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Abstract

How does the fiscal framework affect the central bank’s ability to stabilize output and inflation?

The textbook answer, which assumes Ricardian households, recommends that fiscal adjustment

should be fast enough to allow for monetary dominance. We instead argue that, with non-Ricardian

households, the central bank may indeed welcome slow, or even no, fiscal adjustment. On the de-

mand side, slow fiscal adjustment helps stabilize aggregate spending; on the supply side, it eases

tax distortions, improving the output-inflation trade off. And while the first channel favors slow

fiscal adjustment only when the business cycle is dominated by demand shocks, the second chan-

nel extends this preference to supply shocks. A quantitative exercise affirms our lessons in the U.S.

context, with the central bank preferring virtually no fiscal adjustment over the business cycle.
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1 Introduction

What kind of fiscal support does a central bank want over the business cycle? According to the text-

book answer (Woodford, 2003a; Galí, 2008), the fiscal authority should “step aside” by adjusting taxes

fast enough to ensure debt stabilization. Provided this is true, the precise timing of the adjustment is

irrelevant and the monetary authority alone regulates output and inflation; otherwise, the economy

could enter a regime of “fiscal dominance,” along which output and inflation are instead dictated by

fiscal needs, depriving the monetary authority of its ability to stabilize the economy.

This conclusion is derived within the representative-agent New Keynesian (RANK) model, and as

such presumes that households are Ricardian (in the classical sense of Barro, 1974). We instead revisit

this question when households are non-Ricardian, in line with the empirical evidence on consump-

tion (e.g., Parker et al., 2013; Fagereng et al., 2021) and the fast-growing literature on the heterogeneous-

agent New Keynesian (HANK) framework (e.g., see Kaplan et al., 2018; Auclert et al., 2024, 2025). Our

headline result is that, in this more realistic context, the textbook conclusion is likely to flip: the cen-

tral bank’s objectives may actually be supported by slow or even no fiscal adjustment.

The basic intuition is as follows. Recessions are times of budgetary shortfalls and may thus call for

future tax hikes to stabilize government debt. With non-Ricardian households, delaying the tax hikes

stimulates aggregate demand, moderating the recession and the associated budgetary shortfall. Our

positive analysis shows that this mechanism can be surprisingly powerful: as tax hikes are delayed

more and more, the cumulative response of equilibrium output to any aggregate demand or supply

disturbance converges to zero, and so does the cumulative response of the tax hikes themselves. Our

normative analysis then clarifies the conditions under which this mechanism supports, or hinders,

the central bank: slow fiscal adjustment is preferred when the business cycle is driven primarily by

demand shocks or when tax hikes exert large inflationary pressures; conversely, if neither of these

conditions is met, fast adjustment is preferred. We conclude our analysis with a quantitative assess-

ment, verifying the desirability of slow fiscal adjustment in an empirically relevant setting.

Environment. We consider an overlapping-generations version of the New Keynesian model, as in

our earlier work (Angeletos et al., 2024, 2025). Finite lives here accommodate a similar kind of non-

Ricardian consumption behavior as that implied by liquidity constraints (see Farhi and Werning, 2019;

Aguiar et al., 2024; Rachel and Ravn, 2025), connecting our analysis with the HANK literature. At the

same time, the overlapping-generations structure permits clean theoretical characterizations.

The economy is subject to both demand and supply shocks, modeled as shocks to, respectively,

consumer patience and firm costs or mark-ups. Fiscal policy is represented by a rule describing,

first, how much tax revenue varies automatically with concurrent economic activity and, second, how

quickly taxes adjust over time to pay off any prior deficits. The first element is a conventional auto-
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matic stabilizer (as modeled in McKay and Reis, 2016; Blanchard, 2025); the second element is our own

focal point. Specifically, the speed of fiscal adjustment is parameterized by a coefficient τd ranging

from no adjustment (τd = 0) to immediate adjustment (τd = 1). The central bank operates under this

fiscal backdrop, with a “flexible inflation-targeting” objective: it seeks to stabilize fluctuations in out-

put, inflation, and interest rates. While the output and inflation objectives follow immediately from

standard micro-foundations, the desire to stabilize interest rates is a reduced-form way of capturing

the empirical reality that central banks are unwilling to move rates too abruptly (see, e.g., Brainard,

1967; Woodford, 2003a, Chapter 8.3) or otherwise unable to perfectly and costlessly regulate aggregate

demand. This allows fiscal policy to influence what the central bank can achieve.

In this setting, the question of interest translates as follows: which value of τd , the speed of fiscal

adjustment, minimizes the central bank’s loss along the optimal monetary policy? Before addressing

this normative question, we first zero in on a closely related positive question: how does τd shape the

business cycle for a given monetary policy stance, modeled as a given path for real interest rates?

Fiscal adjustment and aggregate fluctuations. Answering the positive question not only paves the

way for our normative conclusions but also offers a stark lesson on its own right: we show that slow

fiscal adjustment exerts a surprisingly strong stabilizing force on the economy.

In a recession, output declines, and thus so does fiscal revenue, through the automatic stabilizer.

To make up for the associated budgetary shortfall, taxes may need to be hiked in the future; crucially,

those tax hikes could be either front-loaded (for a high τd ) or back-loaded (for a low τd ). Since house-

holds are non-Ricardian, postponing tax hikes from any date t to periods further in the future (via a

lower τd ) naturally stimulates aggregate demand and thereby equilibrium output at date t . But since

households are also forward-looking and consumption-smoothing (at least partially), this boom at t

goes hand-in-hand with an expansion before and after t . The upshot is that, in our environment, slow

fiscal adjustment (lower τd ) unequivocally boosts economic activity across all horizons, dampening

the recession today and causing a dynamic overshoot of output tomorrow.

What is more, this mechanism is so potent that output can be perfectly stabilized in a present

value sense: we prove that, as fiscal adjustment gets delayed more and more (τd → 0), the cumulative

output response to any demand or supply shock converges to zero. To understand why, suppose that,

for τd > 0, this cumulative response is negative, reflecting a contractionary shock. This translates,

via the government’s intertemporal budget constraint, to a positive cumulative fiscal adjustment: the

present value of the future tax hikes is positive, to make up for the loss in the present value of the

tax base. Thanks to the non-Ricardian mechanism described above, backloading the tax hikes moves

the present value of output—and thus also that of the tax hikes themselves—closer to zero. This logic

continues to apply until both of these present values are brought to zero, delivering our limit result.
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Summing up, slow fiscal adjustment provides a powerful and hitherto under-appreciated dynamic

amplification of the usual static automatic stabilizers. Furthermore, to the extent that fiscal adjust-

ment is distortionary, a low τd also minimizes the volatility in the present value of the tax distortion.

Implications for monetary policy. Building on these lessons, the second part of our paper studies

how the solution to the central bank’s problem varies with τd . We pay particular attention to whether

the central bank loss is minimized at τd = 0, which coincides with arbitrarily slow adjustment (τd → 0)

in our setting while it corresponds to “fiscal dominance” in the traditional, RANK-based approach. We

also distinguish the origin of the economy’s fluctuations (demand vs. supply shocks) and the nature of

the fiscal adjustment (lump-sum vs. distortionary tax hikes). While these distinctions did not matter

for the positive mechanism described above, they loom large for its normative implications.

Suppose first that the business cycle is driven by demand shocks. In this case, the central bank

faces no trade off between its output and inflation stabilization objectives: following a contractionary

demand shock, the central bank would like to boost output and thereby also inflation. By stimulating

aggregate demand, slow fiscal adjustment here supports the central bank, though with a twist: as dis-

cussed above, dampening the recession today necessarily goes hand-in-hand with a future overshoot-

ing of the economy, echoing a trade-off familiar from the forward guidance literature (e.g., Eggertsson

and Woodford, 2003). We identify sufficient conditions for this trade-off to be resolved in favor of very

slow or even no fiscal adjustment, and we further argue that these conditions are easily satisfied in

practice (i.e., for any plausible calibration of the model). This lesson is starkest if fiscal adjustments

are lump-sum, but extends with little change to distortionary adjustments.

Suppose next that the business cycle is driven by supply shocks, giving rise to a trade-off between

output and inflation stabilization. Following a stagflationary cost-push shock, the central bank opti-

mally raises interest rates and depresses activity in order to moderate the inflationary pressure. Slow

fiscal adjustment yet again stabilizes real activity, but now this works against the central bank, undo-

ing its efforts to stabilize inflation. The very same mechanism that makes the central bank prefer slow

fiscal adjustment in the face of demand shocks thus makes it prefer fast fiscal adjustment in the face

of supply shocks. Crucially, however, this logic is moderated or even overturned when fiscal adjust-

ment is distortionary and thus directly inflationary, i.e., when tax hikes contribute to inflation holding

aggregate demand and output constant. In this case, a low τd may in fact ease the inflation-output

trade off available to the central bank via two complementary channels: by smoothing tax distortions,

as in Barro (1979) and Lucas and Stokey (1983); and, novel to our analysis here, because the induced

boom raises revenue, endogenously lessening the overall amount of tax hikes and of the consequent

inflationary pressure. We thus show that, if tax hikes are sufficiently inflationary, the central bank may

welcome very slow or even no fiscal adjustment for both demand and supply shocks.
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Quantitative exercise. While our theoretical analysis suggests that, contrary to conventional wis-

dom, fiscal inaction (τd ≈ 0) can actually support a central bank in its objectives, it conditions this

lesson on the relative importance of aggregate demand disturbances, the severity of tax distortions,

and the degree of non-Ricardian household behavior. Furthermore, our theoretical results rely on sev-

eral simplifying assumptions; most notably, we abstract from meaningful heterogeneity in household

wealth and in marginal propensities to consume (MPCs). To address these limitations, the last part of

our paper considers a much richer model, adapts it to the U.S. context, and quantitatively evaluates

the effects of the speed of fiscal adjustment, τd , on the central bank’s ability to fulfill its mandate.

The building block for our approach to quantification is a “sufficient statistics” result, following

Caravello et al. (2025). Even in our richer model, the effects of τd on the central bank’s loss are pinned

down by just two objects: the causal effects of interest rates and taxes on output, inflation and govern-

ment debt; and the autocovariance function of those same time series. Intuitively, the autocovariance

function captures historical co-movements, and the policy causal effects allow us to then strip out the

effects of the in-sample, historical policies, leaving us with the mix of non-policy shocks hitting the

economy. Using the same policy causal effects, we can then add back in our hypothesized policies:

fiscal adjustment governed by τd , and optimal monetary policy. We leverage this result for a two-step

approach to quantification. First, we get policy causal effects from our richer model, with the model

parameterized with an eye towards empirical evidence on policy propagation. Second, we learn about

the empirically relevant shock mix through autocovariance function estimation on U.S. data.

The end result of this exercise is that the Federal Reserve’s objectives are indeed best supported by

very slow fiscal adjustment (τd ≈ 0). Importantly, our analysis allows one to see transparently where

this result is coming from. First, delays in fiscal adjustment are strongly stimulative in our model, as it

features both material fiscal revenue drops in recessions (via the automatic stabilizer) and meaningful

fiscal multipliers, because of an elevated average MPC. Second, the “typical” business cycle in the

data looks like an aggregate demand disturbance, consistent with the “main business-cycle shock” of

Angeletos et al. (2020). Putting the two together, our result then necessarily follows—and breaking it

requires breaking at least one of these two, empirically relevant, ingredients.

Discussion and qualifiers. As already noted, our main takeaway contradicts the conventional wis-

dom that fiscal support for an inflation-targeting central bank means a fiscal authority that “steps

aside” by adjusting taxes fast enough. The driving force behind this lesson is the accommodation

of realistic non-Ricardian consumption behavior, along with the Keynesian premise that output is

demand-determined. This last point underscores that our results apply only to cyclical fiscal adjust-

ment, and not to trends in government spending, taxation and debt—such long-run forces are out-

side the purview of our analysis and of the New Keynesian framework more generally. Furthermore,
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our analysis presumes the existence of sufficient “fiscal space” so that the desirable τd and the cor-

responding cyclical movements in government debt are feasible, without causing default risk. Put

differently, a corollary of our analysis is that the absence of such fiscal space reduces the potency of

the dynamic stabilization mechanism studied here.

Literature. Our analysis adds to a long literature on fiscal-monetary interactions. An important

strand (from Leeper, 1991 to, inter alia, Bianchi and Ilut, 2017 as well as Bigio et al., 2024) assumes

both Ricardian households and lump-sum taxes, ruling out the mechanisms at the heart of our paper

and focusing, instead, on the question of which authority is “dominant”, or what pins down long-

run inflation expectations. We instead echoe the HANK literature’s insight that, once households are

non-Ricardian, the fiscal backdrop naturally influences aggregate demand and thereby both the prop-

agation of monetary policy and the natural rate (e.g., Kaplan et al., 2018; Hagedorn et al., 2019; Cam-

pos et al., 2024; Auclert et al., 2025). We furthermore share with our own past work (Angeletos et al.,

2024, 2025) and a few other highly complementary papers (e.g., Leith and Von Thadden, 2008; Aguiar

et al., 2024; Dupraz and Rogantini Picco, 2025; Rachel and Ravn, 2025) the use of an OLG setting as

a tractable laboratory for the study of fiscal-monetary interactions. However, the particular positive

and normative results previewed above are, to the best of our knowledge, new to this literature.

A separate literature studies the optimal design of fiscal and monetary policies in HANK-like set-

tings (e.g., Bhandari et al., 2021; Bilbiie et al., 2024; La’O and Morrison, 2024). While this literature em-

phasizes distributional effects, we abstract from them entirely and focus instead on the role played by

the speed of fiscal adjustment over the business cycle. Yet another strand of the literature focuses on

distortionary taxes while assuming Ricardian households, connecting the Ramsey literature (Barro,

1979; Lucas and Stokey, 1983) with the representative-agent New Keynesian framework (Benigno and

Woodford, 2003; Schmitt-Grohé and Uribe, 2004). The tax-smoothing motives discussed there are, in

our setting, reinforced by a new mechanism that emerges only with non-Ricardian households: de-

laying fiscal adjustment endogenously stabilizes the cumulative tax distortion over the business cycle.

Finally, our paper sits within a growing literature on the importance of automatic stabilizers (e.g.,

Blanchard, 2025; McKay and Reis, 2016, 2021). In Angeletos et al. (2024), we show that the associated

endogenous feedback from output to tax revenue can allow one-off fiscal deficit shocks to “finance

themselves” when the monetary policy reaction is sufficiently weak. Differently from our earlier work,

here we study how automatic stabilizers interact with gradual fiscal adjustment to shape the propa-

gation of a general set of demand and supply shocks, and under optimal monetary policy design. Our

key novel insights are first, that slow adjustment provides surprisingly strong dynamic amplification

of the familiar static automatic stabilizers during any recession, and second, that these forces over-

turn the conventional wisdom that lack of fiscal adjustment hinders the job of the central bank.
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2 Environment

Our baseline setting is similar to the perpetual-youth, overlapping-generations (OLG) version of the

New Keynesian model, as studied in Farhi and Werning (2019), Aguiar et al. (2024), Angeletos et al.

(2024, 2025), and Rachel and Ravn (2025), among others. Relative to the particular setting in our

prior work, we here make four changes. First, we shift the focus from “stimulus checks” (modeled

as exogenous, deficit-financed fiscal transfers) to exogenous shifts in consumer spending (“demand

shocks”) and firm costs or markups (“supply shocks”). Second, instead of fixing the real interest rate at

its steady state value (or restricting monetary policy to an ad hoc feedback rule), we let the monetary

authority optimally adjust its policy in response to these fluctuations, so as to minimize a familiar loss

function. Third, we assume that public debt is real. Finally, we consider a static Phillips curve. The first

two elements are essential: they let us study how the fiscal framework interacts with optimal monetary

policy and how it shapes the central bank’s loss (i.e., its ability to meet its stabilization objectives or its

mandates) in response to macroeconomic fluctuations. The remaining two assumptions are auxiliary:

they are made in the interest of clarity and will be relaxed in the quantitative analysis.

Throughout the paper, we work with the (log-)linearized relations around a steady state in which

inflation is zero, real allocations are given by their flexible-price counterparts, and real government

debt is fixed at some arbitrary level D ss ≥ 0. Detailed micro-foundations and linearization steps are

presented in Appendix A.1. Time is discrete and indexed by t ∈ {0,1, . . . }, uppercase variables denote

levels, and lowercase variables denote (log-)deviations from steady state.1 Finally, we cast our analysis

in terms of perfect-foresight transition paths in response to shocks realized at the beginning of period

0. As usual, these transition paths can (and later will) be reinterpreted as impulse response functions

in the analogous economy with aggregate risk.

2.1 Private sector

We summarize the private sector of our economy through two relations: an aggregate demand block

and an aggregate supply block.

Aggregate demand. There is a unit continuum of households, with each household surviving from

one period to the next with probability ω ∈ (0,1), and then replaced by newborns upon death, as in

Blanchard (1985). The households have separable preferences over consumption and labor, and they

save and borrow through an actuarially fair, risk-free, one-period, real annuity, which is backed by

government bonds. Following Angeletos et al. (2024, 2025), we abstract from steady-state effects of fi-

1To accommodate the case of zero debt, all fiscal and household wealth variables are measured in absolute deviations
from this steady state, scaled by steady-state output; all other variables are measured in log-deviations.
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nite lives and fiscal policy by introducing appropriate time-invariant transfers from older households

to newborns; these transfers are designed to ensure that all households have identical wealth in the

steady state. To facilitate aggregation, we furthermore assume that all households supply the same

amount of labor (intermediated by labor unions), receive the same wages and dividend payments,

and pay the same taxes. Finally, we let households be subject to a “patience” or discount-rate shock,

the standard stand-in for aggregate demand disturbances.

Deriving the (log-linearized) consumption function for each individual household, and then ag-

gregating across households, we obtain the following aggregate consumption function:

ct =
(
1−βω)(

at +
∞∑

k=0

(
βω

)k (
yt+k − tt+k

))−β(
σω− (

1−βω) Ass

Y ss

)( ∞∑
k=0

(
βω

)k rt+k

)
− ṽt . (1)

Here, ct is real consumption; yt is real income (and also real output); tt is real tax payments; rt is the

real rate of interest between t and t +1; at is real private wealth at the beginning of period t (which

in equilibrium will coincide with real government debt dt ); ṽt ≡ βσω
(∑∞

k=0

(
βω

)k vt+k

)
is the shock

to period-t spending, with vt being the underlying discount-rate shock; β ∈ (0,1) is the steady-state

household discount factor (and thus also the reciprocal of the steady-state gross real rate); σ> 0 is the

elasticity of intertemporal substitution; and Ass/Y ss is the steady-state wealth-to-GDP ratio.

Equation (1) describes the aggregate demand block of our economy. For future reference, we note

that, once we impose market clearing (ct = yt and at = dt ) and the government’s flow budget (intro-

duced below), we can re-express (1) recursively as follows:

yt =−σ
(
rt −

(
1−βω)

(1−ω)

σω
dt+1

)
+ yt+1 −σvt . (2)

Equation (2) is a natural generalization of the familiar representative-agent Euler equation. Indeed,

had horizons been infinite (ω = 1), the dt+1 term would have dropped and equation (2) would have

reduced to yt = yt+1 −σ (rt + vt ), exactly as in RANK. By assuming finite horizons (ω< 1), we instead

let private assets, or equivalently the quantity of government debt, enter equation (2) in the form of

a wedge whose magnitude increases as ω gets further away from 1. This captures a classical non-

Ricardian effect: we depart from the Permanent Income Hypothesis (PIH), government bonds are net

wealth, and fiscal deficits stimulate consumer spending.

While the particular forms of equations (1) and (2) are special, the economic forces captured by

them, and by extension the mechanisms discussed in our paper, are substantially more general. The

key here is to note that (1) closely mirrors the aggregate consumption function found in richer HANK

models: MPCs out of cash-in-hand are elevated, here equal to 1−βω; spending out of income gains

happens relatively quickly, decaying at rate ω < 1 (instead of the usual random walk implied by the

PIH); and future income and future taxes are discounted at a higher rate than the interest rate on

government debt (i.e., at rate βω < β). These properties are the hallmark of non-Ricardian behavior,
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find ample empirical support, and are the drivers of the mechanisms at the core of our paper. The

tractability of our model of consumer spending does, however, come at the cost of one important

counterfactual implication—it features equally elevated MPCs out of income yt and asset wealth at .

We will relax this property in Section 6, where we verify that our lessons extend to a setting that delivers

a very close fit to empirical evidence on consumption-savings behavior.

Aggregate supply. The supply block is represented by the following static Phillips curve:

πt = κyt +ut , (3)

where πt denotes inflation, κ > 0 is the slope of the Phillips curve, and ut is an exogenous cost-push

(i.e., mark-up) shock ut , the usual stand-in for aggregate supply shocks. Equation (3) can be micro-

founded as in the textbook NK model, subject to two additional assumptions.2 First, that price-setters

are myopic, in the sense that their expectations of future real marginal costs and future inflation are

pegged to steady state; this removes the forward-looking term of the standard NKPC. Second, that any

fiscal adjustment (which will be discussed in the next section) is lump-sum and so does not introduce

any time-varying wedge in labor supply (and thus an endogenous cost-push term in (3)).

We stress that both of these strong assumptions are made purely for pedagogical reasons and will

be relaxed gradually. The first assumption will simplify our analytical results in Sections 4-5, but will

be relaxed in the quantitative analysis of Section 6; there, we will consider the empirically relevant

case of a hybrid NKPC, which accommodates both a forward-looking and a backward-looking term.

The second assumption will allow us, in Section 4, to focus on the demand-side implications of slower

fiscal adjustment; it will be relaxed in Section 5, where we study theoretically the supply-side implica-

tions of slower fiscal adjustment through distortionary tax wedges, and also in Section 6, as part of our

quantitative exercise. Finally, we note that the positive results in Section 3, on the stabilizing effects

of fiscal inaction, do not depend at all on these two simplifying assumptions.

Our choice to consider cost-push rather than productivity supply shocks is motivated by empirical

evidence: productivity disturbances appear to only account for a moderate share of short-run fluctu-

ations (Angeletos et al., 2020), while cost-push disturbances are routinely estimated to be important

drivers of short- to medium-run inflation (e.g., Smets and Wouters, 2007). That said, as we will discuss

briefly in Sections 4 - 5, our normative conclusions on fiscal-monetary interactions would also extend

with little change to such an alternative modeling. Further details on an alternative model economy

with productivity instead of cost-push disturbances are provided in Appendix A.4.

2That is, there is a continuum of monopolistically competitive firms that hire labor on a spot market, produce according
to a linear labor-only production technology, and adjust prices only gradually subject to the familiar Calvo friction.
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2.2 Fiscal policy

The government issues non-contingent, short-term, real debt. The government flow budget is

dt+1 = 1

β
(dt − tt )+ D ss

Y ss
rt , (4)

where: dt is real government debt; tt denotes total real tax revenue; and D ss/Y ss ≥ 0 is the steady-

state debt-to-GDP ratio, which by market-clearing will equal the aggregated household steady-state

wealth-to-GDP ratio Ass/Y ss . Note that inflation does not enter (4) since government debt here is

real; we remark further on this simplifying assumption below. Finally, government debt must satisfy

two boundary conditions: the initial condition d0 = 0 and the usual no-Ponzi condition.3

The description of fiscal policy is completed by specifying a rule for how tax revenue, tt , adjusts

over time. We assume the following rule:

tt = τy yt︸︷︷︸
automatic stabilizer

+ τd dt︸ ︷︷ ︸
fiscal adjustment t

adj
t

+ β
D ss

Y ss
rt︸ ︷︷ ︸

interest-rate offset

. (5)

Taxes consist of three terms. First, fluctuations in economic activity automatically change tax revenue

by τy yt , where τy ∈ (0,1] is a time-invariant proportional tax on total household income; this first

term captures the familiar, static, automatic stabilizer. Second, taxes are adjusted endogenously in

response to fluctuations in outstanding real debt by t adj
t ≡ τd dt , where τd ∈ [0,1); we will refer to

this term as “fiscal adjustment,” and interpret τd as the speed of this adjustment. For now, fiscal

adjustment is assumed to be lump-sum, and the distortionary case will be considered in Sections

5 - 6. Third, we assume that the fiscal authority adjusts immediately and automatically (through a

lump-sum tax) to offset the budgetary impacts of any real interest rate movements; we again do so for

analytical clarity, and comment further on this simplifying assumption below.

The key features of the fiscal framework are the two parameters τd and τy , and they will play dis-

tinct roles in our subsequent analysis. On the one hand, τy regulates the familiar automatic stabilizer:

recessions cause an automatic shortfall in tax revenue in proportion to τy , which in turn helps miti-

gate the recession because, and only because, households are non-Ricardian. On the other hand, τd

governs the speed at which any such shortfall is then offset through future tax hikes, i.e., the pace of

fiscal adjustment. By assuming that government debt is real and that tax revenue contains an auto-

matic interest-rate offset, we ensure that budgetary deficits or surpluses in fact arise solely because of

the automatic stabilizer τy . While additional feedbacks from interest rates or inflation to the budget

are realistic, our quantitative analysis will verify that the automatic stabilizer-related effects are more

important, and so we have designed our theoretical analysis to speak most cleanly to that particular

3When ω = 1, the no-Ponzi condition can be interpreted as the transversality condition of the representative infinite-
horizon household. Here, we a priori rule out Ponzi games even when ω< 1.
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margin. Moreover, as will become clear in Section 3, our key result on how the pace of fiscal adjust-

ment shapes macroeconomic dynamics applies independently of why there is a budgetary shortfall,

and thus generalizes immediately to the presence of interest-rate and inflation margins.

2.3 Monetary policy

The final actor in our model is the monetary authority. Echoing a large applied literature (e.g., Svens-

son, 1999; Woodford, 2003a, Chapter 8.3; Woodford, 1999, 2003b) as well as the Federal Reserve’s own

policy framework (Federal Reserve Tealbook, 2016), we consider a flexible inflation-targeting central

bank with the following loss function:

1

2
E

[ ∞∑
t=0

βt {
λππ

2
t +λy y2

t +λr r 2
t

}]
, (6)

where E [·] averages over the realizations of the date-0 aggregate shocks.

The first two terms in the central bank objective function (6) are the familiar “dual mandate” loss

components, with the scalars λπ,λy > 0 parameterizing the relative importance of the policy goals.

The third term, a penalty on real interest fluctuations (with the coefficient λr > 0), captures the em-

pirical fact that, in practice, central banks are unwilling or unable to move interest rates abruptly to

achieve their output and inflation objectives. Such a concern is routinely modeled by central banks in

their own policy evaluation (e.g., see the Federal Reserve Tealbook, 2016) and can be formally moti-

vated by, inter alia, financial stability considerations (Stein and Sunderam, 2018) or uncertainty about

policy transmission (in the Brainard, 1967, sense); for the U.S., it is also explicitly mandated in the

Federal Reserve Act. For our purposes, what matters is less the precise functional form of the third

term in (6), but rather the more general—and practically relevant—idea that the central bank cannot

frictionlessly achieve the optimal dual-mandate outcome. This ensures that fiscal policy remains rel-

evant even when monetary policy is optimally set, and allows us to meaningfully talk about how fiscal

inaction can be aligned with, and thus support, a monetary authority in attaining its objectives.

The central bank’s problem is to choose a state-contingent path for the real interest rate so as to

minimize its loss (6) subject to the constraints imposed by the equilibrium behavior of the private

sector as well as the exogenously specified fiscal framework.4 We assume full commitment, which in

particular allows optimal policy to embed “forward guidance,” i.e., a commitment to condition future

rates on current shocks.
4Strictly speaking, the central bank’s policy instrument is the path of nominal interest rates. However, as explained in

Section 3.1, the central bank can regulate the path of real rates and thereby all equilibrium outcomes. We can therefore
equivalently recast the central bank’s problem as the choice of a shock-contingent path for the real rate.
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2.4 Equilibrium

As already noted, we cast our analysis in terms of perfect-foresight transition paths. In particular, the

exogenous demand and supply shocks {vt ,ut }∞t=0 are drawn from some known distribution with mean

zero and revealed to both the private agents and the central bank at the beginning of t = 0. The sole

restriction we impose on the paths of those shocks is boundedness; this means that, when translated

to the analogous stochastic economy, our perfect-foresight dynamics will give impulse responses to

arbitrary MA(∞) processes.5 With these points in mind, we can define an equilibrium as follows:

Definition 1. Given a path of aggregate demand and supply shocks {vt ,ut }∞t=0, an equilibrium is a

bounded path
{

yt ,πt ,dt+1, tt ,rt
}∞

t=0 for output, inflation, public debt, tax revenue and the real interest

rate that satisfies the following restrictions: aggregate demand (2), aggregate supply (3), the law of

motion for public debt (4), the government’s no-Ponzi condition, and the tax rule (5).

Definition 1 applies to arbitrary monetary policy, i.e., for an arbitrary (bounded) path of real inter-

est rates {rt }∞t=0. In Lemma 1 below we will show that, in our economy, we have equilibrium unique-

ness conditional on the path of real interest rates: for given {vt ,ut }∞t=0 and {rt }∞t=0 , equations (2)-(5)

solve for a unique
{

yt ,πt ,dt+1, tt
}∞

t=0. We can therefore formulate the optimal monetary policy prob-

lem as the choice of equilibrium that minimizes the central bank’s loss function.6

Definition 2. Given a path of aggregate shocks {vt ,ut }∞t=0, let the path
{

y∗
t ,π∗

t ,d∗
t+1, t∗t ,r ∗

t

}∞
t=0 min-

imize the central bank’s loss function (6) across all equilibria. We refer to this path as the optimal

monetary policy equilibrium and to the corresponding rate path as the optimal monetary policy.

Because households are non-Ricardian, the equilibrium mapping from shocks and real interest

rates to output and inflation naturally depends on the fiscal framework—and thus so does the optimal

monetary policy. Our contribution rests on characterizing this dependence, focusing in particular on

the role of the speed of fiscal adjustment, τd , and its interaction with the familiar automatic stabilizer,

τy . In Section 3, we begin by asking how τd interacts with τy to shape macroeconomic outcomes given

monetary policy. This first “building block” result will isolate the positive effects of the speed of fiscal

adjustment, setting the stage for our normative analysis in Sections 4 and 5, where we characterize

how τd shapes the optimal monetary policy and the associated central bank loss. Our contribution

will be completed with a quantitative evaluation in a much larger-scale model in Section 6.

5By boundedness for a variable x we mean that there exists some M > 0 such that |xt | < M for all t and states of nature.
6Because the equilibrium mapping from {vt ,ut }∞t=0 and {rt }∞t=0 to

{
yt ,πt ,dt+1, tt

}∞
t=0 is linear, the central bank’s problem

reduces to a quadratic objective over {rt }∞t=0 , which in turn guarantees uniqueness of solution. In Definition 2, we can thus
talk about the optimal policy, as opposed to an optimal policy.
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3 The stabilizing effects of delayed fiscal adjustment

This section is our paper’s key positive “building block.” We begin with a brief preparatory discussion

on equilibrium existence and uniqueness. We then establish our headline positive result: slower fiscal

adjustment dynamically stabilizes the economy, in a sense to be made precise. We show that this result

depends not on the origin of the business cycle per se, but on its fiscal footprint: the key is whether a

shock triggers a recession and thereby a budgetary shortfall, not whether the recession is demand- or

supply-driven. The latter distinction becomes important only when we shift focus from the positive

questions in this section to the normative questions in the remainder of the paper.

3.1 Equilibrium existence and uniqueness

As a necessary backdrop for our analysis, we begin with the following result, which builds on our

earlier work in Angeletos et al. (2024, 2025).7

Lemma 1. Given arbitrary (bounded) paths of real rates {rt }∞t=0 and aggregate shocks {vt ,ut }∞t=0, there

exists a unique equilibrium. The equilibrium path of aggregate output yt satisfies

yt =
∞∑

s=0
Yt ,s (vs + rs) , ∀t ≥ 0, (7)

where Yt ,s is the date-t impulse response of output to a one-off, date-0 news shock about date-s ag-

gregate demand (i.e., the contractionary demand shock vs and the real interest rate rs). The impulse

response coefficients
{
Yt ,s

}
t ,s≥0 are continuous functions of τd , τy , and ω.

Lemma 1 guarantees that the central bank can uniquely implement any equilibrium by pegging

the path of real rates, or equivalently by following the nominal interest rate feedback rule it = rt +
Et [πt+1], where {rt }∞t=0 is the path of real rates that the central bank wishes to obtain. This substan-

tiates our earlier discussion of monetary policy in Section 2.8 The lemma furthermore reveals that

demand shocks and real interest rates propagate identically, and that output is determined indepen-

dently of the supply block once the path of real rates is fixed. This independence property is familiar

from RANK (Woodford, 2011), and it extends not only to our model but also to more general HANK

models (see the discussion in Auclert et al., 2024) provided that inflation and supply shocks do not

have distributional effects. For our purposes, the key implication of this model property is that our

7In particular, the existence and uniqueness result stated in Lemma 1 is a direct extension of the corresponding results
in Angeletos et al. (2024, 2025), just now allowing for an arbitrary time-varying path for the real interest rate and the
demand shock. The present paper’s real contribution begins with Proposition 1 below, which characterizes how fiscal
policy shapes the dynamic response of output to arbitrary demand wedges.

8Either way, by unique implementation we mean uniqueness within the set of bounded equilibria, per Definition 1.
The question of global determinacy is outside the scope of this paper and does not affect the characterization of the policy
optimum or its comparative statics.
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upcoming characterization of the impulse response coefficients
{
Yt ,s

}
t ,s≥0 applies regardless of the

specification of the Phillips curve and of whether fiscal adjustments are lump-sum or distortionary.

3.2 The stabilizing effects of fiscal adjustment delays

We now turn to our key positive lesson: that a lower speed of fiscal adjustment helps stabilize output

during contractions. We first state the formal result (Proposition 1 below). We then explain the eco-

nomic mechanism, which suggests that our conclusions should apply independently of why there is

a budgetary shortfall—an intuition that we verify in Proposition A.1 in the Appendix. Throughout we

relate our results to the literature on automatic stabilizers (McKay and Reis, 2016), showing that the

static effects of such stabilizers are dynamically amplified through slow fiscal adjustment.

Proposition 1. The output impulse response Yt ,s has the following properties:

1. For all impulse horizons t ≥ 0 and all news horizons s ≥ 0, the output impulse response Yt ,s

increases with a delay in fiscal adjustment, i.e., it decreases with τd ,
∂Yt ,s
∂τd

< 0.

2. For all news horizons s ≥ 0, the cumulative output response
∑∞

t=0β
tYt ,s increases with a delay in

fiscal adjustment (i.e., it decreases with τd ) and converges to zero as τd → 0.

Recall that Yt ,s is the impulse response of output to an adverse aggregate demand shock, or equiv-

alently to a real interest rate hike. The first part of Proposition 1 establishes that lowering τd (i.e., de-

laying fiscal adjustment) unambiguously increases output for all impulse response and shock horizons

t , s ≥ 0. The result is surprisingly general: not only does it apply uniformly across the entire impulse

response path (all t ), but it also holds for shocks at all horizons (all s), and thus extends to contrac-

tionary demand disturbances with arbitrary stochastic properties. This is the promised formalization

of our claim that delaying fiscal adjustment robustly stabilizes the macroeconomy. The second part of

the proposition then focuses on the cumulative output response: lowering τd uniformly shifts up the

entire path, and the limiting cumulative impulse response (as τd → 0) is necessarily zero, correspond-

ing to perfect stabilization in a present value sense. This result again applies for all shock horizons s,

and thus extends to disturbances with arbitrary stochastic properties.

Proposition 1 reflects an interaction of automatic stabilizers τy and the speed of fiscal adjustment

τd . Because of the automatic stabilizer, a recession causes a shortfall in fiscal revenue, and thus sooner

or later necessitates fiscal adjustment. It is qualitatively unsurprising that delaying such tax hikes is

stabilizing; what is more surprising, however, is how strongly stabilizing they turn out to be: output

increases at all horizons and for shocks at all dates, and the limiting output impulse response has zero

present value. The remainder of the section elaborates on the intuition for these results.
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Figure 1: Impulse responses of output and government debt (left and middle panels) to a contrac-
tionary demand shock for different τd ’s (solid shades of grey). The right panel shows the net present
value of the output and fiscal adjustment impulse responses, all normalized relative to the cumulative
output response for τd = 1.

Illustration and explanation. We illustrate Proposition 1 in Figure 1. The left and middle panels of

the figure show the impulse responses of output (yt ) and government debt (dt ) to a persistent de-

mand shock under different assumptions on fiscal adjustment speed (τd ). The right panel displays

the cumulative output and fiscal adjustment responses, again as a function of τd .9

To understand the effects of τd , it is instructive to begin with τd = 1, i.e., the fastest possible pace

of fiscal adjustment.10 By construction, output falls during the shock, and thus so does tax revenue,

because τy > 0. As households are non-Ricardian, this reduction in current tax revenue helps mitigate

the recession—the familiar static automatic stabilizer. When fiscal adjustment is fast, the drop in

current taxes necessitates a quick and large hike in future taxes. This quick tax hike in turn reinforces

the demand-driven contraction, dynamically undoing the stabilizing effects of the static automatic

stabilizer. The end result is a relatively large and persistent recession, visible in the black line in the left

panel of Figure 1. The flip side is that, because τd is large, the necessary fiscal consolidation happens

quickly, with government debt returning to steady state relatively fast (black line, middle panel).

Consider now what happens as we lower τd below 1, that is, as we push the requisite tax hikes

9The figure uses a simple example parameterization of our model; the exercise is purely illustrative, so magnitudes
should not be taken seriously. For our purposes, it is important that households are non-Ricardian (ω= 0.7/β, delivering
an MPC of 30 per cent) and that automatic stabilizers are non-trivial (τy = 1/3). The demand shock is persistent, following
an AR(1) process with persistence 0.9. We furthermore, for all computations, assume that the fiscal authority perfectly
stabilizes government debt after some large but finite horizon H , consistent with the equilibrium refinement of Angeletos
et al. (2025), and with our focus on cyclical fluctuations. See Appendix A.5 for further details.

10When τd is exactly 1, multiple equilibria may exist. For the rest of the draft, when we refer to τd = 1, we focus on the
unique equilibrium selected by the limit as τd → 1 from below.
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from the immediate aftermath of the shock further and further into the future. Clearly, such an in-

tertemporal shift in the tax burden would have not at all affected aggregate spending and thus output

if households were Ricardian. Here, instead, the same shift stimulates output via a combination of

two effects. First, in partial equilibrium, households respond to the delay in tax hikes by increasing

their spending in the short run, precisely because they are non-Ricardian. Second, in general equi-

librium, this short-run increase in aggregate spending feeds into higher aggregate income, and from

there back into further spending, and so on—the “Intertemporal Keynesian Cross” (IKC) of Auclert

et al. (2024). The end result of a lower τd is thus higher equilibrium output, and indeed in all periods,

as illustrated by the grey lines in the left panel of Figure 5.

To summarize, while a higher τy helps stabilize the economy statically, its overall dynamic potency

is inherently tied to the speed of fiscal adjustment, with a small τd dynamically amplifying the static

stabilizer. A first key result is that, because of the dynamic IKC feedback, this amplification is uniform:

the slowdown in fiscal adjustment does not just increase the potency of the automatic stabilizer when

taxes are postponed in the short run, but also over longer horizons. This mechanism is reminiscent

of the familiar “forward guidance” effects of monetary policy (as in Eggertsson and Woodford, 2003):

when τd is low, government debt, private assets, and aggregate spending are allowed to increase and,

in fact, overshoot tomorrow, thus providing additional stabilization today.

The limit of fiscal inaction (τd → 0). How strong can the mechanism described above be? The sec-

ond part of Proposition 1 provides the answer: as we lower τd , the cumulative output response to a

contractionary demand shock becomes less negative, converging to zero as τd → 0. Put differently, fis-

cal inaction interacts with the static automatic stabilizer τy to provide perfect stabilization of output

in a present-value sense.

What is the intuition for this zero present-value limit? Just as in our discussion above, it is again

useful to split the analysis into partial and general equilibrium steps. In partial equilibrium, given a

contractionary shock to demand, households decide to postpone their spending, while leaving its net

present value unchanged: consumer spending initially drops, before then subsequently overshooting.

In general equilibrium, the initial drop in demand causes a contraction in economic activity, reducing

tax revenue. If taxes are increased quickly, then consumer spending remains depressed throughout,

with the tax hike offsetting the future partial equilibrium increase in demand. If instead the tax hike

is delayed further and further, then the partial equilibrium overshoot also survives in general equilib-

rium, thus delivering the zero present value limit of the general equilibrium output impulse response.

A complementary way of seeing this limit comes from the government’s intertemporal budget

constraint. Summing the linearized budget constraint over all dates and using the initial condition

and the government’s no-Ponzi condition, we obtain that the present value of primary surpluses is
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always zero:

τy

∞∑
t=0

βt yt︸ ︷︷ ︸
N PV (y)

+
∞∑

t=0
βt t adj

t︸ ︷︷ ︸
N PV (t adj)

= 0. (8)

This equation makes clear that, in equilibrium, N PV (y) and N PV (t adj) move in tandem: whenever

output is depressed in present-value terms, fiscal adjustments must necessarily also be increased in

present-value terms, in order to make up for the budgetary shortfall caused by the recession. If, due

to a recessionary shock, N PV (y) < 0 < N PV (t adj), then pushing the tax hike further into the future

(lower τd ) stimulates output at all horizons, bringing N PV
(
y
)

closer to zero. By equation (8), this also

brings N PV (t adj) closer to zero. And since this logic applies whenever N PV (y) < 0 < N PV (t adj), both

of these objects must converge to 0 as we lower τd towards zero.11

Summary. We conclude that, when coupled with sufficient delays in fiscal adjustment, the “classi-

cal” static automatic stabilizer becomes surprisingly powerful—providing output stabilization that is

uniform across horizons and perfect in a present-value sense. Much of the remainder of the paper is

concerned with the normative implications of this positive property. Before going there, however, we

first provide some additional observations.

3.3 Additional discussion

We here collect several further implications and reinterpretations of Proposition 1 that all will loom

large in the normative analyses of the upcoming sections.

Monetary policy effectiveness. The preceding discussion applied identically to contractions in de-

mand induced by private demand shocks (vt ) and monetary policy (rt ). Our results thus imply im-

mediately that slower fiscal adjustment reduces the effectiveness of monetary policy at all horizons,

with the limiting effect of arbitrary monetary policy on the cumulative output path equal to zero. This

observation offers an interesting contrast to our upcoming normative lesson: we will show that the

central bank may prefer fiscal inaction despite the negative effect on its own effectiveness.

Demand vs. supply shocks. As remarked following Lemma 1, supply shocks do not influence equi-

librium output given the path of real rates; accordingly, our previous discussion focused on how τd

shapes the propagation of demand shocks and that of monetary policy. That said, and as discussed

11The same logic can also be seen more mechanically from the fact that
∑∞

t=0β
t t adj

t = τd
∑∞

t=0β
t dt . Along with the prop-

erty, proved in Lemma 1, that dt remains bounded—and indeed converges back to steady state as time passes—regardless

of τd , we immediately have that
∑∞

t=0β
t t adj

t → 0 as τd → 0. By (8), we then also necessarily have that
∑∞

t=0β
t yt → 0. How-

ever, the reason that dt remains bounded in the first place is precisely the one described in the main text: postponing tax
hikes stimulates output, thus also endogenously stabilizing government debt, even when τd = 0.
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further in Section 4.3, the monetary authority optimally responds to inflationary supply shocks by in-

creasing interest rates and depressing demand, so as to mitigate inflationary pressures. Our previous

analysis, and in particular the impulse responses in Figure 1, can thus be re-interpreted as showing

the economy’s response to an adverse supply shock that causes the monetary authority to tighten.

Holding the shock and the monetary policy response fixed, a lower τd again stabilizes output.12

Other reasons for budgetary shortfalls. Nothing in the intuition for Proposition 1 really hinged on

why there was a budgetary shortfall in the first place—we only leveraged the simple idea that postpon-

ing any required amount of tax hikes endogenously stimulates the economy and raises fiscal revenue,

thus endogenously lessening the actually (in equilibrium) needed fiscal adjustments. This suggests

that our stabilization logic should extend to generic budgetary shortfalls. We confirm this conjecture

in Appendix A.3 by proving the following generalization: if, along an equilibrium, the government

faces a budgetary shortfall at some horizon t = H (in the sense of dH > 0), then delaying period-H fis-

cal adjustment helps raise output (relative to the original equilibrium) in all periods, including those

before date H , regardless of the history of shocks that lead to dH > 0.

In addition to further substantiating our intuitions from above, this result will also prove useful for

our quantitative explorations in Section 6, where we allow for inflation and interest rates to also affect

budgetary shortfalls (or surpluses), and thus also the time path of government debt. By the preceding

discussion, not responding to such shortfalls with fiscal adjustment will be stimulative, and of course

vice versa for budgetary surpluses.

Inflation. We conclude this section by translating Proposition 1 to inflation dynamics. By combining

Lemma 1 with the Phillips curve (3), we immediately have that

πt =
∞∑

s=0
κYt ,s (vs + rs)+ut , ∀t ≥ 0. (9)

Output affects inflation proportionally to κ, the slope of the Phillips curve. It follows that, in response

to contractionary demand shocks that are only partially offset by monetary policy (i.e., if vs + rs > 0),

slower fiscal adjustment raises inflation in tandem with output. The same is true for inflationary sup-

ply shocks (i.e., us > 0), insofar as the central bank leans against them by hiking interest rates (rs > 0).

What changes, though, is the co-movement between output and inflation. With a contractionary de-

mand shock, output and inflation are both depressed when τd = 1, and so lowering τd helps stabilize

both at the same time. With an adverse supply shock, instead, inflation is elevated when τd = 1, so

lowering τd stabilizes output at the expense of inflation. This difference will be the key to the norma-

tive conclusions of the next section.
12This re-interpretation implicitly supposes a simple monetary reaction of the form rt = ψut , for some ψ > 0. Our

analysis in the upcoming sections will not consider such ad hoc rules, but instead consider optimal monetary reactions.
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We finally note that equation (9) presumes that the tax hikes necessitated by equilibrium bud-

getary shortfalls are non-distortionary, and thus do not enter the Phillips curve. We continue to ab-

stract from this (empirically relevant) possibility in the next section, but return to it in Section 5.

4 The demand-side channel of fiscal inaction

The preceding section established our key positive result on how slower fiscal consolidation dynam-

ically stabilizes output. Building on this result, we in this section turn to the normative question of

interest: what kind of fiscal support does a central bank prefer, and could it even be that complete

fiscal inaction (i.e., τd = 0) actually aids the central bank? Throughout this section, we maintain the

assumption of lump-sum fiscal adjustments, so that the impact of their delays operates solely through

the aggregate demand stabilization channel studied in the previous section. Our discussion will be or-

ganized around an envelope theorem expression for how τd shapes the central bank’s loss under the

optimal monetary policy. We split our analysis by type of primitive shock, beginning with demand

shocks and then turning to supply shocks.

4.1 An envelope theorem for the central bank

Consider the central bank’s problem, described in Section 2.3, and let LC B denote its ex ante loss

under optimal monetary policy—that is, the value of the loss (6) evaluated at the optimal monetary

policy equilibrium and integrated across the possible realizations of aggregate demand and supply

shocks. Using an envelope theorem argument, we relate the effect of τd on LC B to the corresponding

effect of τd on output, as characterized in Proposition 1.

Proposition 2. The sensitivity of the central bank’s loss LC B to the speed of fiscal adjustment τd satisfies

∂LC B

∂τd
= E

[ ∞∑
t=0

βt
{(
λπκπ

∗
t +λy y∗

t

)( ∞∑
s=0

∂Yt ,s

∂τd

(
vs + r ∗

s

))}]
, (10)

where
{
∂Yt ,s
∂τd

}
t ,s≥0

denotes the sensitivities of the output impulse responses characterized in Proposition

1, and
{
r ∗

t , y∗
t ,π∗

t ,d∗
t+1, t∗t

}∞
t=0 denote the equilibrium paths under the optimal monetary policy.

Proposition 2 will guide our discussion in the remainder of this section. It reveals that, to gauge

whether a change in the pace of fiscal consolidation will help or hurt the central bank’s objectives,

it suffices to know, first, how this change affects the impulse response of output, and second, the

output, inflation, and real rates in the optimal monetary policy equilibrium. Proposition 1 has already

addressed the first question, and in particular has emphasized that the answer is independent of how

the business cycle decomposes between demand and supply shocks. That decomposition, however,
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becomes critical for answering the second question. Intuitively, contractionary demand shocks tend

to reduce both output and inflation, and they also invite interest rate cuts, whereas inflationary cost-

push shocks invite interest rate hikes and tend to move output and inflation in opposite directions.13

This explains why, in contrast to the sign of
∂Yt ,s
∂τd

, the sign of ∂LC B
∂τd

critically depends on the nature of

the underlying shock. The rest of this section works out this dependence, first for the case of demand

shocks (Section 4.2) and then for the case of supply shocks (Section 4.3).

4.2 Demand shocks

We begin with shocks to aggregate demand, {vt }∞t=0, proceeding in three steps: we first give some gen-

eral intuition, then present numerical explorations, and finally turn to analytical results. Throughout,

we will anchor our discussion around the envelope theorem expression (10).

Intuition. Consider a contractionary shock to aggregate demand (i.e., vt > 0, at least temporarily),

and set supply shocks to zero (i.e., ut = 0 for all dates t ≥ 0). If the central bank were able to instanta-

neously adjust real interest rates to perfectly stabilize aggregate demand (a scenario that is nested here

with λr = 0), then there would be no recession and no budgetary shortfalls to start with, so the pace

of fiscal adjustment would be irrelevant.14 In the practically relevant case of imperfect stabilization

(i.e., λr > 0), the envelope condition (10) and our results in Section 3 instead suggest that slow fiscal

adjustment—perhaps even all the way to fiscal inaction—may be desirable: at least in the short run,

vs +r ∗
s is likely positive (since interest rates are not cut enough), while λπκπ∗

t +λy y∗
t is likely negative

(since stabilization is imperfect), and so, with
∂Yt ,s
∂τd

< 0, we would expect the overall derivative ∂LC B
∂τd

to

be positive. In words, we saw in Section 3 that a delay in fiscal consolidation endogenously (and very

powerfully) moderates recessionary pressures, thus supporting the central bank in its objectives.

This basic intuition leaves two questions unanswered, however. First, there is an offsetting force:

delayed fiscal adjustment necessarily causes subsequent overheating (recall the impulse responses in

Figure 1 as well as the zero present value result), dynamically destabilizing the economy—a trade-off

that is familiar from the forward guidance literature (Eggertsson and Woodford, 2003). Second, the

discussion is silent on how far fiscal adjustment should be delayed, and so in particular on whether

complete fiscal inaction could ever be desirable. In the remainder of the section, we will explore these

13This intuition is useful but incomplete, as the optimal monetary policy actually tends to dictate reversals in the signs
of some of the variables, reflecting the value of forward guidance. This will be made clear in the subsequent analysis.

14This irrelevance holds for all τd ∈ [0,1) under our simplifying assumption that the budgetary effects of interest rates are
automatically and immediately offset. Under this assumption, the central bank attains the unrestricted optimum simply
by setting rt =−vt . Output is then perfectly stabilized, and so is government debt, regardless of τd ∈ [0,1). Otherwise, the
variation in the interest rate causes government debt to vary even if output is perfectly stabilized, and τd > 1−β becomes
necessary to guarantee that government debt does not explode, as is familiar from RANK. Furthermore, the unrestricted
optimum is now obtained with a different monetary policy, also offsetting the demand effects of debt fluctuations.
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Figure 2: Impulse responses of output, the demand wedge, and government debt to a contractionary
demand shock for different τd ’s (solid shades of grey) under optimal monetary policy.

subtleties, first through numerical illustrations (under realistic configurations) and then analytically

(under tighter assumptions).

Illustration. Figures 2–3 illustrate how the pace of fiscal adjustment, τd , shapes optimal monetary

policy as well as the associated policy loss. For our numerical explorations we consider the same illus-

trative model economy as in Section 3; for the central bank, we assume equal loss weights on output,

inflation, and interest rates.15 We will later argue both analytically (in this section) and quantitatively

(in Section 6) that the case depicted here is of general practical relevance.

Together, Figures 2–3 suggest that the intuition given in the previous paragraph is potent: slower

fiscal adjustment stabilizes the economy and is desirable for the central bank, here in fact all the way

even to the complete absence of fiscal adjustment (i.e., τd = 0). Figure 2 begins by showing impulse

responses of output y∗
t , the demand wedge vt +r ∗

t , and government debt d∗
t for different values of τd

(shades of grey). If fiscal adjustment is fast, then interest rates are cut relatively aggressively, though

insufficiently to stabilize output: the demand wedge is positive (middle panel), and output declines

(left panel). As fiscal adjustment is delayed, the initial contraction is dampened, and there is some

dynamic output overshooting (left panel), even though interest rates are now adjusted by much less

and so the demand wedge remains larger (middle panel). All of this is intermediated through a persis-

tently elevated, but still ultimately stable, path of government debt (right panel). The solid blue line in

15More specifically, following the main policy evaluation exercise reported in communication by the Federal Reserve
itself (Federal Reserve Tealbook, 2016), we wish to consider equal weights on unemployment as well as annualized infla-
tion and interest rates. With a standard Okun’s law coefficient of 0.5, this gives λy = 0.25 together with λr = λπ = 16. See
Appendix A.5 for further details.
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Figure 3: Minimized central bank loss LC B as a function of τd for demand shocks (blue) and supply
shocks (red), for a baseline (solid) and higher (dashed) level of the static automatic stabilizer τy .

Figure 3 then translates these impulse responses into the corresponding central bank loss: we see that

the loss is increasing in τd , and here in fact over the entire range of τd . Thus, at least in this particular

numerical exercise, and for demand shocks, fiscal adjustment delays provide monetary support all

the way up to complete fiscal inaction.

An analytical result. We now turn to an analytical result, which helps shed further light on the theo-

retical conditions under which complete inaction may be desirable, as in the preceding illustrations,

and thus on the practical relevance of this scenario. We consider a restricted special case of our model,

with two key properties. First, the demand shock is now fully transitory; that is, we consider a one-off

date-0 demand shock v0. Second, the monetary and fiscal authority together frictionlessly implement

perfect stabilization of the economy after two periods, i.e., yt =πt = rt = dt+1 = 0 for all t ≥ 2. All inter-

esting dynamics thus occur only at dates 0 and 1. As it turns out, studying this simplified environment

suffices to characterize the main forces shaping our results.

We provide a complete characterization of equilibrium dynamics in this restricted economy in the

proof of Proposition 3, and summarize the main takeaway here.

Proposition 3. Consider the restricted, two-period problem described above, featuring only demand

shocks. The central bank loss LC B is increasing over the entire range of τd ∈ [0,1] if and only if

τy ≤ βω

(1−βω)(1−ω)
. (11)

If (11) holds, then the loss is minimized for τd = 0.
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The two takeaways from Proposition 3 are, first, that monotonicity in τd over the entire [0,1] range

is not automatic but relies on condition (11), and second, that this condition is however very loose,

and satisfied for standard values of τy (around 0.3) and ω (around 0.7-0.8). The intuition for the con-

dition is as follows. As discussed in Section 3, delaying fiscal adjustment stabilizes output today (at

t = 0) with subsequent overshooting (here at t = 1). If τy is small, then the date-0 output drop is signif-

icant, and the subsequent overshooting is small, so lowering τd even all the way to zero is desirable.

If instead τy is large and so the static automatic stabilization is already powerful, then output is rela-

tively stable at t = 0, and delayed fiscal adjustment achieves further stabilization only at the cost of a

large subsequent overshoot at t = 1, thereby overall increasing the central bank’s loss.16

The exact same forces are also present in our baseline infinite-horizon model, and illustrated vi-

sually through the blue-dashed line in Figure 3, which instead shows the central bank loss for a larger

value of τy . Naturally, with τy bigger, the loss is now uniformly lower, reflecting the fact that the static

automatic stabilizer already provides meaningful output support. Furthermore, and echoing the pre-

ceding discussion, the slope of the loss in τd is now shallower (for small τd ): there is already stronger

static automatic stabilization through τy , so there is less need to supplement it through the forward

guidance-like dynamic effects of small τd . However, and consistent with (11), implausibly large values

of τy would be needed to actually lead to a sign flip of the loss over τd ∈ [0,1].

Taking stock. The takeaway of this section is that, following demand shocks, slow fiscal adjustment

is—not automatically, but in practice very likely—supportive of the central bank. We have seen that

this conclusion relies on two key, and empirically relevant, ingredients: first, that postponing tax hikes

stimulates aggregate demand; and second, that static automatic stabilizers alone are relatively weak.

Once the second condition is satisfied, the forward guidance-like effects of fiscal inaction are wel-

come, with the stabilization benefits today outweighing the overshooting costs tomorrow.

4.3 Supply shocks

We now turn our attention to supply shocks {ut }∞t=0. We first review how monetary policy optimally

leans against such shocks by raising interest rates and reducing aggregate demand to lower inflation,

and then show how slower fiscal adjustment interferes with this task. We conclude that, unlike the

case of demand shocks, slow fiscal adjustment here is undesirable.

16Formally, the envelope theorem expression in this case can be shown to become

∂LC B

∂τd
∝ ∂Y0,1

∂τd
E

[(
y∗

0 +
(

1+
(
1−βω)

(1−ω)τy

βω

)
βy∗

1

)((
1+

(
1−βω)

(1−ω)τy

βω

)(
v0 + r∗

0

)+ r∗
1

)]
.

where still
∂Y0,1
∂τd

< 0. If (11) is violated then first term in the expectation becomes positive for small but still positive values
of τd , flipping the sign of the derivative.
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Figure 4: Impulse responses of output, the demand wedge, and government debt to a inflationary
supply shock for different τd ’s (solid shades of grey) under optimal monetary policy.

Intuition. Consider an adverse supply shock (i.e., ut > 0, at least temporarily), and set demand

shocks to zero (i.e., vt = 0 for all dates t ≥ 0). If the central bank kept real rates constant, then this

cost-push shock would just pass through one-to-one into inflation, without output changing. The

optimal policy response (as familiar from the textbook treatment of Galí, 2008) instead is to hike real

rates and engineer a recession, thus moderating the inflationary pressures. In the envelope condition

(10), we thus expect to have r ∗
t > 0, i.e., real rates are increased in order to lean against the cost-push

shock, and λπκπ∗
t +λy y∗

t > 0, since the output contraction only partially stabilizes inflation.

How does slow fiscal adjustment interact with this textbook optimal monetary policy response? As

discussed in Section 3.3, delays in fiscal adjustment blunt the effectiveness of monetary policy, thus

now in particular undermining its ability to moderate inflationary pressures. More formally, returning

to the envelope condition, the fact that
∂Yt ,s
∂τd

< 0 (from Proposition 1) now suggests that the overall

derivative is likely to be negative, with the fiscally induced stabilization of output counteracting the

central bank’s efforts. The remainder of the section corroborates this intuition.

Illustration. We provide a visual illustration in Figures 3–4, using the same model parameterization

as in our previous analysis of demand shocks, now for a persistent supply disturbance. As before the

purpose is illustration, not quantitative realism.

The two figures reveal, consistent with the preceding intuition, that faster fiscal adjustment is now

desirable for the central bank. Figure 4 shows impulse responses to supply shocks under optimal

monetary policy and for different values of the fiscal adjustment speed τd . As evident in the figure

and as anticipated above, slower fiscal adjustment frustrates the monetary authority’s attempts to use
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interest rate hikes to moderate inflation: output contracts by less, so inflation spikes by more. In fact,

the right panel of the figure reveals an interesting non-monotonicity: as τd is lowered from 1 to 0, the

central bank initially moves interest rates by more to counteract fiscal stabilization, but at some point

relents, as prohibitively large rate movements would be required to implement the desired balance of

output and inflation.17 The solid red line in Figure 3 translates these impulse responses into central

bank loss space: the central bank loss LC B is now uniformly decreasing in τd , and thus smallest for an

immediate fiscal adjustment (i.e., τd = 1). Finally, the red dashed line in that same figure again offers

a complementary lesson: if τy is large, then the usual static automatic stabilizers are already strong

enough on their own to frustrate the monetary authority’s attempts, largely independently of τd . This

leads to a larger central bank loss and to an overall shallower slope with respect to τd , as the strength

of dynamic stabilization matters less, echoing the earlier demand discussion.

An analytical result. We finally establish analytical insights using a restricted framework similar to

that considered above for shocks to demand: the supply shock is now fully transitory (i.e., a one-off

date-0 supply shock u0) and the monetary and fiscal authorities together frictionlessly implement

perfect stabilization of the economy after two periods, i.e., we have that yt = πt = rt = dt+1 = 0 for all

t ≥ 2. We again state the main takeaway here, delegating a complete characterization of the equilib-

rium to the proof of Proposition 4 in the Appendix.

Proposition 4. Consider the restricted, two-period, problem described above, featuring only supply

shocks. The central bank loss LC B is decreasing over the entire range of τd ∈ [0,1], and therefore it

is minimized for τd = 1.

The monotonicity of τd over [0,1] now holds without any qualifiers: as long as there is some static

automatic stabilizer (τy > 0), delaying fiscal adjustment increases the potency of that stabilizer and

counteracts the central bank’s interest rate hikes, thus destabilizing inflation and necessarily increas-

ing the resulting central bank loss.

Productivity shocks. As discussed briefly in Section 2.1, our focus on cost-push supply disturbances

is motivated by empirical evidence. It is immediate that, if we instead considered productivity distur-

bances but kept the central bank objective unchanged (i.e., featuring output, rather than the output

gap), then our analysis would be entirely unchanged, with productivity shocks affecting the central

bank exactly like the cost-push shocks considered here. Appendix A.4 studies the case of productiv-

ity shocks and the output gap appearing in the central bank objective. The key takeaway is that the

conclusions of this section extend, with fast fiscal adjustment still preferred.

17If λr is very small, then there is no such non-monotonicity: the central bank always tries to approximate the dual-
mandate optimum, which requires larger rate hikes for smaller τd , counteracting the stabilizing effects of slow adjustment.
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Taking stock. The analysis of this section suggests a tension: whether fiscal inaction supports or

hinders the central bank’s objectives depends on the nature of shocks buffeting the macroeconomy.

This ambiguity calls for a quantitative exercise, focused in particular on the decomposition of the

business cycle between demand and supply forces. While we will provide such a quantitative exercise

in Section 6, we first continue with theory, zeroing in on a mechanism that we have so far ignored:

how fiscal adjustment modifies the inflation-output trade-off once such adjustment is distortionary

rather than lump-sum. We will see that this supply-side channel can moderate or even overturn the

present section’s results on supply shocks.

5 The supply-side channel of fiscal inaction

We now alter our model environment and assume that fiscal adjustments are instead distortionary,

in the form of a time-varying proportional tax rate on household income. Such distortionary adjust-

ments introduce a time-varying tax wedge in the Phillips curve, with equation (3) replaced by

πt = κyt + κ̃t adj
t +ut , (12)

where t adj
t = τd dt is the date-t fiscal adjustment and κ̃ > 0 is a scalar parameterizing the inflation-

ary pressure caused by higher tax rates. The generalized Phillips curve relation (12) is derived from

primitives of household labor supply, taxation, and firm pricing decisions in Appendix A.2.

The remainder of this section studies the implications of switching to this alternative supply block.

Since the demand side of the economy is unchanged, Lemma 1 and Proposition 1 continue to hold,

so a lower τd still stabilizes output, for a given monetary policy. What changes relative to our preced-

ing analysis is that τd now also controls the endogenous cost-push term in (12). To understand how

this supply-side channel influences our normative conclusions, it is essential first to understand its

positive properties, i.e., how the fiscal adjustment speed τd affects t adj
t and hence the cost-push term.

In particular, we emphasize that there are two forces at work: one familiar from RANK (ω= 1) and one

new due to HANK (ω < 1). Turning to the normative question in Section 5.2, we then show how the

combination of those two forces can ensure that the central bank prefers a low τd regardless of the

source of the business cycle, for shocks to both demand and supply.

5.1 Fiscal inaction, distortionary fiscal adjustments, and inflation

Our positive analysis proceeds in two steps. First, we show how a delay in fiscal adjustment, i.e., a

reduction in τd , affects the equilibrium path of such fiscal adjustments. This first part is an immediate

extension of our discussion in Section 3 and applies independently of whether the adjustments are
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lump-sum or distortionary. Second, we then use the adjusted Phillips curve (12) to translate this path

of fiscal adjustments into inflation, focusing in particular on implications for the efficacy of monetary

policy as a tool to control inflationary pressures.

Fiscal inaction and equilibrium fiscal adjustments. We begin with a lemma describing the equilib-

rium path of fiscal adjustments as a transformation of the output path.

Lemma 2. The equilibrium path of fiscal adjustments satisfies

t adj
t =

∞∑
s=0

Tt ,s (vs + rs) t ≥ 0, (13)

where the impulse response coefficients for fiscal adjustments satisfy, for all s ≥ 0, T0,s = 0, and for all

t ≥ 1, Tt ,s =−∑t
k=1 BkYt−k,s , with Bk = τd

τy

β

(
1−τd
β

)k−1 > 0 for k ≥ 1.

Lemma 2 decomposes the path of fiscal adjustments into two components: the response of output

to shocks (the Y•’s), and the response of fiscal adjustments to changes in output (the B•’s). By the

fiscal adjustment rule (5), a one-off, one-unit decrease in period-t output translates into a concurrent

budget shortfall of size of τy , and therefore increases period-t +1 debt by β−1τy . This debt increase in

turn causes fiscal adjustments, equal to τd
τy

β
≡B1 at t +1, τd

τy

β
1−τd
β

≡B2 at t +2, and so on. In short,

Bk measures the period-(t +k) tax hike triggered by the budgetary shortfall in period t induced by a

one-unit period-t output decrease. With output equilibrium paths already characterized in Section 3,

Lemma 2 translates those to fiscal adjustments.

We now ask how the equilibrium path of fiscal adjustments varies with τd . Using the lemma, we

answer this question in two steps: first only looking at the direct effect through the mapping from

given output to fiscal adjustments (i.e., the B•’s), and second also accounting for the indirect effect

through τd moving output (i.e., the Y•’s). We note here (and will discuss further below) that the first

effect is present also in RANK, while the second is novel to the HANK setting studied here.

Proposition 5. The equilibrium path of fiscal adjustments has the following properties.

1. The coefficients B• that map given output to fiscal adjustments satisfy

∂

∂τd

K∑
k=1

βkBk > 0 for all finite K ≥ 1. (14)

Moreover, for any τd > 0,
∑∞

k=1β
kBk = τy . That is, given a path of output, a lower τd delays fiscal

adjustment, shifting it from the short run to the long run without changing its net present value.

2. The overall path of fiscal adjustments, which also accounts for how τd affects the equilibrium

path of output, satisfies, for all shock news horizons s ≥ 0,

∂

∂τd

∞∑
t=0

βtTt ,s > 0.

26



Figure 5: The solid gray lines show impulse responses of fiscal adjustment t adj
t to a contractionary

demand shock for different τd ’s. The dashed orange lines show the corresponding fiscal adjustment
paths for different τd ’s, holding the output path fixed at the impulse response under τd = 1.

That is, a lower τd lowers the cumulative fiscal adjustment response. Furthermore, also for all

s ≥ 0, the entire impulse response Tt ,s converges uniformly to 0 for all t ≥ 0, and so in particular

the cumulative fiscal adjustment converges to zero:

lim
τd→0

∞∑
t=0

βtTt ,s = 0.

We illustrate and explain the two parts of Proposition 5 using Figure 5. The figure shows impulse

responses of fiscal adjustments, t adj
t , following the same persistent, contractionary demand shock as

that considered for the illustrations in Section 3. Consider first the case of fast fiscal adjustment, τd = 1

(shown as the black line). By construction, the shock depresses consumer spending in the short run,

lowering output and thus the concurrent tax revenue, through the automatic stabilizer. When τd = 1,

this necessitates a quick and large hike in future taxes. Now consider the effect of lowering τd below 1.

The orange dotted lines in Figure 5 show what happens if, as we lower τd , we counterfactually keep the

output path at its equilibrium level under τd = 1—i.e., we show the direct, partial equilibrium effect

of delaying fiscal adjustment, echoing the first part of Proposition 5. We see that the fiscal adjustment

path gets shifted to the right: the endogenous tax hikes are postponed but, by the government budget,

the net present value of overall fiscal adjustments is unchanged. This is exactly the property (14): for

any finite date K , lowering τd reduces the amount of fiscal adjustment that happens up to date K .

The grey lines of Figure 5—which show overall general equilibrium impulse responses of fiscal

adjustment—also contain the indirect effect through output and thus help illustrate the second part
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of Proposition 5. If households were Ricardian (ω = 1, as in RANK), then their spending would have

been invariant to the timing of tax hikes, and so the intertemporal shift in tax hikes discussed above

would be the only effect of lowering τd , with equilibrium output remaining unaffected. But now that

households are non-Ricardian (ω < 1), postponing tax hikes is expansionary (recall Proposition 1),

and this endogenously moderates the required tax hikes—i.e., the second part of Proposition 5. Intu-

itively, postponing the fiscal adjustment dynamically amplifies the static automatic stabilizer, substi-

tuting for the need to hike taxes in the future. In the limit as τd → 0, this mechanism is so strong that

the entire impulse response of fiscal adjustment becomes vanishingly small, and so naturally its net

present value NPV(t adj) converges to zero for any shock.18

The above lessons hold independently of whether the fiscal adjustments are lump-sum or dis-

tortionary. In the latter case, however, fiscal adjustment matters directly for inflation through (12),

influencing the inflation-output trade-off faced by the central bank. We turn to this margin next.

The impact on inflation. Combining Proposition 5 with equation (12), which gives the Phillips curve

under distortionary fiscal adjustment, we immediately obtain the following characterization of equi-

librium path of inflation:

πt =
∞∑

s=0

(
κYt ,s + κ̃Tt ,s

)
(vs + rs)+ut , t ≥ 0. (15)

Equation (15) reveals how the switch from lump-sum to distortionary fiscal adjustments shapes the

effect of changes in aggregate demand—and so in particular of real interest rate hikes—on inflation.

Recall that Yt ,s is the response of output at date t to a date-s interest rate hike, which is unaffected

by the switch to distortionary fiscal adjustment and is (typically, though not necessarily) negative; it

is the conventional channel of interest rate hikes moderating inflation by reducing economic activ-

ity. The second term, Tt ,s , comes from the response of date-t distortionary fiscal adjustments and

is typically positive, as the contraction in output sooner or later necessitates tax hikes, distorting the

consumption-labor margin and thus increasing inflation. It follows that, when fiscal adjustments are

distortionary, interest rate hikes become less effective as a tool to moderate inflationary pressures.

To zero in further on how the speed of fiscal adjustment shapes this mapping from interest rates to

inflation, we differentiate the inflation impulse response to rate changes with respect to τd , obtaining

κ
∂Yt ,s

∂τd
+ κ̃∂Tt ,s

∂τd
, (16)

where
∂Tt ,s
∂τd

is the effect of τd on the path of distortionary fiscal adjustments, as characterized in Propo-

sition 5. The first term in (16) is negative: delays in fiscal adjustment boost output and thus, through

18As noted in Section 3, this limit property is the flip side of the corresponding property for the cumulative output re-
sponse: by guaranteeing that the present value of output is insulated from demand and supply shocks, τd → 0 guarantees
that the present value of fiscal adjustment is also insulated.
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INFLATION PATH INDUCED BY A REAL RATE HIKE

Figure 6: Impulse responses of inflation to a real interest rate hike (AR(1), persistence of 0.9), for dif-
ferent τd ’s (shades of grey), if fiscal adjustments are lump-sum (left panel, corresponding to κ̃= 0) or
distortionary (right panel, so κ̃≫ 0).

the conventional NKPC channel, increase inflation. This is exactly the tension that we discussed at

length in Section 4.3: slow fiscal adjustment interferes with the central bank’s ability to lower inflation

through interest rate hikes. The second term, on the other hand, is new and tends to be positive: slow

fiscal adjustments help reduce the size of distortionary tax hikes and thereby also inflation—early on

via the intertemporal shifting in the first part of Proposition 5, and later on via the endogenous stabi-

lization of output in the second part. We thus now have an offsetting effect that can moderate or even

overturn the logic of Section 4.3.

We illustrate these offsetting effects in Figure 6, which compares the impulse response of inflation

to a persistent interest rate hike under lump-sum fiscal adjustment (left panel) to that under dis-

tortionary fiscal adjustment (right panel), for several values of τd (in grey).19 If fiscal adjustments are

lump-sum, then interest rate hikes do more to moderate inflation the larger τd , as their contractionary

effect on output is larger. If instead fiscal adjustments are distortionary, then fast tax responses make

any attempt to use interest rate hikes to lower inflation self-defeating: distortionary taxes increase

rapidly, here more than undoing the negative effect through the induced contraction in economic ac-

tivity (which is unchanged across the two panels). For slow fiscal adjustment, on the other hand, real

interest rate hikes remain useful as a tool to moderate inflation, as the (still-present, and still negative)

output channel now dominates.

19Figure 6 again is purely illustrative and as such assumes ad hoc values for κ and κ̃, discussed further in Appendix A.5.
The quantitative exercise in Section 6 will instead discipline these coefficient in accordance with the underlying micro-
foundations and the relevant evidence.
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5.2 Implications for the central bank’s loss

Building on the above positive results, we now reassess our earlier normative conclusions about the

desirability of fiscal inaction. The new takeaway is that, when fiscal adjustments are sufficiently dis-

tortionary, the finding of Section 4.3 is overturned or at least materially weakened: even in response

to supply shocks, slow fiscal adjustment may actually support, or at least do less to undermine, the

central bank’s desire to lower inflation. We establish this lesson by following similar steps as before,

starting with the applicable envelope condition.

Proposition 6. With the Phillips curve (12), the sensitivity of the central bank’s loss LC B to the speed of

fiscal adjustment τd satisfies

∂LC B

∂τd
= E

[ ∞∑
t=0

βt
{(
λπκπ

∗
t +λy y∗

t

)( ∞∑
s=0

∂Yt ,s

∂τd

(
vs + r ∗

s

))}]
︸ ︷︷ ︸

term with lump-sum fical adjustment

+ E

[ ∞∑
t=0

βt
{
λπκ̃π

∗
t

( ∞∑
s=0

∂Tt ,s

∂τd

(
vs + r ∗

s

))}]
︸ ︷︷ ︸
additional term with distortionary fiscal adjustment

, (17)

where
{
r ∗

t , y∗
t ,π∗

t ,d∗
t+1, t∗t

}∞
t=0 denote the equilibrium paths under optimal monetary policy, and the

impulse response coefficients
{
Yt ,s ,Tt ,s

}
t ,s≥0 are characterized in Propositions 1 and 5, respectively.

As before, this result, now combined with our characterization of the impulse responses of both

output and fiscal adjustments, will help to sign the effect of τd onLC B . For much of the remainder

of this section, we focus on supply shocks, because this is where the switch to distortionary fiscal

adjustment matters the most; demand shocks are discussed briefly at the end.

Intuition. The preceding discussion suggests that, following supply shocks, fast fiscal adjustment is

likely to be much less desirable than in the lump-sum case: interest rate hikes, designed to stabilize

inflation through a reduction in output, now quickly lead to distortionary fiscal adjustments, thereby

increasing inflation and undoing the benefits of the induced output contraction. We see this in (17),

where π∗
t ,r ∗

s , and
∂Tt ,s
∂τd

in the second line are all likely to be positive following an inflationary supply

shock (at least at short horizons), thereby dampening or even reversing the negative sign of ∂LC B
∂τd

.

Some complementary intuition comes from a Ramsey perspective. In the absence of cost-push

disturbances, a standard Ramsey planner required to raise a given amount of tax revenue would pre-

fer to increase distortionary taxes smoothly (Barro, 1979). When such disturbances are present, the

same logic translates into an incentive to lower distortionary taxes precisely when the cost-push dis-

turbance is large, because this smooths the combined distortion (Benigno and Woodford, 2003). Fast

fiscal adjustment runs directly counter to both objectives, raising the tax distortion precisely when
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Figure 7: Impulse responses of output, inflation, and real interest rates to a inflationary supply shock
for different τd ’s under optimal monetary policy. The solid lines (grey) are for the model with distor-
tionary fiscal adjustments, while the dashed lines (orange) are for lump-sum fiscal adjustments.

the cost-push distortion is large. Slow adjustment, in contrast, smoothes out the distortion, easing

the output-inflation trade-off faced by the central bank. This smoothing margin is related to the di-

rect effect of delays in fiscal adjustment (i.e., to the first part of Proposition 5), and is present even with

permanent-income households. Non-Ricardian consumer behavior adds a second indirect channel,

related to the second part of Proposition 5: slow adjustment now not only smoothes but in fact en-

dogenously reduces equilibrium fiscal adjustments, and so the inflationary pressure of the cost-push

shock is no longer compounded by the tax distortion wedge in the Phillips curve.

Illustration. We illustrate these forces in Figures 7–8, which show impulse responses to inflationary

supply shocks together with the corresponding central bank losses, under optimal monetary policy

and for different values of τd . The key takeaway is that, just as anticipated, switching to distortionary

fiscal adjustments makes fast tax responses less desirable. Consider first the impulse responses in

Figure 7. When fiscal adjustment is slow, there is little difference between the scenario with lump-

sum adjustment (dashed orange lines) and that with distortionary adjustment (solid blue lines). This

is because, in the limit as τd → 0, the equilibrium path of fiscal adjustments converges to zero in both

scenarios (by Proposition 5). When fiscal adjustment is instead fast, we see large differences emerge:

since any attempts to stabilize inflation through rate hikes are largely self-defeating, the central bank

now endogenously decides to depress output by much less. Intuitively, as already discussed above, a

large output drop would necessitate large and quick tax hikes, in turn undoing much of the desired

inflation reduction. Figure 8 then reports the associated central bank loss as a function of τd for κ̃= 0

(i.e., lump-sum scenario, solid) and κ̃≫ 0 (i.e., distortionary scenario, dashed), with the red lines as
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Figure 8: Minimized central bank loss LC B as a function of τd for demand shocks (blue) and supply
shocks (red), with lump-sum fiscal adjustments (solid, corresponding to κ̃= 0) and distortionary fiscal
adjustments (dashed, corresponding to κ̃> 0).

before corresponding to supply shocks. As we move from κ̃= 0 to κ̃≫ 0, the slope of the central bank

loss with respect to τd flips: the central bank prefers fast fiscal adjustment in the lump-sum case, but

slow adjustment if the endogenous tax response is sufficiently distortionary.

An analytical result. To conclude, we provide an exact analytical result. For this we return to our

earlier two-period framework, but now adapted to distortionary fiscal adjustment: the supply shock

is fully transitory (i.e., a one-off date-0 supply shock u0), output is perfectly stabilized after two periods

(yt = 0 for all t ≥ 2), and taxes are smoothed thereafter (t adj
t = t adj

2 = (1−β)d2 and dt = d2 for all t ≥ 2).

We provide a complete characterization of equilibrium dynamics in this restricted economy in the

proof of Proposition 7 in the Appendix, and summarize the main takeaway here.20

Proposition 7. Consider the restricted, two-period, problem described above, featuring only supply

shocks. If κ̃ is sufficiently large, then the central bank loss LC B is increasing over the entire range of

τd ∈ [0,1], and therefore it is minimized for τd = 0.

The proposition affirms the intuition we developed above: if the inflationary pressure triggered by

the distortionary fiscal adjustment is large enough, then the second effect in (17) dominates, and so

20Proposition 7 treats κ̃ as a primitive. We do so to maximize clarity, as the exercise allows us to establish cleanly that
the κ̃-related channel studied here leans against that of Section 4.3. In terms of microfoundations, the interpretation of
the exercise here—with κ̃ large relative to κ—is that prices are relatively flexible (delivering large κ̃), but the mapping
from marginal cost to output is flat (delivering small κ). For our quantitative explorations in Section 6 we will tie κ̃ to its
microfoundations and discipline it with the relevant evidence.
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the central bank is now supported by fiscal inaction even following supply disturbances. The analysis

in this section thus offers an important qualification of our earlier takeaways in Section 4.3: once we

take account of the distortionary, or supply-side, consequences of fast fiscal adjustment, the central

bank may actually prefer a low τd in response to supply shocks.

Demand shocks. We conclude our analysis by noting that, for demand shocks, the switch to distor-

tionary fiscal adjustments is likely to matter much less. Intuitively, following a contractionary demand

shock, fast fiscal adjustment now has one new benefit: when output is depressed, higher distortionary

taxes in the short run raise inflation and thus help stabilize it. This is what we see with the blue lines

in Figure 8, where the dashed line (for distortionary fiscal adjustments) is shallower than the solid line

(for lump-sum adjustments). That said, this dampening effect is likely to be moderate in practice, for

a simple reason: as long as the Phillips curve is relatively flat or the central bank is not excessively

concerned about inflation, the central bank’s losses following aggregate demand shocks will be domi-

nated by the output component, for which the conclusions of Section 4.2 apply unchanged. This basic

logic is visible in Figure 8, where, unlike for supply shocks, the slope does not flip, and will be further

confirmed in our quantitative explorations.

6 Quantitative analysis

The preceding analysis shed light on, first, how the speed of fiscal adjustment shapes the propagation

of macroeconomic shocks, and second, how this in turn affects the central bank’s ability to stabilize

output and inflation. The analysis was, however, limited to a relatively simple model environment;

in particular, we abstracted from household heterogeneity and from any feedback from interest rates

and inflation to the government budget. Furthermore, even in that rather simple environment, there

were offsetting forces, related to the types of shocks buffeting the economy and to the inflationary

effects of tax hikes. To address these limitations and understand which theoretical scenario is most

relevant in practice, we now pursue a quantitative exercise. We first accommodate a few additional

mechanisms that are relevant in practice but were absent from our baseline model. We then use

aggregate U.S. time series to learn about the mix of shocks hitting the economy. This will turn out to

be the key step to resolving our theory’s ambiguities in an empirically grounded way.

6.1 An extended model

We begin with a description of the extended model. We first discuss how we generalize the demand

and supply blocks of the economy, before turning to policy.
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Aggregate demand. We extend the demand block by allowing for multiple types of households that

differ in their steady-state wealth holdings Ass
i and survival probabilities ωi . In addition to proxying

for cross-sectional heterogeneity in wealth and MPCs, these enrichments serve two key roles vis-Ã -

vis the model’s aggregate dynamics. First, they will allow us to match aggregate-level intertemporal

MPCs to those implied by richer HANK models and observed in the data (Auclert et al., 2024; Angeletos

et al., 2024; Wolf, 2025). Second, we can now have most government debt and thus wealth—both

in steady state and over the business cycle—be held by low-MPC households, preventing the model

from implying a counterfactually fast pass-through from changes in private-sector wealth holdings to

consumer spending, consistent with Chodorow-Reich et al. (2021) and Auclert et al. (2023).

Aggregate supply. To accommodate more realistic inflation dynamics, we replace our static Phillips

curve (3) with the following relation:

πt = κyt + κ̃t adj
t +ξβπt−1 + (1−ξ)βEt [πt+1]+ut , (18)

where ξ ∈ [0,1) parameterizes the degree of backward-lookingness in price-setting. This is the same

“hybrid” version of the New Keynesian Phillips Curve as that featured in the related empirical and

DSGE literatures (e.g., Galı and Gertler, 1999; Christiano et al., 2005), augmented here to allow for a

tax wedge from distortionary fiscal adjustments.

Shocks. We allow for the stochastic disturbances vt and ut to follow general VARMA(p,q) processes.

We can thus accommodate not only correlated shocks to aggregate demand and supply, but also arbi-

trary dynamic patterns, including news-type shocks. Our discussion in Section 6.2 will reveal how we

can use raw time-series data, along with the policy causal effects predicted by our model, to sidestep

any need to take a stance on the underlying structural shocks driving our economy.

Monetary Policy. We continue to assume that monetary policy is optimally set so as to stabilize out-

put and inflation, albeit subject to a realistic friction in the central bank’s ability to regulate aggregate

demand. In our baseline model, this friction was captured by letting the central bank face a cost for

varying the real interest rate rt (where rt ≡ it −Et [πt+1]). We now instead assume that there is a cost

for varying the central bank’s policy instrument itself, the nominal interest rate it . That is, the central

bank’s loss is now given by

LC B = 1

2
E0

[ ∞∑
t=0

βt {
λππ

2
t +λy y2

t +λi i 2
t

}]
. (19)

We make this change with an eye towards realism, mimicking more closely applied practice in mone-

tary policy evaluation (e.g., the Federal Reserve Tealbook, 2016). For completeness, we will also report

results for a loss function penalizing changes in nominal interest rates, as well as for one featuring real

rates as in our baseline theoretical analysis.
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Fiscal Policy. Like before, we wish to evaluate how the central bank’s optimal policy and associated

loss vary with the—exogenously fixed—behavior of the fiscal authority. Unlike before, however, we

now let the fiscal authority issue long-term, nominal government debt. Accordingly, the government’s

flow budget constraint is now given by

dt+1 = 1

β
(dt − tt )+ D ss

Y ss
rt − D ss

Y ss

(
πt+1 −Et [πt+1]−βδ(

qt+1 −Et
[
qt+1

]))
, (20)

where δ ∈ [0,1] is the maturity parameter of government debt and qt is the post-coupon dollar price

for a unit of government debt. Short-term one-period nominal debt and perpetuities are nested as the

opposite extremes with, respectively, δ= 0 and δ= 1. Compared to (4), the two new terms at the end

of equation (20) reflect the unexpected changes in the real value of public debt caused by surprises in,

respectively, the rate of inflation and the price of long-term government bonds. Finally, we drop the

simplifying assumption that taxes automatically adjust to absorb any variation in the in the interest-

rate costs of government debt. That is, we drop the βD ss

Y ss rt term present in our prior fiscal rule (5) and

instead specify tax revenue as

tt = τy yt +τd dt , (21)

where τy and τd parameterize, once again, the size of the automatic stabilizer and the speed of (dis-

tortionary) fiscal adjustment, t adj
t = τd dt , respectively. All in all, the feedback from the macroeconomy

to the government budget is thus now much richer than in our baseline setting: while we preserve the

automatic feedback from real economic activity to tax revenue (via τy > 0), we now also accommodate

the budgetary shortfalls or gains triggered by business-cycle variation in interest rates and inflation

(via (21)). By the same token, τd now measures how quickly the fiscal authority responds to the entire

fiscal footprint of the business cycle, as intermediated through dt in (21).

6.2 Empirical discipline

The question of interest is how the central bank loss—or, more basically, the volatilities of output,

inflation and interest rates under the optimal monetary policy—varies with τd , the speed of fiscal ad-

justment. Clearly, macroeconomic time series alone cannot answer this question, because there is

no direct analogue in the data of the necessary variation in τd . Nonetheless, those series do contain

crucial information about the shocks buffeting the economy and, thereby, about our question of in-

terest. Building on this basic observation, this section discusses how exactly theory and the data can

be combined to learn about how different fiscal rules help or hinder the work of the central bank. We

start with an identification result that provides “sufficient statistics” for our object of interest. We then

describe how exactly this identification result can be used in our context.
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An identification result. Consider the extended model described in Section 6.1 above, subject to the

twist that monetary and fiscal policy instruments
(
it , t adj

t

)
are allowed to follow possibly different rules

than those described earlier—e.g., monetary policy need not be optimal, and both policies could be

subject to random shocks. A standard approach to evaluating our policy question of interest would

be as follows: estimate the parameters of the extended model with likelihood-based methods on time

series data (e.g., as in Smets and Wouters, 2007; Justiniano et al., 2010), then in that estimated model

switch to the policies described in Section 6.1, and finally compute how the volatilities of output,

inflation and interest rates, and thus the resulting central bank loss, vary with τd . We instead follow

a different strategy which, in our assessment, is more transparent. It rests on the observation that,

conditional on our model structure, the counterfactual of interest is actually pinned down by just two

“sufficient statistics”: the causal effects of the two policy instruments on the macro-economy, and the

unconditional second moments of macroeconomic aggregates.

To formally state this identification result, we let xt ≡ (yt ,πt , it ,dt ) and write the Wold representa-

tion of xt under the (arbitrary) baseline policy rules as

xt =
∞∑
ℓ=0
Ψℓet−ℓ, (22)

where the Wold innovations et are orthogonalized (i.e., Var(ut ) = I ). Next, we express the dynamic

causal effects of shocks to monetary and fiscal policy instruments at all impulse and news horizons

on the four macroeconomic outcomes in x as {Θx,m ,Θx, f }, defined exactly as in McKay and Wolf (2023,

Section 2.3). We can now state the identification result.

Proposition 8. Suppose that the Wold representation (22) is invertible. Then, the function LC B , which

gives the central bank’s optimal loss for different fiscal adjustment speeds τd ∈ [0,1], can be calculated

as a function of the following three objects:

1. The Wold representation coefficients, {Ψℓ}∞
ℓ=0.

2. The dynamic causal effects of monetary and fiscal policy instruments, {Θx,m ,Θx, f }.

3. The central bank’s preferences, {λπ,λy ,λi }.

This result is proved in Appendix C.10; here we just explain the basic intuition. Under the assump-

tion of invertibility, the Wold representation completely summarizes the stochastic properties of the

economy, and so in particular it implicitly reflects all the (unknown) shocks that shape the business

cycle. Knowledge of policy causal effects then allows us to do two things. First, we can strip out the ef-

fects of the historical monetary and fiscal policies—both their systematic component and any shocks

thereof—from the Wold representation, leaving us only with the effects of non-policy disturbances.
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Second, we can then add back in the effects of our hypothesized fiscal feedback rule together with

the assumed optimal monetary policy design. This gives us the Wold representation under the new,

counterfactual, fiscal-monetary policy mix, but still reflecting the same mix of non-policy shocks as

that “hidden” in the data. From here, it is immediate to compute the object of interest—the central

bank loss given the fiscal adjustment speed τd —for any given {λπ,λy ,λi }.

Using the identification result. Proposition 8 suggests a three-step strategy for answering the ques-

tion of interest. We here describe that strategy and how we implement it in practice, with a discussion

of the results following in the next section.

1. Second moments. We begin by estimating the Wold representation of xt ≡ (yt ,πt , it ,dt ) in U.S.

data, using standard reduced-form time series techniques. As previewed above, this step, while

completely a-theoretic, contains crucial information about the type of shocks buffeting the

economy. In particular, for the purposes of our results in Section 6.3, the key feature of the

average in-sample co-movement of xt is that the typical short-run boom in output coincides

with a modest increase in interest rates and an even more muted increase in inflation—i.e., it

resembles the so-called “main business-cycle shock” identified in Angeletos et al. (2020). Map-

ping this fact to the theory, one infers that most of the business cycle in the data is driven by

an aggregate demand disturbance, which operates along a rather flat NKPC and is only partially

offset by monetary policy. This in turn suggests that our theoretical conclusions for demand

shocks are likely to be most relevant in practice—an observation that will loom large in our sub-

sequent results. Details on measurement and estimation are provided in Appendix B.2.

2. Policy causal effects. To obtain {Θx,m ,Θx, f }, we use the model described in Section 6.1, minus the

restriction to optimal monetary policy and to our specific assumptions on the fiscal adjustment

rule. Specifically, we combine the private-sector block of the economy together with the steady-

state tax-and-transfer and government-debt profiles to evaluate the dynamic causal effects of

arbitrary time paths of nominal interest rates and (distortionary) fiscal adjustments.

Since the purpose of the model is solely to provide policy causal effects, we discipline its cali-

bration with an eye towards the available empirical evidence on such effects. First, we calibrate

the demand block so that it matches the available evidence on consumer spending responses

to income gains (as taken from Fagereng et al., 2021), thus also replicating the predictions of

richer HANK models about fiscal transfers (along the lines of Auclert et al., 2024); doing so

requires generalizing our model to feature three distinct types of consumers. Second, we pin

down the parameters of the supply block so that it matches the relevant evidence about the

slope and backward-lookingness of the Phillips curve, as inferred from the response of inflation
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Parameter Description Value Target

Demand Block

χi Population shares {0.218,0.629,0.153} Fagereng et al. (2021)

ωi Survival rates {0.972,0.833,0} Fagereng et al. (2021)

Ass
i /Ass Wealth shares {0.8,0.2,0} MPC out of wealth changes

σ EIS 1 Standard

ϕ Frisch elasticity 1 Standard

β Discount factor 0.998 Annual real rate

Supply Block

κ Slope of NKPC 0.02 Romer and Romer (2004);

Aruoba and Drechsel (2024)

ξ Backward-lookingness 0.29 Barnichon and Mesters (2020)

Policy

τy Tax rate 0.33 Average Labor Tax

D ss/Y ss Gov’t debt level 1.79 Av’g domestic debt

δ Gov’t debt maturity 0.95 Av’g debt maturity

Table 1: Quantitative model, calibration.

to monetary shocks (following Romer and Romer, 2004; Barnichon and Mesters, 2020; Aruoba

and Drechsel, 2024).21 Third, we set tax rates, total government debt, and average debt matu-

rity to ensure consistency with pre-2020 U.S. data, following Angeletos et al. (2025). We then

choose household type steady-state wealth holdings to obtain a moderate average MPC out of

steady-state wealth holdings; specifically, since most wealth in our economy is held by relatively

low-MPC consumers, the MPC out of an increase in wealth proportional to steady-state wealth

holdings is only 6%, vs. an economy-wide average quarterly MPC of around 27%.

Parameter values are displayed in Table 1. Taken together, our calibration choices imply that

our model is broadly consistent with empirical evidence on the effects of transitory changes in

interest rates and taxes. We then rely on the structure of the model to populate the entirety of

the causal effect matrices {Θx,m ,Θx, f }. Appendix B.1 provides further computational details.

The first two steps of our approach are “orthogonal complements” in the following sense: the first

21For monetary policy, a 100 basis point transitory increase in the nominal interest rate lowers output by around 0.7
per cent and inflation by slightly above 0.1 per cent, broadly consistent with the literature review in Caravello et al. (2025,
Figure 2). For fiscal transfers, we note that the direct effect of one-off transfers on spending is given by the first column
of the overall intertemporal MPC matrix (Auclert et al., 2024). That column is matched to the evidence in Fagereng et al.
(2021), exactly as in Angeletos et al. (2024, Figure 4, bottom panel).
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step uses no theory but encapsulates the actual business cycle in the data; conversely, the second step

uses a specific model (disciplined with the relevant empirical evidence) to give us the causal effects

of policy, but takes no stance on the shocks buffeting the economy. These two steps are furthermore

“sufficient statistics” for computing the behavior of the economy under any policy rules—a point that,

as shown in McKay and Wolf (2023) and Caravello et al. (2025), extends well beyond the specific con-

text of our exercise here. It now just remains to evaluate counterfactual outcomes under our particular

assumptions on the central bank objective.22

3. Optimal monetary policy. The final ingredient is the monetary policy objective: given the weights

{λπ,λy ,λi } that the central bank assigns to the volatilities of output, inflation, and interest rates,

we can compute optimal monetary policy and thus evaluate the central bank loss for different

values of τd . Our choices of parameter values again follow the Federal Reserve Tealbook (2016),

exactly as in prior sections.23

All in all, our three-step approach transparently shows how different pieces of evidence, theory, and

priors on central bank objectives are combined to answer our question of interest. In our view, this

transparency of identification is the main appeal of our proposed approach. Finally, we stress that this

transparency also goes hand-in-hand with a sense of robustness: it follows from the identification

result that any alternative approach to quantification that delivers different results would need to

disagree either in terms of unconditional second moments, policy causal effects, or on the central

bank objective. Since we take second moments straight from the data, derive policy causal effects

from a model disciplined by relevant empirical evidence, and consider an empirically relevant central

bank loss, we expect the conclusions reported in the sequel to be robust.

6.3 Quantitative results

We now show the results of the quantitative strategy outlined above. Our findings are reported in

Figure 9, which shows the central bank loss LC B as a function of the fiscal adjustment speed τd ∈ [0,1]

(on the x-axis), for several different experiments and model specifications. For all those exercises we

normalize the peak loss over τd ∈ [0,1] to 1, so the y-axis always gives the relative loss.

22Given the generality of the identification results in McKay and Wolf (2023) and Caravello et al. (2025), one may con-
template a purely empirical evaluation of our policy counterfactuals of interest, taking not just second moments but also
policy causal effects from the data. Such a strategy is, unfortunately, not practical here, for two reasons. First, empirical
evidence on the causal effects of (distortionary) fiscal adjustments is scant. Second, for our analysis, it is essential that
the counterfactual policy rules of interest are implemented exactly and not approximately, precluding the “approximate
counterfactuals” approach of McKay and Wolf (2023).

23Specifically, we again consider equal weights on (annualized) inflation, interest rates, and unemployment; with an
Okun’s law coefficient of 0.5 this corresponds to λi =λπ = 16 and λy = 0.25.
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Figure 9: Central bank losses LC B under optimal monetary policy in the quantitative model, with
aggregate stochasticity driven by the estimated Wold representation (black solid), by only the "main
business-cycle shock" (blue solid), or by the Wold representation but with policy causal effects from
a model with lump-sum fiscal adjustments (orange solid). Dotted lines show robustness to a static
Phillips curve (purple) and to alternative loss specifications featuring the change in nominal interest
rates (pink) or the level of real rates (brown).

The main takeaway of the figure is that the central bank would indeed welcome slow fiscal ad-

justment or in fact even fiscal inaction. Our headline experiment is shown as the black line, where

our two sufficient statistics and the central bank loss are specified exactly as discussed in the previ-

ous section—measured second moments for the Wold decomposition, our calibrated headline model

for policy causal effects, and the benchmark equal-weights central bank objective function. We see

that the loss is monotone in τd across almost the entire unit interval, and furthermore that the loss

associated with slow or absent fiscal adjustment is materially smaller than that with fast adjustment

(note the y-axis), with slow adjustment lowering the central bank loss—and thus average volatilities of

macro aggregates—by around 20 per cent. The smallest loss is achieved for τd ≈ 0.02, corresponding

to a half life of government debt somewhat below ten years.

Further analysis and robustness. The solid blue and orange lines provide further insights into where

our headline finding is coming from. First, to construct the blue line, we do not consider the full Wold

representation, but instead only a single “shock”—a rotation of Wold innovations identified exactly

like the “main business-cycle shock” in Angeletos et al. (2020). That shock looks like a conventional

demand shock, and so itself delivers an upward slope, as expected in light of our theory. Since the
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overall data are also driven by various other (non-demand) shocks, the upward slope here is in fact

more pronounced than its unconditional analogue (in black); that said, given that the main business-

cycle shock is a dominant source of macroeconomic fluctuations, we would expect the black and blue

lines to be rather close, and that is indeed what we see. Next, the orange line plots the overall loss

if instead we consider an alternative model variant with lump-sum (rather than distortionary) fiscal

adjustment. Since now supply shocks optimally call for fast fiscal adjustment, the orange line lies

somewhat above the black line; but with demand-type shocks overall dominating, we would expect

even the lump-sum fiscal adjustment loss to still be mostly upward-sloping in τd , and again that is

what we see.24 Taken together, these two experiments reveal cleanly that our overall quantitative re-

sults are driven by the mechanism distilled in Section 4 for demand shocks, with the distortionary tax

channel only providing moderate further amplification.

The dashed lines in Figure 9 highlight some further robustness. For those lines we change either

the model used to compute policy causal effects (to a static Phillips curve, in line with our previous

theoretical analysis) or the central bank loss function (to feature either real rates or changes in nomi-

nal rates). We see that none of these modifications really change the overall picture: the central bank

loss remains largely monotone in τd , with material loss reductions associated with slow adjustment.

Summary. The analysis of this section has allowed us to evaluate the practical relevance of our ear-

lier theoretical conclusions. Since household marginal propensities to consume are high, delays in

fiscal adjustment are meaningfully stabilizing; and since aggregate fluctuations are dominated by

demand-type disturbances, such endogenous stabilization through fiscal inaction is welcome with

either lump-sum or distortionary fiscal adjustment. Our headline finding—that central banks may

welcome slow fiscal adjustment, or even fiscal inaction, over the business cycle—is thus not just a the-

oretical possibility, but indeed a robust feature of empirically disciplined HANK-type models, driven

by our two “sufficient statistics.”

7 Conclusion

Does fiscal inaction help or hurt a central bank? While the conventional wisdom holds that fast fiscal

adjustment is desirable (to avoid “fiscal dominance”), we have argued both theoretically and quanti-

tatively that slow or even no fiscal adjustment may aid the central bank in achieving its objectives. The

simple intuition is that, with nominal rigidities and non-Ricardian households, slowing down the pace

24The dips in the loss close to but above τd = 0 are related to the fact that now we allow for interest rates to also feed back
to the government budget. If we allowed for such feedback in our baseline analytical model, then equilibrium determinacy
under the textbook dual mandate implicit targeting rule (as in Woodford, 2003a) would require τd > 1−β. A smaller τd

thus now induces very persistent fluctuations (truncated only by long-horizon eventual fiscal adjustment, see Appendix
B.1). This effect is what we see at the boundary here.
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of fiscal consolidation in the aftermath for recessions boosts aggregate demand and thereby eases the

recession and the associated budgetary shortfall. As long as such stabilization is desirable—e.g., when

the economy is in a demand-driven recession, or when tax hikes are sufficiently inflationary—fiscal

inaction will provide monetary support.

Two obvious but important qualifiers for our results are the following. First, fiscal inaction is de-

sirable following non-fiscal disturbances. A fiscal authority that itself is a source of macroeconomic

volatility of course remains undesirable. Second, our results—like the entire New Keynesian frame-

work upon which they are based—apply only to short-run fluctuations, and not to steady-state or

long-run effects. A fiscal authority that systematically runs large deficits, or that systematically dis-

torts private activity, can have further detrimental effects not covered by our analysis. An important

practical question is therefore what kind of fiscal frameworks can harness the advantages of fiscal

inaction discussed here without subjecting the economy to broader fiscal imprudence.
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Supplementary appendix (online publication only) for:

Fiscal inaction as monetary support

This Appendix contains further material for the article “Fiscal inaction as monetary support.” We

provide: (i) supplementary details for our theoretical analysis in Sections 2 - 5; (ii) a complete model

description, the empirical exercise, and additional analysis for our quantitative investigations in Sec-

tion 6; and (iii) all proofs.

Any references to equations, figures, tables, assumptions, propositions, lemmas, or sections that are

not preceded by “A.”—“C.” refer to the main article.
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A Supplementary details for the theoretical analysis

Appendix A.1 provides further details for the headline environment of Section 2 (with lump-sum fiscal

adjustments), while Appendix A.2 does the same for the environment of Section 5 (with distortionary

adjustments). We next extend our positive results to generic budgetary shortfalls in Appendix A.3,

and our normative conclusions to productivity shocks in Appendix A.4. Finally Appendix A.5 briefly

presents the model calibration for our illustrative simulations.

Throughout we log-linearize around a deterministic steady state in which inflation is zero (Πss =
1), real allocations are given by their flexible-price counterparts (e.g., Y ss equals flexible-price output),

and the real debt burden is constant at some given level D ss ≥ 0. As discussed further below, our

assumptions on annuities and on the social fund ensure that R ss = 1
β
> 1, and that steady-state taxes

satisfy T ss = (1−β)D ss . While we will throughout focus on the empirically relevant scenario with

D ss > 0, we wish to also accommodate D ss = 0, so we let dt ≡ (D t −D ss)/Y ss , tt ≡ (Tt −T ss)/Y ss , and

ai ,t = (
Ai ,t − Ass

)
/Y ss—i.e., we measure fiscal variables (and thus also household wealth) in terms

of absolute deviations (rather than log-deviations) from steady state, scaled by steady-state output.

Otherwise, lowercase variables denote (log-)deviations from the steady state.

A.1 Environment with lump-sum fiscal adjustments

We proceed as in Section 2: first aggregate demand, then supply, and then policy.

Aggregate demand. The household block follows from Angeletos et al. (2024, 2025), which is restated

here for completeness. The economy is populated by a unit continuum of households. A household

survives from one period to the next with probabilityω ∈ (0,1) and is replaced by a new one whenever

it dies. Households have standard separable preferences regarding consumption and labor, and do

not consider the utility of future households that replace them. The expected utility of any (alive)

household i in period t ∈ {0,1, . . . } is hence

Et

 ∞∑
k=0

(
βω

)k e
∑k−1

s=0 vt+s

C
1− 1

σ

i ,t+k −1

1− 1
σ

− ι
L

1+ 1
ϕ

i ,t+k

1+ 1
ϕ


 , (A.1)

where Ci ,t+k and Li ,t+k denote household i ’s consumption and labor supply in period t +k (condi-

tional on survival), β is the steady-state household discount factor, and vt is the discount-rate shock.

Households can save and borrow through an actuarially fair, risk-free, real annuity, backed by

government bonds. Conditional on survival, households receive a real return Rt /ω, where Rt is the

real rate of interest rate between period t and t + 1. Households furthermore receive labor income

and dividend income Wt Li ,t and Qi ,t (both in real terms), and pay taxes. The real tax payment Ti ,t
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depends on both the individual’s income and aggregate fiscal conditions:

Ti ,t = τy Yi ,t + T̄ +τd
(
D t −D ss)+ D ss

(R ss)2

(
Rt −R ss) , (A.2)

where Yi ,t ≡Wt Li ,t +Qi ,t is the household’s total real income, τy ∈ (0,1] is the proportional tax rate on

their income, T̄ = T ss −τy Y ss is set to guarantee budget balance at steady state, τd ∈ [0,1) is a scalar

that parameterizes the speed of fiscal adjustment, and the last term captures the automatic offset of

the budgetary effects of interest rate changes. After (log-)linearization and aggregation, (A.2) becomes

the tax rule (5) in the main text.

Old households make contributions to a “social fund” whose proceeds are distributed to newborn

households. We use Si ,t to denote the transfers from or contributions to the fund, with Si ,t = Snew =
D ss > 0 for newborns and Si ,t = Sold =−1−ω

ω
D ss < 0 for old households. This guarantees (1−ω)Snew +

ωSold = 0, ensuring that the fund is balanced. The fund thus ensures that all cohorts, regardless of

their age, enjoy the same wealth and hence consumption in steady state. This simplifies aggregation

and implies that the steady state of our model is the same as its RANK counterpart. In particular, the

social fund guarantees—together with the annuities, which offset mortality risk—that the steady-state

rate of interest (in the steady state around which we log-linearize) is β−1 (thus “r > g ”).

Putting everything together, the date-t budget constraint of household i is given as

Ai ,t+1 = Rt

ω︸︷︷︸
annuity

(
Ai ,t +Wt Li ,t +Qi ,t︸ ︷︷ ︸

Yi ,t

−Ci ,t −Ti ,t
)+Si ,t+1, (A.3)

where Ai ,t denotes household i ’s real wealth at the beginning of date t (inclusive of social fund pay-

ments). We furthermore assume that all households receive identical shares of dividends, and ab-

stract from heterogeneity in labor supply, with labor supply intermediated by labor unions that de-

mand identical hours worked from all households Li ,t = Lt .25 The unions bargain on behalf of those

households, equalizing the (post-tax) real wage and the average marginal rate of substitution between

consumption and labor supply; i.e., we have that

(1−τy )Wt =
ιL

1
ϕ

t∫ 1
0 C

− 1
σ

i ,t di
. (A.4)

Together, all households receive the same income and face the same taxes, Yi ,t = Yt and Ti ,t = Tt .

Aggregate supply. Log-linearizing (A.4),

1

ϕ
ℓt = wt − 1

σ
ct . (A.5)

25This assumption simplifies the analysis by avoiding deficit-driven heterogeneity in the labor supply and income of
different generations, without changing the essence of our results.
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Together with market clearing (ct = yt ) and technology (yt = ℓt ), this pins down the equilibrium real

wage as wt =
(

1
ϕ + 1

σ

)
yt .

We now derive the static NKPC (3). Firm optimality together with full myopia—i.e., m̄ = 0 and so

M f = 0 in the cognitive discounting model of Gabaix (2020)—pins down the optimal reset price as a

function of current real marginal costs (wages) as well as cost-push shocks,

p∗
t −pt =

(
1−βθ)

wt + θ

1−θut (A.6)

where p∗
t is optimal reset price in period t , pt is the price level at period t , 1−θ ∈ (0,1) is the Calvo

reset probability, and the cost-push wedge is normalized such that ut increases πt one-to-one in (3).

We hence arrive at

πt = 1−θ
θ

(
p∗

t −pt
)= (1−θ)

(
1−βθ)( 1

ϕ
+ 1
σ

)
θ

yt +ut (A.7)

which is (3) in the main text with κ= (1−θ)(1−βθ)
(

1
ϕ+ 1

σ

)
θ > 0.

Fiscal policy. The government issues non-contingent, short-term, real debt, with D t denoting the

real value of public debt outstanding at the beginning of period t . In levels, the government’s flow

budget is

D t+1 = Rt (D t −Tt ) ,

where Tt ≡
∫

Ti ,t di is real tax revenue (also, the real primary surplus) in date t . Finally we assume that

the government also needs to satisfy a non-Ponzi condition: limk→∞Et

[
D t+k+1∏k
l=0 Rt+l

]
= 0.

Total tax revenue Tt is determined as a function of exogenous shocks and endogenous outcomes.

For each household i , the tax payment Ti ,t , given by (A.2), consists of two components. First, there is

a proportional tax τy ∈ (0,1] on household total income. This tax is distortionary but time-invariant.

Second, there is a time-varying lump-sum component, which in turn has three parts: τd (D t −D ss),

the tax hikes used to help return government debt to steady state; T̄ = T ss − τy Y ss , ensuring bud-

get balance in steady state; and D ss

(R ss )2 (Rt −R ss), offsetting the budgetary effects of any interest rate

movements. Aggregating, total taxes are set as follows:

Tt = τy Yt + T̄ +τd
(
D t −D ss)+ D ss

(R ss)2

(
Rt −R ss) . (A.8)

Log-linearizing yields (5).

A.2 Environment with distortionary fiscal adjustments

The environment is the same as the one in Section 2 and Appendix A.1, with the sole exception that

fiscal adjustment now is distortionary. Specifically, this means that the proportional tax on household
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total income, given as

τy,t = τy +τd
D t −D ss

Y ss
= τy + t adj

t , (A.9)

is now time-varying, where t adj
t = τd dt = τd

D t−D ss

Y ss . The household’s total real tax payment then be-

comes

Ti ,t = τy,t Yi ,t + T̄ + D ss

(R ss)2

(
Rt −R ss) , (A.10)

aggregate tax revenue is

Tt = τy,t Yt + T̄ + D ss

(R ss)2

(
Rt −R ss) , (A.11)

and finally the labor supply condition changes to

(1−τy,t )Wt =
ιL

1
ϕ

t∫ 1
0 C

− 1
σ

i ,t di
. (A.12)

Log-linearizing the previous conditions, we have

wt = 1

ϕ
ℓt + 1

σ
ct + 1

1−τy
t adj

t (A.13)

as well as

tt = τy yt + t adj
t +βD ss

Y ss
rt , (A.14)

which is exactly the same as (5).

Combining these equations with the unchanged government budget constraint (8) and aggregate

demand block (2) means that the characterization of the equilibrium outcomes
{

yt ,dt+1, tt
}∞

t=0 given

{vt ,ut ,rt }∞t=0 is exactly the same as in Propositions 1 and 5. Turning to the Phillips curve and thus

inflation, (A.13) together with market clearing (ct = yt ) and technology (yt = ℓt ) pins down the real

wage as wt =
(

1
ϕ
+ 1
σ

)
yt + 1

1−τy
t adj

t . Inflation (A.7) is then given by

πt = (1−θ)
(
1−βθ)
θ

((
1

ϕ
+ 1

σ

)
yt + 1

1−τy
t adj

t

)
+ut

= κyt + κ̃t adj
t +ut ,

where

κ̃= (1−θ)
(
1−βθ)
θ

1

1−τy
= κ 1(

1
ϕ
+ 1
σ

)(
1−τy

) ,

which microfounds (12).
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A.3 Extension to generic budgetary shortfalls

In the main text, we focused on how τd affects the impulse responses of output and fiscal adjustments

to particular demand and supply shocks. Zooming out, we note that nothing in those discussions re-

ally hinged on why there was a budgetary shortfall in the first place—we only leveraged the simple

idea that postponing any required amount of tax hikes endogenously stimulates the economy and

raises fiscal revenue, thus endogenously lessening the actually (in equilibrium) needed fiscal adjust-

ments. This suggests that our “dynamic automatic stabilizer” logic should actually extend to generic

budgetary shortfalls. We here confirm this conjecture through the following exercise. We will estab-

lish that, if the government along an equilibrium faces a budgetary shortfall at some horizon t = H (in

the sense of dH > 0), then delaying period-H fiscal adjustment invariably raises output in all periods

relative to the original equilibrium, regardless of the history of shocks that lead to dH > 0.

Formally, we suppose that the fiscal rule is just as considered in the main text (for a baseline τd ),

but then, for some date H , the fiscal adjustment coefficient changes to τd ,H , i.e., the rule (5) is, for

t = H , replaced by

tH = τy yH +τd ,H dH +βD ss

Y ss
rH . (A.15)

We then ask how changes in τd ,H away from τd affect the economy. This thought experiment is ideal

as it allows us to cleanly isolate the causal effects of tax responses to endogenous budgetary shortfalls

at arbitrary horizons H . We arrive at the following characterization of the effects of τd ,H .

Proposition A.1. Suppose that ω< 1 and that the fiscal authority follows the rule (5) at all dates t ̸= H

and the rule (A.15) at date t = H. Furthermore suppose that the paths of real interest rates {rt }∞t=0 and

aggregate shocks {vt ,ut }∞t=0 are such that, for τd ,H = τd , the date-H value of government debt is strictly

positive, i.e., dH > 0. Then the equilibrium path of output satisfies

∂yt

∂τd ,H

∣∣∣∣
τd ,H=τd

< 0 ∀t ≥ 0. (A.16)

Proposition A.1 formalizes the above intuition: whatever the reason for a fiscal budgetary shortfall,

and whatever the horizon of that shortfall, delaying the subsequent fiscal adjustment boosts output

(and thereby also inflation). In addition to substantiating economic intuition, this result will also

prove useful for our quantitative explorations in Section 6, where we allow for inflation and interest

rates to also effect budgetary shortfalls (or surpluses), and thus dt . By Proposition A.1, failing to re-

spond to such shortfalls with fast fiscal adjustment will necessarily be stimulative, and of course vice

versa for budgetary surpluses.
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A.4 Productivity shocks

In this appendix we provide a brief discussion of an alternative model variant in which supply shocks

take the form of textbook productivity shocks. We let y∗
t denote the natural level of output (defined

exactly as in Galí, 2008), and write the stochastic process for productivity shocks directly in terms of

y∗
t . Analogously writing ŷt ≡ yt − y∗

t for the output gap, our model’s equations change as follows: first,

the demand relation becomes (we shut down the demand shock vt = 0 for clarity)

ŷt =−σrt +
(
1−βω)

(1−ω)

ω
dt+1 +Et

[
ŷt+1 + y∗

t+1 − y∗
t

]
, (A.17)

where now Et
[

y∗
t+1 − y∗

t

]
appears as a demand wedge; the supply block is

πt = κŷt +βEt [πt+1] , (A.18)

with inflation now driven by output gap; and the law of motion of government debt becomes

dt+1 = 1−τd

β
dt −

τy

β
ŷt −

τy

β
y∗

t , (A.19)

where we use that tax revenue is a function of actual output, not y∗
t .

Implications for monetary-fiscal interactions. Comparing (A.17) - (A.19) with the equilibrium sys-

tem studied in the main text, we first of all see that, if the central bank objective still features the actual

level of output yt , then productivity shocks behave exactly like cost-push shocks: the demand block in

terms of yt is unchanged; productivity shocks appear as a wedge in (A.18), just like cost-push shocks;

and the fiscal block (A.19) is again unchanged.

Matters change, however, if the central bank objective features the output gap, ŷt . In that case, it

follows from (A.17) - (A.19) that technology shocks will be isomorphic to a combination of a demand

shock (a wedge in (A.17)) and fiscal deficit shock (a wedge in (A.19)). Importantly for our purposes,

however, such a combination of shocks will still favor fast fiscal adjustment, exactly as in our treat-

ment of (cost-push) supply shocks. To see this, consider a contractionary productivity shock and

suppose that real rates are not raised sufficiently to track the increase in the natural rates of interest

because of λr > 0, so ŷt ,πt > 0. Since yt < 0, fiscal revenue decreases, and fast fiscal adjustment is de-

sirable: it induces immediate tax hikes, decreasing yt and bringing ŷt and πt close to zero. It follows

that our conclusions about cost-push supply shocks also extend to this section’s alternative treatment

of productivity supply shocks.

A.5 Illustrative calibrations

We here collect details for the model calibrations used in illustrative simulations in Sections 3 - 5.
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Section 3. We begin with the private sector. On the consumer side we set β = 0.99
1
4 for an annual

steady-state interest rate of 1 per cent, and ω= β−1 ×0.7 for a quarterly MPC of 30 per cent, ensuring

that the non-Ricardian effects at the heart of our theory are prominent. We furthermore set σ= 1 for

an elasticity of intertemporal substitution of 1. We assume that households are subject to a reduced-

form demand disturbance vt that follows an AR(1) process with persistence 0.9. Finally, nominal

rigidities on the firm side are such that the overall resulting slope of the NKPC is κ= 0.3.

Next, turning to policy, we assume τy = 1
3 for an empirically relevant strength of the usual static

automatic stabilizer, and D ss = 1.79, matching the total amount of domestically, privately held U.S.

government debt (see also the discussion in Angeletos et al., 2025). The fiscal adjustment coefficient

τd is varied as our main experiment of interest, and throughout we set H = 300 as the horizon af-

ter which the fiscal authority adjusts to perfectly stabilize real debt, if necessary, consistent with the

equilibrium refinement discussed in our earlier work, Angeletos et al. (2025). Monetary policy in all

exercises just fixes the real rate of interest.

Section 4. The private sector is parameterized exactly as in Section 3, and now subject to both de-

mand and supply shocks that follow AR(1) processes with persistence 0.9. For the strength of auto-

matic stabilizers we consider the same baseline value as above (τy = 1
3 ), but also report results for

τy = 1 as a counterfactually strong automatic stabilizer. Finally, for the monetary authority, our as-

sumptions on the objective function (6) follow the Federal Reserve Tealbook (2016, as well as previous

Tealbooks), imposing equal weights. Since the Federal Reserve’s mandate is specified in terms of un-

employment and not output, we use a simple Okun’s law coefficient of 1
2 to translate to output space;

annualizing interest rates and inflation, this gives λr =λπ = 16 and λy = 0.25.

Section 5. We consider the exact same model parameterization as for Sections 3 - 4, with the only

change being the addition of the distortionary tax term in the NKPC (12). We see κ̃ = 3×κ = 0.9,

which is large enough to illustrate the possibility of a switch in the supply shock loss function slope.

This value, unlike that considered in our quantitative exercise, is not directly disciplined through the

NKPC’s microfoundations—the analysis is purely designed to illustrate Proposition 7.
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B Details for the quantitative analysis

Appendices B.1 - B.2 elaborate further on how we recover the required “sufficient statistics”: first pol-

icy causal effects, and then the Wold representation of the relevant time series data. Appendix B.3

provides some additional details on how we map those sufficient statistics into our counterfactual.

B.1 Policy causal effects

The first sufficient statistic are the causal effects of monetary and fiscal shocks, {Θx,m ,Θx, f }. To com-

pute these objects, we first close the model with a pair of determinacy-inducing policy rules; by McKay

and Wolf (2023), the particular choice of those rules is irrelevant. We set monetary policy as

rt =φyt (B.1)

with φ= 0.2 and fiscal policy as

t adj
t = τd dt (B.2)

with τd = 0.1. We then compute impulse responses to shocks to (B.1) and (B.2) at all horizons, truncat-

ing at T = 500. We store those impulse responses as the columns of the desired matrices {Θx,m ,Θx, f }.

As in our quantitative explorations in Sections 3 - 5, we assume that, after horizon H = 300, the

fiscal authority adjusts to perfectly stabilize real debt, if necessary, again motivated by the equilibrium

refinement discussed in our earlier work, Angeletos et al. (2025).

B.2 Second moments

We wish to estimate the Wold representation of four aggregate time series: output, inflation, the mon-

etary policy rate, and real government debt. These series are constructed as follows, with series names

referring to FRED mnemonics. All series are quarterly.

• Output. We take log output per capita from FRED (A939RX0Q048SBEA). We then transform the

series to stationarity following Hamilton (2018).

• Inflation. We compute the log-differenced GDP deflator (GDPDEF), without further transforma-

tions, corresponding to quarterly inflation.

• Federal funds rate. We obtain the series FEDFUNDS and divide by four, for the quarterly nominal

rate of interest.

• Real government debt. We take nominal federal debt (GFDEBTN), and then deflate using the GDP

deflator (GDPDEF). We transform the series to stationarity following Hamilton (2018).
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Our sample begins in 1981:Q1 and ends just before Covid-19, in 2019:Q4. We estimate the Wold rep-

resentation using a reduced-form VAR, including a constant and deterministic time trend. Consistent

with the recommendations of Montiel Olea et al. (2024) we consider a relatively large number of lags,

p = 8. All results are reported for OLS point estimates. For the main business-cycle shock analysis we

proceed exactly as in Angeletos et al. (2020), maximizing the shock’s contribution to business-cycle

fluctuations in output, and again restricting attention to OLS point estimates.

B.3 Policy counterfactual computation

We here give a high-level overview of how we map the two “sufficient statistics” into the counterfactual

central bank loss L (τd ), with detailed formulas provided in the proof of Proposition 8.

The argument proceeds in three steps. First, note that the monetary policy shock causal effects

Θx,m are defined given the initial (and arbitrary) fiscal rule (B.2). Using the effects of policy shocks to

that fiscal rule, Θx, f , we can evaluate how monetary shocks would counterfactually propagate if the

fiscal feedback rule were instead given by the hypothesized particular counterfactual fiscal rule (21),

denotedΘτd
x,m . Second, we next seek to find an implicit targeting rule that minimizes the hypothesized

central bank loss function (19). Since Θτd
x,m provides a full characterization of how monetary policy

can shape the macro-economy given the assumed fiscal backdrop (21), it immediately pins down that

desired targeting rule, by Proposition 2 of McKay and Wolf (2023). And third, given this monetary

rule (and given the assumed fiscal rule (21)), we can leverage Proposition 1 in Caravello et al. to turn

the actual Wold representation (22) into a counterfactual Wold representation Ψ̃(L), and from here

evaluate all desired counterfactual statistics, including in particular L (τd ).
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C Proofs

C.1 Proof of Lemma 1

From (2), (4), and (5), we have, for all t ≥ 0,

yt =
(1−βω)(1−ω)

βω (1−τd )

1+ (1−βω)(1−ω)
βω

τy

dt + 1

1+ (1−βω)(1−ω)
βω

τy

yt+1 − σ

1+ (1−βω)(1−ω)
βω

τy

(rt + vt ) (C.1)

dt+1 = 1

β

(
(1−τd )dt −τy yt

)
. (C.2)

As a result,  dt+1

yt+1

=
 1−τd

β
−τy

β

− (1−βω)(1−ω)(1−τd )
βω

1+ (1−βω)(1−ω)
βω

τy

 dt

yt

+
 0

σ (rt + vt )

 (C.3)

Note that τy ∈ (0,1] and τd ∈ [0,1). The two eigenvalues of the system are given by the solutions of

λ2 −λ
(

1

β
(1−τd )+1+ 1−βω

βω
τy (1−ω)

)
+ 1

β
(1−τd ) = 0,

with

λ1 =

(
1
β (1−τd )+1+ 1−βω

βω
τy (1−ω)

)
+

√(
1+ 1

β (1−τd )+ 1−βω
βω

τy (1−ω)
)2 −4 1

β (1−τd )

2

=

(
1
β (1−τd )+1+ 1−βω

βω τy (1−ω)
)
+

√(
1− 1

β (1−τd )− 1−βω
βω τy (1−ω)

)2 +4 1−βω
βω τy (1−ω)

2
(C.4)

>
(

1
β (1−τd )+1+ 1−βω

βω τy (1−ω)
)
+

∣∣∣1− 1
β (1−τd )− 1−βω

βω τy (1−ω)
∣∣∣

2
≥ 1

and

λ2 =

(
1
β (1−τd )+1+ 1−βω

βω τy (1−ω)
)
−

√(
1+ 1

β (1−τd )+ 1−βω
βω τy (1−ω)

)2 −4 1
β (1−τd )

2

=

(
1
β (1−τd )+1+ 1−βω

βω
τy (1−ω)

)
−

√(
1− 1

β (1−τd )− 1−βω
βω

τy (1−ω)
)2 +4 1−βω

βω
τy (1−ω)

2
(C.5)

<
(

1
β (1−τd )+1+ 1−βω

βω
τy (1−ω)

)
−

∣∣∣ 1
β (1−τd )+ 1−βω

βω
τy (1−ω)−1

∣∣∣
2

≤ 1,

with λ2 > 0 too since λ1λ2 = 1
β (1−τd ) > 0. Now let

(
1,χ2

)′
denote the eigenvectors associated with

λ2 ∈ [0,1). We then have

λ2 = 1

β

(
1−τd −τyχ2

)
and χ2 =

(1−βω)(1−ω)
βω (1−τd )

1+ (1−βω)(1−ω)
βω τy −λ2

> 0. (C.6)
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Because λ1 > 1, and λ2 ∈ (0,1), we know that there is unique bounded solution of (C.3) based on

Blanchard and Kahn (1980). We guess and verify that such a solution takes the form, for all t ≥ 0, of

yt =χdt −σ
∞∑

k=0
χk+1

v (vt+k + rt+k ) (C.7)

dt+1 = ρd dt +
τyσ

β

∑
k≥0

χk+1
v (rt+k + vt+k ) (C.8)

where χ, ρd , and χv are given by

χ=χ2 > 0 ,ρd =λ2 ∈ (0,1) , and χv = 1

1+ τy

β

(
χ+ (1−βω)(1−ω)

ω

) ∈ (0,1) , (C.9)

and are continuous functions of
(
β,ω,τy ,τd

)
. Because (C.3) is equivalent to (C.1)-(C.2), we only need

to verify that (C.7)-(C.8) satisfies (C.1)-(C.2).

From (C.6), we know that ρd = 1
β

(
1−τd −τyχ

)
so (C.7)-(C.8) satisfies (C.2). To verify (C.1), we start

from its right-hand side and substitute yt+1 based on (C.7) at t +1 and arrive at

right-hand side of (C.1) =
(1−βω)(1−ω)

βω (1−τd )

1+ (1−βω)(1−ω)
βω

τy

dt + 1

1+ (1−βω)(1−ω)
βω

τy

(
χdt+1 −σ

∞∑
k=0

χk+1
v (rt+1+k + vt+1+k )

)
− σ

1+ (1−βω)(1−ω)
βω τy

(rt + vt ) .

We then substitute dt+1 based (C.8) and arrive at

right-hand side of (C.1)

=
 (1−βω)(1−ω)

βω
(1−τd )

1+ (1−βω)(1−ω)
βω τy

+ χρd

1+ (1−βω)(1−ω)
βω τy

dt + σ

1+ (1−βω)(1−ω)
βω τy

[
χ
τy

β
− 1

χv

] ∞∑
k=0

χk+1
v (rt+k + vt+k ) .

From (C.6) and (C.9), we know that

χ=
(1−βω)(1−ω)

βω (1−τd )

1+ (1−βω)(1−ω)
βω τy

+ χρd

1+ (1−βω)(1−ω)
βω τy

−σ= σ

1+ (1−βω)(1−ω)
βω

τy

(
χ
τy

β
− 1

χv

)
.

As a result, the right-hand side of (C.1) equals its left-hand side given (C.7)-(C.8). This finishes the

proof that (C.7)-(C.8) are indeed the unique bounded solution of (C.3).

Given (C.7)-(C.8), we can then find πt from (3) and tt from the fiscal rule (5) and verify that the

entire equilibrium path
{

yt ,πt ,dt+1, tt ,rt
}∞

t=0 satisfies Definition 1. This proves the existence and

uniqueness of the equilibrium.
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From (C.8) and d0 = 0, we have

dt =
τyσ

β

t−1∑
u=0

ρt−1−u
d

∑
k≥0

χk+1
v (ru+k + vu+k ) .

Substituting into (C.7) and collecting coefficients of rs (or vs) yields that yt takes the form of (7) with

Yt ,s =
χτyσ

β

min{s,t−1}∑
u=0

ρt−1−u
d χs−u+1

v −σ1{s ≥ t }χs−t+1
v ∀t , s ≥ 0, (C.10)

which is a continuous function of
(
β,ω,τy ,τd

)
. This concludes the proof of Lemma 1. Furthermore,

when 0 ≤ s < t ,

Yt ,s =
χτyσ

β

s∑
u=0

ρt−1−u
d χs−u+1

v = χτyσχv

β
(
1−ρdχv

)ρt−s−1
d

[
1− (

ρdχv
)s+1

]
. (C.11)

When 0 ≤ t ≤ s,

Yt ,s =σχs−t+1
v

(
χτyχv

β
(
1−ρdχv

) (
1− (

ρdχv
)t

)
−1

)
, (C.12)

where 1−ρdχv ∈ (0,1) .

C.2 Proof of Proposition 1

From (C.5) and (C.9), we know

ρd =λ2 = f (a,b) ≡ a +b +1−
√

(a +b −1)2 +4b

2
∈ (0,1) (C.13)

where a = 1
β (1−τd ) > 0 and b = 1−βω

βω τy (1−ω) > 0. Since ∂ f
∂a = 1

2 − (a+b−1)

2
p

(a+b−1)2+4b
> 0, we know that

∂ρd
∂τd

< 0 for τd ∈ [0,1). From (C.6) and (C.9), we then know

χ=
(1−βω)(1−ω)

βω (1−τd )

1+ (1−βω)(1−ω)
βω τy −ρd

.

Because its numerator has a negative partial derivative with respect to τd and its denominator has

positive partial derivative with respect to τd , we have ∂χ
∂τd

< 0 for τd ∈ [0,1). From (C.9), we also know

χv = 1

1+ τy

β

(
χ+ (1−βω)(1−ω)

ω

)
and ∂χv

∂τd
> 0 for τd ∈ [0,1). We now prove that

∂Yt ,s
∂τd

< 0 for τd ∈ [0,1).

• Case 1. When 0 ≤ s < t , we can re-write (C.11) as

Yt ,s =σ
(
1−χv

)
ρt−s

d

s∑
j=0

(
ρdχv

) j , (C.14)
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where ρdχv ∈ (0,1) and we use (C.6) and (C.9) to substitute

χτyχv

β
(
1−χv

) = χ

χ+ (1−βω)(1−ω)
ω

= ρd , (C.15)

because (C.6) and (C.9) imply

χ=
(1−βω)(1−ω)

βω

(
βρd +τyχ

)
1+ (1−βω)(1−ω)

βω
τy −ρd

=
(
1−βω)

(1−ω)ρd

ω
(
1−ρd

) .

Treating ρd and χv as independent arguments, we compute

∂Yt ,s

∂ρd
=σ(

1−χv
)[

(t − s)ρt−s−1
d

s∑
j=0

(
ρdχv

) j +ρt−s
d

s∑
j=1

j
(
ρdχv

) j−1
χv

]
> 0 (C.16)

∂Yt ,s

∂χv
=σρt−s

d

[
−

s∑
j=0

(
ρdχv

) j + (
1−χv

) s∑
j=1

j
(
ρdχv

) j−1
ρd

]
(C.17)

<σρ t−s
d

[
−

s∑
j=0

(
ρdχv

) j + (
1−ρdχv

) s∑
j=1

j
(
ρdχv

) j−1

]
=−σρt−s

d (s +1)
(
ρdχv

)s < 0.

By the chain rule,
∂Yt ,s

∂τd
= ∂Yt ,s

∂ρd

∂ρd

∂τd
+ ∂Yt ,s

∂χv

∂χv

∂τd
< 0.

• Case 2. When 0 ≤ t ≤ s, we can again use (C.15) to re-write (C.12) as

Yt ,s =σχs−t+1
v

(
ρd

(
1−χv

) t−1∑
j=0

(
ρdχv

) j −1

)
∀t ≥ 1

Y0,s =−σχs+1
v .

Treating ρd and χv as independent arguments, we compute, for t ≥ 1,

∂Yt ,s

∂ρd
=σχs−t+1

v

[(
1−χv

) t−1∑
j=0

(
ρdχv

) j +ρd
(
1−χv

) t−1∑
j=1

j
(
ρdχv

) j−1
χv

]
> 0 (C.18)

∂Yt ,s

∂χv
=σ (s − t +1)χs−t

v

(
ρd

(
1−χv

) t−1∑
j=0

(
ρdχv

) j −1

)
+ (C.19)

+σχs−t+1
v

[
−ρd

t−1∑
j=0

(
ρdχv

) j +ρ2
d

(
1−χv

) t−1∑
j=1

j
(
ρdχv

) j−1

]
.

Using the fact that ρd
(
1−χv

)< 1−ρdχv < 1 and

(
1−ρdχv

) t−1∑
j=1

j
(
ρdχv

) j−1 =
t−2∑
j=0

(
ρdχv

) j − (t −1)
(
ρdχv

)t−1 .
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we have

∂Yt ,s

∂χv
<−σ (s − t +1)χs−t

v

(
ρdχv

)t +σχs−t+1
v

[
−ρd

t−1∑
j=0

(
ρdχv

) j +ρd

(
t−2∑
j=0

(
ρdχv

) j − (t −1)
(
ρdχv

)t−1

)]
=−σ (s +1)χs−t

v

(
ρdχv

)t < 0 ∀t ≥ 1.

Moreover,
∂Y0,s
∂ρd

= 0 and
∂Y0,s
∂χv

=−σ (s +1)χs
v < 0. Together, by the chain rule,

∂Yt ,s

∂τd
= ∂Yt ,s

∂ρd

∂ρd

∂τd
+ ∂Yt ,s

∂χv

∂χv

∂τd
< 0 ∀t ≥ 0. (C.20)

This finishes the proof of part a).

For part b), the fact that
∂

∂τd

∞∑
t=0

βt Yt ,s < 0

and thus that
∑∞

t=0β
tYt ,s decreases with τd ∈ [0,1) follows from part a). To prove that

∑∞
t=0β

t Yt ,s

converges to zero as τd → 0, we first prove that
∑∞

t=0β
tYt ,s is continuous for all s ≥ 0. To this end note

that ∞∑
t=0

βtYt ,s =
s∑

t=0
βtYt ,s +

∞∑
t=s+1

βtYt ,s .

The first term of the right-hand is continuous in τd ∈ [0,1) because Yt ,s is continuous in τd ∈ [0,1)

based on Lemma 1. Based on (C.14), the second term of the right-hand is given by

∞∑
t=s+1

βtYt ,s =σ
(
1−χv

) ρdβ
s+1

1−βρd

s∑
j=0

(
ρdχv

) j ,

which is also continuous in τd ∈ [0,1) because χv and ρd are continuous in τd ∈ [0,1) from Lemma 1.

When τd = 0, we know that, in any bounded equilibrium according to Definition 1,
∞∑

t=0
βt t adj

t = τd

∞∑
t=0

βt dt = 0.

From (8), we then know that ∞∑
t=0

βt yt = 0

for arbitrary bounded {vs ,rs}∞s=0 . From (7), we then know that

∞∑
t=0

βt Yt ,s = 0

for all s ≥ 0. This completes the argument.
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C.3 Proof of Proposition 2

Let h = {ut , vt }∞t=0 denote the realized aggregate shock and J
(
{rt (h)}∞t=0 ,h,τd

)
denote the ex post cen-

tral bank loss in the equilibrium characterized in Lemma 1 given h and {rt (h)}∞t=0. The ex ante central

bank loss LC B is then given by

LC B = E

[
min

{rt (h)}∞t=0

J
(
{rt (h)}∞t=0 ,h,τd

)]= E
[

J
({

r ∗
t (h)

}∞
t=0 ,h,τd

)]
= 1

2
E

[ ∞∑
t=0

βt
{
λπ

(
π∗

t (h)
)2 +λy

(
y∗

t (h)
)2 +λr

(
r ∗

t (h)
)2

}]
,

where, from (7) and (9), we have

y∗
t (h) =

∞∑
s=0

Yt ,s
(
vs + r ∗

s (h)
)

and π∗
t (h) =

∞∑
s=0

κYt ,s
(
vs + r ∗

s (h)
)+ut .

Given the boundedness of {ut , vt }∞t=0 and Lemma 1, one can then apply the envelope theorem

∂LC B

∂τd
= E

[
∂J

({
r ∗

t (h)
}∞

t=0 ,h,τd
)

∂τd

]

= E

[ ∞∑
t=0

βt
{(
λπκπ

∗
t (h)+λy y∗

t (h)
)( ∞∑

s=0

∂Yt ,s

∂τd

(
vs + r ∗

s (h)
))}]

,

which proves the Proposition.

C.4 Proof of Proposition 3

Consider the case that the demand shock is fully transitory: v0 ̸= 0 and vt = 0 for all t ≥ 1 and ut = 0

for all t ≥ 0. Moreover, the monetary and fiscal authority together frictionlessly implement perfect

stabilization of the economy after t = 2, i.e., yt = πt = rt = dt+1 = 0 for all t ≥ 2. For example, this can

be uniquely implemented by a rule

tt = dt +βD ss

Y ss
rt and rt =φyt ∀t ≥ 2,
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where φ> 0. Fiscal policy still takes the form of (5) for t = 0,1. In this case, the equilibrium dynamics

in (2)-(5) can be summarized by

y0 =−σ
(
r0 −

(
1−βω)

(1−ω)

σω
d1

)
+ y1 −σv0

y1 =−σ
(
r1 −

(
1−βω)

(1−ω)

σω
d2

)
π0 = κy0

π1 = κy1

d2 = 1−τd

β
d1 −

τy

β
y1

d1 =−τy

β
y0,

which implies

y0 =σ
−(

v0 + r0
)(

1+Ωτy

β

)
− r1(

1+Ωτy

β

)2

+Ω(1−τd )τy

β2

and y1 =σ

Ω(1−τd )τy

β2

(
v0 + r0

)− r1

(
1+Ωτy

β

)
(
1+Ωτy

β

)2

+Ω(1−τd )τy

β2

, (C.21)

whereΩ= (1−βω)(1−ω)
ω . The central bank’s ex post problem can be written as

min
r0,r1

1

2

(
λy2

0 + r 2
0 +βλy2

1 + r 2
1

)
s.t. (C.21),

where λ≡ (λy +λπκ2)/λr . The first order conditions for the optimal r ∗
0 and r ∗

1 imply

0 = r0 +λy∗
0

∂y∗
0

∂r0
+βλy∗

1

∂y∗
1

∂r0
and 0 = ∂L

∂r1
= r1 +λy∗

0

∂y∗
0

∂r1
+βλy∗

1

∂y∗
1

∂r1
.

Substituting the derivatives based on (C.21) and rearranging gives the targeting relations.

r ∗
0 = λσ(

1+Ωτy

β

)2

+Ω(1−τd )τy

β2

[(
1+Ωτy

β

)
y∗

0 −Ω(1−τd )τy

β
y∗

1

]

r ∗
1 = λσ(

1+Ωτy

β

)2

+Ω(1−τd )τy

β2

[
y∗

0 +β
(
1+Ωτy

β

)
y∗

1

]
.
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Together with (C.21), we have

r ∗
0 =−

λσ2
[

(1+ Ωτy

β
)2 +β

(
Ω(1−τd )τy

β2

)2 +βλσ2
]

D(τd )
v0

r ∗
1 =−

(1+ Ωτy

β )λσ2
[

1− Ω(1−τd )τy

β

]
D(τd )

v0

y∗
0 =−

σ(1+ Ωτy

β )
[

(1+ Ωτy

β )2 + Ω(1−τd )τy

β2 +βλσ2
]

D(τd )
v0

y∗
1 =

σ
[
Ω(1−τd )τy

β2

(
(1+ Ωτy

β )2 + Ω(1−τd )τy

β2

)
+λσ2

]
D(τd )

v0,

where

D(τd ) = (1+Ωτy

β
)4+2(1+Ωτy

β
)2Ω(1−τd )τy

β2 +(1+β)λσ2(1+Ωτy

β
)2+(

1+βλσ2)(Ω(1−τd )τy

β2

)2+βλ2σ4+λσ2 > 0.

As a result, the central bank’s ex ante loss is given by

LC B =λrE

[
1

2

(
λ

(
y∗

0

)2 + (
r ∗

0

)2 +βλ(
y∗

1

)2 + (
r ∗

1

)2
)]

=
(λy +λπκ2)σ2

[(
1+ Ωτy

β

)2 +β(Ω(1−τd )τy

β2

)2 +βλσ2
]

2D(τd )
E
[
v2

0

]
∂LC B

∂τd
=
Ωτy (λy +λπκ2)σ2

(
1+ Ωτy

β

)2
[

1− Ω(1−τd )τy

β

][(
1+ Ωτy

β

)2 + Ω(1−τd )τy

β2 +βλσ2
]

β2D2(τd )
E
[
v2

0

]
,

which means that
∂LC B

∂τd
> 0 ⇐⇒ βω

(1−βω)(1−ω)
> (1−τd )τy ,

which implies Proposition 3.

C.5 Proof of Proposition 4

Consider the case that the supply shock is fully transitory: u0 ̸= 0 and ut = 0 for all t ≥ 1 and vt = 0

for all t ≥ 0. Moreover, the monetary and fiscal authority together frictionlessly implement perfect

stabilization of the economy after t = 2, i.e., yt = πt = rt = dt+1 = 0 for all t ≥ 2. For example, this can

be uniquely implemented by a rule

tt = dt +βD ss

Y ss
rt and rt =φyt ∀t ≥ 2,
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where φ> 0. Fiscal policy still takes the form of (5) for t = 0,1. In this case, the equilibrium dynamics

in (2)-(5) can be summarized by

y0 =−σ
(
r0 −

(
1−βω)

(1−ω)

σω
d1

)
+ y1

y1 =−σ
(
r1 −

(
1−βω)

(1−ω)

σω
d2

)
π0 = κy0 +u0 (C.22)

π1 = κy1 (C.23)

d2 = 1−τd

β
d1 −

τy

β
y1

d1 =−τy

β
y0,

which implies

y0 =σ
−r0

(
1+Ωτy

β

)
− r1(

1+Ωτy

β

)2

+Ω(1−τd )τy

β2

and y1 =σ

Ω(1−τd )τy

β2
r0 − r1

(
1+Ωτy

β

)
(
1+Ωτy

β

)2

+Ω(1−τd )τy

β2

, (C.24)

whereΩ= (1−βω)(1−ω)
ω . The central bank’s (ex post) problem can be written as

min
r0,r1

1

2

(
λππ

2
0 +λy y2

0 +λr r 2
0 +β

(
λππ

2
1 +λy y2

1 +λr r 2
1

))
s.t. (C.22)− (C.24).

The first order conditions for the optimal r ∗
0 and r ∗

1 imply

0 =λr r ∗
0 + (

λπκπ
∗
0 +λy y∗

0

) ∂y∗
0

∂r0
+β(

λπκπ
∗
1 +λy y∗

1

) ∂y∗
1

∂r0

0 =λr r ∗
1 + (

λπκπ
∗
0 +λy y∗

0

) ∂y∗
0

∂r1
+β(

λπκπ
∗
1 +λy y∗

1

) ∂y∗
1

∂r1
.

Substituting (C.22), (C.23), the derivatives based on (C.24), and rearranging gives the targeting rela-

tions

r ∗
0 = σ

λr

(
1+ Ωτy

β

)(
(λπκ2 +λy )y∗

0 +λπκu0
)− Ω(1−τd )τy

β
(λπκ2 +λy )y∗

1(
1+ Ωτy

β

)2 + Ω(1−τd )τy

β2

r ∗
1 = σ

λr

(λπκ2 +λy )y∗
0 +λπκu0 +β

(
1+ Ωτy

β

)
(λπκ2 +λy )y∗

1(
1+ Ωτy

β

)2 + Ω(1−τd )τy

β2

.
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Together with (C.24), we have

r ∗
0 =

λπκ(β+Ωτy )
[

(λπκ2 +λy )+ λr
σ2

(
1+ 2Ωτy

β
+ Ω2τ2

y+Ω(1−τd )τy

β2

)]
σG (τd )

u0

r ∗
1 =

λπκ
[
Ω(1−τd )τy

β
(λπκ2 +λy )+ λr

σ2

(
1+ 2Ωτy

β
+ Ω2τ2

y+Ω(1−τd )τy

β2

)]
σG (τd )

u0

y∗
0 =−λπκ

β(λπκ2 +λy )+ λr
σ2

(
1+β

(
1+ Ωτy

β

)2
)

G (τd )
u0

y∗
1 =−

κλπλr

(
1+ Ωτdτy

β
− Ω2(1−τd )τ2

y

β2

)
σ2G (τd )

u0

π∗
0 =

1−λπκ2
β(λπκ2 +λy )+ λr

σ2

(
1+β

(
1+ Ωτy

β

)2
)

G (τd )

u0

π∗
1 =

λπλrκ
2

σ2

(
1+ Ωτy

β

)(
−1+ Ω(1−τd )τy

β

)
G (τd )

u0,

where

G (τd ) =β(λπκ
2 +λy )2 + λr

σ2
(λπκ

2 +λy )

(
1+2β

(
1+Ωτy

β

)2

+
Ω2(1−τd )2τ2

y

β2

)

+
(
λr

σ2

)2
[
β

(
1+Ωτy

β

)4

+2

(
1+Ωτy

β

)2 (
Ω(1−τd )τy

β

)
+
Ω2(1−τd )2τ2

y

β3

]
> 0.

As a result, the ex ante central bank loss is

LC B = 1

2

λπ− (λπκ)2
(
β(λπκ2 +λy )+ λr

σ2

(
1+β

(
1+ Ωτy

β

)2
))

G (τd )

E
[
u2

0

]

∂LC B

∂τd
=−(λπκ)2

λr
σ2
Ωτy

β

(
β(λπκ2 +λy )+ λr

σ2

(
1+β

(
1+ Ωτy

β

)2
))(

λr
σ2

(
1+ Ωτy

β

)2 +Ω(1−τd )τy

(
λπκ

2+λy

β
+ λr
σ2β2

))
(
G (τd )

)2 E
[
u2

0

]
.

which implies Proposition 4 as λr > 0.

C.6 Proof of Lemma 2

From (4), (5), and d0 = 0, we know that

t adj
t = τd dt =−τd

τy

β

t∑
k=1

(
1−τd

β

)k−1

yt−k ∀t ≥ 1.
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Moreover, t adj
0 = 0. Together with Lemma 1, we know that (13) holds with

Tt ,s =−
t∑

k=1
BkYt−k,s ∀t ≥ 1, s ≥ 0, (C.25)

and T0,s = 0 for all s ≥ 0 with

Bk = τd
τy

β

(
1−τd

β

)k−1

∀k ≥ 1. (C.26)

C.7 Proof of Proposition 5

From (C.26),
K∑

k=1
βkBk = τy

(
1− (1−τd )K ) ∀K ≥ 1.

It follows that
∂

∂τd

K∑
k=1

βkBk = Kτy (1−τd )K−1.

As a result, for any τd ∈ [0,1), ∂
∂τd

∑K
k=1β

kBk > 0 for all finite K ≥ 1. Moreover, for any τd ∈ (0,1) ,∑∞
k=1β

kBk = τy . This proves part a) of the proposition.

To prove part b), first note that, for any τd ∈ (0,1) ,

∞∑
t=0

βtTt ,s =−
∞∑

t=1
βt

t∑
k=1

BkYt−k,s

=−
( ∞∑

k=1
βkBk

)( ∞∑
t=0

βtYt ,s

)
=−τy

∞∑
t=0

βtYt ,s .

When τd = 0, we also have that ∞∑
t=0

βtTt ,s = 0 =−τy

∞∑
t=0

βtYt ,s ,

where we use that
∑∞

t=0β
tYt ,s = 0 from Proposition 1. The fact that ∂

∂τd

∑∞
t=0β

tYt ,s < 0 for τd ∈ [0,1)

from Proposition 1 then implies that ∂
∂τd

∑∞
t=0β

tTt ,s > 0 for τd ∈ [0,1).

We now prove that, for each impulse horizon t ≥ 0 and news horizon s ≥ 0, the fiscal adjustment

impulse response Tt ,s converges to zero as τd → 0. For a given τy ∈ (0,1],we have

0 < ρdχv <χv < 1

1+ τy

β
(1−βω)(1−ω)

ω

< 1 ∀τd ∈ [0,1).

0 < ρd ≤ ρ̄d < 1 ∀τd ∈ [0,1),

where ρ̄d is the value of ρd when τd = 0. From (C.11) and (C.12), we know that Yt ,s is uniformly
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bounded, that is, there exists a My > 0 such that∣∣Yt ,s
∣∣≤ My ∀t , s ≥ 0,τd ∈ [0,1).

From (C.26), we know that Bk converges to zero as τd → 0 for each k ≥ 1. As a result, from (C.25),

for each impulse horizon t ≥ 0 and news horizon s ≥ 0, the fiscal adjustment impulse response Tt ,s

converges to zero as τd → 0.

We now prove the uniform convergence for all t ≥ 0 given a news horizon s ≥ 0. We first note that,

for all t ≥ s +1, (C.8) and the fact that t adj
t = τd dt together imply

Tt+1,s = ρdTt ,s . (C.27)

Furthermore, from Lemma 1 and Proposition 1 we know that (C.27) together with Tt ,s converging to

zero as τd → 0 for all 0 ≤ t ≤ s +1 imply the uniform convergence of Tt ,s for all t ≥ 0 as τd → 0.

C.8 Proof of Proposition 6

Let h = {ut , vt }∞t=0 denote the realized aggregate shock and J
(
{rt (h)}∞t=0 ,h,τd

)
denote the ex post cen-

tral bank loss in the equilibrium characterized given h and {rt (h)}∞t=0 under the Phillips curve (12).

The ex ante central bank loss LC B is then given by

LC B = E

[
min

{rt (h)}∞t=0

J
(
{rt (h)}∞t=0 ,h,τd

)]= E
[

J
({

r ∗
t (h)

}∞
t=0 ,h,τd

)]
= 1

2
E

[ ∞∑
t=0

βt
{
λπ

(
π∗

t (h)
)2 +λy

(
y∗

t (h)
)2 +λr

(
r ∗

t (h)
)2

}]
,

where, from (7) and (15), we have

y∗
t (h) =

∞∑
s=0

Yt ,s
(
vs + r ∗

s (h)
)

and π∗
t (h) =

∞∑
s=0

(
κYt ,s + κ̃Tt ,s

)(
vs + r ∗

s (h)
)+ut .

Given the boundedness of {ut , vt }∞t=0 and Lemma (1), one can then apply the envelope theorem, giving

∂LC B

∂τd
= E

[
∂J

({
r ∗

t (h)
}∞

t=0 ,h,τd
)

∂τd

]

= E

[ ∞∑
t=0

βt
{(
λπκπ

∗
t (h)+λy y∗

t (h)
)( ∞∑

s=0

∂Yt ,s

∂τd

(
vs + r ∗

s (h)
))}]

+E

[ ∞∑
t=0

βt
{
λπκ̃π

∗
t (h)

( ∞∑
s=0

∂Tt ,s

∂τd

(
vs + r ∗

s (h)
))}]

.

This proves the proposition.
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C.9 Proof of Proposition 7

Consider the case that the supply shock is fully transitory: u0 ̸= 0 and ut = 0 for all t ≥ 1 and vt = 0 for

all t ≥ 0. Moreover, the monetary and fiscal authority together perfectly stabilize output and smooth

taxes after two periods (i.e., yt = 0, t adj
t = (1−β)d2, rt = (1−βω)(1−ω)

σω
d2, and dt = d2, for all t ≥ 2). For

example, this can be uniquely implemented by a rule

tt =
(
1−β)

dt︸ ︷︷ ︸
t

adj
t

+βD ss

Y ss
rt and rt =

(
1−βω)

(1−ω)

σω
dt +φyt ∀t ≥ 2,

where φ> 0. Fiscal policy still takes the form of (5) for t = 0,1.

In this case, the equilibrium dynamics in (2)-(5) can be summarized by

y0 =−σ
(
r0 −

(
1−βω)

(1−ω)

σω
d1

)
+ y1

y1 =−σ
(
r1 −

(
1−βω)

(1−ω)

σω
d2

)
π0 = κy0 +u0

π1 = κy1 − κ̃τd
τy

β
y0

d1 =−τy

β
y0

dt = d2 = 1−τd

β
d1 −

τy

β
y1 ∀t ≥ 2

πt =π2 = κ̃
(
1−β)

d2 ∀t ≥ 2

rt = r2 =
(
1−βω)

(1−ω)

σω
d2 ∀t ≥ 2
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which implies

y0 =σ
−r0

(
1+Ωτy

β

)
− r1(

1+Ωτy

β

)2

+Ω(1−τd )τy

β2

and y1 =σ

Ω(1−τd )τy

β2
r0 − r1

(
1+Ωτy

β

)
(
1+Ωτy

β

)2

+Ω(1−τd )τy

β2

(C.28)

π0 =σκ
−r0

(
1+Ωτy

β

)
− r1(

1+Ωτy

β

)2

+Ω(1−τd )τy

β2

+u0 and π1 =σ
κ

(
Ω(1−τd )τy

β2 r0 −
(
1+ Ωτy

β

)
r1

)
+ κ̃τd

τy

β

((
1+ Ωτy

β

)
r0 + r1

)
(
1+ Ωτy

β

)2 + Ω(1−τd )τy

β2

(C.29)

π2 =κ̃(1−β)σ
τy

β2

(1−τd )r0 +
(
Ωτy +β+1−τd

)
r1(

1+Ωτy

β

)2

+Ω(1−τd )τy

β2

and r2 =Ω
τy

β2

(1−τd )r0 +
(
Ωτy +β+1−τd

)
r1(

1+Ωτy

β

)2

+Ω(1−τd )τy

β2

,

(C.30)

whereΩ= (1−βω)(1−ω)
ω

. The central bank’s (ex post) problem can be written as

min
r0,r1

1

2

(
λππ

2
0 +λy y2

0 +λr r 2
0 +β

(
λππ

2
1 +λy y2

1 +λr r 2
1

)+λπ β2

1−βπ
2
2 +λr

β2

1−βr 2
2

)
s.t. (C.28)− (C.30).

The first order conditions for the optimal r ∗
0 and r ∗

1 imply

0 =λππ∗
0

∂π∗
0

∂r0
+λy y∗

0

∂y∗
0

∂r0
+λr r ∗

0 +β
(
λππ

∗
1

∂π∗
1

∂r0
+λy y∗

1

∂y∗
1

∂r0

)
+λπ β2

1−βπ
∗
2

∂π∗
2

∂r0
+λr

β2

1−βr ∗
2

∂r ∗
2

∂r0

0 =λππ∗
0

∂π∗
0

∂r1
+λy y∗

0

∂y∗
0

∂r1
+λr r ∗

1 +β
(
λππ

∗
1

∂π∗
1

∂r1
+λy y∗

1

∂y∗
1

∂r1

)
+λπ β2

1−βπ
∗
2

∂π∗
2

∂r1
+λr

β2

1−βr ∗
2

∂r ∗
2

∂r1
.

Together with (C.24)–(C.30), we have

H00(τd )y∗
0 +H01(τd )y∗

1 +λπκu0 = 0

H01(τd )y∗
0 +H11 y∗

1 = 0,
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where

H00(τd ) =λπκ2 +λy + λr

σ2

(
1+Ωτy

β

)2

+λπκ̃2
τ2

dτ
2
y

β
+ λr

σ2
Ω2

(1−τd )2τ2
y

β3

+λπκ̃2(1−β)
(1−τd )2τ2

y

β2
+ λr

σ2

(1−βω)2(1−ω)2

ω2

(1−τd )2τ2
y

β2(1−β)
> 0

H01(τd ) =−λr

σ2

(
1+Ωτy

β

)
−λπκκ̃τdτy + λr

σ2

Ω(1−τd )τy

β

(
1+Ωτy

β

)
+λπκ̃2(1−β)

(1−τd )τ2
y

β
+ λr

σ2

(1−βω)2(1−ω)2

ω2

(1−τd )τ2
y

β(1−β)

H11 =λr

σ2
+βλπκ2 +βλy + βλr

σ2

(
1+Ωτy

β

)2

+λπκ̃2(1−β)τ2
y +

λr

σ2

(1−βω)2(1−ω)2

ω2

τ2
y

1−β > 0

and

H00(τd )H11 −H01(τd )2 > 0.

This implies

y∗
0 =−λπκ H11

H00(τd )H11 −H01(τd )2
u0

y∗
1 =λπκ H01(τd )

H00(τd )H11 −H01(τd )2
u0

r ∗
0 = λπκ

σ

(
1+ Ωτy

β

)
H11 +H01(τd )

H00(τd )H11 −H01(τd )2
u0

r ∗
1 = λπκ

σ

Ω(1−τd )τy

β2 H11 −
(
1+ Ωτy

β

)
H01(τd )

H00(τd )H11 −H01(τd )2
u0

π∗
0 =

(
1−λπκ2 H11

H00(τd )H11 −H01(τd )2

)
u0

π∗
1 =λπκ

κH01(τd )+ κ̃τd
τy

β H11

H00(τd )H11 −H01(τd )2
u0

π∗
2 =−λπκκ̃(1−β)

τy

β
H01(τd )− (1−τd )τy

β2 H11

H00(τd )H11 −H01(τd )2
u0

r ∗
2 =−λπκ (1−βω)(1−ω)

σω

τy

β H01(τd )− (1−τd )τy

β2 H11

H00(τd )H11 −H01(τd )2
u0.

As a result, the ex ante central bank loss is

LC B = 1

2
λπ− 1

2
λ2
πκ

2 H11

H00(τd )H11 −H01(τd )2
E
[
u2

0

]
.

Recall that our objective is to prove that, if κ̃ is sufficiently large, then LC B is increasing in τd over
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[0,1]. This is evidently equivalently to proving that

V (τd ) ≡ H00(τd )H11 −H01(τd )2

is increasing in τd ∈ [0,1] . To this end note that we can write the derivative of this object with respect

to τd as a polynomial in κ̃ of degree ≤ 4:

∂V (τd )

∂τd
= c4(τd )κ̃4 + c3(τd )κ̃3 + c2(τd )κ̃2 + c1(τd )κ̃+ c0(τd ),

with {cl (τd )}4
l=0 continuous in [0,1],

c4(τd ) = 2λ2
πτdτ

4
y

1−β
β

, (C.31)

and

c3(0) = 2λ2
πκ

1−β
β

τ3
y . (C.32)

Thus, c4(τd ) > 0 for τd ∈ (0,1], c4 (0) = 0, and c3(0) > 0. Hence, there exists δ > 0 such that c3(τd ) is

uniformly bounded below by a positive constant for all τd ∈ [0,δ]. All lower-order coefficients are

again uniformly bounded. Thus, there exists κ̃1 such that, for all τd ∈ [0,δ] and all κ̃≥ κ̃1, the positive

κ̃3-term dominates all lower-order terms. Noting that the κ̃4-term is also always non-negative, we can

conclude that ∂V (τd )
∂τd

> 0.

Moreover, on [δ,1], c4(τd ) is uniformly bounded below by a positive constant (since τd ≥ δ > 0),

and all lower-order coefficients are uniformly bounded on this compact set; therefore there exists κ̃2

such that for all τd ∈ [δ,1] and all κ̃ ≥ κ̃2, the positive κ̃4-term dominates and ∂V (τd )
∂τd

> 0. This proves

that if κ̃≥ max{κ̃1, κ̃2}, then LC B increases in τd over [0,1] .

C.10 Proof of Proposition 8

The proof is constructive, showing how to map the two “sufficient statistics” into the object of interest.

It leverages the identification results of McKay and Wolf (2023, Propositions 1 and 2) and Caravello

et al. (2025, Proposition 1). We note that these propositions can be applied since the linearized model

environment of Section 6 falls into the general model class considered in those papers.

We begin by recovering monetary policy shock causal effects under the hypothesized fiscal policy

rule (21), indexed by its fiscal adjustment coefficient τd ; we denote those adjusted monetary policy

shock impulse responses by {Θτd
y,m ,Θτd

π,m ,Θτd
i ,m ,Θτd

d ,m}. By Proposition 1 of McKay and Wolf (2023), we

can recover those adjusted monetary shock impulse responses as a function of the two baseline pol-

icy shock causal effects {Θy, f ,Θπ, f ,Θi , f ,Θd , f } and {Θy,m ,Θπ,m ,Θi ,m ,Θd ,m}. Next, given those policy

shock causal effects and given the assumed central bank loss function (19), we can, by Proposition 2
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of McKay and Wolf (2023), recover the central bank’s optimal implicit targeting rule as

A m
y ŷyy +A m

π π̂ππ+A m
i îii = 0, (C.33)

where

A m
y =λy (Θτd

y,m)′W, A m
π =λπ(Θτd

π,m)′W, A m
i =λi (Θτd

i ,m)′W,

and W = diag(1,β,β2, . . . ). This completes the first step of the proof: we now know the counterfactual

fiscal policy rule (21) (by assumption) and the associated optimal monetary policy rule (C.33) (by the

preceding construction).

To construct L (τd ), it remains to construct the economy’s counterfactual second-moment prop-

erties under the pair of rules (21) - (C.33). To this end we leverage Proposition 1 of Caravello et al.

(2025) together with the assumption that the Wold representation of xt in the baseline stochastic

economy is known and invertible. We let ei denote the i th Wold innovation and x̂̂x̂x(ei ) denote the

corresponding Wold impulse response paths. We can then construct the counterfactual propagation

of this Wold innovation as the impulse responses to ui together with impulse responses to artificial

fiscal and monetary shocks {ννν f ,νννm} that solve the pair of equations

A
f

y
(
ŷyy(ei )+Θy, f ννν f +Θy,mνννm

)+A
f
π

(
π̂ππ(ei )+Θπ, f ννν f +Θπ,mνννm

)
+A

f
i

(
îii (ei )+Θi , f ννν f +Θi ,mνννm

)+A
f

d

(
d̂dd(ei )+Θd , f ννν f +Θd ,mνννm

)
= 0

and

A m
y

(
ŷyy(ei )+Θy, f ννν f +Θy,mνννm

)+A m
π

(
π̂ππ(ei )+Θπ, f ννν f +Θπ,mνννm

)+A m
i

(
îii (ei )+Θi , f ννν f +Θi ,mνννm

)= 0

where the fiscal rule coefficients {A f
y ,A f

π ,A f
i ,A f

d } give the mapping of output, nominal rates, and

inflation into government debt under the hypothesized fiscal rule (20) - (21). Now stack these impulse

responses to get a counterfactual Wold representation {Ψ̃ℓ}∞
ℓ=0 of x, and use this Wold representa-

tion to compute the associated central banker loss. By Proposition 1 of Caravello et al. (2025), this

construction will correctly recover L (τd ).

C.11 Proof of Proposition A.1

We seek to characterize
∂yyy

∂τd ,H

∣∣∣∣
τd ,H=τd

where we use boldface to denote the impulse response path of output. To this end we begin with a

preparatory lemma, characterizing impulse responses to shocks to the baseline fiscal rule (5).
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Lemma C.1. Consider the model of Section 2, but with the adjusted fiscal rule

tt = τy yt +τd (dt +ϵt )+βD ss

Y ss
rt −ϵt ∀t ≥ 0, (C.34)

where ϵt is a date-t fiscal deficit shock, and we assume that {ϵt }∞t=0 is bounded. There still exists a unique

equilibrium. The equilibrium path of output satisfies

yt =
∞∑

s=0

(
Yt ,s(vs + rs)+Y ϵ

t ,sϵs
) ∀t ≥ 0, (C.35)

where Yt ,s is the same as in Lemma 1 and Y ϵ
t ,s is the date-t output impulse response to a one-off date-0

news shock about date-s deficit. It satisfies

Y ϵ
t ,s > 0, ∀t , s ≥ 0.

Proof. Because of linearity, the fact that Yt ,s is the same as in Lemma 1 follows from setting ϵs = 0 for

all s ≥ 0. To study Y ϵ
t ,s , one can let vs = rs = 0 for all s ≥ 0. In this case, from (2), (4), and (C.34), we

have, for all t ≥ 0,

yt =
(1−βω)(1−ω)

βω (1−τd )

1+ (1−βω)(1−ω)
βω τy

(dt +ϵt )+ 1

1+ (1−βω)(1−ω)
βω τy

yt+1 (C.36)

dt+1 = 1−τd

β
(dt +ϵt )− τy

β
yt , (C.37)

with d0 = 0. The system has the same eigenvalues as in Lemma 1, λ1 > 1, and λ2 ∈ (0,1) , so we know

that there is unique bounded solution of (C.36) and (C.37) based on Blanchard and Kahn (1980). We

guess and verify that such a solution takes the form of, for all t ≥ 0,

yt = χdt +χ
∞∑

k=0
χk

vϵt+k (C.38)

dt+1 = ρd dt + 1−τd

β
ϵt −

τyχ

β

∑
k≥0

χk
vϵt+k , (C.39)

where χ, ρd , and χv are still given by (C.6) and (C.9). From (C.6), we know that ρd = 1
β

(
1−τd −τyχ

)
so (C.38)-(C.39) satisfies (C.37). To verify (C.36), we start from its right-hand side and substitute yt+1

based on (C.38) at t +1 and arrive at

right-hand side of (C.36) =
(1−βω)(1−ω)

βω (1−τd )

1+ (1−βω)(1−ω)
βω τy

(dt +ϵt )+ 1

1+ (1−βω)(1−ω)
βω τy

(
χdt+1 +χ

∞∑
k=0

χk
vϵt+1+k

)
.

73



We then substitute dt+1 based on (C.39) and arrive at

right-hand side of(C.36) =
 (1−βω)(1−ω)

βω
(1−τd )

1+ (1−βω)(1−ω)
βω

τy

+ χρd

1+ (1−βω)(1−ω)
βω

τy

dt

+
 (1−βω)(1−ω)

βω
(1−τd )

1+ (1−βω)(1−ω)
βω τy

+
χ

(
1−τd
β −χτy

β

)
1+ (1−βω)(1−ω)

βω τy

ϵt

+ χ

1+ (1−βω)(1−ω)
βω τy

[
1

χv
−χτy

β

] ∞∑
k=1

χk
vϵt+k .

From (C.6) and (C.9), we know that

χ =
(1−βω)(1−ω)

βω (1−τd )

1+ (1−βω)(1−ω)
βω τy

+ χρd

1+ (1−βω)(1−ω)
βω τy

=
(1−βω)(1−ω)

βω (1−τd )

1+ (1−βω)(1−ω)
βω

τy

+
χ

(
1−τd
β

−χτy

β

)
1+ (1−βω)(1−ω)

βω
τy

= χ

1+ (1−βω)(1−ω)
βω

τy

(
1

χv
−χτy

β

)
.

As a result, the right-hand side of (C.36) equals its left-hand side given by (C.38)-(C.39). This verifies

that (C.38)-(C.39) are indeed the unique bounded solution of (C.36)-(C.8). We can then find πt from

(3) and tt from the fiscal rule (C.34) and verify that the entire equilibrium path
{

yt ,πt ,dt+1, tt
}∞

t=0

satisfies the equilibrium definition. This proves the existence and uniqueness of the equilibrium.

From (C.39) and d0 = 0,we have

dt =
t−1∑
u=0

ρt−1−u
d

[
1−τd

β
ϵu − τyχ

β

∑
k≥0

χk
vϵu+k

]
.

Substituting into (C.38) and collecting coefficients of ϵs yields that yt takes the form of (C.35) with

Y ϵ
t ,s =χ

t−1∑
u=0

ρt−1−u
d

[
1−τd

β
1{u=s} −

τyχ

β
χs−u

v 1{u≤s}

]
+χχs−t

v 1{t≤s} ∀t , s ≥ 0, (C.40)

which is a continuous function of
(
β,ω,τy ,τd

)
. Furthermore, together with (C.15), when 0 ≤ s < t ,

Y ϵ
t ,s = χρt−s−1

d

[
ρd − τyχ

β

s∑
j=1

(
ρdχv

) j

]

= χρt−s
d

χv (1−ρd )+ (1−χv )(ρdχv )s+1

χv (1−ρdχv )
> 0,
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because ρd ,χv ∈ (0,1) and χ> 0. When 0 ≤ t ≤ s, again together with (C.15), we have

Y ϵ
t ,s = χχs−t

v

[
1− τyχ

β
χv

t−1∑
j=0

(
ρdχv

) j

]
(C.41)

= χχs−t
v

1−ρd +ρd (1−χv )(ρdχv )t

1−ρdχv
> 0 (C.42)

because ρd ,χv ∈ (0,1) and χ> 0.

Given Lemma C.1, the proof of Proposition A.1 is straightforward, and most easily completed using

sequence-space notation. Written in that way, the equilibrium path of fiscal adjustments under the

baseline fiscal rule (5) satisfies

ttt adj =Ty yyy (C.43)

where

Ty = τy ×



0 0 0 . . .

−τd
β 0 0 . . .

−τd
β

(
1−τd
β

)
−τd

β 0 . . .

−τd
β

(
1−τd
β

)2 −τd
β

(
1−τd
β

)
−τd

β . . .
...

...
...

. . .


︸ ︷︷ ︸

≡T

(C.44)

We now contemplate a change of the policy rule to (A.15), and write fiscal adjustments under that

alternative rule as

ttt adj =Ty (τd ,H )yyy (C.45)

with Ty (τd ) = Ty and T (τd ) = T , as defined in (C.44). For future reference it will furthermore be

useful to analogously write Y x
t ,s(τd ,H ) as the impulse response of output to deficit shocks under this

alternative rule, where again Y x
t ,s(τd ) =Y x

t ,s . Now note that, by McKay and Wolf (2023, Proposition 1),

the equilibrium paths of output under the two rules, yyy and yyy(τd ,H ), are tied together as

yyy = yyy(τd ,H )+Y x(τd ,H )
(
I +T (τd ,H )

)−1︸ ︷︷ ︸
pseudoinverse

(
Ty −Ty (τd ,H )

)
yyy︸ ︷︷ ︸

zero net present value

(C.46)

where the logic of the last two terms is that we find a deficit shock that induces the same (zero net

present value) excess demand wedge as the contemplated change in fiscal rule. It thus follows that

∂yyy

∂τd ,H
=Y x × (I +T )−1 ∂Ty

∂τd ,H
yyy︸ ︷︷ ︸

≡ ∂ϵϵϵ
∂τd ,H

In words, we have re-written the effect on the equilibrium path of output as the product of two

terms: a sequence of fiscal deficit shocks that maps the old into the new rule (second term), premul-
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tiplied by the causal effects of fiscal shocks on output. Our assumptions on the alternative fiscal rule

(A.15) imply that26

∂ϵt

∂τd ,H
=

0 if t ̸= H

− 1
1−τd

dH if t = H

Since dH > 0 by assumption, and Y x
t ,s > 0 for all (t , s) by Lemma C.1, the desired conclusion follows.

26Letωωω≡ ∂Ty

∂τd ,H
yyy . Our assumptions on the fiscal rule (A.15) imply that

∂ωt

∂τd ,H
=


0 if t < H

dH if t = H

− τd
β

(
1−τd
β

)t−H−1
dH if t > H

Pre-multiplying this sequence by (I +T )−1 delivers the claimed path of the fiscal wedge ϵϵϵ.
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