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This online appendix contains supplemental material on: the comparison of LP and VAR
estimation results in prior empirical work (Supplemental Appendix C); implementation de-
tails for the LP and VAR estimators that we consider in our simulations (Supplemental Ap-
pendix D); a detailed description of our simulation study set-up (Supplemental Appendix E);
and further simulation results (Supplemental Appendix F).

Appendix C VARs vs. LPs in empirical work

We describe how we construct the point estimate and standard error comparison of LPs and
VARs in existing applied work in Figure 3.1. Our implementation closely follows our earlier
work in Montiel Olea, Plagborg-Møller, Qian, and Wolf (2024, Online Appendix C), which
in turn is based on the literature summary in Ramey (2016).

We consider four applications in which the researcher has access to a direct measure of a
structural shock: to monetary policy, taxes, government spending, and technology. She then
estimates the dynamic causal effects of these macroeconomic shocks using either LPs or the
equivalent (internal-instrument) recursive VAR. The choice of shocks, outcomes, controls,
and lags is exactly the same as in our earlier work, as is the computation of standard errors.
Overall we obtain LP and VAR impulse response point estimates and standard errors for 385
impulse responses, across all shocks, outcome variables, and horizons. For each we compute
standard error ratios and point estimate differences, scaled by the VAR standard error. We
finally split the impulse responses into short horizons (≤ one year, 84 observations overall)
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and long horizons (> one year, 301 observations overall), and report our results for standard
error ratios and scaled point estimate differences as boxplots.

Appendix D Estimation method details

We provide implementation details for the LP and VAR estimator variants that we consider
in our simulations in Sections 5.2 and 6.4.

D.1 LPs

Recall from Section 2 that the LP estimator of the horizon-h impulse response is the coeffi-
cient β̂h in the h-step-ahead regression

yt+h = µ̂h + θ̂LP
h xt + γ̂′

hrt +
p∑

ℓ=1
δ̂′

h,ℓwt−ℓ + ξ̂h,t. (D.1)

For our different structural identification schemes the outcome, impulse, and control variables
are selected as follows:

1. Observed shock. xt is the observed shock ε1,t, there are no contemporaneous controls
rt, and the outcome variable yt is selected at random from the observed data series. The
lagged controls are either the shock plus the full five-dimensional vector of observables,
or only the shock plus the outcome of interest.

2. Recursive identification. xt is the policy variable (i.e., either the federal funds rate
or government purchases), rt contains all the variables ordered before xt in the struc-
tural shock identification scheme, and wt always contains the full vector of observables,
consistent with the invertibility assumption.

We consider both least-squares as well as bias-corrected versions of the LP estimators. For
bias correction we follow Herbst and Johannsen (2024), using their approximate analytical
bias formula for LPs with controls.D.1 The lag length p is either set exogenously (in our
simulations typically to p = 4) or selected the Akaike Information Criterion (AIC) for the
equivalent reduced-form VAR. Standard errors and confidence intervals are computed using

D.1We substitute population autocovariances with sample analogues. We implement an iterative bias correc-
tion, with the impulse response estimate at horizon h bias-corrected using the previously corrected impulse
response estimates at horizons 1, 2, . . . , h − 1.
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either the delta method (assuming homoskedasticity) or equal-tailed percentile-t bootstrap
(with 500 draws).

D.2 VARs

Recall from Section 2 that the VAR impulse response estimator is based on the reduced-form
VAR

wt = ĉ +
p∑

ℓ=1
Âℓwt−ℓ + ût. (D.2)

with Var(ut) = B̂B̂′ where B̂ is the Cholesky decomposition of the estimated forecast error
variance-covariance matrix. Our different identification schemes are implemented as follows:

1. Observed shock. wt contains the observed shock as well as either all other five
observed series, or only the outcome variable of interest. The observed shock is ordered
first in the recursive orthogonalization of the reduced-form innovations.

2. Recursive identification. wt consists of the five observed series, ordered as indicated
in our discussion of the structural monetary and fiscal shock identification schemes
(see Supplemental Appendix E.2). We do not consider a small version of this system,
consistent with the invertibility assumption.

The reduced-form VAR coefficient matrices are estimated either using least-squares or
with the analytical bias correction of Pope (1990), following the recommendations in Kilian
(1998). The lag length p is either set exogenously (in our simulations typically to p = 4)
or selected using the AIC for (D.2). Standard errors and confidence intervals are computed
using either the delta method (assuming homoskedasticity) or Efron’s bootstrap (500 draws),
following recommendations of Kilian and Lütkepohl (2017).

Appendix E Simulation study details

E.1 DFM estimation

We estimate the encompassing stationary and non-stationary DFMs on the data set of Stock
and Watson (2016), proceeding exactly as in Li, Plagborg-Møller, and Wolf (2024). For the
stationary DFM, we follow the same steps as in Online Appendix F.2 (p.16) of Li, Plagborg-
Møller, and Wolf, which in turn replicates the original analysis by Stock and Watson as well
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as in Lazarus, Lewis, Stock, and Watson (2018). For the non-stationary DFM, we transform
variables, select the number of factors and lags, and estimate the factor VECM as in Online
Appendix C (pp.2–4) of Li, Plagborg-Møller, and Wolf.

E.2 DGP selection and impulse response estimands

We draw our individual DGPs from the two encompassing DFMs by proceeding as follows.
For all DGPs, we restrict attention to the following 17 oft-used series (with Stock and Watson
Data Appendix series # in brackets): real GDP (1); real consumption (2); real investment
(6); real government expenditure (12); the unemployment rate (56); personal consumption
expenditure prices (95); the GDP deflator (97); the core consumer price index (121); average
hourly earnings (132); the federal funds rate (142); the 10-year Treasury rate (147); the
BAA 10-year spread (151); an index of the U.S. dollar exchange rate relative to other major
currencies (172); the S&P 500 (181); a real house price index (193); consumer expectations
(196); and real oil prices (202). We then draw several random combinations of five series
from this overall set of salient time series, subject to the constraint that each DGP contains
either the federal funds rate or government spending (for monetary or fiscal shock estimands,
respectively, as discussed further below) as well as at least one real activity series (categories
1–3) and one price series (category 6). For both the stationary and non-stationary DFM we
draw 100 monetary and 100 fiscal DGPs in this way.

Observed shock identification. We define the monetary policy shock as the (unique)
linear combination of the innovations in the factor equation that maximizes the impact im-
pulse response of the federal funds rate, and analogously for the fiscal policy shock, with
government spending as the maximized response variable. We then assume that the econo-
metrician directly observes this shock of interest, together with the five observables drawn
from the list of salient time series, as we discussed above. She estimates the propagation of
the shock using either LPs with the shock as the impulse variable (and no contemporaneous
controls) or a recursive VAR with the observed shock ordered first. The outcome of interest
is randomly selected among the observable series, not including the fiscal or monetary policy
instruments (i.e., government purchases or the federal funds rate).

We also estimate LP and VAR variants with a smaller set of observables. Here the system
only contains the observed shock as well as the outcome variable of interest.
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Recursive identification. For recursive identification, the researcher only observes the
five time series drawn from the encompassing DFM. We then define as the object of interest
impulse responses with respect to a recursive orthogonalization of the reduced-form (Wold)
forecast errors in the VAR(∞) representation of the observables. For monetary policy, we
order the federal funds rate last and then call the orthogonalized innovation to that variable
a monetary policy shock, restricting all other variables to not respond contemporaneously
to monetary policy, as in Christiano, Eichenbaum, and Evans (1999). For fiscal policy, we
order government spending first and then call the innovation to that variable a fiscal policy
shock, thus restricting the fiscal authority to respond to all of the other innovations with a
lag, following Blanchard and Perotti (2002). The overall identifying assumptions here are
thus invertibility together with particular temporal orderings. See Li, Plagborg-Møller, and
Wolf (2024, Online Appendix D) for further details.

E.3 Population estimands

For our visual illustration of LP-VAR equivalence in Figure 2.1 we consider one particular
monetary policy DGP from the stationary DFM, with recursive shock identification. The
observables in our system are (Stock and Watson Data Appendix series # in brackets): the
unemployment rate (56); real GDP (1); the core consumer price index (121); the BAA 10-year
spread (151); and the federal funds rate (142). The outcome of interest is unemployment.
We then simulate a large sample, and use recursive LPs and VARs with p ∈ {2, 6, 12} lags
to estimate the propagation of the recursively identified monetary shock, as discussed above.
We compare these finite-lag LP and VAR estimands with the true population projection on
the recursively identified monetary policy innovation, which we estimate using a numerical
approximation to an infinite-lag VAR.

E.4 Degree of mis-specification

Given a DGP—i.e., a five-variable (for recursive identification) or six-variable (for observed
shock identification) system randomly drawn from the encompassing DFM—and a lag length
p, we can represent that DGP as a VARMA(p,∞), following the same steps as those outlined
in Montiel Olea, Plagborg-Møller, Qian, and Wolf (2024, Footnote 8). For any given sample
size T and degree of local mis-specification ζ, we can then map that VARMA(p,∞) into the
locally mis-specified VAR(p) framework of Montiel Olea, Plagborg-Møller, Qian, and Wolf,
obtaining in particular the misspecification lag polynomial α(L). We then obtain the total
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degree of misspecification as

√
T × M = ∥α(L)∥ ≡

√√√√ ∞∑
ℓ=1

trace{Dα′
ℓD

−1αℓ},

where D is the variance-covariance matrix of the contemporaneous innovations.

Appendix F Supplementary simulation results

We provide several supplementary simulation results to complement our main findings re-
ported in Sections 5.2 and 6.4. We report detailed results for: mean squared error; recursive
identification; monetary and fiscal shocks considered separately; and finally coverage together
with confidence interval width.

F.1 MSE

To complement the bias and variance plots in Figure 5.1, we in Figure F.1 show mean squared
error results, again in the observed shock case, averaging over fiscal and monetary shocks,
and separately for stationary and non-stationary DGPs. Consistent with the discussion in
Section 5.2 and in particular Lesson 7 we see that, quantitatively, the variance cost necessary
for LP to attain its low bias is substantial, and so—in terms of mean squared error—VAR
estimation methods tend to dominate. Looking across stationary and non-stationary DGPs,
VARs with somewhat extended lag length (here p = 4) tend to attain a reasonable balance
between bias and variance, attaining substantially (for stationary DGPs) or moderately (for
non-stationary DGPs) lower MSEs than LPs at medium and long horizons.

F.2 Recursive identification

While our headline results in Sections 5.2 and 6.4 are reported for observed shock identifi-
cation, broadly similar lessons for both the bias-variance trade-off and for inference emerge
under recursive shock identification. Visual summaries are provided in Figures F.2 and F.3.

Figure F.2 shows the bias-variance trade-off, now averaging across both monetary and
fiscal shocks and across stationary and non-stationary DGPs. We see the same patterns as
for observed shock identification: the bias-variance trade-off is stark, long lag lengths for the
VAR align it with LPs, and the variance cost of LPs is large. Differently from the observed
shock case we do not report any results for “small” specifications, simply because the control
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MSE, observed shock, stationary & non-stationary

Figure F.1: Median (across DGPs) of mean squared error MSE(θ̂h) of the different estimation
procedures, relative to

√
1
21

∑20
h=0 θ2

h, for the stationary DGPs (left panel) and the non-stationary
DGPs (right panel).

vector is now integral to the economic identifying assumptions.

Recursive identification: bias-variance trade-off

Bias Standard deviation

Figure F.2: Median (across DGPs) of absolute bias
∣∣∣E [

θ̂h − θh

]∣∣∣ (left panel) and standard deviation√
Var(θ̂h) (right panel) of the different estimation procedures, relative to

√
1
21

∑20
h=0 θ2

h.

Figure F.3 displays coverage results, again across all DGPs. As in the observed shock
case, VARs with lag length selected by standard information criteria significantly undercover,
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Recursive identification: CI coverage

Figure F.3: Fraction of DGPs (both stationary and non-stationary) for which the confidence interval
coverage probability is above 80 per cent, by estimation procedure; the b subscript in the figure
legend indicates bootstrap standard errors.

while LPs—in particular with bootstrapped confidence intervals—cover well. We now also
see that inclusion of longer lag lengths is more important for LP, simply because those lags
are important now for the identification scheme, ensuring that the shock of interest is indeed
spanned by the regression residuals.

F.3 Fiscal and monetary shocks

Our reported conclusions are not sensitive to the type of (policy) shock that we consider. To
establish this, Figures F.4 and F.5 show bias, variance, and coverage results for fiscal shocks
(across stationary and non-stationary DGPs), while Figures F.4 and F.5 do the same for
monetary shocks. The figures by shock echo the messages of our main figures, which average
across shocks: there is a meaningful bias-variance trade-off; the variance cost of LPs is high;
and only LP methods robustly attain high coverage.

F.4 Coverage probability and CI width

While in Section 6.4 we report the fraction of LP and VAR confidence intervals with coverage
above 80%, Figure F.8 here instead shows the average coverage probability (left panel) and
median confidence interval length (right panel) of our different estimators across DGPs. The
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Observed fiscal shock: bias-variance trade-off

Bias Standard deviation

Figure F.4: Median (across DGPs) of absolute bias
∣∣∣E [

θ̂h − θh

]∣∣∣ (left panel) and standard deviation√
Var(θ̂h) (right panel) of the different estimation procedures, relative to

√
1
21

∑20
h=0 θ2

h.

picture that emerges is again consistent with our theoretical and practical messages: VAR
confidence intervals are quite a bit shorter, but this comes at the cost of (sometimes material)
under-coverage, in particular at longer horizons. Long-lag VARs attain correct coverage only
at the cost of confidence intervals essentially as wide as those of LP.
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Observed fiscal shock: CI coverage

Figure F.5: Fraction of DGPs (both stationary and non-stationary) for which the confidence interval
coverage probability is above 80 per cent, by estimation procedure; the b subscript in the figure
legend indicates bootstrap standard errors.

Observed monetary shock: bias-variance trade-off

Bias Standard deviation

Figure F.6: Median (across DGPs) of absolute bias
∣∣∣E [

θ̂h − θh

]∣∣∣ (left panel) and standard deviation√
Var(θ̂h) (right panel) of the different estimation procedures, relative to

√
1
21

∑20
h=0 θ2
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Observed monetary shock: CI coverage

Figure F.7: Fraction of DGPs (both stationary and non-stationary) for which the confidence interval
coverage probability is above 80 per cent, by estimation procedure; the b subscript in the figure
legend indicates bootstrap standard errors.

Observed shock: CI coverage probability & width

Figure F.8: Coverage probabilities (left panel) and median confidence interval length (right panel)
for VAR (red) and LP (blue) confidence intervals, by estimation procedure, across all DGPs (both
stationary and non-stationary); the b subscript in the figure legend indicates bootstrap standard
errors.
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