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This online appendix contains supplemental material for the article “Interest Rate Cuts vs.

Stimulus Payments: An Equivalence Result”. I provide (i) details for the various structural

models used in the paper, (ii) supplementary theoretical results, and (iii) a detailed discussion

of equivalence in terms of policy rules. The end of this appendix contains further proofs.

Any references to equations, figures, tables, assumptions, propositions, lemmas,

or sections that are not preceded “B.”—“E.” refer to the main article.

1



Contents

B Model details 3

B.1 Sticky-price retailers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

B.2 Further details on the analytical model . . . . . . . . . . . . . . . . . . . . . 3

B.3 Further details on the heterogeneous-household model . . . . . . . . . . . . . 5

B.4 Bond-in-utility models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

B.5 Adding investment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

C Supplementary results 12

C.1 Cτ and C−1
τ in analytical models . . . . . . . . . . . . . . . . . . . . . . . . . 12

C.2 C̃ib in analytical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

C.3 The sufficient statistics formula and its accuracy . . . . . . . . . . . . . . . . 18

C.4 Heterogeneous wealth effects in labor supply . . . . . . . . . . . . . . . . . . 23

C.5 Non-equivalence at the household level . . . . . . . . . . . . . . . . . . . . . 26

C.6 Other model extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

C.7 Targeted transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

D Equivalence in terms of policy rules 30

D.1 From policy paths to rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

D.2 A recursive aggregate-risk perspective . . . . . . . . . . . . . . . . . . . . . . 32

D.3 A worked-out example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

E Proofs and auxiliary lemmas 37

E.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

E.2 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

E.3 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

E.4 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

E.5 Proof of Lemma C.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

E.6 Proof of Lemma C.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

E.7 Proof of Corollary D.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

E.8 Proof of Corollary D.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

References 49

2



B Model details

This appendix contains supplementary model details. I begin in Appendix B.1 by discussing

in more detail the price-NKPC (5). Appendices B.2 and B.3 provide further details regarding

the consumption-savings models of Section 2.2, including in particular a discussion of labor

supply. In Appendix B.4 I sketch an alternative model of non-Ricardian consumer behavior—

a model with bonds in the utility function—, and in particular discuss a variant of that model

with generalized Greenwood et al. preferences. Finally, Appendix B.5 presents the extended

model with investment.

B.1 Sticky-price retailers

To derive the price-NKPC (5), I let 1−α denote the elasticity of output with respect to total

labor input at the steady state, 1− θp ∈ (0, 1) denote the probability of a price re-set, and ϵp

the substitutability between different retail varieties in aggregation to the final good. We can

then follow the standard derivations in Gaĺı (2015) to arrive at the following log-linearized

aggregate price-NKPC:

π̂t =
(1− θp)(1− θp

1+r̄
)

θp

1− α

1− α + αεp

(
ŵt + αℓ̂t

)
+ βπ̂t+1 (B.1)

(B.1) is a special case of (5).

B.2 Further details on the analytical model

I first provide some additional details on the household consumption-savings problem—i.e.,

the mapping from sequences of income and interest rates to consumer demand. I then discuss

household labor supply decisions.

Consumption-savings decisions. Consider an individual household type i. I write their

steady-state consumption level as c̄i and their steady-state wealth holdings as b̄i. Under my

stated assumptions on transfers to newborns, the consumption-savings problem of type i is

identical to the consumer demand block studied in Angeletos et al. (2023). In particular, the

aggregate demand relation in their equation (11) is my linearized optimality relation (12),
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reproduced below for convenience:

ĉit =

(
1− θi

1 + r̄

)
·

{
x̂it +

∞∑
k=1

(
θi

1 + r̄

)k

êit+k

}
− σi

∞∑
k=0

(
θi

1 + r̄

)k (̂
ib,t+k − π̂t+k+1

)
(B.2)

where σi ≡ βθiγ
−1 − (1− βθi)βb̄i/c̄i. The second equation that is needed to characterize the

consumption function Ci(•) of a consumer type i is the budget constraint. Here we have

cit + bit = (1− τℓ)wtℓt + τt + dt +
1 + ib,t−1

1 + πt
bit−1 (B.3)

Linearizing (B.3) and combining with (B.2), we obtain a mapping from {www,ℓℓℓ,πππ,ddd, τττ , iiib} to

the type-i consumer demand sequence ccci—i.e., the matrices {Ci
w, Ci

ℓ, Ci
π, Ci

d, Ci
τ , Ci

ib
}.

Labor supply. I begin by considering a model with a single household type i. I assume

that labor is assigned so that all households work the same amount of hours, and furthermore

that unions bargain as described in Auclert et al. (2018). Then, since all households have the

same steady-state consumption level, we get the following standard aggregate log-linearized

wage-NKPC, exactly as in Erceg et al. (2000):

π̂w
t = κw ×

[
1

φ
ℓ̂t − (ŵt − γĉt)

]
︸ ︷︷ ︸
wedge in labor supply

+βπ̂w
t+1 (B.4)

where κw is a function of model primitives, satisfying

κw =
(1− 1

1+r̄
ϕw)(1− ϕw)

ϕw(εw
1
φ
+ 1)

,

with ϕw indicating the degree of wage stickiness, and εw indicating the elasticity of substi-

tution between different types of labor. As in the price-NKPC case, (B.4) is a special case

of the general relation (6).

Matters are slightly more subtle in my most general multi-type model. There, if different

types have different steady-state wealth holdings, then their steady-state consumption also

invariably differs, implying that standard union wage bargaining does not exactly map into

a representation like (B.4).1 Type-specific transfers that equalize steady-state consumption

1For example, in a two-type spender-saver model with types R and H, the static wedge in labor supply
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across types i would thus be needed to return the model to a standard wage-NKPC. I inves-

tigate the importance of labor supply wedges in empirically relevant models in Section 5.1.

B.3 Further details on the heterogeneous-household model

This section completes the description of the quantitative heterogeneous-agent model in-

troduced in Section 2.2 and studied in Section 4. I first discuss my assumptions on union

bargaining (which are revisited in Section 5.1) and then describe the model calibration.

Union bargaining. I assume that unions order aggregate consumption and employment

streams according to “as-if” representative-agent preferences:

∞∑
t=0

βt

c1−γ
t − 1

1− γ
− ψ

ℓ
1+ 1

φ

t

1 + 1
φ

 (B.5)

Given this particular choice of union preferences, we can yet again follow the same steps as

in Erceg et al. (2000) or Auclert et al. (2018) to arrive at (B.4).

Note that, if unions instead maximized an equal-weighted average of household utility

(i.e., the baseline specification of Auclert et al., 2018),

∞∑
t=0

βt

∫ 1

0

c1−γ
it − 1

1− γ
− ψ

ℓ
1+ 1

φ

it

1 + 1
φ

 di =
∞∑
t=0

βt

∫ 1

0

c1−γ
it − 1

1− γ
− ψ

ℓ
1+ 1

φ

t

1 + 1
φ

 di (B.6)

then a weighted average of household marginal consumption utilities—rather than marginal

consumption utility evaluated at the aggregate consumption level ct—would enter the static

labor wedge and thus (B.4). The model would thus be inconsistent with a wage-NKPC of

my assumed form (6). I discuss this case further in Section 5.1 and Appendix C.4.

Model calibration. I first discuss the parameterization of the steady state. Recall that

this is all that matters for the consumption function C(•), and so in particular for Cτ .

would be
1

φ
ℓ̂t − (ŵt − γĉt) + γ [µRĉR,t + µH ĉH,t − ĉt] ,

where the last term in brackets is evidently equal to zero if c̄R = c̄H = c̄, but not in general. Prior work in such
models thus often assumes identical steady-state consumption shares, allowing straightforward aggregation
to (B.4) (e.g., Bilbiie et al., 2021).
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Parameter Description Value Target Value

Households

ρε, σε Income Risk - Kaplan et al. (2018) -

ep, χ0, χ1 Dividend Endowment - Illiquid Wealth Shares -

β Discount Rate 0.97 b̄/ȳ 1.5

r̄ Average Return 0.01 Annual Rate 0.04

ϱ Death Rate 1/180 Average Age 45

γ Preference Curvature 1 Standard

φ Labor Supply Elasticity 0.5 Standard

εw Labor Substitutability 10 Standard

b Borrowing Limit 0 McKay et al. (2016)

Firms

1− α Returns to Scale 1 Standard

εp Goods Substitutability 16.67 Profit Share 0.06

Government

τℓ Labor Tax 0.3 Average Labor Tax 0.30

τ̄ /ȳ Transfer Share 0.05 Transfer Share 0.05

Table B.1: HANK model, steady-state calibration.

The values of all parameters relevant for the model’s deterministic steady state are dis-

played in Table B.1. For my quantitative analysis I slightly enrich the preferences displayed

in (17) to allow for exogenous household death at rate ϱ. Preference parameters {γ, φ, ϱ}
as well as the labor substitutability εw are set to standard values. The average return on

(liquid) assets is set in line with standard calibrations of business-cycle models, and the

discount rate is then disciplined through the total amount of liquid wealth. As in McKay

et al. (2016), I assume that households cannot borrow in the liquid asset. Next, for income

risk, I adopt the 33-state specification of Kaplan et al. (2018), ported to discrete time. For

share endowments, I assume that

dit =

0 if εpit ≤ εp

χ0(ε
p
it − εp)χ1 × dt otherwise

where εpit is the permanent component of household i’s labor productivity. I set the param-
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eters {εp, χ0, χ1} as in Wolf (2020). On the firm side, I assume constant returns to scale

in production, and set the substitutability between goods to a standard value. Finally, the

average government tax take, transfers, and debt issuance are all set in line with direct em-

pirical evidence. Relative to Definition 3, I slightly generalize the model to allow for non-zero

government spending, giving the new market-clearing condition

yt = ct + gt (B.7)

Note that, for all experiments, I keep government expenditure fixed at gt = ḡ, so its presence

only matters for the steady-state fiscal tax-and-transfer system, and does not directly show

up anywhere in equilibrium dynamics.

In the second step I set the remaining model parameters (which exclusively govern dy-

namics around the deterministic steady state). For the baseline interest rate-only policy

studied in Section 4.2, I consider an interest rate rule of the form

îb,t = ϕππ̂t +mt

where mt is the monetary shock, set to give the gradually decaying path of nominal rates

displayed in Figure 3. In a slight generalization of Definition 2, I assume that the baseline

interest rate-only policy is not financed through taxes and transfers adjusting period-by-

period (as in (8)), but instead consider a more general fiscal financing rule of the form

b̂t = ρbb̂t−1 +
[
(1 + r̄)b̄(̂ib,t−1 − π̂t)− τℓ(w̄ℓ̂t + ℓ̄ℓ̂t)

]
, (B.8)

and with ρb ∈ (0, 1). Total transfers adjust residually to balance the government budget.

Since bt evolves gradually over time, it follows that a nominal interest rate cut at time t only

feeds through to higher transfers with a delay. While the financing rule in Definition 2 was

conceptually simpler, the alternative fiscal rule (B.8) has the advantage that nominal interest

rate movements are not accompanied by (counterfactual) large contemporaneous changes in

transfers. This completes the specification of policy for the baseline monetary experiment.

I present the rule parameterizations as well as all other model parameters in Table B.2.

Alternative calibrations. For my robustness checks in Appendix C.3 I consider two

alternative model calibrations: one with less liquid wealth (b̄/ȳ = 0.5, implying substan-

tially larger MPCs, with ω = 0.64), and one with more liquid wealth (b̄/ȳ = 7.5, implying
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Parameter Description Value

ϕp Price Calvo Parameter 0.85

ϕw Wage Calvo Parameter 0.70

ϕπ Taylor Rule Inflation 1.5

ρb Financing Rule Persistence 0.85

Table B.2: HANK model, parameters governing dynamics.

substantially smaller MPCs, with ω = 0.12).

B.4 Bond-in-utility models

While my main analysis considers (mixtures of) perpetual-youth overlapping-generations

models as particularly convenient models of non-Ricardian consumer behavior, I emphasize

that my results extend with very little change to an alternative popular model variant:

bond-in-utility models, as considered in Michaillat & Saez (2018).

A baseline bond-in-utility model. Household preferences are now

∞∑
t=0

βt

c1−γ
t − 1

1− γ
+ α

b1−η
t−1 − 1

1− η
− ψ

ℓ
1+ 1

φ

t

1 + 1
φ

 (B.9)

The budget constraint is still exactly as in Section 2.2. The log-linearized optimality condi-

tions are then

c̄ĉt + b̄̂bt = (1− τℓ)w̄ℓ̄(ŵt + ℓ̂t) + (1 + r̄)b̄(̂bt−1 + îb,t−1 − π̂t) + τ̄ τ̂t + d̄d̂t (B.10)

ĉt = β(1 + r̄)ĉt+1 +
η

γ
[1− β(1 + r̄)] b̂t −

1

γ
β(1 + r̄)

(̂
ib,t − π̂t+1

)
(B.11)

where β(1 + r̄) < 1 as long as α, η > 0. Together, the two relations (B.10) - (B.11) fully

characterize the model-implied consumption derivative matrix CBiU
τ . I provide a closed-form

expression for its inverse (CBiU
τ )−1 in Appendix C.1.

Finally I also note that, since there is a single representative household with separa-

ble preferences over consumption, wealth, and hours worked, union bargaining again gives

(B.4). The analytical bond-in-utility model is thus also consistent with all of the high-level

assumptions on labor supply made in Section 2.1.
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Parameter Description Value

α Wealth preference level 0.10

η Wealth preference curvature 0.50

δR Savers GHH+ coefficient 0.03

δH Spenders GHH+ coefficient 0.95

µ Share of spenders 0.25

Table B.3: Mixture model with heterogeneous wealth effects, parameterization of preferences.

GHH+ preferences. For my second investigation of the role of wealth effects in labor

supply in Section 5.1, I consider a two-type model with generalized Greenwood et al. pref-

erences, as originally proposed in Auclert et al. (2020). I assume that savers have bonds in

their utility function; that is, their preferences are2

∞∑
t=0

βt


(
ct − ψRδR

ℓ
1+ 1

φ
t

1+ 1
φ

)1−γ

− 1

1− γ
+ α

b1−η
t−1 − 1

1− η
− ψR(1− δR)

ℓ
1+ 1

φ

t

1 + 1
φ

 (B.12)

while spenders have static per-period preferences(
ct − ψHδH

ℓ
1+ 1

φ
t

1+ 1
φ

)1−γ

− 1

1− γ
− ψH(1− δH)

ℓ
1+ 1

φ

t

1 + 1
φ

(B.13)

Here the two coefficients {δR, δH} control the strength of wealth effects in labor, with δ = 0

corresponding to standard separable preferences and δ = 1 corresponding to GHH prefer-

ences. I calibrate the consumer part of the model to induce consumption behavior similar

to my baseline HANK model—matching in particular ω = 0.3—and MPEs consistent with

Golosov et al. (2021)—an MPE of $3.5 for savers and an MPE of $1.8 for spenders. The

model parameterization is reported in Table B.3. All other parameters are set exactly as

in my baseline HANK model, as reported in Tables B.1 and B.2.3 Detailed results on the

2The perpetual-youth model with generalized Greenwood et al. preferences is substantially less tractable,
so I consider the bond-in-utility variant instead.

3Except for δH and δR and thus their wealth effects in labor supply, I treat spenders and savers entirely
symmetrically, ensuring in particular identical steady-state consumption.
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accuracy of my policy equivalence result in this alternative model environment are discussed

in Appendix C.4.

B.5 Adding investment

All firms are identical, so I drop the j subscript. Analogously to the discussion in Section 2.1,

we can summarize the solution to the firm problem with an investment demand function,

i = I
(
w,pI ,πππ;τττ f , ib

)
(B.14)

a production function,

y = Y
(
w,pI ,πππ;τττ f , ib

)
(B.15)

a labor demand function,

ℓℓℓ = L
(
w,pI ,πππ;τττ f , ib

)
(B.16)

and a dividend function

d = D
(
w,pI ,πππ;τττ f , ib

)
(B.17)

where the dividend function aggregates over both intermediate goods producers and sticky-

price retailers. Note that, since intermediate goods firms hire labor on a competitive spot

market, and since all firms j are identical, two sequences ibibib and τττ f that induce the same paths

of investment also invariably induce the same paths of output and labor hiring. However,

since interest rates and investment subsidies enter the firm budget constraint differently, the

implied dividend paths may be different.

Given investment subsidies to firms, the government budget constraint is adjusted to give

1 + ib,t−1

1 + πt
bt−1 + τt + τf,t({it−q}tq=0) = τℓwtℓt + bt (B.18)

All other parts of the model are unchanged relative to Section 2.1. We thus arrive at the

following equilibrium definition:

Definition 1. An equilibrium is a set of government policies {ib,t, τt, τf,t, bt}∞t=0 and a set of

aggregates {ct, ℓt, yt, it, kt, wt, πt, dt, p
I
t}∞t=0 such that:

1. Consumption is consistent with the aggregate consumption function (2).
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2. Aggregate investment, output, hours worked and dividends satisfy

iii = I
(
www,pppI ,πππ;τττ f , iiib

)
yyy = Y

(
www,pppI ,πππ;τττ f , iiib

)
ℓℓℓ = L

(
www,pppI ,πππ;τττ f , iiib

)
ddd = D

(
www,pppI ,πππ;τττ f , iiib

)
3. Wage inflation {πw

t }∞t=0 and {ℓt, ct, wt}∞t=0 are consistent with the wage-NKPC (6).

4. The paths {πt, pIt}∞t=0 are consistent with the adjusted aggregate price-NKPC (28).

5. The output market clears: yt = ct + it for all t ≥ 0, the government budget constraint

(B.18) holds at all t, and limt→∞ bt = b̄. The bond market then clears by Walras’ law.
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C Supplementary results

This section presents supplementary theoretical results. Appendices C.1 and C.2 characterize

Cτ , C−1
τ as well as C̃ib in the analytical model of Section 2.2. Appendix C.3 elaborates on my

sufficient statistics formula and discusses its accuracy in other models. Results supplementing

my discussion of wealth effects in labor supply and non-equivalence at the household level

are provided in Appendices C.4 and C.5. Finally Appendices C.6 and C.7 extend the policy

equivalence result to some richer model environments and to targeted transfers.

C.1 Cτ and C−1
τ in analytical models

I here characterize the matrix Cτ as well as its inverse C−1
τ in my analytical models of non-

Ricardian consumption behavior. I first present results for a perpetual-youth consumer block

(as in Section 2.2, with some general θ) and then consider a further extended model with an

arbitrary contemporaneous MPC, thus allowing me to nest environments with β(1 + r̄) ̸= 1

and/or behavioral frictions. Finally I sketch results for bond-in-utility models.

Characterizing Cτ . I begin with the shape of COLG
τ as displayed in (16). From the

discussion in Appendix B.2 it follows that the matrix COLG
τ is fully characterized by the

following pair of equations:

ĉt + b̂t −
1

β
b̂t−1 = τ̂t, (C.1)

[1− θ(1− βθ)] ĉt − βθĉt+1 − (1− βθ)(1− θ)
1

β
b̂t−1 = (1− βθ)(1− θ)τ̂t, (C.2)

where (C.2) is the Euler equation representation of the aggregate demand relation (B.2).

From this system we arrive at the following characterization of COLG
τ . First, it is straight-

forward to see that the first column and the first row of COLG
τ are respectively given as

COLG
τ (•, 1) =

(
1− θ

1 + r̄

)
×
{
1, θ, θ2, . . .

}′
and

COLG
τ (1, •) =

(
1− θ

1 + r̄

)
×

{
1,

θ

1 + r̄
,

(
θ

1 + r̄

)2

, . . .

}
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Second, all higher-order columns are given recursively as

COLG
τ (•, h) = COLG

τ (1, h)×

(
1

−COLG
τ (•, 1)(1 + r̄)

)
+

(
0

COLG
τ (•, h− 1)

)
, h = 2, 3, 4, . . .

This expression—which is straightforward to verify from (C.1) - (C.2)—reflects the intuition

of the “fake-news” algorithm of Auclert et al. (2019): the first term is the response of

households to a date-h income shock announced at date-0 but then reversed at date 1; the

second term then undoes that date-1 reversal, ensuring that the sum gives us the actual

response to a date-h income shock—that is, COLG
τ (•, h). This somewhat complicated exact

shape of COLG
τ corresponds to the approximate shape displayed in (16), as established in the

following result.

Lemma C.1. Consider the consumption-savings problem of a perpetual-youth household

block, as described in Section 2.2. Then, for any ℓ > 0 the impulse response path ĉH to an

income shock at time H satisfies

lim
H→∞

ĉH,H = const., lim
H→∞

ĉH+ℓ,H

ĉH+ℓ−1,H

= θ, lim
H→∞

ĉH−ℓ−1,H

ĉH−ℓ,H

=
θ

1 + r̄
(C.3)

In words, for large H, the intertemporal spending profile in Cτ looks as indicated in (16).

This is the sense of the approximation ≈ in that relation.

Characterizing C−1
τ . Given an arbitrary target consumption sequence ĉcc, we can solve

the system (C.1) - (C.2) for {τ̂ττ , b̂bb}, with b̂−1 = 0. This gives the solution displayed in (20).

The detailed steps are provided in the proof of Lemma 1.

Extension to arbitrary MPCs. I next consider an even further-generalized aggregate

demand relation of the following form:

ĉt =M ·

{
x̂t +

∞∑
k=1

(
θ

1 + r̄

)k

êt+k

}
− σ

∞∑
k=0

(
θ

1 + r̄

)k (̂
ib,t+k − π̂t+k+1

)
. (C.4)

Relative to (B.2), (C.4) additionally disentangles the impact MPC M from the discounting

factor θ applied to future income. This allows me to study two meaningful extensions of

the baseline model. First, in an environment with β(1 + r̄) ̸= 1, and under the simplifying

assumption of log preferences, (C.4) applies with M = 1 − βθ (see Farhi & Werning, 2019,
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for the continuous-time analogue).4 Second, in a model with cognitive discounting and

occasionally-binding borrowing constraints, we have M = 1 − θ1
1+r̄

and θ = θ1 · θ2, where θ1
and θ2 are the borrowing constraint and behavioral discounting coefficients, respectively.

The following result characterizes existence and shape of C−1
τ in this environment.

Lemma C.2. Consider a variant of the analytical consumption-savings problem of Sec-

tion 2.2 with generalized aggregate demand relation (C.4). Suppose that M ∈
[

r̄
1+r̄

, 1− θ
1+r̄

]
.

Then, if θ < 1, Cτ is invertible, with

C−1
τ =

1

M
·


1−Mθ
1−θ

− 1
1+r̄

θ
1−θ

0 . . .

− (1−M)(1+r̄)
1−θ

1+θ(1−M)
1−θ

− 1
1+r̄

θ
1−θ

. . .

0 − (1−M)(1+r̄)
1−θ

1+θ(1−M)
1−θ

. . .
...

...
...

. . .

 (C.5)

Note that Lemma C.2 imposes bounds on M . Here, the upper bound corresponds to the

baseline perpetual-youth model—so all discounting of future income θ also increases contem-

poraneous MPCs—while the lower bound ensures that Cτ is actually a bounded operator.5

Importantly, Lemma C.2 allows me to substantiate two claims made in Section 3.2. First,

for the special case of a perpetual-youth model with β(1 + r̄) > 1 and with log preferences,

the requirement on M that M ≥ r̄
1+r̄

becomes

θ ≤ 1

β(1 + r̄)
< 1,

—a condition that is strictly tighter than my baseline perpetual-youth requirement of θ < 1.

In words, borrowing constraints now need to bind often enough. This is precisely what is

needed to counteract the backloading implied by β(1+ r̄) > 1, implying that Cτ is a bounded

operator whose inverse takes the shape (C.5). Second, a standard model with behavioral

discounting corresponds to the special case whereM = r̄
1+r̄

as well as θ < 1. By Lemma C.2,

this is again sufficient to ensure invertibility of Cτ , further underscoring my claims about the

generality of this property of aggregate consumption functions.

4Without log preferences, a consumption function like (C.4) still obtains, but the mapping intoM is more
complicated—we have M = γ−1[1− βθ] + (1− γ−1)[1− θ

1+r̄ ] (see Appendix 1.2 of Farhi & Werning, 2019).

The characterization of C−1
τ in Lemma C.2 of course continues to apply, however, and so my conclusions are

unchanged—invertibility obtains if MPCs are large enough and spending is front-loaded.
5To see this, consider for example the first column of Cτ . It is straightforward to see that its entries grow

at rate (1−M)(1 + r̄). Thus, if M < r̄
1+r̄ , the implied consumption path diverges.
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Front-loaded spending and a counterexample. To even more clearly see the im-

portance of front-loading in consumer spending it will prove useful to consider a particularly

transparent case: a simple two-period OLG model in which households have log preferences

and receive income (including transfers) only when young.6 In that case we have

Cτ =


1

1+β
0 0 . . .

β(1+r̄)
1+β

1
1+β

0 . . .

0 β(1+r̄)
1+β

1
1+β

. . .
...

...
...

. . .


Note that spending here is back-loaded if and only if β(1+ r̄) > 1. In that case, the majority

of a dollar of income received at date t is spent at date t+ 1, not t.

Straightforward algebra reveals that, if C−1
τ exists, it is lower-triangular, with off-diagonal

elements that (in absolute value) decay at rate β(1+ r̄). β(1+ r̄) ≤ 1 is thus necessary (and

here also sufficient) for invertibility. Intuitively, if households have a natural tendency to

postpone their spending, then a transfer today designed to induce spending today will re-

quire ever-larger transfers in the future to offset it. As a result, for a given target sequence of

consumption, it becomes impossible to find a bounded sequence of transfers that induces it.

This instructive example reveals that Cτ may well be injective—changing the timing of trans-

fers invariably affects consumption—yet fail to be surjective—certain bounded sequences of

demand cannot be induced via bounded sequences of transfers. Households front-loading

their spending—which is ensured in my headline environment by occasionally-binding bor-

rowing constraints, and which is a robust feature of actual consumer behavior—prevents the

divergence that here is causing non-invertibility.7

Bond-in-utility model. Recall from the discussion in Appendix B.4 that the consump-

tion derivative matrix CBiU
τ is fully characterized by the following pair of equations:

ĉt + b̂t − (1 + r̄)̂bt−1 = τ̂t (C.6)

ĉt − β(1 + r̄)ĉt+1 −
c̄

b̄

η

γ
[1− β(1 + r̄)] b̂t = 0 (C.7)

6I thank an anonymous referee for bringing this illuminating example to my attention.
7An elevated impact MPC, on the other hand, is not sufficient to rule out a linear map like Cτ . This is

why, in Proposition 3, I highlight both the elevated MPC as well as the front-loaded spending profile, even
though in my particular model of occasionally-binding borrowing constraints the two are interchangeable.
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We see that the factor c̄
b̄
simply scales the last term in the Euler equation, so I will without

loss of generality set this term equal to 1. Algebra similar to that in the proof of Lemma 1

then yields the following exact expression for C−1
τ :

(CBiU
τ )−1 =


1 + 1

ω̃
1

1+r̄
θ

1−βθ2
− 1

ω̃
βθ

1−βθ2
0 . . .

− 1
ω̃

θ
1−βθ2

1 + 1
ω̃

θ
1−βθ2

[
β(1 + r̄) + 1

1+r̄

]
− 1

ω̃
βθ

1−βθ2
. . .

0 − 1
ω̃

θ
1−βθ2

1 + 1
ω̃

θ
1−βθ2

[
β(1 + r̄) + 1

1+r̄

]
. . .

...
...

...
. . .


(C.8)

where ω = CBiU
τ (1, 1), θ = CBiU

τ (2, 1)/CBiU
τ (1, 1), and ω̃ is given via

1 = ω̃

[
(1 + r̄)βθ

1− (1 + r̄)βθ
+ ω−1

]
We see that (CBiU

τ )−1 has the same tridiagonal shape as (COLG
τ )−1, as claimed.

C.2 C̃ib in analytical models

This section offers additional results on the shape and properties of C̃ib in the one-type

perpetual-youth OLG model. I proceed in two steps. First, I provide a closed-form expression

for C̃ib . Second, I establish that, if θ > 0 (i.e., not pure spender behavior), then interest rate

policy can similarly be used to induce any sequence of net excess consumption demand with

zero net present value.

A closed-form expression for C̃ib. Recall that the matrices Cτ and C̃ib in the baseline

(one-type) perpetual-youth model are characterized by the following pair of equations:

ĉt + b̂t −
1

β
b̂t−1 = τ̂t, (C.9)

[1− θ(1− βθ)] ĉt − βθĉt+1 − (1− βθ)(1− θ)
1

β
b̂t−1 = (1− βθ)(1− θ)τ̂t − γβθ̂ib,t. (C.10)

From here it is straightforward to see that

C̃ib = −1

γ
(I − Cτ )


1 1 1 . . .

0 1 1 . . .

0 0 1 . . .
...

...
...

. . .

 . (C.11)
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To formally establish this relation, I will define ĉ∗t ≡ ĉt − τ̂t. Now consider first an income

shock at date 0. Plugging this into the optimality conditions and re-arranging, we see that

the impulse response of c∗ is identical to the impulse response of c to a date-0 interest rate

change scaled by γ. That is, we have

C∗
τ (•, 1) = Cτ (•, 1)− e1 = γC̃ib(•, 1)

where e1 = (1, 0, 0, . . . )′. This gives the first column of (C.11):

C̃ib(•, 1) = −1

γ
(e1 − Cτ (•, 1))

Similarly, for date-1 shocks, we have

C∗
τ (•, 2) = Cτ (•, 2)− e2 = −γC̃ib(•, 1) + γC̃ib(•, 2)

where e2 = (0, 1, 0, . . . )′. Thus we get

C̃ib(•, 2) = −1

γ
(e1 − Cτ (•, 1) + e2 − Cτ (•, 2))

giving the second column of (C.11). All other columns follow analogously. We thus see that

the perpetual-youth model admits a straightforward relation between Cτ and C̃ib , with the

mapping between the two fully governed by γ.

Establishing equivalence. Consider an arbitrary consumption sequence ĉcc such that∑∞
t=0

(
1

1+r̄

)t
ĉt = 0—i.e., it has zero net present value. I will now provide a constructive

argument showing that we can find a bounded sequence of interest rates îii
∗
b such that C̃ibîii

∗
b = ĉcc.

For this I first of all note that, from (C.9), we must have that

b̂t =
1

β
b̂t−1 − ĉt

Since ĉcc has zero net present value, it follows that b̂t → 0. Next, from (C.10), it follows that

it suffices to set

îb,t = − 1

γβθ
·
(
[1− θ(1− βθ)] ĉt − βθĉt+1 − (1− βθ)(1− θ)

1

β
b̂t−1

)
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Since ĉcc is bounded by construction and b̂t → 0 by the argument above, it follows that—if

θ > 0—we can find a bounded sequence îii
∗
b that induces net excess demand ĉcc, as claimed.

C.3 The sufficient statistics formula and its accuracy

I begin with some additional details on the sufficient statistics formula. The formula maps

the three observables {ω, θ, r̄} into the matrix Cτ (and thus its inverse C−1
τ ). The formula

proceeds in two steps.

First, given {θ, r̄}, I construct a matrix C(1)
τ that has the same shape as in a one-type

perpetual-youth model. By the discussion in Appendix C.1, this means that

C(1)
τ (•, 1) =

(
1− θ

1 + r̄

)
︸ ︷︷ ︸

MPC

×
{
1, θ, θ2, . . .

}′︸ ︷︷ ︸
spending decay

and

C(1)
τ (1, •) =

(
1− θ

1 + r̄

)
︸ ︷︷ ︸

MPC

×

{
1,

θ

1 + r̄
,

(
θ

1 + r̄

)2

, . . .

}
︸ ︷︷ ︸

anticipation effects

together with

C(1)
τ (•, h) = C(1)

τ (1, h)×

(
1

−C(1)
τ (•, 1)(1 + r̄)

)
+

(
0

C(1)
τ (•, h− 1)

)
, h = 2, 3, 4, . . .

This specifies the entire matrix C(1)
τ as a function only of {θ, r̄}.

Second, I add a margin of spenders to disentangle the MPC ω and the spending slope

θ. Note that, in my construction of C(1)
τ , the MPC is mechanically given as

(
1− θ

1+r̄

)
. To

match any desired arbitrary MPC ω I then simply set

Cτ =
θ − (1− ω)(1 + r̄)

θ
× I +

(1− ω)(1 + r̄)

θ
× C(1)

τ

It is straightforward to verify that the resulting Cτ matches the desired MPC ω. I have thus

mapped my three sufficient statistics {ω, θ, r̄} into a matrix Cτ (ω, θ, r̄) that (i) matches the

average MPC ω and spending slope θ, and (ii) is by construction consistent with lifetime

household budget constraints. From here I can then also construct C−1
τ (ω, θ, r̄). Note that

this inverse exists as long as θ < 1 and ω ≥ 1− θ
1+r̄

, by the proof Proposition 2.
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Figure C.1: Left panel: cumulative MPCs in the data (taken from Fagereng et al., 2018) and in
the three-type model of Angeletos et al. (2023). Right panel: model-implied entries of C−1

τ (blue)
vs. predicted values from my sufficient statistics formula (orange dashed).

The role of tail MPCs. The sufficient statistics formula imposes a constant rate of

decay θ of intertemporal marginal propensities to consume. As discussed in Angeletos et al.

(2023), empirical evidence on the other hand suggests that this rate of iMPC decay slows

down in the far tails, at long horizons. To gauge whether this mismatch in the tails actually

matters for the purposes of my results here, I consider the model used in Angeletos et al.

to match empirical evidence on the entire intertemporal MPC profile—a hybrid model with

two types of perpetual-youth consumers, together with a margin of spenders. The left panel

of Figure C.1, taken from Angeletos et al., shows that this model indeed matches empirical

evidence on far-ahead MPCs very well. The right panel then compares the true model-

implied C−1
τ with the prediction from my sufficient statistics formula.8 We see that the two

are almost indistinguishable—i.e., for the purposes of the analysis here, a mild mismatch in

the far-ahead tails is essentially irrelevant.

Perturbing the sufficient statistics. I here further substantiate my claim that, for

empirically relevant values of the sufficient statistics, even moderately sized stimulus check

8I recover the coefficients for the sufficient statistics formula exactly as done for my quantitative HANK
model: I set r̄ to its true model-implied value, and then set ω and θ so that Cτ (ω, θ, r̄)(1, 1) and Cτ (ω, θ, r̄)(2, 1)
match the extended hybrid model.
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Figure C.2: Three desired net excess demand paths ĉccPE (grey) and the required sequences of
uniform lump-sum taxes and transfers, C−1

τ (ω, θ, r̄) × ĉccPE for a range of values of my sufficient
statistics (orange dashed, see text), with lighter shades indicating lower MPCs ω.

policies suffice to close meaningful shortfalls in aggregate spending. To do so I repeat the

exercise of Figure 2 for a range of values of my sufficient statistics {ω, θ, r̄}. Specifically,

I continue to fix r̄ = 0.01, consider ω ∈ {0.2, 0.3, 0.4, 0.5} and then pin down the slope θ

by requiring the same ratio θ
1−ω

as in my quantitative heterogeneous-household model. The

range of MPCs ω that I consider is chosen to contain and in fact go beyond the range of

estimates available from the literature (e.g. Parker et al., 2013; Fagereng et al., 2018).

Results are displayed in Figure C.2. The figure illustrates my claim: across the range of

empirically relevant values for my sufficient statistics, the stimulus check policies that close

the indicated shortfalls in aggregate consumer spending are moderate in size. As discussed

in Section 4.2, this finding is important to ensure that my theoretical results—which rely on

linearization at the aggregate level—are actually practically relevant.

C−1
τ in alternative HANK calibrations. The analysis in Section 4.2 confirmed the

accuracy of the sufficient statistics formula for Cτ and C−1
τ in the baseline calibration of my

heterogeneous-household model. I here repeat the same exercise for two materially different

model calibrations: one with very low liquid wealth (implying a counterfactually large aver-

age MPC of ω = 0.64) and one with a lot of liquid wealth (implying a counterfactually small

average MPC of ω = 0.12). Results are reported in Figures C.3 and C.4.

The takeaways from these figures are twofold. First, changing the model calibration

materially affects the model-implied consumption map Cτ and its inverse C−1
τ . As expected,

for low liquid wealth, the inverse C−1
τ looks closer to a simple spender-saver model and

the required transfer stimulus policies are even smaller than in my baseline analysis. For

20



(a) Low liquid wealth calibration (b) High liquid wealth calibration

Figure C.3: See the caption of Figure 1.

high liquid wealth, the inverse C−1
τ looks closer to a perpetual-youth overlapping-generations

model, and the transfer stimulus policies required to close a given shortfall in demand are now

much larger. Second, even though Cτ looks very different across calibrations, my sufficient

statistics formula throughout approximates C−1
τ and thus the implied equivalent transfer

stimulus policies very well.

A generalized sufficient statistics formula. My three-parameter sufficient statis-

tics formula imposes that the same coefficient θ governs both the decay of intertemporal

MPCs after spending receipt as well as the strength of anticipation effects. It is in principle

straightforward to disentangle the two by allowing for an additional degree of freedom in the

first row of Cτ . For example, one simple and natural choice would be to set9

C(1)
τ (1, •) =

(
1− θ

1 + r̄

)
︸ ︷︷ ︸

MPC

×

{
1, ψ · θ

1 + r̄
, ψ ·

(
θ

1 + r̄

)2

, . . .

}
︸ ︷︷ ︸

anticipation effects

where the coefficient ψ could be recovered from empirical evidence on the strength of antici-

pation effects in MPCs (e.g., Ganong & Noel, 2019). The rest of Cτ would then be completed

exactly as in the baseline sufficient statistics formula. Unsurprisingly, with this additional de-

9Here anticipation effects are additionally discounted by a constant factor ψ. An alternative—which I
have found to be less accurate in my quantitative HANK models—is to discount future income receipts at
some constant rate ψ (that is allowed to be different from θ).
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Low liquid wealth calibration

High liquid wealth calibration

Figure C.4: See the caption of Figure 2.

gree of freedom, the approximation becomes even more accurate, with the difference between

actual and approximate Cτ now barely visible (figure available upon request). However, as

argued in Section 4.2, my simpler three-coefficient formula already provides a very accurate

approximation, so I focus on results from that simpler specification instead. Intuitively, at

least in my HANK model, anticipation effects are not particularly far from being governed

by the iMPC decay rate θ, and so the simpler three-parameter formula suffices.
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C.4 Heterogeneous wealth effects in labor supply

This section elaborates on my discussion of the role of heterogeneity in wealth effects in labor

supply across households (see Section 5.1). I first present results for an alternative union

bargaining protocol and then consider an alternative model with preference heterogeneity,

designed to match empirical evidence on heterogeneity in marginal propensities to earn (from

Golosov et al., 2021). Results for both are reported in Figure C.5.

Alternative bargaining results. I return to my main quantitative HANK model, but

with one twist: the wage-NKPC (B.4) is replaced by the alternative formulation

π̂w
t = κw ×

[
1

φ
ℓ̂t − (ŵt − γĉ∗t )

]
+ βπ̂w

t+1 (C.12)

where

c∗t ≡
[∫ 1

0

eitc
−γ
it di

]− 1
γ

(C.13)

This is the specification of the wage-NKPC originally derived in Auclert et al. (2018) and

implied by the union objective (B.6). I note that, in this case, my policy equivalence result

will not hold exactly : two nominal interest rate and stimulus check policies with identical

direct effects on net excess demand (and so ct) will not necessarily have identical direct effects

on c∗t , thus inducing different wedges in the economy’s aggregate supply relation (C.12).

Are these differential labor supply effects likely to materially undermine the policy equiv-

alence result? The left panel Figure C.5 suggests that the answer is “no”. To construct the

panel, I first compute impulse responses to a gradual monetary policy shock (with persis-

tence 0.6), normalized to in general equilibrium increase consumption on impact by one per

cent (grey). I then follow the steps in the proof of Proposition 1 to construct a stimulus

check policy with identical effects on partial equilibrium consumer spending. The general

equilibrium impulse response of consumption to this policy is displayed as the blue dashed

line. The main takeaway is that the two lines are very close, with the stimulus check policy

overall slightly more stimulative than the (not-quite-)equivalent interest rate cut.

The intuition for the results displayed in Figure C.5 is somewhat subtle. Both policies

by design lead to a response of partial equilibrium consumption demand with zero present

value—initially positive and then later on negative. Under my baseline wage-NKPC (6),

this initial decrease and later increase in the average marginal utility of consumption leads

to an initial decrease and later increase of union labor supply. With the alternative formu-
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(a) Alternative union bargaining (b) Matching MPEs

Figure C.5: Left panel: impulse response of consumption to a monetary policy shock with per-
sistence ρm = 0.6 and peak effect of 1% (grey) and the “equivalent” stimulus check policy (blue
dashed) in a HANK model with labor supply relation (C.12). Right panel: analogous figure for my
hybrid spender-saver model described below.

lation (C.12), on the other hand, the labor supply response is governed by average marginal

utility. Since most of the consumption adjustment following the transfer policy comes from

high-MPC households (who tend to consume less), average marginal utility of consumption

changes by more than after the equivalent rate cut—it drops by more initially and expands

by more later on. It then follows that labor supply also contracts by more initially and

expands by more later on, so the overall partial equilibrium net excess demand path (which

equals consumption demand less labor supply) is more front-loaded after the stimulus check

policy. But we know from Auclert et al. (2018) that more front-loaded excess demand paths

lead to a bigger boom in general equilibrium, so stimulus check policy will stimulate output

by more—exactly as we see in Figure C.5. This effect however is moderate in size, for two

reasons. First, average marginal utility and marginal utility at the average are still not too

different, so the desired labor supply response is also not too different. Second, any such

transitory differences in desired labor supply matter even less in general equilibrium as long

as wages are at least moderately sticky (Christiano, 2011), as is the case in my model.

Mixture model results. My second exercise is designed to speak as closely as possible

to the empirical evidence reported in Golosov et al. (2021). Those authors report marginal

propensities to earn (MPEs)—defined as the response of labor income to an unearned lump-

sum wealth gain—of up to $3 per additional $100 in wealth, with the response roughly
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two times larger for the highest-income households compared to the lowest-income ones (see

their Table 3.2). These estimates are roughly twice as large as those reported in prior work,

notably Cesarini et al. (2017) (see Table J.1 of Golosov et al.). While it is straightforward

to match such average MPEs in heterogeneous-agent models (see Auclert et al., 2020), it is

much harder to match the cross-sectional dispersion in MPEs (which is what matters for my

policy equivalence result). Intuitively, the challenge is that, in standard models of household

consumption and labor supply, MPEs are increasing (in absolute value) with MPCs.10 Since

poorer households tend to have higher MPCs, this would also imply that they have higher

MPEs (in absolute value), inconsistent with the empirical evidence reviewed above.

My solution is to consider a two-type spender-saver model with preference heterogeneity

chosen to ensure higher MPEs for low-MPC households—i.e., the model sketched in Ap-

pendix B.4. As discussed there, that model is calibrated to be consistent with empirical

evidence on household MPEs. Importantly, since the model features cross-sectional hetero-

geneity in wealth effects in labor supply, the policy equivalence result will not hold exactly.

The right panel of Figure C.5 however reveals that it continues to approximately hold. I

already in the main text gave the intuition for why the magnitude of the inaccuracy is so

small (recall Section 5.1). I here instead focus on the direction of the error. The intuition is

exactly opposite to that of the adjusted HANK model studied above. Savers have a larger

MPE, so labor supply initially contracts by relatively more after an interest rate cut, and

later on increases by relatively more. The total implied net excess demand path is thus more

frontloaded after the interest rate policy, and so now the interest rate cut is slightly more

expansionary, as seen in the right panel of Figure C.5.

Summary. My conclusion from the previous two experiments is that cross-sectional het-

erogeneity in wealth effects in labor supply is unlikely to materially threaten my headline

policy equivalence result. However, it is important to note that this takeaway hinges on the

equivalent stimulus check policy being moderate in size: by the evidence in Golosov et al.

(2021), for very large transfers, we would expect the cross-sectional heterogeneity in labor

supply responses to become larger relative to the demand stimulus of the policy (i.e., MPEs

are larger relative to MPCs). The fact that equivalent stimulus check policies are moderate

in size—the key takeaway of Section 4—is thus an integral part of my argument.

10This follows straightforwardly from the standard labor supply optimality condition with separable pref-
erences over consumption and labor supply. See Auclert et al. (2020) for details.
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Figure C.6: Left panel: The green line shows the time-0 direct household spending response by
liquid wealth percentile to the nominal interest rate policy of Figure 3. The shaded purple area
gives the corresponding indirect general equilibrium effects. Right panel: Analogous figure for the
equivalent uniform transfer stimulus (dark blue and shaded purple).

C.5 Non-equivalence at the household level

As discussed in Section 5.2, macro-equivalent interest rate and transfer stimulus policies

need not and generally will not be equivalent in the cross-section of households. Figure C.6

provides an illustration.

The figure shows the evolution of consumption along the household wealth distribution in

response to the macro-equivalent nominal interest rate and stimulus check policies displayed

in Figure 3. The impact consumption response is split by household liquid wealth percentile

(x-axis) into (a) the direct effects of the policy instrument (green and blue)—defined as the

response of consumption demand to the policy instruments {iiib, τττ} alone, fixing all non-policy

variables at their steady state values forever—and (b) the residual indirect effects (shaded

purple) coming from general equilibrium feedback. We see that the direct and thus overall

effects are very heterogeneous in the cross-section of households.

C.6 Other model extensions

I consider two further model extensions: durable consumption, and a richer network produc-

tion structure.
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Durable goods. My results extend without change to a model with durables as long as

durables and non-durables can be produced costlessly out of some common final good; that

is, if real relative prices of the two goods are always one and we can write the aggregate

resource constraint as

yt = ct + dht − (1− δ)dht︸ ︷︷ ︸
et

(C.14)

where et is total household expenditure, ct is non-durables consumption, dht is the stock of

durables, and δ is the depreciation rate. Letting Eτ denote the analogous derivative map

for the response of total spending to lump-sum income, the key condition for my results to

extend to this model is that Eτ is invertible—strong Ricardian non-equivalence now applied

to total spending. The details of the argument are straightforward and thus omitted: interest

rate and transfer policies can perturb net excess demand for the common final good equally

flexibly and are thus also equivalent in general equilibrium, by exactly the same argument

as in the proof of Proposition 1.11

I emphasize that the assumptions underlying this extended equivalence result are empir-

ically relevant: relative durable goods prices tend to not respond much to standard business-

cycle fluctuations (House & Shapiro, 2008; McKay & Wieland, 2019; Beraja & Wolf, 2020),

suggesting that the aggregation to a common aggregate resource constraint (C.14) is sensi-

ble. It is furthermore also an assumption made in recent quantitative structural explorations

of durable goods spending (e.g., Berger & Vavra, 2015).

Network production. The policy equivalence result leverages properties of consumer

spending behavior and as such is robust to many different possible model extensions on the

production side of the economy. I here provide one illustration using a simple model of

roundabout production (e.g., see Phaneuf et al., 2018).

Differently from my baseline model, intermediate goods firms now produce using both

labor as well as the intermediate good itself, with production function

yt = qϕt ℓ
(1−α)(1−ϕ)
t

11If non-durables and durables were not produced out of a common final good (and so their relative prices
could fluctuate), then it would of course still be possible to engineer a sequence of transfers that mimics a
given interest rate policy’s effect on total spending. Nothing guarantees, however, that the composition of
that spending would be the same. If relative prices can move then the composition will matter in general
equilibrium, thus breaking equivalence.
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where ϕ ∈ [0, 1) denotes the share of intermediates in production. A standard cost mini-

mization problem gives marginal costs as

mct =

(
1

(1− α)(1− ϕ)ϕ
ϕ

1−ϕ

)1−ϕ

w1−ϕ
t ℓ

α(1−ϕ)
t

and so, in log deviations,

m̂ct = (1− ϕ)
(
ŵt + αℓ̂t

)
Following the same steps as in the derivation of (B.1) we thus find that

π̂t =
(1− θp)(1− θp

1+r̄
)

θp

(1− α)(1− ϕ)

1− α + αεp

(
ŵt + αℓ̂t

)
+ βπ̂t+1 (C.15)

The only effect of roundabout production is thus to flatten the price-NKPC, leaving the

headline policy equivalence result entirely unchanged.

C.7 Targeted transfers

My analysis throughout was focussed on uniform lump-sum taxes and transfers. This was by

design: my objective was to establish that, in standard models of non-Ricardian consumption

behavior, manipulating taxes and transfers over time can manipulate spending just like

changes in intertemporal prices—that is, stimulus checks are stimulative even without any

redistribution. In models with microeconomic heterogeneity (like HANK), it is of course

also possible to consider transfer policies aimed at sub-populations of households and thus

(in part) operational through redistribution. My results extend with little change to such

alternative policy experiments.

Recall from the proof of Proposition 1 that the key requirement for policy equivalence is

that, for any excess demand sequence ĉcc with zero net present value, we can find a transfer

policy that induces a net excess demand path of ĉcc. To see how this can be done using

targeted transfers, consider a transfer targeted at some subgroup of households (group a)

and financed using taxes on another subgroup (group b). I denote the transfer to group a

by τ̂ττx and write the corresponding tax financing as τ̂ττ e ≡ Tτ τ̂ττ
x, where Tτ is such that

∞∑
t=0

(
1

1 + r̄

)t

(τ̂xt + τ̂ et (τ̂ττ
x)) = 0
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Letting C(a)
τ and C(b)

τ denote the consumption derivative matrices for subgroups a and b,

respectively, the effect of any given transfer policy τ̂ττx on net excess demand is given as

(
C(a)
τ + C(b)

τ Tτ

)︸ ︷︷ ︸
≡Cx

τ

τ̂ττx

Analogously to the proof of Proposition 1, a sufficient condition for policy equivalence is now

simply that every net excess demand path with zero net present value lies in the image of

Cx
τ . Differently from my main analysis, characterizing Cx

τ does not require MPCs averaged

across the entire household cross-section, but MPCs averaged across the subgroups a and b.

For practical policy purposes, there are two key differences between my uniform policies

and such targeted policies. First, the latter also work explicitly through redistribution across

households, and thus in particular can affect net excess demand even with period-by-period

budget balance and without any fluctuations in aggregate government debt. Second, it is

unclear ex ante whether targeted transfers need to be larger or smaller in per capita terms.

On the one hand, to engineer a given spending response by targeting a smaller group of

households, the required transfer size per capita increases mechanically. On the other hand,

if targeted households have larger MPCs, the required transfer decreases in size. I leave a

detailed characterization of such macro-equivalent targeted transfers to future work.

29



D Equivalence in terms of policy rules

This appendix elaborates on the implications of my equivalence results for systematic policy

rules. Appendix D.1 begins by formalizing the claims made in Section 3.3 from a sequence-

space perspective. Appendix D.2 then translates all arguments to recursive notation. Finally,

in Appendix D.3, I provide a worked-out example, deriving the transfer rule that replicates

a standard Taylor rule in the context of the perpetual-youth consumption-savings model.

D.1 From policy paths to rules

I augment the baseline model of Section 2.1 to additionally feature wedges {εεεc, εεεp, εεεw} to the

aggregate consumption function (2) as well as the Phillips curves (5) - (6), corresponding to

reduced-form representations of canonical demand and supply shocks. Given a specification

of policy in the form of policy rules, a bounded perfect-foresight transition path in response

to any of these wedges corresponds to impulse response functions in the analogous linearized

economy with aggregate risk (Boppart et al., 2018; Auclert et al., 2019). I will argue that,

for any interest rate-only policy rule, there exists a transfer-only policy rule that implies the

exact same impulse response of macroeconomic aggregates, including in particular aggregate

output and inflation.

I will present my equivalence results for two particular kinds of interest rate policy rules:

implicit targeting rules and explicit instrument rules (Giannoni & Woodford, 2002).

Implicit rules. A classical implicit targeting rule specifies a relationship between policy

targets. For a standard dual-mandate policymaker, and written in perfect-foresight notation

(e.g., see McKay & Wolf, 2022), such a rule takes the general form

Bππ̂ππ + Byŷyy = 000 (D.1)

(D.1) specifies a relationship between inflation and output along the perfect-foresight transi-

tion path. It nests as special cases strict inflation targeting (π̂t = 0 and so Bπ = I, By = 000),

strict output targeting (ŷt = 0 and so Bπ = 000, By = I), as well as the canonical optimal

implicit targeting rule of a dual-mandate policymaker, (25), mentioned in the main text.

Strong Ricardian non-equivalence is sufficient to ensure that, if a rule of the general form

(D.1) can be (uniquely) implemented using an interest rate-only policy (i.e., with a policy

as in Definition 2), then the same is true for a transfer-only policy.
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Corollary D.1. Suppose that, given a sequence of shocks {εεεc, εεεp, εεεw}, the implicit targeting

rule (D.1) implemented through an interest rate-only policy induces a unique equilibrium.

Then, under the conditions of Proposition 1 and strong Ricardian non-equivalence, the rule

(D.1) implemented through a transfer-only policy also induces a unique equilibrium featuring

the same aggregate allocation.

When implementing the targeting rule (D.1) through interest rate policy, the policymaker

in the background sets nominal interest rates so that aggregate demand is consistent with

output and inflation sequences satisfying (D.1). By my high-level assumption of strong

Ricardian non-equivalence, she can engineer that exact same required time path of aggregate

excess demand through transfers—she simply needs to set transfers equal to

τ̂ττ = C−1
τ × demand target

The proof of Corollary D.1 formalizes this argument.

Explicit rules. The same logic as above extends to explicit instrument rules—that is,

rules that explicitly specify the value of the policy instrument as a function of observables.

Again written in linearized perfect-foresight notation, a typical explicit interest rate rule

takes the general form

îiib = Bππ̂ππ + Byŷyy (D.2)

(D.2) here specifies a mapping from inflation and output into nominal interest rates along

the perfect-foresight transition path. For example, a simple Taylor rule would take the form

îb,t = ϕππ̂t + ϕyŷt, t = 0, 1, 2, . . .

and so Bπ = ϕπ × I, By = ϕy × I. With interest rates set according to (D.2), taxes under my

definition of an interest rate-only policy rule adjust in the background to ensure a balanced

government budget (recall Definition 2). In particular, for my environment in Section 2.1,

taxes by (8) follow

τ̂ττ = τℓw̄ℓ̄(ŵww + ℓ̂ℓℓ)− b̄̂iiib,−1 + (1 + r̄)b̄π̂ππ (D.3)

As before, strong Ricardian non-equivalence is sufficient to ensure that the equilibrium dy-

namics induced by a rule of the form (D.2)-(D.3) can equivalently be implemented uniquely

through an explicit transfer-only policy rule.
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Corollary D.2. Suppose that, given a sequence of shocks {εεεc, εεεp, εεεw}, the explicit interest rate
rule (D.2)-(D.3) induces a unique equilibrium. Then, under the conditions of Proposition 1

and strong Ricardian non-equivalence, the transfer-only policy rule

τ̂ττ = τℓw̄ℓ̄(ŵww + ℓ̂ℓℓ) + (1 + r̄)b̄π̂ππ︸ ︷︷ ︸
deficit response

+ C−1
τ C̃ib (Bππ̂ππ + Byŷyy)︸ ︷︷ ︸

active demand management

(D.4)

together with îiib = 000 uniquely implements the exact same aggregate allocation.

(D.4) is an explicit instrument rule for taxes and transfers. Just like (D.2) did for interest

rates, (D.4) is a rule that gives the time path of taxes and transfers as a function of time

paths of inflation and output (as well as the deficit). Intuitively, the rules (D.2) and (D.4)

are equivalent because they both imply the same mapping from macroeconomic aggregates—

output and inflation—into aggregate demand. The only difference is the instrument that is

used to achieve that mapping.

D.2 A recursive aggregate-risk perspective

The equivalent policy rules characterized in Appendix D.1 were written in sequence-space

perfect-foresight notation. Here I discuss how to interpret such rules in the analogous lin-

earized economy with aggregate risk. For implicit rules no further arguments are needed,

simply because the policy rule does not directly involve the instrument. For example, written

in recursive aggregate-risk notation, suppose the economy was closed with either the interest

rate-only rule

π̂t + λ(ŷt − ŷt−1) = 0

τ̂t = (1 + r̄)b̄π̂t + τℓw̄ℓ̄(ŵt + ℓ̂t) + b̂t

or the transfer-only rule

π̂t + λ(ŷt − ŷt−1) = 0

îb,t = 0.

Combining Corollary D.1 with the equivalence of linearized perfect-foresight solutions and

linearized shock impulse responses (e.g., Boppart et al., 2018; Auclert et al., 2019), we can

conclude that aggregate outcomes in the stochastic linearized economy with aggregate risk
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would be exactly the same under the two specifications of policy given above. I will thus

from now on focus on explicit rules, where additional arguments are needed.

The interest rate rule. Consider first the general perfect-foresight explicit interest

rate rule (D.2), re-stated here for convenience:

îiib = Bππ̂ππ + Byŷyy

This rule specifies a relationship between sequences of interest rates—the policy instrument—

and sequences of output and inflation—the arguments of the policy rule—along the perfect-

foresight transition path. My objective now is to provide an interpretation of that rule in

the analogous linearized economy with aggregate risk.

The key building block result is yet again that linearized perfect-foresight transition paths

are identical to shock impulse responses—i.e., to conditional expectations—in analogous

linearized economies with aggregate risk. Specifically, begin by considering the analogous

linearized economy with aggregate risk at its initial date 0, subject to some initial date-0

shocks. The explicit nominal interest rate rule (D.2) then simply says that current and

expected future rates at date 0 satisfy

E0

(̂
iii
0

b

)
= E0

[
Bππ̂ππ

0 + Byŷyy
0] (D.5)

where the notation xxxt = (xt, xt+1, . . . )
′ indicates time paths from date t onwards. That is,

current and future expected interest rates are given as a simple function of date-0 expecta-

tions of current and future output. At date 1 additional shocks hit the economy; adding up

impulse responses to the initial date-0 shocks and the new date-1 shocks, we see that interest

rates at date 1 satisfy

E1

(̂
iii
1

b

)
= E0

(̂
iii
1

b

)
︸ ︷︷ ︸

response to date-0 shocks

+ Bπ ×
[
E1

(
π̂ππ1)− E0

(
π̂ππ1)]+ By ×

[
E1

(
ŷyy1
)
− E0

(
ŷyy1
)]︸ ︷︷ ︸

response to date-1 shocks

(D.6)

or more compactly

Ê1,0

(̂
iii
1

b

)
= Bπ × Ê1,0

(
π̂ππ1) + By × Ê1,0

(
ŷyy1
)

(D.7)

where Êt,t−1 denotes the change in expectations between t and t−1. Continuing recursively,

we in general find that interest rates in the linearized economy with aggregate risk satisfy
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the recursion

Êt,t−1

(̂
iii
t

b

)
= Bπ × Êt,t−1

(
π̂ππt) + By × Êt,t−1

(
ŷyyt
)

(D.8)

In words, at each t, the policymaker revises current and expected future paths of nominal

interest rates in line with revisions about expectations of future inflation and output. This

is an explicit instrument rule in the sense of Giannoni & Woodford (2002): it specifies, at

each date t, the current and expected future values of the policy instrument as a function of

lagged, current, and expected future values of macro aggregates. Note that the dependence

on lagged aggregates is here encoded in the lagged instrument term Et−1

(̂
iii
t

b

)
.

The preceding discussion applies for arbitrarily complicated matrices {Bπ,By} specify-

ing the mapping from expectations of macro aggregates to expectations of interest rates.

Canonical recursive policy rules—like textbook Taylor rules—on the other hand restrict this

mapping to have a particularly simple form. A standard Taylor rule maps into the general

explicit rule form (D.2) with Bπ = ϕπ × I and By = ϕy × I, where I denotes the identity

map. If {Bπ,By} take such a simple diagonal form, then the in principle very complicated

expectational revisions embedded in (D.8) are equivalent to one simple static equation—the

familiar relation

îb,t = ϕππ̂t + ϕyŷt (D.9)

Both (D.8) and (D.9) are valid explicit rules: at each date t, they specify a mapping from

lagged, current, and expected future inflation and output into current and expected future

policy instruments. The only difference is that in one case this mapping is restricted to have

a very simple form, while in the other it is allowed to be much more general.

The equivalent transfer rule. Now consider the macro-equivalent transfer rule, writ-

ten in perfect-foresight sequence-space notation as (D.4). By exactly the same arguments

as above, it corresponds to the following recursive formulation in the analogous linearized

economy with aggregate risk:

Êt,t−1

(
τ̂ττ t
)

= Êt,t−1

[
τℓw̄ℓ̄(ŵww

t + ℓ̂ℓℓ
t
) + (1 + r̄)b̄π̂ππt + C−1

τ C̃ib
(
Bππ̂ππ

t + Byŷyy
t)] (D.10)

Equation (D.10) is an explicit instrument rule in exactly the same way as (D.8): it specifies, at

each date t, the current and expected future values of the policy instrument—here transfers—

as a function of lagged, current, and expected future values of macro aggregates. Of course,

since at this point I am imposing no further restrictions on the product C−1
τ C̃ib , a rule that

may be “simple” in interest rate space—like a conventional Taylor rule, as discussed above—
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may be complicated in transfer space, in the sense that the general set of restrictions (D.10)

cannot be reduced to a single static relation like (D.9). The next subsection provides an

explicit worked-out example in the special case of a one-type perpetual-youth economy. In

that particular setting, policy rules that are simple in interest rate space also turn out to be

simple in transfer space, and vice-versa, simply because the matrix product C−1
τ C̃ib takes a

very simple form.

D.3 A worked-out example

I consider a special case of my economy in Section 2.1 where the aggregate consumption

function C(•) is that implied by a one-type perpetual-youth consumer demand structure, as

discussed in Section 2.2. I suppose that the monetary policymaker wishes to replicate the

outcomes implied by the Taylor-type rule (D.9) by relying on transfers instead. By (D.10),

the recursively written explicit transfer rule that does so is

Êt,t−1

(
τ̂ττ t
)

= Êt,t−1

[
τℓw̄ℓ̄(ŵww

t + ℓ̂ℓℓ
t
) + (1 + r̄)b̄π̂ππt + C−1

τ C̃ib
(
ϕππ̂ππ

t + ϕyŷyy
t)] (D.11)

The particular one-type perpetual-youth structure allows us to now further simplify the term

C−1
τ C̃ib . Putting together the results from Appendices C.1 and C.2, we obtain

C−1
τ × C̃ib =

1

γ

1

1− θ
1+r̄


−

θ
1+r̄

1−θ
0 0 . . .

θ
1−θ

−
θ

1+r̄

1−θ
0 . . .

0 θ
1−θ

−
θ

1+r̄

1−θ
. . .

...
...

...
. . .

 (D.12)

Plugging (D.12) into (D.11), we see that mapping the simple Taylor rule (D.9) into transfer

space does indeed result in an almost equally simple explicit transfer-only rule:

τ̂t = τℓw̄ℓ̄(ŵt + ℓ̂t) + (1 + r̄)π̄π̂t︸ ︷︷ ︸
deficit response

+
1

γ
(
1− θ

1+r̄

) [− θ
1+r̄

1− θ
(ϕππ̂t + ϕyŷt) +

θ

1− θ
(ϕππ̂t−1 + ϕyŷt−1)

]
︸ ︷︷ ︸

active demand management

(D.13)

If transfers are set according to this simple policy rule, then they in the linearized equilibrium

with aggregate risk indeed satisfy the general recursion (D.11). Thus, in this particular

environment, an interest rate policy that responds to contemporaneous macro aggregates is

equivalent to a still quite simple transfer-only policy that responds to current and one-period-
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lagged aggregates, with the response coefficients given from (D.12). The rule representation

here is so simple because the map C−1
τ C̃ib—while not proportional to an identity matrix, like

{Bπ,By}—is nevertheless quite special: it is tridiagonal with repeating rows, and so we can

summarize the potentially very complicated expectation revisions in (D.11) with just one

simple equation, (D.13). This is exactly analogous to the Taylor rule (D.9) being equivalent

to the more complicated general expression (D.8) when Bπ = ϕπ × I and By = ϕy × I.
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E Proofs and auxiliary lemmas

E.1 Proof of Lemma 1

Re-arranging (C.2) we obtain

τ̂t +
1

β
b̂t−1 =

[1− θ(1− βθ)]ĉt − βθĉt+1

(1− βθ)(1− θ)
.

From the budget constraint (C.1) it follows that the left-hand side equals ĉt + b̂t. Re-

arranging, we thus obtain

b̂t =
βθ

(1− βθ)(1− θ)
(ĉt − ĉt+1)

and so, from the Euler equation (C.2),

τ̂t =
[1− θ(1− βθ)]ĉt − βθĉt+1

(1− βθ)(1− θ)
− θ

(1− βθ)(1− θ)
(ĉt−1 − ĉt).

Stacking these coefficients as the matrix C−1
τ (with β(1 + r̄) = 1), we obtain (20).

E.2 Proof of Proposition 2

Key to the proof is the following auxiliary lemma.

Lemma E.1. If θi < 1, then, for r̄ is sufficiently close to (but weakly above) zero, Ci
τ is a

positive operator (i.e., τττ ′Ci
ττττ > 0 for any τττ ̸= 000).

Proof. Ci
τ is positive if and only if its inverse is positive, so I will instead establish that (Ci

τ )
−1

is positive. Recall that

(Ci
τ )

−1 =



ai ci 0 0 . . .

bi di ci 0 . . .

0 bi di ci . . .

0 0 bi di . . .
...

...
...

...
. . .


where

ai =
1− θi

(
1− θi

1+r̄

)(
1− θi

1+r̄

)
(1− θi)
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ci = −
θi
1+r̄(

1− θi
1+r̄

)
(1− θi)

bi = − θi(
1− θi

1+r̄

)
(1− θi)

di =
1 +

θ2i
1+r̄(

1− θi
1+r̄

)
(1− θi)

From now on, to simplify notation, I will suppress all i subscripts. To prove that C−1
τ is

positive I will decompose C̃−1
τ ≡ 1

2

(
C−1
τ + C−1′

τ

)
or

C̃−1
τ =



a b+c
2

0 0 . . .
b+c
2

d b+c
2

0 . . .

0 b+c
2

d b+c
2

. . .

0 0 b+c
2

d . . .
...

...
...

...
. . .


as C̃−1

τ = L′L, where L is upper-triangular with real and positive diagonal entries. If I can

find such an operator then C̃−1
τ (and so C−1

τ ) is positive. For this consider the candidate

L =


√
δ1

α√
δ1

0 0 . . .

0
√
δ2

α√
δ2

0 . . .

0 0
√
δ3

α√
δ3

. . .
...

...
...

. . .


where α ≡ b+c

2
and δj follows the recursion

δj = d− α2

δj−1

with initial condition δ1 = a > 0. If δi > 0 for all i and if the δi’s are bounded, then it is

straightforward to verify that C̃−1
τ = L′L, and so that C̃−1

τ as well as C−1
τ (and so Cτ ) are

positive, bounded operators. To establish these properties of the δi’s, note first of all that

α =
b+ c

2
= −1

2

θ + θ
1+r̄(

1− θ
1+r̄

)
(1− θ)

< 0

is a well-defined, finite number. Now consider the recursion for δj. Write δj = f(δj−1) and
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note that, for δj−1 > 0, f(•) is a strictly increasing, strictly concave function. The fixed

points δ̄ and δ satisfy

δ̄ =
d

2
+

√(
d

2

)2

− α2, δ =
d

2
−

√(
d

2

)2

− α2

Let me first establish that the argument under the square root is indeed strictly positive.

For this it suffices to show that d > |b+ c|, or that

1 +
θ2

1 + r̄
> θ +

θ

1 + r̄

which holds for r̄ ≥ 0 and θ < 1. Next I will argue that a > δ. This requires

1− θ

(
1− θ

1 + r̄

)
>

1

2

(
1 +

θ2

1 + r̄

)
− 1

2

√(
1 +

θ2

1 + r̄

)2

−
(
θ +

θ

1 + r̄

)2

Note that, for r̄ = 0, this becomes

1− θ(1− θ) >
1

2
(1 + θ2)− 1

2

√
(1 + θ2)2 − 4θ2

which holds for θ < 1. Thus a > δ, and so this also holds for r̄ ∈ (0, r∗) for some upper

bound r∗. Proceeding identically we can show that a < δ̄ for r̄ sufficiently close to zero. But

then it follows from the properties of f(•) that the sequence {δj} will converge monotonically

from δ1 = a to δ̄ > a > 0. Thus the entire sequence consists of well-defined, finite, strictly

positive numbers. We conclude that the candidate operator L exists and is well-defined. It

follows that C−1
τ and so Cτ are positive, as claimed.

The proof of Proposition 2 leverages Lemma E.1.12 I will first of all show that the presence

of some constrained households (i.e., θi < 1 for at least some i with µi > 0) suffices to ensure

that transfer policy can induce any square-summable ĉcc. I decompose

Cτ =
N∑
i=1

µiCi
τ︸ ︷︷ ︸

≡|I|×CI
τ

+(1− |I|)CR
τ

where I denotes the set of groups with θi < 1, and where |I| ≡
∑

i∈I µi > 0 by assumption. I

12I thank an anonymous referee for several suggestions that helped fix technical issues with the proof.
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begin by studying CI
τ . This operator maps square-summable sequences into square-summable

sequences, so from now on I will operate in ℓ2, not ℓ∞.13 First suppose that r̄ = 0. CI
τ is then

the sum of linear operators that are, by Lemmas 1 and E.1, both invertible and positive.

Since r̄ = 0 they are also symmetric, and so we can conclude from Proposition 1.5 in Mortad

(2020) that the sum CI
τ is also invertible. Next, by the representation of Ci

τ in Appendix C.1,

CI
τ is continuous in r̄. Since in any Banach space the set of invertible operators is open, it

follows that CI
τ is also invertible for r̄ sufficiently close to (but above) 0.

Now return to Cτ . It remains to establish that any square-summable sequence ĉcc with

zero net present value lies in the image of Cτ . By the previous results it follows that we can

find a square-summable τ̂ττI (̂ccc) such that

CI
τ · τ̂ττI (̂ccc) = ĉcc

Note that τ̂ττI (̂ccc) necessarily has zero net present value, since CI
τ embeds all individual agents’

budget constraints (C.1). Now consider setting

τ̂ττ (̂ccc) =
1

|I|
· τ̂ττI (̂ccc)

Then, since τ̂ττ (̂ccc) also has zero net present value, it follows from the properties of CR
τ that

Cτ · τ̂ττ (̂ccc) = |I|CI
τ · 1

|I|
· τ̂ττI (̂ccc)︸ ︷︷ ︸

=ĉcc

+(1− |I|)CR
τ · 1

|I|
· τ̂ττI (̂ccc)︸ ︷︷ ︸

=000

= ĉcc.

It finally remains to note that, if θi < 1, then C̃i
ib
·̂iiib is square-summable (for square-summable

îiib), and thus so is ĉcc = ĉccPE
ib

= C̃ibîiib (if θi < 1 ∀i).14 This completes the argument.

E.3 Proof of Proposition 3

It follows from the discussion in Appendix C.1 that

Cτ (1, 1) =
N∑
i=1

µi

(
1− θi

1 + r̄

)

13With the entries of Ci
τ decaying exponentially in rows and columns away from the main diagonal (recall

Lemma C.1 with θi < 1), Ci
τ is a bounded linear operator on ℓ2; see also Auclert et al. (2023, Section 3.3).

14By (C.11), the off-diagonal entries of C̃i
ib

also decay exponentially in rows and columns away from the
main diagonal, like Ci

τ .
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Cτ (2, 1) =
N∑
i=1

µiθi

(
1− θi

1 + r̄

)

We thus see that θi < 1 for at least one i with µi > 0 suffices to ensure that both Cτ (1, 1) >
r̄

1+r̄
and Cτ (1, 1) > Cτ (2, 1), as claimed.

E.4 Proof of Proposition 4

By assumption, the allocation {π∗
t , y

∗
t }∞t=0 is implementable using an interest rate-only policy

tuple {i∗b,t, τ ∗t , 0}∞t=0. Now consider the alternative policy tuple {̄ib, τ ∗t + τ̂ †t , τ̂
†
f,t}∞t=0 where

τ̂ττ †f = I−1
τf

Iib î
∗
b (E.1)

and

τ̂ττ † = C−1
τ

[
Cib î∗b + Cd

(
Dib î

∗
b −Dτf τ̂ττ

†
f

)]
(E.2)

I now claim that this policy tuple similarly engineers the allocation {π∗
t , y

∗
t }∞t=0. First, with

τ̂ττ †f set as in (E.1), the investment, output and labor demand paths are unchanged; however,

as remarked in Appendix B.5, the dividend paths may be different. The transfer path τ̂ττ † is

constructed to offset both the missing monetary stimulus as well as neutralize any potential

dividend-related effects: to see this, note that we have

ĉ† = Cτ (τ̂ττ ∗ + τ̂ττ †) + CdDτf τ̂ττ
†
f + non-policy terms

= Cτ τ̂ττ ∗ + Cib î∗b + CdDib î
∗
b + non-policy terms = ĉ∗

Next note that, since they induce the same paths of consumption, investment, hours worked

and production, and since by assumption wages are unchanged, the initial policy {i∗b,t, τ ∗t , 0}∞t=0

and the new policy {̄ib, τ ∗t + τ̂
†
t , τ̂

†
f,t}∞t=0 have the same present value in the augmented govern-

ment budget constraint (B.18), exactly as in the proof of Proposition 1. With limt→∞ b̂t = 0

in the initial equilibrium, it then follows that we must also have limt→∞ b̂t = 0 in the new

one, as required. All other model equations are unaffected, so the guess is verified.
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E.5 Proof of Lemma C.1

I will guess and verify that lagged wealth is the only endogenous state, so the decision rules

take the general form

ĉt = ϑcbb̂t−1 +
H∑

h=0

ϑcyhτ̂t−h

b̂t = ϑbbb̂t−1 +
H∑

h=0

ϑbyhτ̂t−h

Plugging into the optimality conditions (C.1) - (C.2) and matching coefficients, we get the

following system of equations characterizing behavior in response to an anticipated income

shock H periods into the future:

ϑcb + ϑbb −
1

β
= 0 (E.3)

ϑcτh + ϑbτh = 0, h = 0, 1, . . . , H − 1 (E.4)

ϑcτH + ϑbτH = 1 (E.5)

[1− θ(1− βθ)]ϑcb − βθϑcbϑbb − (1− βθ)(1− θ)
1

β
= 0 (E.6)

[1− θ(1− βθ)]ϑcτh − βθ [ϑcbϑbτh + ϑcτh+1] = 0, h = 0, 1, . . . , H − 1 (E.7)

[1− θ(1− βθ)]ϑcτH − βθϑcbϑbτH = (1− βθ)(1− θ) (E.8)

I will begin by characterizing the solution of this system. From (E.3) and (E.6) we have

ϑbb = θ

ϑcb =
1

β
− θ

Next, from (E.5) and (E.8), we have that

ϑcτH = 1− βθ

ϑbτH = βθ

Finally, from (E.4) and (E.7),

ϑcτh = βθϑcτh+1 = (βθ)H−h(1− βθ)
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ϑbτh = −βθϑcτh+1 = −(βθ)H−h(1− βθ)

This characterizes the full solution.

I can now prove the various asymptotic statements of Lemma C.1. First we have that

ĉH,H = ϑcb

H−1∑
ℓ=0

ϑℓ
bbϑbτH−ℓ−1 + ϑcτH

Plugging in from the closed-form expressions above and simplifying:

lim
H→∞

cH,H =
(1− θ)(1− βθ)

1− βθ2
= const.

Next looking below the main diagonal:

ĉH+1,H = ϑcb

H∑
ℓ=0

ϑℓ
bbϑdτH−ℓ

and so
1

θ
ĉH+1,H =

ϑcb

ϑbb

(ϑbbb̂H−1,H + ϑbτH) = ϑcbb̂H−1,H + (1− θβ) = ĉH,H

Similarly
1

θ
ĉH+ℓ,H =

ϑcb

ϑbb

ϑbbb̂H+ℓ−2,H = ĉH+ℓ−1,H

The proof reveals that the result holds for any H, not just H → ∞.

Finally I look above the main diagonal. Here we have

ĉH−1,H = ϑcb

H−2∑
ℓ=0

ϑℓ
bbϑbτH−ℓ−2 + ϑcyH−1

We thus have that

1

βθ
ĉH−1,H = ϑcb

H−2∑
ℓ=0

ϑℓ
bbϑbτH−ℓ−1 + ϑcτH = ĉH,H − ϑcbϑ

H−1
bb ϑbτ0

The last term goes to zero as H → ∞. Similarly we have

ĉH−ℓ,H = ϑcb

H−ℓ−1∑
ℓ=0

ϑℓ
bbϑbτH−ℓ−2 + ϑcτH−ℓ
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and so

1

βθ
ĉH−ℓ,H = ϑcb

H−ℓ−1∑
ℓ=0

ϑℓ
bbϑbτH−ℓ−1 + ϑcτH−ℓ+1 = ĉH−ℓ+1,H − ϑcbϑ

H−ℓ
bb ϑbτ0

where the last term again goes to zero as H → ∞, completing the argument.

E.6 Proof of Lemma C.2

I begin with the budget constraint and the Euler equation. For notational convenience I

suppress all i subscripts. The budget constraint is

ĉt + b̂t − (1 + r̄)̂bt−1 = τ̂t. (E.9)

Combining budget constraint and the sequential formulation of aggregate demand in (C.4),

we obtain the following Euler equation:

(1−Mθ)ĉt −
θ

1 + r̄
ĉt+1 −M(1− θ)(1 + r̄)̂bt−1 =M(1− θ)τ̂t. (E.10)

I now proceed by combining (C.1) and (E.10) as in the proof of Lemma 1. First, we have

τ̂t + (1 + r̄)̂bt−1 =
(1−Mθ)ĉt − θ

1+r̄
ĉt+1

M(1− θ)

which again also equals ĉt + b̂t, from the budget constraint. Thus

b̂t =
1−M

M(1− θ)
ĉt −

θ
1+r̄

M(1− θ)
ĉt+1

and so

τ̂t =
(1−Mθ)ĉt − θ

1+r̄
ĉt+1

M(1− θ)
− (1 + r̄)(1−M)

M(1− θ)
ĉt−1 −

θ

M(1− θ)
ĉt.

Stacking, we obtain (C.5).

E.7 Proof of Corollary D.1

I begin with some preliminary simplifications. The non-policy block of the economy can be

summarized by the following system of equations, now written in compact sequence-space
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notation (as in Auclert et al., 2019). First, the price-NKPC,

π̂ππ = Πwŵww +Πℓℓ̂ℓℓ+ βπ̂ππ+1 + εεεp

Second, the production function

ŷyy = Yℓℓ̂ℓℓ

Third, firm dividends,

d̂dd = Dyŷyy +Dwŵww +Dℓℓ̂ℓℓ

Fourth, consumer demand

ĉcc = Cwŵww + Cℓℓ̂ℓℓ+ Cππ̂ππ + Cdd̂dd+ Cτ τ̂ττ + Cibîiib + Ccεεεc

Fifth, the wage-NKPC,

ℓ̂ℓℓ = Lwŵww + Lππ̂ππ + Lcĉcc+ εεεw

And sixth, the output market-clearing condition

ŷyy = ĉcc

Using the price-NKPC, the production function, the equation for firm dividends, and the

output market-clearing condition, we can substitute out {ccc,www,ℓℓℓ,ddd} in the consumer demand

relation. This gives

C̄yŷyy + C̄ππ̂ππ = C̄ibîiib + C̄τ τ̂ττ + C̄cεεεc (E.11)

where C̄ib = Cib , C̄τ = Cτ , C̄c = Cc and {C̄y, C̄π} are functions of model primitives. Similarly,

using the price-NKPC as well as the production function and the output market-clearing

condition, we can substitute out {ℓℓℓ,www,ccc} in the wage-NKPC to write it as

L̄yŷyy + L̄ππ̂ππ = L̄pεεε
p + L̄wεεε

w (E.12)

where {L̄y, L̄π, L̄p, L̄w} are functions of model primitives.

Now consider first the case where the desired implicit targeting rule (D.1) is implemented

using an interest rate-only policy. Plugging the price-NKPC and the production function

into the financing rule (8), we can write the financing rule compactly as

τ̂ττ = T̄yŷyy + T̄ππ̂ππ + T̄ibîiib (E.13)
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where {T̄y, T̄π, T̄ib} are functions of the financing rule (8) and model primitives. Using the

simplifications in (E.11), (E.12) and (E.13), we can write the equilibrium system as the

following stacked linear system:
C̄y C̄π −C̄ib −C̄τ
L̄y L̄π 000 000

By Bπ 000 000

−T̄y −T̄π −T̄ib I



ŷyy

π̂ππ

îiib

τ̂ττ

 =


C̄cεεεc

L̄pεεε
p + L̄wεεε

w

000

000

 (E.14)

By assumption, the system (E.14) has a unique, bounded solution. Denote that solution by

{ŷyy∗, π̂ππ∗, îii
∗
b , τ̂ττ

∗}.
Now consider the question of whether the same implicit targeting rule can be imple-

mented using a transfer-only policy. Using the simplifications from above, we can write the

equilibrium system as
C̄y C̄π −C̄ib −C̄τ
L̄y L̄π 000 000

By Bπ 000 000

000 000 I 000



ŷyy

π̂ππ

îiib

τ̂ττ

 =


C̄cεεεc

L̄pεεε
p + L̄wεεε

w

000

000

 (E.15)

It remains to show that {ŷyy∗, π̂ππ∗} are also part of the unique bounded solution of (E.15). To

see this, consider first the candidate solution {ŷyy∗, π̂ππ∗,000, τ̂ττ ∗∗} where τ̂ττ ∗∗ solves

(
C̄ib + C̄τ T̄ib

)
îii
∗
b + C̄τ

(
T̄yŷyy

∗ + T̄ππ̂ππ
∗) = C̄τ τ̂ττ ∗∗

We know by the conditions of Proposition 1 (which recall are assumed for Corollary D.1)

that such a τ̂ττ ∗∗ exists. Plugging into (E.11), we get

C̄yŷyy∗ + C̄ππ̂ππ∗ − C̄ib000− C̄τ τ̂ττ ∗∗ = C̄cεεεc

⇔
(
C̄y − C̄τ T̄y

)
ŷyy∗ +

(
C̄π − C̄τ T̄π

)
π̂ππ∗ −

(
C̄ib + C̄τ T̄ib

)
îii
∗
b = C̄cεεεc

⇔ C̄yŷyy∗ + C̄ππ̂ππ∗ − C̄ibîii
∗
b − C̄τ τ̂ττ ∗ = C̄cεεεc

Thus (E.11) still holds. It is immediate that all other relations in (E.15) hold, so we can

conclude that {ŷyy∗, π̂ππ∗,000, τ̂ττ ∗∗} is indeed a solution of (E.15).

To show uniqueness, suppose for a contraction that (E.15) has a distinct bounded solution

{ŷyy†, π̂ππ†,000, τ̂ττ †} with ŷyy† ̸= ŷyy∗ and/or π̂ππ† ̸= π̂ππ∗. By the assumptions of Proposition 1 we can
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thus find a bounded tuple {ŷyy†, π̂ππ†, îii
†
b, τ̂ττ

††} where

(
C̄ib + C̄τ T̄ib

)
îii
†
b + C̄τ

(
T̄yŷyy

† + T̄ππ̂ππ
†
)
= C̄τ τ̂ττ †

and

τ̂ττ †† = T̄yŷyy
† + T̄ππ̂ππ

† + T̄ibîii
†
b

Then, following the same steps as above but in reverse, we can conclude that {ŷyy†, π̂ππ†, îii
†
b, τ̂ττ

††}
is a bounded solution of (E.14). Contradiction.

E.8 Proof of Corollary D.2

Proceeding as in the proof of Corollary D.1, we arrive at the following equilibrium system

for the explicit interest rate rule:
C̄y C̄π −C̄ib −C̄τ
L̄y L̄π 000 000

−By −Bπ I 000

−T̄y −T̄π −T̄ib I



ŷyy

π̂ππ

îiib

τ̂ττ

 =


C̄cεεεc

L̄pεεε
p + L̄wεεε

w

000

000

 (E.16)

By assumption, the system (E.16) has a unique, bounded solution. Denote that solution by

{ŷyy∗, π̂ππ∗, îii
∗
b , τ̂ττ

∗}.
Now consider the equilibrium system corresponding to the proposed transfer-only rule

(D.4). Using the simplifications from above, we can write that system as
C̄y C̄π −C̄ib −C̄τ
L̄y L̄π 000 000

000 000 I 000

−T̄y − C−1
τ CibBy −T̄π − C−1

τ CibBπ −T̄ib I



ŷyy

π̂ππ

îiib

τ̂ττ

 =


C̄cεεεc

L̄pεεε
p + L̄wεεε

w

000

000

 (E.17)

It remains to show that {ŷyy∗, π̂ππ∗} are also part of the unique bounded solution of (E.17). To

see this, consider first the candidate solution {ŷyy∗, π̂ππ∗,000, τ̂ττ ∗∗} where

τ̂ττ ∗∗ = T̄yŷyy
∗ + T̄ππ̂ππ

∗ + T̄ibîii
∗
b + C−1

τ Cibîii
∗
b
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Plugging the candidate solution into the consumer demand function (E.11), we get

C̄yŷyy∗ + C̄ππ̂ππ∗ − C̄ib000− C̄τ τ̂ττ ∗∗ = C̄cεεεc

⇔
(
C̄y − C̄τ T̄y

)
ŷyy∗ +

(
C̄π − C̄τ T̄π

)
π̂ππ∗ −

(
C̄ib + C̄τ T̄ib

)
îii
∗
b = C̄cεεεc

⇔ C̄yŷyy∗ + C̄ππ̂ππ∗ − C̄ibîii
∗
b − C̄τ τ̂ττ ∗ = C̄cεεεc

Thus (E.11) still holds. It is immediate that all other relations in (E.17) hold, so we can

conclude that {ŷyy∗, π̂ππ∗,000, τ̂ττ ∗∗} is indeed a solution of (E.17).

To show uniqueness, suppose for a contraction that (E.17) has a distinct bounded solution

{ŷyy†, π̂ππ†,000, τ̂ττ †} with ŷyy† ̸= ŷyy∗ and/or π̂ππ† ̸= π̂ππ∗. Now consider the tuple {ŷyy†, π̂ππ†, îii
†
b, τ̂ττ

††} where

îii
†
b = Byŷyy

† + Bππ̂ππ
†

and

τ̂ττ †† = T̄yŷyy
† + T̄ππ̂ππ

† + T̄ibîii
†
b

Then, following the same steps as above but in reverse, we can conclude that {ŷyy†, π̂ππ†, îii
†
b, τ̂ττ

††}
is a bounded solution of (E.16). Contradiction.
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