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Abstract

Central banks rely on r∗—the neutral interest rate—to assess policy stance. However,

monetary policy affects activity through broad financial conditions, not only the short-term

rate. We propose FCI∗, the neutral level of a financial conditions index consistent with

output at potential. Unlike r∗, FCI∗ is insulated from financial fluctuations: when asset

prices move, FCI captures their estimated effect on output, leaving FCI∗ to reflect only

what the macroeconomy requires. In U.S. data, r∗ co-moves with the equity premium;

FCI∗ does not. FCI gaps provide useful real-time guidance on policy stance, especially

when financial conditions diverge from the policy rate.
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1. Introduction

“Financial conditions matter to us because... financial conditions are the main

channel to the real economy through which our policy has its effect.”— Jerome

Powell, Federal Reserve Chair, Press Conference, March 19, 2025

Central banks rely on estimates of r∗—the rate consistent with output at potential—to

assess policy stance. Estimates of r∗ declined persistently after the Global Financial Crisis

(GFC), shaping narratives around secular stagnation and the zero lower bound. Yet as of late

2025, policy rates remain well above pre-COVID-19 levels even as inflation has normalized, and

r∗ estimates have drifted upward. What explains these fluctuations? Monetary policy transmits

to the real economy primarily through broad financial conditions—long-term interest rates,

∗Contact information: Caballero (MIT and NBER; caball@mit.edu), Caravello (MIT; tomasec@mit.edu),
and Simsek (Yale SOM, NBER and CEPR; alp.simsek@yale.edu). We thank Christian K. Wolf and partici-
pants at the NY Fed’s AMEC Symposium for their comments. The main estimation results are available here:
https://github.com/tcaravello/fcistar. First draft: March 28, 2025.
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equity prices, house prices, and exchange rates—rather than through the policy rate alone. To

stabilize output, policy must offset movements in these volatile asset prices. This forces r∗ to

absorb financial fluctuations—falling when asset prices collapsed after the GFC, rising alongside

the asset price boom since COVID-19. Moreover, an r∗ driven by volatile financial variables

is difficult to estimate in real time. This complicates policy stance assessment when financial

conditions diverge from the policy rate.

We propose an alternative measure of neutral monetary conditions that addresses these lim-

itations. Financial conditions indices (FCIs) quantify the effect of asset prices and rates on

output. We introduce, characterize, and estimate FCI∗, the neutral level of financial condi-

tions consistent with output at potential. By working in FCI space, we leverage the extensive

empirical research underlying FCI construction. Since FCIs already incorporate the demand

effects of asset prices, these effects need not be absorbed by the neutral benchmark. Our theory

formalizes this intuition, showing that FCI∗ is insulated from financial market fluctuations and

driven primarily by macroeconomic forces. Our empirical analysis confirms this. We further

demonstrate that deviations of FCI from FCI∗ provide useful real-time information on the

effective policy stance.

We work with the FCI-G index introduced by Ajello et al. (2023), which uses the Federal

Reserve’s quantitative models to estimate the effect of recent asset price and interest rate changes

on expected output growth. This index connects naturally to the output-asset price relation from

Caballero and Simsek (2022), where asset prices and demand shocks drive economic activity with

inertia (the conceptual analog of the IS relation expressed in terms of financial conditions). We

exploit this connection to describe output growth in terms of FCI and demand shocks. This

reformulation enables us to define FCI∗ as the neutral level of financial conditions that balances

expected output with potential a few quarters ahead.

Our framework reveals that FCI∗ primarily reflects macroeconomic forces rather than fi-

nancial market developments. In particular, FCI∗ is determined by demand shocks, as well as

expected potential output growth. In contrast, we demonstrate that the (neutral) r∗ is influ-

enced by financial markets as well as macroeconomic factors. For instance, consider a decline

in stock and house prices driven by a shift in risk premiums or sentiment. All else equal, this

reduces r∗ but leaves FCI∗ unchanged. Intuitively, since a decrease in asset prices reduces ag-

gregate demand, the central bank is forced to set lower interest rates to provide support—and

vice versa when asset prices rise. However, since these effects are already accounted for in the

FCI construction, FCI∗ remains unaffected. When asset prices move, FCI moves accordingly,

leaving FCI∗ to reflect only what the macroeconomy requires.

Our model further demonstrates that FCI gaps—the deviations between actual FCI and

FCI∗—drive output gaps (along with unanticipated shocks). This relationship forms the basis

of our empirical analysis as it allows us to infer FCI∗ from estimated output gaps. Negative

output gaps indicate that observed FCI is too tight relative to FCI∗, while positive output

gaps suggest the opposite.

2



Figure 1: This figure plots r∗ as estimated in Holston et al. (2023) alongside our estimate of
FCI∗. The equity risk premium measure is from Duarte and Rosa (2015) and is available
through 2023Q1.

Our estimation approach follows closely the approach in Laubach and Williams (2003) for

estimating r∗: we develop and estimate a two-equation macroeconometric model. The first

equation links output gaps to FCI gaps rather than interest rate gaps. The second equation is

a backward-looking Phillips curve; we adopt the same specification as in Laubach and Williams

(2003) to facilitate comparisons. We estimate this model using quarterly data spanning from

1990Q2 to 2024Q4, incorporating adjustments for the COVID-19 period through the Oxford

COVID-19 Stringency Index (Holston et al., 2023). We employ a combination of calibrated

parameters and maximum likelihood estimation via the Kalman filter. This approach provides

a tractable way of estimating the latent FCI∗ state and makes it directly comparable with

prevailing estimates of r∗.

Our empirical findings confirm the theoretical predictions. The Holston-Laubach-Williams

r∗ strongly correlates with the equity risk premium, but FCI∗ does not once we control for

macroeconomic conditions. Figure 1 illustrates this divergence. The figure suggests some co-

movement between FCI∗ and the risk premium, but this reflects periods when financial booms

and busts drove the business cycle—such as during the late 1990s and early 2000s. In mul-
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tivariate regressions controlling for output gaps, the equity risk premium has no independent

relationship with FCI∗. In contrast, r∗ remains strongly correlated with the risk premium even

after controlling for output gaps.

While FCI∗ is insulated from financial shocks by construction, observed FCI is not—

creating FCI gaps in the data. These gaps are especially large during financial recessions

such as the GFC, where observed FCI tightens with market distress while FCI∗ loosens to

reflect the degree of stimulus required by the economy. Such gaps might emerge from frictions

the central bank faces in practice: the zero lower bound, policy gradualism, transmission lags,

or cost-push shocks.

Two additional findings support our conclusion that FCI∗ is a useful measure of monetary

policy stance, especially when financial conditions diverge from the policy rate. First, in re-

cent decades the IS curve fits better with FCI than with interest rates, reflecting the broader

channels of monetary policy transmission that FCI captures. Since the IS curve is central to

the estimation—we infer the neutral level from the relationship between financial conditions

and output gaps—this stronger fit results in more stable estimates of FCI∗ than comparable

estimates of r∗. Second, FCI gaps accurately reflect shifts in the effective policy stance. After

the GFC, FCI remained tighter than FCI∗, suggesting policy was effectively tight and demand

was weak throughout the recovery. The Laubach and Williams (2003) framework, in contrast,

implies policy was accommodative and attributes the weakness to declining potential output.

FCI gaps also offer real-time advantages. In 2022, they captured the rapid tightening at a time

when interest rate gaps still suggested accommodation—asset prices and long-term rates moved

well ahead of policy rates.

Related Literature. This paper relates to the theoretical literature on r∗ and its usefulness

for monetary policy (Wicksell, 1936; Woodford, 2003). We contribute by introducing a new

concept, FCI∗. This paper also relates to the empirical literature that estimates r∗. Within

this literature, the approaches range from flexible econometric models that impose no theoretical

structure (Lubik and Matthes, 2015, 2023), to semistructural models with some connection to

theory (Laubach andWilliams, 2003; Holston et al., 2017, 2023), to fully structural DSGE models

(Negro et al., 2013; Barsky et al., 2014). We build on the semistructural approach of Laubach

and Williams (2003). Our estimates differ from theirs in several ways, as we described above. In

addition, since we explicitly incorporate cyclical demand shocks, our FCI∗ is a neutral measure

relevant over shorter horizons, whereas Laubach-Williams estimates a natural rate intended for

5 to 10 years ahead.

In terms of the underlying theory, our paper builds upon our earlier work that investigates

the connections between financial markets and monetary policy (see Caballero and Farhi (2018);

Caballero and Simsek (2020, 2021, 2022, 2024b,a); Caballero et al. (2024); Caballero and Simsek

(2025)). The most closely related paper is Caballero and Simsek (2022), which develops a

New-Keynesian model where monetary policy transmits through asset prices. In that paper,
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we theoretically investigate the gap-minimizing asset price, which we refer to as p∗, and show

that it is determined by macroeconomic needs rather than financial market forces. The current

paper is an empirical complement to Caballero and Simsek (2022): we connect the asset price

in the model to measures of FCI, and we use this connection to estimate FCI∗ and empirically

investigate its properties. In Caballero et al. (2024), we use VAR counterfactuals to construct

an optimal financial conditions target that a central bank might set under realistic frictions.

Despite their completely different construction procedures, the optimal target and FCI∗ move

closely together outside the GFC, suggesting that FCI∗ serves as a reliable guide for practical

policy evaluation (see Online Appendix D.6). Beyond our own work, this paper is part of a large

literature on New Keynesian models with risk and asset prices (Pflueger et al., 2020; Kekre and

Lenel, 2022; Kekre et al., 2023; Beaudry et al., 2024; Adrian and Duarte, 2018; Adrian et al.,

2020).

Finally, our paper relates to an empirical literature that documents the predictive power of

financial conditions, particularly regarding the likelihood of tail events (Adrian et al., 2019, 2022;

Ajello et al., 2024). We emphasize the usefulness of FCIs not only for predicting tail outcomes

but also for assessing the monetary policy stance during normal periods.

2. Theoretical Framework

2.1. How is the FCI constructed?

We use the Financial Conditions Impulse on Growth index (FCI-G) constructed by Ajello et al.

(2023). Two features of FCI-G make it particularly suited to our analysis. First, FCI-G is

constructed from the estimated causal effects of asset prices and interest rates on output, using

the Federal Reserve Board’s FRB/US model and other structural models. These models incor-

porate the various channels by which financial markets affect economic activity: borrowing and

investment effects of interest rates, wealth effects of stock and house prices, and expenditure

switching effects of exchange rates. Second, FCI-G aggregates changes in financial variables

rather than levels, which maps directly into our theoretical framework without modification.

Other well-known indices—such the Chicago Fed’s NFCI or the Goldman Sachs FCI (Hatzius

and Stehn, 2018)—differ in one or both of these dimensions.1

Formally, FCI-G measures changes in seven financial variables indexed by j: three asset prices

(stock prices, house prices, and the US dollar exchange rate) and four interest rates (the Fed

Funds rate, 10-year Treasury yield, 30-year fixed mortgage rate, and BBB bond yield). For asset

prices, changes are calculated as log price differences. For interest rates, changes are calculated

as differences in yields. To simplify the notation and link the analysis to our theoretical model,

we use the uniform notation ∆pjt for all assets, with the convention that ∆pjt < 0 corresponds to

1The NFCI uses statistical weights to summarize co-movement among financial variables, not estimated causal
effects on output—a fundamentally different approach. The Goldman Sachs FCI captures estimated asset price
effects but in levels rather than changes; our framework could be adapted to such indices.
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a tightening of financial conditions (higher rates or lower asset prices).2 For each asset j, FCI-G

constructs an asset-specific index as a weighted sum of current and past price changes

FCIjt =
T−1∑
ℓ=0

ωj
ℓ

(
−∆pjt−ℓ

)
. (1)

The weights ωj
ℓ capture the estimated causal effect of asset price changes on output growth

over the next year. They are constructed from model-implied dynamic impulse responses to

an unanticipated shock to the price of asset j, holding other price changes constant.3 The

summation extends over T = 12 quarters since financial variables affect activity with long lags.

The aggregate FCI is then FCIt =
∑

j FCI
j
t . By construction, a reading of 1 implies that recent

financial conditions will reduce next-year’s GDP growth by approximately 1 percentage point.

Figure 2 illustrates the index and the contribution of each financial variable over 1990Q1-

2024Q2. The stock market is the main driver of the index followed by the exchange rate. The

housing market is an important driver during the buildup of the GFC and COVID recovery.

Risky asset prices drive the index fluctuations not because their weights are large but because

they are more volatile than bond prices.

2.2. How does this FCI map to a model?

We next map the FCI to a stylized structural model. Consider the aggregate demand block in

Caballero and Simsek (2022). The baseline setup features an output-asset price relation:

yt = m+ pt + δt.

Here, yt is log output, pt is the log price of the market portfolio, δt is a demand shock, and m is

a constant. This relation captures the various mechanisms by which asset prices affect aggregate

demand and output. We think of pt as an average of the asset prices in FCI-G weighted by their

impact on output.

We generalize this to include realistic inertial dynamics:4

yt = ηyt−1 + (1− η) (m+ pt−1) + δt. (2)

Here, the parameter η controls the degree of inertia in aggregate demand. Taking first differences

2For a bond with duration n, ∆p ≃ −n∆i, so yield changes are approximately proportional to log price changes.
3Specifically, the Fed’s models are used to estimate the impact of a price decline −∆pjt−ℓ on current log output

(βj
0,ℓ) and on log output one year ahead (βj

4,ℓ). The weight is the difference: ωj
ℓ = βj

4,ℓ − βj
0,ℓ.

4See Caballero and Simsek (2022, 2023, 2024b) for similar formulations. Caballero and Simsek (2024b) provides
a microfoundation based on infrequent adjustment of spending and portfolio decisions.
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Figure 2: The FCI-G index (baseline measure with a three-year lookback) and its drivers over 1990Q1-2024Q2. Positive values imply
a decrease in GDP growth in the next year. Source: Ajello et al. (2023)
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and iterating, we obtain

∆yt = (1− η)

∞∑
ℓ=0

ηℓ∆pt−1−ℓ +

∞∑
ℓ=0

ηℓ∆δt−ℓ.

The first term captures the total effect of past asset price changes on current quarter output

growth—similar to the FCI-G construction. In fact, considering the cumulative effect over the

next year, (1− η)(1 + η + η2 + η3) = 1− η4, we get the model equivalent of FCI:

FCIt−1 = −(1− η4)

∞∑
ℓ=0

ηℓ∆pt−1−ℓ. (3)

The minus sign reflects the sign convention that higher FCI indicates tighter conditions. We

can then write current quarter output growth as:

∆yt = −a(η)FCIt−1 +
∞∑
ℓ=0

ηℓ∆δt−ℓ, (4)

with a(η) =
1− η

1− η4
=

1

1 + η + η2 + η3
.

A tightening of FCI reduces output growth in the next quarter, with a magnitude that depends

on aggregate demand inertia.

2.3. From FCI to FCI∗

We next develop the model further to construct FCI∗. Suppose the economy is subject to three

sources of exogenous disturbances:

ynt = ynt−1 + gt−1 + ϵy
n

t (5)

gt = gt−1 + ϵgt (6)

δt = ρδδt−1 + ϵδt (7)

Potential output ynt follows a random walk with growth rate gt, which itself follows a random

walk. This specification follows Laubach and Williams (2003) and is the same we use in Section

3. Supply-side innovations capture both permanent supply shocks (ϵy
n

t ), as well as news that

permanently shift the expected growth rate (ϵgt ). Demand shocks have persistence ρδ, with

|ρδ| < 1. They capture non-financial forces that affect aggregate spending, e.g., a consumer

sentiment shock or a fiscal policy shock. All innovations are mutually and serially uncorrelated.

We define FCI∗ as the FCI in a counterfactual economy where the central bank closes

expected output gaps: Et[yt+1] = Et[y
n
t+1] for all t. Given transmission lags, closing gaps

exactly each period is infeasible; closing them in expectation is achievable. We denote variables
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in this economy with a star superscript. Given equation (2), the only variable that can affect

output directly at t is a surprise aggregate demand shock. Thus, output in the star economy

satisfies:

y∗t = Et−1[y
n
t ] + ϵδt = ynt−1 + gt−1 + ϵδt . (8)

Here, we used Et−1[y
∗
t ] = Et−1[y

n
t ].

After evaluating equation (4) at t + 1, taking expectations, using (8), and rearranging, we

obtain an expression for FCI∗t :

FCI∗t = a(η)−1

(
−gt − ϵy

n

t + (Et[δt+1]− Et−1[δt]) + η

[ ∞∑
ℓ=0

ηℓ∆δt−ℓ

])
. (9)

FCI∗ is driven by macroeconomic developments. Equation (9) reveals that FCI∗ reflects

macroeconomic forces—aggregate supply and demand—rather than financial market valuations.

First, FCI∗ depends negatively on expected growth gt. Faster potential growth requires

looser financial conditions so that demand growth keeps up with supply growth.

Second, FCI∗ depends negatively on supply shocks ϵy
n

t . A positive shock raises potential

output permanently, so financial conditions should loosen for demand to increase with supply.

Notice that only the current value of the shock ϵy
n

t appears in FCI∗: permanent supply shocks

generate short-term fluctuations in FCI∗ because they require a one-time adjustment in demand.

Third, FCI∗ depends on demand shocks—both the current forecast update Et[δt+1]−Et−1[δt]

and all past demand changes. Past demand shocks affect current activity due to the inertia

in equation (2). Higher expected activity requires tighter conditions. Thus, demand shocks

generate persistent (but not long-run) fluctuations in FCI∗.

Notably absent from equation (9) are financial market variables such as risk premia or asset

valuations. The FCI construction already incorporates the demand effects of asset prices, so

financial variables do not enter equation (4) once we control for FCI. This implies FCI∗ does

not depend on financial fluctuations.

r∗ is influenced by financial developments. In contrast to FCI∗, r∗ depends on financial

market variables. To characterize r∗, we must specify the financial market block that determines

asset prices pt for a given path of interest rates rt. There are many different ways of specifying

the financial market block. This richness already hints that r∗ depends on the details of the

financial market structure. We consider the setup in Caballero and Simsek (2022) where r∗ that

closes expected output gaps is given by (see Online Appendix A for details):

r∗t = ρ+ g +
η

1− η

(
ϵδt − ϵy

n

t

)
+

β

1− η
st −

1

2
rp (10)

where rp =

(
β

1− η

)2

σ2yn +

(
1− η − β

1− η

)2

σ2δ

and st = ρsst−1 + ϵst .
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Here, ρ = − log β is the discount rate, g is the expected growth rate, rp denotes the average

risk premium. In this model, average risk premium is related to the volatility of supply and

demand shocks. The variable st represents financial market “sentiment”: excessive optimism or

pessimism about future cash flows that shifts asset valuations. We assume sentiment follows an

AR(1) process.

Equation (10) shows r∗ depends on sentiment in addition to macroeconomic factors. A neg-

ative sentiment shock reduces the asset price pt, tightening FCI and reducing future output. To

prevent this, r∗ must fall—absorbing financial fluctuations that are orthogonal to fundamentals.

The same logic applies to any force that shifts asset valuations without changing macroe-

conomic fundamentals. A large finance literature documents that asset prices exhibit “excess

volatility”—fluctuating considerably due to sentiment (e.g., Shiller (2014)), time-varying risk

premiums (e.g., Cochrane (2011)), or noise in inelastic markets (e.g., De Long et al. (1990);

Gabaix and Koijen (2021)). In our previous work, we have shown that r∗ fluctuates with such

forces (Caballero and Simsek, 2020; Caballero et al., 2024). The broad point is that r∗ carries

the burden of responding to financial fluctuations, whereas FCI∗ is insulated from them.

Remark 1 (Relation between FCI∗ and neutral vs natural r∗). Since FCI∗ depends on short-

term factors (such as transitory supply and demand shocks) as well as long-run factors (long-run

GDP growth), it is conceptually closer to estimates of the neutral interest rate that provides a

benchmark over shorter horizons. A related object, which following Obstfeld (2023) we refer

as the natural interest rate, corresponds to the long-run interest rate that would hold after the

effects of transitory demand and supply shocks have dissipated. See Reis (2025) for a discussion

on different concepts that are all referred to as r∗.

2.4. From FCI gaps to output gaps

The final step links FCI gaps—deviations between observed FCI and FCI∗—to output gaps.

Let ỹt = yt − y∗t be the output gap.5 Subtracting equation (4) from its counterpart in the star

economy, yields:

∆ỹt = −a(η)(FCIt−1 − FCI∗t−1). (11)

This equation is key to our empirical strategy: a positive output gap implies a negative FCI

gap. Thus, the FCI gap plays the role of the real rate gap rt− r∗t in a standard New Keynesian

setup.

The drivers of FCI gaps. What drives FCI away from FCI∗? First, FCI is directly

influenced by monetary policy (Caballero and Simsek, 2022; Caballero et al., 2024). Therefore,

the same reasons that may drive the policy rate away from r∗ apply here: (i) cost-push shocks,

5We define output gaps as relative to the output in the star economy y∗
t as opposed to potential output yn

t .
This simplifies the expressions and only has a small effect on our estimates since the two measures are identical
up to contemporaneous supply and demand shocks y∗

t = yn
t − ϵy

n

t + ϵδt (see (5) and (8)).
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which the central bank might fight optimally by inducing negative output gaps, (ii) gradualism,

which induces the central bank to adjust interest rates and influence financial conditions at

a slower pace, (iii) imperfect information about the exact value of FCI∗t . Second, unlike the

policy interest rate, the Fed does not directly control FCI. Therefore, financial market shocks

that affect FCI directly and that might not be quickly stabilized by the central bank can also

induce FCI gaps. This creates ample scope for FCI gaps because, as our analysis shows, FCI∗

depends only on macroeconomic factors.

3. Empirical Framework to Estimate FCI∗

We now turn to the estimation of FCI∗. Our basic approach follows Laubach and Williams

(2003): We build a simple macroeconometric model where FCI∗ is an unobserved state variable,

and estimate it using the Kalman filter. Given that FCI∗ is a relatively novel theoretical concept,

we prefer to use a small, transparent model that has a direct connection to the theory outlined

in Section 2.

3.1. Model Overview

Our empirical model has the following two observation equations:

ỹt = ỹt−1 − a(η)F̃CIt−1 + ϵỹ,t (12)

πt = bππt−1 + (1− bπ)πt−2:4 + byỹt−1 + ϵπ,t, (13)

where ỹt represents the output gap, F̃CIt−1 represents the gap in financial conditions, πt is

inflation, πt−2:4 = (πt−2 + πt−3 + πt−4)/3 is a moving average of inflation in the past 2 to 4

quarters.

Equation (12) is the empirical analog of equation (11)—we have simply added an error

term. This equation is our key departure from Laubach and Williams (2003): our specification

emphasizes that the main variable governing aggregate demand is financial conditions instead

of the real interest rate. The rest follows Laubach and Williams (2003). Equation (13) is a

backward-looking Phillips curve. The shocks ϵỹ,t, ϵπ,t are assumed to be mutually and serially

uncorrelated. They account for short-term movements in the data that are unrelated to the core

macroeconomic forces that we attempt to uncover.

In order to find the law of motion of FCI∗t , multiply both sides of equation (9) by (1− ηL)

where L is the lag operator, and rearrange to obtain:

FCI∗t = ηFCI∗t−1 + [af (η)]
−1 (−ϵyn,t − ϵg,t + ϵδ,t(η + ρδ)− (1− η)gt−1+ (14)

η(ynt−1 − (ynt−2 + gt−2))− (η + (1− ρδ)ρδ)δt−1 + ηρδδt−2))
)
.

Thus, equations (5), (6), (7) and (14) constitute our state evolution equations. We assume that
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ϵyn , ϵg,t, ϵδ,t are all mutually and serially uncorrelated.

Noting that y∗t = ynt−1 + gt−1 + δt − ρδδt−1, we can write equations (12)-(13) as a function of

observables and underlying states. These are the observation equations of our system. Online

Appendix C collects all equations and explicitly writes down the matrix representation following

the notation in Hamilton (1994).

3.2. Implementation Details

We cover the main implementation choices in this subsection, with additional details relegated

to Online Appendix B. We inspect the robustness to several of these choices in Online Appendix

D.

Data. We use quarterly data; our main sample is 1990Q2–2024Q4. For estimation, we measure

output yt as the log of real GDP, inflation πt as (annualized) quarter-on-quarter PCE core

inflation, and FCI using the FCI-G index. To inspect correlations with financial variables, we

use the equity risk premium measure from Duarte and Rosa (2015), updated to 2023Q1. Finally,

for comparison, an alternative estimate of the output gap is ỹCBO = 100× (yt − yp,CBO
t ), where

yp,CBO
t is potential output estimated by CBO (in logs).

COVID-19 adjustments. We address COVID-19 data issues following the procedure in Hol-

ston et al. (2023). First, we allow the variance of innovations during Q2 through Q4 of 2020 to

scale by a factor κ2020, which is estimated as a free parameter (Lenza and Primiceri, 2022).

Second, we deal with the supply-side effects of COVID-19 by assuming that potential output

is:

y∗t,COV ID−19−adj. = y∗t +
ϕ

100
dt. (15)

Here, dt is the quarterly COVID-19 Stringency Index for the U.S. and ϕ is a parameter to be

estimated. Since the data for the index finishes at 2022Q4, we set its value to 0 from 2023Q1

onwards.

Parameter estimation. We use a mix of calibration and estimation to obtain parameters. We

fix the parameters of the Phillips curve to (bπ, bỹ) = (0.689, 0.08), the point estimates of Holston

et al. (2023). We do this for two reasons. First, for comparability with Holston et al. (2023):

since we are using exactly the same Phillips curve, any differences in the inferred states must be

due to the different specification of the demand block. Second, estimates of a structural Phillips

curve are sensitive to the exact specification and estimation method (Mavroeidis et al., 2014).

We sidestep this issue by externally calibrating the parameters. We also fix the ratio of variances

of innovations in yn and gt to the point estimate in Holston et al. (2023), λg =
σg

σyn
= 0.0667 for

econometric reasons, see Stock and Watson (1998); Laubach and Williams (2003). Assuming all

shocks are normally distributed, the remaining parameters are estimated by maximum likelihood.
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Figure 3: Top: FCI (black) and FCI∗ (blue). Bottom: estimates from current model (blue),
Holston et al. (2023) (red) and CBO (black). All estimates are one-sided. Online Appendix D
presents additional results for two sided estimates.

4. Estimation Results

4.1. Estimated FCI∗ and Output Gap

The top panel of Figure 3 shows the estimated FCI∗ along with the measured FCI. The bottom

panel shows the one-sided estimated value of the output gap (in blue). For comparison, we also

include the output gap from the Holston et al. (2023) model (in red) and the CBO output gap

(black).

The estimated value of FCI∗ has some short-run volatility but does not closely track the

observed FCI. Sizeable gaps open up in several moments, most notably during the GFC.

Intuitively, since FCI is a weighted average of asset price changes, it naturally imports the

excess volatility of asset prices emphasized by the finance literature. On the other hand, by

construction FCI∗ depends on macroeconomic rather than financial factors. Therefore, large

asset price shocks naturally induce FCI gaps.

Our estimated output gap is close to zero during much of the 1990s, turns positive around

2000 during the dot-com bubble, becomes negative during the early 2000s recession, and turns

positive again during the run-up to the GFC. The gap drops sharply during the GFC and does

not turn positive again until COVID-19, when we estimate a large positive output gap. The

large output gaps during COVID-19 are driven by a fall in potential output, consistent with

pandemic lockdowns meaningfully reducing aggregate supply.
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Dependent variable
FCI∗ r∗

ERP 0.017 −0.292∗∗∗

(0.016) (0.011)
Output Gap 0.17∗∗∗ 0.028

(0.026) (0.018)

R2 0.347 0.883
Observations 132 132

Table 1: Regression Results. “ERP” is the equity risk premium measure by Duarte and Rosa
(2015). The output gap is the one measured by the CBO. Sample: 1990Q2-2023Q1. Standard
errors in parentheses.∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10

Our estimated output gap is similar to the HLW and CBO output gaps until right before the

GFC. Around the GFC, all three estimates decline, but ours falls much more sharply. The key

difference emerges in the aftermath: our estimate, like the CBO’s, remains negative for almost

a decade, whereas the HLW estimate recovers quickly—turning positive by 2011 and reaching

peaks similar to those before the GFC.

This divergence reflects how each framework interprets the same data. HLW observe that

interest rates were low after the GFC and inflation did not fall dramatically. In their framework,

low rates imply loose policy, and the absence of disinflation implies output gaps cannot be too

negative. They reconcile weak output and low interest rates with small output gaps by inferring

a decline in potential output and in r∗

We use exactly the same Phillips curve but reach a different conclusion. While interest rates

were low, FCI was not particularly loose in this period—credit spreads remained elevated, equity

valuations were depressed, and risk premia were high. Given the strong link between FCI and

output that we estimate, our framework implies persistently negative output gaps. We attribute

the lack of large disinflation to the Phillips curve error term. This interpretation aligns with

the literature on the “missing disinflation” puzzle (see Ball and Mazumder (2011); Coibion

and Gorodnichenko (2015)) and with the conventional narrative of a prolonged demand-driven

slump.

4.2. Correlations with Financial Fluctuations

Our theoretical framework predicts that FCI∗ is driven by macroeconomic fundamentals while

r∗ also responds to financial fluctuations. Our estimates support this prediction. Figure 1,

introduced earlier, shows that r∗ is highly correlated with the risk premium throughout the

sample, while FCI∗ is only mildly correlated with the risk premium earlier in the sample—a

correlation that breaks down after the GFC.

While this figure is suggestive, a multivariate analysis is necessary since financial fluctuations

and macroeconomic outcomes are correlated. We therefore regress both FCI∗ and r∗ on the
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equity risk premium and the CBO output gap. The equity risk premium proxies for financial

fluctuations while the CBO output gap proxies for macroeconomic conditions.

Table 1 reports the results. When we regress FCI∗ on both variables, only the output

gap enters significantly; the equity risk premium has no independent relationship with FCI∗.

In particular, the mild correlation between the risk premium and FCI∗ in Figure 1 reflects the

correlation between the output gap and the risk premium. In contrast, when we regress r∗ on the

same variables, the equity risk premium remains strongly significant. These regressions confirm

that FCI∗ is driven by macroeconomic fundamentals, whereas r∗ is significantly influenced by

financial valuations. Online Appendix D.4 shows that these results are robust to alternative

measures of expected excess returns.

4.3. Comparing IS curves estimated with FCI versus r

The IS curve (12) is the core of our estimation: we invert estimated output gaps to infer FCI

gaps, just as Laubach-Williams invert output gaps to infer interest rate gaps. The strength

of this relationship determines how robustly the Kalman filter can extract the latent neutral

benchmark. We now compare IS curves estimated with FCI versus interest rates.

In our baseline specification, aggregate demand inertia is high, with η = 0.994. This implies

that the impact of FCI on next quarter output growth is a(η) = 0.252 (standard error: 0.002):

since aggregate demand is very persistent, the effect of asset price innovations is spread roughly

equally over the next four quarters. Online Appendix D.1 reports additional results.

Our empirical approach effectively constrains the a(η) coefficient in the IS curve (12) to

be positive. We also estimated an alternative version in which a(η) is a free parameter. The

estimate is still positive and statistically significant—a(η) = 0.29 (standard error of 0.003).

In contrast, when we re-estimated the Holston et al. (2023) equations in our sample period

with the same parameter constraints they imposed, we found that the slope of the IS curve

is estimated to be at the constraint—which is essentially zero. As a result, the estimated r∗

features implausibly large swings, going from a maximum of 24.5% in 2000, to a minimum of

−71.6% at the heights of the GFC.

The IS curve fits better with FCI than with interest rates. This is unsurprising: monetary

policy transmits through broad financial conditions, not just the policy rate, and FCI directly

measures these conditions and their calibrated impact on activity. The policy rate is one step

removed—it affects aggregate demand only by first changing financial conditions. Moreover,

financial conditions are volatile and only loosely related to the policy rate, so using the policy

rate in place of FCI introduces additional noise in the IS curve (which makes it harder to

estimate). Our estimates suggest this problem became more severe in recent decades, possibly

reflecting greater financial deepening and the increased importance of market-based finance.

15



Figure 4: Direct effect of FCI (blue) and real rate (red) gaps on output gaps, normalized such
that a positive value implies lower output gaps. Red is computed as −arr̃t, where ar is the slope
of the IS curve and r̃t is the real rate gap estimated in Holston et al. (2023).

4.4. Effective Monetary Policy Stance According to FCI∗ vs. r∗

We next analyze FCI gaps as a measure of the effective policy stance. From equation (11), the

term a(η)(FCIt−FCI∗t ) captures the effect of current financial conditions on output gaps rela-

tive to a neutral benchmark. We compare this measure with an analogous measure constructed

from HLW’s estimate for r∗: the real rate gap. Figure 4 plots both measures over time. The

two differ in sign for long periods, with large discrepancies during the GFC and COVID cycles.

During the GFC recovery, the real rate gap suggests highly accommodative policy throughout

2010–2020, with rates well below r∗. Yet, as we documented above, output gaps remained

persistently negative. The FCI gap resolves this tension: despite low policy rates, financial

conditions remained neutral or slightly tight during much of this period. Given high risk premia

and low asset prices, low rates did not translate into loose financial conditions.

The COVID-19 cycle highlights a further dimension of this divergence. Both measures

signal pronounced accommodation through 2021, but they separate markedly thereafter. The

FCI gap turns contractionary in early 2022, reflecting the rapid tightening in broader financial

conditions as long-term yields rose and equity prices fell. By contrast, the real-rate gap remains

accommodative well into 2023: elevated inflation expectations kept ex ante real rates low even

as the Federal Reserve raised nominal policy rates. From 2023 onward, the measures diverge

again. The FCI gap indicates a loosening of financial conditions driven by the equity-market

16



rally, even as interest rates stayed persistently high through 2023 and 2024. Overall, the FCI-

based measure more closely matches the widespread perception of a sharp policy pivot in 2022

and captures the subsequent easing in conditions associated with the stock-market rebound.

Online Appendix D.5 shows that these conclusions are robust to our COVID-era adjustments.

5. Conclusion

Building on the observation that monetary policy operates through financial conditions, we

introduce FCI∗, the neutral level of financial conditions that closes expected output gaps. Our

approach leverages the empirical research embedded in FCIs, which quantify how asset prices

affect aggregate demand. We work with the FCI-G index by Ajello et al. (2023), which uses the

Federal Reserve’s models to estimate the impact of recent changes in financial variables on output

growth. We link this index with a theoretical framework to characterize FCI∗ and its drivers.

Our framework reveals that FCI∗ is insulated from financial fluctuations by construction and

is driven by macroeconomic fluctuations; in contrast, r∗ is influenced by financial shocks. Our

framework also links output gaps to FCI gaps, enabling us to estimate the latent FCI∗ using

a two-equation model similar to Laubach and Williams (2003) and Holston et al. (2023).

Empirically, we confirm that FCI∗ does not correlate with the risk premium once we control

for macroeconomic conditions; in contrast, the standard measures of r∗ do. We also find that the

IS curve fits better with FCI than with interest rates, reflecting the broader channels of monetary

policy transmission. This results in more stable estimates of FCI∗ compared to r∗. Finally, we

find that there are frequent FCI gaps in the data, and these gaps provide a useful description

of the policy stance, especially in episodes where financial conditions diverge from interest rates.

This was the case during the post-GFC recovery where tight FCI relative to FCI∗ indicated

tight policy, whereas low interest rates relative to standard estimates of r∗ implied loose policy.

It was also the case throughout 2022 when FCI gaps captured the rapid tightening of policy

whereas interest rate gaps still suggested accommodation.

Our main goal is to introduce FCI∗—a benchmark insulated from financial fluctuations—as a

potentially useful alternative measure for monetary policy stance. We have therefore deliberately

kept our framework close to prevailing methods in the r∗ literature to facilitate comparisons.

Future research may refine this model further using more elaborate time-series methods or more

structural models to capture additional frictions (see, e.g., Caballero et al. (2024)).
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Online Appendix: Not for Publication

A. Financial market block and r∗

In the main text, we considered a theoretical model in which log output is driven by (2)

yt = ηyt−1 + (1− η)pt−1 +m(1− η) + δt.

and aggregate supply and demand shocks evolve according to (5− 7)

ynt = ynt−1 + gt−1 + ϵy
n

t

gt = gt−1 + ϵgt

δt = ρδδt−1 + ϵδt .

We have deliberately left the financial market block that determines pt and thus FCI unspecified, because

this block does not affect FCI∗ and is not necessary for our estimation. In this appendix, we specify a

financial market block and complete the theoretical characterization, solving in particular for the r∗. We

use this solution in Section 2.3 to compare FCI∗ with r∗.

Financial markets. The financial market block follows our earlier work in Caballero and Simsek

(2022). We briefly describe the setup and refer the reader to those papers for additional details. There

are two assets: a risk-free asset in zero net supply and a market portfolio. The market portfolio is a claim

on firms’ profits αYt (the firms’ share of output). We let Pt denote the ex-dividend price of the market

portfolio (which we also refer to as “the aggregate asset price”). The gross return of the market portfolio

is Rm
t+1 = αYt+1+Pt+1

Pt
. Log-linearizing this expression, we obtain

rmt+1 = κ+ (1− β) yt+1 + βpt+1 − pt. (A.1)

Here, rmt+1 = logRm
t+1 is the log return, 1−β

β is the steady-state dividend to price ratio, and κ ≡ −β log β−

(1− β) log
(

1−β
α

)
.

The households make a portfolio choice between the market portfolio and the risk-free asset in zero

net supply, whose return Rt is set by the Fed. We assume households delegate their portfolio choice to

portfolio managers (the market), who invest on their behalf. The managers make a portfolio allocation

to maximize expected log household wealth

max
ωt

EM
t

[
log
(
Wt

(
Rt + ωt

(
Rm

t+1 −Rt

)))]
.

Here, the superscript M denotes the market’s belief which can in general be different than the central

bank’s belief or the objective belief. In equilibrium, the approximate log-linearized optimality condition

is

ωtσ
M
t

[
rmt+1

]
=
EM

t

[
rmt+1

]
+

V arMt [rmt+1]
2 − rt

σM
t

[
rmt+1

] .

Here, rt = logRt denotes the log risk-free interest rate. Managers invest in the market portfolio until

their perceived portfolio risk (the left-hand side) is equal to their perceived Sharpe ratio from the market
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portfolio (the right-hand side).

Market clearing requires ωt = 1: in equilibrium, portfolios are reinvested in the market portfolio.

Combining this with the optimality condition, we obtain a relation between the expected return on the

market portfolio and the risk-free rate

EM
t

[
rmt+1

]
= rt +

V arMt
[
rmt+1

]
2

. (A.2)

The equilibrium expected return (or the discount rate) is equal to the risk-free rate plus a risk premium,

which in this model depends on the variance of the return on the market portfolio. Combining this with

(A.1) provides a solution for the equilibrium asset price

pt = κ+ (1− β)EM
t [yt+1] + βEM

t [pt+1]−
(
rt +

1

2
V arMt

[
rmt+1

])
. (A.3)

The price of the market portfolio depends on the expected future output (through cash flows), the

expected future asset prices (since it is a long-lived asset) and inversely on the risk-free rate and the risk

premium.

Characterizing p∗ and r∗. We next characterize p∗—the asset price counterpart to FCI∗—which

we use to solve r∗. Conceptually, p∗ is the asset price that obtains in an economy in which the central

bank closes the output gap in expectation. Therefore, to calculate p∗, we need to specify the central

bank’s beliefs along with the market’s beliefs. For tractability, we focus on a special case of (5− 7) where

the expected growth is constant, gt = g, demand shocks are i.i.d. ρδ = 0. That is, the objective driving

processes are given by

ynt+1 = ynt + g + ϵy
n

t+1 (A.4)

δt+1 = ϵδt+1

where ϵδt+1 ∼ N
(
0, σ2

δ

)
and ϵy

n

t+1 ∼ N
(
0, σ2

yn

)
.

We assume that the central bank knows these processes and has no other signals, so these equations

also describe the central bank’s beliefs. The market’s beliefs about demand shocks are also the same,

ϵδt+1 ∼M N
(
0, σ2

δ

)
. However, the market’s beliefs for the supply shock are different and given by

ϵy
n

t+1 ∼ MN
(
st, σ

2
yn

)
(A.5)

where st+1 = ρsst + ϵst+1 and ϵst+1 ∼ N
(
0, σ2

s

)
.

Here, st denotes a sentiment shock: when st > 0, the market thinks future supply will be higher than usual

(and vice versa for st < 0) even though the actual expected supply is unchanged. This is a modeling

device to capture a variety of forces that might generate asset price fluctuations without changes in

fundamentals, including time-varying sentiment, time-varying risk premium, or noisy demand shocks.

We assume the belief shocks follow an AR(1) process that is known to both the Fed and the market.

We next use (2) to solve for p∗,

p∗t =
Et

[
ynt+1

]
1− η

− η

1− η
y∗t − Et [δt+1]

1− η
−m.
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Recall also that in the star economy we have y∗t = Et−1[y
n
t ] + ϵδt (see 8). Note also that the processes

in (A.4) imply Et [δt+1] = 0 and Et

[
ynt+1

]
= ynt + g = Et−1[y

n
t ] + ϵy

n

t + g. After substituting these

observations, we obtain

p∗t =
Et−1[y

n
t ] + ϵy

n

t + g

1− η
− η

1− η

(
Et−1[y

n
t ] + ϵδt

)
−m

= ynt−1 + g +
g

1− η
+

ϵy
n

t

1− η
− η

1− η
ϵδt −m.

In the star economy, the asset price is determined by the expected potential output, potential output

shocks, demand shocks, and the expected demand shifter in the next period. Note that this expression

is the analogue of FCI∗ from the main text; it describes the financial conditions that close the output

gaps in terms of the asset price level rather than the FCI (see (9)).

Next, we substitute the expressions for p∗ and y* into (A.1) to describe the return process in the star

economy

rm,∗
t+1 = κ+ (1− β) y∗t+1 + βp∗t+1 − p∗t

= κ+ (1− β)
(
Et

[
ynt+1

]
+ ϵδt+1

)
+β

(
Et[y

n
t+1] +

1

1− η
ϵy

n

t+1 −
η

1− η
ϵδt+1 −m

)
−
(
Et−1[y

n
t ] +

1

1− η
ϵy

n

t − η

1− η
ϵδt −m

)
= ρ+ Et[y

n
t+1]− Et−1[y

n
t ] +

β

1− η
ϵy

n

t+1 −
1

1− η
ϵy

n

t

+
1− η − β

1− η
ϵδt+1 +

η

1− η
ϵδt

= ρ+ g +
η

1− η

(
ϵδt − ϵy

n

t

)
+

β

1− η
ϵy

n

t+1 +
1− η − β

1− η
ϵδt+1. (A.6)

Here, the third equality simplifies the constant terms to obtain the intercept ρ = − log β. The last

equality substitutes Et[y
n
t+1]− Et−1[y

n
t ] = g + ϵy

n

t in view of (A.4) and simplifies the expression.

Finally, note from (A.2) that the interest rate in the star economy satisfies

r∗t = EM
t

[
rm,∗
t+1

]
− 1

2
V arMt

[
rm,∗
t+1

]
.

We combine this expression with the return in (A.6) and the market’s beliefs in (A.5) to solve for r∗

r∗t = ρ+ g +
β

1− η
st +

η

1− η

(
ϵδt − ϵy

n

t

)
− 1

2
rp

where rp =

(
β

1− η

)2

σ2
yn +

(
1− η − β

1− η

)2

σ2
δ .

This proves (10) that we use in the main text.

Aside from demand and supply shocks, r∗ also depends on the average risk premium rp and on

sentiment shock st. In this model, the risk premium remains constant over time (for simplicity). However,

sentiment shocks fluctuate according to the AR(1) process in (A.5). We view these shocks as a stand-in

for asset price fluctuations that are orthogonal to expected cash flows, including those driven by time-
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varying risk premiums, time-varying noisy demand, or time-varying sentiment. Absent a central bank

reaction, these fluctuations would shift asset prices, the FCI, and therefore also the future economic

activity. Since these shocks are orthogonal to actual macroeconomic fundamentals (by assumption), the

central bank optimally raises the interest rate to insulate the FCI and economic activity from them.

B. Additional Implementation Details

B.1. Data

We use quarterly data; our main sample is 1990Q2–2024Q4. We start at 1990Q2 due to the availability

of the FCI index. We measure the output gap as ỹt = 100(yt − (y∗t +
ϕ

100dt)), where yt is the log of real

GDP and y∗t +
ϕ

100dt is the COVID-19-adjusted potential (log) output, a latent variable to be estimated.

We measure the financial conditions gap as F̃CIt = FCIt−FCI∗t , where FCIt is the financial conditions
index from Ajello et al. (2023) and FCI∗t is our measure of neutral financial conditions, which is a latent

variable. Inflation πt is annualized quarter-on-quarter PCE core inflation. To inspect correlations with

financial fluctuations, we use the equity risk premium measure from Duarte and Rosa (2015), this series

is available through 2023Q1. Finally, in some cases we compare our results to those of Holston et al.

(2023), and to the CBO output gap. We use the 2024Q4 vintage of Holston et al. (2023), and the CBO

output gap is obtained as ỹCBO = 100× (yt−yp,CBO
t ), where yp,CBO

t is the logarithm of potential output

estimated by CBO.

B.2. COVID-19 adjustments

We address COVID-19 data issues following the procedure in Holston et al. (2023). First, as suggested

by Lenza and Primiceri (2022), we assume that the volatility of (ϵỹ,t, ϵπ,t) can be larger during the

COVID-19 period. We parametrize this by assuming that the standard deviation of the shocks is given

by (κtσỹ, κtσπ), where:

κt =

κ2020 2020 : Q2 ≤ t ≤ 2020 : Q4

1 otherwise.
(B.1)

The value of κ2020 is estimated as a free parameter. Second, we deal with the supply-side effects of

COVID-19 by assuming that potential output is:

y∗t,COV ID−19−adj. = y∗t +
ϕ

100
dt. (B.2)

Here, dt is the quarterly COVID-19 Stringency Index from the Oxford COVID-19 Government Response

Tracker (OxCGRT) for the U.S. Since the data for the index finishes at 2022Q4, we set its value to 0

from 2023Q1 onwards.

Our implementation of COVID-19-related adjustments differs from Holston et al. (2023) in two ways:

first, whereas they extrapolate the COVID-19 stringency index for 2023 and 2024, we set it to zero; second,

they allow for potentially higher variances in 2021 and 2022 as well. We adopt this different specification

because we want estimated FCI∗ to better reflect short- and medium-run macroeconomic factors during

the COVID-19 period, rather than the long-run factors emphasized by Holston et al. (2023). Appendix

D.5 presents results using their exact specification for comparison.
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B.3. Parameter estimation

In order to evaluate the model, we need to obtain parameters θ =

(bπ, bỹ, σỹ, σπ, σyn , σg, σδ, ϕ, κ2020, ρδ, η). We use a mix of calibration and estimation.

We fix the parameters of the Phillips curve to (bπ, bỹ) = (0.689, 0.08). These are the point estimates

of Holston et al. (2023). We do this for two reasons. First, for comparability with Holston et al. (2023):

since we are using exactly the same Phillips curve, any differences in the inferred states must be due to the

different specification of the demand block. Second, estimates of a structural Phillips curve are sensitive

to the exact specification and estimation method (Mavroeidis et al., 2014). We sidestep this issue (which

is orthogonal to our main focus) by externally calibrating the parameters. Appendix D shows robustness

to different values for the slope of the Phillips curve.

We further fix the ratio of variances of innovations in yn and gt to the point estimate in Holston et al.

(2023), λg =
σg

σyn

= 0.0667. We do this to address econometric issues that arise when trying to estimate

the variance of a time-varying parameter, see Stock and Watson (1998); Laubach and Williams (2003).

Estimating this parameter in a previous step as done in Holston et al. (2023) yields very similar values.

B.4. Initializing the filter

Given that several latent variables have unit roots, we set the prior distribution of ξ1 ∼ N(ξ1|0, P1|0) as

follows. For the means, we follow (Holston et al., 2023) and initialize y∗t and its lags using the trend

component of real GDP that comes out of applying the Hodrick-Prescott filter with λ = 36000. We

initialize gt as the first differences of the mentioned trend. We initialize (FCI∗t , δt) and its respective lags

at 0. Given that the observed value FCIt is also close to zero, this encodes that a priori financial conditions

are neither boosting nor restraining GDP from their potential level. Regarding prior uncertainty, we

follow the same two step procedure as in (Holston et al., 2023). Initially, we assume that all states are a

priori uncorrelated. We assume that the prior standard deviation for potential output and its lags is one

percentage point, whereas the prior standard deviation for all other states is 0.5 percentage points. In

the first step, we estimate the model with this prior. We then run the Kalman Filter with the estimated

parameters, we update the prior variance matrix P1|0 to P2|1. We then use the updated variance matrix

as initial values for the actual estimation.

C. State Space Representation

Collecting the equations, the state space system is:
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yt = (ynt−1 + gt−1 + δt − ρδδt−1 + ϕdt) + (yt−1 − (ynt−2 + gt−2 + δt−1 − ρδδt−2 + ϕdt−1))

−a(η)(FCIt−1 − FCI∗t−1) + ϵỹ,t

πt = bππt−1 + (1− bπ)πt−2:4 + by(yt−1 − (ynt−2 + gt−2 + δt−1 − ρδδt−2 + ϕdt−1)) + ϵπ,t

ynt+1 = ynt + gt + ϵyn,t+1

gt+1 = gt + ϵg,t+1

δt+1 = ρδδt + ϵδ,t+1

FCI∗t+1 = ηFCI∗t − a(η)−1 (ϵyn,t+1 + (1− η)gt + ϵg,t+1 − ϵδ,t+1(η + ρδ)

−η(ynt − (ynt−1 + gt−1)) + (η + (1− ρδ)ρδ)δt − ηρδδt−1))
)

Following the Hamilton (1994) notation we can generally write the state space system as:

ξt+1 = Fξt + vt+1

yt = A′xt +H′ξt +wt+1

Et−1(vtv
′
t) = κ2tQ

Et−1(wtw
′
t) = κ2tR

where the only difference is that the variance of the shocks is scaled by κt in order to account for the

large COVID-19 innovations.

In our case, signals, exogenous variables and states are given by:

yt = [yt, πt]
′

xt = [yt−1, FCI
m
t−1, πt−1, πt−2:4, dt, dt−1]

′

ξt = [y∗t , y
∗
t−1, y

∗
t−2, gt, gt−1, gt−2, FCI

∗
t , FCI

∗
t−1, δt, δt−1, δt−2]

′

with matrices:

F =



1 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

a(η)−1η −a(η)−1η 0 −a(η)−1(1− η) −a(η)−1η 0 η 0 −a(η)−1(η + (1− ρδ)ρδ) a(η)−1ηρδ 0

0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 ρδ 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 0


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Q =



σ2
y∗ 0 0 0 0 0 −a(η)−1σ2

y∗ 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 (λgσy∗)
2 0 0 −a(η)−1(λgσy∗)

2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

−a(η)−1σ2
y∗ 0 0 −a(η)−1(λgσy∗)

2 0 0 a(η)−2(((1 + λg)σy∗)
2 + (η + ρδ)

2σ2
δ) 0 a(η)−1(η + ρδ)σ

2
δ 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 a(η)−1(η + ρδ)σ
2
δ 0 σ2

δ 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0


H′ =

[
0 1 −1 0 1 −1 a(η) 0 1 −(1 + ρδ) ρδ
0 0 −by 0 0 by 0 0 0 −by ρδby

]

A′ =

[
1 −a(η) 0 0 ϕ −ϕ
by 0 bπ 1− bπ 0 −ϕby

]
R =

[
σ2
ỹ 0

0 σ2
π

]

D. Additional Empirical Results

Figure 7 presents the estimated natural output alongside the realized output.

D.1. Parameter Estimates

Table 2 shows the estimated parameters. The estimated degree of aggregate demand inertia (η) is quite

high. This implies that the impact of FCI on the next quarter output growth is a(η) = 0.252: since

aggregate demand is very persistent, the effect of asset price innovations is spread roughly equally over

the next four quarters.

The bottom part of Table 2 shows that uncertainty about the estimated states is high.6 This primarily

reflects that the informational content of the two equations is limited relative to the magnitude of the

shocks. This finding is standard in the literature (Lubik and Matthes, 2015; Holston et al., 2023).7

D.2. Two Sided Estimates

Figure 5 compares FCI∗ and output gap estimates using the information up to time t (i.e., a one sided

estimate, ξt|t = E[ξt|ys, xsst=0]) or the using all information in the sample (i.e., the two-sided or smoothed

estimate, ξt|T = E[ξt|ys, xsTt=0]). It also shows 90 percent confidence bands based on the Kalman Filter

contemporaneous variance covariance matrix for the states, Pt|t = Et[(ξt − ξt|t)(ξt − ξt|t)
′]). As we can

see the one and two sided estimates of FCI∗ are quite close, with the main difference appearing during

the GFC: the two-sided estimate shows a less sharp decline than the one sided. Turning to the output

gap, we see larger differences, with the two sided estimate of the output gap being above the one sided

estimate for a large part of the sample.

6We use the procedure in Hamilton (1986) that accounts for both parameter and filter uncertainty. This is the
same procedure used in Laubach and Williams (2003)

7Our estimates for uncertainty in FCI∗ and y∗ are lower than the uncertainty in r∗ and y∗ reported in (Holston
et al., 2023). However, since we are fixing the coefficient of the Phillips Curve, we are assuming away an important
source of uncertainty, so the estimates are not directly comparable.
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Figure 5: 90 Percent confidence bands use the contemporaneous variance-covariance matrix
Pt|t = Et[(ξt − ξt|t)(ξt − ξt|t)

′].
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Figure 6: One sided and two sided estimates for latent states. Confidence bands use the con-
temporaneous variance-covariance matrix Pt|t = Et[(ξt − ξt|t)(ξt − ξt|t)

′].

Figure 7: Estimate of Potential Output (ynt + ϕdt) is one-sided.
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Parameter Estimate Standard Error

λg 0.067 Fixed
bπ 0.689 Fixed
by 0.080 Fixed
η 0.994 0.006
a(η) 0.252 0.002
σỹ 0.509 0.065
σπ 0.677 0.034
σy∗ 0.155 0.043
σδ 0.056 0.054
ϕ -0.053 0.011
κ2020 7.606 3.162
ρδ 0.928 0.104
Log-likelihood -285.368

S.E (sample avg.)
FCI∗ 0.847
g (annualized) 0.185
y∗ 1.230

S.E (Final Obs.)
FCI∗ 0.899
g (annualized) 0.281
y∗ 2.157

Table 2: Estimated Parameters and standard errors. The variance-covariance matrix of param-
eters is computed using the Outer Product of Gradients of the likelihood. The SE of a(η) is
obtained from the SE of η using the Delta method.

Figure 6 compares the one and two sided estimates of all latent states. Regarding ynt , we see that

the two sided estimate of potential output is substantially lower during the 2000-2015 period. This is

what drives the positive output gaps discussed before. As we can see, apart from some discrepancy in

the beginning, the estimates of g and δ are close for both construction procedures.

D.3. Alternative Phillips Curve Calibration

Given the large uncertainty regarding the slope of the Phillips Curve, in Figure 8 we report the estimated

FCI∗ and output gaps that correspond to alternative calibrations of this parameter. We keep the same

lag structure as the baseline, since we found the effects of changing bπ to be minimal. We consider two

alternative estimates that lie at opposite ends of the spectrum: i) a flatter slope using the estimates

provided by Hazell et al. (2022); ii) a steeper slope using estimates from Barnichon and Mesters (2020).

This amounts to setting by = 0.0248 and by = 0.28 respectively.8 In each case, we fully re-estimate all

model parameters reported in Table 2 under the new calibration for the Phillips Curve.

Prior to the GFC all three series are quite close, for both FCI∗ and the output gap. After the GFC

8The parameter reported in Hazell et al. (2022) corresponds to a Phillips curve with quarter-on-quarter infla-
tion, not annualized. Thus we multiply their estimate by 4. The specification in Barnichon and Mesters (2020) is
estimated in annualized terms so it does not require conversion.
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Figure 8: Results for different Phillips Curve slopes. Top: FCI (black dashed) and FCI∗ with:
baseline (blue), a flatter slope (Hazell et al., 2022) (red) and a steeper slope (Barnichon and
Mesters, 2020). Bottom: Output gap estimated by the CBO (black, dashed), and the three
mentioned parametrizations. Each model is fully reestimated taking the corresponding Phillips
Curve as fixed.

a gap appears on the three measures of FCI∗, that lasts until before COVID-19. The steeper Phillips

Curve parametrization shows a tighter FCI∗, whereas the flatter Phillips Curve version infers a looser

FCI∗. Finally, all three measures become close again after the COVID-19 shock. Besides this discrepancy

in the levels between the GFC and the COVID-19 period, the overall trends of FCI∗ are similar for all

three measures.

The obtained FCI∗ with a steeper Phillips curve is noisier than the baseline. This is because, under a

steeper Phillips Curve, the same observed fluctuations in inflation are interpreted to be more informative

of the underlying states, and thus more of the noise in inflation leaks to the estimates of the states. For

the same reason, the estimates are smoother under a flat Phillips Curve.

Turning to the inferred output gap, we see sizable differences after the GFC, with a steeper Phillips

Curve inferring a faster recovery and the flatter Phillips Curve inferring a much lower level of output gap

after the GFC. Intuitively, a flatter Phillips Curve implies i) much larger movements in output gaps for

given movements in inflation, ii) slower updating of the natural output, since the signal (inflation) is less

informative of the unobserved state. This explains the significantly larger drop in output gaps during

the GFC for the flatter calibration, as well as the slower return back to zero afterwards. In unreported

results, we find a similar sensitivity in post-GFC output gap estimates for the HLW model, so these issues

seem to be unrelated to exact specification of the demand block.

Overall, the assumed slope of the Phillips Curve is an important determinant of inferred output gaps

after the GFC, whereas it plays a more limited role in the exact inferred path for FCI∗.
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Figure 9: Base results from Figure 3 (blue) and results with alternative treatment of the COVID-
19 period, following Holston et al. (2023) exactly (red). Black dashed line in the top panel
corresponds to the observed FCI.

D.4. Regression Results for alternative measures of risk premium

Table 3 shows multivariate regression results when we substitute the equity risk premium measure by

Shiller’s Excess CAPE Yield measure. We maintain the 1990Q2-2023Q1 sample for comparability with

the results in the main text. Results are similar with the following differences: i) the Excess CAPE Yield

is now significant in the FCI∗ equation, but the output gap remains significant; ii) In the r∗, the output

gap now turns significant at the 10% level, but it has the wrong sign. The overall picture remains: FCI∗

correlates more strongly with macro variables, whereas r∗ is more driven by financial variables.

D.5. Alternative Adjustments for COVID-19

In this subsection, we present results following Holston et al. (2023) exactly for handling COVID-19 data

issues. As in the main text, we allow the volatility of (ϵỹ,t, ϵπ,t) to be larger during the COVID-19 period,

parametrized exactly as in Holston et al. (2023): we assume that the standard deviation of the shocks is

(κtσỹ, κtσπ), where:

κt =



κ2020 2020 : Q2 ≤ t ≤ 2020 : Q4

κ2021 2021 : Q1 ≤ t ≤ 2021 : Q4

κ2022 2022 : Q1 ≤ t ≤ 2022 : Q4

1 otherwise.

(D.1)

The values of κ2020, κ2021, κ2022 are estimated as free parameters. Second, instead of setting dt to zero

after 2023Q1, we extrapolate it with a constant geometric decay from 2023Q1 until reaching 0 in 2024Q4,
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Dependent variable
FCI∗ r∗

Excess CAPE Yield −0.147∗∗∗ −0.582∗∗∗

(0.037) (0.044)
Output Gap 0.103∗∗∗ −0.061∗

(0.03) (0.036)

R2 0.411 0.694
Observations 132 132

Table 3: Regression Results. “Excess CAPE Yield” obtained from the Shiller database. The
output gap is the one measured by the CBO. Sample: 1990Q2-2023Q1. Standard errors in
parentheses.∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10

as in Holston et al. (2023).

Figure 9 compares the results. The only difference appears during the COVID-19 period, which is

unsurprising given that estimated parameters change very little. Under HLW’s COVID-19 treatment, the

estimated FCI∗ series is smoother. This is intuitive: since the estimated variance of the innovations in

equations (12) and (13) is larger, the Kalman Filter perceives more noise in that period, and thus updates

the estimated values of the states by less. Thus, allowing smoother dt dynamics and higher variances

leads to smoother inferred series for the states, which might be preferable if one is focusing on long-run

factors, as in Holston et al. (2023), but less preferable if one wants the inferred FCI∗ to also reflect short

and medium-run considerations, as in our case.

D.6. Comparison with the Optimal FCI Target from Caballero et al. (2024)

As explained in Section 2, there are several reasons why setting FCIt = FCI∗t exactly in all periods is

neither feasible nor desirable. Thus, a key question is: how far is FCI∗t from the level of FCI that a

planner would like to target under empirically relevant frictions, such as a desire for policy gradualism,

realistic transmission lags, and cost-push shocks? In Caballero et al. (2024), we present an answer to

that question. We give a short summary below; readers are referred to that paper for additional details.

Constructing the optimal FCI target. Using the tools developed in McKay and Wolf (2023)

and Caravello et al. (2024), we can compute the historical evolution of any variable of interest under a

counterfactual policy rule. The policy rule is the solution to a minimization problem with loss:

L =

T∑
t=0

βt[π2
t + ỹ2t + λ∆i(it − it−1)

2 + ψ(FCIt − FCIt)
2] (D.2)

where it is the nominal interest rate, and FCIt is a target that is announced one period in advance. As

explained in Caballero et al. (2024), committing to maintain financial conditions around a preannounced

target helps lower financial market volatility, which in turn reduces the amount by which noise affects

financial conditions. This beneficial effect reduces macroeconomic volatility even further, since as we

empirically show in Caballero et al. (2024), financial noise meaningfully affects macroeconomic outcomes.

In order to compute the counterfactual evolution of the economy under alternative rules, it is sufficient

to have a set of forecasts of all the variables of interest at each date, as well as an estimate of the dynamic

34



Figure 10: FCI∗ and optimal FCI target (FCI) constructed in Caballero et al. (2024).

causal effects of monetary policy shocks at several horizons (Caravello et al., 2024). We estimate both

objects directly from the data.9

It is important to note that although FCI∗ and FCI are conceptually related, the construction

procedure of each series is completely different. In order to estimate FCI∗, we use a simple macroecono-

metric model to infer it as a latent variable from observed output, inflation, and financial conditions.

The advantage of this construction is that the estimation is transparent. However, a disadvantage is that

this simple model potentially misses many important aspects that are relevant for actual policy imple-

mentation. On the other hand, the procedure to construct FCI incorporates realistic frictions faced by

a policymaker, but it is more complex and might appear less transparent.

FCI∗ vs. FCI. Figure ?? compares our estimate of FCI∗ with the optimal FCI target that minimizes

the loss (D.2), which we denote by FCI. Except for the GFC, both series generally move quite closely.

At the beginning of the 1990s, both series track the behavior of the actual FCI. Moving on to the

late 1990s, both series are above the observed FCI, indicating that financial conditions were too loose

from a macroeconomic perspective. After the crash of the dotcom bubble, both FCI∗ and FCI move

significantly into negative territory due to the recession. Starting in late 2001, both series move up again

and stay above the observed FCI. A divergence between both series starts in mid 2006: FCI remains

close to zero whereas FCI∗ dives deeper into negative territory. This divergence reaches a maximum at

the height of the financial crisis, where FCI is initially tighter, while FCI∗ has a sharp drop. After the

9For the counterfactual to be exact, we would need to estimate the effects of monetary policy shocks at each
point in the yield curve. Given that empirical estimates of this are not available, we approximate the counterfactual
using the monetary policy shocks from Romer and Romer (2004) and Aruoba and Drechsel (2024). Caravello et al.
(2024) show that this two shock approximation is good as long as the counterfactual does not involve significant
changes at the long end of the yield curve, which is what we find in our context.
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GFC, both series reunite again around 2011, and move quite closely together for the rest of the sample.10

The divergence between FCI∗ and FCI during the GFC can be explained by a combination of

factors. First, prior to the crisis, inflation was running persistently above target. In this context, the

planner finds it optimal to tighten financial conditions to fight inflation, even if this generates an expected

recession. Second, given that the planner has a preference for gradualism (since it penalizes interest rate

changes), a large part of the rise in FCI during the GFC is committed well in advance, as part of the

fight against inflation. Given that the planner is gradualist, once the crisis hits, it only gradually adjusts

down the optimal FCI. Finally, inflation during the crisis bounces back to levels close to 2 percent

relatively quickly—the so called “missing disinflation puzzle”. Thus, the planner perceives that giving

additional stimulus during this period will cause higher inflation, so it refrains from doing it. All of this

explains why FCI remains relatively high. Regarding the sharp drop in FCI∗, this is a consequence of

what happens with output. Given that potential output moves slowly, if we observe such a large decline

in output, it must be that a large negative output gap opened up. Since equation (12) links output gaps

with FCI gaps, if a large negative output gap opened, it must be the case that there is a large FCI

gap. Even if the observed FCIt did go up, the increase is not large enough to justify the drop in output

according to equation (12). The inferred FCI∗ goes down accordingly.

In summary, apart from a discrepancy around the GFC, both series move quite closely in the rest

of the sample. This is remarkable given that, as we mentioned earlier, the construction procedure for

both series is completely different. We see this as a validation exercise on the usefulness of FCI∗ as a

guide for practical policy evaluation: even when one considers a quantitatively relevant optimal policy

problem, most of the time the planner does not want to meaningfully deviate from the FCI∗ estimated

with a simple two equation model.

10The series for FCI stops in 2019Q4 since the main sample in that paper is pre-COVID.

36


	Introduction
	Theoretical Framework
	How is the FCI constructed?
	How does this FCI map to a model?
	From FCI to FCI
	From FCI gaps to output gaps

	Empirical Framework to Estimate FCI
	Model Overview
	Implementation Details

	Estimation Results
	Estimated FCI and Output Gap
	Correlations with Financial Fluctuations
	Comparing IS curves estimated with FCI versus r
	Effective Monetary Policy Stance According to FCI vs. r

	Conclusion
	Financial market block and r
	Additional Implementation Details
	Data
	COVID-19 adjustments
	Parameter estimation
	Initializing the filter

	State Space Representation
	Additional Empirical Results
	Parameter Estimates
	Two Sided Estimates
	Alternative Phillips Curve Calibration
	Regression Results for alternative measures of risk premium
	Alternative Adjustments for COVID-19
	Comparison with the Optimal FCI Target from Caballero2024FCIT


