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E.1 A sequence-space perspective

All results in the main part of this paper are stated and proved using a standard state-space approach

to equilibrium characterization. We can, however, develop some additional insights by instead adopt-

ing a sequence-space perspective.

In the context of the paper as a whole the purpose of the sequence-space analysis in this section

is twofold. First, by adopting this sequence-space perspective (Auclert et al. (2021)), we will be able

to easily substantiate a claim made in Section 6—that intertemporal MPCs fully characterize limiting

self-financing equilibria. Second, we provide a different perspective on Assumption 2, re-phrasing it

as a sufficient condition ensuring that the intertemporal MPCs decay “sufficiently quickly.”

Equilibrium. For the analysis in this section, we substantially generalize the aggregate demand re-

lation (12) to the following linearized sequence-space relation:

ccc =M × (
yyy − ttt

)+Mi ×iii +Mπ×πππ (E.1)

where boldface denotes sequences, and {M ,Mi ,Mπ} are linear maps translating sequences of income

(and taxes), nominal rates, and inflation into household consumption demand (e.g., Wolf, 2021a).

Our objective in this section is to shed further light on the possibility of full self-financing in the

limit with infinite delay in fiscal adjustment; i.e., we will consider the limiting case of τd = 0. We will
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furthermore maintain the assumption of a neutral monetary policy and, for simplicity, assume that

prices are rigid (κ= 0), thus focusing on the tax base channel.1

Imposing market-clearing and constant real rates, equation (E.1) becomes

yyy =M × (
yyy − ttt

)
(E.2)

Now note that, under our assumptions on fiscal policy, taxes are given

ttt = τy × yyy −εεε (E.3)

where εεε captures the exogenous policy intervention. For our “stimulus check” experiment, this is a

vector that has zeros everywhere but in its first entry. Combining (E.2) and (E.3), we find that output in

the limiting, full self-financing equilibrium is characterized through the following system of dynamic

equations:

yyy = (1−τy )M × yyy +M ×εεε (E.4)

(E.4) is a variant of the intertemporal Keynesian cross studied previously in Auclert et al. (2023), but

with a crucial difference: automatic tax financing is embedded in the tax revenue term τy × yyy , rather

than being specified directly as part of the policy intervention (here εεε). This seemingly subtle distinc-

tion has important implications and in particular connects tightly with our self-financing results in

Sections 4 and 5.2.

Discussion. The above analysis substantiates the claim made in Section 6: for a large family of mod-

els (including in particular our spender-OLG hybrid), the matrix of the intertemporal MPCs together

with the value of τy pin down the dynamics of output in the limiting self-financing equilibrium. It

remains to further characterize the solution of (E.4), allowing us to connect with the economic intu-

itions offered in Sections 4 and 5.2.

The remainder of the discussion here will leverage a crucial property of the intertemporal MPC

matrix M . Letting rrr ≡ (1, 1
R ss , 1

(R ss )2 , . . . ), we have that rrr ′ ·M (•,h) = 1
(R ss )h —i.e., every dollar of income

is spent at some point. It follows from this property that any solution yyy of (E.4) necessarily has net

present value equal to 1
τy

times the net present value of the fiscal stimulus:

rrr ′yyy = (1−τy )rrr ′M × yyy +rrr ′M ×εεε
1By an argument analogous to that surrounding Theorem 1, the extension to the partially sticky price case is concep-

tually straightforward. The only delicate part of the ensuring discussion is that we directly set τd = 0, instead of taking the
limit as τd → 0+ from above, or proving the equivalence to H →∞. These details are of course fully taken care of in our
main analysis.
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and so from the properties of M we obtain that indeed

τy ×rrr ′yyy = rrr ′εεε, (E.5)

as claimed. Next we note that the solution of (E.4) takes the simple form

yyy = [
I − (1−τy )M

]−1 ×M ×εεε (E.6)

where for the purpose of the discussion here we simply assume that the stated inverse exists.2 Our

self-financing results in Theorems 1 and 3 concern the question of whether, as fiscal financing is

gradually delayed further and further, we indeed converge to the general self-financing equilibrium

characterized by (E.6). As discussed following Theorem 1, the condition required for such conver-

gence to occur is that the Keynesian boom is sufficiently front-loaded, raising all required revenue

before fiscal adjustment is ever actually necessary. In (E.6), the “front-loadedness” of the Keynesian

boom is entirely governed by the properties of
[
I − (1−τy )M

]−1: if the off-diagonal entries of M de-

cay to zero sufficiently quickly along each column, then the same is true for the off-diagonal entries

of
[
I − (1−τy )M

]−1 (e.g., see Bickel and Lindner, 2012). This then ensures that the solution yyy and

thus the debt path ddd converge to zero, which in turn is what is needed for self-financing to obtain as

fiscal adjustment is delayed further and further. For our general aggregate demand relation (30), the

condition stated in Assumption 2 is what is needed to ensure that indeed the off-diagonal entries of

M and thus
[
I − (1−τy )M

]−1 decay to zero sufficiently quickly along each column.

E.2 More on model extensions

We here elaborate on the remaining extensions discussed in Section 5: (i) fiscal adjustment through

distortionary taxes; (ii) stimulus in the form of government purchases; (iii) a model with investment;

and (iv) more general aggregate demand with our variant fiscal rule.

E.2.1 Distortionary tax hikes

We begin by showing how the equilibrium relations of the model change with fiscal adjustments tak-

ing the form of time-varying distortionary taxes. We then discuss implications for our limiting self-

financing equilibria.

2Our analysis in the main text implies that, for standard models of the consumption-savings problem and if τy > 0,
then this inverse indeed exists.
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Environment. We now replace our baseline fiscal rule (6) with the following alternative:

Ti ,t = τy,t Yi ,t −Et (E.7)

where the time-varying distortionary tax rate τy,t is given by

τy,t = τy +τd
D t −D ss

Y ss
. (E.8)

After log-linearization, this extended model variant maps into exactly the same aggregate demand re-

lation and law of motion for public debt as before; intuitively, in those equations, what matters is only

how much tax revenue is extracted from the private sector, not whether it is done in a distortionary or

lump-sum way. The only model equation that is affected is the NKPC, where the time-varying distor-

tion in labor supply now manifests itself as a cost-push shock:

πt = κ(yt +ζdt )+βEt [πt+1] (E.9)

where ζ is a function of model primitives such that ζ> 0 if and only if τd > 0 . Intuitively, higher debt

maps into higher distortionary taxes, and thereby to a higher labor wedge and higher real marginal

cost for a given level of output.

To derive (E.9), note that, with time-varying distortionary taxes, the labor supply relation is

(1−τy,t )Wt =
ιL

1
ϕ

t∫ 1
0 C−1/σ

i ,t di
(E.10)

Log-linearizing, we find that

wt − 1

σ
ct − 1

1−τy
τ̂y,t = 1

ϕ
ℓt (E.11)

where τ̂t ≡ τy,t −τy . Next note that the firm optimal pricing relationship is still

πt = κ̃wt +βEt [πt+1] (E.12)

Combining (E.11), (E.12), and the modified baseline fiscal (E.8), we obtain

πt = κ

yt + τd(
1
ϕ + 1

σ

)(
1−τy

)
︸ ︷︷ ︸

≡ζ

dt

+βEt [πt+1] , (E.13)
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where κ= κ̃
(

1
ϕ
+ 1
σ

)
.

Self-financing results. This modification of the model has very limited effect on our headline re-

sults. First, if κ = 0, then nothing changes, and in particular the entirety of Theorem 1 continues to

hold. Second, even if κ > 0, then nothing of essence changes: as we have already emphasized, our

characterization of the equilibrium dynamics of yt and dt is robust to the specification of the NKPC,

and thus in particular to the presence of additional cost-push shocks—all that changes is the split

between tax base and inflation self-financing. Finally, in the limit of interest (i.e., as τd → 0), those

cost-push terms actually vanish, and so the second part of Theorem 1 remains intact even if κ > 0.

The economics of this limit case are transparent: because our original self-financing limit result guar-

antees that fiscal adjustment is never needed in equilibrium, it is immaterial whether the adjustment

would have been distortionary or lump-sum.

E.2.2 Government spending

The only change relative to our baseline economy is that the government now consumes some amount

Gt of the final good. We assume that Gt is a stochastic, mean-zero spending shock, and we also shut

down the lump-sum transfers featured in our baseline analysis. The linearized government budget

constraint becomes

dt+1 = 1

β

[
dt − tt + g t +βD ss

Y ss (it −πt+1) ,

]
(E.14)

where g t = Gt
Y ss . We next specify taxes as follows:

tt = τd · (dt + (1−τy )g t )+τy yt , (E.15)

where the presence of (1− τy ) in front of g t ensures that τd = 1 again corresponds to a period-by-

period balanced budget.3 Finally, the aggregate output market-clearing condition is replaced by

yt = ct + g t . (E.16)

By standard arguments (e.g., see Galí, 2008), the adjusted NKPC is now given as

πt = κyt +βEt [πt+1]−κ
1
σ

1
ϕ + 1

σ

g t

3To see this, one can guess and verify that, under the above specification, τd = 1 translates in equilibrium to yt = g t ,
tt = g t , and dt = 0 for all t (i.e., the fiscal multiplier is one, the primary surplus is zero, and debt stays in steady state).
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BASELINE FISCAL POLICY

ALTERNATIVE FISCAL POLICY

Figure E.1: Top panel: impulse responses of output yt , government debt dt , and the total self-
financing share ν to a government spending shock ε0 equal to one per cent of steady-state output,
as a function of τd . Bottom panel: same as above, but as a function of H .

Intuitively, the last term reflects the fact that, if higher output comes from higher government pur-

chases (rather than higher consumption), then household labor supply is larger for standard wealth

effect reasons—i.e., a negative cost-push shock. Since the overall analytics of the self-financing result

with government purchases are analogous to our baseline “stimulus checks” case, we do not repeat

those derivations here and instead just provide a visual illustration of the self-financing result.

We summarize our results in Figure E.1—the government spending analogue of Figure 1. We
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emphasize two main takeaways. First, as τd → 0 or H → ∞, we indeed again converge to a full

self-financing limit. Second, even immediately tax-financed fiscal purchases actually have a positive

spending multiplier, and thus the share of self-financing ν for τd = 1 (top panel) and H = 0 (bottom

panel) is already strictly positive.

E.2.3 Investment

This section provides the missing details on the extension to models with investment discussed in

Section 5.3. We begin by stating the (linearized) equations of the extended model before then charac-

terizing its equilibrium.

Model equations. The household block changes very little. Households still receive labor income

and dividends; we now denote this total household income by et (which in equilibrium will be equal to

total household consumption rather than total aggregate income). The linearized household demand

relation is now

ct =
(
1−βω)(

dt +Et

[ ∞∑
k=0

(
βω

)k
(et+k − tt+k )

])
−γEt

[ ∞∑
k=0

(βω)k rt+k

]
, (E.17)

while labor supply still satisfies
1

ϕ
ℓt = wt − 1

σ
ct (E.18)

The firm block on the other hand changes materially relative to our baseline model. Since this

production side is entirely standard our discussion here will be brief and only present linearized op-

timality conditions; a detailed discussion of an almost identical model is offered in Wolf (2021b). The

production sector consists of three parts: perfectly competitive intermediate goods producers who

accumulate capital and hire labor on spot markets; monopolistically competitive retailers who pur-

chase the intermediate good and costlessly differentiate it, subject to nominal rigidities; and a com-

petitive final goods aggregator. Profits of the corporate sector as a whole are returned to households,

subject to the time-invariant tax τy . The relevant equilibrium relations follow from the behavior of

the intermediate goods producers and the retailers.

1. Intermediate goods producers. The production function takes a standard Cobb-Douglas form

with capital share α, and capital depreciates at rate δ. We let p I
t denote the real relative price of

the intermediate good. Optimal labor demand gives the static relation

wt = p I
t +αkt−1 −αℓt (E.19)
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while optimal capital accumulation gives4

1

β
(it −Et [πt+1]) =

(
1

β
−1+δ

)
×Et

[
p I

t+1 + (α−1)kt + (1−α)ℓt+1
]

(E.20)

By our assumptions on the production function total output is given as

yt =αkt−1 + (1−α)ℓt (E.21)

and finally investment xt satisfies

xt = 1

δ
(kt − (1−δ)kt−1) (E.22)

2. Retailers. Optimal price-setting as usual relates real marginal costs—here the relative price of

the intermediate good, p I
t —to aggregate inflation:

πt = κp I
t +βEt [πt+1] (E.23)

Aggregating dividend payments from intermediate goods producers and retailers, we obtain (in levels)

Qt = Yt −Wt Lt −X t (E.24)

which implies that total household income Et (in levels) is given as

Et =Wt Lt +Qt = Yt −X t (E.25)

Aggregate output market-clearing dictates that

yt = C ss

Y ss
ct + X ss

Y ss
xt (E.26)

Finally we return to the government. The monetary rule (9) and the government budget constraint

(5) are unchanged. The fiscal policy rules (7) or (8) are also unchanged up to the tax base revenue term:

since the government taxes labor and dividend income, this term now equals τy ×Et .

Equilibrium characterization. Our key building block result is that we can reduce the equilibrium

of this extended model to a system of equations almost as simple as that of our baseline model in Sec-

4Adjustment costs on the capital stock or investment flows would complicate this relation but not affect any of our
subsequent arguments.
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tion 2. First, combining market-clearing and the policy rules with private-sector demand we obtain

ct =F1 · (dt +εt )+F2 ·Et

[(
1−βω) ∞∑

k=0

(
βω

)k ct+k

]
. (E.27)

Relative to our baseline model, the only change is that this equilibrium demand relationship is in ag-

gregate consumption ct rather than aggregate output yt . We emphasize that this is possible precisely

because the government taxes dividend and labor income, which as discussed above in equilibrium

is equal to total consumption. Second, the law of motion for aggregate debt is now

dt+1 =β−1

dt +εt − τd · (dt +εt )︸ ︷︷ ︸
fiscal adjustment

− τy ct︸︷︷︸
tax base

− D ss

Y ss (πt+1 −Et [πt+1])︸ ︷︷ ︸
debt erosion

, (E.28)

with real debt at date 0 given as

d0 = b0 − D ss

Y ss (π0 −E−1 [π0]) =−D ss

Y ss
π0. (E.29)

Again, relative to the baseline model, the only change is that now it is aggregate consumption rather

than aggregate output appearing in (E.28).

We note that (E.27) - (E.28) is a system in {ct ,dt }∞t=0 that depends on the rest of the economy—and

so in particular the investment block—only through the presence of π0. π0 on the other hand can

be obtained as a function of the consumption path {ct }∞t=0 by solving the system (E.18), (E.19), (E.20),

(E.21), (E.22), (E.23) and (E.26) given consumption, and with the monetary policy rule (9) imposed.

We write this function as

π0 =Π0
(
{ct }∞t=0

)
(E.30)

The equilibrium described by equations (E.27) - (E.30) is straightforward to characterize given

our earlier analysis of the model without investment in Sections 2 and 4. We begin with the case of

perfectly rigid prices (κ = 0), and for simplicity restrict attention to the limiting self-financing case

(τd → 0 or H → ∞). In that case π0 = 0, so we can focus on the bivariate system (E.27) - (E.28) in

{ct ,dt }∞t=0. Crucially, this system is exactly the same as that covered in Theorem 1, so the equilibrium

characterization underlying that result applies unchanged, with ct replacing yt .

We now turn to the case of general κ. To this end let ct ,0 denote the solution of the rigid-price

system, and furthermore let p I
t ,0 denote the corresponding equilibrium intermediate goods price ob-

tained by solving the system (E.18), (E.19), (E.20), (E.21), (E.22), and (E.26) for p I given {ct ,0}∞t=0. Pro-

ceeding analogously to the proof of Theorem 1, we will now construct the equilibrium for general κ by
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simply scaling the κ = 0 equilibrium. To this end conjecture that equilibrium consumption satisfies

a × ct ,0, for some scalar a. It is then immediate that then we would also have p I
t = a ×p I

t ,0. But then,

from (E.23), we have that

π0 = a ×κ×
∞∑

t=0
βt p I

t ,0 (E.31)

Finally it follows from the government budget constraint that—again in our limiting self-financing

equilibrium—we must have

ε0 = a ×τy ×
∞∑

t=0
βt ct ,0 +a × D ss

Y ss
×κ×

∞∑
t=0

βt p I
t ,0

Solving this equation for a we obtain consumption and thus inflation as well as government debt in

the general sticky-price equilibrium. In particular we see that self-financing yet again obtains exactly

as in our baseline economy. We summarize these observations in the following corollary.

Corollary 1. Consider the extended OLG-NK environment with investment. Full self-financing obtains

as fiscal adjustment is indefinitely delayed.—that is, ν→ 1—if the tax response is infinitely delayed,

i.e., τd → 0 or H →∞. These two limits induce the same equilibrium paths {ct ,πt ,dt }∞t=0, and in this

common limit, self-financing is sufficiently strong to return real government debt to steady state (i.e.,

limk→∞Et [dt+k ] → 0 or limH→∞E0 [dH ] → 0).

E.2.4 General aggregate demand under the variant fiscal policy (8)

We here prove the analogue of Theorem 3 for the variant fiscal policy rule (8). Our arguments require

the additional technical assumption that Md ≥ δωMy

1−(1−δω)My
. This additional restriction is sufficient to

materially simplify the argument, and it is satisfied by all model variants discussed in the main text,

including the one entertained in our quantitative analysis (i.e., the OLG-spender hybrid).5

Proof. With market clearing ct = yt , we first write the aggregate demand in (30) recursively

yt = Md

1−My
dt −

My

1−My
tt +δβω

My

1−My
Et

[
yt+1 − tt+1

]+βωEt

[
yt+1 − Md

1−My
dt+1 +

My

1−My
tt+1

]
= Md

1−My
dt −

My

1−My
tt +δβω

My

1−My
Et

[
yt+1 − tt+1

]+βωEt

[
yt+1 +

My

1−My
tt+1

]
−ω Md

1−My
(dt − tt )

= Md (1−ω)

1−My
dt −

My −ωMd

1−My
tt +βω

(
1− (1−δ) My

1−My

)
Et

[
yt+1

]+βω My

1−My
(1−δ)Et [tt+1] . (E.32)

5The restriction is not, however, necessary. The detailed discussion (which reveals that Theorem 3 holds generically
under our variant rule (8)) is available upon request.
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From (8), we know that tt = dt for all t ≥ H . As a result, dt+1 = 0 for all t ≥ H . Similar to the argument in Appendix

A.3, we can then focus on the case that yt = dt = 0 for t ≥ H +1. At t = H , from (E.32), we have

yH = −(
My −Md

)
1−My

dH =χ0dH with χ0 =
−(

My −Md
)

1−My
. (E.33)

Similar to the main analysis in Appendix A.3, we will now use (E.32) to find the equilibrium path of
{

yt ,dt
}H−1

t=0

through backward induction. At t = H −1, from (8) and (E.32),

yH−1 =
Md (1−ω)

1−My

1+τy
My−ωMd

1−My

dH−1 +βω

(
1−(1−δ)My

1−My

)
χ0 + My (1−δ)

1−My

1+τy
My−ωMd

1−My

dH

=
Md (1−ω)

1−My

1+τy
My−ωMd

1−My

dH−1 +ω

(
1−(1−δ)My

1−My

)
χ0 + My (1−δ)

1−My

1+τy
My−ωMd

1−My

(
dH−1 −τy yH−1

)

yH−1 =
Md (1−ω)

1−My
+ω

[(
1−(1−δ)My

1−My

)
χ0 + My (1−δ)

1−My

]
1+τy

My−ωMd

1−My
+ωτy

[(
1−(1−δ)My

1−My

)
χ0 + My (1−δ)

1−My

]dH−1

=χ1dH−1, (E.34)

with

χ1 =
Md (1−ω)

1−My
+ω

[
−δMy (1−Md )+Md (1−My )

(1−My )2

]
1+ My−ωMd

1−My
τy +ωτy

[
−δMy (1−Md )+Md (1−My )

(1−My )2

]

=
Md (1−ω)

1−My
+ ωMy

1−My

(
Md
My

−δ1−Md
1−My

)
1+ My−ωMd

1−My
τy + ωMy

1−My

(
Md
My

−δ1−Md
1−My

)
τy

. (E.35)

From My ∈ (0,1), Md ∈ (0,1), and Md ∈
[

δωMy

1−(1−δω)My
, My

]
, we know that Md (1−ω)

1−My
+ ωMy

1−My

(
Md
My

−δ1−Md
1−My

)
≥ 0 and

Md (1−ω)
1−My

+ ωMy
1−My

(
Md
My

−δ 1−Md
1−My

)
1+ My −ωMd

1−My
τy+ ωMy

1−My

(
Md
My

−δ 1−Md
1−My

)
τy

≥ 0. As a result, χ1 ≥ 0.
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For 1 ≤ t ≤ H −2, from (8) and (E.32),

yt =
Md (1−ω)

1−My
dt

1+ My−ωMd

1−My
τy

+βω
1−(1−τy )(1−δ)My

1−My

1+ My−ωMd

1−My
τy

Et
[

yt+1
]

=
Md (1−ω)

1−My
dt

1+ My−ωMd

1−My
τy

+ω
1−(1−τy )(1−δ)My

1−My

1+ My−ωMd

1−My
τy

(
dt −τy yt

)
χH−t−1

=
Md (1−ω)

1−My
+ω

(
1−(1−τy )(1−δ)My

1−My

)
χH−t−1

1+ My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχH−t−1

dt

=χH−t dt with χH−t =
Md (1−ω)

1−My
+ω

(
1−(1−τy )(1−δ)My

1−My

)
χH−t−1

1+ My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχH−t−1

(E.36)

Finally, for t = 0, from (8) and (E.32), we know

y0 =
Md (1−ω)

1−My
d0 + My−ωMd

1−My
ε0

1+ My−ωMd

1−My
τy

+βω
1−(1−τy )(1−δ)My

1−My

1+ My−ωMd

1−My
τy

E0
[

y1
]

=
Md (1−ω)

1−My
d0 + My−ωMd

1−My
ε0

1+ My−ωMd

1−My
τy

+ω
1−(1−τy )(1−δ)My

1−My

1+ My−ωMd

1−My
τy

(
d0 +ε0 −τy y0

)
χH−1

=
Md (1−ω)

1−My
+ω

(
1−(1−τy )(1−δ)My

1−My

)
χH−1

1+ My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχH−1

d0 +
My−ωMd

1−My
+ω

(
1−(1−τy )(1−δ)My

1−My

)
χH−1

1+ My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχH−1

ε0

=χH d0 +χεHε0 with χH =
Md (1−ω)

1−My
+ω

(
1−(1−τy )(1−δ)My

1−My

)
χH−1

1+ My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχH−1

, (E.37)

and χεH =
My −ωMd

1−My
+ω

(
1−(1−τy )(1−δ)My

1−My

)
χH−1

1+ My −ωMd
1−My

τy+ω
(

1−(1−τy )(1−δ)My
1−My

)
τyχH−1

. Define

g
(
χ
)≡ Md (1−ω)

1−My
+ω

(
1−(1−τy )(1−δ)My

1−My

)
χ

1+ My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχ

= 1

τy
−

My−Md

1−My
+ 1
τy

1+ My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχ

. (E.38)

From (E.36) and (E.37) we have χk = g
(
χk−1

)
for all k ∈ {2, · · · , H } . We first find the fixed point of g

(
χ
)

:

χMSV =
Md (1−ω)

1−My
+ω

(
1−(1−τy )(1−δ)My

1−My

)
χMSV

1+ My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχMSV

, (E.39)
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which is equivalent to

ω

(
1− (

1−τy
)

(1−δ) My

1−My

)
τyχ

2
MSV +χMSV

(
1+ My −ωMd

1−My
τy −ω

(
1− (

1−τy
)

(1−δ) My

1−My

))
− Md (1−ω)

1−My
= 0.

(E.40)

Let χMSV ,1 denote the smaller root and χMSV ,2 denote the larger root:

χMSV ,1 =
−

(
1+ My−ωMd

1−My
τy −ω

(
1−(1−τy )(1−δ)My

1−My

))
−

√(
1+ My−ωMd

1−My
τy −ω

(
1−(1−τy )(1−δ)My

1−My

))2
+4 Md (1−ω)

1−My
ω

(
1−(1−τy )(1−δ)My

1−My

)
τy

2ω
(

1−(1−τy )(1−δ)My

1−My

)
τy

χMSV ,2 =
−

(
1+ My−ωMd

1−My
τy −ω

(
1−(1−τy )(1−δ)My

1−My

))
+

√(
1+ My−ωMd

1−My
τy −ω

(
1−(1−τy )(1−δ)My

1−My

))2
+4 Md (1−ω)

1−My
ω

(
1−(1−τy )(1−δ)My

1−My

)
τy

2ω
(

1−(1−τy )(1−δ)My

1−My

)
τy

.

(E.41)

If Assumption 1 holds (ω < 1), we know that χMSV ,1χMSV ,2 < 0 so χMSV ,1 < 0 and χMSV ,2 > 0. Note that 1+
My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχMSV ,1 > 0,6 we have g

(
χ
) > χ if χ ∈ (

χMSV ,1,χMSV ,2
)

and g
(
χ
) < χ if χ ∈

(χMSV ,2,+∞). From (E.38), we also know that g
(
χ
)

increases ifχ ∈ [χMSV ,1,+∞). Moreover, from above, we know

that χ1 ≥ 0 > χMSV ,1. Together with the aforementioned property of g
(
χ
)

, we know that
{
χk

}∞
k=0 is a bounded,

monotonic sequence converging to limk→+∞χk =χMSV ,2 > 0.

If Assumptions 1 and 2 hold, χMSV ,2 ∈
(

1−β
τy

, 1
τy

)
. To see this, define the left-hand side of (E.40) as

h
(
χ
)=ω(

1− (
1−τy

)
(1−δ) My

1−My

)
τyχ

2 +
(

1+ My −ωMd

1−My
τy −ω

(
1− (

1−τy
)

(1−δ) My

1−My

))
χ− Md (1−ω)

1−My
.

We have

h

(
1−β
τy

)
=ω

(
1− (

1−τy
)

(1−δ) My

1−My

) (
1−β)2

τy
+

(
1+ My −ωMd

1−My
τy −ω

(
1− (

1−τy
)

(1−δ) My

1−My

))
1−β
τy

− Md (1−ω)

1−My

=−βω
(

1− (
1−τy

)
(1−δ) My

1−My

)
1−β
τy

+
(
1+ My

1−My
τy

)
1−β
τy

−
(
1−βω)

Md

1−My

<−βω
(

1− (
1−τy

)
(1−δ) My

1−My

)
1−β
τy

+
1+ My

1−My
τy −

(
1−βω)[

1− (
1−τy

)
My

(
1+δ βω

1−βω
)]

1−My

 1−β
τy

=−βω
(

1− (
1−τy

)
(1−δ) My

1−My

)
1−β
τy

+βω
(

1− (
1−τy

)
My (1−δ)

1−My

)
1−β
τy

= 0,

6If 1+ My−ωMd

1−My
τy +ω

(
1−(1−τy )(1−δ)My

1−My

)
τyχMSV ,1 < 0, Md (1−ω)

1−My
+ω

(
1−(1−τy )(1−δ)My

1−My

)
χMSV ,1 < 0, and χMSV ,1 > 0

from (E.39), a contradiction.
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and

h

(
1

τy

)
=ω

(
1− (

1−τy
)

(1−δ) My

1−My

)
1

τy
+

(
1+ My −ωMd

1−My
τy −ω

(
1− (

1−τy
)

(1−δ) My

1−My

))
1

τy
− Md (1−ω)

1−My

=
(
1+ My −ωMd

1−My
τy

)
1

τy
− Md (1−ω)

1−My
> 0.

Similar to (A.9),

E0 [dt ] = 1

βt−1Π
t−1
j=1

(
1−τyχH− j

)
E0 [d1] .

Since limk→+∞χk = χMSV ,2 ∈
(

1−β
τy

, 1
τy

)
, we know that limH→∞E0 [dH ] → 0. From (21) and (22), we also know

that ν→ 1 as H →∞. This finishes the proof of Theorem 3 with the alternative fiscal policy (8).

E.3 Properties of the consumption function

We here formalize our claims in Section 4.3 on the discounting and front-loading properties of aggre-

gate consumer demand.

Lemma E.1. Let M denote the the matrix of intertemporal MPCs corresponding to our consumption

function (12). Then, if and only if ω< 1 :

1. As ℓ increases, one unit anticipated income changes at date t +ℓ (in terms of present value at t )

have a vanishing effect on consumer demand at date t :

lim
ℓ→∞

β−ℓMt ,t+ℓ = 0

2. As ℓ increases, one unit income changes at date t have a vanishing effect on consumer demand

at date t +ℓ :

lim
ℓ→∞

Mt+ℓ,t = 0

We prove the two parts of the lemma in turn. The proof leverages results on the properties of the

intertemporal MPC matrix M in OLG models from Wolf (2021a).

1. The proof is by induction. First of all we have

M0,ℓβ
−ℓ = (1−βω)ωℓ

Thus the claim holds for t = 0. Now suppose the claim holds for some t −1 (where t ≥ 1), and

14



consider horizon t . Here we have, for ℓ≥ 0,

Mt ,t+ℓβ−ℓ =−(1−βω)2βt−1ω2t+ℓ−1 +Mt−1,t−1+ℓβ−(ℓ−1)β−1

As ℓ→∞ the first term converges to zero since ω < 1 while the second term converges to zero

by the inductive assumption, completing the argument.

2. The proof is again by induction. Begin again with t = 0. Here we have

Mℓ,0 = (1−βω)ωℓ

and so the statement holds. Now suppose it holds for some t − 1 (where t ≥ 1), and consider

horizon t . Here we have, for ℓ≥ 0,

Mt+ℓ,t =−(1−βω)2βt−1ω2t+ℓ−1 +Mt−1+ℓ,t−1

The first term converges to zero as ℓ→ ∞, for any t . The second term furthermore also con-

verges to zero (by the inductive hypothesis), completing the argument.

E.4 Empirical evidence on fiscal adjustment

Notable prior work that has estimated fiscal financing rules and thus in particular the speed of fiscal

adjustment in response to deficits includes Galí et al. (2007), Bianchi and Melosi (2017), and Auclert

and Rognlie (2020). Auclert et al. (2020) (Appendix D.1) survey this literature and conclude that the

annual tax adjustment parameter—ψ in their notation—lies between 0.015 and 0.3, with their pre-

ferred estimate equal to 0.1. Our displayed values for τd correspond to the quarterly analogues of

these values. We note that all of our values strictly exceed r̄ and thus correspond to “passive” fiscal

rules in the terminology of Leeper (1991).

E.5 Alternative calibration approaches for the household block

For our baseline analysis in Section 6 we discipline our model’s departure from permanent-income

behavior by requiring consistency with empirical evidence on the level and slope of (short-run) house-

hold consumption behavior following lump-sum income receipt, as in Auclert et al. (2023) and Wolf

(2021a). We here discuss two different approaches: one based on farther-out spending responses, and

one based on long-run interest rate elasticities of household asset demand.
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Calibration via tail MPCs. This alternative calibration strategy was discussed briefly in Section 6.2:

the generalized three-type model is parameterized to match the five-year cumulative MPC path as

well as possible, in a standard least-squares sense. For this three-type model, we set ω1 = 0.97 and

ω2 = 0.83, with the fractions equal to χ1 = 0.22 and χ2 = 0.63 (and both groups holding government

bonds). The residual fraction 1−χ1−χ2 are hand-to-mouth. All other model parameters are as before.

Calibration via asset demand elasticities. For this approach we combine evidence on level MPCs

with long-run interest rate elasticities of household asset demand. This calibration strategy is promis-

ing because models with permanent-income savers invariably imply a (counterfactual) infinite inter-

est rate elasticity of household asset demand (e.g., see Kaplan and Violante, 2018).

Our main building block result for this calibration approach is Proposition E.1. We there express

the long-run elasticity of household asset demand as a function of model primitives.

Proposition E.1. Consider the spender-OLG hybrid model. Let η denote the long-run interest rate

elasticity of household asset demand—that is, the long-run response of asset demand to a permanent

change in real interest rates. It is given as

η = (1−µ)× σ

1−β ×
(

1

1−ω − 1

1−βω
)

(E.42)

Proof. We note that the proof heavily leverages results from Wolf (2021a). Following that paper, all

arguments are established using sequence-space notation, with boldface denoting time paths.

The sequence of wealth holdings associated with an interest rate sequence rrr (both in deviation

from steady state) is given as

ddd(rrr ) =Dr ×rrr

where Dr is the sequence-space Jacobian of wealth holdings with respect to interest rates. The desired

long-run elasticity η is the long-run response of asset holdings to a permanent change in interest rates;

that is, it is given as the limit (if it exists) of the sequence ddd(111).

It follows from the aggregate household budget constraint that the savings matrix Dr and the anal-

ogous consumption matrix Mr are related as7

Mr + 1

R ss
Dr =

 000′

Dr

 (E.43)

7Note that this construction removes income effects related to steady-state wealth holdings.
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where R ss =β−1. Since by definition

η= lim
H→∞

Dr (H ,•)×111

it follows from (E.43) that we have

η= R ss

R ss −1
lim

H→∞
Mr (H ,•)×111 (E.44)

It thus remains to characterize Mr . For this we momentarily assume that there are no spenders (µ=
0); the extension to the full spender-OLG model is straightforward and will come at the end. It follows

from the results in Wolf (2021a) that Mr has the following limiting properties:

lim
H→∞

Mr (H , H) = −σβω 1−ω
1−βω2

lim
H→∞

Mr (H , H −1) = σ
ω(1−βω)

1−βω2

as well as

lim
H→∞

Mr (H , H − s)

Mr (H , H − s +1)
= ωβ, s ≥ 2

lim
H→∞

Mr (H , H + s)

Mr (H , H + s −1)
= ω, s ≥ 1

Plugging those relations into (E.44) and simplifying, we find

η= 1

1−βσ
[

1

1−θ − 1

1−βθ
]

(E.45)

Finally, if there is a margin of spenders, then the elasticity is simply scaled down to correspond to the

margin of OLG households (1−µ), thus giving (E.42).

Empirical work suggests a range for η of around 1.25 to 35 (see Moll et al., 2022). Setting β =
0.99

1
4 , σ= 1, and requiring the model to generate an impact MPC of 22 per cent (all as in our baseline

calibration), we find ω ∈ [0.21,0.85]. Our baseline calibration lies somewhat beyond the upper end of

this range and is thus conservative.

E.6 Self-financing in other model variants

We here discuss our self-financing result in two further model variants: (i) a quantitative HANK model;

and (ii) a model with cognitive discounting.
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E.6.1 A full HANK model

This section provides a sketch of the quantitative HANK model that we use to numerically illustrate

the generality of our self-financing result. The discussion is brief because the household block of the

model is essentially borrowed from Wolf (2021a).

Model sketch & calibration. The model economy is exactly as in Section 2, but with one twist: the

OLG household block is replaced by a unit continuum of households i ∈ [0,1] that face uninsurable

income risk. Households have preferences

Et

[ ∞∑
k=0

βt [
u(Ci ,t+k )−ν(Li ,t+k )

]]

Households save and borrow (subject to a constraint) in a nominally risk-free bond, as in our baseline

model. They receive labor and dividend income in proportion to their (stochastic) productivity, pay

a proportional tax τy on that income, and finally pay additional lump-sum uniform taxes T̃t . We can

thus write the household budget constraint in real terms as

Ci ,t +Di ,t+1 = (1−τy )ei ,t Yt − T̃t + It−1

Πt
Di ,t , Di ,t+1 ≥ D

Whenever possible we set parameters as in our baseline model. The remaining HANK-specific pa-

rameters are: the income risk process; the borrowing constraint; and the discount factor and steady-

state interest rate. The income risk process is taken from Kaplan et al. (2018), just ported to discrete

time as in Wolf (2021b). The borrowing constraint D is set to zero, and the discount factor β is backed

out residually to clear the asset market, with a quarterly real rate of one per cent. Finally, we need to

make one more change relative to our baseline model: in the model set-up as described so far, tax

revenue τy ×Y ss would far exceed debt servicing costs, so the government would make a substantial

uniform transfer, thus materially dampening household MPCs. We instead set the steady-state trans-

fer share as in the data (following Kaplan et al., 2018, which gives T̃ ss/Y ss = 0.06), and then clear the

government budget by additionally allowing for positive (and time-invariant) government purchases.

Results. We use the quantitative HANK model to revisit our numerical exercises in Section 6.2. Ex-

actly as done there, we here compute the aggregate effects of one-off fiscal stimulus for different as-

sumptions on the delay in fiscal financing. Results are reported in Figure E.2.

Our results closely echo those of Section 6.2. We emphasize two main takeaways. First, Figure E.2

is qualitatively very similar to Figure 3: output and inflation responses as well as the share of self-

financing ν are all increasing in the delay in fiscal adjustment (i.e., decreasing in τd ). Furthermore, as

τd → 0, we again converge to a full self-financing limit. Second, the two figures are also quantitatively
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Figure E.2: Impulse responses of output yt , inflation πt , and the total self-financing share ν to a shock
ε0 equal to one per cent of steady-state output, as a function of τd , for the quantitative HANK model.
The left and middle panels show the impulse responses for the three particular values of τd discussed
in Section 6.1. In the right panel these three points are marked with circles.

similar: for our three values of τd taken from prior work, the share of self-financing ν is very similar to

the spender-OLG hybrid model. This conclusion confirms prior work arguing that, as far the dynamics

of macroeconomic aggregates are concerned, spender-OLG hybrid models and fully specified HANK

models look extremely similar (e.g., see the discussions in Auclert et al., 2023; Wolf, 2021a)

E.6.2 The effects of cognitive discounting

Figure E.3 repeats our analysis of Section 6.2 in a variant of our spender-OLG hybrid model with cog-

nitive discounting. To illustrate the effects of discounting as clearly as possible we consider a rather

significant degree of discounting (θ = 0.25).

The figure illustrates the two effects described in Section 5.2. First, for τd close to one, the Key-

nesian boom and thus the share of self-financing ν are larger than in our baseline model. Intuitively,

in this case, the strong discounting of the not-so-distant tax hike meaningfully amplifies the initial

boom. Second, for τd close to zero, the self-financing limit is approached somewhat more slowly,

reflecting a weakening of the intertemporal Keynesian cross.
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Figure E.3: Impulse responses of output yt , inflation πt , and the total self-financing share ν to a shock
ε0 equal to one per cent of steady-state output, as a function of τd , with cognitive discounting. The
left and middle panels show the impulse responses for the three particular values of τd discussed in
Section 6.1. In the right panel these three points are marked with circles.
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