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Abstract

This paper studies linear time series regressions with many regressors. Weak exogene-

ity is the most used identifying assumption in time series. Weak exogeneity requires

the structural error to have zero conditional expectation given present and past re-

gressor values, allowing errors to correlate with future regressor realizations. We show

that weak exogeneity in time series regressions with many controls may produce sub-

stantial biases and render the least squares (OLS) estimator inconsistent. The bias

arises in settings with many regressors because the normalized OLS design matrix re-

mains asymptotically random and correlates with the regression error when only weak

(but not strict) exogeneity holds. This bias’s magnitude increases with the number of

regressors and their average autocorrelation. We propose an innovative approach to

bias correction that yields a new estimator with improved properties relative to OLS.

We establish consistency and conditional asymptotic Gaussianity of this new estimator

and provide a method for inference.
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1 Introduction

Structural estimation in macroeconomics, finance, and other economic fields studying dy-

namic models often employs time series data. The most used identifying assumption for

structural estimation in time series settings is weak exogeneity. Weak exogeneity postulates

that the structural shock has zero conditional expectation given the present and past re-

gressor values. It is a less restrictive assumption than strict exogeneity, which additionally

requires that the shocks have zero conditional expectation given future values of regressors.

Strict exogeneity is implausible in most settings due to feedback, i.e., the outcome variable

in one period affects the values of the regressors in future periods.1 Specifically, if the lagged

outcome variable is among the regressors, strict exogeneity cannot hold.

Another common feature of modern structural regressions is the presence of many regres-

sors, all of which may autocorrelate. Various motivations for the use of many regressors in

time series are that the economic system generating the data is partially observed (Zellner

and Palm, 1974; Wallis, 1977), additional controls in local projections may ensure uniformity

(Jordà, 2005; Montiel Olea and Plagborg-Møller, 2021), and long memory may be arising

from an underlying high-dimensional model (Schennach, 2018; Chevillon et al., 2018). Car-

rasco and Rossi (2016) argue that using many predictors with rolling window (small sample

size) guards against instability of forecasting ability in macro forecasting. In the undergrad-

uate textbook by Stock and Watson (2019), the primary example in chapter 16 contains a

sub-sample analysis that runs the ordinary least squares (OLS) regression with 32 regressors

using 204 observations. See also Bauwens et al. (2023) for two applications.

We show that these two features — weak exogeneity and many autocorrelated regressors

— can produce substantial asymptotic biases and even lead to inconsistency of the OLS es-

timator. A sizable asymptotic bias in OLS may arise even when all variables are stationary

(i.e., no unit roots or strong persistence is needed) and when the feedback effect violating

strict exogeneity is limited to just one period. The finite sample unbiasedness of OLS relies

heavily on strict exogeneity. It is well understood that OLS is biased in most time series

regressions, but there are some statements that the biases are relatively small and of second

order (see, e.g., Bao and Ullah, 2007). Our results show that the bias in OLS can be a

1The formalization of feedback is typically ascribed to Granger (1969), while Engle et al. (1983) provide
an early rigorous distinction between weak and strict exogeneity. See also Sims (1972); Chamberlain (1982)
for further discussions and an empirical example.
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first-order issue when the number of regressors is a non-negligible fraction of the sample size,

as is often the case empirically.

This paper contains several results. First, we derive a formula for the asymptotically

non-negligible part of the OLS bias, explain which data features cause it, and provide a tool

to assess the potential for OLS bias in a given time series application. Second, we propose a

new estimator, which is asymptotically unbiased if the data features a one-period violation

of strict exogeneity. Third, we derive the asymptotic distribution for this new estimator and

discuss how to conduct inferences using our new approach. Surprisingly, bias correction does

not necessarily trade-off with decreased precision; the simulated standard deviations of OLS

and our new estimator are very close, with no explicit ordering. Finally, we show how our

new estimator generalizes when multiple periods of feedback effects violate strict exogeneity.

The asymptotic bias of OLS arises in a setting with many regressors because the normal-

ized design matrix, X ′X/T , remains asymptotically random even in large samples. Weak

(but not strict) exogeneity allows randomness in the design matrix to correlate with the OLS

estimator’s numerator, leading to an asymptotic bias. Specifying the feedback structure lets

us derive a formula for the leading term of the bias. Specifically, assuming strict exogeneity is

violated by one-period feedback from the outcome variable to the next period’s regressors, we

show that the OLS asymptotic bias aligns with the feedback direction. The asymptotic bias

size increases with the number of regressors and their one-period ahead linear predictability.

We propose a new estimator that eliminates the bias asymptotically and is consistent

under the same assumptions that may lead to inconsistency of OLS. Our proposal mimics

an instrumental variables (IV) estimator with an intentionally endogenous ‘technical’ instru-

ment: a linear combination of the regressors and their leads (future values). The central

insight is that future values of the regressors in the instrument induce an endogeneity bias

along the feedback direction only, the same direction along which OLS is biased. It is, there-

fore, possible to pick the weights in the linear combination to ensure that the bias stemming

from the endogenous instrument offsets the bias originating from weak exogeneity.

An essential feature of our bias correction is that it relies solely on knowledge of the re-

gressors. The correction is identical for any outcome variable and requires no knowledge or

estimation of the feedback direction. We show that the new estimator is consistent and, after

normalization, asymptotically Gaussian under a one-period violation of strict exogeneity.

The main results can be generalized to the case where strict exogeneity is violated for a
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finite number of periods, i.e., when the outcome variable has feedback effects on the regressors

for L periods. In such a case, the asymptotic bias of OLS contains L terms corresponding to

the L feedback directions. Our results are also generalizable to a case of infinite, fast-decaying

feedback, which covers vector autoregression (VAR) equation-by-equation estimation and

regressions with a lagged dependent variable as a regressor. VAR and Augmented Distributed

Lag (ADL) regressions tend to include very many regressors for modest sample sizes; thus,

the bias issue is potentially very severe there. We should note that our results do not cover

local projection regressions, as those have a special structure of the error terms.

We conduct a simulation study to assess how common and large the OLS bias is in typical

macroeconomic regressions. We take an extensive collection of US macroeconomic indexes

observed quarterly for 200 periods, extract their business cycle part, and randomly draw a re-

gression from this data set. We show that the time series dependence and feedback magnitude

typical for these macroeconomic data produce empirically relevant OLS biases. For example,

in a typical regression with 25 regressors, we find a bias for the contrast along the feedback

direction equal to half of the standard deviation. In comparison, in regression with 50 regres-

sors, this bias approximately equals one standard deviation. Depending on the number of

regressors, approximately 6–21 percent of coefficients display a statistically significant differ-

ence between OLS and our proposed IV-type estimator. Our estimator fully corrects the bias.

Our results relate to three distinct strands of literature. First, there is a classic literature

on linear equations in time series. Sawa (1978) derived the exact bias of OLS in a simple

autoregression with Gaussian errors, noting “the least squares estimate is seriously biased for

the sample of two-digits sizes.” In a setting with few regressors, Kiviet et al. (1999); Bao and

Ullah (2007) derive second-order bias formulas (or bias of order 1/T ) where the lagged out-

come variable is the only regressor violating strict exogeneity. Stambaugh (1999), who consid-

ered a regression model with a very persistent (near-unit-root) regressor, also raised a concern

that weak exogeneity may lead to substantial biases in OLS. Hansen and West (2002) shows

the inappropriateness of the Generalized Least Squares (GLS) estimator in linear models with

weak exogeneity as GLS mixes the timing of observations and leads to substantial biases.

The second literature is that on the estimation of dynamic effects in panel data, where

the presence of fixed effects (many regressors) produces a sizable bias in the coefficient on

the lagged outcome variable (the weakly exogenous regressor) (Nickell, 1981). Unlike the

solutions proposed in that literature (e.g., Arellano and Bond, 1991), our solution for the
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time series context does not rely on the knowledge that only a single known regressor fails

to be strictly exogenous, nor does it require that the many regressors in the model are fixed

effects for mutually exclusive groups. Finally, the underlying algebraic source of the asymp-

totic bias issues, as well as some asymptotic statements related to Gaussianity of quadratic

forms, are connected to the problems arising in linear models with many instruments and/or

many regressors – see, e.g., Hansen et al. (2008); Chao et al. (2012); Kline et al. (2020).

The rest of the paper is organized as follows. Section 2 derives the formula for the leading

term of the OLS bias, provides intuition for the findings, and discusses features of the data

responsible for the bias. Section 3 introduces a new asymptotically unbiased estimator under

the assumption of one-period feedback and establishes its consistency. Section 4 establishes

the asymptotic Gaussianity of the newly proposed estimator and suggests a valid inference

procedure. Section 5 extends some of these results to settings with multi-period feedback.

Section 6 contains simulation studies assessing the empirical relevance of the discussed is-

sues in typical macroeconomic data sets. All proofs are in Appendix A. The Supplemental

Appendix contains additional theoretical results and simulations referenced in the text.

Notation For any vector x, ∥x∥2 = x′x. For any matrix A, rk(A) is the rank of A, ∥A∥ =

supx ∥Ax∥/∥x∥ is the operator norm, and ∥A∥F =
√

tr(A′A) is the Frobenius norm. We let

c < 1 and C be strictly positive and finite (generic) constants that do not depend on the

sample size T and may differ across appearances. The q×q identity matrix is Iq while I = IT .

2 Inconsistency of OLS

2.1 Model and assumptions

Consider a linear time series regression

yt = x′tβ + εt, t ∈ {1, . . . , T},

where the regressors xt ∈ RK are weakly exogenous and the number of regressors K is

large. We model this by assuming that K may diverge proportionally to T or slower. All

features of the data-generating process are implicitly indexed by T , but we drop this index
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for compactness of notation. The object of interest is the linear contrast θ = r′β for a known

(non-random) K vector r. A leading case is r′β = β1.

The assumption of weak exogeneity imposes:

E[εt |xt, xt−1, . . . ] = 0.

Weak exogeneity is considerably less restrictive than strict exogeneity, which assumes that

E[εt |X] = 0, with X denoting the T ×K set of all regressors (including past, present, and

future). In the context of time series economic data, strict exogeneity is rarely plausible.

In contrast, weak exogeneity allows the structural shock to influence future regressor values

through feedback. Such feedback is very likely as variables employed in macro estimation

often evolve as a joint dynamic process and affect each other either instantaneously (as xt

affects yt) or with some lag. When the regressors incorporate lagged outcome variables,

violations of strict exogeneity are certain. For further discussion regarding the plausibility

of weak and strict exogeneity in various applications, see Stock and Watson (2019, ch. 16).

Standard arguments for unbiasedness of the OLS estimator r′β̂OLS = r′(X ′X)−1X ′y rely

heavily on strict exogeneity. Although it is well-known that OLS exhibits bias under weak

exogeneity (see, e.g., Hamilton, 1994, ch. 8.2), it is mostly ignored in the literature. Here,

we claim that the bias of OLS can be substantial, potentially leading to inconsistency.

Standard statements regarding OLS consistency in time series hinge on the assumption

that the normalized design matrix concentrates around its expectation: ∥X ′X/T −Q∥ p−→ 0,

where Q is non-singular (see, e.g., Hamilton, 1994, Assumption 8.6). For example, Gupta and

Seo (2023) assumes K3/T → 0 to invoke a Law of Large Numbers for the normalized design

matrix. However, the normalized design matrix remains asymptotically random when the

number of regressors (and thus the design matrix dimensionality) grows fast enough. Under

strict exogeneity, the randomness of X ′X/T is not problematic as one can condition on X

in the analysis, thus treating the design matrix as non-random. This approach is infeasible

under weak exogeneity. In such instances, X ′X/T is not just a random matrix; it also

correlates with X ′y/T . This correlation produces a bias that may persist in large samples.

The size and form of the OLS bias depend on the feedback mechanism or how past er-

rors in the outcome variable affect future regressor values. We start by assuming one-period,

linear feedback, i.e., the present error term εt only affects the regressors in the subsequent pe-
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riod, namely xt+1. Section 5 extends our results to feedback lasting a finite number of periods.

Assumption 1. (i) The observed regressors xt can be decomposed as xt = x̃t + αεt−1,

where the T ×K matrix X̃ = [x̃1, . . . , x̃T ]
′ has full rank.

(ii) The errors {εt}Tt=0 are i.i.d. conditionally on X̃ with E[εt|X̃] = 0, c < σ2 := E[ε2t |X̃] <

C, and E[ε4t |X̃] < C almost surely.

(iii) The size of the non-random vectors α, r ∈ RK relative to the strictly exogenous design

matrix X̃ ′X̃/T is bounded: α′(X̃ ′X̃/T )−1α = Op(1) and r
′(X̃ ′X̃/T )−1r = Op(1).

(iv) The number of regressors K may diverge with sample size T such that K/T < 1− c.

Part (i) describes a specific violation of strict exogeneity where the present error term

only affects the regressors in the subsequent period. If α = 0, then all regressors xt = x̃t are

strictly exogenous. Section 5 generalizes this assumption to allow for multi-period feedback,

and it can be generalized further to infinite-order feedback as long as the feedback magnitude

decays sufficiently fast.2 Such a generalization covers the case with a lagged outcome vari-

able used as a regressor as it leads to an infinite, geometrically decaying feedback. The usual

VAR model is a special case of this. Linear feedback is a natural starting point. It arises

if, for example, one assumes all regressors and errors are jointly Gaussian (an assumption

that originally motivated the OLS estimator). Furthermore, the vast majority of models

estimated using macroeconomic data are linear due to the limited length of time series data.

The assumptions on the strictly exogenous part of the regressors {x̃t}Tt=1 are kept to a

minimum, the central part of which is full rank. Specifically, we do not assume stationarity or

impose moment conditions on X̃. Such generality is possible primarily because our analysis

is done conditionally on X̃. One could impose additional assumptions on the evolution of x̃t

and potentially use them to improve the efficiency of estimators. However, such assumptions

increase the potential for misspecification and severely reduce the applicability of the results.

Part (ii) is a standard set of assumptions on the error terms in homoskedastic regression

models. Allowing for autocorrelation of error terms is a possible generalization, though

we leave it to future research. For such a generalization, one should focus on a distinction

between feedback and autocorrelation. Specifically, one could decompose the regression error

2The results are available from the authors upon request.
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into a sum of two parts: one that produces feedback but no autocorrelation (as in the current

paper) and one that autocorrelates but does not produce any feedback. The feedback leads

to a bias in OLS, while the autocorrelated part does not cause bias but necessitates different

formulae for standard errors of linear estimators.

Part (iii) imposes a loose bound on the magnitudes of α and r relative to the scaled

design matrix X̃ ′X̃/T . This condition is, for instance, satisfied if ∥α∥ and ∥r∥ are bounded

and the smallest eigenvalue of X̃ ′X̃/T is separated from zero. In a cross-sectional setting, if

all elements of X̃ are i.i.d. with mean zero and finite fourth moment, the smallest eigenvalue

of X̃ ′X̃/T converges almost surely to the lower bound of support in Marchenko-Pastur’s law

and thus is separated from zero. Generalizations to time series appear in Hachem et al.

(2016). Part (iv) accommodates a widely ranging amount of regressors, including a small

fixed number. It implies degrees of freedom T−K diverges to infinity as sample size increases.

The violation of strict exogeneity in Assumption 1 seems minimal as it is solely due

to feedback from the dependent variable yt to the one-period-ahead regressors xt+1 and

the magnitude of the feedback is bounded. However, this violation is enough to produce

inconsistency in the OLS estimator.

2.2 Parameter estimator

We consider a special case to provide intuition for how and why the OLS bias arises. Suppose,

therefore, that only the first regressor fails to be strictly exogenous. That is, the first regressor

experiences one-period feedback: x1t = x̃1t+aεt−1. All other regressors only contain a strictly

exogenous component: xkt = x̃kt for 2 ≤ k ≤ K. In matrix form, this case lets us write

X = (X1, X−1) and X̃ = (X̃1, X̃−1) with X1 the T×1 vector with elements x1t and, crucially,

X−1 = X̃−1. Furthermore, we take X̃ as fixed and suppose that X̃ ′X̃/T = IK .

In this special case, we now derive the asymptotic bias of the OLS estimator for the first

coefficient β1. According to the Frisch-Waugh-Lovell theorem, we have

β̂OLS
1 =

X ′
1M−1y

X ′
1M−1X1

and β̂OLS
1 − β1 =

X ′
1M−1ε

X ′
1M−1X1

,

where the partialling-out operator M−1 = I − X̃−1(X̃
′
−1X̃−1)

−1X̃ ′
−1 is the projection on the

space orthogonal to X̃−1. Notice that M−1 =
(
M∗

st

)
is fixed (or can be conditioned on) so
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that all randomness comes from ε. The denominator of β̂OLS
1 −β1 has a standard asymptotic

behavior and, once divided by T , converges to a non-random and non-zero limit.

If all regressors were strictly exogenous (X1 = X̃1), then the OLS estimator would have

been properly centered. However, X1 contains randomness that correlates with ε. This

dependence leads to a non-zero expectation of the numerator in β̂OLS
1 − β1:

E
[
X ′

1M−1ε | X̃
]
= E

[
X̃ ′

1M−1ε | X̃
]
+ aE

[∑
s,t
M∗

stεs−1εt | X̃
]
= aσ2

∑
t
M∗

tt−1.

While the weakly exogenous regressor x1t does not correlate with the contemporaneous error

εt, partialling the remaining regressors out mixes the timing of the observations. It makes the

partialled-out regressor correlated with the contemporaneous error. This derivation suggests

a form for the leading term of the asymptotic bias of β̂OLS
1 . The asymptotic bias depends

on a, which governs the magnitude of feedback in the regressors and on the trace of the

lower diagonal of the projection matrix M−1 (namely,
∑

tM
∗
tt−1). As discussed below, this

lower trace may be on the order of the number of regressors and increases with their average

autocorrelation. It is also possible to show that the remaining OLS coefficients (e.g., β̂OLS
2 )

have an asymptotically negligible bias (although they have a finite sample bias). Thus, for

any linear combination θ = r′β, the asymptotic bias depends on the weight placed on β1.

The insight from the preceding special case generalizes. To see this, note that the OLS

estimator of a linear contrast remains invariant under linear transformations of the regressors.

For instance, if we perform a regression of Y on XA, where A is a K ×K matrix with full

rank that linearly transforms the regressors, then OLS serves as an estimator of A−1β. To

achieve the contrast θ, we should apply A′r as the weighting. Any OLS scenario simplifies

to the one discussed earlier when we choose A = (X̃ ′X̃/T )−1/2 and select the square root to

ensure that A′α is proportional to the first basis vector. These insights and certain technical

derivations lead to the following characterization of the asymptotic bias in OLS.

Theorem 1 (Inconsistency of OLS estimator). Suppose Assumption 1 holds. Then,

r′β̂OLS − r′β = σ2r′S̄−1α
∑T

t=2
M̃tt−1 + op(1),

where S̄ = X̃ ′X̃ + αα′σ2(T −K) and M̃ = I − X̃(X̃ ′X̃)−1X̃ ′.

Theorem 1 presents the leading term of the OLS asymptotic bias. We use the term
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asymptotic bias to describe a quantity that, if subtracted from the estimator, results in

a consistent (often termed asymptotically unbiased) estimator. The asymptotic bias is a

random variable since it depends on the exogenous part of the regressor X̃. If the asymptotic

bias is non-negligible as the sample size increases, the OLS estimator is inconsistent. If it is

asymptotically non-negligible relative to the OLS standard errors, standard t-statistic-based

inferences (tests, confidence sets) have asymptotically incorrect size or coverage.

Note that the asymptotic bias formula uses the lower diagonal trace
∑

t M̃tt−1 of the

projection matrix orthogonal to X̃ instead of
∑

tM
∗
tt−1 as in the special case. The following

Lemma establishes the asymptotic negligibility of this difference.

Lemma 1. Suppose Assumption 1, part (i), holds, and recall the notation for the three closely

related projection matrices M = IT − X(X ′X)−1X ′ = (Mst), M̃ = IT − X̃(X̃ ′X̃)−1X̃ ′ =

(M̃st), and M−1 = I − X̃−1(X̃
′
−1X̃−1)

−1X̃ ′
−1 = (M∗

st). Then,∣∣∣∑
t
M̃tt−1 −

∑
t
Mtt−1

∣∣∣ ≤ 2 and
∣∣∣∑

t
M̃tt−1 −

∑
t
M∗

tt−1

∣∣∣ ≤ 1.

It is worth discussing the size of the lower trace of the projection matrix and of the

biases we may observe in applications. Consider the term
∑

t M̃tt−1 = −
∑

t P̃tt−1, where

P̃ = X̃(X̃ ′X̃)−1X̃ ′. This quantity is unchanged under any full-rank rotation of the regressors.

For simplicity, suppose here that the regressors satisfy X̃ ′X̃/T = IK (perhaps after suitable

rotation). Then
∑

t M̃tt−1 = − 1
T

∑
t x̃

′
tx̃t−1. Thus, the lower-diagonal trace of M̃ equals the

negative sum of the sample first-order autocorrelation of the regressors and measures a linear

connection between consecutive realizations of the K-dimensional regressor x̃t and x̃t−1.

In time series settings, we often work with data containing autocorrelated regressors.

Consequently, the average of the sample autocorrelations ρ̂ = − 1
K

∑
t M̃tt−1 can be non-

trivial and even large. Deriving statements about the large-sample behavior of ρ̂ is impossi-

ble without restrictive assumptions on the regressors. A key challenge is that commonly used

regressors often exhibit highly heterogeneous persistence. On the technical side, a major dif-

ficulty arises because the matrix X̃ ′X̃/T does not concentrate asymptotically. For instance,

if all elements of X̃ are i.i.d. mean zero variables with finite fourth moment, and K/T

is a constant fraction, the spectral density of X̃ ′X̃/T converges to Marchenko-Pastur’s law

(Marchenko and Pastur, 1967); generalizations of this result to time series are largely absent.

As a proof of concept that ρ̂ can remain asymptotically bounded away from zero, Supple-
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mental Appendix A provides a time series with short dependence where the average popu-

lation first-order autocorrelation equals 1/2 and − 1
K

∑
t M̃tt−1 →p 1/2. In this example, the

asymptotic bias in the worst direction is τK/T , where τ ̸= 0 is a constant determined by

the primitives of the data-generating process. This example shows that the OLS estimator

of α′β becomes inconsistent when K grows proportionally to the sample size, and standard

t-statistic-based inferences become asymptotically invalid if K2/T is separated from zero.

We observe that S̄ ≥ X̃ ′X̃ which implies that Assumption 1(iii) leads to r′S̄−1α =

Op(1/T ). Assume momentarily that Tr′S̄−1α converges to a constant rα. The leading bias

term then becomes approximately −σ2rα · ρ̂K/T . Notably, this potential bias is more pro-

nounced for regressors with higher in-sample first-order autocorrelation and a larger number

of regressors. Although analytical results about the size of −ρ̂K/T = 1
T

∑T
t=2 M̃tt−1 are typ-

ically unavailable; the asymptotically equivalent quantity 1
T

∑T
t=2Mtt−1 can be calculated

from available data. If this quantity is non-negligible in an application, even a small viola-

tion of strict exogeneity may result in substantial biases. Simulation results reported below

and in Section 6 show that the bias of OLS can be substantial both in simple examples and

in data-generating processes calibrated to US macroeconomic data.

Lastly, the extent of asymptotic bias depends on the alignment between the contrast

r and the feedback direction α, making the feedback direction the most affected contrast

direction, captured by rα above. Contrasts in all directions orthogonal to α (using the scalar

product weighted by S̄−1) experience only negligible asymptotic bias. In our special case

where only the first regressor is weakly exogenous, this observation corresponds to the OLS

estimator of β1 being the sole estimator with significant asymptotic bias. Thus, for any linear

contrast r′β, the asymptotic bias depends on the weight placed on β1. In applications, the

feedback direction is unknown and challenging to estimate empirically, as α is a K×1 vector.

Simulations We demonstrate the potential for OLS bias through a small-scale simulation

that varies the number of regressors and their short-term dependence. Data is generated

following Assumption 1. The outcome vector is generated as y = Xβ + ε with ε ∼ N(0, I)

and β = 0. The design matrix is generated as x1t = x̃1t + aεt−1 and X−1 = X̃−1, where X̃ is

generated as a rotated VAR(1) process with X̃X̃ ′/T = IK , independent from ε. Specifically,

we generate Vt = ρVt−1+ut with {ut}Tt=1 i.i.d. N(0, IK) and define X̃ = V (V ′V/T )−1/2, where

the square root comes from Cholesky decomposition. Across simulations, we fix the sample
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size at T = 200 and the coefficient on the feedback mechanism at a = 1.5. Simulation

results are summarized in Figure 1 with the left panel showing results for the number of

regressors K between 4 and 100 (fixing ρ at 0.8).3 The right panel reports the results for the

autocorrelation in regressors ρ between 0 and 0.98 (fixing K at 50). We report simulated

values of absolute bias and standard deviation for the first coordinate of OLS together with

the mean absolute value of the ratio of the lower trace ofM to the sample size. Additionally,

we report the bias and standard deviations for the new estimator proposed in Section 3.

Specifically, the label IV refers to the estimator defined by equations (1) and (3).
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Figure 1: Absolute Bias and Standard Deviation of OLS and IV with T = 200

The results presented in Figure 1 suggest that the bias of the OLS estimator can eas-

ily surpass its standard deviation, leading to highly unreliable statistical inferences. For

example, even a regression with just 20 regressors may exhibit an OLS bias comparable in

magnitude to the standard deviation in a sample of size 200 — a prevalent setting in macroe-

conomic applications. The observable lower trace of M divided by the sample size provides

a highly predictive measure of the magnitude of the bias in the most affected direction.

Notably, both the bias in the most affected direction and the lower diagonal trace tend to

increase with the number of regressors and the first autocorrelation of the regressors.4

3The results are presented as sixth-order polynomial fits to the actual results across K.
4One may worry that the observed biases are due to persistence in the regressors as the coefficient ρ in an

AR(1) process measures both short-term dependence and long-run persistence. We also conduct simulations
generating Vt = ρut−1 + ut as an MA(1) process. The Supplemental Appendix presents the results, which
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2.3 Variance estimator

To make reliable statistical inferences in a linear regression, we usually need an estimator for

the variance of the error term σ2. In regression with many regressors and strict exogeneity,

it is well-known that one must adjust appropriately for the degrees of freedom to correct

for over-fitting. The most commonly applied OLS estimator of the error variance uses this

adjustment σ̂2 = y′My/(T −K). It is not apparent, ex-ante, whether this estimator retains

consistency with many regressors and only weak exogeneity. On the one hand, a large

asymptotic bias of the OLS estimator for coefficients raises concerns about the consistency

of the variance estimator. On the other hand, asymptotic bias arises only in the direction

of the feedback but not in all directions orthogonal to the feedback, which are numerous.

Theorem 2 answers the question of the consistency of the OLS variance estimator.

Theorem 2 (Inconsistency of OLS variance). Suppose Assumption 1 holds. Then,

σ̂2

σ2 = 1− σ2α′S̄−1α

T −K

(∑T

t=2
M̃tt−1

)2
+ op(1).

Theorem 2 states that the OLS estimator of the error variance is asymptotically bi-

ased downward and reports an overly optimistic measure of fit in a setting with one-period

feedback and many regressors. The size of the bias can be judged by the trace of the lower di-

agonal of the projection matrixM . When the number and predictability of the regressors are

high enough to imply that the OLS estimator of the linear contrast in the worst direction (the

feedback direction) is inconsistent, the OLS estimator of variance is also inconsistent. Despite

this inconsistency result, the biases we observe in simulations tend to be relatively minor.

3 A consistent IV estimator

3.1 The idea of the proposed estimator

Let us introduce a T × T shift matrix D (or lag operator matrix) that shifts the time series

index back by one; its only non-zero elements are Dt,t−1 = 1 for all t. The transpose D′ is

the lead operator, moving the time-series index forward by one. Notice that the lower trace

are essentially identical to those reported in Figure 1. The Supplemental Appendix also contains simulations
with a larger sample size T = 800, which clearly traces the inconsistency of OLS when K is proportional to T .
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appearing in the bias of OLS satisfies the representation
∑T

t=2 M̃tt−1 = tr(D′M̃). Consider

also a T × T matrix Γ measurable with respect to X̃ such that ∥Γ∥ ≤ 1− c.

We propose an IV-inspired estimator relying on an endogenous instrument Z = (I−Γ′)X:

β̂IV(Γ) = (Z ′X)−1Z ′y = (X ′(I − Γ)X)−1X ′(I − Γ)Y. (1)

The key insight behind the estimator is that we use a deliberately invalid instrument created

in a way so the ‘invalid instrument’ bias offsets the bias in OLS. To eliminate the asymptotic

bias, we require that Γ solves the following (non-linear) one-dimensional equation:

tr
[
D′(I − Γ)M̃Γ

]
= 0 (2)

where M̃Γ = I − X̃(X̃ ′(I − Γ)X̃)−1X̃ ′(I − Γ) = I − X̃(Z̃ ′X̃)−1Z̃ ′ is an oblique projection off

X̃ in the direction of Z̃ = (I − Γ′)X̃. Further below, we establish that the new estimator

β̂IV(Γ) is a properly centered
√
T asymptotically Gaussian (conditionally on X̃) estimator

under Assumption 1. The main theoretical result about bias is proven for a general Γ with

the leading example of Γ = γD for |γ| < 1− c.

Let us give some intuition of why this approach would work. Consider again the special

case when all regressors but the first are strictly exogenous. Namely x1t = x̃1t + aεt−1, while

X−1 = X̃−1 and consider the first coefficient β1 only, as it is the most biased direction.

Consider also the case of Γ = γD, thus zt = xt − γxt+1. In this setting, all but the

first instruments are strictly exogenous, while the first instrument z1t = z̃1t + εt−1 − γεt

is endogenous as it correlates with the contemporaneous regression error. The direction

of the instrument endogeneity, in general, coincides with the feedback direction, as the

transformation Γ mixes the timing of the observations but preserves the feedback direction.

Oblique projections underlie the geometry of IV estimation, similar to how orthogonal

projections explain the geometry of OLS. We can define an oblique projection as MZ,X =

I −X(Z ′X)−1Z ′, where X and Z are of the same dimension and Z ′X is invertible. Oblique

projections satisfy idempotency, M2
Z,X = MZ,X , but not symmetry, M ′

Z,X ̸= MZ,X . One

can easily show that the Frisch-Waugh-Lowell theorem also holds for oblique projections.

Specifically, let Z = [Z1;Z−1] where the corresponding Z’s and X’s dimensions coincide and
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all proper matrices are invertible. Then

β̂IV
1 (Γ) =

Z ′
1MZ−1,X−1

Y

Z ′
1MZ−1,X−1

X1

and β̂IV
1 (Γ)− β1 =

Z ′
1MZ−1,X−1

ε

Z ′
1MZ−1,X−1

X1

.

Notice that since X−1 is strictly exogenous, Z−1 is strictly exogenous as well. If we condition

on X̃ we may then treat MZ−1,X−1
as fixed. We look at the numerator:

E
[
Z ′

1MZ−1,X−1
ε | X̃

]
= E

[
Z̃ ′

1MZ−1,X−1
ε | X̃

]
+ aE

[∑
s,t
M∗

st(εs−1 − γεs)εt | X̃
]

= aσ2
∑

t
(M∗

tt−1 − γM∗
tt).

Here we used MZ−1,X−1
= (M∗

st) for shortness of notation. We aim to choose γ to render

the last sum equal to zero. Finding such a root should generally be feasible, given that

the diagonal elements of projection matrices tend to dominate those on the lower diagonal.

Lemma 6 shows that changing MZ−1,X−1
to M̃Γ in the bias expression introduces only an

asymptotically negligible difference. Thus, the expectation of the numerator is asymptoti-

cally equivalent to aσ2 tr[D′(I − Γ)M̃Γ]. By selecting Γ to solve equation (2), we therefore

achieve an asymptotically unbiased estimator.

3.2 Consistency of estimator

Let γ0 be the solution to (2) among matrices Γ0 = γ0D. As we only observe X, knowing X̃ is

equivalent to knowing the feedback direction α. Therefore, solving equation (2) is infeasible

in practice. Let instead γ̂ and Γ̂ = γ̂D be the solution to the empirically feasible equation:

tr
[
D′(I − Γ̂)MΓ̂

]
= 0, where MΓ̂ = I −X(X ′(I − Γ̂)X)−1X ′(I − Γ̂). (3)

In practice, in order to find γ̂, we minimize the function

f(γ) =
{
tr
[
D′(I − γD)(I −X(X ′(I − γD)X)−1X ′(I − γD))

]}2
using standard non-linear optimization algorithms. In all our simulations, the convergence is

very fast. The following Lemma gives sufficient conditions for the existence and uniqueness

of a solution to equation (2).
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Lemma 2. Suppose that X̃ is a T ×K matrix of rank K and Γ = γD.

(i) If K < T/5, then there exists a unique γ ∈ [−1/2, 1/2] solving equation (2).

(ii) If | tr(D′M̃)| ≤ µ2K and K < T/[1 + (1 + µ)2] for some µ ∈ [0, 1], then there exists a

unique γ solving equation (2) such that |γ| < µ/(1 + µ).

One may state an analog of Lemma 2 for equation (3) as well due to their analog structure.

According to Lemma 2, equation (2) typically can be solved in a one-dimensional family of

transformations Γ = γD. It is possible to search for a solution in other classes of matrices;

we leave the question of finding an optimal class of transformations Γ to future research.

The proof of Lemma 2 reveals that though equation (2) is non-linear, its solution can be

found relatively fast as a fixed point of a contraction.

One may think K < T/5 in Lemma 2(i) is restrictive. It arises because we impose no re-

strictions on X̃ other than full rank. Thus, we accommodate a wide range of idiosyncrasies in

the regressors’ distribution, surpassing those encountered in typical macroeconomic time se-

ries data sets. Placing some restrictions on regressors may weaken the restriction on the sam-

ple size significantly. For example, putting a bound on the average autocorrelation of the re-

gressors, µ, eases this restriction considerably, as shown in Lemma 2(ii). If the original poten-

tial for bias is small, the γ that removes the bias is small as well. Specifically, if tr[D′M̃ ] = 0,

the original OLS has no (asymptotic) bias, and our estimator defaults back to OLS.

The following theorem establishes the asymptotic bias of IV for a generic choice of Γ and

shows consistency for the specific choice of Γ̂ = γ̂D.

Theorem 3. Suppose Assumption 1 holds.

(i) If Γ is X̃-measurable and ∥Γ∥ < 1− c, then

r′β̂IV(Γ)− r′β = σ2r′S̄−1
Γ α tr

[
D′(I − Γ)M̃Γ

]
+ op(1),

where S̄Γ = X̃ ′(I −Γ)X̃ + σ2αα′ tr
[
(I −Γ)M̃Γ

]
. Specifically, it follows that r′β̂IV(Γ) is

consistent for r′β when Γ solves equation (2).

(ii) If K < T/5, then γ̂ − γ0 = Op(1/T ), and r
′β̂IV(Γ̂)− r′β̂IV(Γ0) = op(1/

√
T ).
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The result of Theorem 1 is a special case of Theorem 3(i) for Γ = 0. Using Γ that solves

equation (2) produces a consistent estimator for any reasonable contrast, and the proposed

solution does not depend on the contrast of interest. The ideal Γ0 solving equation (2) can

be random but is strictly exogenous, as it depends only on the strictly exogenous part of the

regressors X̃. The solution to equation (3), Γ̂, is random and depends on the error terms

ε. However, as stated in Theorem 3(ii), the feasible estimator r′β̂IV(Γ̂) is consistent and has

the same asymptotic distribution as the infeasible one using the ideal Γ0.
5

An appealing feature of our proposal is that the estimator is linear in the outcome vari-

able. It eliminates bias by working only with the regressors. The same bias correction

works for any outcome variable satisfying the weak exogeneity assumption with one-period

feedback to regressors. Our solution does not require estimating the feedback direction α.

Figure 1 shows that in the simulations, the proposed IV estimator fixes the bias of OLS

with essentially no increase in the standard deviation of the estimator.

Alternative approaches The large number of regressors is a primary driver of the size of

the OLS bias. There are several proposals in the literature on how to reduce the dimensional-

ity of the regressors, including Principle Components Analysis (PCA) (see, e.g., Carrasco and

Rossi, 2016) or LASSO regularization (Medeiros and Mendes, 2016). The validity of these

approaches for estimation and inference involving a scalar contrast requires quite strong as-

sumptions like sparsity (for LASSO) or that the influence is fully captured by factors (for

PCA). These assumptions should be imposed on one of two relations: the one between out-

come and regressors and the relation between the regressor of interest and all other regressors.

These are assumptions that may not be easy to justify. Supplemental Appendix C.4 contains

simulation results showing the challenges with PCA when these assumptions fail.

Another approach is to recognize that the bias of the OLS arises from the feedback mech-

anism; controlling for this mechanism eliminates the bias. This insight leads to suggestions

such as running an OLS regression that includes either lags of the outcome variable and the

regressors or a lag of the residual.6 Another option is to consider a leave-one-out approach.

We explore the performance of these approaches in Supplemental Appendix C.4 and find

5The consistency of the new estimator relies heavily on Assumption 1, specifically one-period feedback.
Simulations exploring robustness to violations of this assumption are in Supplemental Appendix C.2

6We are grateful to the anonymous referee for this suggestion.
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that our estimator outperforms both in terms of bias and variance.

3.3 Consistency of variance estimator

For some matrix Γ, introduce T −KΓ = tr
[
(I − Γ)M̃Γ

]
and define the variance estimator

σ̂2(Γ) =
y′(I − Γ)MΓy

T −KΓ

.

Using equation (5) in the Appendix, we find that the value of σ̂2(Γ) is invariant to the value

of β so that σ̂2(Γ) = ε′(I − Γ)MΓε/(T −KΓ). Lemma 4(ii) from the Appendix implies that

σ̂2(Γ) possesses a very desirable property; it is non-negative for any realization of the data.

If Γ solves equation (2) then σ̂2(Γ) is consistent for σ2.

Theorem 4. Suppose Assumption 1 holds, Γ is X̃-measurable, and ∥Γ∥ < 1− c. Then

σ̂2(Γ)

σ2 = 1− σ2α′S̄−1
Γ α

T −KΓ

tr
[
D′(I − Γ)M̃Γ] tr

[
D(I − Γ)M̃Γ] + op(1).

Specifically, it follows that σ̂2(Γ) is consistent for σ2 when Γ is such that equation (2) holds.

As with Theorem 3, the theoretically desirable Γ that solves (2) is not known, but one

can search for an empirically feasible value Γ̂ that solves (3). One can easily use Theorem

3(ii) to extend the argument of Theorem 4 and also show that σ̂2(Γ̂) is consistent.

4 Inference

This section shows that the proposed IV estimator is asymptotically Gaussian conditionally

on X̃ under some additional assumptions. We also suggest standard errors that, when

paired with our estimator, provide asymptotically valid inferences, that is, confidence sets

and hypothesis tests with asymptotically correct coverage and size, respectively.

There are two theoretical and practical challenges we encounter. The first is to correctly

account for the asymptotic importance of a quadratic form. Specifically, the bias of OLS

arises due to the presence of a quadratic form in errors, which has a non-trivial mean, as was

noticed in Sawa (1978). We construct our estimator to guarantee a zero mean of its corre-

sponding quadratic form and thus eliminate the bias asymptotically. The quadratic form in
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error terms with zero mean is asymptotically Gaussian when its rank grows to infinity under

a condition of eigenvalue negligibility. We refer the reader to Brown (1971); de Jong (1987);

Chao et al. (2012); Anatolyev (2019); Sølvsten (2020); Kline et al. (2020) for examples of the

Central Limit Theorems for quadratic forms. The naive standard errors tend to improperly

account for the asymptotic uncertainty of a quadratic form. The asymptotic importance of

such quadratic forms has appeared previously in the literature on linear models with many

instruments and/or many regressors. Hansen et al. (2008) shows the importance of adjusting

standard errors for the presence of a quadratic form in many instrument settings. See also

Anatolyev (2019) for a comprehensive survey of the issue. The second challenge is that the

quadratic form we end up with has non-zero diagonal elements that are zero on average,

making the asymptotic variance depend on skewness and kurtosis of errors. The issue also

arises when conducting proper inference for estimators of the limited information maximum

likelihood type with many instruments (as in Hansen et al. (2008)). Below, we consider two

instances where we can easily handle the first challenge and ignore the second challenge.

4.1 Inference when K/T → 0

Theorem 5. Suppose Assumption 1 holds, maxt∥(X̃ ′X̃)−1/2x̃t∥ = op(1). Then, as T → ∞,

r′β̂IV(Γ̂)− r′β√
Σ̂T

⇒ N(0, 1)

where Σ̂T = σ̂2(Γ̂)∥r′(X ′(I − Γ̂)X)−1X ′(I − Γ̂)∥2.

The condition maxt∥(X̃ ′X̃)−1/2x̃t∥ = op(1) is a relatively standard negligibility condition

often invoked to ensure asymptotic Gaussianity of OLS via the Lindeberg CLT (see, e.g.,

Koenker and Machado, 1999, page 334). It implies, among other things, that the maximal di-

agonal element P̃tt of the projection matrix P̃ is asymptotically negligible. Meanwhile, the av-

erage of these diagonal elements equalsK/T , so this condition can hold only when the number

of regressors is moderately large (K/T → 0). In such cases, both challenges described at the

beginning of this section become asymptotically negligible. The standard errors in Theorem 5

resemble usual IV-type standard errors but use the newly proposed variance estimator σ̂2(Γ̂).
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4.2 Inference with Gaussian errors

Theorem 6. Suppose Assumption 1 holds and ε1 is Gaussian conditionally on X̃. Assume

that Γ solves equation (2) and ∥Γ∥ < 1− c. Then, as T → ∞,

r′β̂IV(Γ)− r′β√
ΣT

⇒ N(0, 1)

where ΣT is measurable with respect to X̃. With probability asymptotically approaching one,

ΣT ≤ (1+ψ)σ̂2(Γ)∥r′(X ′(I −Γ)X)−1X ′(I −Γ)∥2, where ψ = | tr(B2
)|

tr(B
′
B)

and B = D′(I −Γ)M̃Γ.

Theorem 6 allows the number of regressors to grow proportionally with the sample size.

In this case, the standard errors stated in Theorem 5 do not correctly account for the

uncertainty induced by the quadratic form. Similar issues arise in the many instruments

literature, which proposes new estimators of asymptotic variances (Hansen et al. (2008)).

In the current setup, the missing term in the asymptotic variance formula depends on the

importance of the feedback and is hard to estimate. Instead, we provide an upper bound on

the asymptotic variance, making the confidence sets asymptotically valid but conservative.

In our simulations, we noticed that the correction ψ tends to be tiny and does not change

the standard errors much. We advise to calculate ψ as a robustness check.

We use the assumption that errors are Gaussian in two distinct ways. First, it allows

us to bypass the Lindeberg-type negligibility condition for the main linear term, as any

linear combination of errors with weights depending on X̃ is conditionally Gaussian in fi-

nite samples. If errors are not Gaussian, one may instead impose a high-level assumption

maxtw
2
t /
∑

tw
2
t → 0 for wt = r′(Z̃ ′X̃)−1Z̃t.

Second, Gaussianity removes the need to estimate the skewness and kurtosis of the error

term. The bias removal procedure ensures the trace of B = D′(I−Γ)M̃Γ equals zero, leading

to E[ε′Bε] =
∑

tBttEε2t = 0. That is, the diagonal sum
∑

tBttε
2
t is zero on average, though

not for every realization. The variance of this diagonal sum, V ar(
∑

tBttε
2
t ) =

∑
tB

2
ttE(ε2t −

σ2)2 is negligible when K/T → 0. When K grows proportionally to T , the variance of the

diagonal sum is correctly accounted for by the variance formula provided in the theorem only

when E(ε2t −σ2)2 = 2σ4, which holds for the Gaussian distribution. If errors have positive ex-

cess kurtosis, one must add a positive term to the asymptotic variance. However, the correc-

tion term tends to be small relative to the total variance as
∑

tB
2
tt tends to be a tiny fraction
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of tr(B′B) =
∑

tsB
2
ts. Simulations in Supplemental Appendix C.3 suggest that our proposed

inference method maintains good size properties, even when errors are non-Gaussian.

5 Extension to multiple periods

In the previous sections, we assumed that the violation of strict exogeneity happens for one

period only. Some results generalize to feedback lasting a fixed finite number of periods.

Assumption 2. (i) The observed regressors xt can be decomposed as xt = x̃t+
∑L

ℓ=1 αℓεt−ℓ

where the T ×K matrix X̃ = [x̃1, . . . , x̃T ]
′ has full rank.

(ii) The errors {εt}Tt=1−L are i.i.d. conditional on X̃ with E[εt|X̃] = 0, c < σ2 := E[ε2t |X̃] <

C, and E[ε4t |X̃] < C almost surely.

(iii) The non-random vectors α1, . . . , αL, r ∈ RK satisfy α′
ℓ(X̃

′X̃/T )−1αℓ = Op(1) for ℓ =

1, . . . , L and r′(X̃ ′X̃/T )−1r = Op(1).

(iv) L is fixed and K/T < 1− c.

The vector αℓ describes how the shock to the outcome variable affects the regressors ℓ

periods later. The direction of the feedback may vary freely with the lag as the regressors

differ in the speed of reaction/adjustment. However, we probably should expect that the

size of the ℓ-th period feedback measured as α′
ℓ(X̃

′X̃/T )−1αℓ should become negligible for

large enough ℓ in typical macroeconomic settings.

Theorem 7. Suppose Assumption 2 holds, Γ is X̃-measurable, and ∥Γ∥ < 1− c. Then,

r′β̂IV(Γ)− r′β = σ2
L∑

ℓ=1

r′S̄−1
Γ αℓ tr

[
(D′)ℓ(I − Γ)M̃Γ

]
+ op(1), (4)

where S̄Γ = X̃ ′(I − Γ)X̃ + σ2∑L
j,ℓ=1 αjα

′
ℓ tr
[
(D′)j(I − Γ)M̃ΓD

ℓ
]
.

Theorem 7 is a direct generalization of Part (i) of Theorem 3. The special case of

Γ = 0 shows that the bias of OLS is a linear combination of L terms involving the lower

diagonal traces of the projection matrix M̃ . Lower diagonal traces, tr[(D′)ℓM̃ ], correspond

to average measures of the regressors’ autocorrelations of order ℓ and are expected to decay
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for stationary regressors. Combined with the anticipated decrease in the size of αℓ, the first

few terms in the bias formula should capture most of the bias in stationary applications.

The bias formula (4) is derived for any IV-type estimator for an X̃-measurable T × T

matrix Γ with ∥Γ∥ < 1 − c. Theorem 7 suggests that if Γ solves a system of L equations

tr
[
(D′)ℓ(I − Γ)M̃Γ

]
= 0 for ℓ = 1, ..., L then r′β̂IV(Γ) is a consistent estimator. A natural

suggestion is to search for Γ in the class of matrices Γ =
∑L

ℓ=1 γℓD
ℓ where the L parameters

{γℓ}ℓ solve the system of equations. We leave the questions of considering other classes

of matrices and establishing guarantees for the existence of a solution to future research.

Supplemental Appendix C.2 contains some simulation results in a setting with two-period

feedback, when the IV estimator zeros down only the first lower diagonal.

Theorem 7 can be further generalized to the case of infinite feedback (under a summa-

bility condition on the feedback magnitudes). This generalization uses an argument that

approximates a model with infinite lags by a model with a finite but slowly growing number

of lags. Specifically, Theorem 7 generalizes to a model where a lagged dependent outcome

serves as a regressor (which yields a model with infinite feedback and geometrically decaying

feedback magnitudes).7 Supplemental Appendix B explains how our setting with infinite geo-

metrically decaying feedback includes typical VAR models. VAR models are often estimated

via equation-by-equation OLS, which may result in significant biases when the number of

included variables multiplied by the order of the VAR constitutes a substantial fraction of

the sample size. Our setting does not cover local projection, as errors in those regressions

have a moving average structure, requiring further generalization of our framework.

Formulae for the OLS bias in time series have been derived before in special cases.

Specifically, Sawa (1978) and Nankervis and Savin (1988) derived the exact finite-sample

bias in an AR(1) model with Gaussian errors and argued that the bias is sizable when the

sample size is double-digit. Kiviet et al. (1999) considered a model with Gaussian innovations

that has a small number of strictly exogenous regressors and derived a formula for asymptotic

(1/T ) bias from using the lagged outcome as a regressor. They argued that the bias can

be significant in small samples. Stambaugh (1999) showed that the weak exogeneity bias is

large when a single weakly exogenous regressor is persistent. All these results are special

cases of our formula when applied to infinite geometrically decaying feedback.

7These results are available upon request from the authors but are not included here, as they constitute
a separate paper.
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6 Simulations

This section aims to assess the size of the OLS bias in a ‘typical’ regression using US macroe-

conomic data. We use the data set from Stock and Watson (2016) containing quarterly

observations from 1964 to 2013 (T = 200) on 108 US macro indicators. This data set is

largely similar to the McCracken and Ng (2020) FRED-QD data set. The data set includes

a broad class of variables with diverse time series properties.

Many macro and financial indicators tend to be very persistent and may be integrated

up to second order: stationary, I(1), or I(2) processes. A prevailing (but not uniformly

accepted) practice is to transform all variables to stationarity before running a regression to

avoid issues of co-integration and near co-integration or biases related to persistent regressors

(see Stambaugh (1999) on such biases). The way applied researchers transform variables to

stationarity or make decisions about variable stationarity varies widely across the literature,

with many such decisions based on both statistical tests and expert judgments. In order

to unify the pre-treatment of variables, given that a large fraction of regressions is aimed

at business-cycle parameters, we apply Hamilton (2018) transformation to all variables in

the data set. Specifically, we define each variable’s cyclical component as a two-year-ahead

forecast error to this variable based on a univariate AR(4) regression. According to Hamilton

(2018), this filtering transforms many types of stationary and up to second-order integrated

variables into stationary ones and extracts their business cycle component.

For each K in {5, 15, 25, . . . , 85, 100}, we perform 100 experiments where we randomly

draw K distinct variables from the transformed data set, denote them Xr and an additional

variable yr. We calculate, through simulations, the biases and standard deviations of OLS

and our proposed estimator (referred to as IV) for the linear contrast in the feedback di-

rection in the regression of yr on Xr under the assumption of one-period violation of strict

exogeneity. For this, we simulate N = 1000 samples from a data generating process satis-

fying Assumption 1 that preserves the time series behavior of regressors and the feedback

size/direction of the observed (yr, Xr). Specifically, we use as true parameters the empirical

OLS values β = (X ′
rXr)

−1X ′
ryr, σ

2 = e′e/(T −K) for e = yr − Xrβ, and α = X ′
rD

′e/(e′e).

We simulate samples as X = Xr +D′εα′ and y = Xβ+ ε where ε ∼ N(0, σ2I). We simulate

errors here as i.i.d. even though the empirical regression residuals typically exhibit substan-

tial serial correlation. We calculate the bias and standard deviation for the OLS and IV
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estimators of the linear contrast with θ = α′β.

The left panel of Figure 2 depicts the results of the experiments (for different K) that fall

into the 10th percentile of the OLS bias. For those experiments, we report the OLS bias and

standard deviation and the IV bias and standard deviation in the feedback direction alone

along with the normalized lower trace of Mr = I −Xr(X
′
rXr)

−1X ′
r that is tr(D

′Mr)/T . The

right panel contains the results of the experiments that fall into the 90th percentile of the bias.
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Figure 2: Absolute Bias and Standard Deviation of OLS and IV with T = 200

Figure 2 shows that a typical macroeconomic data set demonstrates enough time series

dependence or short-term linear predictability that it creates a potential for substantial OLS

biases. A typical size/direction of one-period feedback for a randomly picked-up regression

using macro indicators is such that for a sample with 200 time periods in a regression with 25

regressors, the OLS bias in the feedback direction is about half of the standard deviation and

approximately equal to the standard deviation with 50 regressors. Biases of this size lead to

invalid statistical inferences when relying on the OLS. Figure 3 reports the size distortions in

the experiments described above for the 5% tests about the linear contrast in the direction

of the feedback. Our newly proposed estimator completely corrects the bias without any

significant change to the standard deviation and restores the correct size for statistical tests.

Another observation from Figure 2 is that the ratio of the lower trace of the regressor

projection matrix to the sample size is highly indicative of the size of the worst bias. Applied

researchers should be worried when this indicator exceeds 5–10%. It is worth pointing out
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Figure 3: Size of Nominal 5% two-sided tests using OLS and IV with T = 200

that in all of our experiments and simulations, we encountered no problems finding the

solution to equation (3), which supports our assertion that the sample size requirement

imposed in Lemma 2 is sufficient but not necessary for the existence of the solution.

Finally, we note that the results presented in Figure 2 are both qualitatively and quanti-

tatively similar to the left panels of Figure 1. Our theoretical results are relatively agnostic

about the time series properties of the regressors. Specifically, we make no assumptions

about stationarity or origin of the regressors. Within the framework allowed for in Assump-

tion 1, the data-generating processes underlying Figure 2 mimic the time series behavior and

feedback size/direction of a ’typical’ macroeconomic application.8

It is important to note that the data-generating processes for the experiments reported

in Figures 2 and 3 satisfy Assumption 1. We now explore the sensitivity of our results to

violations of Assumption 1. We consider an empirically motivated heteroskedasticity by

changing only one aspect of the simulations above: the regression errors are simulated as

heteroskedastic, ε ∼ N(0, diag(σ2
1, . . . , σ

2
T )), with variances depending on the realization of

the regressors in an unspecified way observed in the data. Specifically,

σ2
t = s

e
2
t , if e2t ≤ 3σ2,

3σ2, if e2t > 3σ2,

8As previously noted the processes do not mimic the serial correlation of the prediction errors.
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where s is such that σ2 = 1
T

∑
t=1 σ

2
t and et are the residuals in the US data. We censor the

extreme outliers at 3σ2 and match the observed unconditional variance.
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Figure 4: Absolute Bias and Standard Deviation of OLS and IV with heteroskedasticity

Reporting in Figure 4 is analogous to that in Figure 2, and the results look qualitatively

very similar. Theoretically, one can adapt our formula for the OLS bias stated in Theorem

1 to conditional heteroskedasticity, but Assumption 1 is essential for the newly proposed IV

estimator. However, simulations show that in practice, the proposed estimator corrects bias

exceptionally well, even in the presence of empirically relevant heteroskedasticity.

We performed additional sensitivity checks and placed the results in the Supplemental

Appendix. Specifically, we explored a violation of Assumption 1 by simulating the data with

two-period feedback. In such a case, the OLS produces significant biases in two directions

corresponding to two feedback directions. The IV estimator successfully eliminates the bias

in the direction of the first feedback and reduces the bias in another direction. We also

explored a sensitivity to the Gaussianity assumption stated in Theorem 6, and found that

the proposed inference work quite well when the errors are not Gaussian.

Figure 5 answers the question of how different the results of the OLS and our newly

proposed estimators are in a randomly selected regression based on typical macroeconomic

data. As in the experiments described above, we select (yr, Xr) at random. Rather than

evaluate the theoretical bias in simulations, we calculate the realization of the difference

between two estimators for the contrast in the estimated feedback direction. We report the
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Figure 5: Difference between IV and OLS along estimated feedback direction, T = 200

experiment corresponding to the 10th percentile of the absolute difference on the left panel

and the 90th percentile on the right. For the described experiments, we report the absolute

value of the difference between the OLS and the IV estimators, double the OLS and IV

standard errors, and finally, double the standard deviations of the difference.9 We report

doubled standard errors to relate the results directly to the corresponding t statistics.

As shown in Figure 5, the difference between the OLS and IV estimators is statistically

significant in all experiments reported. Since the validity of OLS with many regressors is

only known for the strictly exogenous case (a special case of Assumption 1 with α = 0), the

observed difference between estimators are largely due to bias and cannot be attributed to

randomness in realizations. An alternative explanation is that the data reject a hypothesis

of no feedback in almost all regressions we considered, indicating that feedback mechanisms

are prevalent in macroeconomic applications. Comparing the two estimators’ differences to

doubled standard errors reveals that when the number of regressors is above 70, the IV

estimate falls outside of the OLS confidence set, and the OLS estimate falls outside the

IV confidence set. This discrepancy underscores the potential for substantial disagreement

between the two methods. Finally, the standard deviation of the OLS-IV difference is much

smaller than the standard error of either estimator — more than five times smaller in some

9One can derive the distribution of the difference under the assumption of strict exogeneity using ideas
that are analogous to those stated in Section 4.
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cases. This stark contrast shows that stochastic deviations in the two estimators are tightly

aligned, and most of their difference arises from the bias, not variance.

Table 1: Statistical significance of the differences in OLS and IV coefficients

K 5 15 25 35 45 55 65 75 85 100

100 ∗ ave(t∆ > 1.96) 21.20 13.93 11.72 11.03 10.47 8.93 8.12 7.64 6.91 6.41

NOTE: t∆ = |β̂OLS− β̂IV|/se(β̂OLS− β̂IV). The average is over all coefficients in 100 randomly chosen
models for each value of K.

While Figure 5 reports the difference between the two estimators in the most affected di-

rection, one may also ask how different coefficients on individual regressors are. The average

bias of individual coefficients is a counter-play of two forces. On one side, a larger number of

regressors leads to a larger lower diagonal trace tr(D′Mr)/T and thus to a larger bias in the

most affected direction. At the same time, when the dimensionality of regressors is large, (a

randomly selected) feedback direction is, on average, less aligned with any coordinate direc-

tion. Thus, the same size of the worst bias results in a smaller average individual coefficient

bias with more regressors, as it spreads out among many individual coefficients.

In Table 1, we report the average fraction of coefficients that display a statistically signifi-

cant difference between the OLS and the IV estimates. The average is over the K coefficients

in each regression and over the 100 random regressions with K regressors drawn from the

macroeconomic database described above. While the fraction of coefficients with a statisti-

cally significant difference between OLS and IV is declining with K, the absolute number of

such coefficients increases. We conclude that while most directions/coefficients are immune

to the biases, a non-trivial fraction of coefficients is significantly affected.
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Appendix A Proofs

Notation For brevity, the expectation E[·] is used to denote the conditional expectation

E[·|X̃]. The proofs use some well-known identities involving matrix traces. For matrices of

compatible dimensions, tr(ABD) = tr(BDA), tr(A) = tr(A′) = tr(A + A′)/2. As in the

main paper, let P = I−M = X(X ′X)−1X ′ and PΓ = I−MΓ = X(X ′(I−Γ)X)−1X ′(I−Γ).

A.1 Auxilliary lemmas

The results of the following lemma are well-known but included here for ease of reference.

Lemma 3. (i) For a symmetric matrix A and positive semi-definite (psd) matrix B, we

have the bounds λmin(A) tr(B) ≤ tr(AB) ≤ λmax(A) tr(B).

(ii) For any square matrix A, let λ be the smallest eigenvalue of A+A
′

2
. If λ > 0, then

∥A−1∥ ≤ 1/λ.

(iii) For any compatible matrices A and B, we have |tr(AB)| ≤ ∥A∥F∥B∥F .

Proof of Lemma 3. (i) As A is symmetric, there exists U with U ′U = I such that D = UAU ′

is a diagonal matrix with eigenvalues of A along its diagonal. Let F = UBU ′. Note that

Fii ≥ 0 since B is psd and tr(B) = tr(F ) =
∑

i Fii. Now,

tr(AB) = tr(UAU ′UBU ′) =
∑

i
DiiFii ≤ max

i
Dii

∑
i
Fii = λmax(A) tr(B),
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and
∑

iDiiFii ≥ miniDii

∑
i Fii = λmin(A) tr(B). (ii) Now, λ∥x∥2 ≤ x′(A+A′)x/2 = x′Ax ≤

∥x∥∥Ax∥. As λ > 0, it follows that Ax ̸= 0 when x ̸= 0, so A is invertible. For x ̸= 0, we then

have λ ≤ ∥Ax∥/∥x∥ = ∥y∥/∥A−1y∥ where y = Ax. Thus, ∥A−1∥ = supy ̸=0∥A
−1y∥/∥y∥ ≤

1/λ. (iii) |tr(AB)| =
∣∣∣∑ij AijBij

∣∣∣ ≤√∑ij A
2
ij

√∑
ij B

2
ij = ∥A∥F∥B∥F .

Lemma 4. Suppose X ∈ RT×K has full rank and Γ ∈ RT×T has ∥Γ∥ < 1− c. Then (i) the

matrices I − Γ, I − PΓ, X ′(I − Γ)X and I + AΓM are invertible where AΓ = (I − Γ)−1Γ;

(ii) the matrix (I − Γ)MΓ +M ′
Γ(I − Γ′) is positive semi-definite and c < T−KΓ

T−K
< C where

T −KΓ = tr[(I − Γ)MΓ]; (iii) the following identities hold:

(I − Γ)MΓ =M(I + AΓM)−1, (5)

PΓ = (I − PΓ)−1P (I − Γ), (6)

MΓ = (I − PΓ)−1M, (7)

β̂IV(Γ) = (X ′X)−1X ′(I + AΓM)−1y. (8)

Proof of Lemma 4. (i) Lemma 3(ii), the triangle inequality, and ∥Γ∥ < 1 yields invertibility

of I − Γ, I − PΓ, X ′(I − Γ)X, and I − ΓP . I + AΓM is invertible since

I + AΓM = (I − Γ)−1(I − Γ + ΓM) = (I − Γ)−1(I − ΓP ).

(iii) Next, we note that

(
X ′X

)−1
X ′ =

(
X ′X

)−1[
X ′(I − Γ)X

(
X ′(I − Γ)X

)−1]
X ′

=
(
X ′X

)−1
X ′(I − Γ)PΓ(I − Γ)−1. (9)

Pre-multiplying (9) by X and using PΓ = PPΓ gives us P = (I −PΓ)PΓ(I −Γ)−1 and hence

(6). Therefore, we also have (7):

MΓ = I − PΓ = (I − PΓ)−1(I − PΓ− P (I − Γ)) = (I − PΓ)−1M.

Using the “push-through” identity (I − PΓ)−1P = P (I − ΓP )−1 on (6) similarly yields (5):

MΓ = I − P (I + AΓM)−1 = (I + AΓ)M(I + AΓM)−1 = (I − Γ)−1M(I + AΓM)−1.
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Reusing that PΓ = P (I + AΓM)−1 we get (8) from β̂IV(Γ) =
(
X ′X

)−1
X ′PΓy and XP = X.

(ii) Positive semi-definiteness comes from (5):

(I − Γ)MΓ +M ′
Γ(I − Γ′) = (I +MA′

Γ)
−1M

{
(I − Γ′)−1 + (I − Γ)−1

}
M(I + AΓM)−1

and psd of (I−Γ′)−1+(I−Γ)−1. The rate condition follows from tr(M) = T−K, Lemma 3(i),

T −KΓ =tr[M(I + AΓM)−1] = tr
[
(I+AΓM)

−1
+(I+MA

′
Γ)

−1

2
M
]
,

and that the eigenvalues of (I+AΓM)
−1

+(I+MA
′
Γ)

−1

2
are in 1−∥Γ∥

1+∥Γ∥ to 1+∥Γ∥
1−∥Γ∥ with ∥Γ∥ < 1− c.

Lemma 5. Suppose yt = x′tβ + εt, xt = x̃t +
∑L

ℓ=1 αℓεt−ℓ where the T × K matrix X̃ =

[x̃1, . . . , x̃T ]
′ has full rank, and α1, . . . , αL, r are K×1 vectors. Then, there exists an invertible

K ×K matrix Θ mapping {X̃, r, β, {αl}Ll=1} to {X̃Θ,Θ′r,Θ−1β, {Θ′αl}Ll=1}, that satisfies:

(i) Θ′r and {Θ′αℓ}Lℓ=1 are spanned by the first L+1 basis vectors so that r′Θ = (r′∗,0
′
K−L−1)

and α′
ℓΘ = (α′

∗,ℓ,0
′
K−L−1) with r∗, α∗,1, . . . , α∗,L ∈ RL+1;

(ii) Θ′X̃ ′
1X̃1Θ/T = IL+1 and Θ′Z̃ ′

2X̃1Θ = 0 for X̃ = [X̃1, X̃2], and Z̃ = [Z̃1, Z̃2] = (I −
Γ′)X̃Θ, where X̃1 and Z̃1 each have L+ 1 columns.

Proof of Lemma 5. Let Θ = Θ−1
0 Θ1, where K ×K matrix Θ0 is the symmetric square root

of [X̃1, Z̃2]
′[X̃1, Z̃2]/T and Θ1R1 is the QR decomposition of Θ−1

0 [r, α1, . . . , αL]. Specifically,

Θ′
1 = Θ−1

1 is a K × K matrix and R1 is spanned by the first L + 1 basis vectors. We

then have that Θ′[r, α1, . . . , αL] = Θ′
1Θ

−1
0 [r, α1, . . . , αL] = Θ′

1Θ1R1 = R1 while we also have

Θ′[X̃1, Z̃2]
′[X̃1, Z̃2]Θ/T = Θ′

1Θ
−1
0 Θ2

0Θ
−1
0 Θ1 = IK .

Lemma 6. Suppose X and Z are T×K matrices with Z ′X invertible. Let X = [X1, X2] and

Z = [Z1, Z2], where Xℓ and Zℓ are T ×Kℓ with K1+K2 = K. Define the oblique projections

PZ = X(Z ′X)−1Z ′ = I −MZ and P2 = X2(Z
′
2X2)

−1Z ′
2 = I −M2.

(i) (Generalized Frisch-Waugh-Lowell) If r = [r′1;0K2
]′ with r1 ∈ RK1, then

r′(Z ′X)−1Z ′ = r′1(Z
′
1M2X1)

−1Z ′
1M2.

(ii) MZ =M2 −M2X1(Z
′
1M2X1)

−1Z ′
1M2.
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(iii) If Z = (I −Γ′)X for T × T matrix Γ with ∥Γ∥ < 1− c and A is a T × T matrix, then

|tr(A(MZ −M2))| ≤ CK1∥A∥.

If ∥Γ∥ = 0, then the statement above holds with C = 1.

Proof of Lemma 6. Letting ∆ = (Z ′
1M2X1)

−1, the matrix block inversion formula gives

(Z ′X)−1 =

[
∆ −∆Z ′

1X2(Z
′
2X2)

−1

−(Z ′
2X2)

−1Z ′
2X1∆ (Z ′

2X2)
−1{I + Z ′

2X1∆Z
′
1X2}

]
(10)

(i) From (10) we have

r′(Z ′X)−1Z ′ = r′1∆Z
′
1 − r′1∆Z

′
1X2(Z

′
2X2)

−1Z ′
2 = r′1∆Z

′
1M2.

(ii) Denote δ = X1∆Z
′
1. Using (10) above:

PZ = X(Z ′X)−1Z ′ = δ − δP2 − P2δ + P2 + P2δP2 = I −M2 +M2δM2.

(iii) We impose without loss of generality that X ′
2X1 = 0 and X ′

1X1 = IK1
. This entails

no loss since (5) and (7) yields Z ′
2M2 = 0 and M2X2 = 0, which in turn implies that

(MZ ,M2) is invariant under the transformation [X1, X2] 7→ [M∗X1(X
′
1M

∗X1)
−1/2, X2] where

M∗ = I −X2(X
′
2X2)

−1X ′
2 = I − P ∗. From (ii), Lemma 3(iii), and ∥Ψ∥F ≤ ∥Ψ∥

√
rk(Ψ):

|tr(A(MΓ −M2))| =
∣∣tr (Z ′

1M2AM2X1(Z
′
1M2X1)

−1
)∣∣

≤ K1∥Z ′
1M2AM2X1∥ · ∥(Z ′

1M2X1)
−1∥

≤ K1∥I − Γ∥ · ∥M2∥2 · ∥A∥ · ∥(Z ′
1M2X1)

−1∥.

Equation (7) gives M2 = (I − P ∗Γ)−1M∗ and therefore ∥M2∥ ≤ 1
1−∥Γ∥ < C. Together with

X ′
2X1 = 0, (7) also yields

Z ′
1M2X1 = X ′

1(I − Γ)(I − P ∗Γ)−1M∗X1 = X ′
1(I − Γ)(I − P ∗Γ)−1X1,

and therefore

1
2
(Z ′

1M2X1 +X ′
1M

′
2Z1) =

1
2
X ′

1

{
(I − Γ)(I − P ∗Γ)−1 + (I − Γ′P ∗)−1(I − Γ′)

}
X1.
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As X ′
1X1 = IK2

, the eigenvalues of the last matrix are larger than 1−∥Γ∥
1+∥Γ∥ . Therefore, Lemma

3(ii) and ∥Γ∥ < 1− c implies that ∥(Z ′
1M2X1)

−1∥ < C.

Proof of Lemma 1. Let us apply the linear transformation Θ0 described in Lemma 5 to the

regressors. Notice that projections M̃ and M are invariant towards this transformation. For

the transformed data projection off all but the first regressorM−1 differ from both M̃ andM

by not projecting one regressor, since X−1 = X̃−1, and M−1 coincides with what in Lemma

6 labeled as M2. Applying part (iii) of Lemma 6 with Γ = 0, we find:

|tr(D(M −M−1))| ≤ 1, and
∣∣∣tr(D(M̃ −M−1))

∣∣∣ ≤ 1.

This implies the statement of Lemma 1.

Lemma 7. Suppose X̃ is a T × k matrix with X̃ ′X̃/T = Ik, A is a T × T matrix that is X̃-

measurable, α0, . . . , αk are non-random k × 1 vectors with ∥αℓ∥ < C for all ℓ, and {εt}Tt=1−k

are i.i.d. conditionally on X̃ with E[εt | X̃] = 0, 0 < σ2 = E[ε2t | X̃] < C and E[ε4t | X̃] < C.

Let uℓ = (ε1−ℓ, . . . , εT−ℓ)
′. Then, as T → ∞ while k is fixed: (i) ∥T−1/2X̃ ′A

∑k
ℓ=0 uℓα

′
ℓ∥F =

Op (∥A∥); (ii) ε′Aε− E[ε′Aε |X̃] = Op (∥A∥F ).

Proof of Lemma 7. (i) Note that:

E

∥∥∥∥∥X̃ ′A√
T

k∑
ℓ=0

uℓα
′
ℓ

∥∥∥∥∥
2

F

= tr

[
X̃ ′X̃

T
A

k∑
ℓ,j=0

E[uℓu′j]α′
ℓαjA

′

]
≤ tr

[
X̃ ′X̃

T

]∥∥∥∥∥A
k∑

ℓ,j=0

E[uℓu′j]α′
ℓαjA

′

∥∥∥∥∥
≤ k∥A∥2

(
k∑

ℓ,j=0

|α′
ℓαj| ·

∥∥E[uℓu′j]∥∥
)
≤ Ck3∥A∥2.

The last inequality uses that uℓ and uj has E[uℓu′j] = σ2Dℓ−j when ℓ > j, E[uℓu′j] = σ2(D′)j−ℓ

when ℓ < j, and E[uℓu′ℓ] = σ2I. In all cases, ∥E[uℓu′j]∥ ≤ σ2. (ii) We have

ε′Aε− E[ε′Aε] =
∑
t

∑
s̸=t

Atsεtεs +
∑
t

Att(ε
2
t − σ2).
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In the summations above, the summands correlate only when {t, s} = {t′, s′}. Therefore

E
[(
ε′Aε− Ẽ[ε′Aε]

)2]
= σ4

∑
t

∑
s ̸=t

(AtsAst + A2
ts) +

∑
t

A2
ttẼ
[
(ε2t − σ2)2

]
≤ C

(∑
t

∑
s ̸=t

(AtsAst + A2
ts) +

∑
t

A2
tt

)
≤ 2C

∑
t,s

AtsAst = 2C∥A∥2F ,

for C = max
{
σ4, E[(ε2t − σ2)2]

}
. We used that |

∑
t

∑
s ̸=tAtsAst| ≤

∑
t

∑
s ̸=tA

2
ts.

Lemma 8. Suppose B = D′(I−Γ)MΓ where Γ = γD, |γ| < 1−c and tr(B) = O(K). Then,

(i)
∑

tB
2
tt = O(K); (ii) tr(B2) =

∑
t,sBtsBst = O(K); (iii) T−K

tr(B
′
B)

= T−K∑
s,t B

2
s,t

= O(1).

Proof of Lemma 8. Due to Lemma 3(i) and equation (6) we have, for any matrix A,

| tr(AP )| =
∣∣∣∣tr(A+ A′

2
P

)∣∣∣∣ ≤ ∥∥∥∥A+ A′

2

∥∥∥∥ tr(P ) ≤ ∥A∥K; (11)

| tr(APΓ)| = | tr((I − Γ)A(I − PΓ)−1P )| ≤ 1 + ∥Γ∥
1− ∥Γ∥

∥A∥K. (12)

(i) B = D′(I − Γ) − D′(I − Γ)PΓ, thus Btt = −γ − Ftt, where F = D′(I − Γ)PΓ. The

condition tr(B) = O(K) implies −γT =
∑

t Ftt+O(K) and
∑

tB
2
tt =

∑
t F

2
tt−Tγ2+O(K) ≤∑

t F
2
tt+O(K). Consider diagonal elements of the matrix F = APΓ with A = D′(I −Γ) and

∥A∥ ≤ 1 + |γ|:

∑
t

F 2
tt =

∑
t

(APΓ)
2
tt =

∑
t

(∑
s

AtsPΓ,st

)2

≤
∑
t

{∑
s

A2
ts

∑
s

P 2
Γ,st

}
=
∑
t

(AA′)tt(PΓP
′
Γ)tt ≤ ∥A∥2 tr(PΓP

′
Γ) ≤ CK.

(ii) Next we have

tr(B2) = tr(D′(I − Γ)(I − PΓ)D
′(I − Γ)(I − PΓ))

= tr[D′(I − Γ)D′(I − Γ)] + tr
[
D′(I − Γ)

{
−2D′(I − Γ) + PΓD

′(I − Γ)
}
PΓ

]
. (13)
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Since
∑

tB
2
tt ≥ 0 reasoning above gives us that

tr(D′(I − Γ)D′(I − Γ)) = Tγ2 ≤
∑
t

F 2
tt = O(K).

The second term in (13) is O(K) due to (12). (iii) We use that for any matrix A, tr(A′A) =∑
t,sA

2
ts ≥ |

∑
t,sAtsAst| = | tr(A2)| :

tr(B′B) = tr(M ′
Γ(I − Γ′)(I − Γ)MΓ) ≥ (1− |γ|)2 tr(M ′

ΓMΓ)

≥ (1− |γ|)2 tr(M2
Γ) = (1− |γ|)2 tr(MΓ) = (1− |γ|)2(T −K).

Lemma 9. Suppose that X̃ is a T ×K matrix of rank K and Γ = γD.

(i) Equation (2) holds if and only if γ is a fixed point of the transformation f given by

f(γ) = tr(D′M̃Γ)/(T −K). (14)

(ii) If | tr(D′M̃)| ≤ µ2K and K < T/(1 + (1 + µ)2) for some µ ∈ [0, 1], then f is a

contraction on [−µ, µ]/(1 + µ) with Lipshitz constant strictly less than µ.

Proof. (i) Since Γ = γD we have D′(I − γD)M̃Γ = D′M̃Γ − D′DγM̃Γ. We can therefore

re-write (2) as: tr(D′M̃Γ) − γ(T − K) = 0. This equation is solved if (and only if) γ =

f(γ). (ii) Equation (7) yields M̃Γ = M̃ + γP̃DM̃Γ and ∥M̃Γ∥ ≤ 1
1−|γ| . Equation (11) gives

| tr(D′P̃DM̃Γ)| ≤ K∥DM̃ΓD
′∥. Therefore,

|f(γ)| ≤ | tr(D′M̃)|
T −K

+ |γ| | tr(D
′P̃DM̃Γ)|

T −K
≤ µ2K

T −K
+ |γ| K

(T −K)(1− |γ|)
<

µ

1 + µ

and using equation (8)

|f(γ1)− f(γ2)|
|γ1 − γ2|

=
|tr[D′(M̃Γ1

− M̃Γ2
)]|

|γ1 − γ2|(T −K)
=

|tr[D′P̃D(I − P̃Γ2)
−1M̃Γ1

]|
T −K

≤ K

T −K

1

1− |γ1|
1

1− |γ2|
< µ

where the strict inequalities use K < T/(1 + (1 + µ)2) and |γ|, |γ1|, |γ2| ≤ µ
1+µ

.
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A.2 Proofs for results stated in the main text

Proof of Theorem 1. Special case of Theorem 3(i) with Γ = 0.

Proof of Theorem 2. A special case of Theorem 4 with Γ = 0.

Proof of Lemma 2. (i) Special case of (ii) with µ = 1 since |tr(D′M̃)| = |tr(D′P̃ )| ≤ K

follows from (11). (ii) Follows from Lemma 9 and the Banach fixed point theorem.

Proof of Theorem 3. (i) Special case of Theorem 7 with L = 1. (ii) Let f(γ) be as in equation

(14) define its empirical analog f̂(γ) = tr(D
′
M)

T−K
+γ tr(D

′
PDMΓ)

T−K
where Γ = γD. Since K < T/5,

Lemma 9(ii) yields that both f and f̂ are contractions on [−1/2, 1/2] with contraction speed

bounded by 1
2
and therefore has unique fixed points γ0 and γ̂ by the Banach fixed point

theorem. Furthermore, |f̂(γ̂)− f̂(γ0)| ≤ 1
2
|γ̂ − γ0|. For any γ we have:

∣∣∣f̂(γ)− f(γ)
∣∣∣ ≤ 1

T −K

(∣∣∣tr[D′(P − P̃ )] + γ tr
[
D′PDMΓ −D′P̃DM̃Γ

]∣∣∣) .
Consider the transformation Θ of Lemma 5. Since the projections P, P̃ ,MΓ, M̃Γ are invariant

to linear transformations, we may assume that Lemma 5((i) and (ii)) hold with L = 1 and

Θ = IK . This implies thatM2 = M̃2, whereM2 is defined as in Lemma 6 using X, (I−Γ′)X,

and K1 = 2, while M̃2 is an analogously defined starting from X̃, (I − Γ′)X̃, and K1 = 2.

Therefore, Lemma 6(iii) implies for any compatible matrix A that∣∣∣tr[A(MΓ − M̃Γ)
]∣∣∣ ≤ ∣∣tr[A(MΓ −M2)

]∣∣+ ∣∣∣tr[A(M̃Γ −M2)
]∣∣∣ ≤ C∥A∥

The same statement holds with (P, P̃ ) replacing (MΓ, M̃Γ). Thus |f̂(γ)−f(γ)| ≤ C
T−K

, so

|γ̂ − γ0| =
∣∣∣f̂(γ̂)− f(γ0)

∣∣∣ ≤ ∣∣∣f̂(γ̂)− f̂(γ0)
∣∣∣+ ∣∣∣f̂(γ)− f(γ0)

∣∣∣ ≤ 1

2
|γ̂ − γ0|+

C

T −K
.

This implies |γ̂ − γ0| ≤ 1
2

C
T−K

= Op(1/T ). Equation (8) yields∣∣∣r′(β̂IV(Γ̂)− β̂IV(Γ0))
∣∣∣ ≤ ∥∥∥(X ′X)−1/2r

∥∥∥∥∥(I + AΓ0
M)−1(AΓ̂ − AΓ0

)M(I + AΓ̂M)−1ε
∥∥

≤
∥∥∥(X ′X)−1/2r

∥∥∥∥∥(I + AΓ0
M)−1

∥∥∥∥AΓ̂ − AΓ0

∥∥∥∥(I + AΓ̂M)−1
∥∥∥ε∥,
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where AΓ0
= (I −Γ0)

−1Γ0 and AΓ̂ = (I − Γ̂)−1Γ̂. We have ∥ε∥ = Op(
√
T ) and ∥AΓ̂−AΓ0

∥ =

Op(γ̂ − γ0) = Op(1/T ). By Assumption 1(iii) r′(X ′X)−1r = O(1/T ), while
∥∥(I + AΓ0

M)−1
∥∥

is uniformly bounded. Thus, r′β̂IV(Γ̂)− r′β̂IV(Γ0) = Op(T
−1) = op(1/

√
T ).

The proofs of Theorems 4-6 follow after the proof of Theorem 7 as they rely on results

established therein.

Proof of Theorem 7. Define RΓ,ℓ = tr[(D′)ℓ(I − Γ)M̃Γ]. Note that {r′S̄−1αℓ, RΓ,ℓ}Lℓ=1 and

r′β̂IV(Γ)− r′β are invariant under the transformation Θ of Lemma 5. Thus, we may assume

without loss of generality that Lemma 5((i) and (ii)) hold with Θ = IK and Z = (I − Γ′)X.

Since (α1, . . . , αL) is spanned by the first L + 1 basis vectors, we have M2 = M̃2, X2 = X̃2,

and Z2 = Z̃2, where M2, X2, and Z2 are defined as in Lemma 6 using X, Z = (I − Γ′)X,

and K1 = L+ 1, while M̃2, X̃2, Z̃2 are analogously defined starting from X̃, Z̃ = (I − Γ′)X̃,

and K1 = L + 1. This also implies that X2, Z2, and M2 are non-random conditionally on

X̃. Lemma 6(i) now yields:

r′β̂IV(Γ)− r′β = r′(Z ′
1M2X1)

−1Z ′
1M2ε. (15)

Defining S̄2 = E
[
Z ′

1M2X1 | X̃
]
= Z̃ ′

1X̃1 + σ2∑L
j,ℓ=1 α∗,jα

′
∗,ℓ tr[(D

′)j(I − Γ)M2D
ℓ] and R2,ℓ =

tr[(D′)ℓ(I − Γ)M2], we show as a first step that

r′β̂IV(Γ)− r′β = σ2
L∑

ℓ=1

r′∗S̄
−1
2 α∗,ℓR2,ℓ + op(1). (16)

Equation (16) follows from equation (15) and the following statements proven below:

∥∥(Z ′
1M2X1 − S̄2)/T

∥∥
F
= Op(

√
1/T ), (17)∥∥(S̄2/T )

−1
∥∥ ≤ 1

(1− ∥Γ∥)
, (18)∥∥∥(Z ′

1M2ε− σ2
∑L

ℓ=1
α∗,ℓR2,ℓ)/T

∥∥∥ = Op(
√
1/T ), (19)

and |R2,ℓ| ≤ T and thus ∥
∑L

ℓ=1 α∗,ℓR2,ℓ∥ = O(T ). Let uℓ = (ε1−ℓ, . . . , εT−ℓ)
′ as in Lemma 7.
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Equation (17) considers a (L+ 1)× (L+ 1) matrix with mean of zero:

Z ′
1M2X1 − S̄2 =

(
X̃1 +

L∑
j=1

ujα
′
∗,j

)′

(I − Γ)M2

(
X̃1 +

L∑
ℓ=1

uℓα
′
∗,ℓ

)
− S̄2

=
L∑

ℓ=1

α∗,ℓu
′
ℓ(I − Γ)M2X̃1 + X̃ ′

1(I − Γ)M2

L∑
ℓ=1

uℓα
′
∗,ℓ

+
L∑

j,ℓ=1

α∗,ℓα
′
∗,j
[
u′ℓ(I − Γ)M2uj − E[u′ℓ(I − Γ)M2uj]

]
.

Notice that for A = (I − Γ)M2, we have ∥A∥ ≤ 1+∥Γ∥
1−∥Γ∥ and ∥A∥F = O(

√
T ). Thus, applying

Lemma 7((i) and (ii)) we obtain (17). As Lemma 4(ii) yields that B = (I−Γ)M2+M
′
2(I−Γ′)

is a non-negative definite matrix, we have

x′(S̄2 + S̄ ′
2)x = x′

[
Z̃ ′

1X̃1 + X̃ ′
1Z̃1

]
x+

L∑
j,ℓ=1

x′α∗,jE
[
u′jBuℓ|X̃

]
α′
∗,ℓx

≥ x′X̃ ′
1

[
I − (Γ + Γ′)/2

]
X̃1x ≥ (1− ∥Γ∥)∥X̃1x∥2 = (1− ∥Γ∥)T∥x∥2

Applying Lemma 3(ii) now implies (18). To prove (19), we note that

Z ′
1M2ε = X̃ ′

1(I − Γ)M2ε+
L∑

ℓ=1

α∗,ℓu
′
ℓ(I − Γ)M2ε.

The first term is Op(
√
T ) due to Lemma 7(i) applied with A = (I−Γ)M2 and αℓ = 0 for ℓ > 0.

As σ2R2,ℓ = E[u′ℓ(I−Γ)M2ε], Lemma 7(ii) yields
∑L

ℓ=1 α∗,ℓ
[
u′ℓ(I−Γ)M2ε−R2,ℓ

]
= Op(

√
T ).

This leads to (19).

As the second and final step of the proof, we show that (16) implies (4). The first

difference is that (16) depends on r′∗, α∗,ℓ, and the (L + 1) × (L + 1) matrix S̄2, while (4)

is described using r′ = (r′∗,0
′
K−L−1), α

′
ℓ = (α′

∗,ℓ,0
′
K−L−1), and the K × K matrix S̄Γ. The

second difference between these two statements is that (16) employs the oblique projection

M̃2, which projects off the T × (K−L−1) matrix X̃2, while (4) employs M̃Γ, which projects

off the full T ×K matrix of regressors X̃ = [X̃1, X̃2].

For the first of these discrepancies, from Lemma 5((i) and (ii)) we have that the lower left

(K−L−1)× (L+1) blocks of αℓα
′
j and Z̃

′X̃ are zero. Thus the upper left (L+1)× (L+1)
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block of S̄−1
Γ is equal to the inverse of the upper left (L+ 1)× (L+ 1) block of S̄Γ. Thus

r′S̄−1
Γ αℓ = r′∗

(
S̄2 + σ2

L∑
j,ℓ=1

α∗,jα
′
∗,ℓ∆jℓ

)−1

α∗,ℓ,

where ∆jℓ = tr
[
(D′)j(I−Γ)(M̃Γ−M̃2)D

ℓ
]
. Now, Lemma 6(iii) gives |∆jℓ| ≤ C∥Dj(D′)i(I−

Γ)∥ = O(1) so that
∑L

ℓ=1(r
′S̄−1

Γ αℓ − r′∗S̄
−1
2 α∗,ℓ)RΓ,ℓ = op(1). For the second discrepancy,

we have RΓ,ℓ − R2,ℓ = tr
[
(D′)ℓ(I − Γ)(M̃Γ − M̃2)

]
and Lemma 6(iii) similarly yielding

|RΓ,ℓ − R2,ℓ| = O(1). Thus
∑L

ℓ=1(RΓ,ℓ − R2,ℓ)r
′
∗S̄

−1
2 α∗,ℓ = op(1). In conclusion, we have∑L

ℓ=1 r
′S̄−1

Γ αℓRΓ,ℓ − r′∗S̄
−1
2 α∗,ℓR2,ℓ = op(1), so (16) implies (4) and Theorem 7 follows.

Proof of Theorem 4. From equation (5) we have σ̂2(Γ) = ε
′
(I−Γ)MΓε
T−KΓ

. Note that σ2 and σ̂2(Γ)

are invariant under the transformation Θ of Lemma 5. Thus, we may assume without loss

of generality that Lemma 5((i) and (ii)) hold with Θ = IK . As in the proof of Theorem 7,

we therefore have M2 = M̃2. Applying Lemma 6(ii) yields:

σ̂2(Γ) =
ε′(I − Γ)M̃2ε

T −KΓ

− 1

T −KΓ

ε′(I − Γ)M̃2X1(Z
′
1M̃2X1)

−1Z ′
1M̃2ε. (20)

Lemma 7(ii) applied with A = (I−Γ)M2

T−KΓ
implies that ε

′
(I−Γ)M2ε

σ
2
(T−KΓ)

= 1 + op(1). For the second

term in (20), we use statements (17)–(19) and the second part of the proof of Theorem 7 to

obtain the conclusion of Theorem 4.

Proof of Theorem 5. Let γ0 be as in Theorem 3. Note that r′β̂IV(Γ0), r
′β and Σ̂T (Γ0) =

σ̂2(Γ0)∥r′(X ′(I − Γ0)X)−1X ′(I − Γ0)∥2 are invariant under the transformation Θ of Lemma

5. Thus, we may assume without loss of generality that Lemma 5((i) and (ii)) hold with

Θ = IK and Z = (I−Γ′
0)X. Following the proof of Theorem 7, we have formula (15), where

the denominator satisfies (17) and (18). This implies that

r′β̂IV(Γ0)− r′β =
(
1 + op(1)

) (∑
t
wtεt + r′∗S̄

−1
2 α∗ε

′Bε
)
, (21)

where w′ = (w1, . . . , wT ) = r′∗S̄
−1
2 Z̃ ′

1M2, B = D′(I−Γ0)M2, and (S̄2,M2) is defined as in the

proof of Theorem 7 with Γ = Γ0. The weights {wt} and the matrix B are measurable with
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respect to X̃. Below, we show that

r′β̂IV(Γ0)− r′β√
ΣT

=

∑
twtεt + r′∗S̄

−1
2 α∗ε

′Bε√
ΣT

⇒ N(0, 1), (22)

where ΣT = σ2∑
tw

2
t + σ4(r′∗S̄

−1
2 α∗)

2 tr(B2 +B′B). We have

ε′Bε =
∑
t

Bttε
2
t +

∑
t

∑
s ̸=t

Bst +Bts

2
εtεs.

Lemma 8((i) and (iii)) together with K/T → 0 imply that (r′∗S̄
−1
2 α∗)

2
(∑

tBttε
2
t

)
/
√
ΣT

p−→ 0

and tr(B
2
)

tr(B
′
B)

→ 0.

We obtain statement (22) by establishing the four conditions, (i)–(iv), of Sølvsten (2020),

Corollary A2.8, located in the Supplemental Appendix of that article. Condition (i) is

automatically satisfied if we define wt,T = wt√
ΣT

, Mst =
r
′
∗S̄

−1
2 α∗

2
√

ΣT

(Bst + Bts) for s ̸= t, and

Mtt = 0. Condition (iv) is implied by Assumption 1(ii). To establish condition (ii), we note

that by Lemma 6(i), we have for any r̃ of the form r̃′ = (r̃′∗,0
′
K−L−1) that

r̃′(Z̃ ′X̃)−1Z̃ ′ = r̃′∗(Z̃
′
1M2X̃1)

−1Z̃ ′
1M2

where we will use that M2 = M̃2 since X2 = X̃2 is strictly exogenous. Thus for the specific

choice of r̃ where r̃′∗ = r′∗S̄
−1
2 (Z̃ ′

1M2X̃1) we have

w′ = r′∗S̄
−1
2 Z̃ ′

1M2 = r̃′∗(Z̃
′
1M2X̃1)

−1Z̃ ′
1M2 = r̃′(Z̃ ′X̃)−1Z̃ ′

so that wt = r̃′(Z̃ ′X̃)−1(X̃t − γ0X̃t+1). Note, that

max
t

|wt| ≤
∥∥∥(X̃ ′X̃)1/2(X̃ ′Z̃)−1r̃

∥∥∥(1 + |γ0|)max
t

∥∥∥(X̃ ′X̃)−1/2X̃t

∥∥∥,∑
t

w2
t = r̃′(Z̃ ′X̃)−1X̃ ′(I − Γ0)(I − Γ′

0)X̃(X̃ ′Z̃)−1r̃ ≥ (1− |γ0|)2
∥∥∥(X̃ ′X̃)1/2(X̃ ′Z̃)−1r̃

∥∥∥2.
max

t
|wt,T | ≤

maxt |wt|√∑
tw

2
t

≤ 1 + |γ0|
1− |γ0|

max
t

∥(X̃ ′X̃)−1/2X̃t∥ → 0.
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For condition (iii), we note that Lemma 8 and K/T → 0 yields

∑
s

∑
t̸=s

[
Bst +Bts

2

]2
=

1

2
tr(B2 +B′B)(1 + o(1)).

This yields
∑

s

∑
t̸=sM

2
st ≤ 1. Also,

∥∥(B +B′)/2− diag(B)
∥∥ ≤ ∥B∥ + maxt |Btt| = O(1).

Therefore we have ∥(Mst)s,t∥ → 0 and have therefore established (22).

Finally, we prove that Σ̂T

ΣT

p−→ 1. Reusing the argument in the proof of Theorem 3, we first

have that (Σ̂T − Σ̂T (Γ0))/ΣT = o(1). By Lemma 6(ii), we have for u = (ε0, . . . , εT−1)
′ that

Σ̂T (Γ0) = σ̂2(Γ0)∥r′∗(Z ′
1M2X1)

−1Z ′
1M2∥2 = [1 + op(1)]σ

2r′∗S̄
−1
2 Z ′

1M2M
′
2Z1(S̄

′
2)

−1r∗

= [1 + op(1)]σ
2r′∗S̄

−1
2 (Z̃ ′

1 + α∗u(I − Γ′
0))M2M

′
2(Z̃1 + (I − Γ′

0)uα
′
∗)(S̄

′
2)

−1r∗,

where we also used Theorem 4 and (17). From Lemma 8((i) and (iii)), we have

E[u′(I − Γ′
0)M2M

′
2(I − Γ0)u] = [1 + o(1)]E[ε′BB′ε] = [1 + o(1)]σ2 tr[B′B].

From K/T → 0 we have tr(B
2
+B

′
B)

tr(B
′
B)

→ 1 and therefore

Σ̂T−ΣT

ΣT

=
2σ2r′∗S̄

−1
2 α∗u(I−Γ0)M2M

′
2Z̃1+σ

2(r′∗S̄
−1
2 α∗)

2(ε′BB′ε−Eε′BB′ε)

ΣT

+ op(1). (23)

Define R =M ′
2Z̃1, ξ1 = r′∗S̄

−1
2 α∗u(I − Γ0)M2M

′
2Z̃1, ξ2 = (r′∗S̄

−1
2 α∗)

2[ε′BB′ε− Eε′BB′ε].

E[ξ21 ] = C(r′∗S̄
−1
2 α∗)

2 tr(R′B′BR) ≤ C(r′∗S̄
−1
2 α∗)

2 tr(R′R)∥B′B∥;

ξ1
ΣT

= Op

(
r′∗S̄

−1
2 α∗

√
tr(R′R)∥B′B∥
ΣT

)

= Op

(√
∥B′B∥
tr(B′B)

(r′∗S̄
−1
2 α∗)

2 tr(B′B) + tr(R′R)

ΣT

)
= Op

(√
∥B′B∥
tr(B′B)

)
.

Lemma 7(ii) yields ε′BB′ε− Eε′BB′ε = OP (∥B′B∥F ). Thus

ξ2
ΣT

= Op

(
∥B′B∥F
tr(B′B)

)
= Op

(√
tr(B′B)∥B′B∥
tr(B′B)

)
= Op

(
∥B∥√
tr(B′B)

)
.
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Thus, by Lemma 8(iii), both terms in (23) are Op(1/
√
T ).

Proof of Theorem 6. Note that r′β̂IV(Γ), r′β and Σ̂T (Γ) = σ̂2(Γ)∥r′(X ′(I − Γ)X)−1X ′(I −
Γ)∥2 are invariant under the transformation Θ of Lemma 5. Thus, we may assume without

loss of generality that Lemma 5((i) and (ii)) hold with Θ = IK and Z = (I−Γ)X. Proceeding

as in the proof of Theorem 5, we arrive at equation (21) with B = D′(I − Γ)M2. Due to

Gaussianity of the errors, r′∗S̄
−1
2 Z̃ ′

1M2ε = w′ε has a Gaussian distribution conditionally on

X̃ with conditional variance σ2∥w∥2 = σ2∥r′∗S̄−1
2 Z̃ ′

1M2∥2. Below, we show that

ε′Bε

σ2
√

tr(B2) + tr(B′B)
⇒ N(0, 1) (24)

and that this term is asymptotically independent of the conditionally Gaussian term w′ε.

Define Pw = ww
′

w
′
w
and Mw = I − Pw then ε′Bε = 2ε′BPwε− ε′PwBPwε+ ε′MwBMwε.

∣∣ε′PwBPwε
∣∣ =( w′ε

∥w∥

)2 ∣∣∣∣w′Bw

w′w

∣∣∣∣ ≤ ∥B∥ · χ2
1 = Op(1);

ε′BPwε =
w′ε

∥w∥
w′Bε

∥w∥
=

w′ε

∥w∥
N(0,

w′BB′w

w′w
) = Op(1).

Due to Lemma 8 we have T

tr(B
2
)+tr(B

′
B)

= O(1). Thus

ε′Bε√
tr(B2) + tr(B′B)

=
ε′MwBMwε√

tr(B2) + tr(B′B)
+ op(1)

But ε
′
MwBMwε√

tr(B
2
)+tr(B

′
B)

is independent from w
′
ε

∥w∥ ∼ N(0, σ2). This implies that ε
′
Bε√

tr(B
2
)+tr(B

′
B)

is

asymptotically independent from the first term. Since tr(B) =
∑

tBtt = Op(1):

ε′Bε =
∑
t

∑
s ̸=t

Bts +Bst

2
εtεs +

∑
t

Btt(ε
2
t − σ2) +Op(1).

Using that Eε4t = 3σ4, one can show that

V ar(ε′Bε) = 2σ4
∑
t

∑
s ̸=t

(
Bts +Bst

2

)2

+ 2σ4
∑
t

B2
tt = tr(B2) + tr(B′B),
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and due to Lemma 8 the right-hand-side grows no slower than of order T . Since maxt |Bt,t| ≤
∥B∥ = O(1) and the operator norm of B + B′ is bounded, conditions (i)–(iv) of Corollary

A2.8 in Sølvsten (2020) hold. Therefore (24) holds and we have asymptotic Gaussianity.

By the same argument as in the proof of Theorem 5, we can show that

σ̂2(Γ)∥r′(X ′(I − Γ)X)−1X ′(I − Γ)∥2

σ2∥r′∗S̄−1
2 Z̃ ′

1M2∥2 + σ4(r′∗S̄
−1
2 α∗)

2 tr(B′B)
→p 1.

Pre-multiplying this estimator by 1+ψ = | tr(B2
)|+tr(B

′
B)

tr(B
′
B)

guarantees that the resulting quan-

tity asymptotically weakly exceeds ΣT = σ2∑
tw

2
t + σ4(r′∗S̄

−1
2 α∗)

2 tr(B2 +B′B).
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