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Abstract

Parameter estimates in misspecified models converge to pseudo-true parameter val-
ues, which minimize a population objective function. Pseudo-true values often differ
from quantities of economic interest, raising questions of how, if at all, they are rele-
vant for decision-making. To study this question we consider Bayesian decision-makers
facing a population minimum distance problem. Within a class of priors motivated by
the minimum distance objective, we characterize prior sequences under which posteri-
ors concentrate on the pseudo-true value. This convergence is fragile to small changes
in priors, implying that pseudo-true values are relevant for decision-making only in
special cases. Constructive results are nevertheless possible in this setting, and we de-
rive simple confidence intervals that guarantee correct average coverage for the true
parameter under every prior in the class we study, with no bound on the magnitude of
misspecification.

1 Introduction

Empirical research in economics often begins by positing a model which relates quan-
tities of economic interest to the distribution of observable data. Researchers then
use model-implied relationships, together with observed data, to construct estimates or
bounds for parameters of interest.

Unfortunately, commonly-used models impose assumptions which are difficult to
validate, and which are sometimes rejected outright. For instance, some models impose
functional form restrictions such as linearity, or distributional restrictions on latent error
terms. Others impose homogeneity across economic agents, or behavioral assumptions
such as utility or profit maximization. Finally, methods that aim to uncover causal
or structural relationships impose assumptions regarding unconfoundedness of treat-
ment and the scope for spillovers across units. When we have reason to doubt these
assumptions, it can be unclear how to interpret model-implied estimates or bounds.

1



Indeed, absent some restriction on model misspecification, the quantities of interest are
necessarily unidentified, and we can learn nothing from data.

An influential literature, including White (1982), Hall and Inoue (2003), Müller
(2013), Hansen and Lee (2021), and Andrews and Kwon (2023), studies the problem
of inference under model misspecification, and avoids identification problems for the
quantity of economic interest θ by shifting the focus to “pseudo-true” parameter values,
defined as the minimizers of a population objective function. Under mild conditions
these papers show consistency of estimates for the pseudo-true value (in point-identified
settings) or identified set (in set-identified ones). Moreover, these papers provide infer-
ence results, for example showing asymptotic normality of point estimates and deriving
consistent standard errors for the pseudo-true value. These results have been highly in-
fluential for empirical practice, with, for instance, the “sandwich” standard error formula
discussed by White (1982) now widely adopted in the context of maximum likelihood
estimation.

While focusing on pseudo-true values allows us to provide statistical guarantees,
it leaves open the question of how, if at all, these pseudo-true values relate to the
original quantities of economic interest. The literature studying inference on pseudo-
true values discusses this tension, with White (1982) writing “[the estimator] converges
to a well defined limit, and may or may not be consistent for particular parameters of
interest.” Similarly, Müller (2013) writes that “[it] is important to keep in mind that
the pseudo-true parameter of the misspecified model must remain the object of interest
for ... inference to make sense” and Hansen and Lee (2021) write that “it is difficult
to give economic interpretation to pseudo-true parameter values. Consequently, this
limits interest in valid inference procedures for pseudo-true values.”

This paper revisits the distinction between true and pseudo-true parameter values.
To abstract from sampling uncertainty we consider a population minimum-distance
problem in which the distribution of the data is perfectly observed. We adopt a decision-
theoretic, and specifically Bayesian, perspective to ask under what conditions the pos-
terior distribution for θ, given the distribution of the observable data, concentrates
around the pseudo-true parameter. Such concentration implies, under mild conditions,
that Bayes decision rules converge to plug-in rules based on pseudo-true values.

We provide three main results. First, we characterize a class of joint priors for
the data distribution and θ such that the posterior density for θ is proportional to
a transformation of the minimum distance objective function. This proportionality
implies that the minimum distance objective is a sufficient for decisionmaking, and
hence an optimal way to summarize the data. This is a natural class of priors to consider
in the context of minimum distance estimation, since it corresponds to a belief that the
minimum distance objective captures all decision-relevant information. We show that
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proportionality holds if and only if an implicit prior on the degree of misspecification
satisfies a rotation-invariance condition.

Second, we characterize prior sequences in this rotation-invariant class such that
the posterior distribution concentrates around the pseudo-true value. These priors as-
sume that the degree of misspecification is negligible, which seems implausible in many
economic applications. We further find that concentration is fragile, in the sense that
seemingly small changes to the prior lead posterior concentration to fail dramatically.1

When posterior concentration fails, researchers with different priors on the form and
degree of misspecification will have different posteriors for θ.

This naturally raises the question of whether it is possible to give positive results
under the class of priors we consider. Our third main result constructs confidence
intervals that guarantee correct coverage of θ under all priors satisfying our rotation-
invariance condition. Since we consider the population problem, there is no randomness
due to sampling and we instead define coverage using the ex-ante probability under the
prior. Our misspecification-robust confidence intervals:

1. are centered at the pseudo-true parameter value;

2. require no researcher input beyond the choice of weighting matrix;

3. have width proportional to the square root of a population J-statistic; and

4. impose no ex-ante upper bound on the degree of misspecification.

Since these intervals are valid under a class of priors motivated by the minimum distance
objective, they are a natural option for summarizing misspecification-driven uncertainty
in settings where researchers adopt a minimum distance approach.

Inference under model misspecification is closely related to the large literature on
partial identification, and the practice of plugging in pseudo-true parameter estimates
for decision-making is an instance of what Manski (2021) terms “as-if optimization.” In
settings where we are concerned with model misspecification an alternative approach,
implemented in various contexts by Conley et al. (2012), Manski and Pepper (2018),
Armstrong and Kolesár (2021), and Rambachan and Roth (2023), is to explicitly bound
the possible degree of misspecification and derive results which are valid under all data
generating processes satisfying this bound, for instance by characterizing the identified
set for the quantity of interest. We show, however, that computing identified sets
under a bound on misspecification leads to counter-intuitive behavior in our setting,
where the identified set narrows as the observed violation of the model’s over-identifying
restrictions grows worse, rather than widening, as our confidence intervals do.

1While these priors imply that the degree of misspecification is negligible a-priori, our results cover cases
where the data violate the model’s over-identifying restrictions to an arbitrarily large extent. Hence, posterior
convergence to the pseudo-true value requires that the posterior continues to reflect that misspecification is
as small as possible, even once we know that the model is badly wrong.
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The next section introduces our population minimum distance setting and formally
defines model misspecification and pseudo-true values. Section 3 introduces the decision
problem we study and provides our first main result, characterizing the class of priors
such that the posterior for θ depends on the data through the minimum distance ob-
jective. Section 4 characterizes sequences of priors in this class such that the posterior
concentrates on the pseudo-true value, and shows that this concentration is fragile in
important respects. Finally, Section 5 derives our suggested confidence intervals, moti-
vated by an invariance property derived in Section 3, and compares them to identified
sets based on bounds for the magnitude of misspecification.

2 Setting

2.1 Minimum Distance Model

Suppose that for a set D and ∆(D) the set of distributions on D, a researcher observes
a distribution P ∈ P ⊆ ∆(D). This corresponds to the large-sample limit of a setting
where the researcher observes a sample of n observationsDi ∈ D drawn iid from P, since
as n → ∞ they can consistently estimate P from {Di}ni=1. To abstract from sampling
uncertainty, we consider the population problem where P is directly observed.

Further suppose that the researcher is interested in an economic quantity θ ∈ Rp,
and has a model that implies that the true (P, θ) pair satisfies

g (θ;P ) = Y (P )−X (P ) θ = 0 (1)

for known functions Y : P → Rk and X : P → Rk×p. We assume that X(P ) has full
column rank, and unless otherwise noted assume that the model is over-identified, with
k > p. We loosely refer to g (θ;P ) as “moments,” though the linear minimum-distance
setting we consider is more general than linear GMM. We focus on linear-in-parameters
moments of the form (1) for simplicity, but our exact results for this linear setting will
translate to approximate results for models which can be linearly approximated, for
instance under local misspecification as studied by Armstrong and Kolesár (2021).

Example: Linear IV As a first example, suppose that Di = (Yi, Xi, Zi) for Yi ∈ R
a scalar outcome, Xi ∈ {0, 1} a binary endogenous treatment, and Zi ∈ Rk a vector of
k mean-zero exogenous variables, E[Zi] = 0. We assume that these data are generated
from a potential outcomes model, where the potential outcomes Yi(x, z) may in general
depend on both Xi and Zi, and the potential treatments Xi(z) may depend on Zi. The
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parameter of interest θ ∈ R is the average treatment effect (ATE),

θ = E[Yi(1, Zi)− Yi(0, Zi)],

which captures the average effect on Yi from changing Xi from zero to one.
If the researcher wants to estimate a constant-effect linear instrumental variables

model with excluded instrument Zi, this can be justified by assuming that Zi is excluded
from Yi, Yi(x, z) = Yi(x, z

′) for all (x, z, z′), that the instrument is randomly assigned
Zi ⊥⊥ Yi(·), Xi(·), and that treatment effects are constant, Yi(1) − Yi(0) = θ for all i.
Under these assumptions Yi follows the linear model Yi = Xiθ + εi, where εi = Yi(0)

and E [Ziεi] = 0. Consequently, θ solves the moment condition (1) for

Y (P ) = EP [ZiYi] , X (P ) = EP [ZiXi] ,

which are (up to pre-multiplication by EP [ZiZ
′
i]
−1) equal to the reduced-form and

first-stage coefficient vectors in the linear IV model, respectively. △

Example: Logit Model As a second example, suppose that Di = (Yi, Xi) for
Yi ∈ {0, 1} a binary outcome and Xi = (1, X̃i) ∈ R2 an exogenous variable, where
X̃i ∈ {x1, ..., xJ}. If the researcher assumes a logistic regression (i.e. logit) model for
Yi,

Yi = 1{X ′
iψ > εi}

where εi ∼ Logistic(0, 1) is independent of Xi, then under this model

EP [Yi|Xi = x] = Ψ(x′ψ)

for Ψ(x) = ex

1+ex the logistic function or, equivalently,

Ψ−1(EP [Yi|Xi = x]) = x′ψ

for Ψ−1(x) = log
(

x
1−x

)
the logit function.

We suppose that the object of interest θ ∈ R2 parameterizes the conditional mean
of Y given two as-yet-unobserved values of X̃i,

θ = (θ1, θ2)
′ = (Ψ−1(E[Yi|Xi = (1, x∗1)]),Ψ

−1(E[Yi|Xi = (1, x∗2)]))
′,
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where x∗1, x∗2 ̸∈ {x1, ..., xJ}. The model implies that θ solves (1) for

Y (P ) =


Ψ−1(EP [Yi|Xi = (1, x1)])

...
Ψ−1(EP [Yi|Xi = (1, xJ)])

 ,

X (P ) =


1 x1
...

...
1 xJ


( x∗

2
x∗
2−x∗

1
− x∗

1
x∗
2−x∗

1

− 1
x∗
2−x∗

1

1
x∗
2−x∗

1

)
. △

2.2 Misspecification and Pseudo-True Values

In many contexts researchers are concerned that their models may be misspecified. In
the minimum distance setting we consider, this means that at the true (P, θ) pair

g (θ;P ) = η ̸= 0, (2)

for η a parameter that describes the impact of misspecification on the moments. As
the following examples highlight, we may have η ̸= 0 for a variety of reasons.

Example: Linear IV (Continued) Suppose we maintain the exclusion and in-
dependence assumptions for the instruments Zi, but allow treatment effects to be het-
erogeneous across units, Var(Yi(1) − Yi(0)) > 0. If this treatment effect heterogeneity
is correlated with heterogeneity in the first-stage effect Xi(z) − Xi(z

′), the results of
Imbens and Angrist (1994) imply that the linear IV moments are not in general zero
when evaluated at the ATE θ. Instead, for β the vector of one-instrument-at-a-time
IV estimands (i.e. the IV coefficient using the first instrument by itself, the second by
itself, and so on), ι ∈ Rk the vector of ones, and ◦ the elementwise product, the implied
value of η is

η = EP [ZiYi]− EP [ZiXi] θ = (β − θ · ι) ◦ EP [ZiXi] ̸= 0.

Hence, the model is misspecified in the sense we consider whenever the one-at-a-time
IV estimands differ from the ATE. Note that the IV model can thus be misspecified
even when we have only a single instrument, k = 1: if in this case we further impose the
Imbens and Angrist (1994) monotonicity assumption, the IV model will be misspecified
if and only if the local average treatment effect (LATE) differs from the ATE.

In this example we focus on misspecification arising from treatment effect hetero-
geneity, but our framework is sufficiently general to accommodate many other ways in
which the researcher’s assumptions could fail. For instance, the exclusion restriction
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may fail, with Yi(x, z) ̸= Yi(x, z
′) for some (x, z, z′), or independence may fail with

Zi ̸⊥⊥ (Yi(·), Xi(·)). Each of these failures will imply a particular form for η. △

Example: Logit Model (Continued) The logit model may be misspecified for
a variety of reasons, for instance because the linear threshold model is incorrect and Xi

in fact enters nonlinearly, Yi = 1{h(Xi) > εi}, or because the linear threshold model is
correct but the residual εi does not follow a logistic distribution. Whatever the reason
for misspecification, we will have

η =


Ψ−1 (EP [Yi|Xi = (1, x1)])

...
Ψ−1 (EP [Yi|Xi = (1, xJ)])

−


1 x1
...

...
1 xJ


( x∗

2
x∗
2−x∗

1
− x∗

1
x∗
2−x∗

1

− 1
x∗
2−x∗

1

1
x∗
2−x∗

1

)
θ ̸= 0,

where the conditional expectations EP [Yi|Xi = (1, xj)] will depend of the precise form
of misspecification. △

If we allow η ̸= 0 and impose no other restrictions, identification of θ is hopeless,
since any value of θ is compatible with any distribution P . To avoid such a pessimistic
conclusion, one route pursued in the literature, including in Conley et al. (2012), Manski
and Pepper (2018), Masten and Poirier (2020), Armstrong and Kolesár (2021), and
Rambachan and Roth (2023), is to consider bounded relaxations of the model.

To outline one approach along these lines, note that for a P -dependent positive-
definite weighting matrix W (P ) , the model is correctly specified if and only if the
W -weighted norm of the misspecification parameter η is equal to zero

∥η∥W :=
√
η′W (P ) η = 0.

To allow the possibility of misspecification, the researcher could instead assume only
that ∥η∥W is bounded above by some known constant d. The identified set for θ is then
the set of values θ such that the minimum distance objective function

QW (θ;P ) := ∥g(θ;P )∥2W

takes a value smaller than d2

ΘI (P, d) :=
{
θ : QW (θ;P ) ≤ d2

}
. (3)

While this approach requires the researcher to specify the norm bound d, the data
do contain some information about this quantity. Specifically, when d2 < JW (P )

for JW (P ) = minθQW (θ;P ) the population analog of the J-statistic (Hansen, 1982),
ΘI (P, d) is empty, so the data reject the assumption that ∥η∥W < d. Thus, as discussed
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in e.g. Armstrong and Kolesár (2021) the data imply lower, but not upper, bounds on
the degree of misspecification.

Another common practice when we are concerned with model misspecification is
to focus on pseudo-true parameter values (c.f. White 1982, Müller 2013, Hansen and
Lee 2021, and Andrews and Kwon 2023), which are defined as the minimizers of a
population objective function. In our setting, the pseudo-true parameter corresponds
to the value of θ at which JW (P ) is attained, and is equal to the coefficient from a
generalized least squares regression of Y (P ) on X(P ) weighting by W (P ),

θW (P ) = argmin
θ

QW (θ;P ) = (X(P )′W (P )X(P ))−1X(P )′W (P )Y (P ).

Example: Linear IV (Continued) In the linear IV model with treatment effect
heterogeneity it is common to focus attention on the two-stage least squares (TSLS)
estimand, which corresponds to the pseudo-true value using the TSLS weighting matrix
W (P ) = EP [ZiZ

′
i]
−1, and can be interpreted as a LATE under appropriate assumptions

(Angrist and Imbens, 1995). △

Example: Logit Model (Continued) In the logit model with misspecification,
we cannot choose θ to match the full set of observed conditional means EP [Yi|Xi = x].

The weighting matrix governs how we prioritize matching different elements of this vec-
tor, and one option is to take W (P ) to be the diagonal matrix with jth diagonal element
equal to the probability that X̃i = xj , EP [1{X̃i = xj}], which prioritizes matching the
conditional mean for Xi values which are more common in the population.2 △

The pseudo-true parameter corresponds to the identified set with d2 = JW (P ),

ΘI(P, JW (P )1/2) = {θW (P )}.

Hence, if a researcher assumes the true parameter value is equal to the pseudo-true
parameter, this is the same as assuming that the degree of misspecification, measured
in the norm ∥ · ∥W , is as small as it can possibly be given the observed distribution P .3

If they instead allow the possibility that θ and θW (P ) are different, then as discussed
in the introduction it is not obvious how, if at all, the pseudo-true value θW (P ) relates
to the economic questions that motivate the analysis in the first place. Consequently,
it is unclear when we would want to estimate pseudo-true values. The following two
sections address this question by providing conditions under which optimal decisions

2This corresponds to the limit of the optimal minimum distance weighting matrix for this model under
correct specification.

3In just-identified case were k = p, this corresponds to assuming η = 0, so the model is correctly specified.
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depend on the data through (i) the population minimum distance objective Q(θ;P )

and (ii) the pseudo-true value θW (P ) in particular.

3 Optimal Decisions and Minimum Distance

Researchers are often interested in estimating economic parameters in order to inform
decisions by policymakers, businesses, or households. It is not obvious that pseudo-true
values are suitable for this purpose. To explore this question, we adopt a decision-
theoretic perspective and ask under what conditions Bayesian decision-makers would
be willing to base decisions on the minimum distance objective and pseudo-true value.

3.1 Decision Problem

Consider a decision-maker who has to choose an action a from a set of possible actions
A. After choosing action a, the decision-maker suffers a loss L(a, θ) that depends on
the action taken and the true value for θ. If θ were known the optimal action for the
decision-maker would be to simply choose a ∈ argmina∈A L(a, θ).

In fact θ is unknown and the decision-maker instead observes only the distribution
P ∈ P of the data. Hence, the decision-maker selects a decision rule δ : P → A mapping
data distributions into actions. The decision-maker prefers rules δ that yield a lower
loss, L(δ(P ), θ), but when θ cannot be uniquely determined based on P (e.g. when θ

is set-identified due to model misspecification), different decision rules δ will perform
best at different (P, θ) pairs, and there generally will not be a uniformly best choice.

One way to choose δ is to consider Bayes decision rules, which weight losses across
different (P, θ) pairs according to a prior π ∈ ∆(P × Rp). The Bayes decision rule δπ
minimizes the average loss under the prior,

δπ ∈ argmin
δ

∫
L(δ(P ), θ)dπ(P, θ).

To compute δπ, it suffices to minimize the posterior expected loss at each P,

δπ(P ) ∈ argmin
a∈A

∫
L(a, θ)π(θ|P )dθ,

where we assume for simplicity that the posterior for θ|P is continuous and write π(θ|P )
for the posterior density.

Example: Linear IV (Continued) As in Andrews and Shapiro (2021), suppose
the decision-maker needs to set a tax or subsidy a ∈ R for the treatment, where a > 0

denotes a subsidy, while a < 0 denotes a tax, and that the loss is L(a, θ) = (a − θ)2.
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That is, the optimal subsidy level is equal to the average treatment effect, while the
loss increases quadratically as the subsidy departs from the ATE. Andrews and Shapiro
(2021) show that this loss arises naturally when demand for treatment which varies
linearly with the subsidy amount. △

3.2 Minimum-Distance Priors

The posterior density π(θ|P ) summarizes all decision-relevant information about the
parameter θ given the data. To connect minimum distance methods and Bayes decision
rules, we consider a class of decision-makers for whom the minimum distance objective
function is a sufficient statistic, in the specific sense that π(θ|P ) is proportional to a
function of (QW (θ;P ),W (P ), X(P )). For such priors the minimum distance objective
contains all decision-relevant information and so is the natural basis for decision-making.

Assumption 1 The conditional prior π(Y (P ), θ|X(P ),W (P )) is absolutely continu-
ous for all X(P ),W (P ). Moreover, for all P ∈ P,

π(θ|P ) ∝ h(QW (θ;P ),W (P ), X(P ), θ)

for a non-negative function h.

The first part of the assumption is imposed for convenience and could be weakened.
The second part of the assumption connects the posterior distribution to the minimum
distance objective, and is weaker than assuming π(θ|P ) is proportional to a function
h(QW (θ;P ), θ) as in the Gibbs posterior distributions studied in the statistics and ma-
chine learning literature (e.g. Catoni 2007, Alquier et al. 2016, Bissiri et al. 2016, Martin
and Syring 2022) and the quasi-Bayesian approach of Chernozhukov and Hong (2003).
Under Assumption 1, providing the decision-maker with (QW (·|P ),W (P ), X(P )) is as
good as providing them with the full data. By contrast, when Assumption 1 fails the
minimum distance objective fails summarize the implications of P for θ and minimum
distance methods may be inappropriate. Hence, we view Assumption 1 as a reason-
able restriction in settings where Bayesian decision markers are considering minimum
distance methods.

Assumption 1 immediately implies that the posterior density π(θ|P ) depends on the
data only through (W (P ), X(P ), Y (P )).

Lemma 1 Under Assumption 1, π(θ|P ) = π(θ|W (P ), X(P ), Y (P )) for all P ∈ P.

Example: Linear IV (Continued) Focusing on the case whereW (P ) is the two-
stage least squares weighting matrix W (P ) = EP [ZiZ

′
i]
−1, Lemma 1 implies that the
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decision-maker’s posterior for the ATE depends on the data only through the reduced-
form and first stage regression coefficients, together with the covariance matrix of the
instruments. This rules out, for instance, situations where the decision-maker’s beliefs
about the ATE are informed by higher moments of P . △

Assumption 1 further implies that the posterior density π(θ|P ) can be expressed
in terms of the minimum distance moments (1). In particular, the first part of As-
sumption 1 implies that the conditional priors for θ given (W (P ), X(P )) and η given
(W (P ), X(P ), θ) are continuous. For brevity, let πθ(θ) := π(θ|W (P ), X(P )) and
πη(η|θ) := π(η|W (P ), X(P ), θ) denote their densities with respect to Lebesgue mea-
sure. The posterior density of θ given P is then

π(θ|P ) = πθ(θ)πη(Y (P )−X(P )θ|θ)∫
πθ(θ)πη(Y (P )−X(P )θ|θ)dθ

=
πθ(θ)πη(g(θ;P )|θ)∫
πθ(θ)πη(g(θ;P )|θ)dθ

. (4)

This resembles the posterior in a finite-sample problem with parameter θ, prior πθ,
and likelihood πη. Consistent with this resemblance, the posterior π(θ|P ) will be non-
degenerate with non-trivial uncertainty about the true value of θ even though the data
distribution P in our problem is perfectly known. This reflects the fact that θ is not
point-identified, and when the conditional prior πη on the degree of misspecification is
non-dogmatic the decision-maker remains uncertain about θ even after observing P.

Assumption 1 also restricts the form of πη(η|θ), which describes the prior distribu-
tion for the moments evaluated at the true parameter value θ. In particular, Assumption
1 implies that the prior density at η conditional on (W (P ), X(P ), θ) depends only on
η′W (P )η, πη(η|θ) ∝ f(η′W (P )η|θ), where f may also vary with (W (P ), X(P )).

Lemma 2 Assumption 1 implies that for all (W (P ), X(P ), θ),

πη(η|θ) ∝ f(η′W (P )η|θ)

for a non-negative function f(u|θ) := f(u|W (P ), X(P ), θ) with
∫
f(η′η|θ)dη <∞.

Lemma 2 implies that the prior density πη(η|θ) is invariant to rotation of W (P )
1
2 η, in

the sense that for any η, η̃ such that W (P )
1
2 η = OW (P )

1
2 η̃ for a rotation matrix O,

the prior density is the same at η and η̃, πη(η|θ) = πη(η̃|θ). The density πη(η|θ) is
thus constant on the ellipsoids {η : η′W (P )η = C} for all C, from which it follows that
πη(η|θ) is an elliptically-contoured distribution (Muirhead, 1982).

Example: Linear IV (Continued) Recall that η = (β−θ·ι)◦EP [ZiXi] measures
the difference between the average treatment effect and the vector of one-instrument-
at-a-time IV estimands. One example of an elliptically-contoured distribution in this
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setting takes η|θ,W (P ) ∼ N(0,W (P )−1), which corresponds to f(u|θ) = exp(−1
2u).

Under this prior, each single-instrument estimand is equal to the ATE plus a mean-zero
noise term, where the covariance matrix of the noise is determined by W (P ) and the
first stage EP [ZiXi]. There are many other rotation-invariant priors, however, including
a multivariate t prior with ν degrees of freedom, where f(u|θ) =

(
1 + 1

νu
)− ν+k

2 , and
an elliptically contoured power law which takes f(u|θ) = u−κ−1 for κ > k − 1. △

Lemma 2 implies that that the posterior density π(θ|P ) is proportional to a function
of (QW (θ;P ),W (P ), X(P )), as required by Assumption 1, only if the (conditional) prior
on η is rotation-invariant. In fact, rotation-invariance is both necessary and sufficient
for Assumption 1 to hold.

Proposition 1 Assumption 1 holds if and only if for all P ∈ P, the conditional prior
π(Y (P ), θ|X(P ),W (P )) is absolutely continuous and

π(θ|P ) = πθ(θ)f(QW (θ;P )|θ)∫
πθ(θ)f(QW (θ;P )|θ)dθ

,

for a non-negative function f(u|θ) := f(u|W (P ), X(P ), θ) with
∫
f(η′η|θ)dη <∞.

We have thus shown that the minimum distance objective is sufficient in the sense
of Assumption 1 if and only if our misspecification priors πη are rotation invariant.
Hence, for such priors it is natural to focus on the minimum distance objective and,
conversely, a focus on the minimum distance objective is most reasonable under such
priors. Justifying a focus on the pseudo-true value, i.e. on the argmin of the minimum
distance objective, requires further restrictions, which we turn to next.

4 Concentration-Inducing Priors

As shown in the last section, for a fixed prior π(θ, P ) satisfying Assumption 1 we obtain
a non-degenerate posterior π(θ|P ), and so are uncertain about the parameter θ even
though the data distribution P is perfectly known. Plug-in decision rules based on the
pseudo-true parameter value, by contrast, correspond to Bayes decision rules in the case
where our posterior is a point-mass at θW (P ). We next characterize sequences of priors
satisfying Assumption 1 such that the corresponding posterior sequences concentrate
at θW (P ). Under such prior sequences the plug-in approach is correct in the limit,
justifying a focus on the pseudo-true parameter.

While these prior sequences rationalize a focus on the pseudo-true value, we find
them unsatisfactory in several respects. First, these sequences assume that the model
is misspecified with probability one (in the sense that ∥η∥W > 0 almost surely under
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the prior), but take the expected magnitude of misspecification to zero. Hence, while
these priors allow the possibility of misspecification, they assume that the degree of
misspecification is arbitrarily small. An assumption that the degree of misspecification
is very small seems unreasonable in many economic applications. Second, we show
that concentration around the pseudo-true value is fragile in important respects. If we
take our concentration-inducing prior sequences and mix them, to an arbitrarily small
degree, with any fixed full-support prior on (θ, η), concentration around the pseudo-true
value immediately fails whenever JW (P ) > 0. Moreover, even under prior sequences
which imply a vanishing degree of misspecification, concentration around the pseudo-
true value requires that the prior on η be sufficiently thin-tailed.

4.1 Posterior Concentration

Our sufficient conditions for posterior concentration require that the prior density
πη(η|θ) be independent of θ and thin-tailed, in the sense that f(u|θ) = f(u) decays
at a faster-than polynomial rate as u→ ∞.

Assumption 2 For all (W (P ), X(P ), θ) and f(u|θ) as defined in Lemma 2, f(u|θ) =
f(u) where f(u) is strictly positive, continuous and non-increasing in u, and satisfies
limu→∞

f(au)
f(u) = 0 for all a > 1.

This assumption holds, for instance, when π(η|θ) is normal with variance independent
of θ.

Example: Linear IV (Continued) If πη(η|θ) is a N(0,W (P )−1) density, then
since exp

(
−a

2u
)
/ exp

(
−1

2u
)
= exp

(
1−a
2 u
)

and a > 1, Assumption 2 holds. △

Under sequences of priors that (i) satisfy Assumptions 1 and 2 and (ii) take the
degree of misspecification to be small a-priori, the posterior concentrates on the pseudo-
true value. Formally, we consider a scale family of priors on the misspecification param-
eter η, πη,c(η|θ) ∝ f(1cη

′W (P )η), where the scale parameter c controls the magnitude
of misspecification and the prior variance of η scales with c. Our main result in this
section considers posterior behavior as the scale parameter becomes small, c → 0,
corresponding to priors that assume a vanishing degree of misspecification.

Proposition 2 Suppose Assumptions 1 and 2 hold. For any continuous πθ(θ) with
πθ(θW (P )) > 0, the posterior

πc(θ|P ) =
πθ(θ)f(

1
cQW (θ;P ))∫

πθ(θ)f(
1
cQW (θ;P ))dθ

13



concentrates on θW (P ) as c→ 0, in that for Bε(θW (P )) = {θ : ∥θW (P )− θ∥ < ε},

lim
c→0

∫
1{θ /∈ Bε(θW (P ))}dπc(θ|P ) = 0 for all ε > 0.

Proposition 2 shows that for priors satisfying Assumptions 1 and 2 where the degree
of misspecification is small, the posterior distribution concentrates on θW (P ). This is
entirely expected when JW (P ) = 0, since in this case the data provide no evidence
of misspecification and priors with c → 0 assume the model is nearly correct. When
JW (P ) > 0, by contrast, the data imply non-trivial misspecification but Proposition 2
shows that the posterior continues to concentrate.

Concentration of πc(θ|P ) implies convergence of the Bayes decision rule

δπc(P ) ∈ argmin
a∈A

∫
L(a, θ)dπc(θ|P ),

under conditions on the decision problem:

Proposition 3 Suppose that A is compact under some metric d, that supa,θ L(a, θ) <
∞, that supa,a′,θ |L(a, θ)−L(a′, θ)| < λ·d(a, a′) for some λ > 0, and that the loss L(a, θ)
has a unique minimum for all θ. Then as c→ 0, δπc(P ) → argmina∈A L(a, θW (P )).

Proposition 3 shows that for bounded loss functions that are Lipschitz in a, Bayes
decision rules corresponding to the priors we study converge to plug-in decision-rules
based on the pseudo-true value. This result is useful for a number of reasons. First, it
shows that plug-in decision rules using the pseudo-true parameter value correspond to
the limit of a sequence of Bayes decision rules for a large class of loss functions, providing
one justification for such rules. Second, it shows that the pseudo-true parameter value
θW (P ) is a sufficient statistic for communication with an audience whose priors take
the limiting form we consider: a researcher looking to summarize the data for such an
audience is justified in reporting only the pseudo-true parameter value, since it allows
audience members to compute the optimal decision for whatever loss function they
have, provided that loss satisfies the conditions of Proposition 3.

The conditions in Proposition 3 are somewhat restrictive and rule out squared error
loss on an unbounded domain. These conditions only are sufficient and not necessary,
however, and we can obtain convergence of decision rules in many other settings by
using additional structure for the loss function and prior.

Example: Linear IV (Continued) Proposition 3 does not apply in this example,
because the loss L(a, θ) = (a − θ)2 is neither bounded nor Lipschitz. Nonetheless, if
πη(η|θ) corresponds to a N

(
0,
(
1
cW (P )

)−1
)

distribution while the prior on θ is flat,
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the posterior density is

πc(θ|P ) = N
(
θW (P ), c · (EP [ZiXi]

′W (P )EP [ZiXi])
−1
)

= N
(
θW (P ), c · (X(P )′W (P )X(P ))−1

)
.

Hence, for all c the posterior distribution is a normal centered at θW (P ) with variance
proportional to c. Consistent with Proposition 2, this posterior converges weakly to a
point mass at θW (P ) as c → 0. Moreover, despite the conditions of Proposition 3 not
holding in this example, the Bayes decision rule δπc(P ) is equal to θW (P ) for all c. △

4.2 Posterior Concentration is Fragile

While we have shown that the plug-in decision rule using pseudo-true value corresponds
to the limit of Bayes decision rules for certain sequences of priors, we think this justifi-
cation carries limited weight, for multiple reasons. For one the prior sequences used to
establish convergence assume the degree of misspecification is negligible a-priori, which
seems difficult to justify in many economic applications. Moreover, as we next show
the convergence established by Propositions 2 and 3 is fragile in important respects.

Fragility to Prior Contamination If we mix the concentration-inducing priors
studied in the previous section with any fixed, full support prior for η|θ, posterior
concentration fails when JW (P ) > 0.

Proposition 4 Consider conditional priors of the form

πϕη,c(η|θ) = (1− ϕ)πη,c(η|θ) + ϕπ∗η(η|θ)

for any full-support conditional prior π∗η(η|θ) and ϕ ∈ (0, 1). If JW (P ) > 0, then under
Assumption 2, for any πθ(θ) the resulting posterior satisfies

lim
c→0

πϕc (θ|P ) =
πθ(θ)π

∗
η(Y (P )−X(P )θ|θ)∫

πθ(θ)π∗η(Y (P )−X(P )θ|θ)dθ
.

If instead JW (P ) = 0, πθ(θ) is continuous, and πθ(θW (P )) > 0, then

lim
c→0

∫
1{θ /∈ Bϕ(θW (P ))}dπϕc (θ|P ) = h(ϕ),

where limϕ→0 h(ϕ) = 0.

Proposition 4 shows that if JW (P ) > 0 and we contaminate the concentration
inducing prior πη,c(η|θ), to an arbitrarily small extent, with any full-support prior π∗η
for η|θ then the posterior converges to the same limit as if we had set πη(η|θ) = π∗η(η|θ).
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By contrast, when JW (P ) = 0, the c→ 0 limiting posterior continues to have a point-
mass at θW (P ), where the mass assigned to this point converges to one when ϕ → 0.

Hence, in the ϕ→ 0 limit we obtain the same concentration result as in Proposition 2.
Proposition 4 can be interpreted in terms of pre-testing for model specification: in

the case where JW (P ) > 0, the data imply that the model is non-trivially misspecified.
While the priors πη,c(η|θ) imply that the model is misspecified with probability one, as
c→ 0 they imply that the degree of misspecification is arbitrarily small. When we allow
the possibility that η is instead drawn from a fixed full-support distribution π∗η, for c
sufficiently small the data provide arbitrarily strong support for π∗η(η|θ) over πη,c(η|θ).
Loosely speaking, the concentration-inducing prior πη,c(η|θ) is rejected in favor of the
full-support prior π∗η(η|θ).4

Fragility to Heavy Tails Even under prior sequences such that the degree of
misspecification goes to zero, the concentration obtained in Proposition 2 relies on thin
tails for πη(η|θ). To illustrate this point, we show that posterior concentration around
the pseudo-true value fails in two examples with heavy-tailed priors.

Example: Posterior Non-Concentration with t Prior Suppose that our
prior on η corresponds to a multivariate t distribution centered at zero with scale matrix
W (P )−1 and ν̃ degrees of freedom, f(u) ∝

(
1 + 1

ν̃u
)− ν̃+k

2 . Provided JW (P ) > 0, if we
define ν = ν̃ + k − p and

Σ(P ) = JW (P )
(
νX(P )′W (P )X(P )

)−1

one can show that

lim
c→0

πc(θ|P ) ∝ πθ(θ)
(
1 + ν−1(θ − θW (P ))′Σ(P )−1(θ − θW (P ))

)−(ν+p)/2
,

where the second term is the density for a multivariate t distribution centered at θW (P ),
with scale matrix Σ(P ) and ν degrees of freedom. Consequently, the c → 0 limiting
posterior corresponds to updating the prior πθ based on observing θW (P ) ∼ tν(θ,Σ(P )).

Note that the degrees of freedom in the “likelihood,” ν, is equal to the degrees of free-
dom in the misspecification prior πη plus the degree of over-identification, so a higher
degree of over-identification leads to thinner tails for the posterior all else equal. The
scale parameter in the “likelihood,” Σ(P ) = JW (P ) (νX(P )′W (P )X(P ))−1, is increas-
ing in the J-statistic so cases where the moment conditions are observed to be more
badly violated lead to a more uncertain posterior, all else equal. △

4We thank Jesse Shapiro for pointing out this connection.
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The tail thickness of f(·) matters because it determines beliefs about the total level
of misspecification conditional on a given value of the J-statistic. To see this, let us
again assume that η|θ ∼ πη,c(η|θ) and consider the conditional distribution of ∥η∥W
conditional on the norm of η exceeding a threshold τ , ∥η∥W | (τ ≤ ∥η∥W ). For thin-
tailed priors (i.e. those satisfying Assumption 2), one can show that for all a > 1 and
all positive constants τ > 0,

lim
c→0

Prπη,c {∥η∥W ≥ a · τ | (τ ≤ ∥η∥W )} → 0. (5)

Hence, even in the case where the model is known to be misspecified, as c → 0 thin-
tailed priors imply that the degree of additional misspecification, beyond that implied
by the lower bound τ , is negligible. Recall, however, that the J-statistic is itself a lower
bound on the total degree of misspecification, ∥η∥W ≥ JW (P ). Consistent with this,
when c → 0 thin-tailed priors imply that the total degree of misspecification must not
be much larger than that suggested by the J-statistic, and thus that θ must be close
to θW (P ), the unique parameter value compatible with ∥η∥W = JW (P ).

By contrast, for f corresponding to a multivariate t distribution we have that

lim
c→0

Prπη,c {∥η∥W ≥ a · τ | (τ ≤ ∥η∥W )} → p(a). (6)

for a fixed, nonzero function p(·) that does not depend on τ . Consequently, in this case
the researcher’s belief about the total degree of misspecification is non-degenerate and,
once c is sufficiently small, scales proportionally with τ.

While t-distributed priors for η|θ correspond to updates via a t likelihood in the c→
0 limit, if we instead consider a multivariate power law prior for η|θ then dependence
on c vanishes entirely.

Example: Posterior Non-Concentration with Power Law Prior Suppose
f(x) = x−α for α > k. Then for ν = 2α− p,

Σ(P ) = JW (P )
(
νX(P )′W (P )X(P )

)−1
,

and all c,

πc(θ|P ) ∝ π(θ)
(
1 + ν−1(θ − θW (P ))′Σ(P )−1(θ − θW (P ))

)−(ν+p)/2

which corresponds to the posterior distribution from observing θW (P ) ∼ tν(θ,Σ(P )).
We again see that a higher degree of over-identification leads to thinner tails for the
posterior, while a larger J-statistic leads to a more dispersed posterior. △
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5 Confidence Sets Based on Rotation-Invariance

When π(θ|P ) does not concentrate on the pseudo-true value, researchers will have non-
trivial uncertainty about the true value of θ even after observing P , and the exact
posterior will depend on the details of the prior. Despite this dependence on the prior,
we show that there nonetheless exist confidence intervals with correct ex-ante coverage
for the true value θ under all priors satisfying Assumption 1. Since we previously showed
that this class of priors has a close connection to minimum distance methods, we view
these confidence sets as a natural summary for misspecification-driven uncertainty in
settings where researchers adopt a minimum distance approach.

To state this result, suppose the researcher is interested in inference on a linear
combination of the elements of θ, v′θ for v ∈ Rp. For t∗

k−p,1−β
2

the level 1−β
2 critical value

for a standard t distribution with k−p degrees of freedom, θW (P ) = argminθQW (θ;P )

the pseudo-true value, JW (P ) = minθQW (θ;P ) the population J-statistic, and

σv(P ) =

√
v′ (X(P )′W (P )X(P ))−1 v =

√
v′
(

∂2

∂θ∂θ′
QW (θ;P )

)−1

v

a transformation of the Hessian of the population minimum distance objective, define
the confidence interval

CI(P ) :=

[
v′θW (P )±

√
JW (P )

k − p
· σv(P ) · t∗k−p,1−β

2

]
. (7)

This interval has correct coverage conditional on (W (P ), X(P )), and thus correct ex-
ante coverage, under priors satisfying Assumption 1.

Proposition 5 For any prior π such that Assumption 1 holds,

Prπ
{
v′θ ∈ CI(P )|W (P ), X(P )

}
= Prπ

{
v′θ ∈ CI(P )

}
= 1− β.

The confidence interval (7) has a number of interesting features. It is centered at
the pseudo-true value and its width is governed by (i) the Hessian of the minimum
distance objective function ∂2

∂θ∂θ′QW (θ;P ) and (ii) the population J-statistic JW (P ).

The fact that a smaller Hessian leads to wider confidence intervals resembles many other
inference problems, though ours is unusual in that it is derived in a population setting
and reflects uncertainty due to misspecification, rather than sampling uncertainty. The
dependence on the population J-statistic is also unusual, though intuitively reasonable
given the connection to model misspecification.

The notion of coverage considered in Proposition 5 is non-standard. Since P is ob-
served in our setting, the frequentist coverage is either zero or one, Pr(P,θ) {v′θ ∈ CI(P )} ∈
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{0, 1}. Proposition 5 instead considers average coverage under π,

Prπ
{
v′θ ∈ CI(P )

}
=

∫
Pr(P,θ)

{
v′θ ∈ CI(P )

}
dπ(P, θ),

which measures the ex-ante coverage probability under the prior. Proposition 5 thus
establishes that any Bayesian whose prior satisfies Assumption 1 thinks, before seeing
the data, there there is a 1− β probability that CI(P ) will cover θ.5 In this sense, the
interval (7) has correct average coverage under any prior satisfying Assumption 1.

We provide intuition for Proposition 5 from two perspectives, first establishing a
connection to generalized least squares and then showing that CI(P ) corresponds to a
credible set under an improper power law prior.

Regression Interpretation Note that for

(Ỹ , X̃, η̃) =W (P )
1
2 (Y (P ), X(P ), η)

we can write the minimum distance model allowing for misspecification, as

Ỹ (P ) = X̃(P )θ + η̃, (8)

where under priors π satisfying Assumption 1 the conditional distribution of η̃|X̃(P ), θ

is rotation-invariant,
η̃|X̃(P ), θ ∼ Oη̃|X̃(P ), θ

for all orthonormal matrices O. Hence, for any prior satisfying Assumption 1 the
problem of inference on θ conditional on X̃(P ) reduces to that of inference on the
coefficient in a regression with a rotation-invariant error. However, the t-distribution
for t-statistics holds whenever the error distribution is rotation-invariant, while (7) is
exactly the t-statistic confidence interval derived from (8) and so is valid under any
prior satisfying Assumption 1.6

Bayesian Interpretation Recall that under the multivariate power-law prior for
η|θ, f(x) = x−α, the posterior πc(θ|P ) corresponds to a t distribution with 2α−p degrees
of freedom. Consequently, the confidence interval (7) corresponds to a posterior credible
set under a flat prior on θ and a multivariate power law prior on η with α = k/2. This
is an improper prior for η, since in this case

∫
πη(η|θ)dη =

∫
f(η′W (P )η|θ)dη = ∞,

5It is essential that Proposition 5 uses the ex-ante probability. Assumption 1 allows conflicting, near-
dogmatic beliefs about θ, so the only interval with non-zero worst-case ex-post coverage probability for v′θ,
infπ∈Π Prπ {v′θ ∈ CI(P )|P} > 0 where Π is the class of priors satisfying Assumption 1, takes CI(P ) = R.

6If we instead want a confidence interval for a multi-dimensional combination of the coefficients θ, the
analogous approach based on F -statistics is also valid.
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but yields a proper posterior π(θ|P ). Viewed from this perspective, Proposition 5 shows
that there exists an improper conditional prior on θ, η|W (P ), X(P ) whose credible sets
have correct average coverage under all priors satisfying Assumption 1.

5.1 Comparison to Norm-Bound Identified Sets

η⊥

η̂

X(P )θ

η X(P )θW (P )

Y (P )

Figure 1: Relationship between the pseudo-true value and true θ in an example with scalar θ. The solid
diagonal line represents the column space of X(P ). The vector η⊥ perpendicular to the column space
captures the detectable component of the misspecification vector, while vector η̂ parallel to the column space
captures the undetectable component of misspecification.

We next compare the behavior of the confidence set (7) to the identified set (3)
constructed under the bound ∥η∥W ≤ d. To facilitate this comparison, note that

η̃ :=W (P )
1
2 η =M(P )η̃ + (I −M(P ))η̃ := η̂ + η⊥

for
M(P ) = X̃(P )(X̃(P )′X̃(P ))−1X̃(P )′

the projection matrix onto X̃(P ) = W (P )
1
2X(P ). Here η̂ and η⊥ are the projection

of η̃ onto the column span of X̃(P ) and the residual from this projection, respectively.
By definition ∥η⊥∥2 = JW (P ), so the J-statistic measures the length of the projec-
tion residual, while η̂ = X̃(P )(θW (P ) − θ) governs the difference between the true
and pseudo-true parameter values. Intuitively, η⊥ is the detectable component of the
misspecification vector η, which has no effect on the bias of the pseudo-true value but
governs the J-statistic. Analogously, η̂ is the undetectable component, which governs
the bias but has no effect on the J-statistic. The overall degree of misspecification
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reflects the sum of these terms, ∥η∥2W = ∥η⊥∥2 + ∥η̂∥2. Figure 1 visualizes this decom-
position in a case where θ is scalar.

Equipped with this decomposition, note that for η̂(θ, P ) the undetectable misspec-
ification component implied by (θ, P ),

η̂(θ, P ) :=W (P )
1
2X(P )(θW (P )− θ),

we can write the identified set for θ as

ΘI(P, d) =
{
θ : ∥η̂(θ, P )∥2 + JW (P ) ≤ d2

}
.

This implies an identified set for v′θ equal to[
v′θW (P )± σv(P )

√
d2 − JW (P )

]
.

Hence, the bounds of the identified set correspond to values of θ which spend the
misspecification “budget” ∥η∥2W ≤ d2 − JW (P ) obtained by subtracting the J-statistic
from the a-priori upper bound d2.7 As the degree of detectable misspecification becomes
more severe, in the sense that the J-statistic grows larger, the length of the identified
set shrinks. The first panel of Figure 2 illustrates this, again focusing on the case where
θ is scalar. Here we hold d, X(P ), and W (P ) fixed but consider two possible values
Y (P ), Y A and Y B, where Y A implies a larger J-statistic. The identified set for θ is
larger for Y B than Y A. Indeed, the J-statistic at Y A is exactly equal to d, so the
identified set collapses to the pseudo-true parameter value.

The comparative statics of our proposed confidence interval are quite different. We
can re-write the interval (7) as

CI(P ) =
{
θ : ∥η̂(θ, P )∥ ≤ t∗k−p,1−β∥η⊥∥

}
.

As the second panel of Figure 2 illustrates, the width of this interval is increasing in
the size of the J-statistic, with a wider interval for Y A than for Y B. This seems like a
potentially appealing property for uncertainty summaries in settings where researchers
are concerned about misspecification.

6 Conclusion

We study the problem of inference in misspecificed linear minimum distance models,
and show that (i) a Bayesian decision-maker is content to summarize the data using

7One may recast this in Bayesian terms to parallel our earlier results by noting ΘI(P, d) corresponds to
the union of credible sets over priors π such that Prπ{∥η∥W ≤ d} = 1.
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θ

Y A

Y B

lB uB{θA} θ

Y A

Y B

lA uAlB uB

Figure 2: Intervals for θ using the norm-bounding approach and the rotation invariant prior approach.
When dataset A or B is observed, the identified set or confidence interval for θ is given by [lA, uA] or
[lB , uB ], respectively, where in the left panel lA = uA = θA.

the minimum distance objective if and only if their prior on model misspecification
satisfies a rotation-invariance condition; (ii) a Bayesian is content to further summarize
the data via the minimum distance estimand—the pseudo-true-value—if their prior on
misspecification is thin-tailed and has variance going to zero; and (iii) for any Bayesian
with a rotation-invariant prior as in (i), even if the conditions of (ii) don’t hold, a
particular confidence set, centered at the pseudo-true value and with width proportional
to the square root of a population J-statistic, ensures correct coverage for the true
parameter value with no restriction on the magnitude of misspecification.

Informative inference is possible because rotation-invariant priors restrict the “direc-
tion” of misspecification, controlling the impact of misspecification on the pseudo-true
value relative to the impact on the J-statistic. Our key assumption is that researchers’
choice of weighting matrix reflects their beliefs about the relative likelihood of kinds
of misspecification, which appears consistent with the way in which some researchers
already choose their weighting matrices.8 For such researchers, the intervals we suggest
offer a natural way to account for the possibility of model misspecification, and are thus
a natural complement to standard minimum distance approaches.

One limitation of our analysis is that we focus on the population problem, treat-
ing the data distribution P as observed. Our population results translate to exact
finite-sample results if we replace P by the empirical distribution P̂ in all expressions,
considering a researcher with a joint prior on (θ, P̂ ) and replacing the estimand θW (P )

8For instance, Benhabib et al. (2019) write “The weighting matrix W in the baseline is a diagonal matrix
with identical weights for all but the last moment of both the wealth distribution and the mobility moments,
which are overweighted (ten times), according to the prior that matching the tail of the distribution is a
fundamental objective of our exercise.”
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with the plug-in estimate θW (P̂ ). One could alternatively study misspecification and
sampling uncertainty jointly using a local asymptotic framework under which both
factors are relevant, but we leave such a development for future research.
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7 Proofs

Proof of Lemma 1 QW (·|P ) can be expressed as a function of (X(P ),W (P ), Y (P )),
so by Assumption 1,

π(θ | P ) = π(θ | QW (·;P ), X(P ),W (P ))

= π(θ | X(P ),W (P ), Y (P ))

as we aimed to show. □
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Proof of Lemma 2 For any parameter value θ, Lemma 1 and Assumption 1 imply
that

π(θ|P ) ∝ πθ(θ)πη(g(θ;P )|θ) ∝ h(QW (θ;P ),W (P ), X(P ), θ).

Hence, we see that

πη(g(θ;P )|θ) ∝ f(QW (θ;P )|W (P ), X(P ), θ) :=
h(QW (θ;P ),W (P ), X(P ), θ)

πθ(θ)

where integrability of f follows from the fact that πη is a probability density. □

Proof of Proposition 1 Immediate from Equation (4) and Lemma 2. □

Proof of Proposition 2 Note that for the claim to hold, it is necessary and
sufficient that for W̃ (P ) = X(P )′W (P )X(P ) and

B̃ε(θW (P )) =
{
θ : ∥θW (P )− θ∥W̃ (P ) < ε

}
,

we have that for all ε > 0,∫
1{θ ∈ B̃ε(θW (P ))}dπc(θ | P ) =

∫
1{θ ∈ B̃ε(θW (P ))}f

(
1
cQW (θ;P )

)
πθ(θ)dθ∫

f
(
1
cQW (θ;P )

)
πθ(θ)dθ

→ 1.

Taking the inverse of this probability (which is possible because the posterior assigns
strictly positive mass to neighborhoods of the pseudo-true value) yields

1 +

∫
1{θ /∈ B̃ε(θW (P ))}f

(
1
cQW (θ;P )

)
πθ(θ)dθ∫

1{θ ∈ B̃ε(θW (P ))}f
(
1
cQW (θ;P )

)
πθ(θ)dθ

, (9)

where to prove the result it suffices to show that the second term goes to zero.
To this end, note that for any a > 1, continuity of the conditional prior for θ implies

that we can re-write the second term of (9) as∫
(1{θ ∈ B̃aε(θW (P )) \ B̃ε(θW (P ))}+ 1{θ /∈ B̃aε(θW (P ))})f

(
1
cQW (θ;P )

)
πθ(θ)dθ∫

1{θ ∈ B̃ε(θW (P ))}f
(
1
cQW (θ;P )

)
πθ(θ)dθ

.

Note, however, that we can express the minimum distance objective as

QW (θ;P ) = JW (P ) + ∥θ − θW (P )∥2
W̃ (P )

.

Thus, since we have assumed f is non-increasing∫
1{θ /∈ B̃aε(θW (P ))}f

(
1
cQW (θ;P )

)
πθ(θ)dθ∫

1{θ ∈ B̃ε(θW (P ))}f
(
1
cQW (θ;P )

)
πθ(θ)dθ

≤
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∫
1{θ /∈ B̃aε(θW (P ))}f

(
1
c (JW (P ) + a2ε2))

)
πθ(θ)dθ∫

1{θ ∈ B̃ε(θW (P ))}f
(
1
c (JW (P ) + ε2)

)
πθ(θ)dθ

=

f
(
1
c (JW (P ) + a2ε2)

)
f
(
1
c (JW (P ) + ε2)

) ∫ 1{θ /∈ B̃aε(θW (P ))}πθ(θ)dθ∫
1{θ ∈ B̃ε(θW (P ))}πθ(θ)dθ

,

where the first term converges to zero as c → 0 by Assumption 2, while the second
doesn’t depend on c. Hence,

lim
c→0

∫
1{θ /∈ B̃aε(θW (P ))}f

(
1
cQW (θ;P )

)
πθ(θ)dθ∫

1{θ ∈ B̃ε(θW (P ))}f
(
1
cQW (θ;P )

)
πθ(θ)dθ

= 0.

Note, next, that∫
1{θ ∈ B̃aε(θW (P )) \ B̃ε(θW (P ))}f

(
1
cQW (θ;P )

)
πθ(θ)dθ∫

1{θ ∈ B̃ε(θW (P ))}f
(
1
cQW (θ;P )

)
πθ(θ)dθ

≤

∫
1{θ ∈ B̃aε(θW (P )) \ B̃ε(θW (P ))}f

(
1
c (JW (P ) + ε2)

)
πθ(θ)dθ∫

1{θ ∈ B̃ε(θW (P ))}f
(
1
c (JW (P ) + ε2)

)
πθ(θ)dθ

=

∫
1{θ ∈ B̃aε(θW (P )) \ B̃ε(θW (P ))}πθ(θ)dθ∫

1{θ ∈ B̃ε(θW (P ))}πθ(θ)dθ
,

where the last expression goes to zero as we take a → 1. Together with our earlier
argument this implies that

lim
c→0

∫
1{θ /∈ B̃ε(θW (P ))}f

(
1
cQW (θ;P )

)
πθ(θ)dθ∫

1{θ ∈ B̃ε(θW (P ))}f
(
1
cQW (θ;P )

)
πθ(θ)dθ

= 0, (10)

and so completes the proof. □

Proof of Proposition 3 Since the loss is uniformly bounded, Proposition 2, to-
gether with the dominated convergence theorem, implies that

lim
c→0

∫
L(a, θ)dπc(θ|P ) = L(a, θW (P )) for all a ∈ A.

Our assumptions that L is Lipschitz and A is compact implies that this convergence
is uniform on A, limc→0 ∥

∫
L(·, θ)dπc(θ|P ) − L(·, θW (P ))∥∞ = 0. The result is then

immediate from the argmax continuous mapping theorem (Theorem 3.2.2 of van der
Vaart and Wellner 1996) . □

Proof of Proposition 4 For this result we consider priors of the restricted form

πϕη,c (η|θ) = (1− ϕ)πη,c (η|θ) + ϕπ∗η (η|θ) .
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The corresponding posterior is

πϕc (θ|P ) =
πθ (θ)π

ϕ
η,c (g (θ;P ) |θ)∫

πθ (θ)π
ϕ
η,c (g (θ;P ) |θ) dθ

=

πθ (θ)
(
(1− ϕ)πη,c (g (θ;P ) |θ) + ϕπ∗η (g (θ;P ) |θ)

)∫
πθ (θ)

(
(1− ϕ)πη,c (g (θ;P ) |θ) + ϕπ∗η (g (θ;P ) |θ)

)
dθ
.

When JW (P ) > 0, πη,c (g (θ;P ) |θ) → 0 as c→ 0 for all θ. Hence, for each θ,

lim
c→0

πθ (θ)
(
(1− ϕ)πη,c (g (θ;P ) |θ) + ϕπ∗η (g (θ;P ) |θ)

)
= ϕπθ (θ)π

∗
η (g (θ;P ) |θ) .

Moreover, since πη,c (g (θ;P ) |θ) ≤ πη,c (g (θW (P ) ;P ) |θ) by definition, the dominated
convergence theorem implies that∫

πθ (θ)
(
(1− ϕ)πη,c (g (P, θ) |θ) + ϕπ∗η (g (P, θ) |θ)

)
dθ →

ϕ

∫
πθ (θ)π

∗
η (g (P, θ) |θ) dθ.

Therefore the posterior fails to concentrate around the pseudo-true parameter:

lim
c→0

πϕc (θ|P ) =
πθ (θ)π

∗
η (g (P, θ) |θ)∫

πθ (θ)π∗η (g (P, θ) |θ) dθ
.

Now we prove the result for JW (P ) = 0. Define w1,c + w2,c = 1 as

w1,c =
(1− ϕ)

∫
πη,c (g(θ;P ) | θ)πθ(θ)dθ

(1− ϕ)
∫
πη,c (g(θ;P ) | θ)πθ(θ)dθ + ϕ

∫
π∗η (g(θ;P ) | θ)πθ(θ)dθ

and

w2,c =
ϕ
∫
π∗η (g(θ;P ) | θ)πθ(θ)dθ

(1− ϕ)
∫
πη,c (g(θ;P ) | θ)πθ(θ)dθ + ϕ

∫
π∗η (g(θ;P ) | θ)πθ(θ)dθ

.

Then we can write the posterior as the following mixture of familiar posterior densities,
where w1,c and w2,c are the mixture probabilities,

πϕc (θ|P ) =
πθ(θ)

(
(1− ϕ)πη,c(g(θ;P )|θ) + ϕπ∗η(g(θ;P )|θ))

)∫
πθ(θ)

(
(1− ϕ)πη,c(g(θ;P )|θ) + ϕπ∗η(g(θ;P )|θ))

)
dθ

=
(1− ϕ)πη,c(g(θ;P )|θ)πθ(θ) + ϕπ∗η(g(θ;P )|θ))πθ(θ)

(1− ϕ)
∫
πη,c(g(θ;P )|θ)πθ(θ)dθ + ϕ

∫
π∗η(g(θ;P )|θ))πθ(θ)dθ

=
(1− ϕ)

[∫
πη,c (g(θ;P ) | θ)πθ(θ)dθ

]
πc(θ | P ) + ϕ

[∫
π∗η (g(θ;P ) | θ)πθ(θ)dθ

]
π∗(θ | P )

(1− ϕ)
∫
πη,c(g(θ;P )|θ)πθ(θ)dθ + ϕ

∫
π∗η(g(θ;P )|θ))πθ(θ)dθ

= w1,cπc(θ | P ) + w2,cπ
∗(θ | P ).
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Proposition 2 states that the first mixture component concentrates around the
pseudo-true value as c → 0. Meanwhile, the second mixture component is constant
with respect to c. Therefore, we are interested in the limiting behavior of the mixture
probabilities as c→ 0 when JW (P ) = 0. We next show how the numerator of w1,c con-
verges to πθ(θW (P )) as c→ 0. Note that when JW (P ) = 0 we can write the minimum
distance objective as QW (θ;P ) = ∥θ − θW (P )∥W̃ (P ) so the integral found in w1,c and
w2,c can be written as

∫
πη,c(g(θ;P ) | θ)πθ(θ)dθ =

∫
πθ(θ)

f
(
1
c∥θ − θW (P )∥2

W̃ (P )

)
∫
f
(
1
c∥θ̃ − θW (P )∥2

W̃ (P )

)
dθ̃
dθ.

Make the substitution θ 7→ θW (P ) −
√
cθ in the outer integral and θ̃ 7→ θW (P ) −

√
cθ̃

in the normalizing constant as follows,

∫
πθ(θ)

f
(
1
c∥θ − θW (P )∥2

W̃ (P )

)
∫
f
(
1
c∥θ̃ − θW (P )∥2

W̃ (P )

)
dθ̃
dθ =

∫
c−1/2πθ(θW (P )−

√
cθ)

f
(
∥θ∥2

W̃ (P )

)
∫
c−1/2f

(
∥θ̃∥2

W̃ (P )

)
dθ̃
dθ =

∫
πθ(θW (P )−

√
cθ)

f
(
∥θ∥2

W̃ (P )

)
∫
f
(
∥θ̃∥2

W̃ (P )

)
dθ̃
dθ

Because πθ is assumed to be continuous and full-support, there exists some finite M
such that πθ(θ) ≤M for all θ in a neighborhood of θW (P ). It follows that

lim
c→0

∫
πθ(θW (P )−

√
cθ)

f
(
∥θ∥2

W̃ (P )

)
∫
f
(
∥θ∥2

W̃ (P )

)
dθ
dθ = πθ(θW (P )).

Therefore, when we take c→ 0, the mixture probabilities converge to the following
limits:

w1,c → w∗
1 =

(1− ϕ)πθ(θW (P ))

(1− ϕ)πθ(θW (P )) + ϕ
∫
π∗η (g(θ;P ) | θ)πθ(θ)dθ

and

w2,c → (1− w∗
1) =

ϕ
∫
π∗η (g(θ;P ) | θ)πθ(θ)dθ

(1− ϕ)πθ(θW (P )) + ϕ
∫
π∗η (g(θ;P ) | θ)πθ(θ)dθ

.

Thus as we take c→ 0,
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∫
1{θ ∈ B̃ε(θW (P ))}πϕc (θ|P )dθ =

w1,c

∫
1{θ ∈ B̃ε(θW (P ))}πc(θ|P )dθ + w2,c

∫
1{θ ∈ B̃ε(θW (P ))}π∗η(θ|P )dθ →

→ w∗
1 + (1− w∗

1)

∫
1{θ ∈ B̃ε(θW (P ))}π∗(θ|P )dθ.

Since the mixture posterior π∗(θ|P ) is assumed to be continuous, taking ε → 0 sends
the second term to zero. Therefore, the posterior concentrates around a point mass at
the pseudo-true value with probability w∗

1, where w∗
1 → 1 as ϕ→ 0. □

Proof of Proposition 5 Classic results in statistics, e.g. Muirhead (1982), Chapter
1.5, imply the result for the case of a single regressor. For completeness, we prove the
result for the general case. The confidence interval (7) corresponds to the set of values
for v′θ where the test statistic

v′θW (P )− v′θ√
JW (P )
k−p σ2v(P )

(11)

has absolute value less than t∗
k−p,1−β

2

. Hence, if we can show that (11) follows a tk−p

distribution under all priors π satisfying Assumption 1, the result is immediate.
Note that (11) is equal to the t-statistic from regression (8) in the text,

v′θW (P )− v′θ√
JW (P )
k−p v′H(P )−1v

=
v′(X̃(P )′X̃(P ))−1X̃(P )′η̃√

η̃′(I−M(P ))η̃
k−p σ2v(P )

(12)

where, again, M(P ) = X̃(P )(X̃(P )′X̃(P ))−1X̃(P )′. Specifically, η̃′(I−M(P ))η̃
k−p corre-

sponds to the unbiased variance estimate, so the denominator
√

η̃′(I−M(P ))η̃
k−p σ2v(P ) cor-

responds to the homoskedastic standard error. Note, moreover, that the t-statistic is
scale-invariant in the error, so (12) is equal to

v′(X̃(P )′X̃(P ))−1X̃(P )′ η̃
∥η∥√

η̃
∥η∥

′
(I−M(P )) η̃

∥η∥
k−p σ2v(P )

.

Proposition 1 implies that η̃
∥η∥ is uniformly distributed on the unit sphere under any

prior π satisfying Assumption 1. However, this exactly the distribution of Z
∥Z∥ for

Z ∼ N(0, I). It follows that under π, (12) has the same distribution as

v′(X̃(P )′X̃(P ))−1X̃(P )′ Z
∥Z∥√

Z
∥Z∥

′
(I−M(P )) Z

∥Z∥
k−p σ2v(P )

=
v′(X̃(P )′X̃(P ))−1X̃(P )′Z√

Z′(I−M(P ))Z
k−p σ2v(P )

,
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where we have again used scale invariance of the t-statistic. However, the last expression
is the t-statistic from the regression

Ỹ (P ) = X̃(P )θ + Z,

which is well-known to be tk−p distributed, completing the proof. □
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