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1 Introduction

In recent years, local projection (LP) estimators of impulse response functions have become
a very popular alternative to structural vector autoregressions (henceforth interchangeably
referred to as VAR or SVAR, Sims, 1980). In addition to their simplicity, one potential
explanation for the popularity of LPs is their perceived robustness to misspecification, as
claimed by Jordà (2005) in his seminal article that proposed the estimation method:

“[T]hese projections are local to each forecast horizon and therefore more robust
[than VARs] to misspecification of the unknown DGP.”

While this sentiment has been echoed in influential reviews (e.g., Ramey, 2016; Nakamura
and Steinsson, 2018; Jordà, 2023), there so far exist essentially no theoretical results on
the relative robustness of LP and VAR inference procedures to misspecification. Plagborg-
Møller and Wolf (2021) and Xu (2023) show that the two estimators are in fact asymptotically
equivalent—and thus equally robust to misspecification—in a general VAR(∞) model if the
estimation lag length diverges to infinity with the sample size. However, this result does not
directly speak to the empirically relevant case where researchers employ small-to-moderate
lag lengths to preserve degrees of freedom. Applied researchers must therefore base their
choice of inference procedure on empirically calibrated simulation studies (Kilian and Kim,
2011; Li, Plagborg-Møller, and Wolf, 2024).

In this paper we provide a formal proof of Jordà’s claim that conventional LP confidence
intervals for impulse responses are surprisingly robust to misspecification. For VAR confi-
dence intervals, we on the other hand show that there is no free lunch: they are robust if,
and only if, they are as wide as LP intervals asymptotically, as is the case when they feature
a large number of lags. If the confidence interval is shorter, then it is necessarily unreliable.

We consider a large class of stationary data generating processes (DGPs) that are well
approximated by a finite-order SVAR model, but subject to local misspecification in the form
of an asymptotically vanishing moving average (MA) process, of potentially infinite order.
This class is consistent with essentially all linearized structural macroeconomic models and
covers many types of dynamic misspecification, such as under-specification of the lag length,
failure to include relevant control variables, inappropriate aggregation, and measurement
error. Intuitively, with this set-up we capture the idea that finite-order VAR models provide
a good but imperfect approximation of reality.

In this setting, we prove that the conventional LP confidence interval has correct (point-
wise) asymptotic coverage even for local misspecification that is of such a large magnitude
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that it can be detected with probability 1 in large samples. This robustness property requires
that we control for those lags of the data that are strong predictors of the outcome or impulse
variables, but—crucially for applied work—the omission of lags with small-to-moderate pre-
dictive power does not threaten coverage. We argue that our result can be interpreted as
a consequence of the double robustness of the LP estimator, which is analogous to the dou-
ble robustness of modern partially linear regression estimators in the literature on debiased
machine learning (e.g., see Newey, 1990; Ai and Chen, 2007; Chernozhukov, Chetverikov,
Demirer, Duflo, Hansen, Newey, and Robins, 2018; Chernozhukov, Escanciano, Ichimura,
Newey, and Robins, 2022).

In stark contrast to LP, even small amounts of misspecification can cause conventional
VAR confidence intervals for impulse responses to suffer from severe undercoverage. We first
derive analytically the worst-case bias and coverage of VARs over all possible misspecification
processes, subject to a constraint on the overall magnitude of the misspecification. From here
a “no free lunch” result for VARs emerges: the worst-case bias and coverage distortion are
small if, and only if, the asymptotic variance is close to that of LP. In general, the only way to
guarantee robustness of conventional VAR inference is thus to include so many lags that the
VAR estimator is asymptotically equivalent with LP. If instead the VAR confidence interval
is much shorter (as is typically the case in applied practice), then VAR confidence intervals
will severely undercover even for a misspecification term that: (i) is small in magnitude; (ii)
has dynamic properties that cannot be ruled out ex ante based on economic theory; and
(iii) is difficult to detect ex post with model specification tests. Instead of increasing the lag
length, coverage can also be restored by using a larger bias-aware critical value (Armstrong
and Kolesár, 2021), but we show that the resulting confidence intervals are so wide that one
may as well report the LP interval.

We demonstrate through simulations that our asymptotic results are useful to under-
stand the finite-sample trade-off between LP and VAR confidence intervals. We consider
a researcher that observes data generated from the Smets and Wouters (2007) model, and
uses LPs and VARs to estimate the dynamic causal effects of cost-push or monetary shocks.
If the lag length is selected by the Akaike Information Criterion (AIC), then VAR confi-
dence intervals materially undercover—particularly at medium and long horizons—while LP
throughout attains close to nominal coverage. Consistent with our theoretical results, in-
creasing the estimation lag length ameliorates the VAR coverage, but at the cost of delivering
confidence intervals as wide as those of LP.
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Literature. Relative to the previously cited simulation studies of LPs and VARs, we
here derive analytical results on the worst-case asymptotic properties of these two inference
procedures that hold for a wide range of stationary, locally misspecified VAR models. The
simulations in Li, Plagborg-Møller, and Wolf (2024) suggest a stark bias-variance trade-off
between LP (low bias, high variance) and moderate-lag VAR estimators (moderate bias, low
variance). The reason behind the theoretical superiority of LP proved in this paper is that,
if the objective is to construct confidence intervals with robust coverage for a wide range
of DGPs, then even a moderate amount of VAR bias cannot be tolerated, as it causes the
VAR confidence interval to be poorly centered. A concern for correct confidence interval
coverage thus effectively induces a large weight on bias in the researcher’s objective function,
justifying the use of LP despite its higher variance.

The robustness of LPs to misspecification discussed here—with stationary data and at
fixed horizons—is conceptually and theoretically distinct from the robustness of LPs to the
persistence in the data and the length of the impulse response horizon shown by Mon-
tiel Olea and Plagborg-Møller (2021). Nevertheless, it turns out that controlling for lags
(“lag augmentation”) is key to all the robustness properties established in Montiel Olea and
Plagborg-Møller (2021) and in the present paper.

We also build upon previous research into misspecified VAR models, uncovering novel re-
sults about the robustness of LPs and the worst-case properties of VAR procedures. Braun
and Mittnik (1993) derive expressions for the probability limits of VAR estimators under
global MA misspecification; however, since bias always dominates variance asymptotically
in their framework, they do not characterize the properties of LP and VAR inference proce-
dures, which is the focus of our paper. Schorfheide (2005) characterizes the asymptotic mean
squared errors of iterated and direct multi-step forecasts in a reduced-form VAR model with
MA terms of order T−1/2, and González-Casasús and Schorfheide (2024) use this framework
to select hyperparameters for VAR forecasts. Müller and Stock (2011) construct Bayesian
forecast intervals in a locally misspecified univariate AR model. Relative to these papers, we
contribute by: (i) focusing on structural impulse responses rather than forecasting; (ii) allow-
ing for more general rates of local misspecification, key to uncovering the double robustness
of LP; and (iii) deriving simple analytical formulae for worst-case bias and coverage of VARs.
As such, our results formalize concerns by applied practitioners about the lack of VAR ro-
bustness and sensitivity to lag length (Chari, Kehoe, and McGrattan, 2008; Nakamura and
Steinsson, 2018; see also Kilian and Lütkepohl, 2017, Chapters 2.6.5 and 6.2).

Whereas our paper deals with bias imparted by dynamic misspecification, the analysis
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does not capture other familiar sources of small-sample bias. In particular, our asymptotics
abstract from the order-T−1 biases arising from (i) persistence in the data (Pope, 1990;
Kilian, 1998; Herbst and Johannsen, 2024) and (ii) the nonlinearity of the impulse response
transformation of the VAR parameters (Jensen’s inequality).

Outline. Section 2 defines the local-to-SVAR model and the LP and VAR estimators.
Section 3 proves the robustness of LP and fragility of VAR confidence intervals. Section 4
derives analytically the worst-case bias and coverage of VARs, presents our “no free lunch”
result, and shows that bias-aware VAR confidence intervals tend to be wider than the LP
interval. Section 5 demonstrates the practical relevance of our results through simulations.
Section 6 concludes. Replication codes are available online.

Notation. All asymptotic limits are taken as the sample size T → ∞ and are pointwise
in the sense of fixing the true model parameters and the impulse response horizon. A sum∑b

ℓ=a cℓ is defined to equal 0 when a > b.

2 Framework

We start out by defining the model and estimators.

2.1 Model and assumptions

Extending the forecasting model of Schorfheide (2005), we consider a multivariate, stationary
structural VARMA(1,∞) model that is local to an SVAR(1) model:

yt = Ayt−1 +H[I + T−ζα(L)]εt, for all t, (2.1)

where the data vector yt = (y1,t, . . . , yn,t)′ is n-dimensional, the shock vector εt = (ε1,t, . . . , εm,t)′

is m-dimensional, A is an n×n matrix, H is an n×m matrix, α(L) = ∑∞
ℓ=1 αℓL

ℓ is an m×m

lag polynomial, and T denotes the sample size. We allow the number of shocks m to poten-
tially exceed the number of variables n, and vice versa. We show below that equation (2.1)
encompasses local-to-SVAR models with p > 1 lags by writing them in companion form.

The model (2.1) captures the idea that the time series dynamics of the data are well ap-
proximated by an autoregressive model driven by unobserved white noise shocks εt, but with
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a small amount of misspecification in the form of an MA process T−ζα(L)εt. The misspeci-
fication is asymptotically small in the sense that the MA coefficients converge to zero at the
rate T−ζ , though the misspecification may still affect the properties of estimators, as shown
by Schorfheide (2005) and as demonstrated below. We argue below that MA misspecification
of this form can capture many empirically relevant types of dynamic misspecification. We
consider local rather than global misspecification in the spirit of local power analysis (e.g.,
Rothenberg, 1984), since this makes the bias-variance trade-off between the VAR and LP
estimators matter even asymptotically as the sample size T diverges, allowing us to make
tractable analytical comparisons between these two procedures.

The parameter of interest is the response at horizon h of the variable yi∗,t with respect to
the shock εj∗,t for some indices i∗ ∈ {1, . . . , n} and j∗ ∈ {1, . . . ,m}. We define this parameter
formally below.

Assumption 2.1. For each T , {yt}t∈Z is the stationary solution to equation (2.1), given the
following restrictions on parameters and shocks:

i) εt
i.i.d.∼ (0m×1, D), where D ≡ diag(σ2

1, . . . , σ
2
m), and the elements of εt are mutually

independent. For all j = 1, . . . ,m, σ2
j > 0 and E(ε4

j,t) < ∞.

ii) All eigenvalues of A are strictly below 1 in absolute value.

iii) The first j∗ rows of H are of the form (H̃, 0j∗×(m−j∗)), where H̃ is a j∗ × j∗ lower
triangular matrix with 1’s on the diagonal. In particular, we require j∗ ≤ n.

iv) S ≡ Var(ỹt) is non-singular, where ỹt ≡ (I − AL)−1Hεt is the stationary solution to
(2.1) when α(L) = 0. Specifically, vec(S) = (I − A⊗ A)−1 vec(Σ), where Σ ≡ HDH ′.

v) α(L) is absolutely summable.

vi) ζ > 1/4.

The assumption of shock homoskedasticity is made for analytical convenience, though
we expect that our qualitative conclusions about the robustness of LP and the asymptotic
bias of VAR will go through under various forms of conditional heteroskedasticity. The
assumptions on H correspond to recursive (also known as Cholesky) identification of the
shock of interest εj∗,t, with a unit effect normalization Hj∗,j∗ = 1. A special case is when the
shock is directly observed, which corresponds to ordering it first (i.e., j∗ = 1). It is a minor
extension to allow for identification via external instruments, also known as proxies (Stock
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and Watson, 2018). Absolute summability of α(L) is a weak regularity condition ensuring
the vector MA(∞) process α(L)εt is well-defined (Brockwell and Davis, 1991, Proposition
3.1.1). The significance of the assumption that misspecification vanishes faster than T−1/4

will become clear below.
The impulse response of interest is defined as

θh,T ≡ E[yi∗,t+h | εj∗,t = 1] − E[yi∗,t+h | εj∗,t = 0] = e′
i∗,n

(
AhH + T−ζ

h∑
ℓ=1

Ah−ℓHαℓ

)
ej∗,m,

where ei,n denotes the n-dimensional unit vector with a 1 in position i. The first term in the
parenthesis is the usual VAR impulse response formula, while the second term arises from the
MA component. Importantly, and consistent with our focus on the consequences of dynamic
misspecification, we do not treat the VAR misspecification as non-classical measurement
error that should be ignored for structural analysis; instead, the true causal model has a
VARMA form (with small but potentially non-zero MA terms), and we care about the full
transmission mechanism of shocks in this model.

Additional lags. Our framework covers local-to-SVAR(p) models of the form

y̌t =
p∑

ℓ=1
Ǎℓy̌t−ℓ + Ȟ[I + T−ζα(L)]εt, (2.2)

where y̌t is ň-dimensional, the Ǎℓ matrices are ň× ň, and Ȟ is ň×m and satisfies Assump-
tion 2.1(iii). This fits into the original model (2.1) if we set n = ňp and define the companion
form representation

yt =



y̌t

y̌t−1

y̌t−2
...

y̌t−p+1


, A =



Ǎ1 Ǎ2 . . . Ǎp−1 Ǎp

I 0 . . . 0 0
0 I . . . 0 0
... . . . ...
0 0 . . . I 0


, H =



Ȟ

0
0
...
0


.

In particular, we can allow the estimation lag length p to exceed the true minimal lag length
p0 of the model by setting Ǎℓ = 0 for ℓ > p0. This fact will prove useful when we consider
what happens as the lag length of the estimated VAR is increased.
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Types of misspecification. Our local-to-SVAR model (2.1) with MA misspecification
covers several empirically relevant types of model misspecification. While essentially all
modern discrete-time, linearized DSGE macro models have VARMA representations, they
usually cannot be represented exactly as finite-order VAR models (e.g., Kilian and Lütkepohl,
2017, Chapter 6.2). Even if the true DGP were a finite-order VAR, dynamic misspecification
of the estimation model can give rise to MA terms, for example due to under-specification
of the lag length or failing to control for some of the variables in the true system. Relatedly,
MA terms may appear because of a failure of invertibility of the shocks (Alessi, Barigozzi,
and Capasso, 2011). VARMA representations can also arise from temporal or cross-sectional
aggregation of finite-order VAR models, including contamination by classical measurement
error (Granger and Morris, 1976; Lütkepohl, 1984). In all of these cases, if the number of
lags used for estimating the VAR is chosen to be sufficiently large, then the MA remainder
will be small, consistent with the spirit of our locally misspecified model (2.1).

In terms of structural shock identification, our framework accommodates both the case of
a well-identified shock (but misspecification in other parts of the model) and misspecification
in the shock identification itself. Key to this generality is that we allow the m × m MA
polynomial α(L) to be arbitrary. To see this, consider the case j∗ = 1, so interest centers on
the dynamic causal effects of the first shock ε1,t. If the first row of α(L) is zero, then ε1,t is
well-identified as the reduced-form residual in the first equation of the VAR. If the first row
of α(L) is non-zero, then the reduced-form residual will be contaminated by lagged shocks,
thus allowing for the possibility that shock identification is not entirely accurate.

We conjecture, but do not prove, that our framework can also be extended to accommo-
date omitted nonlinearities and time-varying parameters, as long as those features are small
compared to the linear, time-invariant model components.1

2.2 Estimators

We consider two estimators of the impulse response θh,T using the data {yt}T
t=1:

1Specifically, we conjecture that our proofs can be extended to allow for arbitrary additive local misspec-
ification of the form

yt = Ayt−1 + Hεt + T −ζυt,

where υt is an unobserved, stationary, non-deterministic process that is independent of {εt+ℓ}ℓ≥0. Impor-
tantly, the parameter of interest θh,T must be defined as the coefficient in a population projection of yi∗,t+h

onto εj∗,t. The Wold decomposition theorem implies that υt has an MA representation, ultimately yield-
ing a model of the form (2.1). However, since the orthogonalized Wold innovations will not satisfy all the
independence conditions in Assumption 2.1, our current proofs do not apply directly.
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1. The LP estimator is the coefficient β̂h in a regression of yi∗,t+h on yj∗,t, controlling for
y

j∗,t
≡ (y1,t, . . . , yj∗−1,t)′ (i.e., the variables ordered before yj∗,t, if any) and lagged data:

yi∗,t+h = β̂hyj∗,t + ω̂′
hyj∗,t

+ γ̂′
hyt−1 + ξ̂i∗,h,t, (2.3)

where ξ̂i∗,h,t is the least-squares residual. Recall from the previous subsection that if we
are estimating an SVAR(p) specification in the data y̌t, then the vector yt−1 actually
contains p lags y̌t−1, . . . , y̌t−p.

2. The VAR estimator is defined as the response of yi∗,t+h with respect to the j∗-th recursively
orthogonalized innovation, where the magnitude of the innovation is normalized such that
yj∗,t increases by one unit on impact:

δ̂h ≡ e′
i∗,nÂ

hν̂,

where

Â ≡
(

T∑
t=2

yty
′
t−1

)(
T∑

t=2
yt−1y

′
t−1

)−1

, ν̂ ≡ Ĉ−1
j∗,j∗Ĉ•,j∗ ,

and Ĉ•,j∗ is the j∗-th column of the lower triangular Cholesky factor Ĉ of the covariance
matrix Σ̂ ≡ 1

T

∑T
t=1 ûtû

′
t = ĈĈ ′ of the residuals ût ≡ yt − Âyt−1. Again, in the case of an

SVAR(p) specification, the above formulae operate on the companion form.

Note that the two estimators coincide at the impact horizon: β̂0 = δ̂0 (see Lemma E.6 in
Supplemental Appendix E).

It is well-known that conventional confidence intervals based on both these estimators
would have correct asymptotic coverage in a well-specified VAR model. However, the pres-
ence of the additional MA term in the model (2.1) means that, in principle, both the LP
and VAR estimators ought to control for infinitely many lags of the data, rather than just
one. Nevertheless, as we will now establish, this dynamic misspecification has much more
serious consequences for the VAR procedure than for LP.

3 Robust local projections, fragile VARs

This section shows that the conventional LP confidence interval is robust to large amounts of
misspecification. In contrast, the conventional VAR confidence interval has fragile coverage,
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except when it is asymptotically as wide as the LP interval, as will be the case with sufficiently
large lag length.

3.1 Large-sample distributions and confidence interval coverage

We begin by characterizing the large-sample distributions of the LP and VAR estimators.

The robustness of LPs. Our first main result establishes that the large-sample distri-
bution of the LP estimator is invariant to misspecification.

Proposition 3.1. Under Assumption 2.1,

β̂h − θh,T = 1
σ2

j∗

1
T

T∑
t=1

ξh,i∗,tεj∗,t + op(T−1/2),

where
ξh,t = (ξh,1,t, . . . , ξh,n,t)′ ≡ AhHj∗εj∗,t +

h∑
ℓ=1

Ah−ℓHεt+ℓ,

with Hj∗ ≡ (H•,j∗+1, . . . , H•,m) and εj∗,t ≡ (εj∗+1,t, . . . , εm,t)′.

Proof. See Appendix B.1.

In words, the asymptotic behavior of LP does not depend on the misspecification param-
eters α(L) and ζ, provided ζ > 1/4 as imposed in Assumption 2.1. Though this robustness
property of LP is with respect to local (i.e., asymptotically vanishing) misspecification, it is
still quantitatively meaningful, given that MA terms of order T−ζ with ζ ∈ (1/4, 1/2) can be
detected with probability 1 asymptotically by conventional VAR model specification tests,
such as the Hausman test considered in Section 3.2.

Why is LP robust to misspecification of such large magnitude? We will offer two mathe-
matically equivalent pieces of intuition, with our discussion throughout deliberately heuristic.
The classic omitted variable bias (OVB) formula suggests that the bias of the LP impulse
response estimator β̂h in the regression (2.3) is proportional to the product of two factors: (i)
the direct effect of omitted lags on yi∗,t+h, and (ii) the covariance of the residualized regressor
of interest yj∗,t − E[yj∗,t | y

j∗,t
, yt−1] with the omitted lags. The factor (i) is of order T−ζ in

our local-to-SVAR model (2.1). The factor (ii) is also of order T−ζ , since the residualized
regressor equals εj∗,t +Op(T−ζ) under Assumption 2.1(iii), and the shock εj∗,t is uncorrelated
with any lagged data. Hence, the OVB is of order T−2ζ = o(T−1/2) when ζ > 1/4, so the
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bias of the estimator is negligible relative to the standard deviation (which is of order T−1/2,
as in the correctly specified case). This argument relies on the LP regression controlling for
the most important lags of the data (i.e., yt−1); without lagged controls, one or both factors
in the OVB formula may not be small (González-Casasús and Schorfheide, 2024).

The preceding intuition is a special case of the double robustness property of partially
linear regressions, see Example 1.1 in Chernozhukov et al. (2018) and Example 1 in Cher-
nozhukov et al. (2022). We will now argue that this property applies also to LP, again
settling for a heuristic argument. For notational simplicity, set j∗ = 1 so y

j∗,t
= 0. Consider

any dynamic model (for example a VARMA(p, q)) that implies the following local projection
representation:

yi∗,t+h = θ0,hy1,t + γ0(yt−1) + ξi∗,h,t, where ξi∗,h,t ⊥⊥ yt ≡ (yt, yt−1, . . . ).

Here θ0,h is the true impulse response, γ0(·) is a function of lagged data, and “⊥⊥” signifies
independence. Define ν0(yt−1) ≡ E[y1,t | yt−1]. By applying the Frisch-Waugh lemma to the
regression (2.3), we see that the LP estimator β̂h is the sample analogue of the solution θ0,h

to the moment condition

E[{yi∗,t+h − θ0,hy1,t − γ0(yt−1)}{y1,t − ν0(yt−1)}] = 0.

If we evaluate the moment on the left-hand side at arbitrary functions γ(·) and ν(·) rather
than at the true ones γ0(·) and ν0(·), a simple calculation shows that it equals E[{γ0(yt−1) −
γ(yt−1)}{ν0(yt−1) − ν(yt−1)}].2 Hence, the moment condition is satisfied at the true impulse
response parameter θ0,h as long as either γ = γ0 or ν = ν0, making the LP estimator doubly
robust: it is consistent if we correctly specify either the controls γ(yt−1) in the outcome
equation or the controls ν(yt−1) in the implicit first-stage regression that isolates the shock
εj∗,t = yj∗,t − ν(yt−1). Because of double robustness, and as argued more generally by
Chernozhukov et al. (2018) (and confirmed by our proof), it turns out that estimation error in
γ0 and ν0 only affects the asymptotic distribution of β̂h through the product of the estimation
errors ∥γ̂ − γ0∥ × ∥ν̂ − ν0∥. In our local-to-SVAR model (2.1), both terms in this product
are of order T−ζ due to the omitted lags. The product is then of order T−2ζ = o(T−1/2) and

2We can write the moment as E[{yi∗,t+h − θ0,hy1,t − γ0(yt−1) + γ0(yt−1) − γ(yt−1)}{y1,t − ν(yt−1)}] =
E[{γ0(yt−1) − γ(yt−1)}{y1,t − ν0(yt−1) + ν0(yt−1) − ν(yt−1)}], since yi∗,t+h − θ0,hy1,t − γ0(yt−1) = ξi∗,h,t

is independent of yt (orthogonality would suffice if ν(·) were linear). The claim now follows from E[y1,t −
ν0(yt−1) | yt−1] = 0 by definition of ν0(·).
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thus asymptotically negligible, consistent with our earlier intuition.

The fragility of VARs. In contrast to LP, the VAR estimator is fragile, as it is subject
to non-negligible asymptotic bias under misspecification.

Proposition 3.2. Under Assumption 2.1,

δ̂h − θh,T = trace
{
S−1ΨhHT

−1
T∑

t=1
εtỹ

′
t−1

}
+ 1
σ2

j∗
e′

i∗,nA
hT−1

T∑
t=1

ξ0,tεj∗,t

+ T−ζ aBias(δ̂h) + op(T−1/2 + T−ζ),

where

aBias(δ̂h) ≡ trace
{
S−1ΨhH

∞∑
ℓ=1

αℓDH
′(A′)ℓ−1

}
− e′

i∗,n

h∑
ℓ=1

Ah−ℓHαℓej∗,m,

Ψh ≡
h∑

ℓ=1
Ah−ℓH•,j∗e′

i∗,nA
ℓ−1,

and {ỹt} and S are defined in Assumption 2.1.

Proof. See Appendix B.2.

The convergence rate T− min{1/2,ζ} of the VAR estimator is potentially slower than the
T−1/2 rate achieved by LP. This is because the VAR estimator suffers from bias of order T−ζ ,
while the stochastic terms of order T−1/2 are the same as they would be in a correctly specified
SVAR(p) model.3 The VAR bias is only asymptotically negligible if ζ > 1/2, a much smaller
degree of robustness than shown above for LP. The case ζ = 1/2 is of particular interest, as
then the bias and standard deviation are of the same asymptotic order (see also Schorfheide,
2005). MA terms of order T−1/2 can be detected with asymptotic probability strictly between
0 and 1 by specification tests, as will be shown in Section 3.2.

The asymptotic bias is due to two forces: first, the coefficient matrix Â is biased due to
the endogeneity caused by the MA terms, and second, the VAR estimator extrapolates the
horizon-h impulse response based on a parametric formula Âh that does not hold exactly in
the true VARMA model (2.1). This is more easily seen in the special case of a univariate

3The first stochastic term captures sampling uncertainty in the reduced-form impulse responses Âh, while
the second term captures uncertainty in the structural impact response vector ν̂.
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model yt = ρyt−1 + [1 + T−ζα(L)]εt with n = m = 1, in which case

aBias(δ̂h) ≡ hρh−1︸ ︷︷ ︸
∂(ρh)

∂ρ

(1 − ρ2)
∞∑

ℓ=1
ρℓ−1αℓ︸ ︷︷ ︸

aBias(ρ̂)= Cov(α(L)εt,ỹt−1)
Var(ỹt−1)

−
h∑

ℓ=1
ρh−ℓαℓ︸ ︷︷ ︸

θh,T −ρh

,

where ρ̂ = Â is the AR(1) coefficient from an OLS regression of yt on yt−1.4

Confidence intervals. The preceding results imply that the conventional LP confidence
interval is robust to misspecification while the conventional VAR interval is not. We define
the level-(1 − a) LP and VAR confidence intervals using the standard formulae:

CI(β̂h) ≡
[
β̂h ± z1−a/2

√
aVar(β̂h)/T

]
, CI(δ̂h) ≡

[
δ̂h ± z1−a/2

√
aVar(δ̂h)/T

]
. (3.1)

Here z1−a/2 is the 1 − a/2 quantile of the standard normal distribution, and aVar(β̂h) and
aVar(δ̂h) are the asymptotic variances of the leading (order-T−1/2) stochastic terms in the
representations of the LP and VAR estimators in Propositions 3.1 and 3.2; explicit formulae
for the asymptotic variances are given in Corollary A.2 in Appendix A.3, which also implies
that aVar(β̂h) ≥ aVar(δ̂h). None of the results below would change if we replaced the
asymptotic variances with the conventional consistent estimates of these (that assume correct
specification, as implemented in standard econometric software packages).5

Corollary 3.1. Under Assumption 2.1, limT →∞ P (θh,T ∈ CI(β̂h)) = 1 − a. If more-
over aVar(δ̂h) > 0 and aBias(δ̂h) ̸= 0, then limT →∞ P (θh,T ∈ CI(δ̂h)) = limT →∞{1 −
r
(
T 1/2−ζbh; z1−a/2

)
}, where bh ≡ aBias(δ̂h)/

√
aVar(δ̂h), r(b; c) ≡ PZ∼N(0,1)(|Z + b| > c) =

Φ(−c− b) + Φ(−c+ b), and Φ(·) is the standard normal distribution function.

Proof. Considering separately the three cases ζ ∈ (1/4, 1/2), ζ = 1/2, and ζ > 1/2, the
result is an immediate consequence of Propositions 3.1 and 3.2.

LP robustly controls coverage, while the VAR confidence interval generically has coverage
converging to zero for ζ ∈ (1/4, 1/2), and strictly below the nominal level 1 − a for ζ = 1/2.

4Lag augmentation of the VAR impulse response estimator as in Inoue and Kilian (2020) may reduce the
first term in the bias formula, but it does not affect the second term.

5Under Assumption 2.1, homoskedastic OLS standard errors suffice. In practice we recommend
heteroskedasticity-robust standard errors or the bootstrap, as in Montiel Olea and Plagborg-Møller (2021).
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Intuitively, the VAR confidence interval has the right width (the same as in the correctly
specified case) but the wrong location due to the bias, thus causing coverage distortions.

3.2 Hausman misspecification test

To aid in interpreting the magnitude of the local misspecification in our set-up, we con-
sider a Hausman (1978) test of correct specification of the VAR model that compares the
VAR and LP impulse response estimates. This test rejects for large values of

√
T |β̂h −

δ̂h|/
√

aVar(β̂h) − aVar(δ̂h). A test of this kind was proposed by Stock and Watson (2018) in
the context of testing for invertibility.

Proposition 3.3. Impose Assumption 2.1 and assume aVar(β̂h) > aVar(δ̂h) > 0. Then the
asymptotic rejection probability of the Hausman test equals

lim
T →∞

P

 √
T |β̂h − δ̂h|√

aVar(β̂h) − aVar(δ̂h)
> z1−a/2

 = lim
T →∞

r

 T 1/2−ζbh√
aVar(β̂h)/ aVar(δ̂h) − 1

; z1−a/2

 ,
where bh and r(·, ·) were defined in Corollary 3.1.

Proof. Considering separately the three cases ζ ∈ (1/4, 1/2), ζ = 1/2, and ζ > 1/2, the
result is an immediate consequence of Propositions 3.1 and 3.2 as well as Corollary A.2 in
Appendix A.3.

As claimed previously, the Hausman test is consistent against MA misspecification of
order T−ζ with ζ ∈ (1/4, 1/2), except in the knife-edge case where aBias(δ̂h) = 0. When
ζ = 1/2 and aBias(δ̂h) ̸= 0, the asymptotic rejection probability is strictly between the
significance level a and 1. In Section 4 we will use the Hausman test to quantify the difficulty
of detecting especially pernicious types of model misspecification.

3.3 The role of lag length

One simple way to remove the asymptotic bias of the VAR estimator is to control for suffi-
ciently many lags, since in this case the estimator is asymptotically equivalent with the LP
estimator. The larger the impulse horizon of interest, the more lags are required for bias
reduction. See Plagborg-Møller and Wolf (2021) and Xu (2023) for related results in models
without explicit MA misspecification.
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Corollary 3.2. Suppose the model (2.2) written in companion form (2.1) satisfies Assump-
tion 2.1. Let ˜̌yt denote the stationary solution to equation (2.2) when α(L) = 0. If εj∗,t−ℓ ∈
span(˜̌yt−1, . . . , ˜̌yt−p) for all ℓ = 1, . . . , h, then aBias(δ̂h) = 0 and aVar(δ̂h) = aVar(β̂h). In
particular, these results obtain if either of the following two sufficient conditions hold:

i) The model is a local-to-SVAR(p0) model (i.e., Ǎℓ = 0 for p0 < ℓ ≤ p) and h ≤ p − p0,
where p is the estimation lag length.

ii) The shock of interest is directly observed and ordered first (i.e., j∗ = 1 and Ǎ1,j,ℓ = 0
for all j, ℓ), and h ≤ p.

Proof. See Appendix B.4.

We show in Section 4 that controlling for so many lags that LP and VAR are asymptot-
ically equivalent is in fact the only way to guarantee that the asymptotic bias of the VAR
estimator is zero.

4 Some unpleasant VARithmetic

To show that the fragility of VARs is likely to matter in practice, we now investigate the
worst-case properties of VAR procedures under a tight constraint on the amount of misspec-
ification. We prove that there is no free lunch: the conventional VAR confidence interval is
robust to misspecification if, and only if, the LP and VAR intervals coincide asymptotically.
VARs with short-to-moderate lag lengths instead suffer from severe coverage distortions for
small amounts of misspecification that is hard to rule out economically or statistically. Be-
yond increasing the lag length, an alternative strategy to fix VAR undercoverage is to use
a larger bias-aware critical value; however, we show that the resulting confidence interval is
usually wider than the LP interval. Finally, we generalize all our results to the case of joint
inference on multiple impulse responses.

Throughout this section we set ζ = 1/2 so that the asymptotic bias-variance trade-off
between LP and VAR is non-trivial.

4.1 Worst-case bias and mean-squared error

Building towards our main results on VAR coverage distortions, we begin by deriving the
worst-case bias and mean-squared error of the VAR estimator.
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Misspecification bound. To quantify the amount of misspecification in the local-to-
SVAR model (2.1) with ζ = 1/2, we define the noise-to-signal ratio

trace
{
Var(T−1/2α(L)εt) Var(εt)−1

}
= trace

{(
T−1

∞∑
ℓ=1

αℓDα
′
ℓ

)
D−1

}
= T−1∥α(L)∥2,

where we define the norm

∥α(L)∥ ≡

√√√√ ∞∑
ℓ=1

trace{Dα′
ℓD

−1αℓ}.

Suppose we are willing to impose a priori that the noise-to-signal ratio is at most M2/T

for some constant M ∈ (0,∞). For small M2/T , this roughly means that a fraction M2/T

of the variance of the model’s error term is due to the misspecification. This corresponds
to restricting the parameter space for α(L) to all absolutely summable lag polynomials that
satisfy ∥α(L)∥ ≤ M . In the following we will consider the worst-case properties of the VAR
estimator over this parameter space, treating the other (consistently estimable) parameters
(A,H,D) as fixed.

Worst-case bias.

Proposition 4.1. Impose Assumption 2.1, ζ = 1/2, and aVar(δ̂h) > 0. Then

max
α(L) : ∥α(L)∥≤M

|bh| = M

√√√√aVar(β̂h)
aVar(δ̂h)

− 1,

where we recall the definition bh = aBias(δ̂h)/
√

aVar(δ̂h).

Proof. The claim is a special case of Proposition 4.2 below.

Under our bound M2/T on the noise-to-signal ratio, the worst-case (scaled) VAR bias
is a simple function of M and of the relative asymptotic precision aVar(β̂h)/ aVar(δ̂h) of
the VAR estimator vs. LP. These two quantities are “sufficient statistics” for the worst-case
bias regardless of the number n of variables in the VAR, the lag length p, the specific VAR
parameters (A,H,D), and the horizon h. Hence, our subsequent analysis of the worst-case
properties of VAR procedures depends only on M and on the relative precision, allowing
us to concisely present analytical results that cover a wide range of local-to-SVAR models
without having to resort to simulations that inevitably only cover a finite number of DGPs.
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Proposition 4.1 shows that, in terms of bias, there is “no free lunch” for VAR estimation:
the worst-case VAR bias is small precisely when the VAR estimator has nearly the same
variance as LP. While the worst-case bias can be reduced by increasing the VAR estimation
lag length p, the proposition shows that this can only happen at the expense of increasing
the variance. If we include so many lags that the worst-case bias is zero (cf. Corollary 3.2),
then the VAR estimator must necessarily be asymptotically equivalent with LP.

Worst-case mean squared error. For future reference we briefly discuss how the
worst-case mean squared error (MSE) of the VAR estimator depends on the imposed bound
on misspecification. Based on Propositions 3.1 and 3.2 as well as Corollary A.2, we define
the asymptotic MSE of the VAR and LP estimators as follows:

aMSE(β̂h) ≡ aVar(β̂h), aMSE(δ̂h) ≡ aBias(δ̂h)2 + aVar(δ̂h).

Corollary 4.1. Impose Assumption 2.1 and ζ = 1/2. Then

sup
α(L) : ∥α(L)∥≤M

{aMSE(δ̂h) − aMSE(β̂h)} = (M2 − 1){aVar(β̂h) − aVar(δ̂h)}.

Proof. See Appendix B.5.

In words, the worst-case MSE regret of VAR relative to LP is proportional to the variance
reduction of VAR relative to LP, with a proportionality constant of M2 − 1. If M > 1
(corresponding to a noise-to-signal ratio greater than 1/T ), the worst-case MSE of VAR
thus strictly exceeds the MSE of LP. From here it is also straightforward to recover the
minimax optimal way to average LP and VAR estimates.

Corollary 4.2. Impose Assumption 2.1, ζ = 1/2, and aVar(β̂h) > aVar(δ̂h). Consider the
model-averaging estimator θ̂h(ω) ≡ ωβ̂h + (1 − ω)δ̂h, and denote its asymptotic MSE by
aMSE(θ̂h(ω)). Then

argmin
ω∈R

sup
α(L) : ∥α(L)∥≤M

aMSE(θ̂h(ω)) = M2

1 +M2 .

Proof. See Appendix B.6.

If M = 1, it is minimax optimal to weight the LP and VAR estimates equally. If M = 2
(corresponding to a noise-to-signal ratio of 4/T ), the LP estimator receives 80% weight.
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4.2 Worst-case coverage

We now turn to our main area of interest: the worst-case asymptotic coverage of the con-
ventional VAR confidence interval under our bound on the amount of misspecification. This
turns out to take a very simple form.

Corollary 4.3. Impose Assumption 2.1, ζ = 1/2, and aVar(δ̂h) > 0. Then

inf
α(L) : ∥α(L)∥≤M

lim
T →∞

P (θh,T ∈ CI(δ̂h)) = 1 − r
(
M
√

aVar(β̂h)/ aVar(δ̂h) − 1; z1−a/2

)
.

Proof. This is an immediate consequence of Corollary 3.1 and Proposition 4.1.

Based on this corollary, Figure 4.1 provides a complete characterization of the robustness-
efficiency trade-off for VAR confidence intervals. It plots the worst-case coverage probability
as a function of the ratio of standard errors for VAR and LP, given significance level a = 10%
and different values of M . The shaded area depicts an empirically relevant range of standard
error ratios obtained in four empirical applications from Ramey (2016).6 We see that, even for
M = 1 (corresponding to a noise-to-signal ratio of 1/T ), the worst-case coverage probability
is below 48% whenever the asymptotic standard deviation of the VAR estimator is less than
half that of LP—a value that is typical in applied work. Further, at the bottom end of the
empirically relevant range, the worst-case coverage probability is essentially zero as soon as
M ≥ 1. It is only at the very right side of the figure—when the VAR includes enough lags
to remove nearly all bias, thus increasing the standard error almost to that of LP—that the
VAR confidence interval has coverage close to the nominal level.

The potential for VAR undercoverage documented here may not be so concerning if the
worst-case misspecification can be ruled out on economic theory grounds, or if it is easily
detectable statistically. We now argue that neither appears to be the case.

Economic theory. The shape and magnitude of the least favorable misspecification is
difficult to rule out generally based on economic theory. The least favorable MA polynomial
α†(L;h,M) = ∑∞

ℓ=1 α
†
ℓ,h,ML

ℓ for VAR coverage is the same as the least favorable one for bias
(i.e., the α(L) that achieves the maximum in Proposition 4.1). Since aBias(δ̂h) is linear in
α(L), the least favorable choice given the constraint ∥α(L)∥ ≤ M follows easily from the

6We replicate Ramey’s identification schemes for monetary, tax, government spending, and technology
shocks. The shaded area shows the 10th to 90th percentiles of standard error ratios at horizons exceeding 1
year. See Supplemental Appendix C for details.
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Figure 4.1: Worst-case asymptotic coverage probability of the conventional 90% VAR confidence
interval. Horizontal axis: relative asymptotic standard deviation of LP vs. VAR. Different lines:
different bounds M on ∥α(L)∥. Shaded area: empirical 10th–90th percentile range of relative
standard errors based on Ramey (2016), see Supplemental Appendix C. The solid horizontal line
marks the nominal coverage probability 1 − a = 90%.

Cauchy-Schwarz inequality (see the proof of Proposition 4.2 below):

α†
ℓ,h,M ∝ D1/2H ′Ψ′

hS
−1Aℓ−1HD1/2 − 1(ℓ ≤ h)σ−1

j∗ D1/2H ′(A′)h−ℓei∗,ne
′
j∗,m, ℓ ≥ 1, (4.1)

where the constant of proportionality (which does not depend on the lag ℓ) is chosen so that
∥α†(L;h,M)∥ = M . Note that the shape of the least favorable MA polynomial depends on
the particular horizon h of interest but not on M ; i.e., the bound M2/T on the noise-to-signal
ratio only scales the polynomial up or down.

We note two main properties of the least favorable misspecification. First, the magnitude
of the MA coefficients α†

ℓ,h,M decays exponentially as ℓ → ∞. In other words, not only is
the overall magnitude of the least favorable model misspecification small (as imposed in
the noise-to-signal bound), the MA coefficients at long lags are in fact particularly small.
Second, numerical examples shown in Appendix A.1 suggest that the MA coefficients tend
to be largest in magnitude at horizon h, displaying either a hump-shaped pattern as a
function of ℓ—consistent with economic theories of adjustment costs or learning—or a single
zig-zag pattern—consistent with theories of overshooting or lumpy adjustment. We thus
view MA dynamics of the worst-case form as empirically and theoretically relevant types of
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misspecification.7

Statistical tests. The least favorable misspecification is also difficult to detect sta-
tistically. Propositions 3.3 and 4.1 imply that, for α(L) = α†(L;h,M), the asymptotic
rejection probability of the Hausman test of correct VAR specification equals r(M ; z1−a/2).
When M = 1 (corresponding to a noise-to-signal ratio of 1/T ), the odds of the Hausman
test failing to reject the misspecification are nearly 3-to-1 at significance level a = 10%,
since r(1; z0.95) = 26%. At significance level a = 5%, the odds are nearly 5-to-1, since
r(1; z0.975) = 17%. Standard ex post model misspecification tests are thus unlikely to indi-
cate a problem even if the potential for undercoverage is severe.

Rather than committing a priori to a parameter space for α(L) through choice of M , we
can also ask a different question: across all possible types and magnitudes of misspecification,
what is the worst-case probability that the conventional VAR confidence interval fails to cover
the true impulse response, yet we fail to reject correct specification of the VAR model?

Corollary 4.4. Impose Assumption 2.1, ζ = 1/2, and aVar(β̂h) > aVar(δ̂h) > 0. Consider
the joint event AT that θh,T /∈ CI(δ̂h) and the Hausman test in Proposition 3.3 fails to reject
misspecification. Then

sup
α(L)

lim
T →∞

P (AT ) = sup
b≥0

r(b; z1−a/2)

1 − r

 b√
aVar(β̂h)/ aVar(δ̂h) − 1

; z1−a/2

 ,
where the supremum on the left-hand side is taken over all absolutely summable lag polyno-
mials α(L).

Proof. See Appendix B.7.

Figure 4.2 plots this worst-case probability for a significance level of a = 10%, which by
Corollary 4.4 depends only on the ratio aVar(δ̂h)/ aVar(β̂h). Under correct specification, the
probability of the joint event is equal to a(1 − a) (= 9% when a = 10%). With misspecifica-
tion, the joint probability instead exceeds 46% when the asymptotic standard deviation of
the VAR estimator is less than half that of the LP estimator. As aVar(δ̂h)/ aVar(β̂h) → 0,
the worst-case joint probability approaches 1 − a. We thus again see that statistical tests
may fail to warn against the potential for severe VAR coverage distortions.

7However, the least favorable MA polynomial derived above need not be of interest to researchers who
trust that some equations in their SVAR specification are exactly correctly specified, as this imposes the
additional restrictions that some linear combinations of the rows of the MA polynomial α(L) equal zero.
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Figure 4.2: Worst-case asymptotic probability of the joint event that the conventional VAR con-
fidence interval fails to cover the true impulse response and yet the Hausman test fails to reject
misspecification. Horizontal axis: relative asymptotic standard deviation of LP vs. VAR. The dot-
ted horizontal line marks the nominal significance level a = 10%.

4.3 Bias-aware inference

Rather than removing bias by increasing the lag length (thus ensuring equivalence with LP),
an alternative way to fix the undercoverage of the conventional VAR confidence interval is to
adjust the critical value upward to compensate for the bias, as suggested in a general setting
by Armstrong and Kolesár (2021). Suppose again that we restrict the misspecification α(L)
to satisfy ∥α(L)∥ ≤ M . Then we define the bias-aware VAR confidence interval

CIB(δ̂h;M) ≡

δ̂h ± cv1−a

M
√√√√aVar(β̂h)

aVar(δ̂h)
− 1

√aVar(δ̂h)/T
 ,

where the bias-aware critical value cv1−a(b) is given by the number such that r(b; cv1−a(b)) =
a, and r(·, ·) is defined in Corollary 3.1. By construction, this bias-aware confidence interval
has correct (but potentially conservative) asymptotic coverage.

Corollary 4.5. Impose Assumption 2.1, ζ = 1/2, and aVar(δ̂h) > 0. Then

inf
α(L) : ∥α(L)∥≤M

lim
T →∞

P (θh,T ∈ CIB(δ̂h;M)) = 1 − a.

Proof. The result follows immediately from Propositions 3.2 and 4.1.
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Figure 4.3: Relative length of bias-aware VAR confidence interval vs. conventional LP interval.
Significance level a = 10%. Horizontal axis: relative asymptotic standard deviation of LP vs. VAR.
Different lines: different bounds M on ∥α(L)∥. The solid horizontal line marks the value 1.

It turns out, however, that a very tight bound M on the signal-to-noise ratio is required
for the bias-aware VAR interval to be shorter than the LP interval. Figure 4.3 plots the
relative interval length as a function of the relative asymptotic standard deviation of VAR
and LP, for a significance level of a = 10% and for different misspecification bounds M . The
figure shows that M has to be quite small—apparently below 1—for the bias-aware VAR
length to dominate the LP length regardless of the DGP and horizon. Even for M = 1.5,
bias-aware VAR is at best only moderately shorter than LP. Finally, for values of M above
2 (corresponding to a noise-to-signal ratio above 4/T ), bias-aware VAR is dominated by LP.

In Appendix A.2 we furthermore show that the conventional LP confidence interval is
at worst slightly wider than a more efficient bias-aware confidence interval centered at the
model averaging estimator θ̂h(ω) = ωβ̂h +(1−ω)δ̂h, introduced in Corollary 4.2 above. Even
if the weight ω is chosen to optimize confidence interval length, the gains relative to the LP
interval are very small when M ≥ 2 (corresponding to a noise-to-signal ratio above 4/T ).

We thus conclude that, while bias-aware VAR inference is possible in theory, in practice
the gains relative to the simpler LP interval are small at best, unless we put an extremely
tight bound on the noise-to-signal ratio.
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4.4 Inference on multiple impulse responses

Since the least favorable MA polynomial derived in Section 4.2 depends on the horizon h of
interest, one might hope that VARs would not be as prone to bias and thereby undercoverage
if interest centers on multiple impulse responses. Unfortunately, we now show that this is
not the case by generalizing the worst-case bias formula to the multi-dimensional case and
deriving the worst-case coverage of the Wald confidence ellipsoid.

Set-up. We now consider inference on any combination of impulse responses for various
horizons h, response variables i∗, and shocks j∗. When referring to impulse responses and
estimators of these, we need to make the response variable and shock explicit in the nota-
tion. Thus, we write θi∗,j∗,h,T , β̂i∗,j∗,h, and δ̂i∗,j∗,h, with the definitions being the same as in
Section 2. Let k denote the total number of impulse responses of interest. We refer to the
list of impulse responses by the collection of triples {(i∗a, j∗

a, ha)}k
a=1 indexing the response

variable, shock variable, and horizon, respectively. Define the k-dimensional vectors of true
impulse responses and LP and VAR estimators:

θT ≡


θi∗

1,j∗
1 ,h1,T

...
θi∗

k
,j∗

k
,hk,T

 , β̂ ≡


β̂i∗

1,j∗
1 ,h1
...

β̂i∗
k

,j∗
k

,hk

 , δ̂ ≡


δ̂i∗

1,j∗
1 ,h1
...

δ̂i∗
k

,j∗
k

,hk

 .

It follows from Propositions 3.1 and 3.2 that

√
T

β̂ − θT

δ̂ − θT

 d→ N

 0k×1

aBias(δ̂)

 ,
 aVar(β̂) aCov(β̂, δ̂)

aCov(δ̂, β̂) aVar(δ̂)

 , (4.2)

for a k-dimensional vector aBias(δ̂) (defined in the proof of Proposition 4.2 below) and k×k

matrices aVar(β̂), aVar(δ̂), and aCov(β̂, δ̂) given in Corollary A.2 in Appendix A.3. This
corollary also implies that the difference β̂ − δ̂ is asymptotically independent of δ̂, which
is not surprising given the general arguments of Hausman (1978) and the facts that (i) the
asymptotic variances of the estimators are the same as in the model with α(L) = 0 and (ii)
the VAR estimator is the quasi-MLE in such a model. It follows that aVar(β̂) ≥ aVar(δ̂) in
the positive semidefinite sense.

Worst-case bias. The following result generalizes the univariate worst-case bias formula
in Proposition 4.1.
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Proposition 4.2. Impose Assumption 2.1, with part (iii) holding for all shock indices
j∗

1 , . . . , j
∗
k, and let ζ = 1/2. Let R be a constant matrix with k rows. Then

max
α(L) : ∥α(L)∥≤M

∥R aBias(δ̂)∥2 = M2λmax
(
R[aVar(β̂) − aVar(δ̂)]R′

)
,

where λmax(B) denotes the largest eigenvalue of the matrix B.

Proof. See Appendix B.3.

The proposition shows that the worst-case squared norm of the bias of the VAR es-
timator Rδ̂ of RθT is a function of two simple quantities: the bound M on misspeci-
fication, and the largest eigenvalue of the difference aVar(Rβ̂) − aVar(Rδ̂) between the
variance-covariance matrices for the LP and VAR estimators. The latter eigenvalue equals
max∥ς∥=1{aVar(ς ′Rβ̂) − aVar(ς ′Rδ̂)}, i.e., the largest efficiency gain for VAR over LP across
all linear combinations (with norm 1) of the estimated parameters. We thus see that there is
still no free lunch: the worst-case bias is non-negligible if the VAR offers efficiency gains for
any linear combination of the parameters of interest, echoing our univariate results. When R
is a row vector, then the proposition implies that our conclusions from Section 4.2 extend to
inference on any linear combination of impulse responses (across horizons, variables, and/or
shocks). In particular, the VAR confidence interval has fragile coverage even if the target
parameter is the integral (i.e., sum) of impulse responses across multiple horizons, as in the
fiscal multiplier applications reviewed in Ramey (2016).

Worst-case coverage of confidence ellipsoid. We next derive the coverage of
the conventional Wald confidence ellipsoid based on the VAR estimator. The level-(1 − a)
confidence ellipsoid is given by

CE(δ̂) ≡
{
θ̃ ∈ Rk : T (δ̂ − θ̃)′ aVar(δ̂)−1(δ̂ − θ̃) ≤ χ2

1−a,k

}
,

where χ2
1−a,k is the 1 − a quantile of the χ2 distribution with k degrees of freedom.

Corollary 4.6. Impose Assumption 2.1, with part (iii) holding for all shock indices j∗
1 , . . . , j

∗
k,

and let ζ = 1/2. Assume also that aVar(δ̂) is non-singular. Then

min
α(L) : ∥α(L)∥≤M

lim
T →∞

P (θT ∈ CE(δ̂)) = Fk

(
χ2

1−a,k;M2
[
λmax(aVar(β̂) aVar(δ̂)−1) − 1

])
,
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where Fk(x; c) is the cumulative distribution function, evaluated at point x ≥ 0, of a non-
central χ2 distribution with k degrees of freedom and non-centrality parameter c ≥ 0.

Proof. See Appendix B.8.

The worst-case coverage probability of the VAR confidence ellipsoid depends on three
scalars: the bound M on misspecification, the dimension k of the ellipsoid, and the “multi-
variate relative standard error”
√
λmin(aVar(δ̂) aVar(β̂)−1) = [λmax(aVar(β̂) aVar(δ̂)−1)]−1/2 = min

ς∈Rk

√
aVar(ς ′δ̂)/ aVar(ς ′β̂).

Again, the worst-case coverage distortion is an increasing function of the largest efficiency
gain for VAR over LP across all linear combinations of the impulse responses. Since VAR
impulse response estimates are often highly correlated across horizons, this suggests that the
VAR undercoverage can in fact be particularly severe in the multivariate case.

Figures 4.4 and 4.5 show that the worst-case coverage probability of the confidence ellip-
soid can be very poor even for small amounts of misspecification. The panels in the figures
correspond to choices of the dimension k ∈ {2, 5, 10} or the bound M ∈ {1, 1.5, 2} on mis-
specification, respectively. Evidently, the coverage distortions can be severe for all of the
k considered in these plots even when M = 1 (corresponding to a noise-to-signal ratio of
1/T ), especially if the multivariate relative standard error

√
λmin(aVar(δ̂) aVar(β̂)−1) ≤ 1/4.

It further appears that the worst-case coverage distortion is monotonically decreasing in k,
holding everything else constant; however, loosely speaking, the larger is k, the larger is the
“chance” that there is some linear combination of the parameters for which VAR is much
more efficient than LP, instead yielding a larger coverage distortion. The multivariate case
thus overall echoes and reinforces our conclusions from the earlier univariate analysis.

5 Simulations

We now show that our asymptotic results accurately reflect the finite-sample properties of
LP and VAR procedures. To do so, we consider a standard structural macroeconomic model
as our DGP; in Supplemental Appendix D.1 we present further illustrative results from a
simple univariate model.

Framework. Our DGP is the well-known structural macroeconomic model of Smets and
Wouters (2007). This environment is ideal for our purposes, as it allows us to closely mimic
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Figure 4.4: Worst-case asymptotic coverage probability of the conventional 90% VAR confidence
ellipsoid. Different panels: choices of the number k of parameters in the ellipsoid. Horizontal axes:
square root of smallest eigenvalue of the ratio of the VAR and LP variance-covariance matrices.
Different lines: different bounds M on ∥α(L)∥. The solid horizontal lines mark the nominal coverage
probability 1 − a = 90%.

Figure 4.5: Worst-case asymptotic coverage probability of the conventional 90% VAR confidence
ellipsoid. Different panels: different bounds M on ∥α(L)∥. Horizontal axes: square root of smallest
eigenvalue of the ratio of the VAR and LP variance-covariance matrices. Different lines: choices of
the number k of parameters in the ellipsoid. The solid horizontal lines mark the nominal coverage
probability 1 − a = 90%.
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p M M2

1+M2

1 34.053 0.999
2 5.412 0.967
4 3.225 0.912
8 1.893 0.782

12 1.324 0.637
20 0.915 0.456
40 0.614 0.274

Table 5.1: M and M2

1+M2 as functions of p in the model of Smets and Wouters, with the researcher
observing the cost-push shock, inflation, wages, and hours worked, and estimating a VAR(p).

applied macroeconometric practice: the model is rich enough to match quite well the second-
moment properties of standard macroeconomic time series data, yet at the same time features
the interpretable, structural shocks typically studied in applied work. We solve the model at
the posterior mode estimated by Smets and Wouters. For our main exercise we will assume
that the econometrician observes the wage cost-push shock, inflation, wages, and total hours
worked. The impulse response function of interest is that of inflation with respect to the
cost-push shock. In addition to being topical (e.g., see the recent work of Bernanke and
Blanchard, 2023), this exercise is well-suited to cleanly illustrate the potential bite of our
theoretical conclusions: wage cost-push shocks in the model of Smets and Wouters follow an
ARMA(1,1) process, and so short-lag VARs may be subject to material biases. Results for
a monetary shock specification are reported in Supplemental Appendix D.2.

Results. We begin by quantifying the amount of VAR misspecification in this DGP. Given
a choice of lag length p, we represent the Smets and Wouters model in VARMA(p,∞) form
(2.1) with T = 240 and ζ = 1/2, where the VAR coefficients are selected to minimize the
population sum of squared residuals.8 Table 5.1 shows, as a function of p, the total degree
of misspecification M = ∥α(L)∥ as well as M2/(1 + M2), the minimax optimal ex ante
model averaging weight on LP in Corollary 4.2. As anticipated, the larger p, the smaller M .
Importantly, however, M only declines extremely slowly with the lag length p. In particular,
for lag lengths typical in applied practice (for quarterly data), misspecification is material,

8 Let yt = C(L)ut be the Wold decomposition of the observed data. Denote the linear least-squares projec-
tion coefficients of yt onto p of its lags as Aℓ(p), ℓ = 1, 2, . . . , p, and define A(L; p) ≡ I −

∑p
ℓ=1 Aℓ(p). Letting

C̃(L; p) =
∑∞

ℓ=0 C̃ℓ(p)Lℓ ≡ A(L; p)C(L), we obtain a representation yt =
∑p

ℓ=1 Aℓ(p)yt−ℓ +
∑∞

ℓ=0 C̃ℓ(p)ut−ℓ.
It is straightforward to orthogonalize the innovations in this representation and write it in the form (2.1),
thus yielding the implied MA polynomial α(L).
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Lag length via AIC

Lag length p = 4

Lag length p = 8

Figure 5.1: Coverage probabilities (left) and median confidence interval length (right) for VAR
(red) and LP (blue) confidence intervals computed via the delta method or bootstrap (the latter
are indicated with subscript “b” in the figure legends). DGP: Smets and Wouters (2007), cost-push
shock. Lag length p is selected using the AIC for the top panel, and fixed at p = 4 and p = 8 for
the middle and bottom panels, respectively.
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with M ≈ 3.23 for a standard lag length of p = 4, and M ≈ 1.89 even for a long lag
length of p = 8. This suggests that—depending on the shape of α(L)—there is potential for
misspecification to substantially affect VAR inference.

Figure 5.1 shows that VAR confidence intervals indeed severely undercover, while LP
intervals are robust. We simulate 5,000 samples of size T = 240, and for each construct delta
method as well as bootstrap LP and VAR confidence intervals (assuming homoskedasticity).9

The top panel considers the empirically common case where the VAR lag length p is selected
using the AIC; we then use the same p for LP. At all but very short horizons, VAR confidence
intervals materially undercover, while LP throughout attains close to the nominal coverage
level, consistent with our theoretical results. The bootstrap somewhat improves the VAR
coverage, but large distortions remain.10 We emphasize that these results for VAR inference
are obtained even though the lag length p is selected using the AIC: the median selected
lag length is p = 2, which here is evidently insufficient to guard against VAR bias and
undercoverage.11 The middle and bottom panels illustrate our “no free lunch” result. For
those panels, we instead manually select longer lag lengths: p = 4 for the middle panel
and p = 8 for the bottom panel. VAR coverage is now closer to the nominal level for all
horizons h ≤ p (consistent with Corollary 3.2), but at the same time confidence intervals
become essentially as wide as for LP. At longer horizons we obtain the same picture as before:
substantial undercoverage for VAR, and coverage close to the nominal level for LP.

Supplemental Appendix D.2 shows that these conclusions extend to monetary shock
specifications. We furthermore show that the VAR coverage distortions in the actual Smets
and Wouters DGP are comparable to those in a slightly perturbed DGP where we replace
the model-implied MA lag polynomial α(L) by the theoretical least favorable one α†(L);
thus, the latter is not particularly pathological, consistent with our discussion in Section 4.2.

6 Conclusion

Our theoretical results suggest the following practical take-aways:

1. When the goal is to construct confidence intervals for impulse responses that have accurate

9We construct equal-tailed percentile-t bootstrap confidence intervals, using 2,000 bootstrap draws. See
Inoue and Kilian (2002) for VAR and Montiel Olea and Plagborg-Møller (2021) for LP.

10Indeed, the coverage distortions are not primarily a small-sample phenomenon: Supplemental Ap-
pendix D.2 shows that similar distortions arise with T = 2,000.

11This finding is consistent with Kilian and Lütkepohl (2017, Chapter 2.6.5), who emphasize that standard
lag order selection criteria such as the AIC often tend to select too few lags for accurate VAR coverage.
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coverage in a wide range of empirically relevant DGPs—as opposed to minimizing MSE—
then the smaller bias of LPs documented in simulations by Li, Plagborg-Møller, and Wolf
(2024) is more valuable than the smaller variance enjoyed by VAR estimators.

2. Researchers who use LP should control for those lags of the data that are strong predictors
of the outcome or impulse variables. This is important even if the researcher directly
observes a near-perfect proxy for the shock of interest. However, it is not necessary to get
the lag length exactly right to achieve correct coverage. To select the number of lags to
control for in the LP, it suffices to run a VAR in all variables used in the analysis and select
the lag length that minimizes conventional information criteria (such as AIC). Our results
complement the finding of Montiel Olea and Plagborg-Møller (2021) that lag-augmented
LP confidence intervals are also more robust than VAR intervals to persistence in the
data and to the length of the impulse response horizon.

3. There is no free lunch for VARs: if an estimated VAR yields confidence intervals that are
substantially narrower than the corresponding LP intervals, we recommend increasing the
VAR lag length until that is no longer the case, to guarantee robust confidence interval
coverage. Conventional tests of correct VAR specification do not suffice to guard against
coverage distortions.

Is there a way forward for VAR inference, beyond just including a large number of lags?
We showed how to construct a VAR confidence interval with a bias-aware critical value that
robustly controls coverage, but found that it will typically lead to wider confidence intervals
than LP. Another option would be to estimate VARMA models rather than pure VARs,
though this would be computationally expensive, and the bias-variance trade-off relative to
LPs is unclear. In principle, VAR procedures may work better under additional restrictions
on the misspecification, such as shape restrictions on the impulse response functions.12 How-
ever, it appears that detailed application-specific restrictions would be required to generate
a negligible worst-case bias, since we have shown that the least favorable misspecification in
our baseline analysis is economically plausible. Rather than restricting the parameter space,
future research could instead investigate weakening the coverage requirement, e.g., only re-
quiring a certain coverage probability on average over a set of horizons (Armstrong, Kolesár,
and Plagborg-Møller, 2022), or by changing the target for inference from the true impulse

12Given any convex parameter space for the misspecification MA polynomial α(L), the worst-case bias of
the VAR estimator (see Proposition 3.2) can be computed using convex programming.
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Figure A.1: Least favorable α†(L; h) for horizons h ∈ {1, 5, 10} for local-to-AR(1) models with
different persistence parameters ρ (left, middle, and right panel).

response function to a smooth projection of this function (Genovese and Wasserman, 2008).
Finally, a subjectivist Bayesian VAR modeler need only worry about our negative results
if their prior on potential misspecification attaches significant weight to MA processes that
imply large VAR biases.

Appendix A Further theoretical results

A.1 Least favorable misspecification

Figure A.1 plots some numerical examples of the least favorable MA polynomial α†(L;h,M) =∑∞
ℓ=1 α

†
ℓ,h,ML

ℓ discussed in Section 4.2. We focus here on a univariate local-to-AR(1) model
yt = ρyt−1 + [1 + T−1/2α(L)]εt, though unreported numerical experiments suggest that the
qualitative features mentioned below also apply to multivariate models. Recall that the least
favorable MA coefficients depend on the horizon h of interest, while M only influences the
overall scale of the coefficients, and not their shape as a function of ℓ. The figure shows that
the shape of the coefficients either takes the form of a hump or of a single zig-zag pattern,
with the largest absolute value of the coefficients generally occurring at ℓ = h. Notice that
we can flip the signs of all coefficients without changing the bias.

A.2 More efficient bias-aware confidence interval

Generalizing the bias-aware VAR confidence interval in Section 4.3, consider a bias-aware
confidence interval that is centered at the model averaging estimator θ̂h(ω) = ωβ̂h +(1−ω)δ̂h
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from Corollary 4.2:

CIB(θ̂h(ω);M) ≡
[
θ̂h(ω) ± cv1−a

(
(1 − ω)Mτ√

1 + ω2τ 2

)√
(1 + ω2τ 2) aVar(δ̂h)/T

]
,

where τ ≡
√

aVar(β̂h)/ aVar(δ̂h) − 1. This interval equals the conventional LP interval when
ω = 1 and the bias-aware VAR interval when ω = 0.

Corollary A.1. Impose Assumption 2.1, ζ = 1/2, and aVar(δ̂h) > 0. Then, for any ω ∈
[0, 1],

inf
α(L) : ∥α(L)∥≤M

lim
T →∞

P (θh,T ∈ CIB(θ̂h(ω);M)) = 1 − a.

Proof. The result follows from Propositions 3.1, 3.2 and 4.1 and Corollary A.2 and the same
calculations as in the proof of Corollary 4.2.

Even if we choose the weight ω to minimize confidence interval length, the resulting
bias-aware interval tends to be nearly as long as the LP interval. The length-optimal weight
ω = ω∗ is given by

ω∗ ≡ argmin
ω∈[0,1]

cv1−a

(
(1 − ω)Mτ√

1 + ω2τ 2

)√
1 + ω2τ 2.

Figure A.2 shows this optimal weight as a function of M and the relative asymptotic standard
deviation of the VAR and LP estimators, while Figure A.3 shows the length of the resulting
optimal bias-aware confidence interval relative to the length of the conventional LP interval.
We see that, for M ≥ 2, there is little gain from reporting the optimal bias-aware interval
rather than the LP interval, regardless of the relative precision of VAR and LP. An additional
observation is that, for M ≥ 1.5, the length-optimal ω∗ is numerically close to the MSE-
optimal weight M2/(1 +M2) derived in Corollary 4.2.

A.3 Covariance structure of LP and VAR estimators

The following result provides the asymptotic variance-covariance matrix of the LP and VAR
estimators in the general multi-dimensional set-up of Section 4.4. Define Ψi∗,j∗,h as in Propo-
sition 3.2, but making the dependence on (i∗, j∗) explicit in the notation.
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Figure A.2: Length-optimal weight on LP in bias-aware confidence interval. Significance level
a = 10%. Horizontal axis: relative asymptotic standard deviation of LP vs. VAR. Different lines:
different bounds M on ∥α(L)∥.

Figure A.3: Relative length of optimal bias-aware confidence interval vs. conventional LP interval.
Significance level a = 10%. Horizontal axis: relative asymptotic standard deviation of LP vs. VAR.
Different lines: different bounds M on ∥α(L)∥.
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Corollary A.2. Impose Assumption 2.1, with part (iii) holding for all shock indices j∗
1 , . . . , j

∗
k.

Then for any a, b ∈ {1, . . . , k},

aCov(β̂i∗
a,j∗

a ,ha , β̂i∗
b
,j∗

b
,hb

) = 1(j∗
a = j∗

b )σ−2
j∗

a

ψa,b +
min{ha,hb}∑

ℓ=1
e′

i∗
a,nA

ha−ℓΣ(A′)hb−ℓei∗
b
,n

 ,
aCov(δ̂i∗

a,j∗
a ,ha , δ̂i∗

b
,j∗

b
,hb

) = 1(j∗
a = j∗

b )σ−2
j∗

a
ψa,b + trace

(
Ψi∗

a,j∗
a ,haΣΨ′

i∗
b
,j∗

b
,hb
S−1

)
,

aCov(β̂i∗
a,j∗

a ,ha , δ̂i∗
b
,j∗

b
,hb

) = aCov(δ̂i∗
a,j∗

a ,ha , δ̂i∗
b
,j∗

b
,hb

),

where
ψa,b ≡ e′

i∗
a,nA

haHj∗
a
Dj∗

a
H

′
j∗

a
(A′)hbei∗

b
,n,

and the “aCov” notation is understood to refer to elements of the asymptotic variance-
covariance matrix in (4.2). In particular, aCov(β̂i∗

a,j∗
a ,ha − δ̂i∗

a,j∗
a ,ha , δ̂i∗

b
,j∗

b
,hb

) = 0.

Proof. See Appendix B.9.

Appendix B Proofs

Lemmas whose name begins with “E” can be found in the Supplemental Appendix.

B.1 Proof of Proposition 3.1

Lemma E.1 shows that we can represent

yi∗,t+h = θh,T εj∗,t +B′
h,yyj∗,t

+B′
h,yyt−1 + ξh,i∗,t + T−ζΘh(L)εt, (B.1)

where the precise expressions for the coefficient matrices are given in Lemma E.1. The lemma
also shows that the 1 × n two-sided lag polynomial Θh(L) = ∑∞

ℓ=−∞ Θh,ℓL
ℓ is absolutely

summable and satisfies Θh,0,j∗ = 0. That is, Θh(L)εt is independent of εj∗,t (but not of εj∗,s

for s ̸= t).
Let x̂h,t be the residual in a regression of yj∗,t on y

j∗,t
and yt−1. By definition, x̂h,t is

in-sample orthogonal to y
j∗,t

and yt−1. Hence,

β̂h =
∑T −h

t=1 yi∗,t+hx̂h,t∑T −h
t=1 x̂2

h,t
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= θh,T +
∑T −h

t=1 (yi∗,t+h − θh,T x̂h,t −B′
h,yyj∗,t

−B′
h,yyt−1)x̂h,t∑T −h

t=1 x̂2
h,t

by orthogonality

= θh,T +
T−1∑T −h

t=1 (yi∗,t+h − θh,T x̂h,t −B′
h,yyj∗,t

−B′
h,yyt−1)x̂h,t

σ2
j∗ + op(1) by Lemma E.4(v)

= θh,T +
T−1∑T −h

t=1 (yi∗,t+h − θh,T εj∗,t −B′
h,yyj∗,t

−B′
h,yyt−1)x̂h,t + op(T−1/2)

σ2
j∗ + op(1) by Lemma E.4(iv)

= θh,T + T−1∑T −h
t=1 (ξh,i∗,t + T−ζΘh(L)εt)x̂h,t

σ2
j∗ + op(1) + op(T−1/2) by (B.1)

= θh,T + T−1∑T −h
t=1 (ξh,i∗,t + T−ζΘh(L)εt)εj∗,t + op(T−1/2) +Op(T−2ζ + T−1/2−ζ)

σ2
j∗ + op(1) + op(T−1/2)

by Lemma E.4(iii) and (vi)

= θh,T + T−1∑T −h
t=1 (ξh,i∗,t + T−ζΘh(L)εt)εj∗,t

σ2
j∗ + op(1) + op(T−1/2).

Finally, Lemma E.1 shows that

T−1
T −h∑
t=1

(Θh(L)εt)εj∗,t = Op(T−1/2).

Thus, we conclude that

T−1
T −h∑
t=1

T−ζ(Θh(L)εt)εj∗,t = Op(T−1/2−ζ) = op(T−1/2),

which completes the proof.

B.2 Proof of Proposition 3.2

Note first that

δ̂h − e′
i∗,nA

hH•,j∗ = e′
i∗,nÂ

hν̂ − e′
i∗,nA

hH•,j∗

= e′
i∗,nÂ

hH•,j∗ − e′
i∗,nA

hH•,j∗ + e′
i∗,nÂ

h(ν̂ −H•,j∗).

Lemma E.2 shows that Â− A = Op(T−ζ + T−1/2). Since it is known that

(
∂(e′

i∗,nA
hH•,j∗)

∂ vec(A)

)′

= (H ′
•,j∗ ⊗ e′

i∗,n)
(

h∑
ℓ=1

(A′)h−ℓ ⊗ Aℓ−1
)

=
h∑

ℓ=1
H ′

•,j∗(A′)h−ℓ ⊗ e′
i∗,nA

ℓ−1,
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see for example Magnus and Neudecker (2007, Table 7, p. 208), the delta method gives

δ̂h − e′
i∗,nA

hH•,j∗ =
(

h∑
ℓ=1

H ′
•,j∗(A′)h−ℓ ⊗ e′

i∗,nA
ℓ−1
)

vec(Â− A) + e′
i∗,nA

h(ν̂ −H•,j∗) + op(T−ζ + T−1/2)

=
h∑

ℓ=1
e′

i∗,nA
ℓ−1(Â− A)Ah−ℓH•,j∗ + e′

i∗,nA
h(ν̂ −H•,j∗) + op(T−ζ + T−1/2)

= trace
{
Ψh(Â− A)

}
+ e′

i∗,nA
h(ν̂ −H•,j∗) + op(T−ζ + T−1/2),

where Ψh ≡ ∑h
ℓ=1 A

h−ℓH•,j∗e′
i∗,nA

ℓ−1. Lemma E.2 further implies that

trace
{
Ψh(Â− A)

}
= T−ζ trace

{
S−1ΨhH

∞∑
ℓ=1

αℓDH
′(A′)ℓ−1

}

+ trace
{
S−1ΨhHT

−1
T∑

t=1
εtỹ

′
t−1

}
+ op(T−ζ),

where S was defined in Assumption 2.1. Lemma E.3 shows that

ν̂ −H•,j∗ = 1
σ2

j∗
T−1

T∑
t=1

ξ0,tεj∗,t + op(T−1/2).

Using the definition of θh,T and re-arranging terms gives the desired result.

B.3 Proof of Proposition 4.2

Define α̃ℓ = D−1/2αℓD
1/2 for all ℓ ≥ 1. Notice that ∥α(L)∥2 = ∑∞

ℓ=1 ∥α̃ℓ∥2.
By Proposition 3.2, we have aBias(δ̂i∗,j∗,h) = ∑∞

ℓ=1 trace(Ξi∗,j∗,h,ℓα̃ℓ), where

Ξi∗,j∗,h,ℓ ≡ D1/2H ′(A′)ℓ−1S−1Ψi∗,j∗,hHD
1/2 − 1(ℓ ≤ h)D−1/2ej∗,me

′
i∗,nA

h−ℓHD1/2.

Since trace(Ξi∗,j∗,h,ℓα̃ℓ) = vec(Ξi∗,j∗,h,ℓ)′ vec(α̃′
ℓ), we can write

aBias(δ̂) =
∞∑

ℓ=1
Υℓ vec(α̃′

ℓ),

where
Υℓ ≡

(
vec(Ξi∗

1,j∗
1 ,h1,ℓ), . . . , vec(Ξi∗

k
,j∗

k
,hk,ℓ)

)′
∈ Rk×m2

.
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Hence,

max
α(L) : ∥α(L)∥≤M

∥R aBias(δ̂)∥2 = max
{α̃ℓ}∞

ℓ=1 :
∑∞

ℓ=1 ∥α̃′
ℓ
∥2≤M2

∥∥∥∥∥
∞∑

ℓ=1
RΥℓ vec(α̃′

ℓ)
∥∥∥∥∥

2

.

Lemma E.5 shows that the final expression above equals M2λmax(∑∞
ℓ=1 RΥℓΥ′

ℓR
′) (the lemma

only explicitly considers the case M = 1, but the general case then follows from the homo-
geneity of degree 1 of the norm). Finally, Lemma B.1 below shows that ∑∞

ℓ=1 ΥℓΥ′
ℓ =

aVar(β̂) − aVar(δ̂). This completes the proof of the proposition. The proof of Lemma E.5
shows that the maximum above is achieved when vec(α̃′

ℓ) ∝ Υ′
ℓv (with the constant of pro-

portionality being independent of ℓ and chosen to satisfy the norm constraint), where v is
the eigenvector corresponding to the largest eigenvalue of R[aVar(β̂) − aVar(δ̂)]R′. In the
univariate case k = 1, this reduces to expression (4.1) in Section 4.2.

Lemma B.1. Under the assumptions of Proposition 4.2, and using the notation in the proof
of that proposition, we have

∞∑
ℓ=1

ΥℓΥ′
ℓ = aVar(β̂) − aVar(δ̂).

Proof. By definition of Υℓ, it suffices to show that, for any indices a, b ∈ {1, . . . , k},

∞∑
ℓ=1

vec(Ξi∗
a,j∗

a ,ha,ℓ)′ vec(Ξi∗
b
,j∗

b
,hb,ℓ) = aCov(β̂i∗

a,j∗
a ,ha , β̂i∗

b
,j∗

b
,hb

) − aCov(δ̂i∗
a,j∗

a ,ha , δ̂i∗
b
,j∗

b
,hb

). (B.2)

Multiplying out terms, we find that the left-hand side above equals

∞∑
ℓ=1

trace(Ξ′
i∗
a,j∗

a ,ha,ℓΞi∗
b
,j∗

b
,hb,ℓ) =

∞∑
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trace
(
Aℓ−1Σ(A′)ℓ−1S−1Ψi∗

b
,j∗

b
,hb

ΣΨ′
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a ,ha
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−
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trace
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b
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hb−ℓΣΨ′
i∗
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)

−
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trace
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Aℓ−1H•,j∗

a
e′

i∗
a,nA

ha−ℓΣΨ′
i∗
b
,j∗

b
,hb
S−1

)

+ 1(j∗
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We now evaluate each of the four terms on the right-hand side above. The first term equals

trace
 ∞∑

ℓ=1
Aℓ−1Σ(A′)ℓ−1

︸ ︷︷ ︸
=S

S−1Ψi∗
b
,j∗

b
,hb

ΣΨ′
i∗
a,j∗

a ,ha
S−1

 = trace
(
Ψi∗

b
,j∗

b
,hb

ΣΨ′
i∗
a,j∗

a ,ha
S−1

)
.

The second term (in the earlier display) equals

− trace
 hb∑

ℓ=1
Aℓ−1H•,j∗

b
e′

i∗
b
,nA

hb−ℓ

︸ ︷︷ ︸
=
∑hb

ℓ=1 Ahb−ℓH•,j∗
b

e′
i∗
b

,n
Aℓ−1=Ψi∗

b
,j∗

b
,hb

ΣΨ′
i∗
a,j∗

a ,ha
S−1

 = − trace
(
Ψi∗

b
,j∗

b
,hb

ΣΨ′
i∗
a,j∗

a ,ha
S−1

)
,

and the third term (in the earlier display) also equals this quantity by a symmetric calcula-
tion. In conclusion, we have shown

∞∑
ℓ=1

trace(Ξ′
i∗
a,j∗

a ,ha,ℓΞi∗
b
,j∗

b
,hb,ℓ)

= 1(j∗
a = j∗

b )σ−2
j∗

a

min{ha,hb}∑
ℓ=1

e′
i∗
b
,nA

hb−ℓΣ(A′)ha−ℓei∗
a,n − trace

(
Ψi∗

b
,j∗

b
,hb

ΣΨ′
i∗
a,j∗

a ,ha
S−1

)
.

The desired result (B.2) now follows from Corollary A.2.

B.4 Proof of Corollary 3.2

Use the notation E∗(z | w) = Cov(z, w) Var(w)−1w for the mean-square projection of z on
w. Then

σ2
j∗Ψ′

hS
−1ỹt−1 =

(
h∑

ℓ=1
(A′)h−ℓei∗,n σ

2
j∗H ′

•,j∗(A′)ℓ−1︸ ︷︷ ︸
=Cov(εj∗,t−ℓ,ỹt−1)

)
S−1ỹt−1

=
h∑

ℓ=1
(A′)h−ℓei∗,nE

∗(εj∗,t−ℓ | ỹt−1)

=
h∑

ℓ=1
(A′)h−ℓei∗,nεj∗,t−ℓ,
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where the last equality uses the assumption εj∗,t−ℓ ∈ span(˜̌yt−1, . . . , ˜̌yt−p) for ℓ = 1, . . . , h.
Thus,

Var(ε′
tH

′Ψ′
hS

−1ỹt−1) = Var
(

1
σ2

j∗

h∑
ℓ=1

εj∗,t−ℓε
′
tH

′(A′)h−ℓei∗,n

)

= 1
σ4

j∗

h∑
ℓ=1

Var
(
εj∗,t−ℓε

′
tH

′(A′)h−ℓei∗,n

)

= 1
σ4

j∗

h∑
ℓ=1

E(ε2
j∗,t−ℓ) Var(ε′

tH
′(A′)h−ℓei∗,n)

= 1
σ2

j∗
Var

(
e′

i∗,n

h∑
ℓ=1

Ah−ℓHεt+ℓ

)
.

It now follows as in the proof of Corollary A.2 that aVar(β̂h) = aVar(δ̂h). Then Proposi-
tion 4.1 implies that aBias(δ̂h) = 0.

B.5 Proof of Corollary 4.1

By Proposition 4.1,

sup
α(L) : ∥α(L)∥≤M

aBias(δ̂h;α(L))2 = M2{aVar(β̂h) − aVar(δ̂h)}.

Thus,

sup
α(L) : ∥α(L)∥≤M

aMSE(δ̂h;α(L)) − aMSE(β̂h)

= M2{aVar(β̂h) − aVar(δ̂h)} + aVar(δ̂h) − aVar(β̂h)

= (M2 − 1){aVar(β̂h) − aVar(δ̂h)}.

B.6 Proof of Corollary 4.2

Write θ̂h(ω) = δ̂h +ω(β̂h − δ̂h). By Corollary A.2, the two terms are asymptotically indepen-
dent of each other, and the second term has asymptotic variance ω2{aVar(β̂h) − aVar(δ̂h)}.
Hence,

aMSE(θ̂h(ω)) = {(1 − ω) aBias(δ̂h)}2 + aVar(δ̂h) + ω2{aVar(β̂h) − aVar(δ̂h)}.
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By Proposition 4.1, the supremum of the above expression over α(L) satisfying ∥α(L)∥ ≤ M

equals

(1 − ω)2M2{aVar(β̂h) − aVar(δ̂h)} + aVar(δ̂h) + ω2{aVar(β̂h) − aVar(δ̂h)}.

To find the ω that minimizes the above expression, we can equivalently minimize the function
(1 − ω)2M2 + ω2. The result follows.

B.7 Proof of Corollary 4.4

Proposition 4.1 implies that the absolute relative VAR bias |bh| can be made to take any
value in [0,∞) as α(L) varies over the set of all absolutely summable lag polynomials. The
corollary then follows from Corollaries 3.1 and A.2 and Proposition 3.3.

B.8 Proof of Corollary 4.6

The result follows straightforwardly from (4.2) if we can show that the maximal non-
centrality parameter equals

max
α(L) : ∥α(L)∥≤M

aBias(δ̂)′ aVar(δ̂)−1 aBias(δ̂) = M2
[
λmax(aVar(β̂) aVar(δ̂)−1) − 1

]
.

But this follows from applying Proposition 4.2 with R = aVar(δ̂)−1/2, since

λmax
(
aVar(δ̂)−1/2[aVar(β̂) − aVar(δ̂)] aVar(δ̂)−1/2′

)
= λmax

(
aVar(δ̂)−1/2 aVar(β̂) aVar(δ̂)−1/2′ − Ik

)
= λmax

(
aVar(δ̂)−1/2 aVar(β̂) aVar(δ̂)−1/2′

)
− 1

= λmax
(
aVar(β̂) aVar(δ̂)−1

)
− 1.

B.9 Proof of Corollary A.2

We first use Proposition 3.1 to compute aCov(β̂i∗
a,j∗

a ,ha , β̂i∗
b
,j∗

b
,hb

). Define ξj∗,h,t = (ξ1,j∗,h,t, . . . , ξn,j∗,h,t)′

as in Proposition 3.1, but making the dependence on both i∗ and j∗ explicit in the notation.
Observe that

E[ξi∗
a,j∗

a ,ha,tεj∗
a ,tξi∗

b
,j∗

b
,hb,sεj∗

b
,s] = 0 for all s ̸= t.
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Hence,
aCov(β̂i∗

a,j∗
a ,ha , β̂i∗

b
,j∗

b
,hb

) = 1
σ2

j∗
a
σ2

j∗
b

E[ξi∗
a,j∗

a ,ha,tεj∗
a ,tξi∗

b
,j∗

b
,hb,tεj∗

b
,t].

If j∗
a < j∗

b , then εj∗
a ,t is independent of all the other terms in the above expectation, so the

expectation equals zero; similarly if j∗
a > j∗

b . Now consider the case j∗
a = j∗

b :

aCov(β̂i∗
a,j∗

a ,ha , β̂i∗
b
,j∗

a ,hb
) = 1

σ4
j∗

a

E[ξi∗
a,j∗

a ,ha,tξi∗
b
,j∗

a ,hb,tε
2
j∗

a ,t]

= 1
σ4

j∗
a

E[ξi∗
a,j∗

a ,ha,tξi∗
b
,j∗

a ,hb,t]E[ε2
j∗

a ,t]

= 1
σ2

j∗
a

E[ξi∗
a,j∗

a ,ha,tξi∗
b
,j∗

a ,hb,t]

= 1
σ2

j∗
a

E[e′
i∗
a,nA

haHj∗
a
εj∗

a ,tε
′
j∗

a ,tH
′
j∗

a
(A′)hbei∗

b
,n]

+ E

e′
i∗
a,n

ha∑
ℓ1=1

hb∑
ℓ2=1

Aha−ℓ1Hεt+ℓ1ε
′
t+ℓ2H

′(A′)hb−ℓ2ei∗
b
,n


= 1
σ2

j∗
a

ψa,b +
min{ha,hb}∑

ℓ=1
e′

i∗
a,nA

ha−ℓΣ(A′)hb−ℓei∗
b
,n

 ,
as claimed.

We now derive aCov(δ̂i∗
a,j∗

a ,ha , δ̂i∗
b
,j∗

b
,hb

) using Proposition 3.2. Observe that the vector
process (ε′

t ⊗ ỹ′
t−1, ξ

′
j∗

a ,0,tεj∗
a ,t, ξ

′
j∗

b
,0,tεj∗

b
,t)′ is a martingale difference sequence with respect to

the filtration generated by {εt}. Moreover, E[(εt ⊗ ỹt−1)ξ′
j∗,0,tεj∗,t] = 0 for any j∗. Hence,

aCov(δ̂i∗
a,j∗

a ,ha , δ̂i∗
b
,j∗

b
,hb

) = E
[
trace

(
S−1Ψi∗

a,j∗
a ,haHεtỹ

′
t−1

)
trace

(
S−1Ψi∗

b
,j∗

b
,hb
Hεtỹ

′
t−1

)]
+ 1
σ2

j∗
a
σ2

j∗
b

E
[
e′

i∗
a,nA

haξj∗
a ,0,tξ

′
j∗

b
,0,t(A′)hbei∗

b
,nεj∗

a ,tεj∗
b

,t

]
.

The second term on the right-hand side above equals 1(j∗
a = j∗

b )σ−2
j∗

a
ψa,b, by similar arguments

as in the earlier LP calculation. The first term on the right-hand side above equals

E
[
ỹ′

t−1S
−1Ψi∗

a,j∗
a ,haHεtε

′
tH

′Ψ′
i∗
b
,j∗

b
,hb
S−1ỹt−1

]
= trace

(
E
[
ỹt−1ỹ

′
t−1S

−1Ψi∗
a,j∗

a ,haHεtε
′
tH

′Ψ′
i∗
b
,j∗

b
,hb
S−1

])
= trace

(
E
[
ỹt−1ỹ

′
t−1

]
S−1Ψi∗

a,j∗
a ,haHE [εtε

′
t]H ′Ψ′

i∗
b
,j∗

b
,hb
S−1

)
= trace

(
SS−1Ψi∗

a,j∗
a ,haHDH

′Ψ′
i∗
b
,j∗

b
,hb
S−1

)
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= trace
(
Ψi∗

a,j∗
a ,haΣΨ′

i∗
b
,j∗

b
,hb
S−1

)
,

as claimed.
Finally, we compute aCov(β̂i∗

a,j∗
a ,ha , δ̂i∗

b
,j∗

b
,hb

) using Propositions 3.1 and 3.2. Using argu-
ments similar to above, we obtain

aCov(β̂i∗
a,j∗

a ,ha , δ̂i∗
b
,j∗

b
,hb

)

= 1
σ2

j∗
a

∞∑
s=−∞

E

e′
i∗
a,n

ha∑
ℓ=1

Aha−ℓHεt+ℓεj∗
a ,t trace

(
S−1Ψi∗

b
,j∗

b
,hb
Hεt+sỹ

′
t+s−1

)+ 1(j∗
a = j∗

b )σ−2
j∗

a
ψa,b.

The first term on the left-hand side above equals

1
σ2

j∗
a

ha∑
ℓ=1

∞∑
s=−∞

E
[
e′

i∗
a,nA

ha−ℓHεt+ℓε
′
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′Ψ′
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b
,j∗

b
,hb
S−1ỹt+s−1εj∗
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]

= 1
σ2
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E
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e′

i∗
a,nA

ha−ℓHεt+ℓε
′
t+ℓH

′Ψ′
i∗
b
,j∗

b
,hb
S−1ỹt+ℓ−1εj∗
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]

= 1
σ2

j∗
a

ha∑
ℓ=1

e′
i∗
a,nA

ha−ℓHE[εt+ℓε
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i∗
b
,j∗

b
,hb
S−1E[ỹt+ℓ−1εj∗
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= 1
σ2
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ha∑
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i∗
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i∗
b
,j∗

b
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a
σ2

j∗
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= trace
(
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ℓ=1

Aℓ−1H•,j∗
a
e′
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a,nA
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a,j∗

a,ha

ΣΨ′
i∗
b
,j∗

b
,hb
S−1

)
.

It follows that aCov(β̂i∗
a,j∗

a ,ha , δ̂i∗
b
,j∗

b
,hb

) = aCov(δ̂i∗
a,j∗

a ,ha , δ̂i∗
b
,j∗

b
,hb

), as claimed.
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