of Part (d). Using Proposition 2, the unique sym-
metric equilibrium for (αL,αH) ∈A4 is xj�0 for all j ∈ L 

and mixed action for all i ∈H where xi�1 with probability 
γH(αL,αH) and xi�0 with probability 1� γH(αL,αH). Here, 
γH(αL,αH) is such that high-value agents are indifferent 
between playing x�1 and x�0, which implies

Pinf
h (xh � 1, xH\{h} � 1γH(αL,αH), xL � 0,αL,αH) �

1
n+ vH:

(A.2) 
The infection probability of high value agents is

γH(αL,αH)Pinf
l (xh � 1, xH\{l} � 1γH(αL,αH), xL � 0,αL,αH)

+ (1� γH(αL,αH))Pinf
h (xh � 0, xH\{h} � 1γH(αL,αH), xL � 0,αL,αH)

� γH(αL,αH)
1
n + vH

� �

+ (1� γH(αL,αH))
1
n � γH(αL,αH)vH �

1
n :

We next prove that the γH(αL,αH), which is the solution to 
(A.2) is increasing in (αL,αH). We establish this by assuming 
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the contrary and reaching a contradiction. In particular, sup-
pose that (α′L,α′H) > (αL,αH) and γH(α

′
L,α′H) < γH(αL,αH). We 

can write

vH +
1
n
�
(a) Pinf

h (xh � 1, xH\{h} � 1γH(αL,αH), xL � 0,αL,αH)

>
(b)
Pinf

h (xh � 1, xH\{h} � 1γH(α
′
L,α′H), xL � 0,αL,αH)

>
(c)
Pinf

h (xh � 1, xH\{h} � 1γH(α
′
L,α′H), xL � 0,α′L,α′H) �

(d) vH +
1
n

, 

which is a contradiction. In the previous derivation, (a) and 
(d) follow by invoking (A.2), (b) follows from the assump-
tion that γH(α

′
L,α′H) < γH(αL,αH) and part (a) of Lemma 1, 

and (c) follows from Proposition 1. The infection probabil-
ity of low-value agents remains 1

n, completing the proof. w

Endnotes
1 In the online appendix, we show that our model can be viewed as 
an extended version (to account for testing and network structure) 
of a discrete version of an SIR setup, namely the Reed-Frost model.
2 In our model, testing is used for identifying and isolating infected 
individuals in order to reduce the spread of the infection to others. 
We also analyze the complementary effects of “social distancing” 
policies that lead to costly reductions in the quality and level of an 
individual’s social interactions and reduce the likelihood that he or 
she becomes infected and, when infected, transmits it to others.
3 Other related work includes Acemoglu et al. (2016), who introduce 
precautionary behavior in the context of a virus spreading over a net-
work; Morris (2000), Tardos and Wexler (2007), Blume et al. (2011), 
Acemoglu et al. (2017a, b), Elliott et al. (2014), Capponi (2016), Bernard 
et al. (2019), and Capponi (2016), who study contagion over financial 
networks; and Manshadi et al. (2020), who study diffusion in random 
networks. In particular, Bernard et al. (2019) consider a dynamic game 
between a benevolent social planner and banks in which the social 
planner chooses an intervention policy (bail-in and bail-out), and banks 
decide whether to contribute financially to the rescue. This is reminis-
cent of our model in which a benevolent social planner chooses the test-
ing probability of agents, and the agents decide on the amount of social 
activity. A crucial distinction is that in Bernard et al. (2019), the network 
of contractual relations is exogenously specified.
4 Our percolation process is closely connected to the SIR model. In par-
ticular, as we discuss in the online companion, the relevant comparison 
is to the discrete-time version of the SIR model, often referred to as the 
Reed-Frost model. On a complete network, our percolation process 
generates the same behavior of cumulative infections as in the Reed- 
Frost model, but is particularly tractable when the social network is not 
complete, which is the main case of interest for us.
5 In this formulation, the lower utility from reduced social activity 
due to isolation is assumed to be the same for all agents and incor-
porated into the second term. The results are identical if this cost is 
allowed to be type dependent.
6 Because n is sufficiently large, when all agents are playing one, a 
change in one agent’s testing probability does not alter the infection 
probability of other agents by more than vH � vL.
7 We say a sequence of sets {A}∞n�1 converges to set A if for any 
ɛ > 0, there exists M ∈ N+ such that for n ≥M, we have An ⊆ A(ɛ) and 
A ⊆ A(ɛ)n , where for any set B, B(ɛ) denotes 

S
b∈B{x : ‖x� b‖2 ≤ ɛ}.

8 The thresholds on θ�relate to the ones found in Lemma 3, and in 
particular, we have θ(1) � rHα

(1)
H , θ(2) � α(2)H rH , and θ(3) � α(3)H rH. 

These thresholds are such that θ(2)rH
∈ [0, 1] and for θ ∈ [θ(3),θ(2)), we 

have θrH
∈ [0, 1].
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