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Abstract

Central banks rely on r*—the neutral interest rate—to assess policy stance. However,
monetary policy affects activity through broad financial conditions, not only the short-term
rate. We propose F'CT*, the neutral level of a financial conditions index consistent with
output at potential. Unlike »*, FCI* is insulated from financial fluctuations: when asset
prices move, FCI captures their estimated effect on output, leaving FFCI* to reflect only
what the macroeconomy requires. In U.S. data, r* co-moves with the equity premium;
FCTI* does not. FCI gaps provide useful real-time guidance on policy stance, especially

when financial conditions diverge from the policy rate.
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1. Introduction

“Financial conditions matter to us because... financial conditions are the main
channel to the real economy through which our policy has its effect.”— Jerome
Powell, Federal Reserve Chair, Press Conference, March 19, 2025

Central banks rely on estimates of r*—the rate consistent with output at potential—to
assess policy stance. KEstimates of r* declined persistently after the Global Financial Crisis
(GFC), shaping narratives around secular stagnation and the zero lower bound. Yet as of late
2025, policy rates remain well above pre-COVID-19 levels even as inflation has normalized, and
r* estimates have drifted upward. What explains these fluctuations? Monetary policy transmits

to the real economy primarily through broad financial conditions—long-term interest rates,

*Contact information: Caballero (MIT and NBER; caball@mit.edu), Caravello (MIT; tomasec@mit.edu),
and Simsek (Yale SOM, NBER and CEPR; alp.simsek@yale.edu). We thank Christian K. Wolf and partici-
pants at the NY Fed’s AMEC Symposium for their comments. The main estimation results are available here:
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equity prices, house prices, and exchange rates—rather than through the policy rate alone. To
stabilize output, policy must offset movements in these volatile asset prices. This forces r* to
absorb financial fluctuations—falling when asset prices collapsed after the GFC, rising alongside
the asset price boom since COVID-19. Moreover, an r* driven by volatile financial variables
is difficult to estimate in real time. This complicates policy stance assessment when financial
conditions diverge from the policy rate.

We propose an alternative measure of neutral monetary conditions that addresses these lim-
itations. Financial conditions indices (FCIs) quantify the effect of asset prices and rates on
output. We introduce, characterize, and estimate F'CI*, the neutral level of financial condi-
tions consistent with output at potential. By working in F'CI space, we leverage the extensive
empirical research underlying F'CI construction. Since F'CIs already incorporate the demand
effects of asset prices, these effects need not be absorbed by the neutral benchmark. Our theory
formalizes this intuition, showing that F'C'IT* is insulated from financial market fluctuations and
driven primarily by macroeconomic forces. Our empirical analysis confirms this. We further
demonstrate that deviations of FCI from FCI* provide useful real-time information on the
effective policy stance.

We work with the FCI-G index introduced by |Ajello et al.| (2023)), which uses the Federal
Reserve’s quantitative models to estimate the effect of recent asset price and interest rate changes
on expected output growth. This index connects naturally to the output-asset price relation from
Caballero and Simsek| (2022), where asset prices and demand shocks drive economic activity with
inertia (the conceptual analog of the IS relation expressed in terms of financial conditions). We
exploit this connection to describe output growth in terms of F'CI and demand shocks. This
reformulation enables us to define F'CI* as the neutral level of financial conditions that balances
expected output with potential a few quarters ahead.

Our framework reveals that FFCT* primarily reflects macroeconomic forces rather than fi-
nancial market developments. In particular, FCI* is determined by demand shocks, as well as
expected potential output growth. In contrast, we demonstrate that the (neutral) r* is influ-
enced by financial markets as well as macroeconomic factors. For instance, consider a decline
in stock and house prices driven by a shift in risk premiums or sentiment. All else equal, this
reduces r* but leaves F'CI* unchanged. Intuitively, since a decrease in asset prices reduces ag-
gregate demand, the central bank is forced to set lower interest rates to provide support—and
vice versa when asset prices rise. However, since these effects are already accounted for in the
FCIT construction, FFCI* remains unaffected. When asset prices move, F'C'I moves accordingly,
leaving FFCIT* to reflect only what the macroeconomy requires.

Our model further demonstrates that FCI gaps—the deviations between actual FCI and
FCTI*—drive output gaps (along with unanticipated shocks). This relationship forms the basis
of our empirical analysis as it allows us to infer FCI* from estimated output gaps. Negative
output gaps indicate that observed F'CI is too tight relative to F'CI*, while positive output
gaps suggest the opposite.
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Figure 1: This figure plots 7* as estimated in Holston et al.| (2023) alongside our estimate of
FCT*. The equity risk premium measure is from [Duarte and Rosal (2015) and is available
through 2023Q1.

Our estimation approach follows closely the approach in Laubach and Williams| (2003) for

estimating r*: we develop and estimate a two-equation macroeconometric model. The first

equation links output gaps to FCI gaps rather than interest rate gaps. The second equation is

a backward-looking Phillips curve; we adopt the same specification as in [Laubach and Williams|

(2003) to facilitate comparisons. We estimate this model using quarterly data spanning from
1990Q2 to 2024Q4, incorporating adjustments for the COVID-19 period through the Oxford
COVID-19 Stringency Index (Holston et al. [2023). We employ a combination of calibrated

parameters and maximum likelihood estimation via the Kalman filter. This approach provides

a tractable way of estimating the latent FCI* state and makes it directly comparable with
prevailing estimates of r*.

Our empirical findings confirm the theoretical predictions. The Holston-Laubach-Williams
r* strongly correlates with the equity risk premium, but FCI* does not once we control for
macroeconomic conditions. Figure [I] illustrates this divergence. The figure suggests some co-
movement between FCI* and the risk premium, but this reflects periods when financial booms

and busts drove the business cycle—such as during the late 1990s and early 2000s. In mul-



tivariate regressions controlling for output gaps, the equity risk premium has no independent
relationship with F'CT*. In contrast, r* remains strongly correlated with the risk premium even
after controlling for output gaps.

While FCI* is insulated from financial shocks by construction, observed FCI is not—
creating F'CI gaps in the data. These gaps are especially large during financial recessions
such as the GFC, where observed F'CI tightens with market distress while F'CI* loosens to
reflect the degree of stimulus required by the economy. Such gaps might emerge from frictions
the central bank faces in practice: the zero lower bound, policy gradualism, transmission lags,
or cost-push shocks.

Two additional findings support our conclusion that FCT* is a useful measure of monetary
policy stance, especially when financial conditions diverge from the policy rate. First, in re-
cent decades the IS curve fits better with F'C'I than with interest rates, reflecting the broader
channels of monetary policy transmission that FCI captures. Since the IS curve is central to
the estimation—we infer the neutral level from the relationship between financial conditions
and output gaps—this stronger fit results in more stable estimates of FFC'I* than comparable
estimates of r*. Second, F'CI gaps accurately reflect shifts in the effective policy stance. After
the GFC, F'CI remained tighter than F'CT*, suggesting policy was effectively tight and demand
was weak throughout the recovery. The |Laubach and Williams| (2003) framework, in contrast,
implies policy was accommodative and attributes the weakness to declining potential output.
FC1T gaps also offer real-time advantages. In 2022, they captured the rapid tightening at a time
when interest rate gaps still suggested accommodation—asset prices and long-term rates moved

well ahead of policy rates.

Related Literature. This paper relates to the theoretical literature on r* and its usefulness
for monetary policy (Wicksell, [1936; [Woodford}, 2003). We contribute by introducing a new
concept, F'CT*. This paper also relates to the empirical literature that estimates r*. Within
this literature, the approaches range from flexible econometric models that impose no theoretical
structure (Lubik and Matthes|, [2015] 2023), to semistructural models with some connection to
theory (Laubach and Williams|, 2003; Holston et al.,|2017,[2023)), to fully structural DSGE models
(Negro et al., 2013 Barsky et al. 2014). We build on the semistructural approach of Laubach
and Williams (2003). Our estimates differ from theirs in several ways, as we described above. In
addition, since we explicitly incorporate cyclical demand shocks, our FCT* is a neutral measure
relevant over shorter horizons, whereas Laubach-Williams estimates a natural rate intended for
5 to 10 years ahead.

In terms of the underlying theory, our paper builds upon our earlier work that investigates
the connections between financial markets and monetary policy (see|Caballero and Farhi| (2018));
Caballero and Simsek (2020} 2021}, 2022, 2024b.a); Caballero et al.| (2024)); Caballero and Simsek
(2025))). The most closely related paper is |Caballero and Simsek (2022), which develops a

New-Keynesian model where monetary policy transmits through asset prices. In that paper,



we theoretically investigate the gap-minimizing asset price, which we refer to as p*, and show
that it is determined by macroeconomic needs rather than financial market forces. The current
paper is an empirical complement to |Caballero and Simsek| (2022): we connect the asset price
in the model to measures of FICI, and we use this connection to estimate F'CI* and empirically
investigate its properties. In (Caballero et al.| (2024), we use VAR counterfactuals to construct
an optimal financial conditions target that a central bank might set under realistic frictions.
Despite their completely different construction procedures, the optimal target and FCI* move
closely together outside the GFC, suggesting that F'C'I* serves as a reliable guide for practical
policy evaluation (see Online AppendiX. Beyond our own work, this paper is part of a large
literature on New Keynesian models with risk and asset prices (Pflueger et al., 2020; Kekre and
Lenell, [2022; [Kekre et al., 2023; [Beaudry et al., 2024} |Adrian and Duarte, 2018} |Adrian et al.,
2020)).

Finally, our paper relates to an empirical literature that documents the predictive power of
financial conditions, particularly regarding the likelihood of tail events (Adrian et al., 2019, 2022;
Ajello et al., [2024). We emphasize the usefulness of FCIs not only for predicting tail outcomes

but also for assessing the monetary policy stance during normal periods.

2. Theoretical Framework

2.1. How is the F'CI constructed?

We use the Financial Conditions Impulse on Growth index (FCI-G) constructed by Ajello et al.
(2023)). Two features of FCI-G make it particularly suited to our analysis. First, FCI-G is
constructed from the estimated causal effects of asset prices and interest rates on output, using
the Federal Reserve Board’s FRB/US model and other structural models. These models incor-
porate the various channels by which financial markets affect economic activity: borrowing and
investment effects of interest rates, wealth effects of stock and house prices, and expenditure
switching effects of exchange rates. Second, FCI-G aggregates changes in financial variables
rather than levels, which maps directly into our theoretical framework without modification.
Other well-known indices—such the Chicago Fed’s NFCI or the Goldman Sachs FCI (Hatzius
and Stehn| 2018)—differ in one or both of these dimensionsE]

Formally, FCI-G measures changes in seven financial variables indexed by j: three asset prices
(stock prices, house prices, and the US dollar exchange rate) and four interest rates (the Fed
Funds rate, 10-year Treasury yield, 30-year fixed mortgage rate, and BBB bond yield). For asset
prices, changes are calculated as log price differences. For interest rates, changes are calculated
as differences in yields. To simplify the notation and link the analysis to our theoretical model,

we use the uniform notation Apz for all assets, with the convention that Ap{ < 0 corresponds to

1The NFCI uses statistical weights to summarize co-movement among financial variables, not estimated causal
effects on output—a fundamentally different approach. The Goldman Sachs FCI captures estimated asset price
effects but in levels rather than changes; our framework could be adapted to such indices.



a tightening of financial conditions (higher rates or lower asset prices)ﬂ For each asset j, FCI-G

constructs an asset-specific index as a weighted sum of current and past price changes

T-1
FC’Itj = Zwi (—Ap{ie) . (1)

=0

The weights w% capture the estimated causal effect of asset price changes on output growth
over the next year. They are constructed from model-implied dynamic impulse responses to
an unanticipated shock to the price of asset j, holding other price changes constantﬁ The
summation extends over T" = 12 quarters since financial variables affect activity with long lags.
The aggregate FCI is then FCI; = ) G CIg . By construction, a reading of 1 implies that recent
financial conditions will reduce next-year’s GDP growth by approximately 1 percentage point.

Figure [2] illustrates the index and the contribution of each financial variable over 1990Q1-
2024Q2. The stock market is the main driver of the index followed by the exchange rate. The
housing market is an important driver during the buildup of the GFC and COVID recovery.
Risky asset prices drive the index fluctuations not because their weights are large but because

they are more volatile than bond prices.

2.2. How does this F'C'I map to a model?

We next map the F'CI to a stylized structural model. Consider the aggregate demand block in

Caballero and Simsek| (2022). The baseline setup features an output-asset price relation:
Ye = m + py + Ot

Here, y; is log output, p; is the log price of the market portfolio, d; is a demand shock, and m is
a constant. This relation captures the various mechanisms by which asset prices affect aggregate
demand and output. We think of p; as an average of the asset prices in FCI-G weighted by their
impact on output.

We generalize this to include realistic inertial dynamicsﬁ

Y = nyi—1 + (L —n) (m+pi_1) + ¢ (2)

Here, the parameter 1 controls the degree of inertia in aggregate demand. Taking first differences

2For a bond with duration n, Ap ~ —nA4, so yield changes are approximately proportional to log price changes.

3Specifically, the Fed’s models are used to estimate the impact of a price decline prLe on current log output
( é,z) and on log output one year ahead (8% ,). The weight is the difference: w) = 55, — 87 ,.

4See|Caballero and Simsek| (2022, 2023} 2024b)) for similar formulations. [Caballero and Simsek| (2024b) provides
a microfoundation based on infrequent adjustment of spending and portfolio decisions.
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Figure 2: The FCI-G index (baseline measure with a three-year lookback) and its drivers over 1990Q1-2024Q2. Positive values imply
a decrease in GDP growth in the next year. Source: Ajello et al.|(2023)




and iterating, we obtain

Ay = (1—-n) Z N Apr_ye+ Z DSy
=0 =0

The first term captures the total effect of past asset price changes on current quarter output
growth—similar to the FCI-G construction. In fact, considering the cumulative effect over the

next year, (1 —n)(14+n+n?+n3) =1 —n*, we get the model equivalent of FCI:
o0
FCIL,_1=—-(1-n% Z n*Api_1_y. (3)
=0

The minus sign reflects the sign convention that higher FCI indicates tighter conditions. We

can then write current quarter output growth as:

Ay, = —a()FCL_i1+Y 1'Asi_, (4)
=0
with a(n) = | !

T—n'  14n+m@+n

A tightening of FCI reduces output growth in the next quarter, with a magnitude that depends

on aggregate demand inertia.

2.3. From FCI to FCI*

We next develop the model further to construct FCI*. Suppose the economy is subject to three

sources of exogenous disturbances:

U= gt t g te (5)
g = Gi—1+¢€ (6)
0 = psdr1+e (7)

Potential output y;* follows a random walk with growth rate g;, which itself follows a random
walk. This specification follows |Laubach and Williams| (2003)) and is the same we use in Section
Supply-side innovations capture both permanent supply shocks (e%’n), as well as news that
permanently shift the expected growth rate (€]). Demand shocks have persistence pgs, with
lps| < 1. They capture non-financial forces that affect aggregate spending, e.g., a consumer
sentiment shock or a fiscal policy shock. All innovations are mutually and serially uncorrelated.

We define FCI* as the FFCI in a counterfactual economy where the central bank closes
expected output gaps: Ei[ys41] = Eilyf] for all t. Given transmission lags, closing gaps

exactly each period is infeasible; closing them in expectation is achievable. We denote variables



in this economy with a star superscript. Given equation , the only variable that can affect
output directly at ¢ is a surprise aggregate demand shock. Thus, output in the star economy
satisfies:

vi = Byl + € =y + g1+ €. (8)

Here, we used E;_1[y;] = Ei—1[y}].
After evaluating equation at t 4+ 1, taking expectations, using , and rearranging, we

) - 9)

FCI* is driven by macroeconomic developments. Equation @D reveals that F'CI* reflects

obtain an expression for FCI;":

> onAd

FCI; = a(n)~! (—gt — &+ (Euf0i1] — Eioa[0d) +
=0

macroeconomic forces—aggregate supply and demand—rather than financial market valuations.

First, FCI* depends negatively on expected growth g;. Faster potential growth requires
looser financial conditions so that demand growth keeps up with supply growth.

Second, F'CT* depends negatively on supply shocks efn. A positive shock raises potential
output permanently, so financial conditions should loosen for demand to increase with supply.
Notice that only the current value of the shock e;?n appears in F'C'T*: permanent supply shocks
generate short-term fluctuations in FCT* because they require a one-time adjustment in demand.

Third, FCT* depends on demand shocks—both the current forecast update Fy[0¢41]—FEi—1[d¢]
and all past demand changes. Past demand shocks affect current activity due to the inertia
in equation . Higher expected activity requires tighter conditions. Thus, demand shocks
generate persistent (but not long-run) fluctuations in FCT*.

Notably absent from equation @ are financial market variables such as risk premia or asset
valuations. The F'CI construction already incorporates the demand effects of asset prices, so
financial variables do not enter equation (4)) once we control for FFCI. This implies FCI* does
not depend on financial fluctuations.

r* is influenced by financial developments. In contrast to FFCI*, r* depends on financial
market variables. To characterize r*, we must specify the financial market block that determines
asset prices p; for a given path of interest rates r;. There are many different ways of specifying
the financial market block. This richness already hints that r* depends on the details of the
financial market structure. We consider the setup in (Caballero and Simsek| (2022)) where r* that

closes expected output gaps is given by (see Online Appendix |A| for details):

- AJL(é_yﬁ 1l 10
T p+g—i—1_77 € — € +1—778t 5P (10)
2 2
1—n—
where 7p = (5> J§n+(w> o2
L=n L=n
and s; = pgSi—1 + €.



Here, p = —log 3 is the discount rate, g is the expected growth rate, ¥p denotes the average
risk premium. In this model, average risk premium is related to the volatility of supply and
demand shocks. The variable s; represents financial market “sentiment”: excessive optimism or
pessimism about future cash flows that shifts asset valuations. We assume sentiment follows an
AR(1) process.

Equation shows r* depends on sentiment in addition to macroeconomic factors. A neg-
ative sentiment shock reduces the asset price py, tightening FCI and reducing future output. To
prevent this, r* must fall—absorbing financial fluctuations that are orthogonal to fundamentals.

The same logic applies to any force that shifts asset valuations without changing macroe-
conomic fundamentals. A large finance literature documents that asset prices exhibit “excess
volatility” —fluctuating considerably due to sentiment (e.g., Shiller (2014)), time-varying risk
premiums (e.g., Cochrane (2011)), or noise in inelastic markets (e.g., |De Long et al. (1990);
Gabaix and Koijen| (2021))). In our previous work, we have shown that r* fluctuates with such
forces (Caballero and Simsek, 2020; |Caballero et al.l [2024). The broad point is that r* carries

the burden of responding to financial fluctuations, whereas F'C'I* is insulated from them.

Remark 1 (Relation between FCI* and neutral vs natural r*). Since FCI* depends on short-
term factors (such as transitory supply and demand shocks) as well as long-run factors (long-run
GDP growth), it is conceptually closer to estimates of the neutral interest rate that provides a
benchmark over shorter horizons. A related object, which following Obstfeld (2025) we refer
as the natural interest rate, corresponds to the long-run interest rate that would hold after the
effects of transitory demand and supply shocks have dissipated. See|Reis (2025) for a discussion

on different concepts that are all referred to as r*.

2.4. From F(CI gaps to output gaps

The final step links F'CI gaps—deviations between observed F'CI and FCI*—to output gaps.
Let g+ = y+ — y; be the output gapﬁ Subtracting equation from its counterpart in the star
economy, yields:

Ay = —a(n)(FCI—y — FCI}_,). (11)

This equation is key to our empirical strategy: a positive output gap implies a negative F'CI
gap. Thus, the F'CI gap plays the role of the real rate gap r; —r; in a standard New Keynesian

setup.

The drivers of FCI gaps. What drives FCI away from FCI*? First, FFCI is directly
influenced by monetary policy (Caballero and Simsek, [2022; Caballero et al., 2024). Therefore,

the same reasons that may drive the policy rate away from r* apply here: (i) cost-push shocks,

SWe define output gaps as relative to the output in the star economy y; as opposed to potential output y'.
This simplifies the expressions and only has a small effect on our estimates since the two measures are identical
up to contemporaneous supply and demand shocks y; = y;* — €/ + € (see and )

10



which the central bank might fight optimally by inducing negative output gaps, (ii) gradualism,
which induces the central bank to adjust interest rates and influence financial conditions at
a slower pace, (iii) imperfect information about the exact value of FFCI;. Second, unlike the
policy interest rate, the Fed does not directly control F'CI. Therefore, financial market shocks
that affect F'CI directly and that might not be quickly stabilized by the central bank can also
induce F'CI gaps. This creates ample scope for F'CI gaps because, as our analysis shows, FFCT*

depends only on macroeconomic factors.

3. Empirical Framework to Estimate FCT*

We now turn to the estimation of FCI*. Our basic approach follows |[Laubach and Williams
(2003): We build a simple macroeconometric model where F'C'I* is an unobserved state variable,
and estimate it using the Kalman filter. Given that F'CI* is a relatively novel theoretical concept,
we prefer to use a small, transparent model that has a direct connection to the theory outlined
in Section 2

3.1. Model Overview

Our empirical model has the following two observation equations:

O = G—1—a(n)FCIi_1 + €54 (12)
Tt = b7r77t—1 + (1 - b7r)77t—2:4 + bygt—l + Enty (13)

where y; represents the output gap, FCT +—1 represents the gap in financial conditions, 7y is
inflation, m;_9.4 = (my—2 + m—3 + m—4)/3 is a moving average of inflation in the past 2 to 4
quarters.

Equation is the empirical analog of equation ([l1))—we have simply added an error
term. This equation is our key departure from [Laubach and Williams| (2003): our specification
emphasizes that the main variable governing aggregate demand is financial conditions instead
of the real interest rate. The rest follows Laubach and Williams (2003). Equation is a
backward-looking Phillips curve. The shocks €5, €x; are assumed to be mutually and serially
uncorrelated. They account for short-term movements in the data that are unrelated to the core
macroeconomic forces that we attempt to uncover.

In order to find the law of motion of FICI, multiply both sides of equation @ by (1 —nL)

where L is the lag operator, and rearrange to obtain:

FCI} = nFCIf |+ lag(n)] ™ (—eyns — gt + €5.e(n+ ps) — (1 —n)ge—1+ (14)
n(yr_1 — (Yr—g + g1—2)) — (n + (1 — ps)ps)de—1 + Npsoi—2))) -

Thus, equations , @, and constitute our state evolution equations. We assume that

11



€yn, €qt, €5+ are all mutually and serially uncorrelated.

Noting that y; = y;* | 4+ gi—1 + 6 — psdi—1, we can write equations (12))-(13)) as a function of
observables and underlying states. These are the observation equations of our system. Online
Appendix [C] collects all equations and explicitly writes down the matrix representation following
the notation in Hamilton (1994).

3.2. Implementation Details

We cover the main implementation choices in this subsection, with additional details relegated
to Online Appendix|[B] We inspect the robustness to several of these choices in Online Appendix

Data. We use quarterly data; our main sample is 1990Q2-2024Q4. For estimation, we measure
output y; as the log of real GDP, inflation 7; as (annualized) quarter-on-quarter PCE core
inflation, and F'C'I using the FCI-G index. To inspect correlations with financial variables, we

use the equity risk premium measure from |Duarte and Rosa (2015), updated to 2023Q1. Finally,

for comparison, an alternative estimate of the output gap is g]CBO =100 x (y; — yf ’CBO), where
yY CBO g potential output estimated by CBO (in logs).

COVID-19 adjustments. We address COVID-19 data issues following the procedure in |Hol-
ston et al. (2023). First, we allow the variance of innovations during Q2 through Q4 of 2020 to
scale by a factor kep20, which is estimated as a free parameter (Lenza and Primiceri, 2022).

Second, we deal with the supply-side effects of COVID-19 by assuming that potential output
is:

* * ¢
Yt,cOVID-19—adj. = Yt + mdt- (15)

Here, d; is the quarterly COVID-19 Stringency Index for the U.S. and ¢ is a parameter to be
estimated. Since the data for the index finishes at 2022Q4, we set its value to 0 from 2023Q1

onwards.

Parameter estimation. We use a mix of calibration and estimation to obtain parameters. We
fix the parameters of the Phillips curve to (br, b;) = (0.689,0.08), the point estimates of Holston
et al.| (2023). We do this for two reasons. First, for comparability with Holston et al.| (2023):
since we are using exactly the same Phillips curve, any differences in the inferred states must be
due to the different specification of the demand block. Second, estimates of a structural Phillips
curve are sensitive to the exact specification and estimation method (Mavroeidis et al., 2014).
We sidestep this issue by externally calibrating the parameters. We also fix the ratio of variances
of innovations in y™ and g; to the point estimate in |[Holston et al.| (2023), A\, = 0‘779” = 0.0667 for
econometric reasons, see Stock and Watson, (1998); Laubach and Williams| (2003). Assuming all

shocks are normally distributed, the remaining parameters are estimated by maximum likelihood.

12
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Figure 3: Top: FCI (black) and FCT* (blue). Bottom: estimates from current model (blue),
Holston et al (2023) (red) and CBO (black). All estimates are one-sided. Online Appendix [D]
presents additional results for two sided estimates.

4. Estimation Results

4.1. Estimated FCI* and Output Gap

The top panel of Figure [3|shows the estimated FFCT* along with the measured F'CI. The bottom
panel shows the one-sided estimated value of the output gap (in blue). For comparison, we also
include the output gap from the Holston et al.| (2023) model (in red) and the CBO output gap
(black).

The estimated value of FFCI* has some short-run volatility but does not closely track the
observed F'CI. Sizeable gaps open up in several moments, most notably during the GFC.
Intuitively, since F'C'I is a weighted average of asset price changes, it naturally imports the
excess volatility of asset prices emphasized by the finance literature. On the other hand, by
construction FCI* depends on macroeconomic rather than financial factors. Therefore, large
asset price shocks naturally induce FCI gaps.

Our estimated output gap is close to zero during much of the 1990s, turns positive around
2000 during the dot-com bubble, becomes negative during the early 2000s recession, and turns
positive again during the run-up to the GFC. The gap drops sharply during the GFC and does
not turn positive again until COVID-19, when we estimate a large positive output gap. The
large output gaps during COVID-19 are driven by a fall in potential output, consistent with

pandemic lockdowns meaningfully reducing aggregate supply.
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Dependent variable
FCI* r*
ERP 0.017  —0.292%**
(0.016) (0.011)
Output Gap  0.17"* 0.028
(0.026) (0.018)
R? 0.347 0.883
Observations 132 132

Table 1: Regression Results. “ERP” is the equity risk premium measure by |Duarte and Rosa
(2015). The output gap is the one measured by the CBO. Sample: 1990Q2-2023Q1. Standard
errors in parentheses.”*p < 0.01, **p < 0.05, *p < 0.10

Our estimated output gap is similar to the HLW and CBO output gaps until right before the
GFC. Around the GFC, all three estimates decline, but ours falls much more sharply. The key
difference emerges in the aftermath: our estimate, like the CBO’s, remains negative for almost
a decade, whereas the HLW estimate recovers quickly—turning positive by 2011 and reaching
peaks similar to those before the GFC.

This divergence reflects how each framework interprets the same data. HLW observe that
interest rates were low after the GFC and inflation did not fall dramatically. In their framework,
low rates imply loose policy, and the absence of disinflation implies output gaps cannot be too
negative. They reconcile weak output and low interest rates with small output gaps by inferring
a decline in potential output and in r*

We use exactly the same Phillips curve but reach a different conclusion. While interest rates
were low, F'C'I was not particularly loose in this period—credit spreads remained elevated, equity
valuations were depressed, and risk premia were high. Given the strong link between F'C'I and
output that we estimate, our framework implies persistently negative output gaps. We attribute
the lack of large disinflation to the Phillips curve error term. This interpretation aligns with
the literature on the “missing disinflation” puzzle (see Ball and Mazumder| (2011); |Coibion
and Gorodnichenko| (2015])) and with the conventional narrative of a prolonged demand-driven

slump.

4.2. Correlations with Financial Fluctuations

Our theoretical framework predicts that FFCI* is driven by macroeconomic fundamentals while
r* also responds to financial fluctuations. Our estimates support this prediction. Figure
introduced earlier, shows that r* is highly correlated with the risk premium throughout the
sample, while F'CI* is only mildly correlated with the risk premium earlier in the sample—a
correlation that breaks down after the GFC.

While this figure is suggestive, a multivariate analysis is necessary since financial fluctuations

and macroeconomic outcomes are correlated. We therefore regress both FCI* and r* on the
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equity risk premium and the CBO output gap. The equity risk premium proxies for financial
fluctuations while the CBO output gap proxies for macroeconomic conditions.

Table [1] reports the results. When we regress F'CI* on both variables, only the output
gap enters significantly; the equity risk premium has no independent relationship with FCT*.
In particular, the mild correlation between the risk premium and F'CI* in Figure [I| reflects the
correlation between the output gap and the risk premium. In contrast, when we regress r* on the
same variables, the equity risk premium remains strongly significant. These regressions confirm
that FCTI* is driven by macroeconomic fundamentals, whereas r* is significantly influenced by
financial valuations. Online Appendix [D.4] shows that these results are robust to alternative

measures of expected excess returns.

4.3. Comparing IS curves estimated with F'C'I versus r

The IS curve is the core of our estimation: we invert estimated output gaps to infer F'CI
gaps, just as Laubach-Williams invert output gaps to infer interest rate gaps. The strength
of this relationship determines how robustly the Kalman filter can extract the latent neutral
benchmark. We now compare IS curves estimated with F'CI versus interest rates.

In our baseline specification, aggregate demand inertia is high, with n = 0.994. This implies
that the impact of F'C'I on next quarter output growth is a(n) = 0.252 (standard error: 0.002):
since aggregate demand is very persistent, the effect of asset price innovations is spread roughly
equally over the next four quarters. Online Appendix reports additional results.

Our empirical approach effectively constrains the a(n) coefficient in the IS curve to
be positive. We also estimated an alternative version in which a(n) is a free parameter. The
estimate is still positive and statistically significant—a(n) = 0.29 (standard error of 0.003).

In contrast, when we re-estimated the Holston et al.| (2023]) equations in our sample period
with the same parameter constraints they imposed, we found that the slope of the IS curve
is estimated to be at the constraint—which is essentially zero. As a result, the estimated r*
features implausibly large swings, going from a maximum of 24.5% in 2000, to a minimum of
—71.6% at the heights of the GFC.

The IS curve fits better with F'CI than with interest rates. This is unsurprising: monetary
policy transmits through broad financial conditions, not just the policy rate, and FCI directly
measures these conditions and their calibrated impact on activity. The policy rate is one step
removed—it affects aggregate demand only by first changing financial conditions. Moreover,
financial conditions are volatile and only loosely related to the policy rate, so using the policy
rate in place of FCI introduces additional noise in the IS curve (which makes it harder to
estimate). Our estimates suggest this problem became more severe in recent decades, possibly

reflecting greater financial deepening and the increased importance of market-based finance.
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Figure 4: Direct effect of FCT (blue) and real rate (red) gaps on output gaps, normalized such
that a positive value implies lower output gaps. Red is computed as —a,7¢, where a, is the slope
of the IS curve and 7 is the real rate gap estimated in |Holston et al.| (2023]).

4.4. Effective Monetary Policy Stance According to FCI* vs. r*

We next analyze F'CI gaps as a measure of the effective policy stance. From equation , the
term a(n)(FCI; — FCI}) captures the effect of current financial conditions on output gaps rela-
tive to a neutral benchmark. We compare this measure with an analogous measure constructed
from HLW’s estimate for r*: the real rate gap. Figure |4| plots both measures over time. The
two differ in sign for long periods, with large discrepancies during the GFC and COVID cycles.

During the GFC recovery, the real rate gap suggests highly accommodative policy throughout
2010-2020, with rates well below r*. Yet, as we documented above, output gaps remained
persistently negative. The F'CI gap resolves this tension: despite low policy rates, financial
conditions remained neutral or slightly tight during much of this period. Given high risk premia
and low asset prices, low rates did not translate into loose financial conditions.

The COVID-19 cycle highlights a further dimension of this divergence. Both measures
signal pronounced accommodation through 2021, but they separate markedly thereafter. The
FC1T gap turns contractionary in early 2022, reflecting the rapid tightening in broader financial
conditions as long-term yields rose and equity prices fell. By contrast, the real-rate gap remains
accommodative well into 2023: elevated inflation expectations kept ex ante real rates low even
as the Federal Reserve raised nominal policy rates. From 2023 onward, the measures diverge

again. The F'CI gap indicates a loosening of financial conditions driven by the equity-market
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rally, even as interest rates stayed persistently high through 2023 and 2024. Overall, the FCI-
based measure more closely matches the widespread perception of a sharp policy pivot in 2022
and captures the subsequent easing in conditions associated with the stock-market rebound.

Online Appendix [D.5] shows that these conclusions are robust to our COVID-era adjustments.

5. Conclusion

Building on the observation that monetary policy operates through financial conditions, we
introduce F'CTI*, the neutral level of financial conditions that closes expected output gaps. Our
approach leverages the empirical research embedded in FCIs, which quantify how asset prices
affect aggregate demand. We work with the FCI-G index by Ajello et al.| (2023)), which uses the
Federal Reserve’s models to estimate the impact of recent changes in financial variables on output
growth. We link this index with a theoretical framework to characterize F'CI* and its drivers.
Our framework reveals that FFCI* is insulated from financial fluctuations by construction and
is driven by macroeconomic fluctuations; in contrast, r* is influenced by financial shocks. Our
framework also links output gaps to F'C'I gaps, enabling us to estimate the latent F'CI* using
a two-equation model similar to Laubach and Williams| (2003)) and Holston et al.| (2023)).

Empirically, we confirm that F'C'T* does not correlate with the risk premium once we control
for macroeconomic conditions; in contrast, the standard measures of r* do. We also find that the
IS curve fits better with FCI than with interest rates, reflecting the broader channels of monetary
policy transmission. This results in more stable estimates of F'CI* compared to r*. Finally, we
find that there are frequent F'CI gaps in the data, and these gaps provide a useful description
of the policy stance, especially in episodes where financial conditions diverge from interest rates.
This was the case during the post-GFC recovery where tight F'CT relative to FCI* indicated
tight policy, whereas low interest rates relative to standard estimates of r* implied loose policy.
It was also the case throughout 2022 when FCI gaps captured the rapid tightening of policy
whereas interest rate gaps still suggested accommodation.

Our main goal is to introduce F'CI*—a benchmark insulated from financial fluctuations—as a
potentially useful alternative measure for monetary policy stance. We have therefore deliberately
kept our framework close to prevailing methods in the r* literature to facilitate comparisons.
Future research may refine this model further using more elaborate time-series methods or more

structural models to capture additional frictions (see, e.g., Caballero et al.| (2024)).
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Online Appendix: Not for Publication

A. Financial market block and r*
In the main text, we considered a theoretical model in which log output is driven by
Y = nyr—1 + (1= n)pe—1 +m(l —n) + 5.

and aggregate supply and demand shocks evolve according to

v = Yyt te
g = Ggi—1+¢€
5t = pé(()‘tfl + 6?.

We have deliberately left the financial market block that determines p; and thus F'CT unspecified, because
this block does not affect FCT* and is not necessary for our estimation. In this appendix, we specify a
financial market block and complete the theoretical characterization, solving in particular for the r*. We
use this solution in Section to compare FCT* with r*.

Financial markets. The financial market block follows our earlier work in |[Caballero and Simsek
(2022)). We briefly describe the setup and refer the reader to those papers for additional details. There
are two assets: a risk-free asset in zero net supply and a market portfolio. The market portfolio is a claim
on firms’ profits aY; (the firms’ share of output). We let P; denote the ex-dividend price of the market

portfolio (which we also refer to as “the aggregate asset price”). The gross return of the market portfolio

is Rty = O‘Yt%fpt“. Log-linearizing this expression, we obtain
i1 =6+ (1= B) Y1 + Bpet1 — pr. (A1)
Here, " | = log R} ; is the log return, % is the steady-state dividend to price ratio, and k = —f log 5 —

(1-B)1og (152).

The households make a portfolio choice between the market portfolio and the risk-free asset in zero
net supply, whose return R; is set by the Fed. We assume households delegate their portfolio choice to
portfolio managers (the market), who invest on their behalf. The managers make a portfolio allocation

to maximize expected log household wealth
a1 [log (Wi (Ru+ w0 (RS — Ri))))

Here, the superscript M denotes the market’s belief which can in general be different than the central
bank’s belief or the objective belief. In equilibrium, the approximate log-linearized optimality condition
is
B oy, ] + el

ot [rity]

Here, r; = log R; denotes the log risk-free interest rate. Managers invest in the market portfolio until

wtai‘/[ [rﬁl] =

their perceived portfolio risk (the left-hand side) is equal to their perceived Sharpe ratio from the market
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portfolio (the right-hand side).

Market clearing requires wy; = 1: in equilibrium, portfolios are reinvested in the market portfolio.
Combining this with the optimality condition, we obtain a relation between the expected return on the
market portfolio and the risk-free rate

VarM [r7
EM i) = e+ — 5= 2[ bl (A.2)
The equilibrium expected return (or the discount rate) is equal to the risk-free rate plus a risk premium,
which in this model depends on the variance of the return on the market portfolio. Combining this with

(A.1]) provides a solution for the equilibrium asset price
1
po= et (= ) B ]+ B [ = (ot gvart () (A.3)

The price of the market portfolio depends on the expected future output (through cash flows), the
expected future asset prices (since it is a long-lived asset) and inversely on the risk-free rate and the risk

premium.

Characterizing p* and r*. We next characterize p*—the asset price counterpart to F'C'I*—which

*

we use to solve r*. Conceptually, p* is the asset price that obtains in an economy in which the central
bank closes the output gap in expectation. Therefore, to calculate p*, we need to specify the central
bank’s beliefs along with the market’s beliefs. For tractability, we focus on a special case of where
the expected growth is constant, g, = g, demand shocks are i.i.d. ps; = 0. That is, the objective driving

processes are given by

v = ultgte, (A4)
Sep1 = €4
where €),; ~ N (0,03) and Ety:1 ~ N (0,0%.).

We assume that the central bank knows these processes and has no other signals, so these equations
also describe the central bank’s beliefs. The market’s beliefs about demand shocks are also the same,

e 1 ~M N (O7 0(25). However, the market’s beliefs for the supply shock are different and given by

1

et~ VN (se050) (A5)
where ;41 = pysi+e5, and €5 ~ N (0,07).

Here, s; denotes a sentiment shock: when s; > 0, the market thinks future supply will be higher than usual
(and vice versa for s; < 0) even though the actual expected supply is unchanged. This is a modeling
device to capture a variety of forces that might generate asset price fluctuations without changes in
fundamentals, including time-varying sentiment, time-varying risk premium, or noisy demand shocks.
We assume the belief shocks follow an AR(1) process that is known to both the Fed and the market.

We next use to solve for p*,

ot = Byt - Ey[0i41]
e R A
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Recall also that in the star economy we have y; = E;_1[y}] + € (see . Note also that the processes
in (A.4) imply E;[6;+1] = 0 and E; [yfﬂ] =y +g=E_1[y'] + egn + g. After substituting these
observations, we obtain

Ecalytl+e +9 5
o= — E, 1 ly™ —
o 1—7 1_n(t1[yt]+€t) m
yTI,
€
/Yy R A SR -

l—-n 1-n 1-n

In the star economy, the asset price is determined by the expected potential output, potential output
shocks, demand shocks, and the expected demand shifter in the next period. Note that this expression
is the analogue of FFCT* from the main text; it describes the financial conditions that close the output
gaps in terms of the asset price level rather than the FCI (see (9)).

Next, we substitute the expressions for p* and y* into to describe the return process in the star

economny
rive = K+ (1 =By + Bpi —pi
= k+(1=8) (B [yi] + €41)
n Loy "
+8 <Et [y + m€g+1 - mésﬂ - m>
n 1 " n )
(B4 o - - m)
n n /8 yn 1 yn
= p+Eyia] — Evalyi]+ ﬂet—o—l - met
1-n—-F; N s
+T6t+1 + Tnét
77 § n ﬁ n 1 — ’r] — /8 5
= p+g+ﬂ<et—eff >+1_17€%I+1+ﬁ6t+1. (A6)
Here, the third equality simplifies the constant terms to obtain the intercept p = —log 3. The last

equality substitutes E; [y}, 1] — Ev_1[y}'] = g + ¢/" in view of (A4) and simplifies the expression.
Finally, note from (A.2)) that the interest rate in the star economy satisfies

1
rf=EM [rﬁf] — §Varfw [rﬁf] )

We combine this expression with the return in (A.6)) and the market’s beliefs in (A.5) to solve for r*

rf ptg+

n b 1_
st (- -

8 \? 1—n-8\°
(+5) e (557)

This proves that we use in the main text.

Aside from demand and supply shocks, r* also depends on the average risk premium 7p and on

where 7p

sentiment shock s;. In this model, the risk premium remains constant over time (for simplicity). However,
sentiment shocks fluctuate according to the AR(1) process in (A.5)). We view these shocks as a stand-in

for asset price fluctuations that are orthogonal to expected cash flows, including those driven by time-
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varying risk premiums, time-varying noisy demand, or time-varying sentiment. Absent a central bank
reaction, these fluctuations would shift asset prices, the FCI, and therefore also the future economic
activity. Since these shocks are orthogonal to actual macroeconomic fundamentals (by assumption), the

central bank optimally raises the interest rate to insulate the F'C'I and economic activity from them.

B. Additional Implementation Details

B.1. Data

We use quarterly data; our main sample is 1990Q2-2024Q4. We start at 1990Q2 due to the availability
of the FCT index. We measure the output gap as §; = 100(y: — (y; + %dt)), where y; is the log of real
GDP and y; + %dt is the COVID-19-adjusted potential (log) output, a latent variable to be estimated.
We measure the financial conditions gap as F/'\C_‘j't = FCI,— FCI}, where FC1I; is the financial conditions
index from |Ajello et al|(2023) and F'CI; is our measure of neutral financial conditions, which is a latent
variable. Inflation m; is annualized quarter-on-quarter PCE core inflation. To inspect correlations with
financial fluctuations, we use the equity risk premium measure from [Duarte and Rosal (2015), this series
is available through 2023Q1. Finally, in some cases we compare our results to those of [Holston et al.
(2023), and to the CBO output gap. We use the 2024Q4 vintage of [Holston et al.| (2023), and the CBO

P,CBO) p,CBO
t

output gap is obtained as §°2° = 100 x (y; —y , where y; is the logarithm of potential output

estimated by CBO.

B.2. COVID-19 adjustments

We address COVID-19 data issues following the procedure in Holston et al| (2023)). First, as suggested
by [Lenza and Primiceri (2022)), we assume that the volatility of (e, €x¢) can be larger during the
COVID-19 period. We parametrize this by assuming that the standard deviation of the shocks is given
by (kt0g, kiox), Where:

K 2020 : Q2 <t <2020: Q4

- L Q2<1<2020:Q B1)

1 otherwise.
The value of koggo is estimated as a free parameter. Second, we deal with the supply-side effects of
COVID-19 by assuming that potential output is:

* * ¢
L= —_d,. B.2
Yt,cOVID—19—adj. = Yt + T00% (B.2)

Here, d; is the quarterly COVID-19 Stringency Index from the Oxford COVID-19 Government Response
Tracker (OxCGRT) for the U.S. Since the data for the index finishes at 2022Q4, we set its value to 0
from 2023Q1 onwards.

Our implementation of COVID-19-related adjustments differs from [Holston et al.| (2023)) in two ways:
first, whereas they extrapolate the COVID-19 stringency index for 2023 and 2024, we set it to zero; second,
they allow for potentially higher variances in 2021 and 2022 as well. We adopt this different specification
because we want estimated F'CT* to better reflect short- and medium-run macroeconomic factors during
the COVID-19 period, rather than the long-run factors emphasized by Holston et al. (2023)). Appendix

presents results using their exact specification for comparison.
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B.3. Parameter estimation

In order to evaluate the model, we need to obtain  parameters 0 =
(br, by, 04, 0x, Oyn, 04,05, @, K2020, Ps,M). We use a mix of calibration and estimation.

We fix the parameters of the Phillips curve to (br,by) = (0.689,0.08). These are the point estimates
of Holston et al.| (2023). We do this for two reasons. First, for comparability with [Holston et al.| (2023)):
since we are using exactly the same Phillips curve, any differences in the inferred states must be due to the
different specification of the demand block. Second, estimates of a structural Phillips curve are sensitive
to the exact specification and estimation method (Mavroeidis et al., 2014). We sidestep this issue (which
is orthogonal to our main focus) by externally calibrating the parameters. Appendix@ shows robustness
to different values for the slope of the Phillips curve.

We further fix the ratio of variances of innovations in ™ and g; to the point estimate in |[Holston et al.

(2023), Ay = 99 _ 0.0667. We do this to address econometric issues that arise when trying to estimate
Oyn
the variance of a time-varying parameter, see |Stock and Watson| (1998)); [Laubach and Williams| (2003)).

Estimating this parameter in a previous step as done in |[Holston et al.| (2023) yields very similar values.

B.4. [Initializing the filter

Given that several latent variables have unit roots, we set the prior distribution of £ ~ N (&9, P1jo) as
follows. For the means, we follow (Holston et alJ |2023)) and initialize y; and its lags using the trend
component of real GDP that comes out of applying the Hodrick-Prescott filter with A = 36000. We
initialize g; as the first differences of the mentioned trend. We initialize (FCI}, d;) and its respective lags
at 0. Given that the observed value F'C1; is also close to zero, this encodes that a priori financial conditions
are neither boosting nor restraining GDP from their potential level. Regarding prior uncertainty, we
follow the same two step procedure as in (Holston et al., [2023)). Initially, we assume that all states are a
priori uncorrelated. We assume that the prior standard deviation for potential output and its lags is one
percentage point, whereas the prior standard deviation for all other states is 0.5 percentage points. In
the first step, we estimate the model with this prior. We then run the Kalman Filter with the estimated
parameters, we update the prior variance matrix Pyjg to P;. We then use the updated variance matrix

as initial values for the actual estimation.

C. State Space Representation

Collecting the equations, the state space system is:
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Tt

n
Yt+1
gt+1

Opt1
rer,,

(Yioy +gt—1 4+ 6 — psbr—1 + dds) + (Ye—1 — (Yio + gt—2 + 0t—1 — psOt—2 + Ppdi_1))
—a(n)(FCli—y — FCI{_{) + €5,

bami—1 4+ (1 —br)mi—2:4 +by(ye—1 — (Yio + gt—2 + 6t—1 — psdt—2 + ¢ds_1)) + €x
Y+ gt eyn i

gt + €g.t+1

P50t + €5 441

nFCILE — a(n)™" (eynt41 + (1= 1)gr + €g041 — €5.001 (0 + ps)

=y} — (Y1 + ge-1)) + (0 + (1 = p5)ps)de = npsde-1)))

Following the [Hamilton! (1994)) notation we can generally write the state space system as:

where the only difference is that the variance of the shocks is scaled by x; in order to account for the

&1 = F&+vip
yi = A'xy+HE +win
E,_1(viv)) = kXQ
B, 1(wew)) = kR

large COVID-19 innovations.

In our case, signals, exogenous variables and states are given by:

with matrices:

@
—
3
\TOOOOHH
—_

o O O O
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yt = [yt,ﬂ't]/

Xt = [y—1, FOI" |, i1, 9, dy, dy—q]

& = Wi Yi1Ui—2, 96 9t—1,91—2, FCI; ,FCI}_|,6¢,0,-1,04—2]
0 0 1 0 0 0 O 0
0 0 0 0 0 0 O 0
1 0 0 0 0 0 O 0
0 0 1 0 0 0 O 0
0 0 1 0 0 0 O 0
0 0 0 1 0 0 O 0

—a(n)™tn 0 —a(m)(1-n) —am'n 0 n 0 —am) '+ 1= ps)es) aln)nps
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D. Additional Empirical Results

Figure [7] presents the estimated natural output alongside the realized output.

D.1. Parameter Estimates

Table [2[ shows the estimated parameters. The estimated degree of aggregate demand inertia (n) is quite
high. This implies that the impact of F'CI on the next quarter output growth is a(n) = 0.252: since
aggregate demand is very persistent, the effect of asset price innovations is spread roughly equally over
the next four quarters.

The bottom part of Tableshows that uncertainty about the estimated states is highﬁ This primarily
reflects that the informational content of the two equations is limited relative to the magnitude of the
shocks. This finding is standard in the literature (Lubik and Matthes, [2015; [Holston et al.| 2023)E]

D.2. Two Sided Estimates

Figure [5[ compares FCI* and output gap estimates using the information up to time ¢ (i.e., a one sided
estimate, &, = E[§,|ys, ¥si—o]) or the using all information in the sample (i.e., the two-sided or smoothed
estimate, &, 7 = E[€,|ys, zs{_o]). It also shows 90 percent confidence bands based on the Kalman Filter
contemporaneous variance covariance matrix for the states, Py, = Ey[(&; — &4¢) (& — &4¢)']). As we can
see the one and two sided estimates of FFCI* are quite close, with the main difference appearing during
the GFC: the two-sided estimate shows a less sharp decline than the one sided. Turning to the output
gap, we see larger differences, with the two sided estimate of the output gap being above the one sided

estimate for a large part of the sample.

5We use the procedure in [Hamilton| (1986) that accounts for both parameter and filter uncertainty. This is the
same procedure used in [Laubach and Williams| (2003)

"Our estimates for uncertainty in £CIT* and y* are lower than the uncertainty in 7* and 3* reported in (Holston
et al.}|2023)). However, since we are fixing the coefficient of the Phillips Curve, we are assuming away an important
source of uncertainty, so the estimates are not directly comparable.

28

O O O O 0O O o o o o o

O O O O O O o o o o o




|
2000

1
-10 [ |- - - - 90 perc. conf. bands | g |
m— One-Sided vt
— Two-Sided L
A5 | | | I I |
1995 2000 2005 2010 2015 2020

Figure 5: 90 Percent confidence bands use the contemporaneous variance-covariance matrix
Py = Ee[(& — &) (& — &ut)']-
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Figure 6: One sided and two sided estimates for latent states. Confidence bands use the con-
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Figure 7: Estimate of Potential Output (y;' + ¢d;) is one-sided.
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Parameter Estimate Standard Error
Ag 0.067 Fixed
br 0.689 Fixed
by 0.080 Fixed
n 0.994 0.006
a(n) 0.252 0.002
ag 0.509 0.065
Or 0.677 0.034
Ty 0.155 0.043
os 0.056 0.054
o -0.053 0.011
K2020 7.606 3.162
Ps 0.928 0.104
Log-likelihood -285.368

S.E (sample avg.)

FCI* 0.847

g (annualized) 0.185

y* 1.230

S.E (Final Obs.)

FCI* 0.899

g (annualized) 0.281

y* 2.157

Table 2: Estimated Parameters and standard errors. The variance-covariance matrix of param-
eters is computed using the Outer Product of Gradients of the likelihood. The SE of a(n) is
obtained from the SE of 1 using the Delta method.

Figure [0] compares the one and two sided estimates of all latent states. Regarding y;', we see that
the two sided estimate of potential output is substantially lower during the 2000-2015 period. This is
what drives the positive output gaps discussed before. As we can see, apart from some discrepancy in

the beginning, the estimates of g and § are close for both construction procedures.

D.3. Alternative Phillips Curve Calibration

Given the large uncertainty regarding the slope of the Phillips Curve, in Figure[8| we report the estimated
FCT* and output gaps that correspond to alternative calibrations of this parameter. We keep the same
lag structure as the baseline, since we found the effects of changing b, to be minimal. We consider two
alternative estimates that lie at opposite ends of the spectrum: i) a flatter slope using the estimates
provided by [Hazell et al.| (2022)); ii) a steeper slope using estimates from |Barnichon and Mesters| (2020).
This amounts to setting b, = 0.0248 and b, = 0.28 respectivelyﬁ In each case, we fully re-estimate all
model parameters reported in Table [2| under the new calibration for the Phillips Curve.

Prior to the GFC all three series are quite close, for both FFCT* and the output gap. After the GFC

8The parameter reported in [Hazell et al|(2022) corresponds to a Phillips curve with quarter-on-quarter infla-
tion, not annualized. Thus we multiply their estimate by 4. The specification in |Barnichon and Mesters| (2020)) is
estimated in annualized terms so it does not require conversion.
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Figure 8: Results for different Phillips Curve slopes. Top: FCI (black dashed) and FCT* with:
baseline (blue), a flatter slope (Hazell et al., 2022) (red) and a steeper slope (Barnichon and
Mesters, 2020). Bottom: Output gap estimated by the CBO (black, dashed), and the three
mentioned parametrizations. Each model is fully reestimated taking the corresponding Phillips
Curve as fixed.

a gap appears on the three measures of F'CT*, that lasts until before COVID-19. The steeper Phillips
Curve parametrization shows a tighter FCI*, whereas the flatter Phillips Curve version infers a looser
FCT*. Finally, all three measures become close again after the COVID-19 shock. Besides this discrepancy
in the levels between the GFC and the COVID-19 period, the overall trends of FCI* are similar for all
three measures.

The obtained FCT* with a steeper Phillips curve is noisier than the baseline. This is because, under a
steeper Phillips Curve, the same observed fluctuations in inflation are interpreted to be more informative
of the underlying states, and thus more of the noise in inflation leaks to the estimates of the states. For
the same reason, the estimates are smoother under a flat Phillips Curve.

Turning to the inferred output gap, we see sizable differences after the GFC, with a steeper Phillips
Curve inferring a faster recovery and the flatter Phillips Curve inferring a much lower level of output gap
after the GFC. Intuitively, a flatter Phillips Curve implies i) much larger movements in output gaps for
given movements in inflation, ii) slower updating of the natural output, since the signal (inflation) is less
informative of the unobserved state. This explains the significantly larger drop in output gaps during
the GFC for the flatter calibration, as well as the slower return back to zero afterwards. In unreported
results, we find a similar sensitivity in post-GFC output gap estimates for the HLW model, so these issues
seem to be unrelated to exact specification of the demand block.

Overall, the assumed slope of the Phillips Curve is an important determinant of inferred output gaps
after the GFC, whereas it plays a more limited role in the exact inferred path for FCT*.
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Figure 9: Base results from FigureE (blue) and results with alternative treatment of the COVID-
19 period, following Holston et al. (2023) exactly (red). Black dashed line in the top panel
corresponds to the observed FCI.

D.4. Regression Results for alternative measures of risk premium

Table [3] shows multivariate regression results when we substitute the equity risk premium measure by
Shiller’s Excess CAPE Yield measure. We maintain the 1990Q2-2023Q1 sample for comparability with
the results in the main text. Results are similar with the following differences: i) the Excess CAPE Yield
is now significant in the FCT* equation, but the output gap remains significant; ii) In the r*, the output
gap now turns significant at the 10% level, but it has the wrong sign. The overall picture remains: FCT*

correlates more strongly with macro variables, whereas r* is more driven by financial variables.

D.5. Alternative Adjustments for COVID-19

In this subsection, we present results following [Holston et al.| (2023) exactly for handling COVID-19 data

issues. As in the main text, we allow the volatility of (€5, €x,¢) to be larger during the COVID-19 period,

parametrized exactly as in Holston et al.| (2023): we assume that the standard deviation of the shocks is

(ktog, Ko ), where:

K2020 2020 : Q2 S t S 2020 : Q4

K 2021 : Q1L <t <2021:Q4

iy = 2021 QL<t< Q (D.1)

K2022 2022 : Ql S t S 2022 : Q4

1 otherwise.
The values of ko920, k2021, k2022 are estimated as free parameters. Second, instead of setting d; to zero
after 2023Q1, we extrapolate it with a constant geometric decay from 2023Q1 until reaching 0 in 2024Q4,
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Dependent variable

FCI* r*
Excess CAPE Yield —0.147*** —0.582***

(0.037) (0.044)

Output Gap 0.103*** —0.061*
(0.03) (0.036)

R? 0.411 0.694

Observations 132 132

Table 3: Regression Results. “Excess CAPE Yield” obtained from the Shiller database. The
output gap is the one measured by the CBO. Sample: 1990Q2-2023Q1. Standard errors in
parentheses.***p < 0.01, **p < 0.05, *p < 0.10

as in Holston et al.| (2023).

Figure [0] compares the results. The only difference appears during the COVID-19 period, which is
unsurprising given that estimated parameters change very little. Under HLW’s COVID-19 treatment, the
estimated F'CT* series is smoother. This is intuitive: since the estimated variance of the innovations in
equations and is larger, the Kalman Filter perceives more noise in that period, and thus updates
the estimated values of the states by less. Thus, allowing smoother d; dynamics and higher variances
leads to smoother inferred series for the states, which might be preferable if one is focusing on long-run
factors, as in [Holston et al.| (2023), but less preferable if one wants the inferred F'CT* to also reflect short

and medium-run considerations, as in our case.

D.6. Comparison with the Optimal F'C'I Target from |Caballero et al.| (2024)

As explained in Section [2] there are several reasons why setting F'CI; = FCI} exactly in all periods is
neither feasible nor desirable. Thus, a key question is: how far is FCI} from the level of FCI that a
planner would like to target under empirically relevant frictions, such as a desire for policy gradualism,
realistic transmission lags, and cost-push shocks? In |Caballero et al.| (2024), we present an answer to

that question. We give a short summary below; readers are referred to that paper for additional details.
Constructing the optimal FCI target. Using the tools developed in [McKay and Wolfl (2023])

and |Caravello et al.| (2024)), we can compute the historical evolution of any variable of interest under a

counterfactual policy rule. The policy rule is the solution to a minimization problem with loss:

B'r? + 92 4+ Mai(is — 1) + (FCI, — FCT,)% (D.2)

[M]=

E:

t=0

where 4; is the nominal interest rate, and FCI; is a target that is announced one period in advance. As
explained in |Caballero et al.| (2024), committing to maintain financial conditions around a preannounced
target helps lower financial market volatility, which in turn reduces the amount by which noise affects
financial conditions. This beneficial effect reduces macroeconomic volatility even further, since as we
empirically show in (Caballero et al.[(2024)), financial noise meaningfully affects macroeconomic outcomes.

In order to compute the counterfactual evolution of the economy under alternative rules, it is sufficient

to have a set of forecasts of all the variables of interest at each date, as well as an estimate of the dynamic
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Figure 10: FCI* and optimal FCI target (F'CI) constructed in (Caballero et al.|(2024).

causal effects of monetary policy shocks at several horizons (Caravello et all [2024). We estimate both
objects directly from the dataﬂ

It is important to note that although FCI* and FCI are conceptually related, the construction
procedure of each series is completely different. In order to estimate F'CI*, we use a simple macroecono-
metric model to infer it as a latent variable from observed output, inflation, and financial conditions.
The advantage of this construction is that the estimation is transparent. However, a disadvantage is that
this simple model potentially misses many important aspects that are relevant for actual policy imple-
mentation. On the other hand, the procedure to construct FCT incorporates realistic frictions faced by

a policymaker, but it is more complex and might appear less transparent.

FCI* vs. FCI. Figure ?? compares our estimate of FCT* with the optimal FCT target that minimizes
the loss , which we denote by FCI. Except for the GFC, both series generally move quite closely.
At the beginning of the 1990s, both series track the behavior of the actual FCI. Moving on to the
late 1990s, both series are above the observed FCI, indicating that financial conditions were too loose
from a macroeconomic perspective. After the crash of the dotcom bubble, both FCI* and FCT move
significantly into negative territory due to the recession. Starting in late 2001, both series move up again
and stay above the observed FCI. A divergence between both series starts in mid 2006: FCT remains
close to zero whereas FCI* dives deeper into negative territory. This divergence reaches a maximum at
the height of the financial crisis, where FCT is initially tighter, while FCI* has a sharp drop. After the

9For the counterfactual to be exact, we would need to estimate the effects of monetary policy shocks at each
point in the yield curve. Given that empirical estimates of this are not available, we approximate the counterfactual
using the monetary policy shocks from [Romer and Romer| (2004)) and |Aruoba and Drechsel| (2024])). |Caravello et al.
(2024)) show that this two shock approximation is good as long as the counterfactual does not involve significant
changes at the long end of the yield curve, which is what we find in our context.
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GFC, both series reunite again around 2011, and move quite closely together for the rest of the sampleE

The divergence between FCI* and FCI during the GFC can be explained by a combination of
factors. First, prior to the crisis, inflation was running persistently above target. In this context, the
planner finds it optimal to tighten financial conditions to fight inflation, even if this generates an expected
recession. Second, given that the planner has a preference for gradualism (since it penalizes interest rate
changes), a large part of the rise in FCT during the GFC is committed well in advance, as part of the
fight against inflation. Given that the planner is gradualist, once the crisis hits, it only gradually adjusts
down the optimal FCI. Finally, inflation during the crisis bounces back to levels close to 2 percent
relatively quickly—the so called “missing disinflation puzzle”. Thus, the planner perceives that giving
additional stimulus during this period will cause higher inflation, so it refrains from doing it. All of this
explains why FCT remains relatively high. Regarding the sharp drop in FCT*, this is a consequence of
what happens with output. Given that potential output moves slowly, if we observe such a large decline
in output, it must be that a large negative output gap opened up. Since equation links output gaps
with FCI gaps, if a large negative output gap opened, it must be the case that there is a large FCI
gap. Even if the observed F'C'I; did go up, the increase is not large enough to justify the drop in output
according to equation . The inferred FCT* goes down accordingly.

In summary, apart from a discrepancy around the GFC, both series move quite closely in the rest
of the sample. This is remarkable given that, as we mentioned earlier, the construction procedure for
both series is completely different. We see this as a validation exercise on the usefulness of FCI* as a
guide for practical policy evaluation: even when one considers a quantitatively relevant optimal policy
problem, most of the time the planner does not want to meaningfully deviate from the FCT* estimated

with a simple two equation model.

10The series for FCT stops in 2019Q4 since the main sample in that paper is pre-COVID.
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