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We develop an assignment model of automation. Each of a continuum
of tasks of variable complexity is assigned to either capital or one of a
continuum of labor skills. We characterize conditions for interior au-
tomation, whereby tasks of intermediate complexity are performed by
capital. Interior automation arises when low-skill wages are low and ef-
fective cost of capital in low-complexity tasks is high. Minimum wages
make interior automation less likely. Higher capital productivity causes
employment and wage polarization, changes the skill premium non-
monotonically, and reduces the real wage of workers with comparative
advantage profiles close to that of capital.

I. Introduction

Automation technologies—including specialized software tools, comput-
erized production equipment, and industrial robots—have been spread-
ing rapidly throughout the industrialized world. For example, the share
of information processing equipment and software in overall investment
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in the United States has increased from 3.5% to over 23% between 1950
and 2020 (BEA 2021a), while the number of industrial robots per thou-
sand workers has risen from 0.38 in 1993 to about 1.8 in 2017 (IFR 2018;
BEA 2021b). There is growing evidence that these technologies have not
only automated a range of tasks previously performed by workers and im-
pacted the wage structure' but also led to polarization of employment and
wages, meaning that the negative effects have concentrated on employ-
ment and wages in the middle of the wage distribution.” This pattern is in-
timately linked to the fact that many of the tasks that have been automated
used to be performed by middle-skill workers.

There is no widespread agreement on why automation has been associ-
ated with polarization, however. One explanation, suggested by Autor
(2014, 2015), is related to Polanyi’s paradox, as captured by Polanyi’s
(1966, 4) statement that “we can know more than we can tell.” Put simply,
many of the manual and abstract tasks embed rich tacit knowledge, mak-
ing them nonroutine. Because routine tasks are technologically easier to
automate and are performed by middle-skill workers located in the mid-
dle of the wage distribution, new automation technologies have displaced
labor from middle-skill occupations and have had their most negative ef-
fects on middle-pay worker groups.

In this paper, we provide an alternative complementary explanation:
automation has focused on middle-skill tasks because these are the most
profitable ones to automate. Specifically, low-skill tasks can be performed
atlower labor expenses, reducing the cost advantage of machines relative
to humans.

To develop this point, we build an assignment model, combining elements
from the seminal contributions of Tinbergen (1956), Sattinger (1975), and
Teulings (1995, 2005) together with the model of tasks and automation in
Acemoglu and Restrepo (2022). Workers are distinguished by a single-
dimensional skill index, which is distributed over an interval normalized
to [0, 1], and tasks are also distributed over the unit interval. For exposi-
tional ease, we refer to higher-index tasks as more “complex.” Following

' On the spread of automation technologies over the past 80 years, see Autor (2015),
Ford (2015), Graetz and Michaels (2018), Acemoglu and Restrepo (2020), and Acemoglu
and Johnson (2023).

* The seminal contribution on the inequality and polarization effects of automation is
Autor, Levy, and Murnane (2003). For a recent study of the effects of automation technolo-
gies on US wage inequality, see Acemoglu and Restrepo (2022). Employment polarization
from automation is also documented in Goos, Manning, and Salomons (2009), Acemoglu
and Autor (2011), and Autor and Dorn (2013). Acemoglu and Autor (2011) and Acemoglu
and Restrepo (2022) provide evidence for wage polarization.

* We show below more realistic configurations, where manual tasks that require skills
that machines and algorithms do not currently fully possess can be incorporated into
the model and can still be mapped into our single-dimensional tasks distribution.
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the assignment literature, we assume that high-type workers have a com-
parative advantage in more complex tasks. Without automation, our model
is identical to those in the previous literature and generates a monotone
assignment pattern, with higher-skill workers performing more complex
tasks. The distinguishing feature of our framework is that some tasks can
be assigned to capital.

Under the assumption that capital does not have a comparative advan-
tage for the most complex tasks and some additional restrictions on cap-
ital productivity, we prove that the equilibrium will take one of two forms:
(1) interior automation, where capital performs a set of intermediate tasks;
or (2) low-skill automation, where capital takes over all tasks below a certain
threshold.*

Interior automation is the configuration that leads to polarization, and
we provide conditions under which automation is indeed interior. These
conditions depend on the comparative advantage of low-skill workers
relative to capital, the cost of capital, and supplies of different types of la-
bor, which together determine the equilibrium wage distribution with and
without automation. Intuitively, when equilibrium wages (without auto-
mation) are sufficiently low for low-skill workers, tasks in the bottom of the
complexity distribution are very cheap, and this reduces the profitability of
performing them by capital. When this is the case, we also show that fur-
ther automation leads to both wage and employment polarization. There-
fore, in our model, polarization is closely linked to the fact that wages are
already low at the bottom.

In addition to establishing the existence of a unique competitive equi-
librium and characterizing the conditions under which capital takes over
tasks from the middle of the skill distribution, we provide a series of com-
parative static results for marginal (local) and large (global) changes in
automation.

Our first result clarifies the conditions under which automation is inte-
rior. In the baseline model, interior automation requires that wages at the
bottom be sufficiently low relative to the productivity of low-skill workers
and the effective cost of capital.” To further highlight the role of wages
at the bottom, we also consider a version of our model with a2 minimum
wage. In this case, interior automation requires that the minimum wage is
not too high; otherwise, low-skill labor is too expensive, and this induces
low-skill automation. We complement this result by showing that a reduction

* A third possibility is no automation, which is not interesting given our focus here and
will be ruled out by assuming that capital productivity is sufficiently high to make some au-
tomation profitable in equilibrium.

> This is the sense in which our explanation is complementary to Autor’s (2014, 2015)
account: interior automation is also more likely to emerge when low-skill workers are more
productive at low-complexity tasks relative to machines.
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in the supply of skills at the bottom also raises low-skill wages and makes
a transition to low-skill automation more likely.

Our second result shows how a further expansion of interior automation—
for example, driven by a decline in the price of capital goods—generates
employment and wage polarization. Employment polarization here sim-
ply means that human workers are squeezed into smaller sets of tasks at
the bottom and the top. Wage polarization takes a more specific form: rel-
ative wage changes increase as a function of the distance between the task
thataskill type performs and the boundaries of the set of automated tasks.
As a result, skill premia increase among worker types performing more
complex tasks than those that are automated and decrease among worker
types performing less complex tasks than the automated ones. Put differ-
ently, interior automation hurts (relatively) workers who are closer to the
set of automated tasks. This is intuitive in view of the fact that workers
closer to this set used to have a stronger comparative advantage for tasks
that are now automated.

Third, we characterize the effects of automation on the level of real wages
for different types of workers. As in Acemoglu and Restrepo (2022), whether
the real wage of a given skill group declines depends on competing displace-
ment and productivity effects, though in this paper we will provide more
explicit conditions. One noteworthy result in this context is that the larger
is the initial set of tasks that are automated, the more likely are the real
wages of all skill types to increase. Moreover, we show that the productivity
gains from automation are convex in the price of capital goods. This im-
plies that as capital good prices (including costs of algorithmic automation)
decline further, the productivity effect strengthens, ultimately eliminating
negative wage impacts. These results together imply that the most nega-
tive consequences of displacement on workers will be at the early stages of
the automation process.’

We present one more noteworthy result on wages, related to what we
call Wiener’s conjecture, after Wiener’s (1950) pioneering study of auto-
mation. Wiener (1950, 189) claimed, “The automatic machine . . . is the
precise economic equivalent of slave labor. Any labor which competes
with slave labor must accept the economic consequences of slave labor.”
This conjecture does not seem to have been fully borne out by economic
models or the data. On the theory side, Zeira (1998) and Acemoglu and

® Because production in our model exhibits constant returns to scale and the cost of
capital is constant, average wages always increase following automation, and this structure
is also important for the result that when sufficiently many tasks are automated, the effects
on all wages are positive. The consequences of automation on wages are more negative
when the cost of capital is increasing in the stock of capital or when we depart from con-
stant returns to scale or competitive markets. See Moll, Rachel, and Restrepo (2022) and
Acemoglu, Jensen, and Restrepo (2025).
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Restrepo (2018b) show that real wages will increase in the long run follow-
ing automation. On the empirical side, although the real wages of low-
education groups have declined over the past 40 years, automation was
also rapid in the 1950s and 1960s; during these decades, wages for all de-
mographic groups increased robustly. Our analysis suggests that Wiener’s
conjecture needs to be refined: different workers have different skills, and
even if automated machines are like slave labor, they do not perfectly com-
pete against all kinds of labor. Building on this intuition, we show that au-
tomation always reduces the real wages of worker types whose productivity
schedule over tasks is sufficiently close to capital’s productivity schedule
(if such worker types exist, but they may not).

Fourth, we use the model to study global—as opposed to local—effects
of automation, which result when there are large declines in costs of cap-
ital goods. We show that as long as these changes keep us in the region of
interior automation, their effects are qualitatively the same as those of lo-
cal changes. Ultimately, however, automation expands from the interior
of the set of tasks to take over all low-skill tasks. When this happens, the
pattern of polarization reverses. While an expansion in interior automa-
tion hurts workers in the middle of the skill distribution the most (and
lowest-skill workers are to some degree sheltered), a switch from interior
to low-skill automation has its most adverse effects on lowest-skill workers.
Hence, our model predicts that as automation proceeds, its inequality im-
plications may become worse, notjust quantitatively but also qualitatively.”

Finally, we undertake a preliminary quantitative evaluation of the ef-
fects of automation in our framework. We calibrate our model parameters
to match the 1980 US wage distribution and the effects of automation
on different parts of the wage distribution between 1980 and 2016-17,
as estimated in Acemoglu and Restrepo (2022). We show that our model
matches these and a number of other moments in the US data quite well.
We then consider (1) the impact of a further wave of automation (driven
by a decline in the cost of capital of the same magnitude as in 1980-2016);
(2) the implications of advances in artificial intelligence (AI), modeled
as improvements in capital productivity in tasks that were previously not
automated (as opposed to an across-the-board improvement in capital
productivity or decline in the cost of capital); and (3) the effects of a min-
imum wage of $16 an hour. Our analysis suggests that a further wave
of automation similar to that of 1980-2016 would increase inequality by
even more, because this change would have a bigger impact at the bot-
tom of the wage distribution, given the patterns of comparative advantage
implied by 1980-2016 data. Al is predicted to raise inequality by even

7 If in this process capital productivity in already automated tasks increases (which we
refer to as deepening of automation), negative wage level effects become less likely.
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more, because it expands the set of automated tasks significantly but does
not induce as much deepening of automation—meaning productivity
improvements in already automated tasks—as does a uniform fall in the
cost of capital, which tends to increase productivity, benefiting labor of
all types. Consequently, low-skill workers are harmed more by Al, while
the highest-skill workers continue to benefit, because there is an increase
in task services that are complementary to their skills. A sizable minimum
wage like $16 an hour for the United States, on the other hand, compresses
the wage distribution considerably, raising wages at the bottom and re-
ducing them at the top. The wage declines at the top are due to the fact
that the minimum wage reduces overall employment and output, which
then depresses demand for all tasks.

Our paper is related to several contributions in both the assignment
and the automation literatures. In the assignment literature, early contri-
butions include Tinbergen (1956), Rosen (1974), Sattinger (1975, 1993),
and Heckman and Sedlacek (1985). Our model builds more closely on
Teulings (1995, 2005), Teulings and Gautier (2004), Costinot and Vogel
(2010), and Stokey (2018). More recently, Lindenlaub (2017) extends as-
signment models to settings where workers and jobs have multidimen-
sional characteristics and derives comparative statics with respect to the
degree of complementarity between skills and manual and cognitive skill
requirements of jobs. The major difference between all of these papers
and our work is the presence of capital that can take over some tasks, which
allows for an analysis of automation. From a technical point of view, these
papers impose log supermodularity between all factors and job types,
which turns the problem into one of monotone assignment. Our analysis
of automation relaxes log supermodularity between capital, labor, and
tasks (though for simplicity, we maintain log supermodularity between
worker types and tasks).

In the automation literature, we build on earlier models where capital
displaces workers in some of the tasks they used to perform. This litera-
ture and task-based models started with Zeira’s (1998) seminal theoretical
work and Autor, Levy, and Murnane’s (2003) empirical study of the polar-
ization and inequality effects of automation. Zeira’s model includes only
one type of labor and does not focus on inequality implications of automa-
tion. Many subsequent works—including Acemoglu and Zilibotti (2001),
Acemoglu and Restrepo (2018a, 2018b), Berg, Buffie, and Zanna (2018),
Jackson and Kanik (2020), Jaimovich etal. (2021) and Hémous and Olsen
(2022)—allow only two types of workers, making it impossible to study
wage polarization. Acemoglu and Autor (2011) study an economy with
three types of workers and establish polarization when automation affects
the middle group, but this structure does not allow a comprehensive anal-
ysis of the implications of different stages of automation on employment
and wage patterns. Feng and Graetz (2020), Loebbing (2022), and Ales
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et al. (2024) study task-based models with a continuum of labor types,
though under more restrictive assumptions regarding comparative advan-
tage between capital and labor. In particular, Feng and Graetz (2020) im-
pose that automation is always interior, while Loebbing (2022) focuses on
the case in which automation is always low skill. This contrasts with our fo-
cus, which is to understand when automation is interior and derive the
conditions under which there is a transition to low-skill automation. Ales
etal. (2024) study firm-level automation by imposing monotone compar-
ative advantage of labor relative to capital in more complex tasks but also
add machine indivisibility, which leads to a scale-dependent pattern of auto-
mation. At low scales, tasks of medium complexity are automated, whereas
at high scales, indivisibilities become less relevant and automation is low
skill. None of these papers contain our main characterization and com-
parative static results.

Acemoglu and Restrepo (2022) develop a general framework with mul-
tiple industries and multiple worker types to study the inequality effects of
automation. In addition to providing empirical estimates of the effects of
automation on US wage inequality, Acemoglu and Restrepo (2022) pre-
sent a theoretical analysis of the implications of automation. Because their
study lacks the specific structure imposed here (with one-dimensional het-
erogeneity on both the worker and the job complexity side and compar-
ative advantage between workers and tasks), it does not contain results
on which tasks capital will take over. Rather, they provide equations that
specify how wages of different groups will be affected as a function of
the total set of tasks that are automated and the ripple effects, which cap-
ture how different skill groups compete over marginal tasks. These ripple
effects cannot be explicitly characterized given their assumptions and are
studied empirically. Ocampo (2022) studies the assignment of a discrete set
of workers and capital to a continuum of tasks. In his framework, match-
ing is one to many, and occupations emerge endogenously as bundles of
tasks assigned to different workers. Like Acemoglu and Restrepo (2022),
Ocampo (2022) does not impose enough structure to characterize the pat-
tern of automation and the equilibrium comparative statics as functions of
primitives. In contrast to these works, our analysis enables a full character-
ization of equilibrium and its comparative statics.

The rest of the paper is organized as follows. Section II presents our
baseline environment and defines a competitive equilibrium. Section III
first establishes existence and uniqueness of equilibrium and some basic
characterization results and then studies the conditions under which auto-
mation is interior. Section IV presents our main comparative static re-
sults for small changes in the cost of capital goods and derives the em-
ployment and wage polarization implications of automation. Section V
considers global changes in automation technology and their equilibrium
consequences. Section VI presents our quantitative analysis and studies
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the consequences of various counterfactual technological and institu-
tional changes. Section VII concludes. Appendix A includes several of
the proofs omitted from the text, while appendix B (available online)
contains a few additional proofs and information on data and computa-
tional methods.

II. Model

In this section, we introduce the basic economic environment, describe
some of our assumptions and their motivations, and define a competitive
equilibrium.

A.  Environment

We consider a static economy with a unique final good, Y, produced from
a continuum of workers with skills s € [0, 1] and a continuum of tasks
x € [0, 1]. The production of the final good is given as a constant elasticity
of substitution aggregate of tasks:

1 M=)
Y = U YQ‘““dx] : (1)

0

where Y,is the amount of task x and A > 0 is the elasticity of substitution.®

All labor types are inelastically supplied, with a density function of
1:10,1] > R, (which specifies the total endowment of each type of la-
bor), and we assume that this density is continuous. We also assume that
capital is produced out of final good with marginal cost 1/¢. We identify in-
creases in ¢ with greater capital productivity or equivalently lower prices of
capital goods.

The task production functions are given by

1
Yx = J ¢x,xLx,de + ¢k,xKx (2)
0

for all x € [0, 1], where y,, > 0 and ¥, . > 0 denote the productivities of
different factors in task x and L,, and K, are, respectively, the amounts
of labor of type s and capital allocated to the production of task x. We
assume that the factor productivities ¥, , and ¥, are twice continuously
differentiable. Labor market clearing requires

% This production function imposes that all tasks have the same productivity/impor-
tance. This is without loss of generality, since we allow general task and factor-specific pro-
ductivity functions ¥, and y,. below, and any task-level differences can be subsumed into
these.
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1
J L,.dx = [ forall s € [0, 1], (3)

0

and net output is
1.
NY =Y —-K,
q
where K = ﬁdex is the aggregate capital stock and thus K/q is total
capital expenditure. Net output is also equal to consumption in this
economy.

B.  Competitive Equilibrium

An allocation in this economy is given by a collection of density functions,
L = {L},-, where L,:[0,1] — R, for each s € [0, 1] and a capital alloca-
tion K:[0,1] —» R,. The density functions allocate labor supply of each
type of labor to tasks, and the capital allocation function determines
how much capital will be allocated to each task. This definition already in-
corporates nonnegativity constraints for all factors in all tasks. We describe
an allocation with the shorthand {L, K}. Forall s € [0, 1], we define the set
X, :{x |L,, > 0} as the set of tasks performed by labor type sin this alloca-
tion and X, = {x|K, > 0}. We also use the terminology that tasks in the set
X, are automated.’

We additionally designate two price functions: first, a wage function
w:[0,1] > R, which gives the wage level, w, for each type of labor
s € [0, 1]; and second, a task price function p:[0, 1] — R, which deter-
mines the price p, of each task x € [0, 1].

A (competitive) equilibrium is defined as an allocation {L, K} and price
functions {w, p} such that final good producers maximize profits, taking
task prices as given; task producers maximize profits, taking task and fac-
tor prices as given; and all markets clear. Task producers’ profit maximiza-
tion implies that wages equal marginal products of the relevant labor
types, that is,

w, = py,, forall x € X,

(4)
w, > py,, forall x € [0, 1],

while the cost of capital must be equal to the marginal product of capital,
that is,

¢ A more stringent definition of automated tasks might additionally require that these
tasks are not simultaneously performed by labor, i.e., L,, = 0 for all s. Under our assump-
tions 2 and 3, the set of tasks that are performed by both labor and capital in equilibrium is
of measure zero, and hence this distinction is not relevant.
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= wak,x v X € )(ks

(5)
> pbis ¥V x € [0,1].

_R = =

Final good producers’ profit maximization in turn implies that task
prices equal the marginal products of tasks in final good production,
that is,

Y\ A
b = (Y) forall x € [0, 1]. (6)
We note that the first welfare theorem holds in our model and the equi-
librium allocation maximizes net output (consumption) subject to labor
market clearing (3).

C. Assumptions and Motivation

We now describe some of the assumptions we will use in our main
analysis.

Since the economy exhibits constant returns to scale and can produce
the final good linearly from capital and capital from the final good, in prin-
ciple its output may be unbounded. Our first assumption ensures that the
cost of capital is not so low as to generate infinite output.

AssumpTION 1 (Bounded output). The cost of capital satisfies

1 1/(\=1)
l > l = (J Q;Idx)
q 4 0

(where the lower bound 1/¢. is derived as the marginal product of cap-
ital if all tasks are performed by capital, using eqq. [1], [5], and [6]).

Our second assumption follows the assignment literature (e.g., Teul-
ings 1995, 2005; Costinot and Vogel 2010) and imposes comparative advan-
tage (among workers). This means, in particular, that the productivity ad-
vantage of higherskilled workers increases more than proportionately with
the task index among workers. We impose this assumption both to simplify
the analysis and also to maximize the similarity of our benchmark environ-
ment to the previous literature, which will clarify that all of the new results
here are driven by the automation margin.

AssuMPTION 2 (Comparative advantage among workers). Forall s > ¢/,
we have Y. /Y,v > Yo./Ye forall x > &
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Comparative advantage ensures that without capital, the equilibrium
will assign higher-skilled workers to higher-indexed tasks."

We next present a motivating example that provides a simple illustra-
tion of comparative advantage. This example has the additional benefit
of showing how multidimensional skills can be mapped into our setup
with a one-dimensional skill index.

ExaMmPLE 1. Suppose that each task x € [0, 1] involves a combination
of abstract and manual activities. Specifically, the productivity of a worker
with skill level s € [0, 1] in task x will be a function of this worker’s abstract
and manual skills, denoted by the vector (a,, m,):

1-x

Vo = aim

In the context of this example, a sufficient condition for comparative ad-
vantage is for workers’ skill endowments (a, m,) to satisfy

A ay
—> forall s > s.
ms‘ mﬁ/
To see this, let
X g0l —x
X, S aim,
AzlogL( ) = log ——

Vi s) B am

and by assumption, we have dA/0x = [log a, — log m,] — [log a; — log my] >
0. A sufficient condition for absolute advantage is for g, to be strictly in-
creasing and m, to be nondecreasing in s.

Motivated by this pattern of comparative advantage, we also refer to
higher-index tasks as more complex tasks, as in Teulings (1995, 2005).

The other key dimension of our model concerns the productivity of
capital relative to different labor types. Crucially, here we do not assume
supermodularity. However, it is convenient to put sufficient structure on
the comparative advantage of capital to have a simple characterization of the
set of tasks, Xj, that are assigned to capital. The next assumption achieves
this.

AssumPTION 3 (Comparative advantage of capital). Forall s € [0, 1],
Yir/ Vs, is quasi-concave in x.

1% Since we refer to higher levels of the skill index s as more skilled, it is natural to pre-
sume that wages should increase in s. A simple way to ensure this would be to impose ab-
solute advantage, i.e., ¥, > ¥, for all s > s' and all tasks x, but we do not formally impose
this restriction because it is not needed for the rest of our analysis.
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This assumption rules out situations in which the direction of compar-
ative advantage for capital changes more than once for any given level of
skill. Put differently, assumption 3 allows some skill types to have compar-
ative advantage in lower-index tasks relative to capital and then again in
higher-index tasks after a certain threshold. But it rules out more than one
such switch. We prove in proposition 2 that this is necessary and sufficient
for the set X; of tasks assigned to capital to be convex. We adopt assump-
tion 3 in the text for expositional simplicity. In appendix B, we extend our
main characterization result (proposition 3) to the case where assump-
tion 3 is relaxed.

We nextillustrate this assumption with the environment considered in
example 1.

ExampLE 1 (Continued). Assumption 3 is ensured in this example
when ¥,, is log concave in x. Since the productivity of each labor type is
log linear in x, log concavity of capital productivity implies quasi-concavity
of all relative productivity schedules ¥, /...

III. Characterization of Equilibrium and Interior Automation

In this section, we establish existence and uniqueness of a competitive
equilibrium and study the conditions under which tasks from the middle
of the skill distribution are automated.

A.  Existence and Uniqueness

ProrosiTiON 1 (Existence and uniqueness). Suppose that assump-
tion 1 holds. Then, a competitive equilibrium always exists and is essentially
unique in the sense that wage and price functions are uniquely deter-
mined. If in addition assumptions 2 and 3 hold, the competitive equilibrium
is unique.

Existence follows from the fact that the competitive equilibrium max-
imizes net output, which is a continuous function of the allocation. Es-
sential uniqueness, on the other hand, is a consequence of the fact that
net output is a concave function of the allocation. The reason why the
competitive equilibrium is essentially unique—but not fully unique with-
out assumptions 2 and 3—is straightforward to see: some tasks may be
produced at the same cost using different factors, creating indetermi-
nacy of equilibrium allocations. Assumptions 2 and 3 rule out such in-
determinacy: assumption 2 imposes strict comparative advantage be-
tween any two types of labor and, together with assumption 3, implies
that on any subset of tasks of positive measure, there can be at most one
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type of labor with a productivity schedule parallel to capital’s productivity
schedule."

B.  Interior Automation

The next proposition confirms that, as mentioned above, assumption 3 is
sufficient to ensure that the set of tasks allocated to capital, X;, is convex.

ProrosiTION 2 (Convexity of assignment).  Suppose that assumptions 1
and 2 hold.

1. The allocation of labor across tasks is monotone, meaning that for
any s > s, if L, > 0, then L;, = 0 forall x' > x.

2. The set of automated tasks in equilibrium, X;, is convex for all labor
endowment functions and capital productivity levels if and only if
assumption 3 holds.

The first part of this proposition confirms that the monotonicity ob-
tained in assignment models with log supermodularity continues to hold
in our model. The second part implies that we can focus on a convex set
of automated tasks. A convex set of automated tasks leaves four feasible
configurations:

1. No automation: where X, = & (because the cost of capital is too
high).

2. Interior automation: where X, = [x, x|, with 0 < x <x <1, and
thus both the most complex and the least complex tasks are assigned
to some labor types.'?

3. Low-skill automation: where X; = [0, x], with 0 < x < 1, and thus
all tasks below a certain threshold of complexity are automated.

4. High-skill automation: where X, = [x, 1], with 0 < x < 1, such that
all tasks above a certain complexity threshold are automated.

We refer to the third configuration as low-skill automation, since capital
takes over tasks that used to be performed by lower-skilled workers (as in
the first part of proposition 2), and analogously we refer to the fourth case
as high-skill automation. The first case—no automation—is not of great

" If a single type of labor has a productivity schedule that is parallel to capital’s produc-
tivity schedule on the set of automated tasks, this does not create any indeterminacy in al-
locations because a single type of labor has no mass. Formally, an allocation is a collection
of densities from an I/ space where any two densities that are equal almost everywhere are
identified and represent the same allocation.

'* In this statement, we impose that the boundary tasks x and x are performed by capital.
This is for notational simplicity and is without loss of any generality.
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interest given the focus of this paper, and we assume below that the cost
of capital is sufficiently low so as to ensure automation.

We next study the conditions under which automation will be interior.
The least complex task, x = 0, is cheaper to produce by the least skilled
worker type, s = 0, than by capital if

W _ 1/q 7

When inequality (7) is satisfied, we cannot have low-skill automation,
and an analogous condition rules out high-skill automation. Hence, from
proposition 2, automation must be interior. Condition (7) is intuitive. It
requires that the effective wage of the least skilled workers in the least
complex task (wage divided by productivity) is less than the effective cost
of capital in that task (the cost of capital, 1/¢, divided by the productivity
of capital in that task). Whether this condition is satisfied depends on the
shape of comparative advantage schedules , capital productivity ¢, and
the labor supply profile  (which jointly determine the equilibrium wage
for the least skilled type, w,). The following two conditions allow us to
characterize the equilibrium both in cases where inequality (7) is satisfied
and in cases where it is not.

ConpITION 1 (Local comparative advantage of capital).

1. The least skilled workers have local comparative advantage relative
to capital in the least complex tasks, that is,

0 log Vo < 0 log Vio
ox ox

2. The most skilled workers have local comparative advantage relative
to capital in the most complex tasks, that is,

6 IOg 1[/1,1 > a 10g ¢k,l
Ox ox

CoNDITION 2 (Global comparative advantage of capital).

1. The least skilled workers have global comparative advantage relative
to capital in the most complex tasks, that is,

Yoo _ Yo

wk,() ¢k,1 '

2. The most skilled workers have global comparative advantage rela-
tive to capital in the most complex tasks, that is,
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wk,() llbk,l ’

Condition 1 imposes only local comparative advantage: comparing the
least (most) skilled workers with capital around the least (most) complex
tasks. This comparative advantage pattern does not have to hold globally.
Condition 2 in contrast imposes global comparative advantage: compar-
ing the least and most skilled workers to capital in the least versus most
complex tasks.

ProrosITION 3 (Interior automation). Suppose that assumptions 1-3
and condition 1 hold. Then, there exist thresholds ¢, < ¢. and ¢,, € (¢, qw]
such that:

1. For ¢ < ¢, there is no automation, thatis, X, = <.

2. For g € (q, g.), automation is interior, that is, X, = [x, ¥], with
0 < x < x < 1. Additionally:

3. If condition 2 holds, then ¢, < ¢., and for ¢ > ¢,, automation is
low skill, that is, X, = [0, x], with 0 < x < 1.

4. If condition 2.1 is strictly violated but condition 2.2 holds, then
gn = . such that automation is interior for all ¢ € (¢, ¢).

5. If conditions 2.1 and 2.2 are both strictly violated, then ¢, < ¢.,
and for ¢ > ¢,, automation is high skill, that is, X, = [x, 1], with
0<x<I1."

If assumptions 1-3 hold but condition 1 does not, then automation is
not interior.

Proposition 3 is our first main resultand provides a complete character-
ization of the different patterns of automation that can arise in our model.
The first part of the proposition establishes that capital productivity has to
cross some threshold level ¢, to induce any automation. The second partis
the most important result of the proposition. It establishes that when cap-
ital productivity crosses this threshold ¢, and assumptions 1-3 and condi-
tion 1 hold, automation always starts in the interior.

The next three parts show that when capital productivity increases fur-
ther, three different scenarios are possible. First, if condition 2 holds—
which means that both the least and the most skilled workers have global

¥ Note that a configuration where condition 2.1 holds while condition 2.2 is violated is
not compatible with the comparative advantage among workers imposed in assumption 2.
In knife-edge cases where one of the two conditions is violated weakly, meaning that the
respective inequality is replaced by equality, additional information about comparative ad-
vantage schedules is needed to determine the pattern of automation, and we omit those
cases to save space.
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comparative advantage relative to capital in the most versus the least com-
plex tasks—then automation transitions from interior to low skill at some
threshold level of capital productivity, denoted by ¢,, (and characterized in
app. sec. A2.3). Second, if only the most skilled workers have global com-
parative advantage relative to capital in the most complex tasks, then au-
tomation remains interior indefinitely. Third, if both the least skilled and
the most skilled workers have global comparative advantage relative to
capital in the least complex tasks, then automation transitions from inte-
rior to high skill after capital productivity exceeds the threshold.

Finally, the last result in the proposition shows that condition 1 is nec-
essary for interior automation. This part of the proposition is developed
further in proposition Al in appendix section Al.

Figure 1 shows the assignment of tasks to labor and capital in the case
of interior automation. Tasks in the set X, = [x, ¥] are assigned to capital,
while the remaining tasks are performed by the labor types indicated on
the vertical axis.

S N

1 ............................................................................

g’ ..............................................

0 z T 1z
labor capital labor

Fic. 1.—Assignment of tasks to capital and labor. Tasks in the set X, = [x, X] are assigned
to capital, while the remaining tasks are assigned to the labor types indicated by the graph
(X, 5). In particular, tasks x < x are assigned to worker types s < §, while tasks x > x are as-
signed to labor types s > 5.
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Inequality (7) provides further intuition for why automation may af-
fect middle-skill occupations most. Fixing v, and treating the wage of the
least skilled worker, w,, parametrically, there are two ways in which this in-
equality is satisfied: either 1 / (q¥10) is high or w, is low. The first captures
the economic forces proposed by Autor (2014, 2015): many of the tasks
performed by lower-skill workers may be hard to automate because they
require a combination of tacit knowledge and manual dexterity. The sec-
ond is what we have emphasized in the introduction: wages at the bottom
are too low to make automation economically profitable.

Proposition 3 clarifies that these two explanations are linked because
the wage is endogenous. However, they are also distinct, and one way of
illustrating this is to consider variations in the wages at the bottom of the
distribution, holding the other parameters of the model constant. The sim-
plest way of doing this is by imposing a minimum wage in the model, which
we discuss briefly in proposition 4. In the presence of a binding minimum
wage w, the equilibrium involves rationing: some worker types may not be
hired. This requires an obvious change in the definition of equilibrium,
which we omit to save space. It is also straightforward to see that the set of
rationed workers will always be of the form [0, s] (see Teulings 2000). Ex-
cept for rationing, the same equilibrium conditions as in our analysis so far
apply. Then we have:

ProprosITION 4 (Minimum wages and automation). Suppose that
assumptions 1-3 and condition 1 hold and let ¢ € (¢, ¢,) so that in the
competitive equilibrium without the minimum wage, we have interior au-
tomation. Now consider a minimum wage of w > 0, which leads to the ra-
tioning of workers with skills in [0, s]. If in addition we have

dlog ¥y, - 0log Yo
ox ~—  Ox

then inequality (7) is violated, and we transition to low-skill automation.

, (8)

Intuitively, without the minimum wage, labor performing low-skill tasks
tends to be cheap, and this makes automating these tasks unprofitable, en-
suring interior automation. When there is a binding minimum wage, skills
at the bottom of the distribution become more expensive, and this in-
creases the profitability of automating some of the tasks previously per-
formed by low-skill workers (and also causes unemployment). It is also
useful to observe the role of condition (8): without this condition, some
of the workers with skill above s may find it profitable to take the lowest-
complexity tasks.'* The implication that higher wages for low-skill labor

" This condition is compatible with condition 1, since the comparison is for different skill
levels, and the juxtaposition of these two conditions highlights that in our model, conditions
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lead to more automation of the tasks performed by impacted workers is
consistent with the empirical findings of Hémous et al. (2025), who ex-
ploit cross-country and cross-firm variation in low-skill wages and trace their
effects on automation innovations using patent keywords.

An alternative way to increase wages at the bottom of the distribution is
toreduce the labor supply of low-skill workers relative to high-skill workers.
We consider such a change in labor supply in the following proposition.

ProrosiTION 5 (Labor supply and automation). Suppose that as-
sumptions 1-3 as well as conditions 1 and 2 hold so that automation tran-
sitions from interior to low skill at the threshold ¢, € (¢, ¢.). Consider a
change in labor supply such that Alog [, < Alog/; for all s < (an in-
crease in the relative supply of more skilled workers). Then, the threshold
¢. declines, that is, Ag, < 0. Thus, if ¢ € (¢, + Agu, ¢,), automation tran-
sitions from interior to low skill in response to the labor supply change.

The proposition shows that an increase in the relative supply of high-
skill workers can induce a transition from interior to low-skill automation.
This confirms our intuition about the critical role of low-skill workers’
wages: an increase in relative skill supply renders low-skill workers scarce
and raises their wages, which then makes it more profitable to automate
their jobs. The implications of proposition 5 are consistent with the em-
pirical findings of Clemens, Lewis, and Postel (2018), who exploit the end
of the Bracero Program that led to the exclusion of about half a million
low-skill Mexican farmworkers from the US agricultural sector and show
that this led to the substitution of capital for the labor of these workers
(which is equivalent to low-skill automation in our framework). We fur-
ther discuss the implications of labor supply changes for wage inequality
in proposition 12.

C. Characterization of Equilibrium

We next provide a characterization of equilibrium when assumptions 1-3
hold and ¢ > ¢, (so that there is automation in equilibrium). Under these
assumptions, the set of automated tasks takes the form X, = [x, ], with
x < x < 1. This leaves the sets [0, x) and (x, 1] for labor, with workers with
skills above a threshold 5 € [0, 1] employed in (%, 1] and those below §
employed in [0, x).

By standard arguments from the assignment literature, the allocation
of skills to tasks in either of the two sets [0, x) and (x, 1] can be described
by an assignment function X :[0,3) U(3, 1] —[0, x) U(x, 1] mapping skills to

for the comparative advantage of capital relative to labor are endogenous: which skill type’s
productivity is compared with capital’s productivity is determined in equilibrium.
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tasks.” This function is differentiable (except at the threshold 3), strictly
increasing and onto (see Costinot and Vogel 2010). These properties are
illustrated in figure 1, except that we find it more intuitive to plot its in-
verse, X ', and thus have skills on the vertical axis and tasks on the hor-
izontal axis. Consequently, when the assignment function X shifts up
(down), its inverse X' (plotted in fig. 1) will shift down (up).

Condition (4) implies that every worker type is assigned to the task in
which its marginal value product is maximized. Thus,

log w, = log px + log ¢, x = max{log p. + logy,.}.

An envelope argument then yields the differential equation

_ Ology,x
0s

which we can think of as determining wages given assignment and a bound-
ary condition (where (logw,)’ denotes the derivative of the function log w,
with respect to s). When condition 1 holds and ¢ € (¢, ¢,) such thatauto-
mation is interior, the boundary condition is provided by the requirement
that in both tasks x and x, production must be equally costly with capital
and skill s:

(log w,)’ Vs#s5, 9)

When automation is low skill, we have x = 0 and s = 0, and the first equal-
ity becomes an inequality—w; /s, > 1/ (g, )—so that it is weakly more
costly to produce task x = 0 with skill s = 0 than with capital. The sec-
ond equality still provides a relevant boundary condition. So, taking logs,
we have

log w; = log ¢z — log ¥, — log ¢ > log s, — logy,, —logq, (10)

with equality when automation is interior and with § = x = 0 when auto-
mation is low skill. An analogous condition can be derived for the case of
high-skill automation. Note further that when automation is interior, the
wage function characterized by (9) and (10) has a kink point at 5, where
the assignment function jumps upward."®

'» Recall that X, was defined as the set of tasks performed by skill s, and thus in general X
should be a correspondence. However, under assumptions 1-3, X is a singleton, and
henceforth we treat X as a function.

' The wage function is continuous at 3 because the productivity schedule ¥, is contin-
uous in s. If there were an upward jump in wages at s, workers immediately below 5 would
relocate to the tasks assigned to workers immediately above the threshold and increase
their wage.
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Intuitively, equation (9) ensures that all workers find it optimal to sort
into the tasks assigned to them. This requires that the marginal return to
skill at any level s is given by the marginal productivity gain in the task as-
signed to s, X

Next, we can combine the equilibrium conditions for wages in (4), task
prices (6), and task production (2) to obtain an expression for inverse la-
bor demand:

— yI/A AD/N =18
w, = YN,

where Ly is the marginal density of labor over tasks. A change of variable
allows us to express this density in terms of the density of labor over skills,
XLy = [, for s # 5. Using this relationship and rearranging, we obtain
the labor demand curve as

L Yy

! A
X w;

Vs#5. (11)

The labor demand curve here takes the form of a differential equation
for the assignment function, given wages. If automation is interior, the as-
signment function has two branches, one on [0, 5) and one on (s, 1]. If
automation is low skill instead, only the upper branch exists. For the
lower branch, the boundary condition is

lim X, = x, (12)

whereas for the upper branch, the boundary condition is given by

lirgg X, =X (13)
Intuitively, if labor demand in task X;is high (e.g., because aggregate out-
put is high or the wage of skill s is low), equation (11) requires that the
density of labor supplied to task X is high as well. This is achieved by a
shallower slope for the assignment function X/, which means that more
workers are squeezed into fewer tasks in the neighborhood of X.
Overall, we have a two-dimensional system of differential equations
(and boundary conditions) for wages and assignment. This system fully
characterizes equilibrium together with the production function (1),
the capital allocation rule

K
K = argmaxq Y — — 5,
q
and the requirement that any task is assigned to some production factor.
If automation is interior, this requires X, = 0 and X; = 1. If automation
is low skill, only X; = 1 is required.
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Our characterization displays the two channels via which automa-
tion (e.g., driven by a decline in the cost of capital /an increase in ¢) affects
wages and assignment. The firstis a displacement effect, as in Acemoglu and
Restrepo (2022): automation reduces the boundary condition for wages
(10) and hence, given assignment, the wage of worker type s. This im-
plies, in particular, that workers directly competing with capital must ei-
ther relocate to other tasks or accept a wage decline in proportion to the
reduction of the cost of capital. The second is a productivity effect, driven
by the fact that a lower cost of capital raises aggregate output Y. From
equation (11), the productivity effect raises labor demand in all tasks pro-
portionately and, for a given assignment, wages for all skill levels rise pro-
portionately as well.

Finally, we can derive a simple expression for the share of capital in na-
tional income, which will be useful when discussing the productivity ef-
fects of automation. Combining the task production function (2), equa-
tion (5), and task prices (6) for the marginal product of capital, we obtain

1 - _
_ = yl/klpgx l)/ka 1/x

Then, solving for capital, integrating over [x, x|, and dividing by ¢Y yields
the share of capital in gross output as

= —= =T, (14)

where

I, = J he dx

is the task share of capital, which is a productivity-weighted measure of
the set of automated tasks. Equation (14) shows thata decline in the cost
of capital has two distinct effects on the capital share: a capital deepening
effect (as captured by ¢* '), the sign of which depends on whether tasks
are complements or substitutes; and the impact following from the expan-
sion of the task share of capital, which is the counterpart of the displace-
ment effect on wages discussed above.

IV. Local Effects of Automation

In this section, we suppose that assumptions 1-3 as well as condition 1
hold and that ¢ € (¢, ¢,) so that automation is interior. We then study
the implications of a small decline in the cost of capital goods (an increase
in ¢), which expands the set of automated tasks. Our main results charac-
terize the polarization and inequality consequences of automation.
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A, Employment Polarization

ProprosITION 6 (Automation and employment polarization). Sup-
pose that assumptions 1-3 and condition 1 hold, let ¢ € (¢, ¢,), and con-
sider a small increase in the productivity of capital dlog ¢ > 0. Then,

dx <0and dx >0

(automation expands in both directions) and
dx, < 0 forall s € (0,5) and dx, > 0 forall s € (5, 1)

(the assignment function shifts down below the set of automated tasks
and shifts up above the set).

Moreover, if A > 1, the labor share always decreases. If A < 1, there exists
a threshold for capital productivity § > ¢, such that the labor share de-
creases if ¢ € (¢, ¢).

The first part of this proposition establishes thata (small) decline in the
cost of capital goods (or an increase in the productivity of capital) always
expands the set of automated tasks on both sides, and relatedly, it shifts
the assignment of workers further toward the two extremes of the task
distribution, as shown in figure 2. This result thus implies that the employ-
ment polarization pattern documented in Autor, Levy, and Murnane (2003),
Goos, Manning, and Salomons (2009), and Acemoglu and Autor (2011)
always applies so long as we consider a small increase in the set of auto-
mated tasks, starting from interior automation."”

One implication of this result is that some of the workers may end up
performing more complex tasks after further automation (if ds < 0, the
case shown in fig. 2). This is consistent with the empirical results presented
in Dauth et al. (2021) showing how German firms retrain and promote
blue-collar workers to more demanding technical tasks after the introduc-
tion of industrial robots.

The second part of the proposition provides conditions under which
the labor share declines. There are two channels via which automation af-
fects the labor share (see also our discussion of eq. [14] for the capital
share). First, the expansion of the set of automated tasks, established in
the first part of the proposition, always decreases the labor share. Sec-
ond, productivity gains in tasks that are already automated (deepening of
automation) decrease the labor share when tasks are substitutes (A > 1)
but raise it when tasks are complements (A < 1). Yet even when tasks are

7 It is also straightforward to show that if there were technological constraints on what
tasks could be automated (as in Acemoglu and Restrepo 2018b) and these dictated that
only tasks in the set [x, ] could be automated, and we considered an expansion of the
set with dx < 0 and dx > 0, then the same employment polarization result would hold.
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F1c. 2.—Employment polarization. In response to a small increase in capital productiv-
ity, the set of automated tasks expands in both directions, and workers move toward the
extremes of the task distribution, here illustrated for the case with ds < 0 (dashed line).
Recall that we are plotting the inverse of the assignment function, so when the assignment
function shifts up, our plotted function shifts down.

complements, the proposition establishes that the expansion of the set
of automated tasks dominates and the labor share declines in the initial
stages of automation (when the productivity of capital is small).

B.  Wage Polarization

The next proposition gives one of our most important results:

PROPOSITION 7 (Automation and wage polarization). Suppose thatas-
sumptions 1-3 and condition 1 hold, let ¢ € (¢, ¢.), and consider a small
increase in the productivity of capital d log ¢ > 0. Then, there is wage po-
larization in the sense that skill premia increase above the threshold task s
and decrease below this threshold. Or equivalently,

dlog w, > dlog wy forall s < s € (0, 3],
d log w, < dlog wy forall s’ > s € [5, 1).

The wage polarization result contained in proposition 7 is similar to the
finding in Acemoglu and Autor (2011), but as discussed in the introduction,
their result was a direct consequence of the fact that there were three types
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of workers, and automation was assumed to affect the middle type. Here,
we see that wage polarization reflects more general forces and applies
throughout the distribution, regardless of exactly where automation is tak-
ing place (provided that we start from interior automation). We are not
aware of other results of this sort in the literature.

The economics of this result is again related to the competing displace-
ment and productivity effects. The displacement effect directly harms the
earnings of workers who used to perform the previously automated tasks,
while the productivity effect benefits all workers symmetrically. Notably,
the displacement effect does not impact just directly affected workers
(whose previous tasks are taken over by capital) but all workers, because
of the general pattern of substitutability between worker types. These rip-
ple effects are also present in Acemoglu and Restrepo (2022), but in our
setting, they depend on only the distance of a skill group to the threshold
type s. This, combined with the symmetric productivity effects, yields the
result in proposition 7.

Proposition 7 establishes how skill premia change, generating a pattern
of wage polarization. Other important questions are whether the real
wage level of some worker types will decline following the expansion in au-
tomation and whether the top or the bottom of the wage distribution will
be more heavily impacted. The next proposition answers these questions.

ProposITION 8 (Automation and wage levels). Suppose that assump-
tions 1-3 and condition 1 hold, let ¢ € (¢, ¢.), and consider a small in-
crease in the productivity of capital d log ¢ > 0.

1. The average wage in the economy always increases.

2. There exists a threshold for capital productivity ¢ > ¢, such that if
q € (¢, q), then for some 6;,0, > 0, we have dlog w, <0 for all
s€E(S— 06,5+ 69).

3. Suppose that there exists s such that ¥, /¥, is constant in x. Then
for some 6;, 0; > 0, we have d log w, < 0 forall s € (s — 61,5 + 6,).

4. Suppose that Yoo/¥ro < Yo1/¥s1. Then there exists a threshold for
capital productivity ¢ < ¢, such thatif ¢ € (¢, ¢,), the inequality be-
tween the top and the bottom of the skill space increases. That is,

dlog wy < dlog w.

The first part follows immediately from Euler’s theorem given con-
stant returns to scale, since in our economy net output equals the aggre-
gate wage bill:

1
NY = J w,l.ds.

0
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Because labor supply is unchanged, log differentiating this equation
yields

! Ol ay
dlog w,ds = dlog NY = 1—d10gq> 0,

0ol —ay - O

where o, and o, are the income shares of skill s and capital, respectively,
and so the leftmost term is the change in the average wage in the econ-
omy, while the second equality is a direct implication of Hulten’s theo-
rem. Hence, the average wage always increases following an expansion
in automation.'®

The second part is also intuitive. When the initial level of capital pro-
ductivity is low, the set of automated tasks is small. This implies that a mar-
ginal increase in ¢ generates only a small productivity effect, and the most
affected worker type, 5, necessarily experiences a real wage decline (be-
cause of the displacement effect). In fact, the decline in the real wage ex-
tends to a set of workers around s because the wage effects are continuous
in skills. This result highlights the importance of the magnitude of the
productivity effect, which we characterize in section IV.C.

The third part provides a refinement of Wiener’s conjecture, discussed
in the introduction. Namely, if a worker type has a productivity profile very
similar to that of capital, then Wiener’s intuition that production using
capital will cause the impoverishment of this worker type is correct.'” How-
ever, even though all labor types are competing against capital, wages will
not fall for all workers but only for worker types whose overall comparative
advantage is very similar to that of capital. Indeed, we know from the first
part that average wages and hence the wages of some skill types have to
increase (and, in fact, it is possible for all wages to increase).

Finally, the fourth part shows that automation widens the inequality be-
tween high- and low-skill workers, at least if the productivity of capital is high
enough. The intuition for this result is as follows. If Yo /¥10 < ¥o1/¥41, then
automation will proceed in an unbalanced way, approaching the bottom
of the task space as ¢ grows (see sec. V). As automation tilts toward the bot-
tom, so do its displacement effects on wages, reducing wages at the bottom
relative to the top of the skill space.

% As discussed in n. 6, this result is itself a consequence of some of the special assump-
tions that are typically imposed in these types of models, including ours, and can be relaxed.
Since this is not our main focus, we do not explore this issue further in this paper.

1 Strictly speaking, proposition 8 requires the worker type to have exactly the same pro-
ductivity profile as capital. In proposition 10, we extend this to worker types whose produc-
tivity profile is sufficiently similar—but not exactly equal—to that of capital. This extension
is easier to formalize when studying global changes in capital productivity, so we defer it to
proposition 10.
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C.  Productivity

The next proposition provides a characterization of the productivity ef-
fects of automation, using total factor productivity (TFP) as a measure for
productivity. TFP growth in our setting is

7% 1
Alog TFP = Alog Y — «a,Alog (5) — (1 — ay)Alog (J lyds)
q

0

= Alog Y — aAlog <§),
where we subtract the growth in the value of the capital stock, Alog(K/q),
not the change in the quantity of machines, Alog K, from gross output
growth. Greenwood, Hercowitz, and Krusell (1997) argue that one should
subtract the growth of the quantity of capital if the goal is to obtain a mea-
sure of factor-neutral productivity growth. However, to obtain a measure
of overall productivity change, including capital-specific productivity, one
needs to subtract the growth of the value of capital, as they also point out.
We opt for the latter since we want our productivity measure to reflect the
capital-specific productivity gains due to higher g¢.
With this definition of TFP, we obtain the following second-order Tay-
lor expansion.

ProposITION 9 (Productivity effects). Suppose that assumptions 1-3
and condition 1 hold, let ¢ € (¢, ¢.), and consider a small increase in the
productivity of capital Alog ¢ > 0. Then we have

Alog TFP = o Alog ¢

[e7%

)\_1+610ng dx Ologl;, dx
11— ox dloggq Ox dlog

+

q} (Alog )",

The first term in the approximation is an immediate consequence of
Hulten’s theorem and implies that the firstorder effect of an increase in
capital productivity is equal to its income share. This first term indicates that
the TFP gain will be smaller when «, is small, thus confirming the result in
proposition 8.2: when the productivity of capital is low to start with or, equiv-
alently, only a few tasks are initially automated, then the productivity effect
is small (which is the reason why negative wage effects are more likely in
this case).

The second term captures two distinct but related forces. First, the ex-
pansion of the task share of capital I'; tends to make the TFP effects of lower
capital costs (higher capital productivity) convex: a lower cost for capital
expands the set of automated tasks, generating a bigger base on which
additional productivity gains can be obtained. Second, holding the set of
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automated tasks fixed, lower capital costs increase or decrease the share of
capital in national income, depending on whether tasks are complements
(N < 1) orsubstitutes (A > 1). If tasks are complements, a lower cost of cap-
ital leads to an increase in the labor share and a decrease in the capital share.
This partially counters the effect from the expansion of the set of automated
tasks and the implied convexity of TFP effects. In contrast, if tasks are sub-
stitutes, a lower cost of capital reduces the labor share and raises the capital
share, thus amplifying convexity.

V. Global Effects of Automation

In this section, we consider noninfinitesimal (potentially large) changes
in the productivity of capital. We distinguish between two cases. In the first
(sec. V.A), after this change, automation still remains interior. In the sec-
ond (sec. V.B), we transition from interior to low-skill automation. Finally,
we also discuss additional comparative statics with respect to labor supply
changes.

A.  Nonlocal Changes with Interior Automation

ProrosITION 10 (Polarization with large changes in automation). Sup-
pose that assumptions 1-3 and condition 1 hold, let ¢ € (¢, ¢,.), and con-
sider a potentially large increase in the productivity of capital Alog ¢ > 0,
which still satisfies log ¢ + Alog ¢ <log ¢,. Lets = s+ As € (0, 1) be the
new threshold skill level.

1. Then, automation expands in both directions and causes employ-
ment polarization. That is,

Ax < 0and Ax > 0,
and

Ax, < 0forall s € (0,5) and Ax, > 0 for all s € (5, 1).

2. There is wage polarization in the sense that skill premia increase
above the threshold skill 5" and decrease below this threshold. Or
equivalently,

Alog w, > Alog w, forall s < s € (0, %],
Alog w, < Alog wy forall s' > s € [§, 1).

3. The average wage always increases, and moreover, there exists
a threshold for capital productivity ¢ > ¢, such that if ¢ + Aq €
(g, q), then for some 6;,0, > 0, we have dlogw, <0 for all s e
[5 = 6,5+ 6.
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4. Let v = max.{logy,, — log{,.} — min,{logy,. — logy,.} for
some s. Then,

max

Alog w, < 4 — Alog q.

In particular, if v7;* <€, then any Alog ¢ > € will reduce the wage
of workers with skill level s.

5. Suppose that ¥o/¥io < ¥o1/¥r1. Then, if ¢ + Aq is sufficiently close
to ¢,, the inequality between the top and the bottom of the skill space
increases, that is,

Alog wy, < Alog w.

In summary, this proposition establishes that our main employment
and wage polarization results do not depend on whether we consider
small or large changes in capital productivity, provided that automation
starts out and remains interior. Moreover, as before, when we initially have
relatively few tasks automated (or the productivity of capital is still relatively
low), an expansion in automation hurts workers around the skill thresh-
old 5. Our refinement of Wiener’s conjecture also extends to this case:
the wages of worker types with productivity profiles sufficiently similar to
capital’s will decline (but, as before, wages cannot decline for all worker
types). Finally, under the same conditions as in the local analysis, the im-
pact of automation on the wage distribution is asymmetric: inequality in-
creases between high-skill and low-skill workers. The proof of this proposi-
tion and of the remaining results are in appendix B.

We will next see that when automation ceases to be interior, we obtain
very different comparative statics.

B. Transition to Low-Skill Automation

We next consider a nonlocal change in capital productivity inducing a
transition from interior to low-skill automation.

ProposITION 11 (Transition to low-skill automation). Suppose that
assumptions 1-3 and condition 1 hold. Suppose also that condition 2 holds
and that ¢ € (¢, ¢,) initially. Now consider a potentially large increase in
the productivity of capital Alog ¢ > 0 such that log g + Alog g >log g,.
Then:

1. Automation transitions from interior to low skill, so all low-complexity
tasks are taken over by capital. That is, Ax = —x.

2. This transition does not induce employment polarization. Instead,
the assignment function shifts up everywhere, AX; > 0 forall s < 1.
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3. The transition does not induce wage polarization either. Instead,
skill premia increase over the entire skill space. That is,

Alog w, < Alog wy for all s < 5.

Next, suppose that assumptions 1-3 and conditions 1 and 2 hold but we
start from ¢ > ¢,, already. Then, a further increase in the productivity of
capital shifts up the assignment function everywhere, and skill premia
increase over the entire skill space (i.e., there is no longer any employment
or wage polarization).

The most important result in this proposition is that for a sufficiently
large capital productivity, automation transitions from interior to low skill,
and this transition changes the wage effects of automation qualitatively.
In contrast to the wage polarization pattern we have seen so far, once auto-
mation becomes low skill, further automation induces monotone increases
in wage inequality, impacting the lowest-skill workers most negatively (or
least positively). In this case, the employment polarization effects of auto-
mation vanish as well: further automation now pushes all workers toward
more complex tasks. Figure 3 diagrammatically illustrates this transition.

SJ\

0 &——— =z T — - 1 T

F1c. 3.—Transition to low-skill automation. If capital productivity grows sufficiently, au-
tomation becomes low skill (dashed line). A further increase in capital productivity then
pushes all workers toward the upper end of the task distribution (dotted line).
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C. Implications of Labor Supply Changes

Finally, we consider the wage implications of changes in the labor supply
profile. Although this could have been studied with local analysis, it is more
convenient to discuss these comparative statics in the case of global changes.
The main comparative static is given in the next proposition.

ProposiTION 12 (Labor supply changes and automation). Suppose
that assumptions 1-3 as well as conditions 1 and 2 hold and let g € (¢, ¢,)
under the initial labor supply & Now consider a change in labor supply
such that Alog [, < Alog [, for all s < s’ (an increase in the relative supply of
more skilled workers), and suppose that the resulting decline in ¢,, (Ag, < 0)
leads to ¢, + Ag, < ¢ such that automation transitions from interior to
low skill. Then, skill premia increase in the bottom part of the wage distri-
bution and decrease in the upper part. Specifically, there exists § € (5, 1)
(where 5 is the threshold skill before the labor supply change) such that

Alog w, < Alog w, forall s < s’ € (0, 3],
Alog w, > Alog w, forall s’ > s € [5,1).

Moreover, Alog wy > 0, meaning that the real wage at the bottom of the
distribution increases.

The proposition complements our analysis of labor supply changes
in proposition 5. There, we showed that an increase in relative skill supply
can trigger a transition from interior to low-skill automation by raising
low-skill workers” wages and making it more profitable to automate their
jobs. In this case, proposition 12 establishes a type of upward-sloping rel-
ative demand for skills. Given a fixed assignment of workers and capital to
tasks, the increase in the supply of skills would have reduced skill premia.
However, the response of equilibrium assignment alters this pattern qual-
itatively. Low-skill automation becomes more likely, and this reduces the
relative wages of low-skill workers and raises skill premia at the bottom.
Other instances of greater relative supply of skills leading to higher skill
premia are present in models of directed technological change (because
greater abundance of skilled workers encourages more skill-biased tech-
nological change, as in Acemoglu [1998, 2007]) and in models of search
and matching (because with more skilled workers around, more employ-
ers make investments complementary to skilled workers and search for
them, as in Acemoglu [1999]). In the model here, a similar outcome arises,
even though there is no endogenous innovation and all markets are com-
petitive. Rather, this result is driven by the response of the equilibrium as-
signment of tasks between capital and labor.

Notice also that the proposition establishes Alog w, > 0, which means
that low-skill wages never fall in absolute terms in response to an increase



AUTOMATION AND POLARIZATION 000

in the relative supply of more skilled workers. This implies that although
the endogenous transition from interior to low-skill automation has a neg-
ative effect on low-skill wages, this effect is not strong enough to offset the
positive direct impact coming from the increased relative supply of more
skilled workers, and consequently, the demand for the low-skill workers is
always downward sloping.

VI. Quantitative Analysis

In this section, we undertake a preliminary quantitative analysis of the con-
sequences of different types of automation and policies in our framework.

A. Calibration

We normalize labor supply to one for all skill types, that is, [, = 1, which
implies that the skill index s represents percentiles of the wage distribu-
tion. For labor productivity, ¥, we start from the specification in Teulings
(1995, 2005), where productivity is assumed to be log linear in the product
of s and x. We extend this by including a quadratic in s:

log . = ms + ns® + asx + A,

where a > 0 corresponds to more skilled workers having comparative ad-
vantage in more complex tasks. The quadratic in s regulates the extent of
the absolute advantage of more skilled workers, which is useful for match-
ing the empirical wage distribution. In particular, without the ns® term,
this functional form generates too much inequality at the top of the wage
distribution because of the linear absolute advantage of more skilled
workers.

The simplest specification for capital productivity, ., consistent with
assumption 3, is

log Y, = ax + bx’,

with b < 0.

Given these specifications, we have to choose eight parameters: m, n, a,
@, b, the capital productivity parameter ¢, the elasticity of substitution be-
tween tasks A, and the labor-augmenting technology parameter A. We
set A = 0.5 externally, using the estimate of the firm-level elasticity of sub-
stitution between production workers, tech workers, and other workers
from Humlum (2021), which we interpret (following Humlum) as the
firm-level elasticity of substitution between tasks. Next, we choose m, n,
a, a;, b, and ¢ to match two sets of empirical moments. The first are mo-
ments from the US income distribution in 1980, including the 90-50
and the 50-10 differences in log hourly wage, and the factor income share
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of equipment and software capital in 1980. We focus on the share of equip-
ment and software capital because all capital is used for automation in our
model. The second set of moments concerns the impact of automation
on the US wage distribution between 1980 and 2016-17, which is from
the estimates in Acemoglu and Restrepo (2022). Specifically, we take from
that paper the estimates of the impact of automation on the 30-10, 50-30,
and 90-50 differences in log hourly wages. We include the 30th percentile
because this is where automation had its least positive (most negative) im-
pact on wages according to their estimates (see fig. 5). Additionally, we
target the change in the income share of equipment capital and software
between 1980 and 2016. We reduce the cost of capital 1/¢ in the model
by 79%, which corresponds to the decline in the real cost of equipment
and software in the United States between 1980 and 2016. We choose the
labor-augmenting technology parameter A to match the level of wages
in 1980 (this parameter does not affect any of the relative equilibrium
quantities).

We describe the procedure for numerically solving for the equilibrium
of our model in appendix section B.5.1, our data sources and the con-
struction of empirical moments in appendix section B.5.2, and the details
of the calibration procedure in appendix section B.5.3.

The results are displayed in table 1. Panel A shows the calibrated param-
eter values, while panel B depicts the aforementioned moments both in
the data and in our calibration. The model fits all data moments closely.
Figure 4 additionally shows that the model matches the 1980 US wage dis-
tribution very well even beyond the targeted percentiles. In figure 5, we
present the log wage changes induced by automation between 1980 and
2016 in our model and in the data (fig. 5A) as well as the corresponding
change in the assignment function (fig. 5B). As expected, the set of auto-
mated tasks expands in both directions, while the wage distribution be-
comes more polarized. The wage effects predicted by our model track
the changes in the data quite well, but the two lines differ by a constant
of about 0.3, on average: the model predicts a median wage increase of
0.3 log points, while the estimated series shows a median wage change
close to zero. This discrepancy is likely due to the fact that the estimates
in Acemoglu and Restrepo (2022) isolate the effects of expansions in
the set of automated tasks, while an increase in ¢ in our model both ex-
pands automation and induces deepening of automation, further raising
productivity in already automated tasks, thus amplifying the productivity
effect and pushing in the direction of positive wage growth for all skill
groups. Consistent with this, the implied median wage increase of 0.3 log
points in our model is in the ballpark of the actual change in US median
wages (of about 0.26 log points), though the actual median wage change
is likely impacted by a variety of other factors, including other types of tech-
nological changes, educational upgrading, new tasks, and institutional and
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TABLE 1
CALIBRATION PARAMETERS AND RESULTS

Parameter/Moment (1) (2)

A. Calibrated Parameters

Value Rationale/Target
N 5 Humlum 2021
A —.20 log median wage
m 2.6 Jointly calibrated
n —2.5 Jointly calibrated
a 8.0 Jointly calibrated
[ 100 Jointly calibrated
b —310 Jointly calibrated
log ¢ -9.3 Jointly calibrated
B. Comparison of Moments
Data Model
log 5010 wage percentile
ratio, log(w;/w.) .60 .60
log 90-50 wage percentile
ratio, log(w,/ws) .67 .67
Income share of equipment
and software, o, .16 17

Change in log 30-10 wage

percentile ratio due to

automation, Alog(ws/w,) —.02 —.01
Change in log 50-30 wage

percentile ratio due to

automation, Alog(ws/ws) .03 .03
Change in log 90-50 wage

percentile ratio due to

automation, Alog(w./ws5) .16 .16
Change in income share of

equipment and software

from 1980 to 2016, Ac, .01 .03
Log median wage level
(in 2008 dollars), log w5 2.6 2.6

Not1e.—Panel A shows the calibrated parameter values (col. 1) and the targets used in
their calibration (col. 2). Jointly calibrated parameters are set to match all moments except
for the log median wage level. Panel B presents the data moments used in the calibration
(col. 1) and their model counterparts (col. 2). See app. sec. B.5.2 for data sources.

norm changes in the US labor markets. In this context, we also note that
our calibration does not impose conditions 1 and 2, but both of these con-
ditions are comfortably satisfied given the implied parameter values.
Although there is no one-to-one mapping between the seven moments
we use from the United States and the six parameters, each parameter is
closely related to a particular equilibrium outcome of the model, which
allows us to gain additional intuition about the parameter choices and
the consequences of reasonable variations therein. The parameters m and
n determine the degree of absolute advantage among workers. A higher m
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Fic. 4.—Log wages by percentile of wage distribution in 1980. The solid line corre-
sponds to the data (based on Acemoglu and Autor 2011), while the dashed line is com-
puted from our calibration, using the parameter values shown in table 1. For data sources,
see appendix section B.5.2.

raises skill premia across the entire wage distribution, while increasing n
does so mainly at the upper end. Choosing m and 7 jointly thus allows us
to match both the 90-50 and 50-10 wage ratios in 1980.

The parameter a determines the degree of comparative advantage among
workers and their substitutability. A high value of a corresponds to low sub-
stitutability between skill types and implies that the displacement effect
of automation is largely concentrated on those workers who are directly
displaced. Graphically, this corresponds to the two branches of the dashed
line in figure 5A becoming steeper. Thus, by varying a, we can scale the
effects of automation on the 30-10, 50-10, and 90-50 wage ratios up or
down.

The parameters g, and b determine the slope and curvature of the cap-
ital productivity curve. The slope parameter controls where in the task
space capital has its greatest comparative advantage relative to workers
and thus where the set of automated tasks is located. A higher slope moves
the set of automated tasks toward the top of the wage distribution. Graph-
ically, this means that @, regulates where the minimum of the dashed line
is in figure HA.

The curvature parameter b, on the other hand, determines how quickly
the productivity of capital declines as we move away from the set of auto-
mated tasks and, as such, controls by how much the set of automated
tasks expands when capital costs fall further. The value of b is therefore
disciplined directly by the increase in the income share of equipment
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Fi1c. 5.—Change in log wages and assignment due to automation, 1980-2016. A, Esti-

mated change in log wages between 1980 and 2016 due to automation from Acemoglu and
Restrepo (2022; solid line) and corresponding changes from our calibrated model (dashed
line). B, Corresponding change in assignment function in our model. The values of parame-
ters used in the calibration are shown in table 1. For data sources, see appendix section B.5.2.

and software capital in the data. The level of the capital cost 1/¢ determines
the extent of automation in the baseline and is thus set to match the 1980
equipment and software income share in the initial equilibrium.

Finally, as noted above, because the parameter A scales only wages up or
down, it is not calibrated jointly with the rest of the parameters and is set at
the end of the calibration to match the median wage in 1980 exactly given
the other parameters.

B. Robustness

We check the robustness of our calibration in two dimensions. First, in
our baseline, the elasticity of substitution between tasks, A, is set to 0.5
following the firm-level elasticity of substitution estimate of Humlum
(2021). Even though we believe that firm-level task substitution is a good
approximation to the elasticity of substitution between tasks at the ag-
gregate, this aggregate elasticity could also differ from the firm-level elas-
ticities because of adjustment costs or heterogeneities at the firm level.
Our first exercise is to verify that reasonable variations in this elasticity
do not majorly impact our results. Specifically, we change A to 0.3 or 0.7,
and the implications for targeted moments are depicted in table 2. Ta-
ble 2 and figure 6A show that the impact on the implied (log) wage
changes due to automation between 1980 and 2016 remains fairly similar,
and therefore our calibrated model continues to match the data reason-
ably well.
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TABLE 2
RoOBUSTNESS CHECKS

Elasticity of Substitution Capital Price Index
Moment Data  Baseline A=.3 AN=.7 Equipment  Software
log(w;s/w,) .60 .60 .57 .70 .60 .60
log(ws/ws) .67 .67 46 .85 .67 .67
ay, .16 17 19 .15 17 17
Alog(ws/w,) —.02 —.01 —.01 —.01 —.01 —.01
Alog(w;s/ ws) .03 .03 —.03 .08 .05 .02
Alog (wy/ w;) .16 .16 19 13 .19 15
Aay; .01 .03 .01 .05 .02 .03
log w; 2.6 2.6 2.5 2.8 2.6 2.6

NotEe.—The table shows the targeted moments in the data under our baseline calibration
for alternative values of the elasticity of substitution across tasks and for alternative price in-
dexes used to compute the decline of capital costs between 1980 and 2016.

Second, we vary the capital cost decline. In the baseline, we chose a cost
decline of 79%, building on the quality-adjusted price index for nonresi-
dential equipment and software provided by DiCecio (2009) and used in
many other studies, such as Grossman et al. (2017) and Hubmer (2023).
In table 2 and figure 6B, we report how our calibration targets are affected
when we use two alternative price indexes to construct our capital cost de-
cline. First, we use the quality-adjusted price index by DiCecio (2009) for
just nonresidential equipment, which yields a capital cost decline of 85%.
Second, we use the price index for software from the Bureau of Economic
Analysis (which does not include a full quality adjustment). This index
yields a cost decline of 74% (see app. sec. B.5.2 for details on how we com-
pute these cost declines). Table 2 and figure 6B show that our model
matches the data well with these alternative price indexes.”

C. Counterfactuals

We now use our calibrated model for four counterfactual exercises that
shed light on how further automation, different types of technological
changes, minimum wages, and changes in labor supply might impact the
wage distribution.

We first consider the consequences of reducing capital costs: increasing
capital productivity. To make comparisons easier, we focus on a further
79% decline in the cost of capital, 1/¢ (equivalent to the decline between

* When we vary the elasticity of substitution between tasks or the capital cost decline,

we recompute our targeted moments in table 2 and the log wage changes in fig. 6, holding
all internally calibrated parameters at their levels from our baseline calibration. If we re-
calibrated the internal parameters for any given alternative value of the external parame-
ters, the fitin table 2 and fig. 6 would be even better. We do not undertake this recalibration
in order to show more clearly the implications of varying the external parameters (while hold-
ing the internal parameters fixed).
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F16. 6.—Model-implied changes in log wages due to automation between 1980 and 2016
for different values of elasticity of substitution N (A) and different price indexes used to
compute decline in cost of capital from 1980 to 2016 (B). All other parameters are fixed
at their values from our baseline calibration (see table 1).

1980 and 2016 in the United States). Unsurprisingly, the results (fig. 7) are
similar to the analogous wage changes between 1980 and 2016-17. There
is again a sizable amount of wage polarization.”’ Nevertheless, there are
some important differences as well. Automation moves further toward
the bottom of the wage distribution than it did between 1980 and 2016,
and hence displacement falls more on the shoulders of low-skill workers,
boosting inequality even more than in 1980-2016. This result accords with
proposition 10, which established that further declines in the cost of cap-
ital that take us closer to the threshold for low-skill automation will tend to
increase inequality between the top and the bottom of the wage distribu-
tion. Put differently, given the global comparative advantage of capital in
condition 2, further declines in the cost of capital leave lower-skill workers
more vulnerable to automation.

There are in principle many ways in which automation opportunities
could improve. This raises the possibility that the next wave of automa-
tion may have very different consequences than what we experienced be-
tween 1980 and 2016. The most important reason for this may be advances
in (generative) Al, which could expand the reach of automation to a broader

*' As explained in sec. VI.B, reducing the cost of capital generates a significant amount
of deepening of automation in our model, which is the reason why in these counterfactuals
wages increase even at the bottom of the distribution. An alternative, in line with our dis-
cussion above, would be to remove these nonautomation implications by reducing A by an
equivalent amount. In that case, the median equilibrium wage would remain roughly con-
stant following the decline in the cost of capital, and there would be sizable real wage de-
clines at the bottom of the distribution.
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F1c. 7.—Change in wages due to counterfactual fall in capital costs. A, Change in log wages
in response to further fall in capital cost by 79% starting from its 2016 level (dashed line) and,
for comparison, our baseline decline in cost of capital (solid line). B, Corresponding log wages
(in level) by percentile of wage distribution (dotted line = 1980 baseline; solid line = 2016
capital cost; dashed line = counterfactual). The values of parameters used in the calibration
are shown in table 1. For data sources, see appendix section B.5.2.

set of occupations. Generative Al may have less impact on already auto-
mated tasks—such as software-based clerical functions and various pro-
duction tasks, such as assembly, welding, and painting—that have been
automated by robots and advanced automatic equipment. This motivates
us to consider an Al counterfactual where the curvature of the capital pro-
ductivity schedule logy, , is reduced but its maximum remains unaffected,
so that capital becomes more productive at the tails of the task distribution
but not so much in already automated tasks. Formally, we benchmark cap-
ital productivity against the productivity of the median worker, log ¥, —
log ¥y5,, and reduce the curvature of this quadratic function while keep-
ing its maximum fixed by adjusting parameters @, and b (see app. sec. B.5.4
for details). We further discipline the exact shape of the new productivity
schedule by imposing that the aggregate net output gains—and thus the
productivity effects—must be the same as from a uniform capital cost re-
duction of 79%, as in our first counterfactual.??

The wage consequences of the Al calibration are shown in figure 8. Asa
benchmark, figure 8 also includes the results from our first counterfactual

** There is considerable uncertainty about which tasks Al will impact and how much it
will increase productivity. Acemoglu (2024) estimates that less than 5% of the economy will
experience automation or significant productivity increases due to Al within the next 10 years,
while others estimate much more extensive effects of Al. Acemoglu (2024), like Eloundou
et al. (2024), also argues that Al will mostly impact previously nonautomated cognitive tasks,
which is consistent with our assumption here.
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FiG. 8.—Change in wages due to counterfactual progress in Al. A, Change in log wages in

response to change in capital productivity mimicking effects of advances in generative Al
(dashed line) and, for comparison, uniform capital productivity increase counterfactual
from figure 7 (solid line). B, Corresponding log wage levels by wage percentile. The values
of parameters used in the calibration are shown in table 1.

where capital productivity increases uniformly. While both counterfactuals
resultin employment and wage polarization, their wage effects are quite dis-
tinct. Al leads to steeper wage declines at the bottom of the wage distribu-
tion (because automation expands even further at the bottom) and bigger
wage gains at the top (since higherskilled workers who do not suffer auto-
mation benefit from the productivity gains). This is a consequence of the
way we have modeled the Al advances: less deepening of automation and
productivity gains in already automated tasks and more aggressive expan-
sions in previously nonautomated tasks.

Finally, we explore the implications of an increase in the minimum
wage and a reduction of low-skill labor supply in this setup. For both coun-
terfactuals, we fix the capital cost at its 2016 level. We start with the effects
of an increase in the minimum wage. We take the employment-weighted
average minimum wage level across US states in 2022, which was $10.35,
and increase this to the maximum of state-level minimum wages in 2022
($16.1 in Washington, DC). When computing the employmentweighted
average minimum wage across states, we take into account that the federal
minimum wage is binding in states with a2 minimum wage below the fed-
eral level (see app. sec. B.5.2 for details). The higher minimum wage leads
to the automation of low-skill tasks as predicted by proposition 4 (see fig. B-
4 [figs. B-1 through B-5 are available online]). The wage implications of the
minimum wage are displayed in figure 9, which shows a significant im-
pact on the entire wage distribution, with wage increases of up to 10% at
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Fic. 9.—Change in wages due to minimum wage increase and low-skill supply reduction.

A, Change in log wages when minimum wage rises from its cross-state average to maximum
state level in 2022 ($16.1; solid line) and change in log wages following reduction in labor
supply of low-skilled workers (dashed line). B, Corresponding log wage levels by (initial)
wage percentile. The values of parameters used in the calibration are given in table 1, and
capital productivity is kept at its 2016 level.

the bottom and declines of up to 5% at the top.” The negative impact at
the top comes from the fact that the minimum wage leads to an approxi-
mately 10% reduction in employment, entirely concentrated at the bot-
tom. This reduces aggregate output and lowers demand for labor across
all tasks.

Next, we consider a reduction in the supply of low-skill workers, which
might result from drastic restrictions of immigration from low-income
countries. We reduce the supply of workers in the bottom 20 percentiles
of the wage distribution uniformly by 10% and phase this reduction outlin-
early between the 20th and the 40th percentiles of the wage distribution,
leading to an overall decline in labor supply of 3% (see app. sec. B.5.5 for
details). Consistent with proposition 5 and the empirical results in Clemens,
Lewis, and Postel (2018), this change also induces low-skill automation (see
fig. B4). The wage effects, also presented in figure 9, show a more modest
impact from this labor supply change compared with the minimum wage in-
crease: wages for low=skill workers increase by about 3%, while wages at the
top of the distribution fall by slightly more than 1%. Overall, the minimum

* In figs. 4-8, the horizontal axis is the current wage percentile (which is also identical
to the initial wage percentile of the workers) since throughout, wages are monotone in
skills, and in these experiments, there is always full employment and there are no new
workers. When we increase the minimum wage or consider changes in labor supply, initial
and actual wage percentiles no longer overlap, and in fig. 9, we use the initial wage percen-
tile on the horizontal axis, which facilitates interpretation.
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wage hike appears quite powerful in reducing wage inequality in our setting,
but it also leads to a decline in total employment by 10% compared with a
reduction of only 3% under our counterfactual low-skill supply.

VII. Conclusion

There has been rapid automation of a range of tasks across the industri-
alized economies over the past four decades. There is growing evidence
that this automation has fueled both inequality and polarization, with
middle-skilled workers being displaced from their jobs and experiencing
relative (and sometimes absolute) wage declines.

To develop a deeper understanding of the causes of polarization, this
paper has built an assignment model of automation. In our model, each
of a continuum of tasks of variable complexity is assigned to either capital
or one of a continuum of labor skills. Our model generalizes existing as-
signment models, which typically impose global supermodularity condi-
tions that ensure monotone matching between factors and tasks. In con-
trast, in our model with capital, there is no global supermodularity.

We prove existence and uniqueness of competitive equilibria and char-
acterize conditions under which automation is interior, meaning that it is
tasks of intermediate complexity that are assigned to capital. In a nutshell,
interior automation arises when the most skilled workers have a compara-
tive advantage in the most complex tasks relative to capital and other labor
and when the wages of the least skilled workers are sufficiently low relative
to their productivity and the effective cost of capital in low-complexity
tasks, so that it is not profitable to use capital or algorithms instead of
low-skill workers. Highlighting the role of wages at the low-end of the wage
distribution, we demonstrate that minimum wages and other sources of
higher wages at the bottom make interior automation less likely.

We provide a series of local and global comparative statics, showing
how further automation impacts wages and assignment patterns. Most
importantly, when automation starts and remains interior, a lower cost of
capital (or greater capital productivity) causes employment polarization:
middle-skill workers are displaced from middle-complexity tasks and
are pushed toward higher or lower parts of the complexity distribution.
This type of automation also causes wage polarization: the skill premium
monotonically increases above a skill threshold and monotonically de-
clines below the same threshold. Moreover, automation tends to reduce
the real wage of workers with comparative advantage profiles close to that
of capital.

Our global comparative static results additionally establish that a large
enough increase in capital productivity ultimately induces a transition to
low-skill automation, whereby the pattern of comparative statics changes
qualitatively. In particular, after this transition to low-skill automation,
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further declines in the cost of capital no longer cause employment or wage
polarization. Rather, they have a monotone effect on the skill premium.

Despite its richness, our framework is tractable and opens the way to fur-
ther analyses of the changing assignment patterns in modern labor mar-
kets. We illustrated this richness by presenting both a range of comparative
static results and a simple calibration exercise where we explored the quan-
titative implications of various counterfactual technological and institu-
tional changes.

There are many areas for future fruitful inquiry. First, automation has
been going on together with a changing structure of tasks and an evolving
distribution of skills over at least the past 250 years. This can be introduced
into our framework by simultaneously expanding the range of tasks and
skills and would be an important area for new work. Second, the produc-
tivity of capital in various tasks should in principle change endogenously,
responding to which tasks are being assigned to capital or are likely to be
assigned to capital in the future. This issue can be investigated in an ex-
tended version of our framework, in which the direction of technological
change and capital productivity across tasks are endogenized. Third, in
practice, multiple tasks may be assigned to a worker because there are ei-
ther economies of scope or other types of task complementarities, and ex-
tending this class of models to one-to-many matching is another impor-
tant area for further inquiry. Fourth, our quantitative exploration can be
significantly expanded, for example, by introducing a more general family
of comparative advantage schedules and then estimating the parameters
of this family using more moments from the baseline wage distribution
and the response of the wage distribution to different types of shocks.
There are also several other counterfactual exercises to be considered, in-
cluding those related to changes in supplies and offshoring-type opportu-
nities. Last but not least, the framework here can be used to further refine
the empirical investigation of the relationship between automation and in-
equality, for example, by adding more structure and predictions to studies
such as Acemoglu and Restrepo (2022).

Appendix A
Al. A Converse to Proposition 3

In proposition 3, we show that automation is interior for low levels of capital pro-
ductivity if condition 1 holds (together with assumptions 1-3). Here we provide an
inverse to this result: if condition 1 is violated, automation is either high or low skill
(again under assumptions 1-3). In this sense, condition 1 is necessary for interior
automation in our setup.

ProposiTION Al (Interior automation, converse). Suppose that assumptions 1—
3 hold. Then, we have the following:
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1. If condition 1.1 is violated while condition 1.2 holds, then automation is
low skill for all ¢ € (¢, ¢.).

2. If condition 1.1 holds while condition 1.2 is violated, then automation is
high skill for all ¢ € (g, ¢.)-

Proof.  We focus on the case where condition 1.1 is violated while condition 1.2
holds, as the proof for the second case is symmetric.
If condition 1.1 does not hold, we have

0log Yo . olog i, <

0.
ox ox -

By log supermodularity of labor productivity (assumption 2), it follows that

ology,y Ologyy,

< 0forall s> 0.
o o Oforalls>0

Together with quasi-concavity of 1[/;(,,(/%1/;‘,‘% (assumption 3), this implies that
wjyl/,(,x/tkyx is decreasing in x for all s > 0. By continuity of productivity schedules,
the same must then hold for s = 0. Hence, the minimal effective unit cost of pro-
ducing the amount ¥, of task x with labor, w, = min{wy;./,.}, is the lower
envelope of a family of decreasing functions and must therefore be decreasing
itself. This implies that {x|w, > 1/¢} either is empty (if ¢ < ¢) or contains zero
(if ¢ > g). Using lemma Al, the same holds for the set of automated tasks X;.
QED

A2. Proofs for Section III: Equilibrium and Interior Automation
A2.1. Proof of Proposition 1: Existence and Uniqueness

Existence—An equilibrium allocation maximizes net output subject to labor mar-
ket clearing, given by

1
J L,,dx < [ foralls. (A1)
0
To prove existence, it is useful to split the problem of net output maximiza-
tion into two steps. First, we fix the aggregate capital stock K and maximize gross
output for given K and subject to (Al). This is a problem of maximizing a con-
tinuous function over a compact set such that a maximizer is guaranteed to exist.
Let F(K, ) denote the maximal gross output for given K and labor supply

In the second step, we choose K to maximize net output F(K,I) — K/q.
This is again a continuous problem, but K can be any positive real number, so
we have to establish boundedness. For this, note that limg_,,0F (K, l)/@f( =
(ﬁ:\%;ldx)]/“’”. Thus, assumption 1 ensures that limg _,..0F (K, [) /0K < 1/¢such
that net output is bounded and attains its maximum for finite K.

Essential uniqueness—For essential uniqueness of equilibrium, note that net
output is concave in the allocation and the set of feasible allocations is convex.
This implies that while the equilibrium allocation itself may not be unique, the
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Fréchet derivative of net output is constant across all equilibrium allocations.**
Hence, equilibrium wages are unique. The same argument applies to task prices
when writing the maximization of net output as a maximization over task inputs,
including task production functions as constraints, that is,

1 N(A-1) 1
max U Yx(%*”/%dx} - —J K.dx
0

{(YeolK [ Jo q

subject to task production (2) and labor market clearing (3).

Uniqueness—Our proof of proposition 2 shows that under assumptions 1-3,
the labor allocation L and the set of tasks performed by capital X, are uniquely de-
termined given wages. Moreover, given prices, X,, and the labor allocation, choos-
ing the output-maximizing capital allocation K is a strictly concave problem with
a unique solution.

Thus, given wages and task prices, the equilibrium allocation is determined
uniquely. Since equilibrium wages and task prices are unique, the equilibrium al-
location is unique as well.

A2.2. Proof of Proposition 2: Convexity of Assignment

Monotonicity—Monotonicity of the labor allocation under comparative advantage
assumptions is a standard result. One way to prove it, which is useful for our argu-
ment in the next step, is presented here. Let

smin = argmin {log w, — log ¥}

be the set of skills that produce task x at minimal cost. By assumption 2, log w, —
log ¥, is strictly submodular, so Topkis’s (Topkis 1998) monotonicity theorem im-
plies thatif s € Sy, s’ € §7™, and x > &/, then s > s'. Moreover, if for some x there
exists, s € S with s > ¢, then all skill levels in (s, s) can be assigned to only x. This
creates a mass point in the density of labor over tasks such that p, = 0, contradict-
ing condition (4).* Hence, S"" is a singleton for all x. Inverting this correspon-
dence, we obtain X, = {x|s € S"}, which is a superset of X, X, © X, for all 5. From
the properties of S, it follows immediately that if x € X, x € X,,and s > ¢, then
x > «'. Finally, since X, © X, for all s, the same implication holds for X,

Convexity—We start with the following lemma, which will be useful to establish
properties of X, throughout the paper.

LemMa Al.  Suppose that assumptions 1-3 hold and let

w, = min{wswk’x}
* § ws,x

** The set of maximizers of a concave function on a convex set is a face of the hypograph
of the function. Thus, there exists a supporting hyperplane of the hypograph that contains
the entire set of maximizers. Together with differentiability, this immediately implies that
the derivative of the function is constant on the set of maximizers.

* Note that this holds independent of whether capital is used in the production of task
x. In any case, assigning a strictly positive measure of skills to x creates a mass point in task
output at x, which leads to p, = 0.
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be the minimal effective unit cost of producing the amount ¥, , of task xwith labor.
Then, the set of automated tasks is equal to the upper level set of w at level 1/¢:

S
Xk: wai— .
q

Proof:  The unit cost of producing the amount y,, of task xwith capital is 1/g¢.
Therefore, we must have 1/¢ < w, on X,. Moreover, if 1/¢ < w, at some x, then x

must be in X,. Hence,
1 1
{x wx>—}§}é§{x wxz—}.
q q

Now suppose that X, and {x|w, > 1/¢} differ by a set of strictly positive mea-
sure. Then, since the labor endowment has no mass points, a strictly positive mea-
sure of skills mustbe assigned to a subset of {x|w, = 1/¢}.In particular, there must
exist skill levels s < s, < s; assigned to tasks x < x < x3 in {x|w, = 1/¢}. More-
over, since the costminimizing skill $™ is unique for every task (see first step of
the proof), we must have

wvz\bk,xl W, ‘//k,xl _ wvz'ﬁ[/k,xz _ wx,s\bk,x; wrd[/k,m

‘p&zyﬁﬂ ¢S| % ¢&m¢z ¢ny»\¥ ‘p&,nxw

But this string of relations contradicts the quasi-concavity of ¥, /¥, .. Hence, the
difference between X; and {x|w, > 1/¢} must be of measure zero, and we can set
X, = {x|w, > 1/¢} without loss of generality. QED

The “if” part of proposition 2.2 follows from lemma Al. By assumption 3,
wai. /¥, is quasi-concave in x for all s. Thus, w, is the lower envelope of quasi-
concave functions, and as such, it is quasi-concave itself. Hence, its upper level sets
are convex and so is X,.

Next, consider the “only if” part. We will prove that if ¥;./y,, is not quasi-
concave in x for some s, then there exists a labor endowment /and capital productiv-
ity ¢ such that X, is not convex. For this, it turns out useful to rewrite labor market
clearing as

s (1
J J L, .dxds = H, for all s,
0Jo
where H,is the cumulative distribution function of labor endowments. This spec-
ification allows us to embed mass points as jumps in H..
Suppose now that ¥, /Y., is not quasi-concave in x for § and consider the case

where only skill " is supplied:

0ifs<y,

H, =1 =
1ifs>s.

Since ¥,,,/¥,. is not quasi-concave, there exist x; < x, < x3 such that

ws’\pk,x. > u}x'\bk,xg < ws"pk,xx

Vi [ZE N 2
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Because only labor of type s is being supplied, Euler’s theorem in this case im-
plies that w,; equals net output. Next note that net output is continuous in the al-
location and in ¢, and hence Berge’s maximum theorem applies and implies that
equilibrium net output is continuous in ¢ (and equilibrium allocations are upper
hemicontinuous in ¢). Moreover, net output is also increasing in ¢ (see proposi-
tion 8). Thus, the wage w, is continuously increasing in ¢, and there exists a value
for gsuch that

wx'lpk,x, wx"pk,x« > l > wx'lpk,xz

R 2

which implies that X, cannot be convex.

It remains to extend the result to labor endowments without mass points, which
is a simple continuity argument. Net output is continuous in allocations, while the
set of feasible allocations is continuous in the endowment cumulative density
function H. Thus, by the maximum theorem, the set of equilibrium allocations is
upper hemicontinuous in H. Since there is no equilibrium allocation generating
a convex X, under the endowment function I.; considered above, we can construct
a sequence of differentiable endowment functions with strictly positive derivative,
{H™}, o, that converges to I.,; for sufficiently large n, the set of automated tasks
cannot be convex.

A2.3. Characterization of the Interior Automation Threshold

Here we characterize the productivity threshold ¢, at which automation tran-
sitions from interior to low skill or high skill, respectively. For a characteriza-
tion of the threshold ¢, at which automation starts, see the proof of proposi-
tion Bl in appendix B. We assume that our assumptions 1-3 and condition 1 are
satisfied.

We distinguish three cases. First, suppose that condition 2 holds (as in part 3 of
proposition 3). We know from condition 1 that ¥, ./ is strictly increasing in x
on aneighborhood of x = 0. Thus, we can define a threshold task x,, as the small-
estx € (0, 1) such that y,0/¥o0 = Yu./o.. Thatis, the productivity ratio between
capital and the least skilled workers is the same at task ¥, and task 0. Note that
such an &, exists if and only if v, /Yo < ¥o1/¥s1, which is condition 2.1.

Now suppose that we restrict capital to tasks below x, and labor to tasks above
X,. Then we choose the allocation that maximizes net output subject to these re-
strictions. Let w}" be the resulting wage function. Note that w" is strictly increas-
ing in ¢, allowing us to define ¢, as the unique value of ¢ that solves 1/¢, =
W' (¢n) ¥is, /Yo s, where we write wj'(¢) to emphasize the dependence of w}' on
¢. Intuitively, this condition equates the costs of producing task x, with capital
and with the least skilled workers.

Finally, note thatif ¢ = ¢, the restriction of capital to tasks below ¥, and labor
to tasks above %, is not binding, and in this case we have X, = [0, x,,].

For the second case, suppose that both conditions 2.1 and 2.2 are violated strictly
(as in part 5 of proposition 3). This case is completely symmetric to the first case:
we define %, as the largest x € (0, 1) such that ¥, /¥, = Y./, and ¢, analo-
gously to the first case.
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In the third case, condition 2.1 is violated strictly, while condition 2.2 holds.
Then, a threshold task x, as defined in either the first or the second case does
not exist, and we simply set ¢, = ¢..

A2.4. Proof of Proposition 3: Interior Automation

In appendix B, we establish proposition B1, which is a more general version of
proposition 3. Compared with proposition B1, in proposition 3 we additionally
impose assumption 3, which implies a convex set of automated tasks (see prop-
osition 2). With a convex set of automated tasks, weakly interior automation im-
plies interior automation, weakly low-skill automation implies low-skill auto-
mation, and weakly high-skill automation implies high-skill automation. Thus,
parts 1, 2, 3, and 5 of proposition 3 follow immediately from proposition Bl
and the fact that assumption 3 guarantees a convex set of automated tasks in
proposition 3.

It remains to prove part 4 of proposition 3, which is the case in which the auto-
mation pattern is ambiguous under the assumptions of proposition B1. We prove
part 4 by showing that (i) automation cannot be high skill under condition 2.2
and (ii) automation cannot be low skill if condition 2.1 is violated strictly. To-
gether, this implies that automation is interior for all ¢ € (¢, ¢.) if condition 2.1
is violated strictly while condition 2.2 holds, which is part 4 of proposition 3.

No high-skill automation under condition 2.2.—We first show that there cannot be
high-skill automation if condition 2.2 holds. The proof is by contradiction.

Suppose 1 € X;. Then, it must be cheaper to produce task x = 1 with capital
than with labor, wa,: /¢ > 1/¢ for all s. Moreover, this inequality must hold
strictly for all but the most skilled workers s = 1, because assumption 2 implies
that among all labor types, task x = 1 can be produced at the lowest cost using
skill s = 1, §pin = {1}.

At the same time, combining w ¥y, /y1; > 1/¢q with condition 2.2 implies
that it must be strictly cheaper to produce task x = 0 with capital than with the
most skilled workers, wiy,0/¢10 > 1/¢. By continuity of labor productivity v, .,
this extends to some neighborhood of s = 1, that is, there exists e > 0 such that
w¥io/¥so > 1/qforall s € (1 — ¢, 1].

Hence, we have shown that for every s € (1 — ¢, 1), s is strictly more expen-
sive than capital in both the most and the least complex task. Quasi-concavity of
Vi /Vox (assumption 3) requires that this extends to all tasks:

Wi 1
Wi >—forallse (1 —¢1).
Yoo ¢

But this implies that skill levels s € (1 — ¢, 1) cannot be assigned to any task in equi-
librium, which is clearly incompatible with an equilibrium allocation maximiz-
ing (finite) net output. Hence, we must have 1 & X;: the most complex task is
not automated.

No low-skill automation without condition 2.1—Now suppose that condition 2.1 is
violated strictly, that is, ¥o0/¥s0 > Yo,1/¥41. Then, arguments entirely symmetric
to those of the previous paragraph show that there cannot be low-skill automa-
tion, such that we must have 1 & X,.
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A2.5. Proof of Proposition 4: Minimum Wages and Automation

The first part of the proof follows closely the proof of part 1 of proposition Al.
In particular, condition (8) together with comparative advantage across labor types
(assumption 2) implies that v, ./, is decreasing in x for all s > s and, by conti-
nuity, also for s = s (where s is such that all skills below s are nonemployed be-
cause of the minimum wage). Thus, the minimum labor cost function w, is de-
creasing, and the set of automated tasks, which is equal to {x|w, > 1/¢}, is either
empty or contains zero.

The second part is to show that if ¢ € (¢, ¢..), then the set of automated tasks
remains nonempty after the introduction of the minimum wage. For this, we com-
pare the assignment problems without capital, with and without the minimum
wage.

Without capital, our setting has been studied extensively in the literature (e.g.,
Costinot and Vogel 2010). The introduction of the minimum wage is equivalent to
a shift in the lower bound of the skill space from zero to s. Without capital, it leads
to a decline in skill premia along the entire skill space, with the wage of the least
skilled remaining worker type s increasing and the wage of the most skilled worker
type (s = 1) decreasing (Teulings 2000; Costinot and Vogel 2010). Let w! be the
wage function without capital and without minimum wage (and ! the associated
minimum labor cost function), and let @™ be the wage function without capital
but with minimum wage. Then,

0,min

< maxwg < maxM < M,

* x 1//\:( \/6,0
where the firstinequality uses that ¢ > ¢, the second follows from the definition of
«? as the lower envelope of all workers’ effective cost, and the last inequality is im-
plied by w! < w™ and y;./¥,. being decreasing in x. The inequalities imply that
if X, were empty, we had 0 € X, by lemma Al, a contradiction. Hence, X, remains
nonempty after introduction of the minimum wage.

A2.6. Proof of Proposition 5: Labor Supply and Automation

We start with a useful lemma on the wage effects of labor supply changes that holds
for all settings where production is concave and linear homogeneous in labor and
wages equal marginal products (the proof is presented in appendix B).

Lemma A2, Consider any two labor endowments /> 0 and /" > 0 with cor-
responding wage functions w and w"*. Then, if w, < w}*" for all 5, we must have

new

w=w

The important implication of lemma A2 is that a labor supply change alone can
never cause all wages to increase or all wages to decrease. Instead, there will always
be some wages that increase and some that decrease, exceptin the case where the
wage function is completely unchanged.

We can now prove that the threshold where automation transitions from interior
to low skill, g, is strictly decreasing in relative skill supply. First, recall from character-
ization of ¢, in appendix section A2.3 that g, is defined as the unique solution to
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W e "

where w" is the wage function obtained under the restriction that capital can be
allocated only to tasks below ¥, and labor only to tasks above ¥,.. This equation has
a unique solution because the left-hand side is strictly decreasing and the right-
hand side strictly increasing in ¢,

Now consider an increase in relative skill supply, Alog /, with Alog [ strictly
increasing in s. We know from prior work (e.g., Costinot and Vogel 2010) that in
the pure assignment model without capital, such a change in labor supply would
lower all skill premia. With the restriction that capital must be assigned below and
labor above ¥,, the labor allocation is determined as in a pure labor assignment
model. Hence, the result from prior work applies, and the wage change Alog w}"
must be strictly decreasing in s. By lemma A2, the wage change cannot be nega-
tive for all skill levels, and we must have Alog w;' > 0.%° Thus, the right-hand side
of equation (A2) increases such that ¢, must decrease to solve equation (A2), so
Ag, < 0.

A3, Proofs for Section 1V: Local Effects of Automation

We use our characterization of the wage and the assignment function in terms of
the differential equation system (9)—(13) to conduct comparative statics with re-
spect to capital productivity. Implicitly, this imposes assumptions 1-3 and ¢ > ¢,.

We consider a small change in capital productivity d log ¢ (if ¢ = ¢,, we impose
dlog ¢ > 0 such that our equilibrium characterization continues to hold) and study
its first-order effects on wages and assignment. From equations (9) and (11), we ob-
tain the variational equations

Fa log ¥, x
dl =0T X, A3
(dlog w,) s0x (A3)
A A A
o _ » o1
(AX) = A= flog w, — - dlog ¥ — (\ — 1) 2108 Yux v gy
Yix Y{ix Yoy  Ox

which hold for all s # 5. The boundary conditions for the upper branch of these
variations, that is, the branch on (5, 1], are given by

Ologysx Ologyy:\ ,_  Ologvs: _ 5
+ — X > + B _ _ I+
dlog w; ( o o dx o ds — dlog g — (log w;)"" ds
ologys, Odlogy:
= == : —dl Al
( o ox dx — dlog q, (Ab)
axX;" = dx — (X)) ds
W
= x-S, (A6)
Yiss

* Note that the proof of lemma A2 uses only linear homogeneity and concavity of net
output in labor, so it also applies to the situation where capital is restricted to tasks below
and labor to tasks above X,,.
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where the superscript plus sign denotes the right-hand-side limit of the respective
function. The boundary conditions for the lower branch (which exists only if au-
tomation is interior) are

_ Ologys, Ologyy, ologys, . A
= x o + i — —
dlog w; ( o o dx s ds — dlogq — (log w;)" ds
_ (Ologys, _ Ologyy, _
= ( o o dx — dloggq, (A7)
dX; = dx — (X;)" ds
l;w% ~
= dx — Y\//?Ql ds, (A8)

with the superscript minus sign denoting left-hand-side limits.

From the upper branch of the system, we can obtain the change in assignment
of the most skilled workers, dX; (dx, ds), as a function of dx and ds. Analogously, if
automation is interior, the lower branch yields dX, (dx, ds), the change in assign-
ment of the least skilled workers as a function of dx and ds. Both of these changes
must be zero in equilibrium, which defines functions dx(ds) and dx(ds). The fol-
lowing lemma establishes some properties of dx(ds) and dx(ds).

Lemma A3. Suppose that assumptions 1-3 hold, ¢ > ¢, and dlog ¢ > 0.
Then, if x <1, the function dx(ds) is strictly increasing and satisfies dx(0) > 0
and

(6 logy:x  0logys

1
X + = .
o o )dx(O) < dloggq )\dlog Y

Moreover, if x > 0, dx(ds) is strictly increasing and satisfies dx(0) < 0 and

(8 log\ﬁm _ 0 IOg\//k,g

1
<dl + -dlogY.
o o )dgc(O) dlog q )\d og

The proof of lemma A3 is presented in appendix B.

A3.1. Proof of Proposition 6: Automation and Employment Polarization

Expansion of automation—Suppose now that condition 1 holds and ¢ € (¢, ¢,) such
that automation is interior. In this case, condition (10) requires that

Y5z Olog¥us\ _, - ologvss oYs, , Olog . N
AL - R L] =AY S (b g R
( 0x ox )dx(ds) Os @ Ox Ox dx(ds) (A9)
=vis =i
n Olog ;. &,

0s
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where we have already inserted the functions dx(ds) and dx(ds) derived from
equations (A3)—(AS8). Rearranging and signing terms, we obtain

Olog ¥s. _ olog ¥s:\ -
( Os 0Os as.

<0

Yix dX(dS) — 5, dx(ds) =
—~~ —

=0 <0

By lemma A3, the left-hand side of this equation is increasing while the right-hand
side is strictly decreasing in ds. Thus, the equation determines a unique equilibrium
change ds*.

If y;:dx(0) — 7;,dx(0) is strictly positive, then d5* must be strictly negative, which
implies that dx(d5*) <0 (by lemma A3) and

dx(ds) = Y ax(dsty + L (2108 Yer _ 0108 s
¥s 3 Os Os

X Vix

Note here that v;;dx(0) — v;,dx(0) > 0 can hold only if v;; > 0.

Analogously, if y;:dx(0) — v;,dx(0) is strictly negative, then d5* must be strictly
positive, which implies that dx(d5*) > 0 and dx(ds*) < 0.

Finally, if v;:dx(0) — v;,dx(0) equals zero, then d5* must be zero as well such
that dx(5*) > 0 and dx(ds*) < 0 follow immediately from lemma A3.

At this point, note also that

max{y;dx(ds"), v;, dx(ds*)} < max{y::dx(0),v;.dx(0)} < dlogq + %dlogY,
where the second inequality follows from lemma A3. This implies that the initial
values dlog @ and dlog w; must both be negative at d5*. This result will be use-
ful in the next step of the proof.

Employment polarization—We have just shown above that d log @ is strictly neg-
ative in equilibrium. This implies that the initial value dX;" in the dynamic system
for dX; and dlog w, must be strictly positive:

A
ax; = dx—%dwo.
If it were negative, we could never attain dX; = 0 by the reasoning in the proof of
lemma A3.

Suppose now that at some skill s, > 3, dX turns negative, that is, it crosses zero
from above: dX;, = 0 and (dX)’ < 0. To obtain dX; = 0, dX, must at some point
s, > s attain zero again, this time from below: dX,, = 0 and (dX,)’ > 0. The dif-
ferential equation for (dX,)’, however, implies (dX,)" = B(s)dlog w, for s = 51, 5.
We must therefore have dlogw, < 0. Since dX is negative between s, and s,, we
will also have dlog @, < 0 by the equation for (dlogw,)’. This in turn implies
(dX,)" <0, a contradiction. As a result, dX; cannot cross zero but stays positive un-
til dX;.*” Analogous reasoning yields dX, < 0 for 0 < s <3.

* We can exclude the case where dX has a critical zero (a point where dX, is tangent to
zero but does not cross it). This is because a critical zero would imply (dX;)’ = 0 and
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Labor share—Instead of proving the results for the labor share directly, we prove
that the inverse of these results holds for the capital share. From equation (14), we
obtain the response of the capital share to the increase in capital productivity as

k

or or
doy, = ay(N — 1)dlog g + ¢ . A1 67_"

dx + ¢q dx
x

(A10)

ay(N— Ddlog g — ¢" "W, dx + ¢ 'Y dx.

The last two terms are strictly positive by our employment polarization result such
that the capital share increases if N > 1.

If N < 1, the total effect on the capital share depends on the relative strength of
the capital deepening effect (first term) and the expansion of the set of automated
tasks (second and third terms). If ¢ = ¢,, we have o, = 0 such that the capital deep-
ening effect vanishes. Moreover, lemma A3 implies that

max{|dx], | dx[} = min{|dx(0)],[dx(0)[} > O,

which means that the expansion of the set of automated tasks does not vanish.
So, we must have day (¢) > 0. Finally, note that do, (considering the perturbation
dlog ¢ > 0) is aright-hand derivative and, as such, it is continuous from the right,
thatis, lim, ., da, = doy(q) > 0. This proves that do, > 0 in some right neighbor-
hood of ¢.

A3.2.  Proof of Proposition 7: Automation and Wage Polarization

By (A3), we have

0% log Y x

dX,dt.
¢ 0sOx !

dlog w, — dlog wy = J

By assumption 2 and our employment polarization result in proposition 6, this
expression is strictly positive for all s > s > 5 and also for all s < § <75.

A3.3. Proof of Proposition 8: Automation and Wage Levels

We have already proved part 1 of the proposition in the main text. Here we prove
parts 2—4.
Part 2—Condition (10) implies that

Olog s, - o
%‘l/“ds + v;.dx — dlog ¢ — (dlog w;)"” = v;,dx — dlog q if ds >0,
s x ¥
dlog w; =
alog%,x ~ - 1+ — . ~
5 ds + v;5dx — dlog ¢ — (dlog w;)"” = 7;:dx — dlog q if d5 <0,
s

(Al1)

dX; = 0. But then, the entire upper branch of dX, would be identically zero, which is in-
compatible with the initial value dX;" being strictly positive.
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where v;, and v;; are defined as in equation (A9). Now suppose at first that
q = ¢. Then, x = x and Yix = Ysx = 0 because x = X is a maximizer of the ef-
fective labor cost function w,. So, we obtain dlog w; = —dlog ¢ <0.

Next, for dlog ¢ > 0, dlog w; is a right-hand derivative and thus must be contin-
uous from the right. So, dlog w; < 0 in a right neighborhood of ¢,. Finally, this ex-
tends to skills in some neighborhood around § because the wage change dlog w,
is continuous in s.

Part 3—If Y, ./, is constant, we must have wy /. = 1/(qy.) for all x.*
Differentiating this, we obtain dlog wy = —dlog ¢ < 0. Since the change d log w,
is continuous in s, we obtain d log w, < 0 for all s in some neighborhood of s'.

Part 4—Suppose at first that ¢ = ¢,, and consider dlog ¢ < 0. Itis easy to check
that for dlog ¢ < 0, the reasoning of lemma A3 can be adjusted to imply that
dx(ds) is still strictly increasing but now dx(0) < 0 and

!
N

(6 logys:  dlogyus dlogY

o ox )da’c(O) > dlogq +

Since at ¢ = ¢, we have x = 0 and § = 0, the analogous results for dx do not
apply. Instead, we have dX;” = 0, and hence by equation (A8),

by
A1

S.x

dx(ds) = ds.
So dx(5s) is strictly increasing and dx(0) = 0. Since we are considering dlog g <0
starting from ¢,, equation (10) holds, and so does its variational counterpart (A9).
Then, by reasoning analogous to that in the first part of the proof of proposition 6,
we can show that dx < 0 and dx > 0. Next, by the same reasoning as in the second
part of the proof of proposition 6, we obtain that dX, < 0 for all s € (0, 1). By the
argument in the proof of proposition 7, this implies that d log w; < d log w.
Finally, note that for dlog ¢ <0, the changes dlog w, and dlog w, are left-
hand derivatives and, as such, they are continuous from the left. So, we have that
dlog wy, < dlog w, in response to dlog g < 0 for all ¢ in some left neighborhood
of ¢,. But for ¢ € (¢, ¢.), wages are differentiable in ¢, and we obtain the reverse
for dlog ¢ > 0, thatis, d log w; > d log w, in response to d log ¢ > 0 forall gin some
left neighborhood of g,.

A3.4. Proof of Proposition 9: Productivity Effects

We first derive a second-order approximation of net output NY. Net output is
given by NY = maxzF (K, 1) — K/¢, where Fis maximal output subject to ag-
gregate factor supplies K and [ (see proof of proposition 1). So by the envelope
theorem, we obtain dNY /dq = K/¢*, and hence dlog NY /dlog ¢ = K/(¢NY) =
K/(qY—K) = o4/ (1 — o). The second-order term can then be written as

* Otherwise, either the set of automated tasks was empty (if the equation held with <
instead of =) orskill s’ could not be assigned to any task (if the equation held with > instead
of =).
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d*logNY  d  dlogNY _d(oy/(1 — o)) _ o, dlog o

(dlog q)® dlogq dlogq dlog q (1—ay)? dlogq’

which by our previous result (A10) can be written as

ay

i )\71+810ng dx +610%F;{ dx '
(1 — o) Ox dloggq 0x dlogyq

Combining these first- and second-order terms yields our second-order Taylor
approximation:

ay
Alog NY =~ —a Alog ¢
a Ologl'y dx OlogT', dx )
+—s A1+ Al .
(1 — )’ ox dloggq Ox dloggq (Alogq)

Next, we translate this into an expression for TFP. Since Y = NY + K/q, we
have Alog Y = (1 — a;)Alog NY + oy Alog(K/q). Using this in the definition of
TFP, we obtain Alog TFP = (1 — a;)Alog NY. Plugging in the second-order ap-
proximation of Alog NY derived above, we obtain the expression for TFP from
proposition 9.

Data Availability

Data and code replicating the quantitative analysis in section VI and in ap-
pendix B, including all figures and tables, can be found in Acemoglu and
Loebbing (2025) in the Harvard Dataverse, https://doi.org/10.7910/DVN
/ATCOI7.
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