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Abstract

This article introduces a new estimator of average treatment effects under
unobserved confounding in modern data-rich environments featuring large
numbers of units and outcomes. The proposed estimator is doubly robust,
combining outcome imputation, inverse probability weighting, and a novel
cross-fitting procedure for matrix completion. We derive finite-sample and
asymptotic guarantees, and show that the error of the new estimator converges
to a mean-zero Gaussian distribution at a parametric rate. Simulation results
demonstrate the relevance of the formal properties of the estimators analyzed
in this article.

1. Introduction
This article presents a novel framework for the estimation of average treatment effects
in modern data-rich environments in the presence of unobserved confounding. We
define modern data-rich environments as those featuring many outcome measurements
across a wide range of units. Our interest in data-rich environments stems from the
emergence of digital platforms (e.g., internet retailers, social media companies, and
ride-sharing companies), electronic medical records systems, IoT devices, and other
real-time digitized data systems, which gather economic and social behavior data with
unprecedented scope and granularity.
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Take the example of an internet retailer. The platform collects not only information
on purchases of many customers across many products or product categories, but
also on glance views, impressions, conversions, engagement metrics, navigation paths,
shipping choices, payment methods, returns, reviews, and more. While some variables,
such as geo-location and type of device or browser, can be safely treated as pre-
determined relative to the platform’s treatments (advertisements, discounts, web-
page design, etc.), most are outcomes affected by the treatments, latent customer
preferences, and unobserved product features. We leverage the availability of many
outcome measures in modern data-rich environments to estimate average treatment
effects in the presence of unobserved confounding. The core identification concept is
that if each element of a high-dimensional outcome vector is influenced by a common
low-dimensional vector of unobserved confounders, it becomes possible to remove the
influence of the confounders and identify treatment effects.

Two primary approaches to the estimation of treatment effects are outcome-based
and assignment-based methods. Consider again the example of an internet-retail
platform where customers interact with various product categories. For each consumer-
category pair, the platform makes decisions to either offer a discount or not, and
records whether the consumer purchased a product in the category. Outcome-based
methods operate by imputing the missing potential outcomes for each consumer-
product category pair. This process involves predicting whether a consumer, who
received a discount, would have made the purchase without the discount (i.e., the
potential outcome without discount), and conversely, if a consumer who did not
receive the discount would have purchased the product had they received the discount
(i.e., the potential outcome with discount). In contrast, assignment-based methods
estimate the probabilities of consumers receiving discounts in each product category
and adjust for missing potential outcomes by weighting observed outcomes inversely
to the probability of missingness.

A substantial body of literature has explored outcome-based methods, particularly
in settings where all confounding factors are measured (see, e.g., Cochran, 1968;
Rosenbaum and Rubin, 1983; Angrist, 1998; Abadie and Imbens, 2006, among many
others). Imputing potential outcomes in the presence of unobserved confounders poses
a more complex challenge. In this context, a commonly adopted framework is the
synthetic control method and its variants (see, e.g., Abadie and Gardeazabal, 2003;
Abadie et al., 2010; Cattaneo et al., 2021; Arkhangelsky et al., 2021). An alternative
but related approach to outcome imputation under unobserved confounding is the
latent factor framework (Bai and Ng, 2002; Bai, 2009; Xiong and Pelger, 2023),
wherein each element of the large-dimensional outcome vector is influenced by the
same low-dimensional vector of unobserved confounders. Matrix completion methods
(see, e.g., Chatterjee, 2015; Athey et al., 2021; Bai and Ng, 2021; Dwivedi et al., 2022a;
Agarwal et al., 2023a) which have found widespread applications in recommendation
systems and panel data models, are closely related to latent factor models. Similarly,
existing assignment-based procedures to estimate average treatment effects rely on
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the assumption of no unmeasured confounding (see, e.g., Robins et al., 2000; Hirano
et al., 2003; Wooldridge, 2007), common trends restrictions (Abadie, 2005), or the
availability of an instrumental variable (Abadie, 2003; Sloczynski et al., 2024).

In this article, we propose a doubly-robust estimator (see Robins et al., 1994;
Bang and Robins, 2005; Chernozhukov et al., 2018) of average treatment effects in
the presence of unobserved confounding. This estimator leverages information on
both the outcome process and the treatment assignment mechanism under a latent
factor framework. It combines outcome imputation and inverse probability weighting
with a new cross-fitting approach for matrix completion. We show that the proposed
doubly-robust estimator has better finite-sample guarantees than alternative outcome-
based and assignment-based estimators. Furthermore, the doubly-robust estimator is
approximately Gaussian, asymptotically unbiased, and converges at a parametric rate,
under provably valid error rates for matrix completion, irrespective of other properties
of the matrix completion algorithm used for estimation.

To our knowledge, this is the first article that leverages latent structures in both
the assignment and the outcome processes to obtain a doubly-robust estimator of
average treatment effects in the presence of unobserved confounding. Arkhangelsky
and Imbens (2022) study doubly-robust identification with longitudinal data under
the assumption that conditioning of a function of the treatment assignments over time
(e.g., the fraction of times an individual is exposed to treatment) is enough to remove
confounding. Athey et al. (2021), Bai and Ng (2021), Dwivedi et al. (2022a), Agarwal
et al. (2023a), and Xiong and Pelger (2023) propose estimators that apply matrix
completion techniques to impute potential outcomes. Although these studies utilize
low-rank restrictions in the outcome process, they do not investigate the possibility of
similar latent structures in the treatment assignment process. Our article addresses
this question, and demonstrate substantial benefits from incorporating knowledge
about the structure of the assignment mechanism.

Terminology and notation. For any real number b ∈ R, ⌊b⌋ is the greatest integer
less than or equal to b. For any positive integer b, [b] denotes the set of integers
from 1 to b, i.e., [b] ≜ {1, · · · , b}. We use c to denote any generic universal constant,
whose value may change between instances. For any c > 0, m(c) = max{c,

√
c} and

ℓc = log(2/c). For any two deterministic sequences an and bn where bn is positive,
an = O(bn) means that there exist a finite c > 0 and a finite n0 > 0 such that
|an| ≤ c bn for all n ≥ n0. Similarly, an = o(bn) means that for every c > 0, there
exists a finite n0 > 0 such that |an| < c bn for all n ≥ n0. Further, an = Ω(bn) means
that there exist a finite c > 0 and a finite n0 > 0 such that |an| ≥ c bn for all n ≥ n0.
For a sequence of random variables, xn = Op(1) means that the sequence |xn| is
stochastically bounded, i.e., for every ε > 0, there exists a finite δ > 0 and a finite
n0 > 0 such that P

(
|xn| > δ

)
< ε for all n ≥ n0. Similarly, xn = op(1) means that

the sequence |xn| converges to zero in probability, i.e., for every ε > 0 and δ > 0,
there exists a finite n0 > 0 such that P

(
|xn| > δ

)
< ε for all n ≥ n0. For sequences

of random variables xn and bn, xn = Op(bn) means xn = xnbn where the sequence
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xn = Op(1). Likewise, xn = op(bn) means xn = xnbn where the sequence xn = op(1).
A mean-zero random variable x is subGaussian if there exists some b > 0 such

that E[exp(sx)] ≤ exp(b2s2/2) for all s ∈ R. Then, the subGaussian norm of x is
given by ∥x∥ψ2 = inf{t > 0 : E[exp(x2/t2)] ≤ 2}. A mean-zero random variable x
is subExponential if there exist some b1, b2 > 0 such that E[exp(sx)] ≤ exp(b21s

2/2)
for all −1/b2 < s < 1/b2. Then, the subExponential norm of x is given by ∥x∥ψ1 =
inf{t > 0 : E[exp(|x|/t)] ≤ 2}. Uniform(a, b) denotes the uniform distribution over the
interval [a, b] for a, b ∈ R such that a < b. N (µ, σ2) denotes the Gaussian distribution
with mean µ and variance σ2.

For a vector u ∈ Rn, we denote its tth coordinate by ut and its 2-norm ∥u∥2. For a
matrix U ∈ Rn1×n2 , we denote the element in ith row and jth column by ui,j, the ith

row by Ui,·, the jth column by U·,j , the largest eigenvalue by λmax(U), and the smallest
by λmin(U). Given a set of indices R ⊆ [n1] and C ⊆ [n2], UI ∈ R|R|×|C| is a sub-matrix
of U corresponding to the entries in I ≜ R × C, and U−I = {ui,j : (i, j) ∈ {[n1] ×
[n2]} \ I}. Further, we denote the Frobenius norm by ||U ||F ≜

(∑
i∈[n1],j∈[n2]

u2
i,j

)1/2,
the (1, 2) operator norm by ||U ||1,2 ≜ maxj∈[n2]

(∑
i∈[n1]

u2
i,j

)1/2, the (2,∞) operator

norm by ∥U∥2,∞ ≜ maxi∈[n1]

(∑
j∈[n2]

u2
i,j

)1/2, and the maximum norm by ||U ||max ≜
maxi∈[n1],j∈[n2] |ui,j|. Given two matrices U, V ∈ Rn1×n2 , the operators ⊙ and ⃝/

denote element-wise multiplication and division, respectively, i.e., ti,j = ui,j · vi,j when
T = U ⊙ V , and ti,j = ui,j/vi,j when T = U ⃝/ V . When V is a binary matrix, i.e.,
V ∈ {0, 1}n1×n2 , the operator ⊗ is defined such that ti,j = ui,j if vi,j = 1 and ti,j =?
if vi,j = 0 for T = U ⊗ V . Given two matrices U ∈ Rn1×n2 and V ∈ Rn1×n3 , the
operator ∗ denotes the (transposed column-wise) Khatri-Rao product of U and V ,
i.e., T = U ∗ V ∈ Rn1×n2n3 such that ti,j = ui,j−n2j̄ · vi,1+j̄ where j̄ = ⌊(j − 1)/n2⌋. For
random objects U and V , U ⊥⊥ V means that U is independent of V .

2. Setup
Consider a setting with N units and M measurements per unit. For each unit-
measurement pair i ∈ [N ] and j ∈ [M ], we observe a treatment assignment ai,j ∈ {0, 1}
and the value of the outcome yi,j ∈ R. Although our results can be easily generalized
to multi-ary treatments, for the ease of exposition, we focus on binary treatments.

We operate within the Neyman-Rubin potential outcomes framework and denote
the potential outcome for unit i ∈ [N ] and measurement j ∈ [M ] under treatment
a ∈ {0, 1} by y

(a)
i,j ∈ R. A no-spillover assumption is implicit in the notation, i.e., the

potential outcome y
(a)
i,j does not depend on the treatment assignment for any other

unit-measurement pair. In the context of online retail data, the assumption of no
spillovers across measurements is justified if the cross-elasticity of demand across
product categories, j, is low. Our framework allows for the possibility that the same
treatment affects multiple outcomes (e.g., ai,j = ai,j′ with probability one, for some j
and j′ in [M ]). Realized outcomes, yi,j, depend on potential outcomes and treatment
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assignments,

yi,j = y
(0)
i,j (1− ai,j) + y

(1)
i,j ai,j, (1)

for all i ∈ [N ] and j ∈ [M ]. Section 4.4 and the supplementary appendix extend
the framework proposed in this article to a panel data setting with lagged treatment
effects.

2.1. Sources of stochastic variation
In the setup of this article, each unit i ∈ [N ] is characterized by a set of unknown
parameters, {(θ(0)i,j , θ

(1)
i,j , pi,j) ∈ R2 × [0, 1]}j∈[M ], which we treat as fixed. Potential

outcomes and treatment assignments are generated as follows: for all i ∈ [N ], j ∈ [M ],
and a ∈ {0, 1},

y
(a)
i,j = θ

(a)
i,j + ε

(a)
i,j (2)

and
ai,j = pi,j + ηi,j, (3)

where ε
(a)
i,j and ηi,j are mean-zero random variables, and

ηi,j =

{
−pi,j with probability 1− pi,j

1− pi,j with probability pi,j.
(4)

It follows that θ(a)i,j is the mean of the potential outcome y
(a)
i,j , and pi,j is the unknown

assignment probability or latent propensity score. The matrices Θ(0) ≜ {θ(0)i,j }i∈[N ],j∈[M ],
Θ(1) ≜ {θ(1)i,j }i∈[N ],j∈[M ], and P ≜ {pi,j}i∈[N ],j∈[M ] collect mean potential outcomes
and assignment probabilities. Then, the matrices E(0) ≜ {ε(0)i,j }i∈[N ],j∈[M ], E

(1) ≜

{ε(1)i,j }i∈[N ],j∈[M ], and W ≜ {ηi,j}i∈[N ],j∈[M ] capture all sources of randomness in potential
outcomes and treatment assignments.

Our setup allows Θ(0),Θ(1) to be arbitrarily associated with P , inducing unobserved
confounding. The assumptions in Section 4 imply that Θ(0),Θ(1), and P include all
confounding factors, and require (ε

(0)
i,j , ε

(1)
i,j ) ⊥⊥ ηi,j for every i ∈ [N ] and j ∈ [M ].

2.2. Target causal estimand
For any given measurement j ∈ [M ], we aim to estimate the effect of the treatment
averaged over all units,

ATE·,j ≜ µ
(1)
·,j − µ

(0)
·,j (5)
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where

µ
(a)
·,j ≜

1

N

∑
i∈[N ]

θ
(a)
i,j .

ATE·,j akin to the conditional average treatment effect of Abadie and Imbens (2006),
but based on the latent means, θ(a)i,j , in Eq. (2) rather than on conditional means that
depend on observed covariates only. It is straightforward to adapt the methods in
this article to the estimation of alternative parameters, like the average treatment
effect across measurements for each unit i, or the estimation of treatment effects over
a subset of the units, S ⊂ [N ].

3. Estimation
In this section, we propose a procedure that uses the treatment assignment matrix A
and the observed outcomes matrix Y to estimate ATE·,j, where

Y ≜ {yi,j}i∈[N ],j∈[M ] and A ≜ {ai,j}i∈[N ],j∈[M ].

The estimator proposed in this section leverages matrix completion as a key subroutine.
We start the section with a brief overview of matrix completion methods.

3.1. Matrix completion: A primer
Consider a matrix of parameters T ∈ RN×M . While T is unobserved, we observe the
matrix S ∈ {R∪{ ?}}N×M where ? denotes a missing value. The relationship between
S and T is given by

S = (T +H)⊗ F. (6)

Here, H ∈ RN×M is a noise matrix, and F ∈ {0, 1}N×M is a masking matrix with ones
for the recorded entries of S and zeros for the missing entries.

A matrix completion algorithm, denoted by MC, takes the S as its input, and
returns an estimate of T , which we denote by T̂ or MC(S). In other words, MC produces
an estimate of a matrix from noisy observations of a subset of all the elements of the
matrix.

The matrix completion literature is rich with algorithms MC that provide error
guarantees, namely bounds on ∥MC(S)− T∥ for a suitably chosen norm/metric ∥·∥,
under a variety of assumptions on the triplet (T,H, F ). Typical assumptions are (i)
T is low-rank, (ii) the entries of H are independent, mean-zero and sub-Gaussian
random variables, and (iii) the entries of F are independent Bernoulli random variables.
Though matrix completion is commonly associated with the imputation of missing
values, a typically underappreciated aspect is that it also denoises the observed matrix.
Even when each entry of S is observed, MC(S) subtracts the effects of H from S, i.e.,
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(a) A (b) Y (c) Y (0),obs (d) Y (1),obs

Figure 1: Schematic of the treatment assignment matrix A, the observed outcomes
matrix Y (where green and blue fills indicate observations under a = 1 and a = 0,
respectively), and the observed component of the potential outcomes matrices, i.e.,
Y (0),obs and Y (1),obs (where ? indicates a missing value). All matrices are N × M
where N is the number of customers and M is the number of products.

it performs matrix denoising. Nguyen et al. (2019) provide a survey of various matrix
completion algorithms.

3.2. Key building blocks
We now define and express matrices that are related to the quantities of interest
Θ(0),Θ(1), and P in a form similar to Eq. (6). See Figure 1 for a visual representation
of these matrices.

• Outcomes: Let Y (0),obs = Y ⊗ (1−A) ∈ {R∪{ ?}}N×M be a matrix with (i, j)-th
entry equal to yi,j if ai,j = 0, and equal to ? otherwise. Here, 1 is the N×M matrix
with all entries equal to one. Analogously, let Y (1),obs = Y⊗A ∈ {R∪{ ?}}N×M be a
matrix with (i, j)-th entry equal to yi,j if ai,j = 1, and equal to ? otherwise. In other
words, Y (0),obs and Y (1),obs capture the observed components of {y(0)i,j }i∈[N ],j∈[M ]

and {y(1)i,j }i∈[N ],j∈[M ], respectively, with missing entries denoted by ?. Then, we
can write

Y (0),obs = (Θ(0) + E(0))⊗ (1− A) and Y (1),obs = (Θ(1) + E(1))⊗ A. (7)

• Treatments: From Eq. (3), we can write

A = (P +W ).

Building on the earlier discussion, the application of matrix completion yields the
following estimates:

Θ̂(0) = MC(Y (0),obs), Θ̂(1) = MC(Y (1),obs), and P̂ = MC(A), (8)
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where the algorithm MC may vary for Θ̂(0), Θ̂(1), and P̂ . Because all entries of A are
observed, MC(A) denoises A but does not need to impute missing entries. From Eq. (7)
and Eq. (8), it follows that Θ̂(0) and Θ̂(1) depend on A and Y , whereas P̂ depends
only on A.

In this section, we deliberately leave the matrix completion algorithm MC as a
“black-box”. In Section 4, we establish finite-sample and asymptotic guarantees for our
proposed estimator, contingent on specific properties for MC. In Section 5, we propose
a novel end-to-end matrix completion algorithm that satifies these properties.

Given matrix completion estimates of (Θ̂(0), Θ̂(1), P̂ ), we formulate two preliminary
estimators for ATE·,j : (i) an outcome imputation estimator, which uses Θ̂(0) and Θ̂(1)

only, and (ii) an inverse probability weighting estimator, which uses P̂ only. Then,
we combine these to obtain a doubly-robust estimator of ATE·,j.

Outcome imputation (OI) estimator. Let θ̂
(a)
i,j denote the (i, j)-th entry of Θ̂(a)

for i ∈ [N ], j ∈ [M ], and a ∈ {0, 1}. The OI estimator for ATE·,j is defined as follows:

ÂTEOI
·,j ≜ µ̂

(1,OI)
·,j − µ̂

(0,OI)
·,j , (9)

where

µ̂
(a,OI)
·,j ≜

1

N

∑
i∈[N ]

θ̂
(a)
i,j for a ∈ {0, 1}.

That is, the OI estimator is obtained by taking the difference of the average value
of the j-th column of the estimates Θ̂(0) and Θ̂(1). The quality of the OI estimator
depends on how well Θ̂(0) and Θ̂(1) approximate the mean potential outcome matrices
Θ(0) and Θ(1), respectively.

Inverse probability weighting (IPW) estimator. Let p̂i,j denote the (i, j)-th
entry of P̂ for i ∈ [N ] and j ∈ [M ]. The IPW estimate for ATE·,j is defined as follows:

ÂTE IPW
·,j ≜ µ̂

(1,IPW)
·,j − µ̂

(0,IPW)
·,j , (10)

where

µ̂
(0,IPW)
·,j ≜

1

N

∑
i∈[N ]

yi,j
(
1− ai,j

)
1− p̂i,j

and µ̂
(1,IPW)
·,j ≜

1

N

∑
i∈[N ]

yi,jai,j
p̂i,j

.

That is, the IPW estimator is obtained by taking the difference of the average value
of the j-th column of the matrices Y (0),obs and Y (1),obs, replacing unobserved entries
with zeros, and weighting each outcome by the inverse of the estimated assignment
probability to account for confounding. The quality of the IPW estimate depends on
how well P̂ approximates the probability matrix P .

The matrix completion-based OI and IPW estimators in Eq. (9) and Eq. (10) have
the same form as the classical OI and IPW estimators, which are derived for settings
where all confounders are observed (e.g., Imbens and Rubin, 2015). In contrast to the
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classical setting, our framework is one with unmeasured confounding.

3.3. Doubly-robust (DR) estimator

The DR estimator of ATE·,j combines the estimates Θ̂(0), Θ̂(1), and P̂ from Eq. (8). It
is defined as follows:

ÂTEDR
·,j ≜ µ̂

(1,DR)
·,j − µ̂

(0,DR)
·,j , (11)

where

µ̂
(0,DR)
·,j ≜

1

N

∑
i∈[N ]

θ̂
(0,DR)
i,j with θ̂

(0,DR)
i,j ≜ θ̂

(0)
i,j +

(
yi,j − θ̂

(0)
i,j

)1− ai,j
1− p̂i,j

,

and

µ̂
(1,DR)
·,j ≜

1

N

∑
i∈[N ]

θ̂
(1,DR)
i,j with θ̂

(1,DR)
i,j ≜ θ̂

(1)
i,j +

(
yi,j − θ̂

(1)
i,j

)ai,j
p̂i,j

. (12)

In Section 4, we prove that ÂTEDR
·,j consistently estimates ATE·,j as long as either

(Θ̂(0), Θ̂(1)) is consistent for (Θ(0),Θ(1)) or P̂ is consistent for P , i.e., it is doubly-
robust. Furthermore, we show that the DR estimator provides superior finite sample
guarantees than the OI and IPW estimators, and that it satisfies a central limit
theorem at a parametric rate under weak conditions on the convergence rate of the
matrix completion routine. Using simulated data, Figure 2 demonstrates the improved
performance of DR, relative to OI and IPW. Despite substantial biases observed in
both OI and IPW estimates, the error of the DR estimate closely follows a mean-zero
Gaussian distribution. We provide a detailed description of the simulation setup in
Section 6.

4. Main Results
This section presents the formal results of the article. Section 4.1 details assumptions,
Section 4.2 discusses finite-sample guarantees, and Section 4.3 presents a central limit
theorem for ÂTEDR

·,j .

4.1. Assumptions
Requirements on data generating process. We make two assumptions on how
the data is generated. First, we impose a positivity condition on the assignment
probabilities.

Assumption 1 (Positivity on true assignment probabilities). The unknown assignment
probability matrix P is such that

λ ≤ pi,j ≤ 1− λ, (13)
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Figure 2: Simulation evidence of the convergence of the error of the doubly-robust
(DR) estimator to a mean-zero Gaussian distribution. The histogram represents
ÂTEDR

·,j − ATE·,j, the green curve represents the (best) fitted Gaussian distribution,
and the black curve represents the Gaussian approximation from Theorem 2 in
Section 4. Histogram counts are normalized so that the area under the histogram
integrates to one. Unlike DR, the outcome imputation (OI) and inverse probability
weighting (IPW) estimators have non-trivial biases, as evidenced by the means of the
distributions in dashed green, blue, and red, respectively. Section 6 reports complete
simulation results.

for all i ∈ [N ] and j ∈ [M ], where 0 < λ ≤ 1/2.

Assumption 1 requires that the propensity score for each unit-outcome pair is
bounded away from 0 and 1, implying that any unit-item pair can be assigned either
of the two treatments. An analogous assumption is pervasive in causal inference
models with no-unmeasured confounding. For simplicity of exposition and to avoid
notational clutter, Assumption 1 requires Eq. (13) for all outcomes, j ∈ [M ]. In
practical applications, however, ATE·,j may be estimated for a select group of those
outcomes. In that case, the positivity assumption applies only for the selected subset
of outcomes for which ATE·,j is estimated.

Next, we formalize the requirements on the noise variables.

Assumption 2 (Zero-mean, independent, and subGaussian noise). Fix any j ∈ [M ].
Then,

(a) {(ε(0)i,j , ε
(1)
i,j , ηi,j) : i ∈ [N ]} are mean zero and independent (across i);

(b) for every i ∈ [N ] and j ∈ [M ], (ε(0)i,j , ε
(1)
i,j ) ⊥⊥ ηi,j; moreover, the distribution of

(ε
(0)
i,j , ε

(1)
i,j ) depends on (Θ(0),Θ(1), P ) only through (θ

(0)
i,j , θ

(1)
i,j ), and the distribution

of ηi,j depends on (Θ(0),Θ(1), P ) only through pi,j; and
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(c) ε
(a)
i,j has subGaussian norm bounded by a constant σ for every i ∈ [N ] and a ∈
{0, 1}.

Assumption 2(a) defines (Θ(0),Θ(1), P ) as matrices collecting the means of the
potential outcomes and treatment assignments in Eqs. (2) and (3). Further, for
every measurement, it imposes independence across units in the noise variables.
Assumption 2(b) imposes independence between the noise in the potential outcomes
and noise in treatment assignment, and implies that for each particular unit i and
measurement j, confounding emerges only from the interplay between (θ

(0)
i,j , θ

(1)
i,j ) and

pi,j. Finally, Assumption 2(c) is mild and useful to derive finite-sample guarantees.
For the central limit theorem in Section 4.3, subGaussianity could be disposed of
by restricting the moments of ε(a)i,j . Assumption 2 does not restrict the dependence
between ε

(0)
i,j and ε

(1)
i,j . Neither Assumption 2 restricts the dependence of ηi,j across

outcomes. In particular, Assumption 2 allows for the existence of pairs of outcomes
(j, j′) such that E[η2i,j ] = E[η2i,j′ ] = E[ηi,jηi,j′ ], in which case ai,j = ai,j′ with probability
one.

Requirements on matrix completion estimators. First, we assume the estimate
P̂ is consistent with Assumption 1.

Assumption 3 (Positivity on estimated assignment probabilities). The estimated
probability matrix P̂ is such that

λ̄ ≤ p̂i,j ≤ 1− λ̄,

for all i ∈ [N ] and j ∈ [M ], where 0 < λ̄ ≤ λ.

Assumption 3 holds when the entries of P̂ are truncated to the range [λ̄, 1− λ̄],
provided λ̄ is not greater than λ. Second, our theoretical analysis requires indepen-
dence between certain elements of the estimates (P̂ , Θ̂(0), Θ̂(1)) from Eq. (8), and the
noise matrices (W,E(0), E(1)). We formally state this independence condition as an
assumption below.

Assumption 4 (Independence between estimates and noise). Fix any j ∈ [M ]. There
exists a non-empty partition (R0,R1) of the units [N ] such that{(

p̂i,j, θ̂
(a)
i,j

)}
i∈Rs

⊥⊥
{
ηi,j
}
i∈Rs

(14)
and {

p̂i,j
}
i∈Rs

⊥⊥
{(

ηi,j, ε
(a)
i,j

)}
i∈Rs

, (15)

for every a ∈ {0, 1} and s ∈ {0, 1}.

Eq. (14) requires that within each of the two partitions of the units, estimated mean
potential outcomes and estimated assignment probabilities are jointly independent
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of the error in assignment probabilities, for every measurement. Similarly, Eq. (15)
requires that within each of the two partitions of the units, estimated assignment
probabilities are independent jointly of the noise in assignment probabilities and
potential outcomes, for every measurement. Conditions like Eq. (14) and Eq. (15) are
familiar in the doubly-robust estimation literature. Chernozhukov et al. (2018) employ
a cross-fitting device to enforce an assumption similar to Assumption 4 in a context
with no unmeasured confounders. Section 5 provides a novel cross-fitting procedure
for matrix estimation under which Assumption 4 holds for any MC algorithm (under
additional assumptions on the noise variables).

Matrix completion error rates. The formal guarantees in this section depend
on the normalized (1, 2)-norms of the errors in estimating the unknown parameters
(Θ(0),Θ(1), P ). We use the following notation for these errors:

E
(
P̂
)
≜
||P̂−P ||1,2√

N
and E

(
Θ̂
)
≜
∑

a∈{0,1}

E
(
Θ̂(a)

)
, with E

(
Θ̂(a)

)
≜
||Θ̂(a)−Θ(a)||1,2√

N
. (16)

A variety of matrix completion algorithms deliver E
(
P̂
)
= Op(min{N,M}−α) and

E
(
Θ̂
)
= Op(min{N,M}−β), where 0 < α, β ≤ 1/2. The conditions in this section

track dependence on N only. We say that the normalized errors E
(
P̂
)

and E
(
Θ̂
)

achieve the parametric rate when they have the same rate as Op(N
−1/2). Section 5

explicitly characterizes how the rates of convergence E
(
P̂
)

and E
(
Θ̂
)

depend on N
and M for a particular matrix completion algorithm based on Bai and Ng (2021).

4.2. Non-asymptotic guarantees
The first main result of this section provides a non-asymptotic error bound for
ÂTEDR

·,j − ATE·,j in terms of the errors E
(
P̂
)

and E
(
Θ̂
)

defined in Eq. (16).

Theorem 1 (Finite Sample Guarantees for DR). Suppose Assumptions 1 to 4
hold. Fix δ ∈ (0, 1) and j ∈ [M ]. Then, with probability at least 1− δ, we have∣∣ÂTEDR

·,j − ATE·,j
∣∣ ≤ ErrDR

N,δ, (17)

where

ErrDR
N,δ≜

2

λ̄

[
E
(
Θ̂
)
E
(
P̂
)
+
(√cℓδ/12√

ℓ1
E
(
Θ̂
)
+ 2σ

√
cℓδ/12 +

2σm(cℓδ/12)√
ℓ1

) 1√
N

]
, (18)

for m(c) and ℓc as defined in Section 1.

The proof of Theorem 1 is given in Appendix A1. Eqs. (17) and (18) bound the
absolute error of the DR estimator by the rate of E

(
Θ̂
)
(E
(
P̂
)
+N−0.5)+N−0.5. When
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E
(
P̂
)

is lower bounded at the parametric rate of N−0.5, ErrDR
N,δ has the same rate as

E
(
P̂
)
E
(
Θ̂
)
+N−0.5.

Doubly-robust behavior of ÂTEDR
·,j . The error rate of E

(
P̂
)
E
(
Θ̂
)
+N−0.5 imme-

diately reveals that the DR estimate is doubly-robust with respect to the error in
estimating the mean potential outcomes (Θ(0),Θ(1)) and the assignment probabilities
P . First, the error ErrDR

N,δ decays at a parametric rate of Op(N
−0.5) as long as the

product of error rates, E
(
P̂
)
E
(
Θ̂
)
, decays as Op(N

−0.5). As a result, ÂTEDR
·,j can

exhibit a parametric error rate even when neither the mean potential outcomes nor
the assignment probabilities are estimated at a parametric rate. Second, ErrDR

N,δ decays
to zero as long as either of E

(
P̂
)

or E
(
Θ̂
)

decays to zero, provided both errors are
Op(1).

We next compare the performance of DR estimator with the OI and IPW estimators
from Eqs. (9) and (10), respectively. Towards this goal, we characterize the ATE·,j

estimation error of ÂTEOI
·,j in terms of E

(
Θ̂
)

and of ÂTE IPW
·,j in terms of E

(
P̂
)
.

Proposition 1 (Finite Sample Guarantees for OI and IPW). Fix any j ∈ [M ].
For OI, we have ∣∣ÂTEOI

·,j − ATE·,j
∣∣ ≤ ErrOI

N ≜ E
(
Θ̂
)
. (19)

For IPW, suppose Assumptions 1 to 4 hold. Define θmax ≜
∑

a∈{0,1} ||Θ(a)||max, and fix
any δ ∈ (0, 1). Then, with probability at least 1− δ, we have∣∣ÂTE IPW

·,j − ATE·,j
∣∣ ≤ ErrIPWN,δ , (20)

where

ErrIPWN,δ ≜
2

λ̄

[
θmax E

(
P̂
)
+
(√cℓδ/12√

ℓ1
θmax + 2σ

√
cℓδ/12 +

2σm(cℓδ/12)√
ℓ1

) 1√
N

]
,

for m(c) and ℓc as defined in Section 1.

The proofs of Eq. (19) and Eq. (20) are given in the supplementary appendix
(Sections S3 and S4). Proposition 1 implies that in an asymptotic sequence with
bounded θmax, OI and IPW attain the parametric rate Op(N

−0.5) provided E
(
Θ̂
)

and
E
(
P̂
)

are Op(N
−0.5), respectively. The next corollary, proven in the supplementary

appendix (Section S2), compares these error rates with those obtained for the DR
estimator in Theorem 1.

Corollary 1 (Gains of DR over OI and IPW). Suppose Assumptions 1 to 4 hold.
Fix any j ∈ [M ]. Consider an asymptotic sequence such that θmax is bounded. If
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E
(
P̂
)
= Op(N

−α) and E
(
Θ̂
)
= Op(N

−β) for 0 ≤ α ≤ 0.5 and 0 ≤ β ≤ 0.5, then∣∣ÂTEOI
·,j − ATE·,j

∣∣ = Op(N
−β),

∣∣ÂTE IPW
·,j − ATE·,j

∣∣ = Op(N
−α),

and ∣∣ÂTEDR
·,j − ATE·,j

∣∣ = Op(N
−min{α+β,0.5}).

Corollary 1 shows that the DR estimate’s error decay rate is consistently superior
to that of the OI and IPW estimates across a variety of regimes for α, β. Specifically,
the error ErrDR

N,δ scales strictly faster than both ErrOI
N and ErrIPWN,δ if the estimation

errors of Θ̂(0), Θ̂(1), and P̂ converge slower than at the parametric rate Op(N
−1/2).

When the estimation errors of Θ̂(0), Θ̂(1), and P̂ all decay at a parametric rate, OI,
IPW, and DR estimation errors decay also at a parametric rate.

4.3. Asymptotic guarantees
The next result, proven in the supplementary appendix (Section S2) as a corollary of
Theorem 1, provides conditions on E

(
P̂
)

and E
(
Θ̂
)

for consistency of ÂTEDR
·,j .

Corollary 2 (Consistency for DR). Suppose Assumptions 1 to 4 hold. As N → ∞,
if either (i) E

(
P̂
)
= op(1), E

(
Θ̂
)
= Op(1), or (ii) E

(
Θ̂
)
= op(1), E

(
P̂
)
= Op(1), it

holds that

ÂTEDR
·,j − ATE·,j

p−→ 0, (21)

for all j ∈ [M ].

Corollary 2 states that ÂTEDR
·,j is a consistent estimator for ATE·,j as long as

either the mean potential outcomes or the assignment probabilities are estimated
consistently.

The next theorem, proven in Appendix A2, establishes a Gaussian approximation
for ÂTEDR

·,j under mild conditions on error rates E
(
P̂
)

and E
(
Θ̂
)
.

Theorem 2 (Asymptotic Normality for DR). Suppose Assumptions 1 to 4 and
the following conditions hold,

(C1) E
(
P̂
)
= op(1) and E

(
Θ̂
)
= op(1).

(C2) E
(
P̂
)
E
(
Θ̂
)
= op

(
N−1/2

)
.

(C3) For every i ∈ [N ] and j ∈ [M ], let σ(0)
i,j and σ

(1)
i,j be the standard deviations of

ε
(0)
i,j and ε

(1)
i,j , respectively. The sequence

σ2
j ≜

1

N

∑
i∈[N ]

(σ
(1)
i,j )

2

pi,j
+

1

N

∑
i∈[N ]

(σ
(0)
i,j )

2

1− pi,j
, (22)
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is bounded away from zero as N increases.

Then, for all j ∈ [M ],
√
N
(
ÂTEDR

·,j − ATE·,j
)
/σj

d−→ N
(
0, 1
)
, (23)

as N → ∞.

Theorem 2 describes two simple requirements on the estimated matrices P̂ and
(Θ̂(0), Θ̂(1)), under which ÂTEDR

·,j exhibits an asymptotic Gaussian distribution centered
at ATE·,j. Condition (C1) requires that the estimation errors of P̂ and (Θ̂(0), Θ̂(1))
converge to zero in probability. Condition (C2) requires that the product of the errors
decays sufficiently fast, at a rate op

(
N−1/2

)
, ensuring that the bias of the normalized

estimator in Eq. (23) converges to zero. Condition (C2) is similar to conditions in the
literature on doubly-robust estimation of average treatment effects under observed
confounding (e.g., Assumption 5.1 in Chernozhukov et al., 2018). Specifically, in that
context, Chernozhukov et al. (2018) assume that the product of propensity estimation
error and outcome regression error decays faster than N−1/2.

Black-box asymptotic normality. We emphasize that Theorem 2 applies to any
matrix completion algorithm MC, provided conditions (C1) and (C2) hold. This level
of generality is useful because the product of E

(
P̂
)

and E
(
Θ̂
)

is op
(
N−1/2

)
for a

wide range of MC algorithms, under mild assumptions on (Θ(0),Θ(1), P ). In contrast,
achieving such black-box asymptotic normality for OI or IPW estimates is challenging.
Their biases are tied to the individual error rates, E

(
Θ̂
)

and E
(
P̂
)
, which are typically

lower-bouded at the parametric rate of N−0.5.
The next result, proven in Appendix A2.3, provides a consistent estimator for the

asymptotic variance σ2
j from Theorem 2.

Proposition 2 (Consistent variance estimation). Suppose Assumptions 1 to 3
and condition (C1) in Theorem 2 holds. Suppose the partition (R0,R1) of the units
[N ] from Assumption 4 is such that

{
(
p̂i,j, θ̂

(a)
i,j

)
}i∈Rs ⊥⊥ {(ηi,j, ε(a)i,j )}i∈Rs , (24)

for every j ∈ [M ], a ∈ {0, 1} and s ∈ {0, 1}. Then, for all j ∈ [M ], σ̂2
j − σ2

j

p−→ 0,
where

σ̂2
j ≜

1

N

∑
i∈[N ]

(
yi,j − θ̂

(1)
i,j

)2
ai,j(

p̂i,j
)2 +

1

N

∑
i∈[N ]

(
yi,j − θ̂

(0)
i,j

)2
(1− ai,j)(

1− p̂i,j
)2 . (25)

4.4. Application to panel data with lagged treatment effects
Sections 4.2 and 4.3 considered a model where the outcome yi,j for unit i ∈ [N ]
and measurement j ∈ [M ] depends on treatment assignment only for unit i and
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measurement j, i.e., ai,j. The supplementary appendix (Section S6) discusses how
to extend the results of this section to a setting of panel data with lagged treatment
effects. In a panel data setting, the M measurements correspond to T time periods,
and t denotes the time index. Then, the supplementary appendix considers an auto-
regressive setting, where the potential outcomes at time t depends on the treatment
assignment at time t and the realized outcome at time t−1, i.e., for all i ∈ [N ], t ∈ [T ],
and a ∈ {0, 1},

y
(a|yi,t−1)
i,t = α(a)yi,t−1 + θ

(a)
i,t + ε

(a)
i,t ,

and observed outcomes satisfy

yi,t = y
(0|yi,t−1)
i,t (1− ai,t) + y

(1|yi,t−1)
i,t ai,t.

The presence of lagged treatment effects in this model makes it crucial to define
causal estimands for entire sequences of treatments. The supplementary appendix
describes how the proposed doubly-robust estimation can be extended to treatment
sequences and derives a generalization of Theorem 1.

5. Matrix Completion with Cross-Fitting
In this section, we introduce a novel algorithm designed to construct estimates
(Θ̂(0), Θ̂(1), P̂ ) that adhere to Assumption 4 and satisfy conditions (C1) and (C2) in
Theorem 2. We first explain why traditional matrix completion algorithms fail to
deliver the properties required by Assumption 4. We then present Cross-Fitted-MC,
a meta-algorithm that takes any matrix completion algorithm and uses it to construct
(Θ̂(0), Θ̂(1), P̂ ) that satisfy Assumption 4, and the stronger independence condition
in Proposition 2. Finally, we describe Cross-Fitted-SVD, an end-to-end algorithm
obtained by combining Cross-Fitted-MC with the singular value decomposition (SVD)-
based algorithm of Bai and Ng (2021), and establish that it also satisfies conditions
(C1) and (C2) in Theorem 2.

Traditional matrix completion. Estimates (Θ̂(0), Θ̂(1), P̂ ) obtained from existing
matrix completion algorithms need not satisfy Assumption 4. In particular, using
the entire assignment matrix A to estimate each element of P typically results in a
violation of

{
p̂i,j
}
i∈Rs

⊥⊥
{
ηi,j
}
i∈Rs

in Assumption 4, as each entry of P̂ is allowed to
depend on the entire noise matrix W . For example, in spectral methods (e.g., Nguyen
et al., 2019), P̂ is a function of the SVD of the entire matrix A, and

p̂i,j ⊥̸⊥ ai′,j′ , (26)

for all (i, j), (i′, j′) ∈ [N ]× [M ] in general, which implies
{
p̂i,j
}
i∈Rs

⊥̸⊥
{
ηi,j
}
i∈Rs

, for
every Rs ⊂ [N ]. Similarly, in matching methods such as nearest neighbors (Li et al.,
2019), P̂ is a function of the matches/neighbors estimated from the entire matrix
A. Dependence structures such as p̂i,j ⊥̸⊥ ai,j for any i, j ∈ [N ] × [M ]—which is
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weaker than Eq. (26)—are enough to violate the
{
p̂i,j
}
i∈Rs

⊥⊥
{
ηi,j
}
i∈Rs

requirement
in Assumption 4. Likewise, the requirement

{
θ̂
(a)
i,j

}
i∈Rs

⊥⊥
{
ηi,j
}
i∈Rs

in Assumption 4
can be violated, because Θ̂(0) and Θ̂(1) depend respectively on Y (0),obs and Y (1),obs,
which themselves depend on the entire matrix A.

5.1. Cross-Fitted-MC: A meta-cross-fitting algorithm for matrix
completion

We now introduce Cross-Fitted-MC, a cross-fitting procedure that modifies any
MC algorithm to produce (Θ̂(0), Θ̂(1), P̂ ) that satisfy Assumption 4. We employ the
following assumption on the noise variables.

Assumption 5 (Block independence between noise). Let (R0,R1) denote the partition
of the units [N ] from Assumption 4. There exists partitions (C0, C1) of the measurements
[M ], such that for each block I ∈ P ≜ {Rs × Ck : s, k ∈ {0, 1}},

WI ⊥⊥ W−I , E
(a)
−I (27)

and
W−I ⊥⊥ WI , E

(a)
I . (28)

for every a ∈ {0, 1}.

For a given block I, Eq. (27) requires the noise in the treatment assignments
corresponding to I to be independent jointly of the noise in the treatment assignments
and the potential outcomes corresponding to the remaining three blocks. Likewise,
Eq. (28) requires the noise in the treatment assignments corresponding to the remaining
three blocks to be independent jointly of the noise in the treatment assignments and
the potential outcomes corresponding to I. Assumption 5 leaves unrestricted the
dependence of the noise variables across outcomes that belong to the same block.

For notational simplicity, Assumption 5 imposes independence conditions across
blocks of outcomes in a partition of [M ] into two blocks only. It is important
to note, however, that the results in this section hold under more general depen-
dence patterns. In particular, at the cost of additional notational complexity, it
is straightforward to extend the result in this section to partitions of outcomes
(C0, C1, . . . , Cm) such that for each k ∈ {0, 1, . . . ,m}, s ∈ {0, 1} and a ∈ {0, 1},
there exists k′ ∈ {0, 1, . . . ,m}\{k} with {ηi,j}(i,j)∈Rs×Ck ⊥⊥ {ηi,j, ε(a)i,j }(i,j)∈R1−s×Ck′ and
{ηi,j}(i,j)∈R1−s×Ck′ ⊥⊥ {ηi,j, ε(a)i,j }(i,j)∈Rs×Ck . This allows for rather general patterns of
dependence across outcomes while preserving independence across specific sets of
outcomes (e.g., certain product categories in the retail example of Section 1).

Recall the setup from Section 3.1: Given an observation matrix S ∈ {R∪{ ?}}N×M ,
a matrix completion algorithm MC produces an estimate T̂ = MC(S) ∈ RN×M of a
matrix of interest T , where S and T are related via Eq. (6). With this background,
we now describe the Cross-Fitted-MC meta-algorithm.
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1. The inputs are (i) a matrix completion algorithm MC, (ii) an observation matrix
S ∈ {R ∪ { ?}}N×M , and (iii) a block partition P of the set [N ]× [M ] into four
blocks as in Assumption 5.

2. For each block I ∈ P , construct T̂I by applying MC on S⊗1−I where 1−I ∈ RN×M

denotes a masking matrix with (i, j)-th entry equal to 0 if (i, j) ∈ I and 1 otherwise,
and the operator ⊗ is as defined in Section 1. In other words,

T̂I = T I where T = MC(S ⊗ 1−I). (29)

3. Return T̂ ∈ RN×M obtained by collecting together {T̂I}I∈P , with each entry in
its original position.

We represent this meta-algorithm succinctly as below:

T̂ = Cross-Fitted-MC(MC, S,P).

In summary, Cross-Fitted-MC produces an estimate T̂ such that for each block
I ∈ P, the sub-matrix T̂I is constructed only using the entries of S corresponding
to the remaining three blocks of P. Figure 3(a) provides a schematic of the block
partition P for R0 = [⌊N/2⌋] and C0 = [⌊M/2⌋]. See Figure 3(b) for a visualization of
S ⊗ 1−I . The following result, proven in the supplementary appendix (Section S5.1),
establishes (Θ̂(0), Θ̂(1), P̂ ) generated by Cross-Fitted-MC satisfy Assumption 4.

Proposition 3 (Guarantees for Cross-Fitted-MC). Suppose Assumptions 2 and 5
hold. Let MC be any matrix completion algorithm and P be the block partition of the
set [N ]× [M ] into four blocks from Assumption 5. Let

Θ̂(0) = Cross-Fitted-MC(MC, Y (0),obs,P), (30)

Θ̂(1) = Cross-Fitted-MC(MC, Y (1),obs,P), (31)

P̂ = Cross-Fitted-MC(MC, A,P), (32)

where Y (0),obs and Y (1),obs are defined in Eq. (7). Then, Assumption 4 holds for all
j ∈ [M ]. Further, suppose

WI , E
(a)
I ⊥⊥ W−I , E

(a)
−I , (33)

for every block I ∈ P and a ∈ {0, 1}. Then, Eq. (24) holds too.

A host of MC algorithms are designed to de-noise and impute missing entries of
matrices under random patterns of missingness; the most common missingness pattern
studied is where each entry has the same probability of being missing, independent of
everything else. In contrast, Cross-Fitted-MC generates patterns where all entries
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(a) S (b) S ⊗ 1−Bottom Right

Figure 3: Panel (a): A matrix S partitioned into four blocks when R0 = [N/2] and C0 =
[M/2] in Assumption 5, i.e., P = {Top Left, Top Right, Bottom Left, Bottom Right}.
Panel (b): The matrix S ⊗ 1−Bottom Right obtained from the matrix S by masking the
entries corresponding to the Bottom Right block with ?.

in one block are deterministically missing, as in Figure 3(b). A recent strand of
research on the interplay between matrix completion methods and causal inference
models—specifically, within the synthetic controls framework—has contributed matrix
completion algorithms that allow for block missingness (see, e.g., Athey et al., 2021;
Agarwal et al., 2021; Bai and Ng, 2021; Agarwal et al., 2023b; Arkhangelsky et al.,
2021; Agarwal et al., 2023a; Dwivedi et al., 2022a,b). However, it is a challenge to
apply known theoretical guarantees for these methods to the setting in this article
because of: (i) the use of cross-fitting—which creates blocks where all observations are
missing—and (ii) outside of the completely-missing blocks, there can still be missing
observations with heterogeneous probabilities of missingness. In the next section, we
show how to modify an MC algorithm designed for block missingness patterns so that
it can be applied to our setting with cross-fitting and heterogeneous probabilities of
missingness outside the folds. For concreteness, we work with the Tall-Wide matrix
completion algorithm of Bai and Ng (2021).

5.2. The Cross-Fitted-SVD algorithm
Cross-Fitted-SVD is an end-to-end MC algorithm obtained by instantiating the Cross
-Fitted-MC meta-algorithm with the Tall-Wide algorithm of Bai and Ng (2021), which
we denote as TW. For completeness, we detail the TW algorithm in Section 5.2.1, and
then use it to describe Cross-Fitted-SVD in Section 5.2.2.

5.2.1. The TW algorithm of Bai and Ng (2021).
Bai and Ng (2021) propose TW to impute missing values in matrices with a set of
rows and a set of columns without missing entries. More concretely, for any matrix
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S ∈ {R ∪ { ?}}N×M , let Robs ⊆ [N ] and Cobs ⊆ [M ] denote the set of all rows and all
columns, respectively, with all entries observed. Then, all missing entries of S belong
to the block I = Rmiss × Cmiss, where Rmiss ≜ [N ] \ Robs and Cmiss ≜ [M ] \ Cobs.

Given a rank hyper-parameter r ∈ [min{|Robs|, |Cobs|}], TWr produces an estimate
of T as follows:

1. Run SVD separately on S(tall) ≜ S[N ]×Cobs and S(wide) ≜ SRobs×[M ], i.e.,

SVD(S(tall)) = (U (tall) ∈ RN×rN ,Σ(tall) ∈ RrN×rN , V (tall) ∈ R|Cobs|×rN )

and
SVD(S(wide)) = (U (wide) ∈ R|Robs|×rM ,Σ(wide) ∈ RrM×rM , V (wide) ∈ RM×rM )

where rN ≜ min{N, |Cobs|} and rM ≜ min{|Robs|,M}. The columns of U (tall) and
U (wide) are the left singular vectors of S(tall) and S(wide), respectively, and the
columns of V (tall) and V (wide) are the right singular vectors of S(tall) and S(wide),
respectively. The diagonal entries of Σ(tall) and Σ(wide) are the singular values of
S(tall) and S(wide), respectively, and the off-diagonal entries are zeros. This step of
TW requires the existence of the fully observed blocks S(tall) and S(wide), i.e., Robs

and Cobs cannot be empty.

2. Let Ṽ (tall) ∈ R|Cobs|×r be the sub-matrix of V (tall) that keeps the columns cor-
responding to the r largest singular values only. Let Ṽ (wide) ∈ R|Cobs|×r be the
sub-matrix of V (wide) that keeps the columns corresponding to the r largest singu-
lar values only and the rows corresponding to the indices in Cobs only. Obtain a
rotation matrix R ∈ Rr×r as follows:

R ≜ Ṽ (tall)⊤Ṽ (wide)(Ṽ (wide)⊤Ṽ (wide))−1
.

That is, R is obtained by regressing Ṽ (tall) on Ṽ (wide). In essence, R aligns the right
singular vectors of S(tall) and S(wide) using the entries that are common between
these two matrices, i.e., the entries corresponding to indices Robs × Cobs. The
formal guarantees of the TW algorithm remains unchanged if one alternatively
regresses Ṽ (wide) on Ṽ (tall), or uses the left singular vectors of S(tall) and S(wide) for
alignment.

3. Let Σ(tall) ∈ RrN×r be the sub-matrix of Σ(tall) that keeps the columns corresponding
to the r largest singular values only. Let V

(wide) ∈ RM×r be the sub-matrix of
V (wide) that keeps the columns corresponding to the r largest singular values only.
Return T̂ ≜ U (tall)Σ

(tall)
RV

(wide)⊤ as an estimate for T .

5.2.2. Cross-Fitted-SVD algorithm.

1. The inputs are (i) A ∈ RN×M , (ii) Y (a),obs ∈ {R ∪ { ?}}N×M for a ∈ {0, 1}, (iii)
a block partition P of the set [N ] × [M ] into four blocks as in Assumption 5,
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(a) A⊗ 1−Bottom Right (b) Y (0),obs ⊗ 1−Bottom Right (c) Y (1),obs ⊗ 1−Bottom Right

Figure 4: Panels (a), (b), and (c) illustrate the matrices A ⊗ 1−I , Y (0),obs ⊗ 1−I ,
and Y (1),obs ⊗ 1−I obtained from A, Y (0),obs and Y (1),obs, respectively, for the block
partition P in Figure 3(a) and the block I = Bottom Right. Unlike Panels (b) and
(c), there exists rows and columns with all entries observed in Panel (a). To enable the
application of TW for Panels (b) and (c), we replace missing entries in blocks Top Left,
Top Right, and Bottom Left with zeros.

and (iv) hyper-parameters r1, r2, r3, and λ̄ such that r1, r2, r3 ∈ [min{N,M}] and
0 < λ̄ ≤ 1/2.

2. Return P̂ = Projλ̄
(
Cross-Fitted-MC(TWr1 , A,P)

)
where Projλ̄(·) projects each

entry of its input to the interval [λ̄, 1− λ̄].

3. Define Y (0),full as equal to Y (0),obs, but with all missing entries in Y (0),obs set to
zero. Define Y (1),full analogously with respect to Y (1),obs.

4. Return Θ̂(0) = Cross-Fitted-MC(TWr2 , Y
(0),full,P) ⃝/ (1− P̂ ).

5. Return Θ̂(1) = Cross-Fitted-MC(TWr3 , Y
(1),full,P) ⃝/ P̂ .

We provide intuition on the key steps of the Cross-Fitted-SVD algorithm next.

Computing P̂ . The estimate P̂ comes from applying Cross-Fitted-MC with TW on A
and truncating the entries of the resulting matrix to the range [λ̄, 1− λ̄], in accordance
with Assumption 3. The TW sub-routine is directly applicable to A, because for any
block I = Rs × Ck ∈ P the masked matrix A⊗ 1−I has [N ] \ Rs fully observed rows
and [M ] \ Ck fully observed columns. See Figure 4(a) for a visualization of A⊗ 1−I .

Computing Θ̂(0) and Θ̂(1). The estimates Θ̂(0) and Θ̂(1) are constructed by applying
Cross-Fitted-MC with TW on Y (0),full and Y (1),full, which do not have missing entries.
TW is not directly applicable on Y (0),obs and Y (1),obs, as both matrices may not have
any rows and columns that are fully observed. See Figure 4(b) and Figure 4(c) for
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visualizations of Y (0),obs ⊗ 1−I and Y (1),obs ⊗ 1−I , respectively. However, notice that,
due to Assumption 2(a) and Assumption 2(b),

E[Y (0),full] = E[Y ⊙ (1− A)] = Θ(0) ⊙ (1− P ),

and
E[Y (1),full] = E[Y ⊙ A] = Θ(1) ⊙ P.

As a result, MC(Y (0),full) and MC(Y (1),full) provide estimates of Θ(0) ⊙ (1 − P ) and
Θ(1) ⊙ P , respectively—recall the discussion in Section 3.1. To construct Θ̂(0) and
Θ̂(1), we divide the entries of MC(Y (0),full) and MC(Y (1),full) by the entries of (1 − P̂ )

and P̂ , respectively, to adjust for heterogeneous probabilities of missingness (see,
e.g., Jin et al., 2021; Bhattacharya and Chatterjee, 2022; Xiong and Pelger, 2023, for
related procedures). This inverse probability of treatment weighting adjustment to
estimate Θ̂(0) and Θ̂(1) is distinct and in addition to the augmented IPW procedure
that generates ÂTEDR

·,j from estimates Θ̂(0), Θ̂(1) and P̂ .

5.3. Theoretical guarantees for Cross-Fitted-SVD

To establish theoretical guarantees for Cross-Fitted-SVD, we adopt three assumptions
from Bai and Ng (2021). The first assumption imposes a low-rank structure on the
matrices P , Θ(0), and Θ(1), namely that their entries are given by an inner product of
latent factors.

Assumption 6 (Linear latent factor model on the confounders). There exist constants
rp, rθ0 , rθ1 ∈ [min{N,M}] and a collection of latent factors

U ∈ RN×rp , V ∈ RM×rp , U (a) ∈ RN×rθa , and V (a) ∈ RM×rθa for a ∈ {0, 1},

such that the unobserved confounders (Θ(0),Θ(1), P ) satisfy the following factorization:

P = UV ⊤ and Θ(a) = U (a)V (a)⊤ for a ∈ {0, 1}. (34)

Assumption 6 decomposes each of the unobserved confounders (P , Θ(0), and
Θ(0)) into low-dimensional unit-dependent latent factors (U , U (0), and U (1)) and
measurement-dependent latent factors (V , V (0), and V (1)). In particular, every unit
i ∈ [N ] is associated with three low-dimensional factors: (i) Ui ∈ Rrp , (ii) U (0)

i ∈ Rrθ0 ,
and (iii) U

(1)
i ∈ Rrθ1 . Similarly, every measurement j ∈ [M ] is associated with three

factors: (i) Vj ∈ Rrp , (ii) V (0)
j ∈ Rrθ0 , and (iii) V

(1)
j ∈ Rrθ1 . Low-rank assumptions

are standard in the matrix completion literature.
The second assumption requires that the factors that determine P , Θ(0) ⊙ (1− P ),

and Θ(1) ⊙ P explain a sufficiently large amount of the variation in the data. This
assumption is made on the factors of Θ(0) ⊙ (1− P ) and Θ(1) ⊙ P instead of Θ(0) and
Θ(1) as the TW algorithm is applied on Y (0),full = Y ⊙ (1 − A) and Y (1),full = Y ⊙ A,

22



instead of Y (0),obs and Y (1),obs (see steps 4 and 5 of Cross-Fitted-SVD). To determine
the factors of Θ(0) ⊙ (1− P ) and Θ(1) ⊙ P , let

U ≜ [1N ,−U ] ∈ RN×(rp+1) and V ≜ [1M , V ] ∈ RM×(rp+1),

where 1N ∈ RN and 1M ∈ RM are vectors of all 1’s. Then,

Θ(0) ⊙ (1− P ) = U
(0)
V

(0)⊤ and Θ(1) ⊙ P = U
(1)
V

(1)⊤
, (35)

where U (0)
≜ U ∗U (0) ∈ RN×rθ0 (rp+1), V (0)

≜ V ∗V (0) ∈ RM×rθ0 (rp+1), U (1)
≜ U ∗U (1) ∈

RN×rθ1rp , and V
(1)

≜ V ∗V (1) ∈ RM×rθ1rp , with the operator ∗ denoting the Khatri-Rao
product (see Section 1). We provide details of the derivation of these factors in the
supplementary appendix (Section S5.2.3).

Assumption 7 (Strong factors). There exists a positive constant c such that

∥U∥2,∞ ≤ c, ∥V ∥2,∞ ≤ c, ∥U (a)∥2,∞ ≤ c, and ∥V (a)∥2,∞ ≤ c for a ∈ {0, 1}.

Further, the matrices defined below exist and are positive definite:

lim
N→∞

U⊤U

N
, lim

M→∞

V ⊤V

M
, lim

N→∞

U
(a)⊤

U
(a)

N
, and lim

M→∞

V
(a)⊤

V
(a)

M
for a ∈ {0, 1}.

Assumption 7, a classic assumption in the literature on latent factor models, ensures
that the factor structure is strong. Specifically, it ensures that each eigenvector of P ,
Θ(0) ⊙ (1− P ), and Θ(1) ⊙ P carries sufficiently large signal.

The third assumption requires a strong factor structure on the sub-matrices of P ,
Θ(0) ⊙ (1− P ), and Θ(1) ⊙ P corresponding to every block I in the block partition P
from Assumption 5. Further, it also requires that the size I grows linearly in N and
M .

Assumption 8 (Strong block factors). Consider the block partition P ≜ {Rs ×
Ck : s, k ∈ {0, 1}} from Assumption 5. For every s ∈ {0, 1}, let U(s) ∈ R|Rs|×rp,
U

(0)

(s) ∈ R|Rs|×rθ0 (rp+1), and U
(1)

(s) ∈ R|Rs|×rθ1rp be the sub-matrices of U , U
(0), and

U
(1), respectively, that keeps the rows corresponding to the indices in Rs. For every

k ∈ {0, 1}, let V(k) ∈ R|Ck|×rp, V
(0)

(k) ∈ R|Ck|×rθ0 (rp+1), and V
(1)

(k) ∈ R|Ck|×rθ1rp be the

sub-matrices of V , V (0), and V
(1), respectively, that keeps the rows corresponding to

the indices in Ck. Then, for every s, k ∈ {0, 1}, the matrices defined below exist and
are positive definite:

lim
N→∞

U⊤
(s)U(s)

|Rs|
, lim

M→∞

V ⊤
(k)V(k)

|Ck|
, lim

N→∞

U
(a)⊤
(s) U

(a)

(s)

|Rs|
, and lim

M→∞

V
(a)⊤
(k) V

(a)

(k)

|Ck|
for a ∈ {0, 1}.
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Further, for every s, k ∈ {0, 1}, |Rs| = Ω(N) and |Ck| = Ω(M).

The subsequent assumption introduces additional conditions on the noise variables
in Bai and Ng (2021) than those specified in Assumptions 2 and 5.

Assumption 9 (Weak dependence in noise across measurements and independence
in noise across units). .

(a)
∑

j′∈[M ]

∣∣E[ηi,jηi,j′ ]∣∣ ≤ c for every i ∈ [N ] and j ∈ [M ],

(b)
∑

j′∈[M ]

∣∣E[ε(a)i,j ε(a)i,j′ ]∣∣ ≤ c for every i ∈ [N ], j ∈ [M ], and a ∈ {0, 1}, where
ε
(a)
i,j ≜ θi,jηi,j + ε

(a)
i,j pi,j + ε

(a)
i,j ηi,j, and

(c) The elements of {(E(a)
i,· ,Wi,·) : i ∈ [N ]} are mutually independent (across i) for

a ∈ {0, 1}.

Assumption 9(a) and Assumption 9(b) requires the noise variables to exhibit only
weak dependency across measurements. Still, these assumptions allow the existence
of pairs of perfectly correlated outcomes (e.g., j, j′ ∈ [M ] such that ai,j = ai,j′).
Assumption 9(c) requires the noise (E(a),W ) to be jointly independent across units,
for every a ∈ {0, 1}. We are now ready to provide guarantees on the estimates
produced by Cross-Fitted-SVD. The proof can be found in the supplementary
appendix (Section S5.2).

Proposition 4 (Guarantees for Cross-Fitted-SVD). Suppose Assumptions 1, 2,
and 6 to 9 hold. Consider an asymptotic sequence such that θmax is bounded as both N
and M increase. Let P̂ , Θ̂(0), and Θ̂(1) be the estimates returned by Cross-Fitted-
SVD with the block partition P from Assumption 5, r1 = rp, r2 = rθ0(rp+1), r3 = rθ1rp,
and any λ̄ such that 0 < λ̄ ≤ λ with λ denoting the constant from Assumption 1.
Then, as N,M → ∞,

E
(
P̂
)
= Op

(
1√
N

+
1√
M

)
and E

(
Θ̂
)
= Op

(
1√
N

+
1√
M

)
.

Proposition 4 implies that the conditions (C1) and (C2) in Theorem 2 hold whenever
N1/2/M = o(1). Then, the DR estimator from Eq. (11) constructed using Cross-
Fitted-SVD estimates Θ̂(0), Θ̂(1), and P̂ exhibits an asymptotic Gaussian distribution
centered at the target causal estimand. Further, Proposition 4 implies that the
estimation errors E

(
P̂
)

and E
(
Θ̂
)

achieve the parametric rate whenever N/M = O(1).

5.4. Application to panel data with staggered adoption
Section 5.1 considered a setting with block independence between noise (formalized in
Assumption 5). The supplementary appendix (Section S7) discusses how to extend the
proposed doubly-robust framework to a setting of panel data with staggered adoption,
where this assumption may not hold. Recall (from Section 4.4) that in the panel
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data setting M measurements correspond to T time periods, and t denotes the time
index. Then, the supplementary appendix considers a setting where a unit remains
under control for some period of time, after which it deterministically remains under
treatment. In other words, for every unit i ∈ [N ], there exists a time point ti ∈ [T ]
such that ai,t = 0 for t ≤ ti, and ai,t = 1 for t > ti. Such a treatment assignment
pattern leads to a heavy dependence in the noise {ηi,t}t∈[T ] for every unit i ∈ [N ]. The
supplementary appendix describes an alternative approach to the Cross-Fitted-SVD
algorithm and shows that Assumption 4 still holds for a suitable staggered adoption
model.

6. Simulations
This section reports simulation results on the performance of the DR estimator of
Eq. (11) and the OI and IPW estimators of Eqs. (9) and (10), respectively.

Data Generating Process (DGP). We now briefly describe the DGP for our
simulations; Appendix A3 provides details. All simulations set N = M . To generate,
P , Θ(0), and Θ(1), we use the latent factor model given in Eq. (34). To introduce
unobserved confounding, we set the unit-specific latent factors to be the same across P ,
Θ(0), and Θ(1), i.e., U = U (0) = U (1). The entries of U and the measurement-specific
latent factors, V, V (0), V (1) are each sampled independently from a uniform distribution,
with hyperparameter rp equal to the dimension of U and V , and hyperparameter rp
equal to the dimension of U (a) and V (a) for a = 0, 1. Further, the entries of the noise
matrices E(0) and E(1) are sampled independently from a normal distribution, and
the entries of W are sampled independently as in Eq. (4). Then, y(a)i,j , ai,j , and yi,j are
determined from Eqs. (1) to (3), respectively. The simulation generates P , Θ(0), and
Θ(1) once. Given the fixed values of P , Θ(0), and Θ(1), the simulation generates 2500
realizations of (Y,A)—that is, only the noise matrices E(0), E(1),W are resampled for
each of the 2500 realizations. For each simulation realization, we apply the Cross-
Fitted-SVD algorithm with hyper-parameters as in Proposition 4 and λ̄ = λ = 0.05

to obtain P̂ , Θ̂(0), and Θ̂(1), and compute ATE·,j from Eq. (5), and ÂTEOI
·,j , ÂTE IPW

·,j

and ÂTEDR
·,j from Eqs. (9) to (11).

Results. Figure 5 reports simulation results for N = 1000, with rp = 3, rθ = 3 in
Panel (a), and rp = 5, rθ = 3 in Panel (b). Figure 2 in Section 3 reports simulation
results for rp = 3, rθ = 5. In each case, the figure shows a histogram of the distribution
of ÂTEDR

·,j −ATE·,j across 2500 simulation instances for a fixed j, along with the best
fitting Gaussian distribution (green curve). The histogram counts are normalized so
that the area under the histogram integrates to one. Figure 5 plots the Gaussian
distribution in the result of Theorem 2 (black curve). The dashed blue, red and green
lines in Figures 2 and 5 indicate the values of the means of the OI, IPW, and DR
error, respectively, across simulation instances. For reference, we place a black solid
line at zero. The DR estimator has minimal bias and a close-to-Gaussian distribution.
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(a) rp = 3, rθ = 3 (b) rp = 5, rθ = 3

Figure 5: Empirical illustration of the asymptotic performance of DR as in Theorem 2.
The histogram corresponds to the errors of 2500 independent instances of DR estimates,
the green curve represents the (best) fitted Gaussian distribution, and the black curve
represents the Gaussian approximation from Theorem 2. The dashed green, blue, and
red lines represent the biases of DR, OI, and IPW estimators.

The biases of OI and IPW are non-negligible. In Appendix A3, we compare the biases
and the standard deviations of OI, IPW, and DR across many j.

Panels (a), (b), and (c) of Figure 6 report coverage rates over the 2500 simulations
for ÂTEDR

·,j -centered nominal 95% confidence intervals with N = 500, N = 1000, and
N = 1500, respectively, all with M = N and rp = rθ = 3. For every j ∈ [M ], panels
(a), (b) and (c) show ĉj , the percentage of times [ÂTEDR

·,j ± 1.96σ̂j/
√
N ] covers ATE·,j

(in blue), and cj, the percentage of times [ÂTEDR
·,j ± 1.96σj/

√
N ] covers ATE·,j (in

green). Panel (d) shows the means and standard deviations of {ĉj}j∈[M ] and {cj}j∈[M ]

for different values of N . Confidence intervals based on the large-sample approximation
results of Section 4 exhibit small size distortion even for fairly small values of N .

7. Conclusion
This article introduces a new framework to estimate treatment effects in the presence
unobserved confounding. We consider modern data-rich environments, where there
are many units, and outcomes of interest per unit. We show it is possible to control
for the confounding effects of a set of latent variables when this set is low-dimensional
relative to the number of observed treatments and outcomes.

Our proposed estimator is doubly-robust, combining outcome imputation and
inverse probability weighting with matrix completion. Analytical tractability of
its distribution is gained through a novel cross-fitting procedure for causal matrix
completion. We study the properties of the doubly-robust estimator, along with the
outcome imputation and inverse probability weighting-based estimators under black-
box matrix completion error rates. We show that the decay rate of the error of the
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(a) N = 500 (b) N = 1000

(c) N = 1500 (d) Average coverage across outcomes

Figure 6: Panels (a), (b), and (c) report coverage rates for nominal 95% confidence
intervals constructed using the estimated variance from Eq. (25) (in blue) and the
true variance from Eq. (22) (in green) for N ∈ {500, 1000, 1500} and M = N . Panel
(d) shows the means and standard deviations of coverage rates across outcomes for
different values of N .

doubly-robust estimator dominates those of the outcome imputation and the inverse
probability weighting estimators. Moreover, we establish a Gaussian approximation
to the distribution of the doubly-robust estimator. Simulation results demonstrate
the practical relevance of the formal properties of the doubly-robust estimator.
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A1. Proof of Theorem 1: Finite Sample Guarantees for DR
Fix any j ∈ [M ]. Recall the definitions of the parameter ATE·,j and corresponding
doubly-robust estimate ÂTEDR

·,j from Eqs. (5) and (11), respectively. The error
∆ATEDR

·,j = ÂTEDR
·,j − ATE·,j can be re-expressed as

∆ATEDR
·,j =

1

N

∑
i∈[N ]

(
θ̂
(1,DR)
i,j − θ̂

(0,DR)
i,j

)
− 1

N

∑
i∈[N ]

(
θ
(1)
i,j − θ

(0)
i,j

)
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=
1

N

∑
i∈[N ]

((
θ̂
(1,DR)
i,j − θ

(1)
i,j

)
−
(
θ̂
(0,DR)
i,j − θ

(0)
i,j

))
(a)
=

1

N

∑
i∈[N ]

(
T(1,DR)
i,j + T(0,DR)

i,j

)
, (A.1)

where (a) follows after defining T(1,DR)
i,j ≜

(
θ̂
(1,DR)
i,j −θ

(1)
i,j

)
and T(0,DR)

i,j ≜ −
(
θ̂
(0,DR)
i,j −θ

(0)
i,j

)
for every (i, j) ∈ [N ]× [M ]. Then, we have

T(1,DR)
i,j = θ̂

(1,DR)
i,j − θ

(1)
i,j

(a)
= θ̂

(1)
i,j +

(
yi,j − θ̂

(1)
i,j

)ai,j
p̂i,j

− θ
(1)
i,j

(b)
= θ̂

(1)
i,j +

(
θ
(1)
i,j + ε

(1)
i,j − θ̂

(1)
i,j

)pi,j + ηi,j
p̂i,j

− θ
(1)
i,j (A.2)

= (θ̂
(1)
i,j − θ

(1)
i,j )
(
1− pi,j + ηi,j

p̂i,j

)
+ ε

(1)
i,j

(pi,j + ηi,j
p̂i,j

)
=

(θ̂
(1)
i,j − θ

(1)
i,j )(p̂i,j − pi,j)

p̂i,j
−

(θ̂
(1)
i,j − θ

(1)
i,j )ηi,j

p̂i,j
+

ε
(1)
i,j pi,j

p̂i,j
+

ε
(1)
i,j ηi,j

p̂i,j
, (A.3)

where (a) follows from Eq. (12), and (b) follows from Eqs. (1) to (3). A similar
derivation for a = 0 implies that

T(0,DR)
i,j = −

(θ̂
(0)
i,j − θ

(0)
i,j )(1− p̂i,j−(1− pi,j))

1− p̂i,j
+

(θ̂
(0)
i,j − θ

(0)
i,j )(−ηi,j)

1− p̂i,j
−

ε
(0)
i,j (1− pi,j)

1− p̂i,j

−
ε
(0)
i,j (−ηi,j)

1− p̂i,j

=
(θ̂

(0)
i,j − θ

(0)
i,j )(p̂i,j − pi,j)

1− p̂i,j
−

(θ̂
(0)
i,j − θ

(0)
i,j )ηi,j

1− p̂i,j
−

ε
(0)
i,j (1− pi,j)

1− p̂i,j
+

ε
(0)
i,j ηi,j

1− p̂i,j
. (A.4)

Consider any a ∈ {0, 1} and any δ ∈ (0, 1). We claim that, with probability at least
1− 6δ,

1

N

∣∣∣ ∑
i∈[N ]

T(a,DR)
i,j

∣∣∣ ≤2

λ̄
E
(
Θ̂(a)

)
E
(
P̂
)
+

2
√
cℓδ

λ̄
√
ℓ1N

E
(
Θ̂(a)

)
+

2σ
√
cℓδ

λ̄
√
N

+
2σm(cℓδ)

λ̄
√
ℓ1N

, (A.5)

where recall that m(cℓδ) = max
(
cℓδ,

√
cℓδ
)
. We provide a proof of this claim at the

end of this section. Applying triangle inequality in Eq. (A.1) and using Eq. (A.5) with
a union bound, we obtain that

∣∣∆ATEDR
·,j
∣∣ ≤ 2

λ̄
E
(
Θ̂
)
E
(
P̂
)
+

2
√
cℓδ

λ̄
√
ℓ1N

E
(
Θ̂
)
+

4σ
√
cℓδ

λ̄
√
N

+
4σm(cℓδ)

λ̄
√
ℓ1N

,
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with probability at least 1− 12δ. The claim in Eq. (18) follows by re-parameterizing
δ.

Proof of bound Eq. (A.5). Recall the partitioning of the units [N ] into R0 and R1

from Assumption 4. Now, to enable the application of concentration bounds, we split
the summation over i ∈ [N ] in the left hand side of Eq. (A.5) into two parts—one over
i ∈ R0 and the other over i ∈ R1—such that the noise terms are independent of the
estimates of Θ(0),Θ(1), P in each of these parts as in Eqs. (14) and (15).

Fix a = 1 and note that |
∑

i∈[N ] T
(1,DR)
i,j | ≤ |

∑
i∈R0

T(1,DR)
i,j |+ |

∑
i∈R1

T(1,DR)
i,j |. Fix

any s ∈ {0, 1}. Then, Eq. (A.3) and triangle inequality imply

∣∣∣ ∑
i∈Rs

T(1,DR)
i,j

∣∣∣ ≤ ∣∣∣ ∑
i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

)(
p̂i,j−pi,j

)
p̂i,j

∣∣∣+∣∣∣ ∑
i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

)
ηi,j

p̂i,j

∣∣∣
+
∣∣∣ ∑
i∈Rs

ε
(1)
i,j pi,j

p̂i,j

∣∣∣+∣∣∣ ∑
i∈Rs

ε
(1)
i,j ηi,j

p̂i,j

∣∣∣. (A.6)

Applying the Cauchy-Schwarz inequality to bound the first term yields that

∣∣∣∣ ∑
i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

)(
p̂i,j−pi,j

)
p̂i,j

∣∣∣∣ ≤
√√√√∑

i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

p̂i,j

)2 ∑
i∈Rs

(
p̂i,j − pi,j

)2
≤
∥∥(Θ̂(1)

·,j −Θ
(1)
·,j
)
⃝/ P̂·,j

∥∥
2

∥∥P̂·,j−P·,j
∥∥
2
. (A.7)

To bound the second term in Eq. (A.6), note that ηi,j is subGaussian(1/
√
ℓ1) (see

Example 2.5.8 in Vershynin (2018)) as well as zero-mean and independent across all
i ∈ [N ] due to Assumption 2(a). By Assumption 4, {(p̂i,j, θ̂(1)i,j )}i∈Rs ⊥⊥ {ηi,j}i∈Rs . The
subGaussian concentration result in Corollary S1 yields

∣∣∣∣ ∑
i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

)
ηi,j

p̂i,j

∣∣∣∣≤√
cℓδ√
ℓ1

√√√√∑
i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

p̂i,j

)2

≤
√
cℓδ√
ℓ1

∥∥(Θ̂(1)
·,j −Θ

(1)
·,j
)
⃝/ P̂·,j

∥∥
2
, (A.8)

with probability at least 1− δ.
To bound the third term in Eq. (A.6), note that ε(1)i,j is subGaussian(σ), zero-mean,

and independent across all i ∈ [N ] due to Assumption 2. By Assumption Assumption 4,
{p̂i,j}i∈Rs ⊥⊥ {ε(1)i,j }i∈Rs . The subGaussian concentration result in Corollary S1 yields

∣∣∣ ∑
i∈Rs

ε
(1)
i,j pi,j

p̂i,j

∣∣∣ ≤ σ
√

cℓδ

√∑
i∈Rs

(pi,j
p̂i,j

)2
≤ σ

√
cℓδ
∥∥P·,j ⃝/ P̂·,j

∥∥
2
, (A.9)

with probability at least 1− δ.
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To bound the fourth term in Eq. (A.6), note that ε(1)i,j ηi,j is subExponential(σ/
√
ℓ1)

because of Lemma S3 as well as zero-mean and independent across all i ∈ [N ] due to
Assumption 2. By Assumption 4, {p̂i,j}i∈Rs ⊥⊥ {(ηi,j, ε(1)i,j )}i∈Rs . The subExponential
concentration result in Corollary S2 yields that

∣∣∣ ∑
i∈Rs

ε
(1)
i,j ηi,j

p̂i,j

∣∣∣ ≤ σm(cℓδ)√
ℓ1

∥1N ⃝/ P̂·,j∥2, (A.10)

with probability at least 1− δ. Putting together Eqs. (A.6) to (A.10), we conclude
that, with probability at least 1− 3δ,

1

N

∣∣∣ ∑
i∈Rs

T(1,DR)
i,j

∣∣∣ ≤ 1

N

∥∥(Θ̂(1)
·,j −Θ

(1)
·,j
)
⃝/ P̂·,j

∥∥
2

∥∥P̂·,j−P·,j
∥∥
2
+

√
cℓδ√
ℓ1N

∥∥(Θ̂(1)
·,j −Θ

(1)
·,j
)
⃝/ P̂·,j

∥∥
2

+
σ
√
cℓδ

N

∥∥P·,j ⃝/ P̂·,j
∥∥
2
+

σm(cℓδ)√
ℓ1N

∥∥1N ⃝/ P̂·,j
∥∥
2
.

Then, noting that 1/p̂i,j ≤ 1/λ̄ for every i ∈ [N ] and j ∈ [M ] from Assumption 3, and
consequently that ∥B·,j ⃝/ P̂·,j∥2 ≤ ||B||1,2/λ̄ for any matrix B and every j ∈ [M ], we
obtain the following bound, with probability at least 1− 3δ,

1

N

∣∣∣ ∑
i∈Rs

T(1,DR)
i,j

∣∣∣ ≤ 1

λ̄N
||Θ̂(1)−Θ(1)||1,2||P̂−P ||1,2 +

√
cℓδ

λ̄
√
ℓ1N

||Θ̂(1)−Θ(1)||1,2

+
σ
√
cℓδ

λ̄N
||P ||1,2 +

σm(cℓδ)

λ̄
√
ℓ1N

||1||1,2 (A.11)

(a)

≤ 1

λ̄
E
(
Θ̂(1)

)
E
(
P̂
)
+

√
cℓδ

λ̄
√
ℓ1N

E
(
Θ̂(1)

)
+

σ
√
cℓδ

λ̄
√
N

+
σm(cℓδ)

λ̄
√
ℓ1N

, (A.12)

where (a) follows from Eq. (16) and because ||P ||1,2 ≤
√
N and ||1||1,2 =

√
N . Then,

the claim in Eq. (A.5) follows for a = 1 by using Eq. (A.12) and applying a union
bound over s ∈ {0, 1}. The proof of Eq. (A.5) for a = 0 follows similarly.

A2. Proof of Theorem 2: Asymptotic Normality for DR

For every (i, j) ∈ [N ]× [M ], recall the definitions of T(1,DR)
i,j and T(0,DR)

i,j from Eq. (A.3)
and Eq. (A.4), respectively. Then, define

X(1,DR)
i,j ≜ T(1,DR)

i,j − ε
(1)
i,j −

ε
(1)
i,j ηi,j

pi,j
(A.13)

X(0,DR)
i,j ≜ T(0,DR)

i,j + ε
(0)
i,j −

ε
(0)
i,j ηi,j

1− pi,j
,
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and

ZDR
i,j ≜ ε

(1)
i,j +

ε
(1)
i,j ηi,j

pi,j
− ε

(0)
i,j +

ε
(0)
i,j ηi,j

1− pi,j
. (A.14)

Then, ∆ATEDR
·,j in Eq. (A.1) can be expressed as

∆ATEDR
·,j =

1

N

∑
i∈[N ]

(
X(1,DR)
i,j + X(0,DR)

i,j + ZDR
i,j

)
.

We obtain the following convergence results.

Lemma A1 (Convergence of XDR
j ). Fix any j ∈ [M ]. Suppose Assumptions 1 to 4

and conditions (C1) to (C3) in Theorem 2 hold. Then,

1

σj
√
N

∑
i∈[N ]

(
X(1,DR)
i,j + X(0,DR)

i,j

)
= op(1).

Lemma A2 (Convergence of ZDR
j ). Fix any j ∈ [M ]. Suppose Assumptions 1 and 2

hold and condition (C3) in Theorem 2 hold. Then,

1

σj
√
N

∑
i∈[N ]

ZDR
i,j

d−→ N (0, 1).

Now, the result in Theorem 2 follows from Slutsky’s theorem.

A2.1. Proof of Lemma A1
Fix any j ∈ [M ]. Consider any a ∈ {0, 1}. We claim that

1√
N

∑
i∈[N ]

X(a,DR)
i,j ≤ O

(√
NE
(
Θ̂(a)

)
E
(
P̂
))

+ op(1). (A.15)

We provide a proof of this claim at the end of this section. Then, using Eq. (A.15)
and the fact that σj ≥ c > 0 as per condition (C3), we obtain the following,

1

σj
√
N

∑
i∈[N ]

(
X(1,DR)
i,j +X(0,DR)

i,j

)
≤ 1

c

(
O
(√

NE
(
Θ̂
)
E
(
P̂
))

+ op(1)

)
(a)
=

1

c

(√
Nop(N

−1/2) + op(1)

)
(b)
= op(1),

where (a) follows from (C2), and (b) follows because op(1) + op(1) = op(1).

Proof of Eq. (A.15) Recall the partitioning of the units [N ] into R0 and R1 from
Assumption 4. Now, to enable the application of concentration bounds, we split the
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summation over i ∈ [N ] in the left hand side of Eq. (A.15) into two parts—one over
i ∈ R0 and the other over i ∈ R1—such that the noise terms are independent of the
estimates of Θ(0),Θ(1), P in each of these parts as in Eqs. (14) and (15).

Fix a = 1. Then, Eqs. (A.3) and (A.13) imply that

X(1,DR)
i,j =

(
θ̂
(1)
i,j −θ

(1)
i,j

)(
p̂i,j−pi,j

)
p̂i,j

−
(
θ̂
(1)
i,j −θ

(1)
i,j

)
ηi,j

p̂i,j
+

ε
(1)
i,j pi,j

p̂i,j
+

ε
(1)
i,j ηi,j

p̂i,j
− ε

(1)
i,j −

ε
(1)
i,j ηi,j

pi,j

=

(
θ̂
(1)
i,j −θ

(1)
i,j

)(
p̂i,j−pi,j

)
p̂i,j

−
(
θ̂
(1)
i,j −θ

(1)
i,j

)
ηi,j

p̂i,j
−
ε
(1)
i,j

(
p̂i,j−pi,j

)
p̂i,j

−
ε
(1)
i,j ηi,j

(
p̂i,j−pi,j

)
p̂i,jpi,j

.

Now, note that |
∑

i∈[N ] X
(1,DR)
i,j | ≤ |

∑
i∈R0

X(1,DR)
i,j | + |

∑
i∈R1

X(1,DR)
i,j |. Fix any s ∈

{0, 1}. Then, triangle inequality implies that

1√
N

∣∣∣ ∑
i∈Rs

X(1,DR)
i,j

∣∣∣ ≤ 1√
N

∣∣∣ ∑
i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

)(
p̂i,j−pi,j

)
p̂i,j

∣∣∣+ 1√
N

∣∣∣ ∑
i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

)
ηi,j

p̂i,j

∣∣∣
+

1√
N

∣∣∣ ∑
i∈Rs

ε
(1)
i,j

(
p̂i,j−pi,j

)
p̂i,j

∣∣∣+ 1√
N

∣∣∣ ∑
i∈Rs

ε
(1)
i,j ηi,j

(
p̂i,j−pi,j

)
p̂i,jpi,j

∣∣∣.
(A.16)

To control the first term in Eq. (A.16), we use the Cauchy-Schwarz inequality and
Assumption 3 as in Appendix A1 (see Eqs. (A.7), (A.11), and (A.12)).

To control the second term in Eq. (A.16), we condition on {(p̂i,j, θ̂(1)i,j )}i∈Rs . Then,
Assumption 4 (i.e., Eq. (14)) provides that {(p̂i,j, θ̂(1)i,j )}i∈Rs ⊥⊥ {ηi,j}i∈Rs . As a result,∑

i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

)
ηi,j/p̂i,j is subGaussian

([∑
i∈Rs

(
θ̂
(1)
i,j−θ

(1)
i,j

)2
/
(
p̂i,j
)2]1/2

/
√
ℓ1
)

because
ηi,j is subGaussian(1/

√
ℓ1) (see Example 2.5.8 in Vershynin (2018)) as well as zero-

mean and independent across all i ∈ [N ] due to Assumption 2(a). Then, we have

1√
N
E
[∣∣∣∣∑
i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

)
ηi,j

p̂i,j

∣∣∣∣∣∣∣{(p̂i,j, θ̂(1)i,j )}i∈Rs

]
(a)

≤ c√
N

√√√√∑
i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

p̂i,j

)2

≤ c√
N

∥∥(Θ̂(1)
·,j −Θ

(1)
·,j
)
⃝/ P̂·,j

∥∥
2

(b)

≤ c

λ̄
E
(
Θ̂(1)

)
≤ c

λ̄
E
(
Θ̂
) (c)
= op(1), (A.17)

where (a) follows as the first moment of subGaussian(σ) is O(σ), (b) follows from
Assumption 3 and Eq. (16), and (c) follows from (C1).

To control the third term in Eq. (A.16), we condition on {p̂i,j}i∈Rs . Then,
Assumption 4 (i.e., Eq. (15)) provides that {p̂i,j}i∈Rs ⊥⊥ {ε(1)i,j }i∈Rs . As a result,
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∑
i∈Rs

ε
(1)
i,j

(
p̂i,j−pi,j

)
/p̂i,j is subGaussian

(
σ
[∑

i∈Rs

(
p̂i,j−pi,j

)2
/
(
p̂i,j
)2]1/2) because ε

(1)
i,j

is subGaussian(σ), zero-mean, and independent across all i ∈ [N ] due to Assumption 2.
Then, we have

1√
N
E
[∣∣∣∣ ∑

i∈Rs

ε
(1)
i,j

(
p̂i,j−pi,j

)
p̂i,j

∣∣∣∣∣∣∣{p̂i,j}i∈Rs

]
(a)

≤ cσ√
N

√√√√∑
i∈Rs

(
p̂i,j−pi,j

p̂i,j

)2

≤ cσ√
N

∥∥(P̂·,j−P·,j
)
⃝/ P̂·,j

∥∥
2

(b)

≤ cσ

λ̄
E
(
P̂
) (c)
= op(1), (A.18)

where (a) follows as the first moment of subGaussian(σ) is O(σ), (b) follows from
Assumption 3 and Eq. (16), and (c) follows from (C1).

To control the fourth term in Eq. (A.16), we condition on {p̂i,j}i∈Rs . Then, As-
sumption 4 (i.e., Eq. (15)) provides that {p̂i,j}i∈Rs ⊥⊥ {(ηi,j, ε(1)i,j )}i∈Rs . As a result,∑

i∈Rs
ε
(1)
i,j ηi,j

(
p̂i,j−pi,j

)
/p̂i,jpi,j is subExponential

(
σ
[∑

i∈Rs

(
p̂i,j−pi,j

)2
/
(
p̂i,jpi,j

)2]1/2
/
√
ℓ1
)

because ε
(1)
i,j ηi,j is subExponential(σ/

√
ℓ1) due to Lemma S3 as well as zero-mean and

independent across all i ∈ [N ] due to Assumption 2. Then, we have

1√
N
E
[∣∣∣∣ ∑

i∈Rs

ε
(1)
i,j ηi,j

(
p̂i,j−pi,j

)
p̂i,jpi,j

∣∣∣∣∣∣∣{p̂i,j}i∈Rs

]
(a)

≤ cσ√
N

√√√√∑
i∈Rs

(
p̂i,j−pi,j
p̂i,jpi,j

)2

≤ cσ√
N

∥∥(P̂·,j−P·,j
)
⃝/
(
P̂·,j ⊙ P·,j

)∥∥
2

(b)

≤ cσ

λ̄λ
E
(
P̂
) (c)
= op(1), (A.19)

where (a) follows as the first moment of subExponential(σ) is O(σ), (b) follows from
Assumption 3 and Eq. (16), and (c) follows from (C1).

Putting together Eqs. (A.16) to (A.19) using Lemma S6, we have

1√
N

∣∣∣ ∑
i∈Rs

X(1,DR)
i,j

∣∣∣ ≤ O
(√

NE
(
Θ̂(1)

)
E
(
P̂
))

+ op(1).

Then, the claim in Eq. (A.15) follows for a = 1 by using |
∑

i∈[N ] X
(1,DR)
i,j | ≤ |

∑
i∈R0

X(1,DR)
i,j |+ |

∑
i∈R1

X(1,DR)
i,j |. The proof of Eq. (A.15) for a = 0 follows similarly.

A2.2. Proof of Lemma A2
To prove this result, we invoke Lyapunov central limit theorem (CLT).
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Lemma A3 (Lyapunov CLT, see Theorem 27.3 of Billingsley (2017)). Consider a
sequence x1, x2, · · · of mean-zero independent random variables such that the moments
E[|xi|2+ω] are finite for some ω > 0. Moreover, assume that the Lyapunov’s condition
is satisfied, i.e.,

N∑
i=1

E[|xi|2+ω]
/( N∑

i=1

E[x2
i ]
) 2+ω

2 −→ 0, (A.20)

as N → ∞. Then,
N∑
i=1

xi

/( N∑
i=1

E[x2
i ]
) 1

2 d−→ N (0, 1),

as N → ∞.

Fix any j ∈ [M ]. We apply Lyapunov CLT in Lemma A3 on the sequence
ZDR

1,j ,ZDR
2,j , · · · where ZDR

i,j is as defined in Eq. (A.14). Note that this sequence is
zero-mean from Assumption 2(a) and Assumption 2(b), and independent from As-
sumption 2(b). First, we show in Appendix A2.2.1 that

Var(ZDR
i,j ) =

(σ
(1)
i,j )

2

pi,j
+

(σ
(0)
i,j )

2

1− pi,j
, (A.21)

for each i ∈ [N ]. Next, we show in Appendix A2.2.2 that Lyapunov’s condi-
tion Eq. (A.20) holds for the sequence ZDR

1,j ,ZDR
2,j , · · · with ω = 1. Finally, applying

Lemma A3 and using the definition of σj from Eq. (22) yields Lemma A2.

A2.2.1. Proof of Eq. (A.21)
Fix any i ∈ [N ] and consider Var(ZDR

i,j ). We have

Var
(
ZDR
i,j

)
=Var

(
ε
(1)
i,j

(
1 +

ηi,j
pi,j

)
− ε

(0)
i,j

(
1− ηi,j

1− pi,j

))
. (A.22)

We claim the following:

Var
(
ε
(1)
i,j

(
1 +

ηi,j
pi,j

))
=

(σ
(1)
i,j )

2

pi,j
, (A.23)

Var
(
ε
(0)
i,j

(
1− ηi,j

1− pi,j

))
=

(σ
(0)
i,j )

2

1− pi,j
, (A.24)

and

Cov
(
ε
(1)
i,j

(
1 +

ηi,j
pi,j

)
, ε

(0)
i,j

(
1− ηi,j

1− pi,j

))
= 0, (A.25)

with Eq. (A.21) following from Eqs. (A.22) to (A.25).

37



To establish Eq. (A.23), notice that Assumption 2(a) and (b) imply ε
(1)
i,j ⊥⊥ ηi,j

and E[ε(1)i,j ] = E[ηi,j] = 0 so that E[ε(1)i,j (1 + ηi,j/pi,j)] = 0. Then,

Var
(
ε
(1)
i,j

(
1 +

ηi,j
pi,j

))
= E

[(
ε
(1)
i,j

(
1 +

ηi,j
pi,j

))2]
= E

[(
ε
(1)
i,j

)2]
E
[(

1 +
ηi,j
pi,j

)2]
= E

[(
ε
(1)
i,j

)2][
1 + E

[
η2i,j
p2i,j

]]
(a)
= (σ

(1)
i,j )

2

[
1 +

pi,j(1− pi,j)

p2i,j

]
=

(σ
(1)
i,j )

2

pi,j
,

where (a) follows because E[η2i,j] = Var(ηi,j) = pi,j(1 − pi,j) from Eq. (3), and
E
[
(ε

(1)
i,j )

2
]
= Var(ε(1)i,j ) = (σ

(1)
i,j )

2 from condition (C3). A similar argument estab-
lishes Eq. (A.24). Eq. (A.25) follows from,

Cov
(
ε
(1)
i,j

(
1 +

ηi,j
pi,j

)
, ε

(0)
i,j

(
1− ηi,j

1− pi,j

))
= E

[
ε
(1)
i,j

(
1 +

ηi,j
pi,j

)
ε
(0)
i,j

(
1− ηi,j

1− pi,j

)]
(a)
= E

[(
1 +

ηi,j
pi,j

)(
1− ηi,j

1− pi,j

)]
E[ε(1)i,j ε

(0)
i,j ]

=

(
1− E

[
η2i,j

pi,j
(
1− pi,j

)])E[ε(1)i,j ε(0)i,j ]
(b)
= 0 · E[ε(1)i,j ε

(0)
i,j ] = 0,

where (a) follows because (ε
(0)
i,j , ε

(1)
i,j ) ⊥⊥ ηi,j from Assumption 2(b) and (b) follows

because E[η2i,j] = Var(ηi,j) = pi,j(1− pi,j).

A2.2.2. Proof of Lyapunov’s condition with ω = 1

We have ∑
i∈[N ] E

[
|ZDR

i,j |3
](∑

i∈[N ] Var(ZDR
i,j )
)3/2 =

1

N3/2

∑
i∈[N ] E

[
|ZDR

i,j |3
](

1
N

∑
i∈[N ] Var(ZDR

i,j )
)3/2

(a)
=

1

N3/2

∑
i∈[N ] E

[
|ZDR

i,j |3
](

σj
)3/2

(b)

≤ 1

N3/2

∑
i∈[N ] E

[
|ZDR

i,j |3
]

c
3/2
1

(c)

≤ 1

N1/2

c2

c
3/2
1

, (A.26)

where (a) follows by putting together Eqs. (A.21) and (22), (b) follows because
σj ≥ c1 > 0 as per condition (C3), (c) follows because the absolute third mo-
ments of subExponential random variables are bounded, after noting that ZDR

i,j is a
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subExponential random variable. Then, condition Eq. (A.20) holds for ω = 1 as the
right hand side of Eq. (A.26) goes to zero as N → ∞.

A2.3. Proof of Proposition 2: Consistent variance estimation
Fix any j ∈ [M ] and recall the definitions of σ2

j and σ̂2
j from Eqs. (22) and (25),

respectively. The error ∆j = σ̂2
j − σ2

j can be expressed as

∆j =
1

N

∑
i∈[N ]

((
θ̂
(1)
i,j − yi,j

)2
ai,j(

p̂i,j
)2 +

(
θ̂
(0)
i,j − yi,j

)2
(1− ai,j)(

1− p̂i,j
)2 )

−
(
(σ

(1)
i,j )

2

pi,j
+

(σ
(0)
i,j )

2

1− pi,j

)

=
1

N

∑
i∈[N ]

((
θ̂
(1)
i,j − yi,j

)2
ai,j(

p̂i,j
)2 −

(σ
(1)
i,j )

2

pi,j

)
+

((
θ̂
(0)
i,j − yi,j

)2
(1− ai,j)(

1− p̂i,j
)2 −

(σ
(0)
i,j )

2

1− pi,j

)
(a)
=

1

N

∑
i∈[N ]

(
T(1)
i,j + T(0)

i,j

)
, (A.27)

where (a) follows after defining

T(1)
i,j ≜

(
θ̂
(1)
i,j − yi,j

)2
ai,j(

p̂i,j
)2 −

(σ
(1)
i,j )

2

pi,j
and T(0)

i,j ≜

(
θ̂
(0)
i,j − yi,j

)2
(1− ai,j)(

1− p̂i,j
)2 −

(σ
(0)
i,j )

2

1− pi,j
.

for every (i, j) ∈ [N ]× [M ]. Then, we have

T(1)
i,j

(a)
=

(
θ̂
(1)
i,j − θ

(1)
i,j − ε

(1)
i,j

)2(
pi,j + ηi,j

)(
p̂i,j
)2 −

(σ
(1)
i,j )

2

pi,j

=

(
θ̂
(1)
i,j −θ

(1)
i,j

)2
ai,j(

p̂i,j
)2 −−

2ε
(1)
i,j pi,j

(
θ̂
(1)
i,j −θ

(1)
i,j

)(
p̂i,j
)2 −

2ε
(1)
i,j ηi,j

(
θ̂
(1)
i,j −θ

(1)
i,j

)(
p̂i,j
)2

+

(
ε
(1)
i,j

)2
pi,j(

p̂i,j
)2 +

(
ε
(1)
i,j

)2
ηi,j(

p̂i,j
)2 −

(σ
(1)
i,j )

2

pi,j
,

where (a) follows from Eqs. (1) to (3). A similar derivation for a = 0 implies that

T(0)
i,j =

(
θ̂
(0)
i,j − θ

(0)
i,j − ε

(0)
i,j

)2
(1− pi,j − ηi,j)(

1− p̂i,j
)2 −

(σ
(0)
i,j )

2

1− pi,j

=

(
θ̂
(0)
i,j −θ

(0)
i,j

)2(
1− ai,j

)(
1− p̂i,j

)2 −
2ε

(0)
i,j

(
1− pi,j

)(
θ̂
(0)
i,j −θ

(0)
i,j

)(
1− p̂i,j

)2 +
2ε

(0)
i,j ηi,j

(
θ̂
(0)
i,j −θ

(0)
i,j

)(
1− p̂i,j

)2
+

(
ε
(0)
i,j

)2(
1− pi,j

)(
1− p̂i,j

)2 −
(
ε
(0)
i,j

)2
ηi,j(

1− p̂i,j
)2 −

(σ
(0)
i,j )

2

1− pi,j
.

39



Consider any a ∈ {0, 1}. We claim that

1

N

∣∣∣ ∑
i∈[N ]

T(a)
i,j

∣∣∣ = op(1). (A.28)

We provide a proof of this claim at the end of this section. Then, applying triangle
inequality in Eq. (A.27), we obtain the following

∆j ≤ op(1) + op(1)
(a)
= op(1),

where (a) follows because op(1) + op(1) = op(1).

Proof of bound Eq. (A.28). This proof follows a very similar road map to that
used for establishing the inequality in Eq. (A.15). Recall the partitioning of the
units [N ] into R0 and R1 from Assumption 4. Now, to enable the application of
concentration bounds, we split the summation over i ∈ [N ] in the left hand side of
Eq. (A.28) into two parts—one over i ∈ R0 and the other over i ∈ R1—such that the
noise terms are independent of the estimates of Θ(0),Θ(1), P in each of these parts as
in Eqs. (14) and (15).

Fix a = 1. Now, note that |
∑

i∈[N ] T
(1)
i,j | ≤ |

∑
i∈R0

T(1)
i,j | + |

∑
i∈R1

T(1)
i,j |. Fix any

s ∈ {0, 1}. Then, triangle inequality implies that

1

N

∣∣∣∑
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i,j

∣∣∣ ≤ 1

N

∣∣∣∑
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(
θ̂
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)2
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p̂i,j
)2 ∣∣∣+ 1

N

∣∣∣∑
i∈Rs

2ε
(1)
i,j pi,j

(
θ̂
(1)
i,j −θ

(1)
i,j

)(
p̂i,j
)2 ∣∣∣

+
1

N

∣∣∣∑
i∈Rs

2ε
(1)
i,j ηi,j

(
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(1)
i,j

)(
p̂i,j
)2 ∣∣∣+ 1

N

∣∣∣∑
i∈Rs

(
ε
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i,j
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ηi,j(

p̂i,j
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N
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(
ε
(1)
i,j

)2
pi,j(

p̂i,j
)2 −

(σ
(1)
i,j )

2

pi,j

∣∣∣.
(A.29)

To bound the first term in Eq. (A.29), we have

1

N

∣∣∣∑
i∈Rs

(
θ̂
(1)
i,j −θ

(1)
i,j

)2
ai,j(

p̂i,j
)2 ∣∣∣ (a)≤ 1

N

∣∣∣∑
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(
θ̂
(1)
i,j −θ

(1)
i,j

)2(
p̂i,j
)2 ∣∣∣

(b)

≤ 1

λ̄2N

∥∥Θ̂(1)
·,j −Θ

(1)
·,j
∥∥2
2

(c)
=

1

λ̄2

[
E
(
Θ̂(1)

)]2
≤ 1

λ̄2

[
E
(
Θ̂
)]2 (d)

= op(1)op(1)
(e)
= op(1), (A.30)

where (a) follows as ai,j ∈ {0, 1}, (b) follows from Assumption 3, (c) follows from
Eq. (16), (d) follows from (C1), and (e) follows because op(1)op(1) = op(1).

To control second term in Eq. (A.29), we condition on {
(
p̂i,j, θ̂

(1)
i,j

)
}i∈Rs . Then,
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Eq. (24) provides that {
(
p̂i,j, θ̂

(1)
i,j

)
}i∈Rs ⊥⊥ {ε(1)i,j }i∈Rs . As a result,

∑
i∈Rs

ε
(1)
i,j pi,j

(
θ̂
(1)
i,j −

θ
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)
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(
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(
σ
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(
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)2(

θ̂
(1)
i,j − θ

(1)
i,j

)2
/
(
p̂i,j
)4]1/2) because ε

(1)
i,j is

subGaussian(σ), zero-mean and independent across all i ∈ [N ] due to Assumption 2.
Then, we have

1

N
E
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(
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θ̂
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λ̄2N

∥∥Θ̂(1)
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·,j
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=
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(
Θ̂(1)

)
√
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≤ cσ
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E
(
Θ̂
)

√
N

(d)
= op(1), (A.31)

where (a) follows as the first moment of subGaussian(σ) is O(σ), (b) follows from
Assumptions 1 and 3, (c) follows from Eq. (16), and (d) follows from (C1).

To control third term in Eq. (A.29), we condition on {
(
p̂i,j, θ̂

(1)
i,j

)
}i∈Rs . Then,

Eq. (24) provides that {
(
p̂i,j, θ̂

(1)
i,j

)
}i∈Rs ⊥⊥ {(ηi,j, ε(1)i,j )}i∈Rs . As a result,
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/
(
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/
√
ℓ1
)

because ε(1)i,j ηi,j
is subExponential(σ/

√
ℓ1) due to Lemma S3 as well as zero-mean and independent

across all i ∈ [N ] due to Assumption 2. Then, we have
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(b)
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(
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)

√
N

(d)
= op(1), (A.32)

where (a) follows as the first moment of subExponential(σ) is O(σ) (Zhang and Wei,
2022, Corollary 3), (b) follows from Assumption 3, (c) follows from Eq. (16), and (d)
follows from (C1).

To control fourth term in Eq. (A.29), we condition on {p̂i,j}i∈Rs . Then, Eq. (24)
provides that {p̂i,j}i∈Rs ⊥⊥ {(ηi,j, ε(1)i,j )}i∈Rs . As a result,

∑
i∈Rs

(
ε
(1)
i,j

)2
ηi,j/

(
p̂i,j
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subWeibull2/3
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/
√
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because (ε(1)i,j )2ηi,j is subWeibull2/3(σ2/
√
ℓ1)

due to Lemma S4 as well as zero-mean and independent across all i ∈ [N ] due to
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Assumption 2. Then, we have

1

N
E
[∣∣∣∣ ∑
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λ̄2
√
N

= op(1), (A.33)

where (a) follows as the first moment of subWeibull2/3(σ) is O(σ) (Zhang and Wei,
2022, Corollary 3) and (b) follows from Assumption 3.

To control fifth term in Eq. (A.29), we have∣∣∣∣∑
i∈Rs
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(A.34)

where (a) follows from the triangle inequality. To control the first term in Eq. (A.34), we
condition on {p̂i,j}i∈Rs . Then, Eq. (24) provides that {p̂i,j}i∈Rs ⊥⊥ {ε(1)i,j }i∈Rs . Further,
E[(ε(1)i,j )2 − (σ

(1)
i,j )

2] = 0 due to (C3) and Assumption 2. As a result,
∑

i∈Rs

[(
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(1)
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σ
(1)
i,j

)2]
pi,j/

(
p̂i,j
)2 is subExponential

(
σ2
[∑
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(
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)4]1/2) because (ε

(1)
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2 −
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(1)
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2 is subExponential(σ2) and independent across all i ∈ [N ] due to Lemma S3.
Then, we have
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(A.35)

where (a) follows as the first moment of subExponential(σ) is O(σ) and (b) follows from
Assumption 3. To bound the second term in Eq. (A.34), applying the Cauchy-Schwarz
inequality yields that
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(c)

≤ 2σ2

λλ̄2
√
N

∥∥P·,j−P̂·,j
∥∥
2

(d)
=

2σ2

λλ̄2
E
(
P̂
) (e)
= op(1), (A.36)

where (a) follows by using
(
pi,j
)2 − (p̂i,j)2 = (pi,j + p̂i,j)(pi,j − p̂i,j) ≤ 2|pi,j − p̂i,j|, (b)

follows from Assumptions 1 and 3, and because the variance of a subGaussian random
variable is upper bounded by the square of its subGaussian norm, (c) follows by the
relationship between ℓ1 and ℓ2 norms of a vector, (d) follows from Eq. (16), and (e)
follows from (C1).

Putting together Eqs. (A.29) to (A.36) using Lemma S6,

1

N

∣∣∣ ∑
i∈Rs

T(1)
i,j

∣∣∣ = op(1).

Then, the claim in Eq. (A.28) follows for a = 1 by using |
∑

i∈[N ] T
(1)
i,j | ≤ |

∑
i∈R0

T(1)
i,j |+

|
∑

i∈R1
T(1)
i,j |. The proof of Eq. (A.28) for a = 0 follows similarly.

A3. Data generating process for the simulations
The inputs of the data generating process (DGP) are: the probability bound λ; two
positive constants c(0) and c(1); and the standard deviations σ(a)

i,j for every i ∈ [N ], j ∈
[M ], a ∈ {0, 1}. The DGP is:

1. For positive integers rp, rθ and r = max{rp, rθ}, generate a proxy for the common
unit-level latent factors U shared ∈ RN×r, such that, for all i ∈ [N ] and j ∈ [r],
ushared
i,j is independently sampled from a Uniform(

√
λ,

√
1− λ) distribution, with

λ ∈ (0, 1).

2. Generate proxies for the measurement-level latent factors V, V (0), V (1) ∈ RM×r,
such that, for all i ∈ [M ] and j ∈ [r], vi,j, v

(0)
i,j , v

(1)
i,j are independently sampled from

a Uniform(
√
λ,

√
1− λ) distribution.

3. Generate the treatment assignment probability matrix P

P =
1

rp
U shared
[N ]×[rp]V

⊤
[M ]×[rp].

4. For a ∈ {0, 1}, run SVD on U sharedV (a)⊤, i.e.,

SVD(U sharedV (a)⊤) = (U (a),Σ(a),W (a)).

Then, generate the mean potential outcome matrices Θ(0) and Θ(1):

Θ(a) =
c(a)Sum(Σ(a))

rθ
U

(a)
[N ]×[rθ]

W
(a)⊤
[M ]×[rθ]

,
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(a) rp = 3, rθ = 3

(b) rp = 3, rθ = 5

(c) rp = 5, rθ = 3

Figure 7: Empirical illustration of the biases and the standard deviations of DR, OI,
and IPW estimators for different j, and for different rp = 5 and rθ.

where Sum(Σ(a)) denotes the sum of all entries of Σ(a).

5. Generate the noise matrices E(0) and E(1), such that, for all i ∈ [N ], j ∈ [M ], a ∈
{0, 1}, ε

(a)
i,j is independently sampled from a N (0, (σ

(a)
i,j )

2) distribution. Then,
determine y

(a)
i,j from Eq. (2).

6. Generate the noise matrix W , such that, for all i ∈ [N ], j ∈ [M ], ηi,j is indepen-
dently sampled as per Eq. (4). Then, determine ai,j and yi,j from Eq. (3) and
Eq. (1), respectively.

In our simulations, we set λ = 0.05, c(0) = 1 and c(1) = 2. In practice, instead of
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choosing the values of σ(a)
i,j as ex-ante inputs, we make them equal to the standard

deviation of all the entries in Θ(a) for every i and j, separately for a ∈ {0, 1}.
In Figure 7, we compare the absolute biases and the standard deviations of OI,

IPW, and DR across the first 50 values of j for N = 1000, with rp = 3, rθ = 3 in
Panel (a), rp = 3, rθ = 5 in Panel (b), and rp = 5, rθ = 3 in Panel (c). For each j,
the estimate of the biases of OI, IPW, and DR is the average of ÂTEOI

·,j − ATE·,j,
ÂTE IPW

·,j − ATE·,j and ÂTEDR
·,j − ATE·,j across the Q simulation instances. Likewise,

the estimate of the standard deviation of OI, IPW, and DR is the standard deviation
of ÂTEOI

·,j − ATE·,j, ÂTE IPW
·,j − ATE·,j and ÂTEDR

·,j − ATE·,j across the Q simulation
instances. The DR estimator consistently outperforms the OI and IPW estimators in
reducing both absolute biases and standard deviations.
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S1. Supporting Concentration and Convergence Results
This section presents known results on subGaussian, subExponential, and subWeibull
random variables (defined below), along with few basic results on convergence of
random variables.

We use subGaussian(σ) to represent a subGaussian random variable, where σ is a
bound on the subGaussian norm; and subExponential(σ) to represent a subExponential
random variable, where σ is a bound on the subExponential norm. Recall the defini-
tions of the norms from Section 1 of the main article.

Lemma S1 (subGaussian concentration: Theorem 2.6.3 of Vershynin (2018)). Let
x ∈ Rn be a random vector whose entries are independent, zero-mean, subGaussian(σ)
random variables. Then, for any b ∈ Rn and t ≥ 0,

P
{∣∣b⊤x∣∣ ≥ t

}
≤ 2 exp

( −ct2

σ2∥b∥22

)
.

The following corollary expresses the bound in Lemma S1 in a convenient form.

Corollary S1 (subGaussian concentration). Let x ∈ Rn be a random vector whose
entries are independent, zero-mean, subGaussian(σ) random variables. Then, for any
b ∈ Rn and any δ ∈ (0, 1), with probability at least 1− δ,∣∣b⊤x∣∣ ≤ σ

√
cℓδ · ∥b∥2.

Proof. The proof follows from Lemma S1 by choosing δ ≜ 2 exp(−ct2/σ2∥b∥22).

Lemma S2 (subExponential concentration: Theorem 2.8.2 of Vershynin (2018)). Let
x ∈ Rn be a random vector whose entries are independent, zero-mean, subExponential(σ)

1



random variables. Then, for any b ∈ Rn and t ≥ 0,

P
{∣∣b⊤x∣∣ ≥ t

}
≤ 2 exp

(
− cmin

( t2

σ2∥b∥22
,

t

σ∥b∥∞

))
.

The following corollary expresses the bound in Lemma S2 in a convenient form.

Corollary S2 (subExponential concentration). Let x ∈ Rn be a random vector whose
entries are independent, zero-mean, subExponential(σ) random variables. Then, for
any b ∈ Rn and any δ ∈ (0, 1), with probability at least 1− δ,∣∣b⊤x∣∣ ≤ σm(cℓδ) · ∥b∥2,

where recall that m(cℓδ) = max
(
cℓδ,

√
cℓδ
)
.

Proof. Choosing t = t0σ∥b∥2 in Lemma S2, we have

P
{∣∣b⊤x∣∣ ≥ t0σ∥b∥2

}
≤ 2 exp

(
− ct0min

(
t0,

∥b∥2
∥b∥∞

))
≤ 2 exp

(
− ct0min

(
t0, 1

))
,

where the second inequality follows from min{t0, c} ≥ min{t0, 1} for any c ≥ 1 and
∥b∥2 ≥ ∥b∥∞. Then, the proof follows by choosing δ ≜ 2 exp

(
− ct0min

(
t0, 1

))
which

fixes t0 = max{
√
cℓδ, cℓδ} = m(cℓδ).

Lemma S3 (Product of subGaussians is subExponential: Lemma. 2.7.7 of Vershynin
(2018)). Let x1 and x2 be subGaussian(σ1) and subGaussian(σ2) random variables,
respectively. Then, x1x2 is subExponential(σ1σ2) random variable.

Next, we provide the definition of a subWeibull random variable.

Definition S1 (subWeibull random variable: Definition 1 of Zhang and Wei (2022)).
For ρ > 0, a random variable x is subWeibull with index ρ if it has a bounded
subWeibull norm defined as follows:

∥x∥ψρ ≜ inf{t > 0 : E[exp(|x|ρ/tρ)] ≤ 2}.

We use subWeibullρ(σ) to represent a subWeibull random variable with index ρ,
where σ is a bound on the subWeibull norm. Note that subGaussian and subExponential
random variables are subWeibull random variable with indices 2 and 1, respectively.

Lemma S4 (Product of subWeibulls is subWeibull: Proposition 2 of Zhang and Wei
(2022)). For i ∈ [d], let xi be a subWeibullρi(σi) random variable. Then, Πi∈[d]xi is
subWeibullρ(σ) random variable where

σ = Πi∈[d]σi and ρ =

(∑
i∈[d]

1/ρi

)−1

.

2



Next set of lemmas provide useful intermediate results on stochastic convergence.

Lemma S5. Let Xn and Xn be sequences of random variables. Let δn be a deterministic
sequence such that 0 ≤ δn ≤ 1 and δn → 0. Suppose Xn = op(1) and P(|Xn| ≤ |Xn|) ≥
1− δn. Then, Xn = op(1).

Proof. We need to show that for any ϵ > 0 and δ > 0, there exist finite n, such that

P(|Xn| > δ) < ϵ

for all n ≥ n. Fix any ϵ > 0. As δn converges to zero, there exists a finite n0 such that
δn < ϵ/2, for all n ≥ n0. As Xn is converges to zero in probability, there exists finite
n1, such that P(|Xn| > δ) < ϵ/2 for all n ≥ n1. Now, the event {|Xn| > δ} belongs to
the union of {|Xn| > |Xn|} and {|Xn| > δ}. As a result, we obtain

P(|Xn| > δ) ≤ P(|Xn| > |Xn|) + P(|Xn| > δ) ≤ δn + P(|Xn| > δ) < ϵ,

for n ≥ n = max{n0, n1}. Therefore, Xn = op(1).

Lemma S6. Let Xn and Xn be sequences of random variables. Suppose E
[
|Xn|

∣∣Xn

]
=

op(1). Then, Xn = op(1).

Proof. Fix any δ > 0. Markov’s inequality implies

P
(
|Xn| ≥ δ

∣∣∣Xn

)
≤ 1

δ
E
[
|Xn|

∣∣∣Xn

]
= op(1).

The law of total probability and the boundedness of conditional probabilities yield

P
(
|Xn| ≥ δ

)
= E

[
P
(
|Xn| ≥ δ

∣∣∣Xn

)]
−→ 0.

Lemma S7. Let Xn and Xn be sequences of random variables. Suppose Xn = Op(1)
and P

(
|Xn| ≥ |Xn| + f(ϵ)

)
< ϵ for some positive function f and every ϵ ∈ (0, 1).

Then, Xn = Op(1).

Proof. We need to show that for any ϵ > 0, there exist finite δ > 0 and n > 0, such
that

P(|Xn| > δ) < ϵ

for all n ≥ n. Fix any ϵ > 0. Because Xn is bounded in probability, there exist
finite δ and n0, such that P(|Xn| > δ) < ϵ/2 for all n ≥ n0. Further, we have
P
(
|Xn| ≥ |Xn|+ f(ϵ/2)

)
< ϵ/2. Now, the event {|Xn| > δ + f(ϵ/2)} belongs to the

union of {|Xn| > |Xn|+ f(ϵ/2)} and {|Xn| > δ}. As a result, we obtain

P
(
|Xn| > δ + f(ϵ/2)

)
≤ P

(
|Xn| > |Xn|+ f(ϵ/2)

)
+ P

(
|Xn| > δ

)
< ϵ.
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for all n ≥ n0. In other words, P(|Xn| > δ) < ϵ for all n ≥ n, where δ = δ+f(ϵ/2) > 0
and n = n0. Therefore, Xn = Op(1).

S2. Proofs of Corollaries 1 and 2
S2.1. Proof of Corollary 1: Gains of DR over OI and IPW
Fix any j ∈ [M ] and any δ ∈ (0, 1). First, consider IPW. Take any α ∈ [0, 1/2]. From
Eq. (20), with probability at least 1− δ,

Nα
∣∣ÂTE IPW

·,j − ATE·,j
∣∣ ≤ 2θmax

λ̄
NαE

(
P̂
)
+ f1(δ)N

α−1/2 ≤ 2θmax

λ̄
NαE

(
P̂
)
+ f1(δ),

where

f1(δ) ≜
2

λ̄

(√
cℓδ/12√
ℓ1

θmax + 2σ
√
cℓδ/12 +

2σm(cℓδ/12)√
ℓ1

)
,

for m(c) and ℓc as defined in Section 1 of the main article. Then, if E
(
P̂
)
= Op

(
N−α),

Lemma S7 implies ∣∣ÂTE IPW
·,j − ATE·,j

∣∣ = Op

(
N−α).

Next, consider DR. From Eq. (17), with probability at least 1− δ,∣∣ÂTEDR
·,j − ATE·,j

∣∣ ≤ 2

λ̄
E
(
Θ̂
)
E
(
P̂
)
+ f2(δ)N

−1/2,

where

f2(δ) ≜
2

λ̄

(√
cℓδ/12√
ℓ1

E
(
Θ̂
)
+ 2σ

√
cℓδ/12 +

2σm(cℓδ/12)√
ℓ1

)
.

Suppose E
(
P̂
)
= Op

(
N−α) and E

(
Θ̂
)
= Op

(
N−β). Consider two cases. First, suppose

α + β ≤ 0.5. Then, with probability at least 1− δ,

Nα+β
∣∣ÂTEDR

·,j − ATE·,j
∣∣ ≤ 2

λ̄
Nα+βE

(
Θ̂
)
E
(
P̂
)
+ f2(δ)N

α+β−1/2

≤ 2

λ̄
Nα+βE

(
Θ̂
)
E
(
P̂
)
+ f2(δ).

Lemma S7 implies
∣∣ÂTEDR

·,j − ATE·,j
∣∣ = Op(N

−(α+β)). Next, suppose α + β > 0.5.
With probability at least 1− δ,

N1/2
∣∣ÂTEDR

·,j − ATE·,j
∣∣ ≤ 2

λ̄
N1/2E

(
Θ̂
)
E
(
P̂
)
+ f2(δ) ≤

2

λ̄
Nα+βE

(
Θ̂
)
E
(
P̂
)
+ f2(δ).
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Lemma S7 implies
∣∣ÂTEDR

·,j − ATE·,j
∣∣ = Op(N

−1/2).

S2.2. Proof of Corollary 2: Consistency for DR
Fix any j ∈ [M ]. Then, choose δ = 1/N in Eq. (18) and note that every term in the
right hand side of Eq. (18) is op(1) under the conditions on E

(
Θ̂
)

and E
(
P̂
)
. Then,

Eq. (21) follows from Lemma S5.

S3. Proof of Proposition 1 (19): Finite Sample Guarantees for
OI

Fix any j ∈ [M ]. Recall the definitions of the parameter ATE·,j and corresponding
outcome imputation estimate ÂTEOI

·,j from Eqs. (5) and (9), respectively. The error
∆ATEOI

·,j = ÂTEOI
·,j − ATE·,j can be re-expressed as

∆ATEOI
·,j =

1

N

∑
i∈[N ]

(
θ̂
(1)
i,j −θ̂

(0)
i,j

)
− 1

N

∑
i∈[N ]

(
θ
(1)
i,j −θ

(0)
i,j

)
=

1

N

∑
i∈[N ]

((
θ̂
(1)
i,j −θ

(1)
i,j

)
−
(
θ̂
(0)
i,j −θ

(0)
i,j

))
.

Using the triangle inequality, we have∣∣∆ATEOI
·,j
∣∣ ≤ 1

N

∣∣∣ ∑
i∈[N ]

(
θ̂
(1)
i,j − θ

(1)
i,j

)∣∣∣+ 1

N

∣∣∣ ∑
i∈[N ]

(
θ̂
(0)
i,j − θ

(0)
i,j

)∣∣∣. (S.1)

Consider any a ∈ {0, 1}. We claim that

1

N

∣∣∣ ∑
i∈[N ]

(
θ̂
(a)
i,j − θ

(a)
i,j

)∣∣∣ ≤ E
(
Θ̂(a)

)
. (S.2)

The proof is complete by putting together Eqs. (S.1) and (S.2).

Proof of Eq. (S.2) Fix any a ∈ {0, 1}. Using the Cauchy-Schwarz inequality, we
have

1

N

∣∣∣ ∑
i∈[N ]

(
θ̂
(1)
i,j − θ

(1)
i,j

)∣∣∣ ≤ 1

N
∥1N∥2∥Θ̂(1)

·,j −Θ
(1)
·,j ∥2 ≤

1√
N
||Θ̂(1) −Θ(1)||1,2.

S4. Proof of Proposition 1 (20): Finite Sample Guarantees for
IPW

Fix any j ∈ [M ]. Recall the definitions of the parameter ATE·,j and corresponding
inverse probability weighting estimate ÂTE IPW

·,j from Eqs. (5) and (10), respectively.
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The error ∆ATEIPW
·,j = ÂTE IPW

·,j − ATE·,j can be re-expressed as

∆ATEIPW
·,j =

1

N

∑
i∈[N ]

(yi,jai,j
p̂i,j

− yi,j(1− ai,j)

1− p̂i,j

)
− 1

N

∑
i∈[N ]

(
θ
(1)
i,j − θ

(0)
i,j

)
=

1

N

∑
i∈[N ]

((yi,jai,j
p̂i,j

− θ
(1)
i,j

)
−
(yi,j(1− ai,j)

1− p̂i,j
− θ

(0)
i,j

))
(a)
=

1

N

∑
i∈[N ]

(
T(1,IPW)
i,j + T(0,IPW)

i,j

)
, (S.3)

where (a) follows after defining T(1,IPW)
i,j ≜ yi,jai,j/p̂i,j − θ

(1)
i,j and T(0,IPW)

i,j ≜ θ
(0)
i,j −

yi,j(1− ai,j)/(1− p̂i,j). Then, we have

T(1,IPW)
i,j =

yi,jai,j
p̂i,j

− θ
(1)
i,j

(a)
=

(
θ
(1)
i,j + ε

(1)
i,j

)(
pi,j + ηi,j

)
p̂i,j

− θ
(1)
i,j

= θ
(1)
i,j

(pi,j + ηi,j
p̂i,j

− 1
)
+ ε

(1)
i,j

(pi,j + ηi,j
p̂i,j

)
=

θ
(1)
i,j

(
pi,j − p̂i,j

)
p̂i,j

+
θ
(1)
i,j ηi,j

p̂i,j
+

ε
(1)
i,j pi,j

p̂i,j
+

ε
(1)
i,j ηi,j

p̂i,j
, (S.4)

where (a) follows from Eqs. (1) to (3). A similar derivation for a = 0 implies that

T(0,IPW)
i,j = θ

(0)
i,j − yi,j(1− ai,j)

1− p̂i,j

= −
θ
(0)
i,j

(
1− pi,j −

(
1− p̂i,j

))
1− p̂i,j

−
θ
(0)
i,j (−ηi,j)

1− p̂i,j
−

ε
(0)
i,j

(
1− pi,j

)
1− p̂i,j

−
ε
(0)
i,j (−ηi,j)

1− p̂i,j

=
θ
(0)
i,j

(
pi,j − p̂i,j

)
1− p̂i,j

+
θ
(0)
i,j ηi,j

1− p̂i,j
−

ε
(0)
i,j

(
1− pi,j

)
1− p̂i,j

+
ε
(0)
i,j ηi,j

1− p̂i,j
.

Consider any a ∈ {0, 1} and δ ∈ (0, 1). We claim that, with probability at least 1− 6δ,

1

N

∣∣∣∑
i∈[N ]

T(a,IPW)
i,j

∣∣∣ ≤2

λ̄
||Θ(a)||max E

(
P̂
)
+

2
√
cℓδ

λ̄
√
ℓ1N

||Θ(a)||max+
2σ

√
cℓδ

λ̄
√
N

+
2σm(cℓδ)

λ̄
√
ℓ1N

. (S.5)

where recall that m(cℓδ) = max
(
cℓδ,

√
cℓδ
)
. We provide a proof of this claim at the

end of this section. Applying triangle inequality in Eq. (S.3) and using Eq. (S.5) with
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a union bound, we obtain that

∣∣∆ATEIPW
·,j
∣∣ ≤ 2

λ̄
θmax E

(
P̂
)
+

2
√
cℓδ

λ̄
√
ℓ1N

θmax +
4σ

√
cℓδ

λ̄
√
N

+
4σm(cℓδ)

λ̄
√
ℓ1N

,

with probability at least 1− 12δ. The claim in Eq. (20) follows by re-parameterizing δ.

Proof of Eq. (S.5). This proof follows a very similar road map to that used for
establishing the inequality in Eq. (A.5). Recall the partitioning of the units [N ] into
R0 and R1 from Assumption 4. Now, to enable the application of concentration
bounds, we split the summation over i ∈ [N ] in the left hand side of Eq. (S.5) into
two parts—one over i ∈ R0 and the other over i ∈ R1—such that the noise terms
are independent of the estimates of Θ(0),Θ(1), P in each of these parts as in Eqs. (14)
and (15).

Fix a = 1 and note that |
∑

i∈[N ] T
(1,IPW)
i,j | ≤ |

∑
i∈R0

T(1,IPW)
i,j | + |

∑
i∈R1

T(1,IPW)
i,j |.

Fix any s ∈ {0, 1}. Then, Eq. (S.4) and triangle inequality imply that

∣∣∣ ∑
i∈Rs

T(1,IPW)
i,j

∣∣∣≤ ∣∣∣ ∑
i∈Rs

θ
(1)
i,j

(
pi,j−p̂i,j

)
p̂i,j

∣∣∣+∣∣∣ ∑
i∈Rs

θ
(1)
i,j ηi,j

p̂i,j

∣∣∣+ ∣∣∣ ∑
i∈Rs

ε
(1)
i,j pi,j

p̂i,j

∣∣∣+∣∣∣ ∑
i∈Rs

ε
(1)
i,j ηi,j

p̂i,j

∣∣∣.
(S.6)

Next, note that the decomposition in Eq. (S.6) is identical to the one in Eq. (A.6),
except for the fact when compared to Eq. (A.6), the first two terms in Eq. (S.6) have
a factor of θ(1)i,j instead of

(
θ̂
(1)
i,j −θ

(1)
i,j

)
. As a result, mimicking steps used to derive

Eq. (A.11), we obtain the following bound, with probability at least 1− 3δ,

1

N

∣∣∣∑
i∈Rs

T(1,IPW)
i,j

∣∣∣≤ 1

λ̄N
||Θ(1)||1,2||P̂−P ||1,2+

√
cℓδ

λ̄
√
ℓ1N

||Θ(1)||1,2+
σ
√
cℓδ

λ̄N
||P ||1,2+

σm(cℓδ)

λ̄
√
ℓ1N

||1||1,2

(a)

≤ 1

λ̄
√
N
||Θ(1)||max||P̂−P ||1,2+

√
cℓδ

λ̄
√
ℓ1N

||Θ(1)||max+
σ
√
cℓδ

λ̄
√
N

+
σm(cℓδ)

λ̄
√
ℓ1N

(b)

≤ 1

λ̄
||Θ(1)||max E

(
P̂
)
+

√
cℓδ

λ̄
√
ℓ1N

||Θ(1)||max +
σ
√
cℓδ

λ̄
√
N

+
σm(cℓδ)

λ̄
√
ℓ1N

, (S.7)

where (a) follows because ||Θ(1)||1,2 ≤
√
N ||Θ(1)||max, ||P ||1,2 ≤

√
N and ||1||1,2 =

√
N ,

and (b) follows from Eq. (16). Then, the claim in Eq. (S.5) follows for a = 1 by using
Eq. (S.7) and applying a union bound over s ∈ {0, 1}. The proof of Eq. (S.5) for a = 0
follows similarly.

S5. Proofs of Propositions 3 and 4
In Section S5.1, we prove Proposition 3, i.e., we show that the estimates of P , Θ(0),
and Θ(1) generated by Cross-Fitted-MC satisfy Assumption 4. Next, we prove
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Proposition 4 implying that the estimates of P , Θ(0), and Θ(1) generated by Cross-
Fitted-SVD satisfy the condition (C2) in Theorem 2 as long as

√
N/M = o(1).

S5.1. Proof of Proposition 3: Guarantees for Cross-Fitted-MC

Consider any matrix completion algorithm MC. We show that

P̂I , Θ̂
(a)
I ⊥⊥ WI (S.8)

and
P̂I ⊥⊥ WI , E

(a)
I , (S.9)

for every I ∈ P and a ∈ {0, 1}, where P is the block partition of [N ]× [M ] into four
blocks from Assumption 5. Then, Eqs. (14) and (15) in Assumption 4 follow from
Eqs. (S.8) and (S.9), respectively.

Consider Θ̂(0), Θ̂(1), and P̂ as in Eqs. (30) to (32). Fix any a ∈ {0, 1}. From
Eq. (29), note that P̂I depends only on A⊗1−I and Θ̂

(a)
I depends on Y (a),obs⊗1−I . In

other words, the randomness in
(
P̂I , Θ̂

(a)
I
)

stems from the randomness in
(
A−I , Y

(a),obs
−I

)
which in turn stems from the randomness in

(
W−I , E

(a)
−I
)
. Then, Eq. (S.8) follows from

Eq. (27). Likewise, the randomness in P̂I stems from the randomness in A−I which in
turn stems from the randomness in W−I . Then, Eq. (S.9) follows from Eq. (28).

To prove Eq. (24), we show that

P̂I , Θ̂
(a)
I ⊥⊥ WI , E

(a)
I , (S.10)

for every I ∈ P and a ∈ {0, 1}. As mentioned above, the randomness in
(
P̂I , Θ̂

(a)
I
)

stems from the randomness in
(
A−I , Y

(a),obs
−I

)
which in turn stems from the randomness

in
(
W−I , E

(a)
−I
)
. Then, Eq. (S.10) follows from Eq. (33).

S5.2. Proof of Proposition 4: Guarantees for Cross-Fitted-SVD

To prove this result, we first derive a corollary of Lemma A.1 in Bai and Ng (2021)
for a generic matrix of interest T , such that S = (T + H) ⊗ F , and apply it to P ,
Θ(0) ⊙ (1− P ), and Θ(1) ⊙ P . We impose the following restrictions on T , H, and F .

Assumption S1 (Strong linear latent factors). There exist a constant rT ∈ [min{N,M}]
and a collection of latent factors

Ũ ∈ RN×rT and Ṽ ∈ RM×rT ,

such that,
(a) T satisfies the factorization: T = Ũ Ṽ ⊤,

(b) ||Ũ ||2,∞ ≤ c and ||Ṽ ||2,∞ ≤ c for some positive constant c, and
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(c) The matrices defined below exist and are positive definite:

lim
N→∞

Ũ⊤Ũ

N
and lim

M→∞

Ṽ ⊤Ṽ

M
.

Assumption S2 (Zero-mean, weakly dependent, and subExponential noise). The
noise matrix H is such that,

(a) {hi,j : i ∈ [N ], j ∈ [M ]} are zero-mean subExponential with the subExponential
norm bounded by a constant σ,

(b)
∑

j′∈[M ]

∣∣E[hi,jhi,j′ ]∣∣ ≤ c for every i ∈ [N ] and j ∈ [M ], and

(c) The elements of {Hi,· : i ∈ [N ]} are mutually independent (across i).

Assumption S3 (Strong block factors). Consider the latent factors Ũ ∈ RN×rT and
Ṽ ∈ RM×rT from Assumption S1. Let Robs ⊆ [N ] and Cobs ⊆ [M ] denote the set of
rows and columns of S, respectively, with all entries observed, and Rmiss ≜ [N ] \ Robs

and Cmiss ≜ [M ]\Cobs. Let Ũobs ∈ R|Robs|×rT and Ũmiss ∈ R|Rmiss|×rT be the sub-matrices
of Ũ that keeps the rows corresponding to the indices in Robs and Rmiss, respectively.
Let Ṽ obs ∈ R|Cobs|×rT and Ṽ miss ∈ R|Cmiss|×rT be the sub-matrices of Ṽ that keeps the
rows corresponding to the indices in Cobs and Cmiss, respectively. Then, the matrices
defined below exist and are positive definite:

lim
N→∞

Ũobs⊤Ũobs

|Robs|
, lim
M→∞

Ũmiss⊤Ũmiss

|Rmiss|
, lim
N→∞

Ṽ obs⊤Ṽ obs

|Cobs|
, and lim

M→∞

Ṽ miss⊤Ṽ miss

|Cmiss|
. (S.11)

Further, the mask matrix F is such that

|Robs| = Ω(N), |Rmiss| = Ω(N), |Cobs| = Ω(M), and |Cmiss| = Ω(M). (S.12)

The next result characterizes the entry-wise error in recovering the missing entries
of a matrix where all entries in one block are deterministically missing (see the
discussion in Section 5.1 of the main article) using the TW algorithm (summarized in
Section 5.2.1 of the main article). Its proof, essentially established as a corollary of
Bai and Ng (2021, Lemma A.1), is provided in Section S5.3.

Corollary S3. Consider a matrix of interest T , a noise matrix H, and a mask matrix
F such that that Assumptions S1 to S3 hold. Let S ∈ {R ∪ { ?}}N×M be the observed
matrix as in Eq. (6). Let Robs ⊆ [N ] and Cobs ⊆ [M ] denote the set of rows and
columns of S, respectively, with all entries observed. Let I = Rmiss × Cmiss where
Rmiss ≜ [N ] \ Robs and Cmiss ≜ [M ] \ Cobs. Then, TWrT produces an estimate T̂I of TI
such that

||T̂I − TI ||max = Op

(
1√
N

+
1√
M

)
,
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as N,M → ∞.

Given this corollary, we now complete the proof of Proposition 4. Consider the
partition P from Assumption 5 and fix any I ∈ P. Recall that Cross-Fitted-SVD
applies TW on P⊗1−I , Y (0),full⊗1−I , and Y (1),full⊗1−I , and note that the mask matrix
1−I satisfies the requirement in Assumption S3, i.e., Eq. (S.12) under Assumption 8.

S5.2.1. Estimating P .
Consider estimating P using Cross-Fitted-SVD. To apply Corollary S3, we use
Assumptions 6 and 7 to note that P satisfies Assumption S1 with rank parameter
rp. Then, we use Eq. (4), Assumption 2, and Assumption 9 to note that W satisfies
Assumption S2. Finally, we use Assumption 8 to note that Assumption S3 holds. Step
2 of Cross-Fitted-SVD can be rewritten as P̂ = Projλ̄

(
P
)

and P = Cross-Fitted-
MC(TWr1 , A,P) where r1 = rp. Then,

||P̂I − PI ||max

(a)

≤ ||P I − PI ||max
(b)
= Op

(
1√
N

+
1√
M

)
,

where (a) follows from Assumption 1, the choice of λ̄, and the definition of Projλ̄(·),
and (b) follows from Corollary S3. Applying a union bound over all I ∈ P , we have

E
(
P̂
) (a)

≤ ||P̂ − P ||max = Op

(
1√
N

+
1√
M

)
, (S.13)

where (a) follows from the definition of (1, 2) operator norm.

S5.2.2. Estimating Θ(0) and Θ(1).
For every a ∈ {0, 1}, we show that

E
(
Θ̂(a)

)
= Op

(
1√
N

+
1√
M

)
. (S.14)

We focus on a = 1 noting that the proof for a = 0 is analogous. We split the proof in two
cases: (i) ||

(
Θ̂(1)−Θ(1)

)
⊙P̂ ||max ≤ ||Θ(1)⊙

(
P̂−P

)
||max and (ii) ||

(
Θ̂(1)−Θ(1)

)
⊙P̂ ||max ≥

||Θ(1) ⊙
(
P̂ − P

)
||max.

In the first case, we have

λ̄||Θ̂(1)−Θ(1)||max

(a)

≤ ||
(
Θ̂(1)−Θ(1)

)
⊙P̂ ||max≤||Θ(1)⊙

(
P̂−P

)
||max

(b)

≤||Θ(1)||max||P̂−P ||max,
(S.15)

where (a) follows from Assumption 3 and (b) follows from the definition of ||Θ(1)||max.
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Then,

E
(
Θ̂(1)

) (a)

≤ ||Θ̂(1)−Θ(1)||max

(b)

≤ ||Θ(1)||max

λ̄
||P̂−P ||max

(c)
=

||Θ(1)||max

λ̄
Op

(
1√
N

+
1√
M

)
,

where (a) follows from the definition of (1, 2) operator norm, (b) follows from Eq. (S.15),
and (c) follows from Eq. (S.13). Then, Eq. (S.14) follows as 1/λ̄ and ||Θ(1)||max are
assumed to be bounded.

In the second case, using Eqs. (2) and (3) to expand Y (1),full, we have

Y (1),full = Θ(1) ⊙ P +Θ(1) ⊙W + E(1) ⊙ P + E(1) ⊙W.

Next, we utilize two claims proven in Sections S5.2.3 and S5.2.4 respectively: Θ(1) ⊙P
satisfies Assumption S1 with rank parameter rθ1rp and

ε(1) ≜ Θ(1) ⊙W + E(1) ⊙ P + E(1) ⊙W,

satisfies Assumption S2. Finally, Assumption 8 in Section 5 of the main article implies
that Assumption S3 holds.

Now, note that step 5 of Cross-Fitted-SVD can be rewritten as Θ̂(1) = Θ
(1)

⃝/

P̂ and Θ
(1)

= Cross-Fitted-MC(TWr3 , Y
(1),full,P) where r3 = rθ1rp. Then, from

Corollary S3,

||Θ(1)

I −Θ
(1)
I ⊙ PI ||max = Op

(
1√
N

+
1√
M

)
.

Applying a union bound over all I ∈ P and noting that Θ
(1)

= Θ̂(1) ⊙ P̂ , we have

||Θ̂(1) ⊙ P̂ −Θ(1) ⊙ P ||max = Op

(
1√
N

+
1√
M

)
. (S.16)

The left hand side of Eq. (S.16) can be written as,

||Θ̂(1) ⊙ P̂ −Θ(1) ⊙ P ||max = ||Θ̂(1) ⊙ P̂ −Θ(1) ⊙ P̂ +Θ(1) ⊙ P̂ −Θ(1) ⊙ P ||max

(a)

≥ ||
(
Θ̂(1) −Θ(1)

)
⊙ P̂ ||max − ||Θ(1) ⊙

(
P̂ − P

)
||max

(b)

≥ λ̄||Θ̂(1) −Θ(1)||max − ||Θ(1)||max||P̂ − P ||max, (S.17)

where (a) follows from triangle inequality as ||
(
Θ̂(1)−Θ(1)

)
⊙P̂ ||max ≥ ||Θ(1)⊙

(
P̂−P

)
||max

and (b) follows from the choice of λ̄ and the definition of ||Θ(1)||max. Then,

E
(
Θ̂(1)

) (a)

≤ ||Θ̂(1) −Θ(1)||max

(b)

≤ 1

λ̄
||Θ̂(1) ⊙ P̂ −Θ(1) ⊙ P ||max +

||Θ(1)||max

λ̄
||P̂−P ||max
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(c)
=

1

λ̄
Op

(
1√
N

+
1√
M

)
+

||Θ(1)||max

λ̄
Op

(
1√
N

+
1√
M

)
,

where (a) follows from the definition of L1,2 norm, (b) follows from Eq. (S.17), and (c)
follows from Eqs. (S.13) and (S.16). Then, Eq. (S.14) follows as 1/λ̄ and ||Θ(1)||max are
assumed to be bounded.

S5.2.3. Proof that Θ(0) ⊙ (1− P ) and Θ(1) ⊙ P satisfy Assumption S1.
First, we show that U

(0) ∈ RN×rθ0 (rp+1) and V
(0) ∈ RN×rθ0 (rp+1) are factors of Θ(0) ⊙

(1− P ), and U
(1) ∈ RN×rθ1rp and V

(1) ∈ RN×rθ1 are factors of Θ(1) ⊙ P as claimed in
Eq. (35). We have

Θ(1)⊙P =
( ∑
i∈[rθ1 ]

U
(1)
i,· V

(1)⊤

i,·

)
⊙
( ∑
j∈[rp]

Uj,·V
⊤
j,·

)
=
∑
i∈[rθ1 ]

∑
j∈[rp]

(
U

(1)
i,· ⊙Uj,·

)(
V

(1)
i,· ⊙Vj,·

)⊤
(a)
=
(
U ∗ U (1)

)(
V ∗ V (1)

)⊤ (b)
= U

(1)
V

(1)⊤

,

where (a) follows from the definition of Khatri-Rao product (see Section 1 of the
main article) and (b) follows from the definitions of U (1) and V

(1). The proof for
Θ(0) ⊙ (1− P ) follows similarly. Then, Assumption S1(a) holds from Eq. (35). Next,
we note that

||U (1)||2,∞ = ||U ∗ U (1)||2,∞
(a)
= max

i∈[N ]

√∑
j∈[rp]

u2
i,j

∑
j′∈[rθ1 ]

(u
(1)
i,j′)

2 ≤ ||U ||2,∞||U (1)||2,∞
(b)

≤ c,

where (a) follows from the definition of Khatri-Rao product (see Section 1 of the main
article), and (b) follows from Assumption 7. Then, Θ(1)⊙P satisfies Assumption S1(b)
by using similar arguments on V

(1). Further, Θ(0)⊙ (1−P ) satisfies Assumption S1(b)
by noting that ||U ||2,∞ and ||V ||2,∞ are bounded whenever ||U ||2,∞ and ||V ||2,∞ are
bounded, respectively. Finally, Assumption S1(c) holds from Assumption 7.

S5.2.4. Proof that ε(1) satisfies Assumption S2
Recall that ε(1) ≜ Θ(1)⊙W+E(1)⊙P+E(1)⊙W . Then, Assumption S2(a) holds as ε(1)i,j
is zero-mean from Assumption 2 and Eq. (3), and ε

(1)
i,j is subExponential because ε(1)i,j ηi,j

is a subExponential random variable Lemma S3, every subGaussian random variable
is subExponential random variable, and sum of subExponential random variables is a
subExponential random variable. Finally, Assumption S2(b) and Assumption S2(b)
hold from Assumption 9(b) and Assumption 9(c), respectively.
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S5.3. Proof of Corollary S3
Corollary S3 is a direct application of Bai and Ng (2021, Lemma A.1), specialized
to our setting. Notably, Bai and Ng (2021) make three assumptions numbered A, B,
and C in their paper to establish the corresponding result. It remains to establish
that the conditions assumed in Corollary S3 imply the necessary conditions used in
the proof of Bai and Ng (2021, Lemma A.1). First, note that certain assumptions
in Bai and Ng (2021) are not actually used in their proof of Lemma A.1 (or in the
proof of other results used in that proof), namely, the distinct eigenvalue condition in
Assumption A(a)(iii), the asymptotic normality conditions in Assumption A(c) and the
asymptotic normality conditions in Assumption C. Next, Eq. (S.12) in Assumption S3
implies Assumption B and Eq. (S.11) in Assumption S3 is equivalent to the remaining
conditions in Assumption C.

It remains to show how Assumptions S1 and S2 imply the remainder of conditions
in Bai and Ng (2021, Assumptions A). For completeness, these conditions are collected
in the following assumption.

Assumption S4. The noise matrix H is such that,
(a) maxj∈[M ]

1
N

∑
j′∈[M ]

∣∣∑
i∈[N ] E[hi,jhi,j′ ]

∣∣ ≤ c,

(b) maxj∈[M ]

∣∣E[hi,jhi′,j]∣∣ ≤ ci,i′ and maxi∈[N ]

∑
i′∈[N ] ci,i′ ≤ c,

(c) 1
NM

∑
i,i′∈[N ]

∑
j,j′∈[M ]

∣∣E[hi,jhi′,j′ ]∣∣ ≤ c, and

(d) maxj,j′∈[M ]
1
N2E

[∣∣∑
i∈[N ]

(
hi,jhi,j′ − E[hi,jhi,j′ ]

)∣∣4].
Assumption S4 is a restatement of the subset of conditions from Bai and Ng (2021,

Assumption A) necessary in Bai and Ng (2021, proof of Lemma A.1) and it essentially
requires weak dependence in the noise across measurements and across units. In
particular, Assumption S4(a), (b), (c), and (d) correspond to Assumption A(b)(ii),
(iii), (iv), (v), respectively, of Bai and Ng (2021). For the other conditions in Bai
and Ng (2021, Assumption A), note that Assumption S1 above is equivalent to their
Assumption A(a)(i) and (ii) of Bai and Ng (2021) when the factors are non-random as
in this work. Similarly, Assumption S2(a) above is analogous to Assumption A(b)(i)
of Bai and Ng (2021). Assumption A(b)(vi) of Bai and Ng (2021) is implied by their
other Assumptions for non-random factors as stated in Bai (2003).

To establish Corollary S3, it remains to establish that Assumption S4 holds, which
is done in Section S5.3.1 below.

S5.3.1. Assumption S4 holds
First, Assumption S4(a) holds as follows,

max
j∈[M ]

1

N

∑
j′∈[M ]

∣∣∣ ∑
i∈[N ]

E
[
hi,jhi,j′

]∣∣∣ (a)≤ max
j∈[M ]

1

N

∑
i∈[N ]

∑
j′∈[M ]

∣∣∣E[hi,jhi,j′]∣∣∣ (b)≤ max
j∈[M ]

1

N

∑
i∈[N ]

c = c,
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where (a) follows from triangle inequality and (b) follows from Assumption S2(b).
Next, from Assumption S2(a) and Assumption S2(c), we have

max
j∈[M ]

∣∣E[hi,jhi′,j]∣∣ = {0 if i ̸= i′

maxj∈[M ]

∣∣E[h2
i,j]
∣∣ ≤ c if i = i′

Then, Assumption S4(b) holds as maxi∈[N ] maxj∈[M ]

∑
i′∈[N ]

∣∣E[hi,jhi′,j]∣∣ ≤ c. Next,
Assumption S4(c) holds as follows,

1

NM

∑
i,i′∈[N ]

∑
j,j′∈[M ]

∣∣E[hi,jhi′,j′ ]∣∣ (a)= 1

NM

∑
i∈[N ]

∑
j,j′∈[M ]

∣∣E[hi,jhi,j′ ]∣∣ (b)≤ 1

NM

∑
i∈[N ]

∑
j∈[M ]

c = c,

where (a) follows from Assumption S2(c) and (b) follows from Assumption S2(b).
Next, let γi,j,j′ ≜ hi,jhi,j′ −E[hi,jhi,j′ ] and fix any j, j′ ∈ [M ]. Then, Assumption S4(d)
holds as follows,

1

N2
E
[( ∑

i∈[N ]

γi,j,j′
)4]

=
1

N2
E
[( ∑

i1∈[N ]

γi1,j,j′
)( ∑

i2∈[N ]

γi2,j,j′
)( ∑

i3∈[N ]

γi3,j,j′
)( ∑

i4∈[N ]

γi4,j,j′
)]

(a)
=

1

N2

∑
i∈[N ]

E
[
γ4
i,j,j′

]
+

3

N2

∑
i ̸=i′∈[N ]

E
[
γ2
i,j,j′γ

2
i′,j,j′

]
≤ c,

where (a) follows from linearity of expectation and Assumption S2(c) after by noting
that E[γi,j,j′ ] = 0 for all i, j, j′ ∈ [N ] × [M ] × [M ] and (b) follows because γi,j,j′ has
bounded moments due to Assumption S2(a).

S6. Doubly-robust estimation in panel data with lagged effects
This section describes how the doubly-robust framework of this article can be general-
ized to a panel data setting with lagged treatment effects. We highlight that, as is the
convention in a panel data setting, t denotes the column (time) index and T denotes
the total number of columns (time periods).

S6.1. Setup
As described in Section 4.4 of the main article, potential outcomes are generated as
follows: for all i ∈ [N ], t ∈ [T ], and a ∈ {0, 1},

y
(a|yi,t−1)
i,t = α(a)yi,t−1 + θ

(a)
i,t + ε

(a)
i,t , (S.18)

where y
(a|yi,t−1)
i,t is the potential outcome for unit i at time t given treatment a ∈ {0, 1}

and lagged outcome yi,t−1. This model combines unobserved confounding and lagged
treatment effects, where the lagged effect is carried over via the auto-regressive term,
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α(a)yi,t−1, with α(a) being the auto-regressive parameter for treatment a ∈ {0, 1}. The
treatment possibly starts at t = 1, and yi,0 is assumed to not be affected by any future
exposure to the treatment. Treatment assignments are continually assumed to be
generated via Eq. (3). As in Eq. (1), realized outcomes, yi,t, depend on potential
outcomes and treatment assignments,

yi,t = y
(0|yi,t−1)
i,t (1− ai,t) + y

(1|yi,t−1)
i,t ai,t, (S.19)

for all i ∈ [N ] and t ∈ [T ].

S6.2. Target causal estimand
The lagged effects in Eq. (S.18) imply that the treatment effects need to be defined for
sequences of treatments. For concreteness, consider the effect at time T for an always-
treat policy, i.e., ai,t = 1, versus never-treat, i.e., ai,t = 0, for i ∈ [N ] and j ∈ [T ].
Let y[1]i,T be the potential outcome for unit i at time T under always-treat and y

[0]
i,T be

the potential outcome for unit i at time T under never-treat. We aim to estimate
the difference in the expected potential outcomes under these two treatment policies
averaged over all units,

ATE·,T ≜ µ
[1]
·,T − µ

[0]
·,T , where µ

[a]
·,T ≜

1

N

∑
i∈[N ]

E[y[a]i,T ],

with the expectation taken over the distribution of {ε(a)i,t }i∈[N ],t∈[T ], conditioned on the
initial outcomes {yi,0}i∈[N ]. We make the following assumption about the noise in
potential outcomes.

Assumption S5 (Zero-mean noise conditioned on the initial outcomes). {ε(a)i,t : i ∈
[N ], t ∈ [T ], a ∈ {0, 1}} are mean zero conditioned on {yi,0}i∈[N ].

Assumption S5 holds whenever Assumption 2(a) holds conditioned on the initial
outcomes {yi,0}i∈[N ]. Another sufficient condition for Assumption S5 is that (ε

(0)
i,t , ε

(1)
i,t )

are independent in time. Given this, the time dependence in the expected potential
outcome E[y[a]i,T ] is captured as follows: for a ∈ {0, 1}

E[y[a]i,T ] = (α(a))Tyi,0 +
T−1∑
s=0

(α(a))sθ
(a)
i,T−s. (S.20)

Eq. (S.20) forms the basis of our doubly-robust estimator of ATE·,T .
We chose the contrast between always-treat and never-treat for concreteness.

However, the framework and the results in this section can be generalized in a
straightforward manner to contrast any two pre-specified sequences of treatments,
where the treatment can also be chosen stochastically with pre-specified probabilities.
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For the remainder of this section, we condition on the initial outcomes {yi,0}i∈[N ] but
omit it from our notation for brevity.

S6.3. Doubly-robust estimator
The DR estimator of ATE·,T combines the estimates of (α(0), α(1)), (Θ(0),Θ(1)), and P .
First, we obtain the estimates (α̂(0), α̂(1)). These estimates can be computed using the
likelihood approach of Bai (2024) whenever there exists some units such that they all
have treatment a for some consecutive time points, for a ∈ {0, 1}.

Next, we define the residual matrices Ỹ (0),obs and Ỹ (1),obs. Let Ỹ (0),obs ∈ {R ∪
{ ?}}N×T be a matrix with (i, t)-th entry equal to yi,t − α̂(0)yi,t−1 if ai,t = 0, and equal
to ? otherwise. Analogously, let Ỹ (1),obs ∈ {R ∪ { ?}}N×T be a matrix with (i, t)-th
entry equal to yi,t − α̂(1)yi,t−1 if ai,t = 1, and equal to ? otherwise. Then, similar to
Eq. (8), the application of matrix completion yields the following estimates:

Θ̂(0) = MC(Ỹ (0),obs), Θ̂(1) = MC(Ỹ (1),obs), and P̂ = MC(A). (S.21)

Then, the DR estimate is defined as follows:

ÂTEDR
·,T,J ≜ µ̂

[1,DR]
·,T,J −µ̂

[0,DR]
·,T,J where µ̂

[a,DR]
·,T,J =

1

N

∑
i∈[N ]

[
(α̂(a))Tyi,0 +

J−1∑
s=0

(α̂(a))sθ̂
[a,DR]
i,T−s

]
,

(S.22)

where

θ̂
[0,DR]
i,T−s ≜ θ̂

(0)
i,T−s +

(
yi,T−s − α̂(0)yi,T−s−1 − θ̂

(0)
i,T−s

)1− ai,T−s
1− p̂i,T−s

,

and

θ̂
[1,DR]
i,T−s ≜ θ̂

(1)
i,T−s +

(
yi,T−s − α̂(1)yi,T−s−1 − θ̂

(1)
i,T−s

)ai,T−s
p̂i,T−s

The estimator is parameterized by an integer J , which denotes the contiguous number
of time periods preceding time T that are used to estimate the expectations at time T
(see the summation in Eq. (S.20)). Notably, using preceding J terms instead of T − 1
terms allows us to adapt cross-fitting for the setting with lagged treatment effects. Let
us briefly elaborate: suppose (α̂(0), α̂(1)) are estimated from entries of Y in [N ]× [L]
for some L < T − J . Consider the column partitions C0 = {L + 1, . . . , T − J} and
C1 = {T −J+1, . . . , T} of times [T ]\ [L]. Suppose Eqs. (27) and (28) in Assumption 5
hold for I = R0 × C1 and I = R1 × C1 for some row partitions R0 and R1 of units
[N ]. Then, applying Cross-Fitted-MC on the residual matrices Ỹ (0),obs and Ỹ (1),obs

with row partitions (R0,R1) and column partitions (C0, C1) ensures that Assumption 4
holds for every column in C1 with row partitions (R0,R1).
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S6.4. Non-asymptotic guarantees
Recall the notation for E

(
Θ̂
)

and E
(
P̂
)

from Eq. (16) and define

E(α̂) ≜
∑

a∈{0,1}

E(α̂(a)) where E(α̂(a)) ≜ |α̂(a) − α(a)|. (S.23)

Our analysis makes two additional assumptions to state a non-asymptotic error
bound for ÂTEDR

·,T,J − ATE·,T .

Assumption S6 (Bounded auto-regressive parameters and estimates). The auto-
regressive parameters and their estimates are such that |α(a)| ≤ α and |α̂(a)| ≤ α, for
all a ∈ {0, 1}, where α ∈ [0, 1).

Assumption S6 requires the regression parameters to be bounded by a fixed
constant less than 1. This condition is standard for auto-regressive models, as it
implies stability of the outcome process in Eq. (S.18). The analogous condition on the
estimated parameters can be ensured by truncating the estimates to [0, α].

Assumption S7 (Bounded observed outcomes, mean potential outcomes, and esti-
mated mean potential outcomes). The observed outcomes, the mean potential outcomes,
and the estimates of the mean potential outcomes are such that |yi,t| ≤ C1, |θ(a)i,t | ≤ C2,
and |θ̂(a)i,t | ≤ C3, for all i ∈ [N ], j ∈ [M ], and a ∈ {0, 1}, where C1, C2, and C3 are
universal constants.

Assumption S7 requires the observed outcomes, the mean potential outcomes, and
the estimates of the mean potential outcomes to be bounded to simplify our proof.
With a more delicate analysis, Assumption S7 can be relaxed to require the average
observed outcomes over i ∈ [N ], the average mean potential outcomes over i ∈ [N ],
and the average estimated mean potential outcomes over i ∈ [N ] to be bounded.

Theorem S1 (Finite Sample Guarantees for DR with lagged effects). Consider
the panel data model with lagged effects defined via Eqs. (S.18) and (S.19). Suppose
Assumptions 1 to 3, S6, and S7 hold and Assumption 4 holds for t ∈ {T−J+1, . . . , T}
for some integer J ∈ [T ]. Fix δ ∈ (0, 1). Then, with probability at least 1− δ, we have

∣∣ÂTEDR
·,T,J − ATE·,T

∣∣ ≤ ErrDR
N,δ/J

1− α
+ C

[
αJ

1− α
+ E(α̂)

(
TαT−1 +

1

1− α

)]
, (S.24)

for ErrDR
N,δ as defined in Eq. (18) in Theorem 1 and a universal constant C.

The proof of Theorem S1 is given in Section S6.5. For brevity, the finite sample
guarantees above uses E

(
Θ̂
)

and E
(
P̂
)

as defined in Eq. (16), but the proof can be
easily modified to replace the maxj∈[T ] appearing in the definition of || · ||1,2 in Eq. (16)
with maxj∈{T−J+1,··· ,T}.
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Next, we remark that Theorem S1 is a strict generalization of Theorem 1. To this
end, note that when α(a) = 0 for all a ∈ {0, 1}, the model considered in Theorem S1
simplifies to the model considered in Theorem 1. For this setting, the assumptions
in Theorem 1 imply that the assumptions in Theorem S1 hold with J = 1. First,
Assumption S6 holds with α = 0 when α(a) = 0 for all a ∈ {0, 1}. Second, the proof
of Theorem S1 can be easily modified to drop the requirement of Assumption S7
when J = 1 and α = 0. Substituting α = 0, E(α̂) = 0 (i.e., the auto-regressive
parameters are known to be 0), and J = 1 in Eq. (S.24) recovers the guarantee stated
in Theorem 1.

Doubly-robust behavior of ÂTEDR
·,T,J . When α ̸= 0 and bounded away from one,

Eq. (S.24) bounds the absolute error of the DR estimator by the rate of

E
(
Θ̂
)(

E
(
P̂
)
+

√
log J

N

)
+

1√
N

+ αJ + E(α̂).

Then, if the conditions of Theorem S1 are satisfied for some J such that C logN ≥
J ≥ logN/(2 log(1/α)), the error rate of the DR estimator is bounded by

E
(
Θ̂
)(

E
(
P̂
)
+

√
log logN

N

)
+

1√
N

+ E(α̂),

which decays a parametric rate of Op(N
−0.5) as long as

E
(
Θ̂
)
E
(
P̂
)
= Op

( 1√
N

)
, E

(
Θ̂
)
= Op

( 1√
log logN

)
, and E(α̂) = Op

( 1√
N

)
.

Note that Proposition 4 still implies that Cross-Fitted-SVD achieves E
(
P̂
)
=

Op(N
−0.5+T−0.5) under suitable conditions. To estimate the auto-regressive parameter

α(a) for a ∈ {0, 1}, Bai (2024, Section 5) shows that whenever there exist K units
such that they all have treatment a for L consecutive time points, a full information
maximum likelihood estimator provides |α(a) − α̂(a)| = Op((KL)−0.5). Next, establish-
ing a matrix completion guarantee for the mean potential outcomes by residualizing
as in Eq. (S.21) can be reduced to deriving a matrix completion guarantee for an
approximately low-rank matrix. To this end, Agarwal and Singh (2024, Theorem 5)
suggests that, up to logarithmic factors, an error rate of N−0.5 + T−0.5 + E(α̂) is
plausible for E

(
Θ̂
)

for our setting. A complete derivation of error guarantees for E(α̂)
and E

(
Θ̂
)

in the dynamic model is an interesting venue for future work.
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S6.5. Proof of Theorem S1: Finite Sample Guarantees for DR with
lagged effects

The error ∆ATEDR
·,T = ÂTEDR

·,T,J − ATE·,T can be re-expressed as

∆ATEDR
·,T =

(
µ̂
[1,DR]
·,T,J −µ̂

[0,DR]
·,T,J

)
−
(
µ
[1]
·,T−µ

[0]
·,T
)
=
(
µ̂
[1,DR]
·,T,J −µ

[1]
·,T
)
−
(
µ̂
[0,DR]
·,T,J −µ

[0]
·,T
)
. (S.25)

We claim that, with probability at least 1− δ,∣∣∣µ̂[1,DR]
·,T,J − µ

[1]
·,T

∣∣∣ ≤ C

[
|α(1)|J − |α(1)|T

1− |α(1)|
+ E(α̂(1))

(
TαT−1 +

1− |α(1)|J

1− |α(1)|
+

1

(1− |α(1)|)2
)]

+
2

(1−|α(1)|)λ̄

[
E(Θ̂(1))E

(
P̂
)
+

1√
N

(√cℓδ/(12J)√
ℓ1

E(Θ̂(1))+2σ
√
cℓδ/(12J)+

2σm(cℓδ/(12J)√
ℓ1

)]
,

(S.26)

and∣∣∣µ̂[0,DR]
·,T,J − µ

[0]
·,T

∣∣∣ ≤ C

[
|α(0)|J − |α(0)|T

1− |α(0)|
+ E(α̂(0))

(
TαT−1 +

1− |α(0)|J

1− |α(0)|
+

1

(1− |α(0)|)2
)]

+
2

(1−|α(0)|)λ̄

[
E(Θ̂(0))E

(
P̂
)
+

1√
N

(√cℓδ/(12J)√
ℓ1

E(Θ̂(0))+2σ
√
cℓδ/(12J)+

2σm(cℓδ/(12J)√
ℓ1

)]
.

(S.27)

Then, the claim in Eq. (S.24) follows by applying triangle inequality in Eq. (S.25) and
using Assumption S6. We prove the bound (S.26) in Section S6.5.1, and also provide
an expression for C. The proof of Eq. (S.27) follows similarly.

S6.5.1. Proof of Eq. (S.26)
We start by decomposing µ

[1]
·,T as follows:

µ
[1]
·,T =

1

N

∑
i∈[N ]

(α(1))Tyi,0 +
T−1∑
s=0

(α(1))s
∑
i∈[N ]

θ
(1)
i,T−s

 = T(1)
J + U(1)

J + V(1),

where

T(1)
J ≜

1

N

J−1∑
s=0

(α(1))s
∑
i∈[N ]

θ
(1)
i,T−s, U(1)

J ≜
1

N

T−1∑
s=J

(α(1))s
∑
i∈[N ]

θ
(1)
i,T−s, (S.28)

and

V(1) ≜ (α(1))T
1

N

∑
i∈[N ]

yi,0. (S.29)

19



Next, we decompose µ̂
[1,DR]
·,T,J in Eq. (S.22) as µ̂

[1,DR]
·,T,J = T̂(1)

J + V̂(1), where

T̂(1)
J ≜

1

N

J−1∑
s=0

(α̂(1))s
∑
i∈[N ]

θ̂
[1,DR]
i,T−s , and V̂(1) ≜ (α̂(1))T

1

N

∑
i∈[N ]

yi,0. (S.30)

Finally, we define

T̃(1)
J ≜

1

N

J−1∑
s=0

(α(1))s
∑
i∈[N ]

[
θ̂
(1)
i,T−s +

(
yi,T−s − α(1)yi,T−s−1 − θ̂

(1)
i,T−s

)ai,T−s
p̂i,T−s

]
, (S.31)

which is similar to T̂(1)
J except that α̂(1) is replaced by α(1). The proof proceeds by

bounding each term in the following fundamental decomposition:

µ̂
[1,DR]
·,T,J − µ

[1]
·,T = (V̂(1) − V(1)) + (T̃(1)

J − T(1)
J ) + (T̂(1)

J − T̃(1)
J )− U(1)

J . (S.32)

With C0 ≜ maxi∈[N ] |yi,0| and CDR ≜ C3 + (2C1 + C3)/λ̄, we claim that the bounds

∣∣V̂(1) − V(1)
∣∣ ≤ C0TE(α̂(1))αT−1, |U(1)

J | ≤ C2
|α(1)|J − |α(1)|T

1− |α(1)|
, (S.33)

and

|T̂(1)
J − T̃(1)

J | ≤ E(α̂(1))

(
C1

λ

(1− |α(1)|J)
1− |α(1)|

+ CDR
1

(1− |α(1)|)2

)
, (S.34)

hold deterministically (conditioned on α̂(1)), and that the bound

|T̃(1)
J − T(1)

J | ≤ 2

(1− |α(1)|)λ̄

[
E(Θ̂(1))E

(
P̂
)

+
(√cℓδ/(12J)√

ℓ1
E(Θ̂(1)) + 2σ

√
cℓδ/(12J) +

2σm(cℓδ/(12J)√
ℓ1

) 1√
N

]
, (S.35)

holds with probability at least 1− δ/2. The claim in Eq. (S.26) follows by applying
triangle inequality in Eq. (S.32) and using the above bounds.

It remains to establish the intermediate claims Eqs. (S.33) to (S.35). Throughout
the rest of the proof, we repeatedly use the inequality below that holds for all s ∈ [T ]:

∣∣(α̂(1))s − (α(1))s
∣∣ = ∣∣∣(α̂(1) − α(1))

(∑
l∈[s]

(α̂(1))s−l(α(1))l−1
)∣∣∣ (a)≤ s

∣∣(α̂(1) − α(1))
∣∣αs−1

(b)
= sE(α̂(1))αs−1, (S.36)
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where (a) follows from Assumption S6 and (b) follows from Eq. (S.23).

Proof of Eq. (S.33) First, from Eq. (S.28), we have

|U(1)
J | =

∣∣∣ 1
N

T−1∑
s=J

(α(1))s
∑
i∈[N ]

θ
(1)
i,T−s

∣∣∣ (a)≤ C2

T−1∑
s=J

∣∣α(1)
∣∣s (b)

= C2
|α(1)|J − |α(1)|T

1− |α(1)|
,

where (a) follows from Assumption S7 and (b) follows from the sum of geometric series.
Next, from Eqs. (S.29) and (S.30), we have

∣∣V̂(1) − V(1)
∣∣ = ∣∣∣((α̂(1))T − (α(1))T

) 1

N

∑
i∈[N ]

yi,0

∣∣∣ (a)≤ C0TE(α̂(1))αT−1,

where (a) follows from the definition of C0 and Eq. (S.36).

Proof of Eq. (S.34) From Eqs. (S.30) and (S.31), and triangle inequality, we have

∣∣T̂(1)
J − T̃(1)

J

∣∣ ≤ 1

N

∑
i∈[N ]

J−1∑
s=0

∣∣∣∣(α̂(1))s
(
θ̂
(1)
i,T−s +

(
yi,T−s − α̂(1)yi,T−s−1 − θ̂

(1)
i,T−s

)ai,T−s
p̂i,T−s

)
− (α(1))s

(
θ̂
(1)
i,T−s +

(
yi,T−s − α(1)yi,T−s−1 − θ̂

(1)
i,T−s

)ai,T−s
p̂i,T−s

) ∣∣∣∣
=

1

N

∑
i∈[N ]

J−1∑
s=0

∣∣∣∣(α(1))s(α(1) − α̂(1))yi,T−s−1
ai,T−s
p̂i,T−s

+
(
(α̂(1))s − (α(1))s

)
·
(
θ̂
(1)
i,T−s +

(
yi,T−s − α̂(1)yi,T−s−1 − θ̂

(1)
i,T−s

)ai,T−s
p̂i,T−s

)∣∣∣∣
(a)

≤ 1

N

∑
i∈[N ]

J−1∑
s=0

∣∣∣C1

λ
|α(1)|sE(α̂(1)) + CDRsE(α̂(1))αs−1

∣∣∣
= E(α̂(1))

(
C1

λ

(1− |α(1)|J)
1− |α(1)|

+ CDR
1

(1− |α(1)|)2

)
,

where (a) follows from Eq. (S.23), Assumptions 3 and S7, and because maxi∈[N ],t∈[T ]∣∣θ̂[1,DR]
i,t

∣∣ ≤ CDR from Assumptions 3, S6, and S7, and (b) follows from the sum of
geometric and arithmetico-geometric sequences.

Proof of Eq. (S.35) We start by defining

θ̃
[1,DR]
i,T−s ≜ θ̂

(1)
i,T−s +

(
yi,T−s − α(1)yi,T−s−1 − θ̂

(1)
i,T−s

)ai,T−s
p̂i,T−s

.
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Then, from Eqs. (S.28) and (S.31), we have

|T̃(1)
J −T(1)

J | =
∣∣∣∣ J−1∑
s=0

(α(1))s
1

N

∑
i∈[N ]

(θ̃
[1,DR]
i,T−s −θ

(1)
i,T−s)

∣∣∣∣ (a)≤ J−1∑
s=0

|α(1)|s 1
N

∣∣∣ ∑
i∈[N ]

(θ̃
[1,DR]
i,T−s −θ

(1)
i,T−s)

∣∣∣,
where (a) follows from triangle inequality. From Eqs. (3) and (S.18), we have

θ̃
[1,DR]
i,T−s − θ

(1)
i,T−s = θ̂

(1)
i,T−s + (θ

(1)
i,T−s + ε

(1)
i,T−s − θ̂

(1)
i,T−s)

pi,T−s + ηi,T−s
p̂i,T−s

− θ
(1)
i,T−s.

Then, the term θ̃
[1,DR]
i,T−s − θ

(1)
i,T−s is analogous to the display Eq. (A.2) in the proof of

Theorem 1. Following similar algebra as in Appendix A1, we first obtain

θ̃
[1,DR]
i,T−s − θ

(1)
i,T−s =

(θ̂
(1)
i,T−s − θ

(1)
i,T−s)(p̂i,T−s − pi,T−s)

p̂i,T−s
−

(θ̂
(1)
i,T−s − θ

(1)
i,T−s)ηi,T−s

p̂i,T−s

+
ε
(1)
i,T−spi,T−s

p̂i,T−s
+

ε
(1)
i,T−sηi,T−s

p̂i,T−s
.

Now, note that Assumption 4 holds for j = T − s for all s ∈ {0, . . . , J − 1}. Hence,
for any such s and for any δ ∈ (0, 1), mimicking the derivation of Eq. (A.5) from
Appendix A1, we obtain, with probability at least 1− δ/(2J),

1

N

∣∣∣ ∑
i∈[N ]

(θ̃
[1,DR]
i,T−s − θ

(1)
i,T−s)

∣∣∣ ≤ 2

λ̄
E
(
Θ̂(1)

)
E
(
P̂
)
+

2
√

cℓδ/(12J)

λ̄
√
ℓ1N

E
(
Θ̂(1)

)
+

2σ
√

cℓδ/(12J)

λ̄
√
N

+

2σm(cℓδ/(12J))

λ̄
√
ℓ1N

. (S.37)

Finally, multiplying both sides of Eq. (S.37) by (α(1))s, summing it over s ∈ {0, . . . , J−
1}, and using a union bound argument yields that the bound in Eq. (S.35) holds with
probability at least 1− δ/2.

S7. Doubly-robust estimation in panel data with staggered
adoption

This section shows how to extend the doubly-robust framework of this article to a
setting with panel data and staggered adoption. Recall (from Section S6) that for panel
data, t denotes the column (time) index and T denotes the total number of columns
(time periods). In a staggered adoption setting, for every unit i ∈ [N ], there exists a
time point ti ∈ [T ] such that ai,t = 0 for t ≤ ti, and ai,t = 1 for t > ti. This defines the
observed treatment assignment matrix A. As mentioned in Section 5.4 of the main
article and illustrated in the example below, a staggered treatment assignment leads
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to a heavy time-series dependence in {ηi,t}t∈[T ].

Example S1 (Single adoption time). Consider a panel data setting where all units
remain in the control group until time T0. At time T0 + 1, each unit i ∈ [N ] receives
treatment with probability pi, and remains in treatment until time T . With probability
1− pi, each unit i ∈ [N ] stays in the control group until time T . In other words, for
each unit i ∈ [N ]

pi,t = 0 for all t ≤ T0 and pi,t = pi for all T0 < t ≤ T.

Further, for units remaining in control,

ηi,t = 0 for all t ≤ T0 and ηi,t = −pi for all T0 < t ≤ T,

and for units receiving treatment,

ηi,t = 0 for all t ≤ T0 and ηi,t = 1− pi for all T0 < t ≤ T.

The strong time-series dependence in ηi,t above implies that Assumption 8 or
Assumption 9(a) do not hold, which in turn implies that the guarantees for Cross-
Fitted-SVD, as in Proposition 4, may not hold. To see this, first note that to ensure
Assumption 5, the set of column partitions {C0, C1} must be equal to {[T0], [T ] \ [T0]}
due to the dependence in the noise W . Now, for Assumption 8 to hold, we need
|Ck| = Ω(T ) for every k ∈ {0, 1}. However, for Assumption 9(a) to hold, we need
T − T0 to be a constant with respect to T as, for any t ∈ [T ] \ [T0] and i ∈ [N ],∑

t′∈[T ]

∣∣E[ηi,tηi,t′ ]∣∣ = (T − T0)ci where ci ∈ {p2i , (1− pi)
2}.

Moreover, in Example S1, ti = T0 for all treated units. This allows the choice
of {[T0], [T ] \ [T0]} as the set of column partitions {C0, C1} in Assumption 5. More
generally, if treatment adoption times {ti}i∈[N ] differ across units, then it may not be
feasible to obtain a partition of [T ] into {C0, C1} such that Assumption 5 holds.

In this section, we propose an alternative approach to the Cross-Fitted-SVD
algorithm such that Assumption 4 still holds for a suitable staggered adoption model.

Assumption S8 (Staggered adoption and common unit factors). We consider a panel
data setting with staggered adoption where
1. all units remain under control till time T0, i.e., for every unit i ∈ [N ], there exists

a time point ti ≥ T0 such that ai,t = 0 for t ≤ ti, and ai,t = 1 for t > ti, and

2. the unit-dependent latent factors corresponding to P , Θ(0), and Θ(1) are the same,
i.e., U = U (0) = U (1) ∈ RN×r. In other words, for every i ∈ [N ] and t ∈ [T ],
pi,t = g(Ui, Vt), θ

(0)
i,t = ⟨Ui, V (0)

t ⟩, and θ
(1)
i,t = ⟨Ui, V (1)

t ⟩ for some known function
g : Rr × Rr → R, with ⟨·, ·⟩ denoting the inner product.

For Example S1, the function g corresponds to the inner product, the unit-
dependent latent factors are 1-dimensional (i.e., r = 1) with Ui = pi for every i ∈ [N ],
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and the time-dependent latent factors for the assignment probability are such that
Vt = 0 for every t ∈ [T0] and Vt = 1 for every t ∈ [T ] \ [T0]. Consequently, Example S1
is consistent with Assumption S8 if U (a)

i = pi for every a ∈ {0, 1} and i ∈ [N ]. Next,
we provide a more flexible version of Example S1 that allows different adoption times
for different units.

Example S2 (Different adoption times). Consider a panel data setting where all
units remain in the control group until time T0. At every time t ∈ [T ] \ [T0], each
unit i ∈ [N ] receives treatment with probability pi, and remains in treatment until
time T . Therefore, for t ∈ [T ] \ [T0] and i ∈ [N ], ai,t = 1 if the adoption time point
ti ∈ {T0 + 1, · · · , t}, which occurs with probability

∑
t′∈[t−T0−1](1− pi)

t′−1pi. In other
words, for each unit i ∈ [N ],

pi,t = 0 for all t ≤ T0 and pi,t = 1− (1− pi)
t−T0 for all T0 < t ≤ T.

For Example S2, the unit-dependent latent factors are 1-dimensional (i.e., r = 1)
with Ui = pi for every i ∈ [N ], and the time-dependent latent factors for the assignment
probability are such that Vt = 0 for every t ∈ [T0] and Vt = t−T0 for every t ∈ [T ]\ [T0].
Further the function g is such that g(Ui, Vt) = 1−(1−Ui)

Vt . Consequently, Example S2
is consistent with Assumption S8 if U (a)

i = pi for every a ∈ {0, 1} and i ∈ [N ].
We now describe Cross-Fitted-Regression, an algorithm that generates esti-

mates of (Θ(0),Θ(1), P ) for the staggered adoption model in Assumption S8 such that
Assumption 4 holds.

1. The inputs are (i) A ∈ RN×T , (ii) Y (a),obs ∈ {R∪{ ?}}N×T for a ∈ {0, 1}, (iii) the
rank r of the unit-dependent latent factors, (iv) the time period T0 until which all
units remain under control, (v) the time period t ∈ [T ] \ [T0] for which we want to
estimate the average treatment effect, and (vi) the function g.

2. Let Y (0),pre ∈ RN×T0 be the sub-matrix of Y (0),obs that keeps the first T0 columns
only. Run SVD on Y (0),pre, i.e.,

SVD(Y (0),pre) = (Û ∈ RN×r, Σ̂ ∈ Rr×r, V̂ ∈ R|T0|×r).

3. Let R(0) and R(1) be the set of units receiving control and treatment at time t,
respectively. In other words, for every a ∈ {0, 1}, R(a) ≜ {i ∈ [N ] : ai,t = a}.
Next, randomly partition R(a) into two nearly equal parts R(a)

0 and R(a)
1 . For

every s ∈ {0, 1}, define Rs = R(0)
s ∪R(1)

s .

4. For every s ∈ {0, 1}, regress {ai,t}i∈Rs on {Ûi}i∈Rs using g to obtain V̂1−s. For
every s ∈ {0, 1} and i ∈ Rs, return p̂i,t = g(Ûi, V̂s).

5. For every a ∈ {0, 1} and s ∈ {0, 1}, regress {yi,t}i∈R(a)
s

on {Ûi}i∈R(a)
s

to obtain

V̂
(a)
1−s. For every a ∈ {0, 1}, s ∈ {0, 1}, and i ∈ Rs, return θ̂

(a)
i,t = ÛiV̂

(a)⊤
s .
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In summary, Cross-Fitted-Regression estimates the shared unit-dependent latent
factors using the observed outcomes for all units until time period T0. Then, for every
s ∈ {0, 1}, the time-dependent latent factors V̂s, V̂

(0)
s , and V̂

(1)
s are estimated using

the treatment assignments and the observed outcomes for units in R1−s.
To establish guarantees for Cross-Fitted-Regression, we adopt the subsequent

assumption on the noise variables.

Assumption S9 (Independence across units and with respect to pre-adoption noise).
.
(a) {(ηi,t, ε(a)i,t ) : i ∈ [N ]} are mutually independent (across i) given {ε(0)i,t }i∈[N ],t∈[T0] for

every t ∈ [T ] \ [T0] and a ∈ {0, 1}.

(b) {ε(0)i,t }i∈[N ],t∈[T0] ⊥⊥ {ηi,t, ε(a)i,t }i∈[N ] for every t ∈ [T ] \ [T0] and a ∈ {0, 1}.

Assumption S9(a) requires the noise (E(a),W ) corresponding to a time period
t ∈ T \ [T0] to be jointly independent across units given the noise E(0) corresponding
to time periods [T0], for every a ∈ {0, 1}. Assumption S9(b) is satisfied if, for instance,
the noise variables follow a moving average model of order t− T0 − 1. The following
result, proven in Section S7.1, establishes that the estimates generated by Cross-
Fitted-Regression satisfy Assumption 4. Deriving error bounds, i.e., E

(
P̂
)

and
E
(
Θ̂
)
, for the estimates generated by Cross-Fitted-Regression for the staggered

adoption model is an interesting direction for future research.

Proposition S1 (Guarantees for Cross-Fitted-Regression). Consider the staggered
adoption model in Assumption S8 and suppose Assumption S9 holds. Fix any t ∈ [T ] \
[T0], and {θ̂(0)i,t , θ̂

(1)
i,t , p̂i,t}i∈[N ] be the estimates returned by Cross-Fitted-Regression.

Then, Assumption 4 holds.

S7.1. Proof of Proposition S1: Guarantees for Cross-Fitted-Regression

Fix any s ∈ {0, 1}. Then, Assumption S9(a) and Assumption S9(b) imply that

{ε(0)i,t }i∈[N ],t∈[T0] ∪ {ηi,t, ε(a)i,t }i∈R1−s
⊥⊥ {ηi,t, ε(a)i,t }i∈Rs

, (S.38)

for every partition (R0,R1) of the units [N ].
Cross-Fitted-Regression estimates {p̂i,t}i∈Rs using {Ûi}i∈Rs and V̂s, where V̂s

is estimated using {Ûi}i∈R1−s and {ai,t}i∈R1−s . Therefore, the randomness in {p̂i,t}i∈Rs

stems from the randomness in Y (0),pre and {ai,t}i∈R1−s which in turn stems from the
randomness in {ε(0)i,t }i∈[N ],t∈[T0] and {ηi,t}i∈R1−s . Then, Eq. (15) follows from Eq. (S.38).

Next, fix any a ∈ {0, 1}. Then, Cross-Fitted-Regression estimates {θ̂(a)}i∈Rs

using {Ûi}i∈Rs and V̂
(a)
s , where V̂

(a)
s is estimated using {Ûi}i∈R(a)

1−s
and {yi,t}i∈R(a)

1−s
.

Therefore, the randomness in {θ̂(a)}i∈Rs stems from the randomness in Y (0),pre and
{yi,t}i∈R(a)

1−s
which in turn stems from the randomness in {ε(0)i,t }i∈[N ],t∈[T0] and {ε(a)i,t }i∈R(a)

1−s
.

Then, Eq. (14) follows from Eq. (S.38).
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