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This online appendix contains supplemental material on: the empirically relevant range
of relative LP and VAR standard errors (Supplemental Appendix C), simulation results
(Supplemental Appendix D), and proofs (Supplemental Appendix E).

Appendix C Empirically relevant standard error range

We here describe the construction of the empirically relevant range of ratios of VAR and LP
standard errors reported in Figure 4.1. We consider four applications in which the researcher
has access to a direct measure of a macroeconomic shock, see the descriptions below. We
estimate the dynamic causal effects of those four shocks using LPs and the corresponding
recursive VAR (Plagborg-Møller and Wolf, 2021), with both specifications including the same
set of observables and same number of controls. We then construct bootstrap standard errors
with 2,000 bootstrap iterations, assuming homoskedasticity.

The four applications are described below. The data and series mnemonics come from
the replication files of Ramey (2016). Our choices of shock measures, observables, samples,
data treatment, trends, and lag lengths follow those in Ramey (2016).

1. Monetary policy: We use the high-frequency surprises of Gertler and Karadi (2015)
(ff4_tc) as the observed shock series, and as macro observables we include log indus-
trial production (lip), log prices (lcpi), the one-year rate (gs1), and the excess bond
premium (ebp). The data are monthly from 1990:1 to 2012:6. We include two lags, and
consider impulse responses of all macro variables at horizons of 1–4 years.
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2. Taxes: The tax shock is the Romer and Romer (2010) series rrtaxu. As macro observables
we include GDP (rgdp), federal tax revenue (rfedtaxrev), and government spending
(rgov), all real, per capita, and in logs. The data are quarterly from 1950:1 to 2007:4.
Before estimation, the data are residualized with respect to a quadratic time trend and
a dummy variable for 1975:2. We include four lags, and consider impulse responses of all
macro variables at horizons of 1–5 years.

3. Government purchases: We use the Ramey (2011) military news series (rameynews). The
macro observables are GDP (rgdp), government spending (rgov), and the average tax
rate (taxrate); the first two series are in real terms, logs, and per capita. The data are
quarterly from 1947:2 to 2013:4. Before estimation, the data are residualized with respect
to a quadratic time trend. We include two lags, and consider impulse responses of all
macro variables at horizons of 1–5 years.

4. Technology: We use the unanticipated TFP shock series of Francis, Owyang, Roush,
and DiCecio (2014) (ford_tfp). The macro observables are GDP (rgdp), stock prices
(stockp_sh), and labor productivity (rgdp/tothours), all in logs (and in real per capita
terms for GDP). The data are quarterly from 1949:2 to 2009:4. Before estimation, the
data are residualized with respect to a quadratic time trend. We include two lags, and
consider impulse responses of all macro variables at horizons of 1–5 years.

Further details on data construction are provided in the replication codes. Aggregating across
shocks, outcome variables, and horizons, we compute 301 ratios of VAR to LP standard
errors. The mean ratio is 0.394, the median is 0.367, the 10th percentile is 0.168, and the
90th percentile is 0.638.

Appendix D Further simulation results

D.1 Illustrative univariate model

We begin with a pedagogical illustration based on a univariate ARMA(1,1) model:

yt = ρyt−1 + εt + ψεt−1, εt
i.i.d.∼ N(0, σ2). (D.1)

Throughout this section we set ρ = 0.9, σ2 = 1, and ψ ∈ {0, 0.25, 0.5, 0.75}. The lagged MA
term thus accounts for up to 36 per cent of the overall variance of the error term in (D.1).
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M M2

1+M2

p ψ = 0.25 ψ = 0.50 ψ = 0.75 ψ = 0.25 ψ = 0.50 ψ = 0.75
1 3.622 7.396 11.234 0.929 0.982 0.992
2 0.882 3.337 6.821 0.437 0.918 0.979
3 0.220 1.631 4.682 0.046 0.727 0.956
4 0.055 0.811 3.361 0.003 0.397 0.919

Table D.1: M and M2

1+M2 as a function of p and ψ in the ARMA(1,1) model (D.1), with the
researcher estimating an AR(p).

We first quantify the amount of misspecification, after representing the model as the best-
fitting ARMA(p,∞) model (2.1) for a given number of VAR lags p, as we did in Section 5
(see Footnote 8 and Table 5.1). We see that, even for moderate p and ψ, the degree of
misspecification—and accordingly the optimal model averaging weight on LP—can be large.

Next we show that the implied misspecification polynomial α(L) can in fact be very
close to the least favorable polynomial α†(L;h) derived in Section 4, which represents the
theoretical worst case for AR bias and coverage. Figure D.1 shows α(L) (solid) as well as
α†(L;h) (dashed and dotted) for horizons h ∈ {1, 5, 10}, and throughout setting ψ = 0.5.
For both p = 1 as well as p = 4, the actual MA polynomial α(L) implied by the ARMA(1,1)
model (D.1) is very close—though not quite identical—to the worst-case α†(L; 1) at horizon
h = 1. Hence, at least in the particular DGP considered here, the least favorable lag
polynomial is not some practically immaterial theoretical curiosity.

Consistent with our theory, we find that coverage can be poor for VAR confidence in-
tervals, while LP intervals are robust to the presence of the MA term. Figure D.2 reports
coverage rates and median confidence interval lengths for the cases ψ = 0 (no misspecifi-
cation) and ψ = 0.25 (moderate misspecification, with the lagged MA term accounting for
around 6% of the variance of the error term). We throughout set p = 1 and simulate 5,000
samples of size T = 240. The top panel reveals that, when the AR(1) model is in fact cor-
rectly specified (i.e., for ψ = 0), then both LP and AR confidence intervals attain the nominal
coverage probability of 90 per cent (left panel); furthermore, and also as expected, the AR
confidence intervals are meaningfully shorter (right panel). In the misspecified case in the
bottom panel, the AR confidence intervals instead substantially undercover, and particularly
so at short horizons. LP, on the other hand, exhibits at worst mild undercoverage.
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Figure D.1: α(L) (black, solid) and least favorable α†(L) (colored, dashed and dotted) at various
horizons for the simple ARMA(1,1) model (D.1), with the researcher estimating an AR(1) (left)
and an AR(4) (right).

AR(1) – Correct Specification

ARMA(1,1), ψ = 0.25

Figure D.2: Coverage probabilities (left) and median confidence interval length (right) for AR
(red) and LP (blue) confidence intervals computed via the delta method or bootstrap (the latter
are indicated with subscript “b” in the figure legends). The DGP is (D.1) with ψ = 0 (top) and
ψ = 0.25 (bottom), with estimation lag length fixed at p = 1.



D.2 Smets and Wouters model

We now provide additional simulation results based on the Smets and Wouters (2007) DGP,
as in Section 5. The sample size and inference methods are the same as in Section 5, unless
otherwise noted.

Monetary shock. Here we assume that the econometrician observes two variables: the
monetary policy shock and total output. The impulse response function of interest is that of
output with respect to the monetary shock. We note that, since the monetary shock follows
a simple AR(1) process, this setting is likely to be less challenging for VAR inference than
the cost-push shock experiment in Section 5.

Figure D.3 shows that, just as in our main exercise, VAR confidence intervals can severely
undercover, while LP intervals remain robust. The top and middle panels show results for lag
length p selected by AIC or fixed at 4, respectively, and the results are comparable to those
in Section 5. Finally, in the bottom panel, we show what happens if we slightly perturb the
DGP by replacing the actual lag polynomial α(L) with the least favorable one at horizon 4,
α†(L; 4), without changing the amount ∥α(L)∥ of overall misspecification (see Section 4).D.1

VAR undercoverage is now severe even at shorter horizons. Overall, however, the magnitudes
of undercoverage at medium and long horizons are broadly comparable with those obtained
under the actual α(L) implied by the Smets and Wouters (2007) model, confirming that the
least favorable MA polynomial α†(L) is not particularly pathological in general.

Cost-push shock. To complement our simulation evidence in Section 5, we repeat the
cost-push shock exercise of that section for a larger sample size of T = 2,000. We fix p = 2,
in line with the median AIC lag length selection in our main exercise. The results shown in
Figure D.4 are similar both qualitatively and quantitatively to our main findings in the top
panel of Figure 5.1, especially for the bootstrap confidence intervals. Hence, our results with
T = 240 in Section 5 are not driven by small-sample phenomena. Figure D.4 also plots the
theoretically predicted VAR coverage probability (orange dashed line) from Corollary 3.1.
We see that this asymptotic coverage is very close to the actual one.

D.1To be precise, we first set p = 1, derive the VARMA(1,∞) as discussed in Footnote 8, and then switch
out the implied lag polynomial α(L). The estimation lag length is selected by AIC.
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Monetary shock: Lag length via AIC

Monetary shock: Lag length p = 4

Monetary shock: Worst-case α†(L; 4)

Figure D.3: Coverage probabilities (left) and median confidence interval length (right) for VAR
(red) and LP (blue) confidence intervals computed via the delta method or bootstrap (the latter
are indicated with subscript “b” in the figure legends).
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Cost-push shock: Lag length p = 2, larger sample

Figure D.4: See caption for Figure D.3. The orange dashed line indicates the asymptotic VAR
coverage probability predicted by Corollary 3.1.

Appendix E Further proofs

We impose Assumption 2.1 throughout. Let ∥B∥ denote the Frobenius norm of any matrix
B. It is well known that this norm is sub-multiplicative: ∥BC∥ ≤ ∥B∥ · ∥C∥. Let In denote
the n × n identity matrix, 0m×n the m × n matrix of zeros, and ei,n the n-dimensional
unit vector with a 1 in the i-th position. Recall from Assumption 2.1 the definitions D ≡
Var(εt) = diag(σ2

1, . . . , σ
2
m), ỹt ≡ (In − AL)−1Hεt = ∑∞

s=0 A
sHεt−s, and S ≡ Var(ỹt).

E.1 Main lemmas

Lemma E.1. For any i∗ ∈ {1, . . . , n} and j∗ ∈ {1, . . . ,m}, we have

yi∗,t+h = θh,T εj∗,t +B′
h,i∗,j∗y

j∗,t
+B′

h,i∗,j∗yt−1 + ξh,i∗,t + T−ζΘh(L)εt,

where

θh,T ≡ e′
i∗,n(AhH + T−ζ

h∑
ℓ=1

Ah−ℓHαℓ)ej∗,m,

B′
h,i∗,j∗ ≡ e′

i∗,nA
hHj∗H−1

11 ,

B′
h,i∗,j∗ ≡ e′

i∗,n

[
Ah+1 − AhHj∗H−1

11 Ij∗A
]
,
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ξh,i∗,t ≡ e′
i∗,nA

hHj∗εj∗,t +
h∑

ℓ=1
e′

i∗,nA
h−ℓHεt+ℓ,

and Θh(L) = ∑∞
ℓ=−∞ Θh,ℓL

ℓ is an absolutely summable, 1 × n two-sided lag polynomial with
the j∗-th element of Θh,0 equal to zero. Moreover,

T−1
T −h∑
t=1

(Θh(L)εt)εj∗,t = Op(T−1/2).

Proof. Iteration on the model in Equation (2.1) yields

yt+h = Ah+1yt−1 +
h∑

ℓ=0
Ah−ℓ(Hεt+ℓ + T−ζHα(L)εt+ℓ). (E.1)

As in Section 2.2, let y
j∗,t

≡ (y1,t, . . . , yj∗−1,t)′ denote the variables ordered before yj∗,t (if
any). Analogously, let yj∗,t ≡ (yj∗+1,t, . . . yn,t)′ denote the variables ordered after yj∗,t.

Using Assumption 2.1(iii), partition

H = (Hj∗ , H•,j∗ , Hj∗) =


H11 0 0
H21 H22 0
H31 H32 H33


conformably with the vector yt = (y′

j∗,t
, yj∗,t, y

′
j∗,t)′. Let Ij∗ denote the first j∗ − 1 rows of

the n× n identity matrix. Using the definition of yt in Equation (2.1),

y
j∗,t

= Ij∗Ayt−1 +H11εj∗,t + T−ζH11Ij∗α(L)εt,

where εj∗,t = Ij∗εt. Using the previous equation to solve for εj∗,t we get

εj∗,t = H−1
11 (y

j∗,t
− Ij∗Ayt−1 − T−ζH11Ij∗α(L)εt). (E.2)

Expanding the terms in (E.1) we get:

yt+h = Ah+1yt−1 + AhHεt + T−ζAhHα(L)εt +
h∑

ℓ=1
Ah−ℓ(Hεt+ℓ + T−ζHα(L)εt+ℓ)

= Ah+1yt−1 +
(
AhHj∗εj∗,t + AhH•,j∗εj∗,t + AhHj∗εj∗,t

)
+ T−ζAhHα(L)εt +

h∑
ℓ=1

Ah−ℓ(Hεt+ℓ + T−ζHα(L)εt+ℓ)
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= Ah+1yt−1 + AhHj∗H−1
11 (y

j∗,t
− Ij∗Ayt−1 − T−ζH11Ij∗α(L)εt) + AhH•,j∗εj∗,t + AhHj∗εj∗,t

+ T−ζAhHα(L)εt +
h∑

ℓ=1
Ah−ℓ(Hεt+ℓ + T−ζHα(L)εt+ℓ),

where the last equality follows from substituting (E.2). Re-arranging terms we get

yi∗,t+h =
(
e′

i∗,nA
hH•,j∗

)
εj∗,t +

(
e′

i∗,nA
hHj∗H−1

11

)
︸ ︷︷ ︸

≡B′
h,i∗,j∗

y
j∗,t

+
(
e′

i∗,n

[
Ah+1 − AhHj∗H−1

11 Ij∗A
])

︸ ︷︷ ︸
≡B′

h,i∗,j∗

yt−1

+ e′
i∗,n

(
AhHj∗εj∗,t +

h∑
ℓ=1

Ah−ℓHεt+ℓ

)
︸ ︷︷ ︸

=ξh,i∗,t

+ T−ζe′
i∗,n

(
−AhHj∗H−1

11 H11Ij∗α(L)εt +
h∑

ℓ=0
Ah−ℓHα(L)εt+ℓ

)
, (E.3)

Using the definition of θh,T ≡ e′
i∗,n(AhH+T−ζ ∑h

ℓ=1 A
h−ℓHαℓ)ej∗,m and adding and subtract-

ing e′
i∗,n

(
T−ζ ∑h

ℓ=1 A
h−ℓHαℓ

)
ej∗,mεj∗,t in (E.3), we obtain a representation of the form

yi∗,t+h = θh,T εj∗,t +B′
h,i∗,j∗y

j∗,t
+B′

h,i∗,j∗yt−1 + ξh,i∗,t + T−ζ ũt, (E.4)

where

ũt ≡ e′
i∗,n

(
−AhHj∗Ij∗α(L)εt +

h∑
ℓ=0

Ah−ℓHα(L)εt+ℓ −
(

h∑
ℓ=1

Ah−ℓHαℓej∗,me
′
j∗,m

)
εt

)
. (E.5)

Algebra shows that ũt can be written as a two-sided lag polynomial, Θh(L) = ∑∞
ℓ=−∞ Θh,ℓL

ℓ,
with coefficients of dimension 1 × n given by the following formulae:

1. For ℓ ≥ 1:

Θh,ℓ = −e′
i∗,nA

hHj∗Ij∗αℓ +
h∑

s=0
e′

i∗,nA
h−sHαℓ+s.

2. For ℓ = 0:
Θh,0 =

h∑
s=1

e′
i∗,nA

h−sHαs −
h∑

s=1
e′

i∗,nA
h−sHαsej∗,me

′
j∗,m,

and, consequently, Θh,0,j∗ ≡ Θh,0ej∗,m = 0.
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3. For ℓ ∈ {−(h− 1), . . . ,−1}:
h+ℓ∑
s=1

e′
i∗,nA

h−s+ℓHαs.

4. For ℓ ≤ −h, Θh,ℓ = 01×n.

We next show that Θh(L) is absolutely summable, that is ∑∞
ℓ=−∞ ∥Θh,l∥ < ∞. To do this,

it suffices to show that ∑∞
ℓ=1 ∥Θh,l∥ < ∞, since all the coefficients with index ℓ ≤ −h are 0.

Note that, by definition, for any ℓ ≥ 1:

∥Θh,ℓ∥ ≤ ∥Ah∥∥Hj∗Ij∗∥∥αℓ∥ +
h∑

s=0
∥Ah−s∥∥H∥∥αℓ+s∥.

Thus,
∞∑

ℓ=1
∥Θh,ℓ∥ ≤ ∥Ah∥∥Hj∗Ij∗∥

∞∑
ℓ=1

∥αℓ∥ + ∥H∥
∞∑

ℓ=1

h∑
s=0

∥Ah−s∥∥αℓ+s∥.

Let λ ∈ [0, 1) and C > 0 be chosen such that ∥Aℓ∥ ≤ Cλℓ for all ℓ ≥ 0 (such constants exists
by Assumption 2.1(ii)). Then

∞∑
ℓ=1

h∑
s=0

∥Ah−s∥∥αℓ+s∥ ≤ C
∞∑

ℓ=1

h∑
s=1

λh−s∥αℓ+s∥

≤ C
∞∑

ℓ=1

h∑
s=1

∥αℓ+s∥

≤ Ch
∞∑

ℓ=1
∥αℓ∥

< ∞,

where the last inequality holds because the coefficients of α(L) are summable. We thus
conclude that

yi∗,t+h = θh,T εj∗,t +B′
h,yyj∗,t

+B′
h,yyt−1 + ξh,i∗,t + T−ζΘh(L)εt,

where Θh(L) is a two-sided lag-polynomial with summable coefficients.
Finally, we show that

T−1
T −h∑
t=1

(Θh(L)εt)εj∗,t = Op(T−1/2). (E.6)
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To do this, we write

Θh(L)εt =
∞∑

ℓ=1
Θh,ℓεt−ℓ + Θh,0εt +

−1∑
ℓ=−(h−1)

Θh,ℓεt−ℓ.

1. Note first that the process
{( ∞∑

ℓ=1
Θh,ℓεt−ℓ

)
εj∗,t

}∞

t=1

is white noise (mean-zero and serially uncorrelated components). The summability of
coefficients of Θh(L) further implies that

Var
(

1√
T

T −h∑
t=1

( ∞∑
ℓ=1

Θh,ℓεt−ℓ

)
εj∗,t

)
= T − h

T
Var

(( ∞∑
ℓ=1

Θh,ℓεt−ℓ

)
εj∗,t

)
< ∞.

Thus, by Markov’s inequality, we have that

1
T

T −h∑
t=1

( ∞∑
ℓ=1

Θh,ℓεt−ℓ

)
εj∗,t = Op(T−1/2).

2. Note second that the process
{(Θh,0εt) εj∗,t}∞

t=1

is i.i.d. with mean zero (since εt has independent components and Θ0,ℓ,j∗ = 0). Since
the process has finite variance, we conclude that

1
T

T −h∑
t=1

(Θh,0εt) εj∗,t = Op(T−1/2).

3. Finally, note that the process
 −1∑

ℓ=−(h−1)
Θh,ℓεt−ℓ

 εj∗,t


∞

t=1

is white noise (mean-zero and serially uncorrelated components). Therefore,

Var
 1√

T

T −h∑
t=1

 −1∑
ℓ=−(h−1)

Θh,ℓεt−ℓ

 εj∗,t

 = T − h

T
Var

 −1∑
ℓ=−(h−1)

Θh,ℓεt−ℓ

 εj∗,t

 < ∞.
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We conclude that

1
T

T −h∑
t=1

 −1∑
ℓ=−(h−1)

Θh,ℓεt−ℓ

 εj∗,t = Op(T−1/2).

This completes the verification of (E.6).

Lemma E.2.

Â− A = T−ζH
∞∑

ℓ=1
αℓDH

′(A′)ℓ−1S−1 + T−1
T∑

t=1
Hεtỹ

′
t−1S

−1 + op(T−ζ).

In particular, Â− A = Op(T−ζ + T−1/2).

Proof. Since,

Â− A =
(
T−1

T −h∑
t=1

uty
′
t−1

)(
T−1

T −h∑
t=1

yt−1y
′
t−1

)−1

,

the result follows from Lemmas E.8 and E.9.

Lemma E.3.
ν̂ −H•,j∗ = 1

σ2
j∗
T−1

T∑
t=1

ξ0,tεj∗,t + op(T−1/2).

Proof. By Lemma E.6, ν̂ = (01×(j∗−1), 1, ν̂
′), where the j-th element of ν̂ equals the on-impact

local projection of yi∗+j,t on yj∗,t, controlling for y
j∗,t

and yt−1. The statement of the lemma
is therefore a direct consequence of Proposition 3.1 and the fact that (by definition) ξ0,i,t = 0
for i ≤ j∗.

Lemma E.4. Fix h ≥ 0. Consider the regression of yj∗,t on qj∗,t ≡ (y′
j∗,t
, y′

t−1)′, using the
observations t = 1, 2, . . . , T − h:

yj∗,t = ϑ̂′
hqj∗,t + x̂h,t.

Note that the residuals x̂h,t are consistent with the earlier definition in the proof of Propo-
sition 3.1. Let λ′

j∗ be the row vector containing the first j∗ − 1 elements of the last row
of −H̃−1 (where H̃ is defined in Assumption 2.1(iii)). Let λ′

j∗ ≡ (−λ′
j∗ , 1, 01×(n−j∗)) and

ϑ ≡ (λ′
j∗ , (λ′

j∗A))′. Then:

i) ϑ̂h − ϑ = Op(T−ζ + T−1/2).
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ii) T−1∑T −h
t=1 (x̂h,t − εj∗,t)εj∗,t = op(T−1/2).

iii) For ℓ ≥ 1, T−1∑T −h
t=1 (x̂h,t − εj∗,t)εt+ℓ = op(T−1/2).

iv) T−1∑T −h
t=1 (x̂h,t − εj∗,t)x̂h,t = op(T−1/2).

v) T−1∑T −h
t=1 x̂2

h,t

p→ σ2
j∗.

vi) For any absolutely summable two-sided lag polynomial B(L), T−1∑T −h
t=1 (x̂h,t−εj∗,t)B(L)εt =

Op(T−ζ + T−1/2).

Proof. By Equation (2.1), the outcome variables in the model satisfy

yt = Ayt−1 +H[Im + T−ζα(L)]εt, t = 1, 2, . . . , T.

By Assumption 2.1(iii), the first j∗ rows of the matrixH above are of the form (H̃, 0j∗×(j∗−m)),
where m is the number of shocks and H̃ is a j∗ × j∗ lower triangular matrix with 1’s on the
diagonal.

H̃ is invertible, which means we can premultiply the first j∗ equations of (2.1) by H̃−1

to obtain:

[H̃−1, 0j∗×(n−j∗)]yt = [H̃−1, 0j∗×(n−j∗)]Ayt−1 + [Ij∗ , 0j∗×(m−j∗)][Im + T−ζα(L)]εt.

By definition, −λ′
j∗ is the row vector containing the first j∗ − 1 elements of the last row of

H̃−1 and λ′
j∗ ≡ (−λ′

j∗ , 1, 01×(n−j∗)). Thus, we can re-write the j∗-th equation above as

[−λ′
j∗ , 1, 0j∗×(n−j∗)]yt = λ′

j∗Ayt−1 + εj∗,t + T−ζαj∗(L)εt,

where αj∗(L) is the j∗-th row of α(L). Re-arranging terms we get

yj∗,t = ϑ′qj∗,t + εj∗,t + T−ζαj∗(L)εt,

where ϑ ≡ (λ′
j∗ , (λ′

j∗A))′ and qj∗,t ≡ (y′
j∗,t
, y′

t−1)′. In a slight abuse of notation, and for
notational simplicity, we henceforth replace qj∗,t by qt.

Statement (i) follows from standard OLS algebra if we can show that a) T−1∑T −h
t=1 qtεj∗,t =

Op(T−ζ +T−1/2), b) (T−1∑T −h
t=1 qtq

′
t)−1 = Op(1), and c) T−ζ−1∑T −h

t=1 qt(αj∗(L)εt) = Op(T−ζ).
Lemma E.10 establishes these results.
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The proof of statements (ii) and (iii) are similar, so we focus on the latter. By definition
of x̂h,t, we have x̂h,t − εj∗,t = (ϑ − ϑ̂h)′qt + T−ζαj∗(L)εt. As in Lemma E.7 define ỹt =∑∞

s=0 A
sHεt−s. Let q̃t ≡ (ỹ′

j∗,t
, ỹ′

t−1)′ and ∆t ≡ qt − q̃t. Thus,

T−1
T −h∑
t=1

(x̂h,t − εj∗,t)εt+ℓ = (ϑ− ϑ̂h)′
(

1
T

T −h∑
t=1

∆tεt+ℓ

)
(E.7)

+ (ϑ− ϑ̂h)′
(

1
T

T −h∑
t=1

q̃tεt+ℓ

)
(E.8)

+ 1
T ζ

(
1
T

T −h∑
t=1

(αj∗(L)εt) εt+ℓ

)
. (E.9)

By Lemma E.10, (ϑ − ϑ̂h) = Op(T−ζ + T−1/2). Direct second-moment calculations can be
used to show that the terms in (E.8)–(E.9) are of order

Op(T−ζ + T−1/2)Op(T−1/2) and Op(T−ζ−1/2),

respectively. This implies that both terms are op(T−1/2). Finally, note that Lemma E.7 and
Assumption 2.1(i) imply that the sum in (E.7) is Op

(
T−ζ

)
. Thus, (E.7) is of order

Op(T−ζ + T−1/2)Op(T−ζ) = op

(
T−1/2

)
,

using ζ > 1/4. Since we have shown that (E.7)–(E.9) are op(T−1/2), then for ℓ ≥ 1,

T−1
T −h∑
t=1

(x̂h,t − εj∗,t)εt+ℓ = op(T−1/2).

For statement (iv), note that

T−1
T −h∑
t=1

(x̂h,t − εj∗,t)x̂h,t = T−1
T −h∑
t=1

(x̂h,t − εj∗,t)2 + T−1
T −h∑
t=1

(x̂h,t − εj∗,t)εj∗,t.

Lemma E.11 shows that T−1∑T −h
t=1 (x̂h,t −εj∗,t)2 = op(T−1/2). This result, combined with (ii),

implies that statement (iv) holds.
For statement (v), note that

T−1
T −h∑
t=1

(x̂h,t)2 = T−1
T −h∑
t=1

(x̂h,t − εj∗,t + εj∗,t)2

14



= T−1
T −h∑
t=1

(x̂h,t − εj∗,t)2 − 2T−1
T −h∑
t=1

(x̂h,t − εj∗,t)εj∗,t + T−1
T −h∑
t=1

ε2
j∗,t.

Lemma E.11 and statement (ii) imply that the first two terms converge in probability to
zero. Since T−1∑T −h

t=1 ε2
j∗,t

p→ σ2
j∗ (by the Law of Large Numbers), statement (v) holds.

Finally, statement (vi) obtains by decomposing

T−1
T −h∑
t=1

B(L)εt(x̂h,t − εj∗,t) = T−1
T −h∑
t=1

B(L)εtq
′
t(ϑ− ϑ̂h) + T−ζT−1

T −h∑
t=1

B(L)εt[αj∗(L)εt]′

= Op(1) ×Op(T−ζ + T−1/2) + T−ζ ×Op(1),

where the last line follows from statement (i), Lemma E.7, and moment calculations.

Lemma E.5. Let X denote the set of sequences {xℓ}∞
ℓ=1 of m × m matrices xℓ satisfying∑∞

ℓ=1 ∥xℓ∥2 ≤ 1. Let {Lℓ}∞
ℓ=1 be a sequence of r×m2 matrices Lℓ satisfying ∑∞

ℓ=1 ∥Lℓ∥2 < ∞.
Then

max
{xℓ}∞

ℓ=1∈X

∥∥∥∥∥
∞∑

ℓ=1
Lℓ vec(xℓ)

∥∥∥∥∥
2

= λmax

( ∞∑
ℓ=1

LℓL
′
ℓ

)
. (E.10)

Proof. A short proof using abstract functional analysis is available upon request from the
authors. Below we provide a more elementary proof.

The statement of the lemma is obvious if ∑∞
ℓ=1 ∥Lℓ∥2 = 0, in which case both sides of the

above display equal 0. Hence, we may assume that the series V ≡ ∑∞
ℓ=1 LℓL

′
ℓ converges to a

non-zero matrix. Let v be the unit-length eigenvector corresponding to the largest eigenvalue
λ ≡ λmax(V ) ∈ (0,∞) of V .

The purported maximum (E.10) is achieved by the sequence {x∗
ℓ} given by vec(x∗

ℓ) =
λ−1/2L′

ℓv:
∥∥∥∥∥

∞∑
ℓ=1

Lℓ vec(x∗
ℓ)
∥∥∥∥∥

2

=
∥∥∥∥∥λ−1/2

∞∑
ℓ=1

LℓL
′
ℓv

∥∥∥∥∥
2

= λ−1 ∥V v∥2 = λ−1 ∥λv∥2 = λ∥v∥2 = λ,

and ∞∑
ℓ=1

∥x∗
ℓ∥2 =

∞∑
ℓ=1

vec(x∗
ℓ)′ vec(x∗

ℓ) = λ−1v′
∞∑

ℓ=1
LℓL

′
ℓv = λ−1v′V v = λ−1λ = 1.

We complete the proof by showing that the left-hand side of (E.10) is bounded above by the
right-hand side. Let K be an arbitrary positive integer. Then

max
{xℓ}∞

ℓ=1∈X

∥∥∥∥∥
∞∑

ℓ=1
Lℓ vec(xℓ)

∥∥∥∥∥ ≤ max
{xℓ}∞

ℓ=1∈X

∥∥∥∥∥
K∑

ℓ=1
Lℓ vec(xℓ)

∥∥∥∥∥+ max
{xℓ}∞

ℓ=1∈X

∥∥∥∥∥∥
∞∑

ℓ=K+1
Lℓ vec(xℓ)

∥∥∥∥∥∥ .
15



The second term on the right-hand side is bounded above by (∑∞
ℓ=K+1 ∥Lℓ∥2)1/2 by Cauchy-

Schwarz. As for the first term, standard results for the eigenvalues of finite-dimensional
matrices yield

max
{xℓ}∞

ℓ=1∈X

∥∥∥∥∥
K∑

ℓ=1
Lℓ vec(xℓ)

∥∥∥∥∥
2

= max
x∈RKm2 : ∥x∥≤1

∥∥∥(L1 L2 · · · LK

)
x
∥∥∥2

= λmax

((
L1 L2 · · · LK

)′ (
L1 L2 · · · LK

))
= λmax

((
L1 L2 · · · LK

) (
L1 L2 · · · LK

)′
)

= λmax

(
K∑

ℓ=1
LℓL

′
ℓ

)
.

We have shown

max
{xℓ}∞

ℓ=1∈X

∥∥∥∥∥
∞∑

ℓ=1
Lℓ vec(xℓ)

∥∥∥∥∥ ≤
(
λmax

(
K∑

ℓ=1
LℓL

′
ℓ

))1/2

+
 ∞∑

ℓ=K+1
∥Lℓ∥2

1/2

.

Now let K → ∞. Since ∑∞
ℓ=1 LℓL

′
ℓ is a convergent series, the first term on the right-hand

side above converges to λ1/2 by continuity of eigenvalues, while the second term converges
to 0. This establishes the required bound.

E.2 Auxiliary numerical lemma

Lemma E.6. Define yi,t ≡ (yi+1,t, yi+2,t, . . . , ynt)′ to be the (possibly empty) vector of vari-
ables that are ordered after yi,t in yt. Partition

Σ̂ =


Σ̂11 Σ̂12 Σ̂13

Σ̂21 Σ̂22 Σ̂23

Σ̂31 Σ̂32 Σ̂33

 , Ĉ =


Ĉ11 0 0
Ĉ21 Ĉ22 0
Ĉ31 Ĉ32 Ĉ33

 ,

conformably with yt = (y′
j∗,t
, yj∗,t, y

′
j∗,t)′, where Σ̂ = ĈĈ ′ (in particular, Ĉ22 = Ĉj∗,j∗). Then

(Σ̂31, Σ̂32)
Σ̂11 Σ̂12

Σ̂21 Σ̂22

−1

ej∗,j∗ = Ĉ−1
22 Ĉ32. (E.11)

Note that the lemma implies β̂0 = δ̂0: If i∗ < j∗ or i∗ = j∗, then both estimators equal 0
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or 1 (by definition), respectively; if i∗ > j∗, then β̂0 is defined as the i∗ − j∗ element of the
left-hand side of (E.11) (by Frisch-Waugh), while δ̂0 is defined as the i∗ − j∗ element of the
right-hand side of (E.11).

Proof. From the relationship Σ̂ = ĈĈ ′, we get
Σ̂11 Σ̂12

Σ̂21 Σ̂22

Σ̂31 Σ̂32

 =


Ĉ11Ĉ

′
11 Ĉ11Ĉ

′
21

Ĉ21Ĉ
′
11 Ĉ21Ĉ

′
21 + Ĉ2

22

Ĉ31Ĉ
′
11 Ĉ31Ĉ

′
21 + Ĉ32Ĉ22

 .

The partitioned inverse formula implies
Σ̂11 Σ̂12

Σ̂21 Σ̂22

−1

ej∗,j∗ = 1
Ĉ21Ĉ ′

21 + Ĉ2
22 − Ĉ21Ĉ ′

11(Ĉ11Ĉ ′
11)−1Ĉ11Ĉ ′

21

−(Ĉ11Ĉ
′
11)−1Ĉ11Ĉ

′
21

1


= 1
Ĉ2

22

−Ĉ−1′
11 Ĉ ′

21

1

 ,
so

(Σ̂31, Σ̂32)
Σ̂11 Σ̂12

Σ̂21 Σ̂22

−1

ej∗,j∗ = 1
Ĉ2

22

(
−Ĉ31Ĉ

′
11Ĉ

−1′
11 Ĉ ′

21 + Ĉ31Ĉ
′
21 + Ĉ32Ĉ22

)
= 1
Ĉ22

Ĉ32.

E.3 Auxiliary asymptotic lemmas

Lemma E.7. T−1∑T
t=1 ∥yt − ỹt∥2 = Op(T−2ζ) and T−1∑T

t=1 ut(yt−1 − ỹt−1)′ = Op(T−2ζ +
T−ζ−1/2), where ut ≡ yt − Ayt−1.

Proof. Using Equation (2.1), write yt as

yt =
∞∑

s=0
AsH(Im + T−ζα(L))εt−s

=
∞∑

s=0
AsHεt−s︸ ︷︷ ︸

≡ỹt

+T−ζ
∞∑

s=0
AsHα(L)εt−s.

Thus, the definition of ỹt implies

yt − ỹt = T−ζ
∞∑

s=0
AsHα(L)εt−s.

17



Lemma E.12 below shows that, under Assumption 2.1, T−1∑T
t=1 E [∥yt − ỹt∥2] = O(T−2ζ).

Consequently, the first part of Lemma E.7 follows from Markov’s inequality.
In order to establish the second part of Lemma E.7, note that

ut (yt−1 − ỹt−1)′ = H[Im + T−ζα(L)]εt (yt−1 − ỹt−1)′ .

Lemma E.13 below implies that

1
T

T∑
t=1

εt(yt−1 − ỹt−1)′ = Op

(
T−ζ−1/2

)
. (E.12)

Finally, Lemma E.14 below implies that

1
T

T∑
t=1

α(L)εt(yt−1 − ỹt−1)′ = Op(T−ζ). (E.13)

Equations (E.12) and (E.13) imply

1
T

T∑
t=1

ut(yt−1 − ỹt−1)′ = Op(T−2ζ + T−ζ−1/2).

Lemma E.8.

T−1
T∑

t=1
uty

′
t−1 = T−ζH

∞∑
ℓ=1

αℓDH
′(A′)ℓ−1 + T−1

T∑
t=1

Hεtỹ
′
t−1 + op(T−ζ).

Proof.

T−1
T∑

t=1
uty

′
t−1 = T−1

T∑
t=1

utỹ
′
t−1 + T−1

T∑
t=1

ut(yt−1 − ỹt−1)′

︸ ︷︷ ︸
=op(T −ζ) by Lemma E.7

= T−1
T∑

t=1
Hεtỹ

′
t−1 + T−ζ−1

T∑
t=1

Hα(L)εtỹ
′
t−1 + op(T−ζ)

= T−1
T∑

t=1
Hεtỹ

′
t−1 + T−ζH

(
T−1

T∑
t=1

E[α(L)εtỹ
′
t−1] + op(1)

)
+ op(T−ζ),
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where the last equality follows from Lemma E.15 below. Finally, note that

E[α(L)εtỹ
′
t−1] =

∞∑
ℓ=1

∞∑
s=0

αℓE[εt−ℓε
′
t−s−1]H ′(A′)s =

∞∑
ℓ=1

αℓDH
′(A′)ℓ−1.

Lemma E.9. T−1∑T
t=1 yt−1y

′
t−1

p→ S.

Proof. By Lemma E.7 and Cauchy-Schwarz, T−1∑T
t=1 yt−1y

′
t−1 = T−1∑T

t=1 ỹt−1ỹ
′
t−1 + op(1).

The rest of the proof is standard.

Lemma E.10. Fix h ≥ 0 and j∗ ∈ {1, . . . , n}. In a slight abuse of notation, let qt ≡
(y′

j∗,t
, y′

t−1)′. Then

i) T−1∑T −h
t=1 qtεj∗,t = Op(T−ζ + T−1/2),

ii) (T−1∑T −h
t=1 qtq

′
t)−1 = Op(1),

iii) T−1∑T −h
t=1 qt(αj∗(L)εt) = Op(1),

where αj∗(L) is the j∗-th row of α(L).

Proof. Let q̃t ≡ (ỹ′
j∗,t
, ỹ′

t−1)′ and ∆t ≡ qt − q̃t. Note that

T−1
T −h∑
t=1

qtεj∗,t = T−1
T −h∑
t=1

∆tεj∗,t + T−1
T −h∑
t=1

q̃tεj∗,t. (E.14)

Cauchy-Schwarz implies

∥∥∥∥∥T−1
T −h∑
t=1

∆tεj∗,t

∥∥∥∥∥ ≤
(

1
T

T −h∑
t=1

∥∆t∥2
)1/2 ( 1

T

T −h∑
t=1

ε2
j∗,t

)1/2

.

Lemma E.7 implies the first term to the right of the inequality is Op(T−ζ). Assumption 2.1(i)
implies that the second term to the right of the inequality is Op(1). Thus, from (E.14) we
have

T−1
T −h∑
t=1

qtεj∗,t = Op

(
T−ζ

)
+ T−1

T −h∑
t=1

q̃tεj∗,t.

Direct second-moment calculations imply that the last term is Op

(
T−1/2

)
. This establishes

part (i) of the lemma.
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For part (ii) of the lemma, note that

1
T

T −h∑
t=1

qtq
′
t = 1

T

T −h∑
t=1

∆t∆′
t + 1

T

T −h∑
t=1

q̃t∆′
t + 1

T

T −h∑
t=1

∆tq̃
′
t + 1

T

T −h∑
t=1

q̃tq̃
′
t. (E.15)

Lemma E.7 implies that the first term is Op

(
T−2ζ

)
. Cauchy-Schwarz, along with Assump-

tion 2.1 and Lemma E.7, imply that the second and third terms are Op(T−ζ). The last
term converges in probability to Var(q̃t). This matrix is non-singular, since q̃t = (ỹ′

j∗,t
, ỹ′

t−1)′,
where Var(ỹt−1) = S is non-singular by Assumption 2.1(iv), and Assumption 2.1(iii) implies
that ỹ

j∗,t
equals a linear transformation of ỹt−1 plus a non-singular independent noise term.

For part (iii) of the lemma, note that

1
T

T −h∑
t=1

qt(αj∗(L)εt) = 1
T

T −h∑
t=1

∆t(αj∗(L)εt) + 1
T

T −h∑
t=1

q̃t(αj∗(L)εt). (E.16)

Assumption 2.1(i) and (v) and Lemma E.7 imply that the first term is Op(T−ζ). Markov’s
inequality and a moment calculation imply that the last term is Op(1).

Lemma E.11. Fix h ≥ 0 and j∗ ∈ {1, . . . , n}. In a slight abuse of notation, let qt ≡
(y′

j∗,t
, y′

t−1)′ and
x̂h,t ≡ (ϑ− ϑ̂h)′qt + εj∗,t + T−ζαj∗(L)εt,

where αj∗(L) is the j∗-th row of α(L). Then

T−1
T −h∑
t=1

(x̂h,t − εj∗,t)2 = op(T−1/2). (E.17)

Proof. Let q̃t ≡ (ỹ′
j∗,t
, ỹ′

t−1)′ and ∆t ≡ qt − q̃t. Then

T−1
T −h∑
t=1

(x̂h,t − εj∗,t)2 = T−1
T −h∑
t=1

(
(ϑ− ϑ̂h)′∆t + (ϑ− ϑ̂h)′q̃t + T−ζαj∗(L)εt

)2
.

To establish (E.17), it suffices by the cr-inequality to show that

a) T−1∑T −h
t=1

(
(ϑ− ϑ̂h)′∆t

)2
= op

(
T−1/2

)
,

b) T−1∑T −h
t=1

(
(ϑ− ϑ̂h)′q̃t

)2
= op

(
T−1/2

)
,

c) T−1∑T −h
t=1 (αj∗(L)εt)2 = Op (1).
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To establish (a), note first that Cauchy-Schwarz implies

1
T

T −h∑
t=1

(
(ϑ− ϑ̂h)′∆t

)2
≤
∥∥∥ϑ− ϑ̂h

∥∥∥2
(

1
T

T −h∑
t=1

∥∆t∥2
)
.

Lemma E.7 implies that the term inside the parenthesis is Op(T−2ζ). Lemma E.10 implies
(ϑ− ϑ̂h) = Op

(
T−ζ + T−1/2

)
. Since ζ > 1/4, statement (a) follows.

To establish (b), we apply Cauchy-Schwarz to obtain

1
T

T −h∑
t=1

(
(ϑ− ϑ̂h)′q̃t

)2
≤
∥∥∥ϑ− ϑ̂h

∥∥∥2
(

1
T

T −h∑
t=1

q̃2
t

)
.

Assumption 2.1 implies that the term inside the parenthesis is Op(1). As in the previous
paragraph, ∥ϑ− ϑ̂h∥2 = Op

(
(T−ζ + T−1/2)2

)
. Since ζ > 1/4, statement (b) follows.

Finally, statement (c) follows from Assumption 2.1(i) and (v).

E.4 Auxiliary lemmas to the auxiliary lemmas

Lemma E.12. There exists a constant C̃ ∈ (0,∞) such that

E
[
∥yt − ỹt∥2

]
≤ C̃T−2ζ . (E.18)

Proof. The definition of ỹt implies

yt − ỹt = T−ζ
∞∑

s=0
AsHα(L)εt−s.

Expanding α(L) = ∑∞
ℓ=1 αℓL

ℓ, we obtain

yt − ỹt = T−ζ
∞∑

s=1
Bsεt−s, where Bs ≡

s∑
ℓ=1

As−ℓHαℓ. (E.19)

By the independence assumption on εt in Assumption 2.1(i),

E
[
∥yt − ỹt∥2

]
= T−2ζ

∞∑
s=1

trace (BsDB
′
s) .
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Expanding Bs and changing the summation indices shows that E [∥yt − ỹt∥2] equals

T−2ζ
∞∑

s=1

s∑
ℓ1=1

s∑
ℓ2=1

trace
(
As−ℓ1Hαℓ1Dα

′
ℓ2H

′(A′)s−ℓ2
)
.

Moreover, since for any two matrices M1,M2 of conformable dimensions trace(M1M2) ≤
∥M1∥∥M2∥, then

trace
(
As−ℓ1Hαℓ1Dα

′
ℓ2H

′(A′)s−ℓ2
)

≤ ∥H∥2 · ∥D∥ · ∥As−ℓ1∥ · ∥(A′)s−ℓ2∥ · ∥αℓ1∥ · ∥αℓ2∥.

Let λ ∈ [0, 1) and C > 0 be chosen such that ∥Aℓ∥ ≤ Cλℓ for all ℓ ≥ 0 (such constants exists
by Assumption 2.1(ii)). Then

E
[
∥yt − ỹt∥2

]
≤ T−2ζC2∥H∥2∥D∥

( ∞∑
τ=0

λ2τ

) ∞∑
ℓ1=1

∥αℓ1∥

 ∞∑
ℓ2=1

∥αℓ2∥

 ,
≤ T−2ζC2∥H∥2∥D∥

( ∞∑
τ=0

λ2τ

)( ∞∑
ℓ=1

∥αℓ∥
)2

,

= T−2ζC
2∥H∥2∥D∥
1 − λ2

( ∞∑
ℓ=1

∥αℓ∥
)2

.

Lemma E.13.
1√
T

T∑
t=1

εt (yt−1 − ỹt−1)′ = Op

(
T−ζ

)
.

Proof. By Markov’s inequality, we need to show that the following expression is bounded:

T 2ζE

∥∥∥∥∥ 1√
T

T∑
t=1

εt (yt−1 − ỹt−1)′
∥∥∥∥∥

2 .
Equation (E.19) in the proof of Lemma E.12 and Assumption 2.1(i) imply that the summands
are serially uncorrelated, so the above expression equals

T 2ζ 1
T

T∑
t=1

E
[
∥εt (yt−1 − ỹt−1)′ ∥2

]

≤ T 2ζ 1
T

T∑
t=1

E
[
∥εt∥2∥yt−1 − ỹt−1∥2

]
,

= T 2ζ 1
T

T∑
t=1

E
[
∥εt∥2

]
E
[
∥yt−1 − ỹt−1∥2

]
,
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= T 2ζ trace (D)E
[
∥yt−1 − ỹt−1∥2

]
.

The third line follows from Assumption 2.1(i), while the last line follows from stationarity.
Lemma E.12 implies that the final expression is bounded.

Lemma E.14.
1
T

T∑
t=1

α(L)εt(yt−1 − ỹt−1)′ = Op(T−ζ).

Proof. By Markov’s inequality, we need to show that

T ζE

[∥∥∥∥∥ 1
T

T∑
t=1

α(L)εt (yt−1 − ỹt−1)′
∥∥∥∥∥
]

is bounded. By stationarity and Cauchy-Schwarz, the expression is bounded above by

T ζE [∥α(L)εt∥ ∥yt−1 − ỹt−1∥]

≤ T ζ
(
E
[
∥α(L)εt∥2

])1/2 (
E
[
∥yt−1 − ỹt−1∥2

])1/2
.

The first expectation on the right-hand side is bounded due to Assumption 2.1(v). Hence,
Lemma E.12 implies that the entire final expression is bounded.

Lemma E.15.
T−1

T∑
t=1

(
α(L)εtỹ

′
t−1 − E[α(L)εtỹ

′
t−1]

)
= op(1).

Proof. For an arbitrary i ∈ {1, . . . , n} and s ≥ 1, define

Γs ≡ Cov(α(L)εtỹi,t−1, α(L)εt−sỹi,t−s−1)

= Cov
 ∞∑

ℓ1=1
αℓ1εt−ℓ1 ỹi,t−1,

∞∑
ℓ2=1

αℓ2εt−s−ℓ2 ỹi,t−s−1


=

∞∑
ℓ1=1

∞∑
ℓ2=1

αℓ1 Cov(εt−ℓ1 ỹi,t−1, εt−s−ℓ2 ỹi,t−s−1)α′
ℓ2 .

By Theorem 7.1.1 in Brockwell and Davis (1991), the statement of the lemma follows if we
can show that Γs → 0 as s → ∞.

Decompose

ỹi,t−1 = E[ỹi,t−1 | {εt−s}ℓ1−1
s=1 ]︸ ︷︷ ︸

≡ỹ
(−)
i,t−1

+E[ỹi,t−1 | εt−ℓ1 ]︸ ︷︷ ︸
≡ỹ

(0)
i,t−1

+E[ỹi,t−1 | {εt−s}∞
s=ℓ1+1]︸ ︷︷ ︸

≡ỹ
(+)
i,t−1

.
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For ℓ1 ≤ s, the serial independence of εt implies that

Cov(εt−ℓ1 ỹ
(−)
i,t−1, εt−s−ℓ2 ỹi,t−s−1) = E[ỹ(−)

i,t−1]E[εt−ℓ1ε
′
t−s−ℓ2 ỹi,t−s−1] = 0,

Cov(εt−ℓ1 ỹ
(0)
i,t−1, εt−s−ℓ2 ỹi,t−s−1) = 0,

Cov(εt−ℓ1 ỹ
(+)
i,t−1, εt−s−ℓ2 ỹi,t−s−1) = E[εt−ℓ1 ]E[ỹ(+)

i,t−1ε
′
t−s−ℓ2 ỹi,t−s−1] = 0,

and therefore
Cov(εt−ℓ1 ỹi,t−1, εt−s−ℓ2 ỹi,t−s−1) = 0.

Inserting this result back into the earlier expression for Γs, we get

|Γs| =

∣∣∣∣∣∣
∞∑

ℓ1=s+1

∞∑
ℓ2=1

αℓ1 Cov(εt−ℓ1 ỹi,t−1, εt−s−ℓ2 ỹi,t−s−1)α′
ℓ2

∣∣∣∣∣∣
≤

∞∑
ℓ1=s+1

∞∑
ℓ2=1

∥αℓ1∥ · ∥αℓ2∥ · ∥ Cov(εt−ℓ1 ỹi,t−1, εt−s−ℓ2 ỹi,t−s−1)∥

≤
∞∑

ℓ1=s+1

∞∑
ℓ2=1

∥αℓ1∥ · ∥αℓ2∥ · sup
ℓ≥1

∥ Var(εt−ℓỹi,t−1)∥

≤
(
E[∥ε4

t ∥] · E[ỹ4
i,t]
)1/2

 ∞∑
ℓ2=1

∥αℓ2∥


︸ ︷︷ ︸

<∞

 ∞∑
ℓ1=s+1

∥αℓ1∥



→ 0 as s → ∞,

where the last line uses absolute summability of α(L).
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