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1 Introduction

The wage and occupational structures of the United States and other industrial-
ized countries have experienced epochal changes over the past several decades.
US wage inequality has soared, while the real wages of less-educated workers
have stagnated or fallen, and their employment rates have declined. Simulta-
neously, employment has shifted from production and clerical occupations to
higher-paying managerial, professional, and technical jobs and various service
occupations with lower pay. These trends have been accompanied by a lower
labor share, especially in manufacturing, and lackluster productivity growth.'
Early research explored the contribution of labor demand to these trends using
a (reduced-form) approach based on an aggregate production function and tech-
nologies that augment skilled or unskilled labor.” In this canonical approach,
labor demand changes are combined with labor supply and institutional factors
to account for the observed trends.

A more recent strand departs from this approach and starts with a setup in
which the production of goods and services requires the completion of tasks,
and factors of production are assigned to perform these tasks.’ For example,

I Fora summary of the wage and inequality trends, see Goldin and Katz (2008), Acemoglu and
Autor (2011), Acemoglu and Restrepo (2019), Autor (2019), Restrepo (2024). Karabarbounis and
Neiman (2013) documents the decline in the labor share in the United States and other industrial-
ized countries, while Acemoglu and Autor (2011) and Goos et al. (2014) show correlated shifts in
occupational structure across several OECD economies. For recent reviews of trends in the wage
structure in European and OECD countries, see, e.g., Gornick (2024).

2 See, among others, Bound and Johnson (1992), Katz and Murphy (1992), Berman et al. (1994)
and Autor et al. (1998). See Acemoglu (2002) for a review and extensions of these approaches.

3 See Autor et al. (2003), Acemoglu and Autor (2011) and Autor and Handel (2013) for some of the
early works using the task approach to study inequality. We discuss the evolution of this literature
at the end of the Introduction.
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the production of a smartphone relies on a range of design and planning tasks;
the manufacturing of the microchip, the battery, the camera, the speakers, the
screen, numerous different types of sensors, and various other components; as-
sembly of these components; and a series of non-production tasks, including
various back-office activities, quality control, and inventory management. In
addition, several marketing, advertising, transport, wholesale, and retail func-
tions must be completed for smartphones to reach consumers. Each task needs
to be assigned to various factors of production. For example, assembly can be
performed by craft workers, low-skill workers, a combination of computerized
equipment and human labor, or by robots.

In this task framework, the assignment of tasks to factors is shaped by tech-
nology and mediates the effect of technology on productivity and wages. For
example, the task assignment depends on whether some tasks are standardized
and can be performed by unskilled labor or whether technology permits the
tasks to be performed by machines or algorithms. Technological change can
then significantly impact productivity and equilibrium factor prices by enabling
new ways of completing tasks. This can happen via automation, which occurs
when new equipment, robots, software, or algorithms take over tasks previously
performed by labor, as well as via new tasks, which entails the introduction of
new tasks performed by labor.

The task framework is useful not only because it brings greater descriptive
realism to modeling the production process but also because it generates a more
comprehensive set of comparative statics regarding the impact of different tech-
nological advances and allows for richer substitution patterns between factors
of production that shape their (general) equilibrium effects.

Different technologies, different effects The early literature on wage inequality
in labor and macroeconomics assumed that all technologies work by augmenting
factors of production, increasing the quantity or quality of their output. This
restrictive view of technology drove some of its major conclusions. For example,
an implication of the standard models discussed in Acemoglu (2002) is that
skill-biased technological change (modeled as an increase in the productivity of
skilled workers) always raises the real wages of low-skill workers, even as it
increases inequality.*

In reality, technologies take more variegated forms and have richer effects
on wages, inequality, and productivity. Besides augmenting workers or capital
uniformly at all tasks, new technologies can:

e Increase workers’ productivity in some tasks currently assigned to them. For
example, a better drill makes workers more productive at drilling but not at
other tasks. This type of labor-augmenting change occurs at the intensive
margin. Our framework shows that this form of technology generates rela-
tively small effects on wages and inequality and ambiguous impacts on the
labor share of national income.

4 See Acemoglu and Autor (2011) for other implications that follow from earlier modeling assump-
tions.
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e Increase capital productivity in some tasks currently assigned to capital. An
example is a new and more powerful software system replacing older inven-
tory management methods. This type of capital-augmenting change at the
intensive margin raises productivity and always pushes up real wages but has
ambiguous and minor effects on the labor share.

More novel and unique to the task framework, new technologies can also:

e Automate work. New technologies achieve this by enabling the use of equip-
ment, software, and algorithms to perform tasks previously assigned to labor.
Examples include software systems that take over office tasks previously as-
signed to workers or robots that now perform welding, cutting, painting, and
assembly tasks. Automation can have major distributional effects, while its
productivity impacts can be limited. Moreover, automation always reduces
the labor share and can depress the real wages of displaced workers.

e Create new tasks. New tasks increase productivity by reorganizing produc-
tion or introducing a finer division of labor. New tasks assigned to labor tend
to raise the real wages of all skill groups and the labor share of national in-
come. Computer-assisted design tools, machinery that enable novel technical
work, and new programming, integration, and customer service functions in-
troduced by recent technologies are examples of new tasks.

The discussion above showcases a key insight from the task framework:
different technologies have different impacts. For example, labor-augmenting
technology and new tasks can have opposite effects. Technologies that augment
labor in some of their current tasks can reduce the real wages of affected groups,
especially if the demand for these tasks is inelastic. In contrast, technologies
that create new tasks for workers always increase their wages and raise the labor
share. This critical distinction argues against the use of “augmenting technol-
ogy” as a catchphrase for all technologies that work with labor. It also argues
against the presumption that a technology that “augments” workers in some of
their tasks necessarily raises their wages.

Flexible substitution between factors depending on comparative advantage
Our framework distinguishes between microeconomic and macroeconomic sub-
stitution. Even though different workers and capital are perfect substitutes in
producing a given task (at the micro level), they are imperfect substitutes at the
aggregate level because they specialize in different tasks according to their com-
parative advantage. The aggregate substitution patterns depend on the strength
of comparative advantage and the extent to which groups compete for marginal
tasks, generating rich aggregate substitution patterns between factors.

These aggregate substitution patterns are essential for understanding the
equilibrium effects of technology. Consider, for example, the automation of
tasks performed by a group of workers. This shock reduces the group’s rela-
tive wage, creating an endogenous reassignment of marginal tasks toward this
group. This affects other workers’ wages and creates further reassignments. The
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strength of these ripple effects depends on the aggregate substitution patterns
between groups. We show that ripple effects can be summarized (up to a first
order) by a propagation matrix. This matrix determines how shifts in demand
or supply impact wages, not only for workers directly exposed to the change in
technology but also for workers competing against them for tasks. The propaga-
tion matrix captures the intuitive idea that a shock affecting one group generates
an indirect impact on other highly substitutable groups.

Besides these conceptual innovations, the task model provides tractable
equations that describe how changes in group-level wages depend on advances
in different types of technologies and other labor demand forces, such as off-
shoring, structural change, and product market structure, including markups.
These equations can be further extended to account for institutional and supply-
side factors.

The equations decompose the impact of demand-side forces into a produc-
tivity effect; measures of the direct effects of technology on labor demand (e.g.,
the reallocation of tasks from labor to capital because of automation or the in-
creased demand for labor in new tasks); a term capturing shifts in the economy’s
sectoral composition; and ripple effects summarized by the propagation matrix.
This decomposition illustrates the channels through which technology affects
wages. For example, automation impacts labor demand mainly by reallocating
tasks from labor to capital. Instead, industry-level productivity shocks influence
labor demand mainly by shifting the economy’s sectoral composition.

Moreover, this characterization can be used to derive simple reduced-form
equations or to conduct structural exercises quantifying the contribution of dif-
ferent demand forces to observed changes in the wage structure. We demonstrate
both uses with an application to US data.

Chapter outline

This chapter reviews recent advances in the task framework and shows how this
framework can be a powerful tool for theoretical, reduced-form, and structural
research. The first part of the chapter introduces the task framework, explains
its distinguishing features, derives the equations for wage changes, and presents
a range of comparative statics describing the effects of technology on wages
and factor shares. This part of the chapter builds on Acemoglu and Restrepo
(2022). The new element is drawing out the implications of new tasks for the
wage and employment structure of the economy, which has not been the focus
of past work.

Section 2 introduces a one-sector version of the task framework with mul-
tiple types of skills, tasks, and technologies, and defines and characterizes the
competitive equilibrium in this economy.

Section 3 specializes this environment to what we call the “no-ripples econ-
omy” to provide a transparent exposition of the varying effects of different types
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of technologies. This example economy shuts down the endogenous reassign-
ment of tasks across worker groups and the resulting ripple effects.

Section 4 clarifies the distinction between microeconomic and macroeco-
nomic elasticities of substitution and how the latter elasticity is shaped by
competition for marginal tasks and comparative advantage schedules.

Section 5 introduces the propagation matrix, which summarizes the rich sub-
stitution patterns implied by the task framework and uses this matrix to provide
a full characterization of the equilibrium, including the ripple effects.

Section 6 extends this economy to a multi-sector economy, which is the ba-
sis of our empirical application. This section also introduces product market
markups and characterizes their impact on the wage structure.

In the second part of the chapter, we use the wage equations derived from
the task model to conduct a reduced-form analysis and then a structural exercise
quantifying the importance of automation, new tasks, and other forces to the
observed changes in the wage structure.

Section 7 derives simple reduced-form equations that relate wage changes
across different worker groups to measures of the direct impact of automation,
new tasks, markups, sectoral TFP changes, and labor-augmenting technologies.
We estimate these reduced-form equations using publicly available US data. In
particular, we use data from 500 groups of US workers, defined by education,
gender, age, race, and native/foreign-born status, as our skill groups and focus
on changes from 1980 to 2016. As part of this exercise, we introduce a new
measure of new tasks across these groups. This part of the chapter also draws
on past work, but the estimation of the effects of new tasks are original to this
chapter.

We document that a 10% loss of tasks for a group due to automation during
this period leads to a 12% relative wage decline and 8.2% reduction in hours
worked per person. Using the measure of new tasks, we document that 10% ad-
ditional new tasks for a group lead to an 8.5% increase in relative wage and 26%
increase in hours worked per person. Overall, in the reduced form, the change
in the share of tasks across groups due to automation and new tasks accounts for
67%-84% of the changes in the between-group wage structure in the US during
this period and 53%-68% of the changes in group-level employment. We also
estimate the reduced-form distributional effects of other factors, including sec-
toral reallocation, sectoral TFP trends, and changes in product market markups.
These factors appear to have played a more limited role in the changes in the
US wage structure. For example, while automation and new tasks jointly ex-
plain 67%-84% of the variation in between-group wage growth in the US from
1980 to 2016, proxies for skill-biased factor-augmenting technologies explain
no more than a few percentage points of these changes.

The entire real wage impacts of technology cannot be estimated using these
reduced-form equations because the constants in the reduced-form equations ab-
sorb their productivity effects and because potentially complex ripple effects are
ignored. In Section 8, we outline a tractable structural approach for estimating
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the first-order effects of automation, new tasks, and other shocks and estimate
these equilibrium effects. The approach uses the equations for equilibrium wage
changes described above combined with measures of automation and new tasks,
our estimates of the propagation matrix, and existing estimates of the elasticities
of substitution between industries and between tasks. This method allows us to
quantify the full general equilibrium impacts of automation and new tasks and
conduct counterfactual analyses.

Section 9 concludes and proposes areas for future research. The Appendix
contains proofs, theoretical derivations, and additional empirical results.

Tasks: a partial review of the theoretical literature

The microfoundations of the task model go back to Zeira (1998), who considers
a model where aggregate output is produced from a continuum of product lines
(similar to tasks here), which can be allocated to capital or labor. Economic
growth is driven by innovations that reallocate product lines/tasks away from
labor toward capital.

Acemoglu and Zilibotti (2001) build a model in which two types of labor
have different comparative advantages across a continuum of tasks, and tech-
nology affects the task production functions. This model is used to study how
new technologies developed in the industrialized world influence inequality
and growth in these economies as well as in developing countries, and espe-
cially how these technologies may be inappropriate for the needs of developing
economies.

The first paper to use the task framework for systematically analyzing in-
equality is Autor et al. (2003). This paper builds a model with three tasks—one
that corresponds to nonroutine problem-solving and complex communication
activities performed by skilled labor, one that corresponds to nonroutine manual
work performed by unskilled labor, and one that is closely associated with rou-
tine cognitive and manual tasks. The authors argue that computers can replace
workers engaged in routine cognitive and manual activities because they can
cheaply perform routine tasks that can be codified into step-by-step instructions.
Computers can also, directly and indirectly, complement workers in nonroutine
problem-solving and complex communications tasks. These authors develop a
novel empirical mapping from these tasks to data and undertake the first com-
prehensive empirical analysis of the implications of the task model. Autor and
Handel (2013) further extend both the theoretical framework and the measure-
ment of the task content of occupations.

Acemoglu and Autor (2011) build a model that combines elements from the
papers mentioned above and the classic Ricardian trade framework of Dorn-
busch et al. (1977). In their model, there are three types of workers (low, middle
and high skill) and a continuum of tasks. Higher-skilled workers are assumed to
have a comparative advantage in higher-indexed (more complex) tasks. Tech-
nological change can augment one or multiple labor types, and enables the
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automation of some tasks using new equipment or software. This paper clarifies
the distinction between standard (factor-augmenting) skill-biased technological
change and automation—emphasizing how these technologies impact different
parts of the earnings distribution and can have distinct effects on the level of
real wages and inequality. This work also highlights the connection between the
task framework and the earlier assignment literature for example, how the task
approach builds on the competitive assignment setup of Sattinger (1975) and
Teulings (1995, 2005) as well as the international trade literature focusing on
offshoring of tasks, such as Grossman and Rossi-Hansberg (2008), Rodriguez-
Clare (2010) and Acemoglu et al. (2015).

Our approach in this chapter builds more directly on recent work in task-
based models. Acemoglu and Restrepo (2018b) develop a tractable task-based
model and generalize this framework by introducing new tasks. This paper also
demonstrates how the combination of automation and new tasks can lead to
balanced economic growth, provided that the decline in the labor share and the
contraction in the range of tasks induced by automation need to be compensated
by creating new (labor-intensive) tasks. Acemoglu and Restrepo (2020b) extend
this framework and draw the implications of automation and new tasks for wage
inequality.

Acemoglu and Restrepo (2020a) use a task model to study the implications
of industrial robot adoption in US manufacturing. Their work shows how simple
estimating equations can be derived from the task model. Their estimates show
that industrial robots impacted wages and employment, especially for workers
specializing in manual blue-collar tasks in local labor markets exposed to these
new technologies. This work also clarifies how the aggregate effects of this type
of automation can be computed by combining the productivity impacts of robots
with reduced-form estimates of the displacement effects.

Our treatment in this chapter builds most closely on Acemoglu and Restrepo
(2022). This paper introduces a general version of the task model with multi-
ple skill groups and with a flexible pattern of comparative advantage. Despite
the generality of the model, the paper shows that the equilibrium takes a sim-
ple form and enables the empirical exploration of the consequences of different
technologies and their propagation. This paper further clarifies the distinction
between capital-skill complementarity, which increases the quantity or quality
of capital as discussed by Griliches (1969), Berman et al. (1994), and Krusell et
al. (2000), and automation, which is driven by improvements in capital produc-
tivity for tasks previously performed by labor. While the former process affects
inequality indirectly—by increasing the output of capital-intensive activities or
sectors—automation impacts inequality directly by displacing some groups of
workers from the tasks they used to perform.

Other contributions exploring the implications of automation in task-based
models include Acemoglu and Restrepo (2018a), Acemoglu and Restrepo
(2019), Aghion et al. (2018), Feng and Graetz (2020), Moll et al. (2022), Naka-
mura and Zeira (2024), Jones and Liu (2022), Hubmer and Restrepo (2021) and
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Acemoglu and Loebbing (2024). Another branch of the literature proposes mod-
els of factor-eliminating technical change, where technology works by reducing
the weight of a factor in the production process (see, for example, Zuleta, 2008;
Peretto and Seater, 2013). We show below that the task framework provides a
microfoundation for this form of technological progress.

Tasks: a partial review of the empirical literature

An active and growing empirical literature has explored the implications of
automation and new tasks for the wage structure. This literature is surveyed
in Restrepo (2024). Much of this literature focuses on the US and finds evi-
dence that automation technologies reduce the labor share (and increase sales
per worker), for example, see Acemoglu and Restrepo (2020a) for the effects
of industrial robots across industries and local labor markets, and Boustan et al.
(2022) for the effects of CNC technologies in US manufacturing. Kogan et al.
(2021), Dechezleprétre et al. (2023) and Autor et al. (2024) report a negative as-
sociation between the deployment of automation technologies measured using
patent data and the labor share across US industries and occupations, while an
extensive literature building on Autor et al. (2003) documents a negative rela-
tionship between automation and employment in routine jobs (see, for example,
Webb, 2020; Kogan et al., 2021). Autor et al. (2024) additionally show that
occupations experiencing the introduction of new tasks expanded their employ-
ment.

We see similar patterns beyond the US. Several industrial economies have
experienced declining labor shares since the 1980s, especially in manufacturing
(Karabarbounis and Neiman, 2013) and a declining share of employment in rou-
tine occupations (Goos and Manning, 2007; Acemoglu and Autor, 2011; Goos
et al., 2014)—both telltale signs of automation. Consistent with this interpreta-
tion, Graetz and Michaels (2018) document a link between robot adoption and
labor share changes by exploiting cross-country and cross-industry variation. A
growing literature using firm-level data on robot adoption across a wide range of
countries, including Denmark (Humlum, 2020), France (Bonfiglioli et al., 2020;
Acemoglu et al., 2020), and the Netherlands (Acemoglu et al., 2023) finds that
robot adoption is associated with a reduction in labor shares and the share of
employment in routine jobs, in line with the predictions of the task model. Ace-
moglu et al. (2023) also show that workers specialized in blue-collar, routine
tasks are the ones that are negatively impacted by robots, as predicted by the
task framework.

Concurrently, we see rising wage inequality in several, though not all, in-
dustrialized countries. The college premium rose in the US, Canada, Mexico,
Japan, the UK and Sweden; remained stable in France, Italy and Russia; and
actually decreased in Korea, Netherlands and Spain (see Katz and Autor, 1999;
Krueger et al., 2010). The increase in wage inequality is more pervasive when
focusing on the difference in wages between the 90th and 10th percentile or the
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total variance of log wages. For example, total variance of log wages increased
in the US, UK, Canada, Germany, Italy and Mexico, but decreased in Russia,
Spain and Sweden (see Krueger et al., 2010). Similarly, Machin and Van Reenen
(2010) and Van Reenen (2011) document growing 90-10 male wage inequality
in Denmark, Japan, Netherlands, New Zealand, the UK and the US from 1980
to 1990. Since 1990, we have also seen rising 90-10 inequality in Australia,
Finland, Germany and Sweden (France being the only country in their sample
where 90-10 inequality appears not to have increased).

The German case is particularly interesting. The comprehensive study by
Dustmann et al. (2009) documents an increase in wage inequality in West Ger-
many (measured by the dispersion in log wages) dating back to the 1970s for
men and to the 1990s for women. The authors also show that the 85th per-
centile of wages for both men and women rose more rapidly than median wages
or wages at the 15th percentile from 1975 to 2004. Wages at the bottom have
stagnated or decreased since the early 1990s. Simultaneously, the premium paid
to workers with an apprenticeship or college degree relative to those with no
post-secondary schooling rose, while the premium earned by college graduates
relative to workers with apprenticeship has remained stable.”

Overall, even though there is evidence of higher wage inequality in some
European economies, the increase has been less pronounced and pervasive than
in the US. One possibility is that these divergent experiences are due to dif-
ferences in European labor market institutions that generate wage compression
and limit the response of wages to changes in technology. For example, Cahuc
(2024) argues that a high minimum wage and rigid wage structure have kept in-
equality in check in France, but this came at the expense of growing disparities
in employment rates between more and less educated workers. In light of the
existing evidence, it is therefore reasonable to conjecture that automation could
have been a source of declining labor shares and rising inequalities in other in-
dustrialized economies as well, but we are not aware of systematic analyses of
the effects of automation (or new tasks) on inequality in Europe. Any such study
may have to incorporate the influence of different labor market institutions on
wage and employment responses.

2 The task model: the one-sector case

This section introduces the task model and characterizes the equilibrium. We
focus on the one-sector version of the model for simplicity, returning to the
multi-sector economy in Section 6.

5 Dustmann et al. (2009) also perform an accounting exercise that removes the influence of changes
in the supply of skills using the methodology of Katz and Murphy (1992). They find evidence of
a rising relative demand for education, though these changes are less pronounced than those for
the US. It is noteworthy that Dustmann et al. (2009) use the IABS dataset. Other studies using the
GSOEDP, including Fuchs-Schiindeln et al. (2010), find a modest increase in total log wage variance
and no evidence of a rising college premium (though their analysis also pools apprentices and work-
ers with no post-secondary education together, rather than separating them as in Dustmann et al.
(2009)).
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2.1 Environment

A (unique) final good y is produced by combining a set of complementary tasks
x € T with measure M > 0. This good is set as the numeraire, with price nor-
malized to 1. Task quantities y(x) are aggregated using a constant elasticity of
substitution (CES) aggregator with elasticity A € (0, 1),

A

1 Al =
y=(M/T<M‘W” dx) .

The set 7 is assumed measurable and “dx” denotes the Lebesgue integral. T
could represent a continuum of tasks arranged along a line (as in Acemoglu and
Autor, 2011), or could be a region of the plane or a multi-dimensional space.
The key economic decision in this model is the allocation of the tasks in 7~
to factors of production. The total quantity produced of task x is assumed to be

y(@x) = A - Y (x) -k(X)+ZAg-lﬁg(x)~fg(X)- (D
8

Intuitively, tasks can be produced by workers of different skill types, indexed
by g€ G={1,2,..., G} or by (specialized) capital equipment. We denote the
quantity of labor of skill type g used in task x by £¢(x) and the amount of
capital used in the production of task x by k(x). Workers in skill group g have
productivity Ag - ¢ (x) > 0 in task x, where the v, (x) schedule represents their
comparative advantage across tasks. Capital has productivity Ax - ¥ (x) > 0 in
task x, which is equal to zero for tasks where technology does not yet permit
capital to substitute for workers. The Ay and A, terms represent standard factor-
augmenting technologies, which make factors uniformly more productive in all
tasks.

Eq. (1) imposes perfect substitutability of capital and the different groups
of workers at the task level. This feature of the model is a simplifying, but
not implausible, assumption. Many new equipment and software types, such
as computer numerical control machinery and robots, can perform various tasks
with little human involvement (while the programming, maintenance, and ser-
vice of such equipment correspond to other tasks that remain labor-intensive).
This feature is a simplification since some labor-intensive tasks require tools
(e.g., hammers), but it does not affect the implications of the framework.°

Labor supply is assumed inelastic, with the total supply of group g denoted
as {4, while the real wage of this group is denoted by w,. We discuss elastic
labor supply in Section 8.

To keep the model static, capital is treated as an intermediate good, produced
using units of the final good and used up in the same period due to depreciation.

6 It is straightforward to generalize this production function so that labor uses some tools and
capital equipment needs operators. So long as the share of these factors is small, all implications
of our framework continue to hold. See the discussion in the online appendix of Acemoglu and
Restrepo (2018b).
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Specifically, capital of type x, k(x), is produced using the final good at a constant
marginal cost normalized to 1. Changes in the productivity and cost of capital
are subsumed into changes in the ¥ (x) schedules. Net output, which is equal to
consumption, is therefore obtained by subtracting the production cost of capital
goods from output:

c=y—/ k(x)-dx.
T

Following Acemoglu and Restrepo (2022), throughout we impose the fol-
lowing restrictions on the task space, which are sufficient for the existence of a
unique equilibrium where all workers are assigned a positive measure of tasks
and output is positive and finite. While these assumptions can be weakened, this
would be at the cost of additional complications and we do not pursue this path
here.

Assumption 1 (Restrictions on the task space). e For each task x € 7T, there
exists at least one g € G such that ¥, (x) > 0. Moreover, the integrals

/ Yo ()1 dx
X:Pg (x)>0

are finite.

e For each g € G, there is a positive measure of tasks x for which 1/, (x) > 0,
V¢ (x) =0 for all other g’ # g, and Y (x) = 0.

e Comparative advantage is strict. For any two groups g # g’ and constant a >
0, the set of tasks such that y¢(x)/v,(x) = a has measure zero. For any
group g and constant a > 0, the set of tasks such that ¥, (x) /¥ (x) = a has
measure zero.

Part 1 of the assumption is a sufficient condition for positive output in the
economy (otherwise, such an economy may generate zero output). Part 2 guar-
antees that all skill groups are necessary for production and implies that tech-
nological changes will not make any skill group completely redundant. These
conditions also ensure that output is always finite (because it rules out the pos-
sibility that capital will perform all tasks). Part 3 of the assumption imposes
strict comparative advantage. This removes any indeterminacy in the alloca-
tion of tasks to workers and ensures that ties (situations in which a task can
be produced in a cost-minimizing way with more than one factor) occur only
on measure zero sets. Throughout, we also adopt the (non-consequential) tie-
breaking rule that whenever there is a tie, tasks are allocated to capital first and
then to lower-indexed skill types ahead of higher-indexed skill types.
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2.2 Equilibrium

A market equilibrium is defined by a positive vector of real wages w = {wg}¢cG.,
an output level y, an allocation of tasks to worker groups {7,},cc and capital
Tk, task prices {p(x)}re7, task labor demands {£¢(x)} e, xe7 and capital pro-
duction levels {k(x)} <7 such that:

El Task prices are equal to the minimum unit cost of producing the task:

(x) = min ! { s }
PROZ A A, [ s |

E2 Tasks are produced in a cost-minimizing way, with tasks
w
T:{x:p(x)zig}
¢ Agrg(x)
allocated to workers from skill group g, and tasks
I
F=3x:px)=——
Arr(x)

produced with capital.
E3 Task-level employment of labor and capital are given by

L A=l =2
Zg(x):{ y~M-Ag P ()T wy forxe T,

0 otherwise.

and

1 r—1 r—1
k(x):{ y'M'Ak <Y (x) for x € Ty

0 otherwise.

E4 The labor market clears for all g:
/ Le(x)-dx =L,.
8

E5 The price of the final good is 1, which gives the ideal-price index condition

1 1/(1=x)
1= —/p(x)]fk-dx .
M Jr

Fig. 1 provides a graphical illustration of this equilibrium. The task space
is represented as a subset of the plane, which is partitioned into G + 1 subsets,
representing the 7,’s and 7. We explicitly condition these sets on the wage
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vector w to emphasize that task allocations depend on wages. The fact that these
sets are shown as connected is for simplicity. It can be seen from the figure why
the boundaries of these sets, where a task can be produced in a cost-minimizing
way by more than one factor, are of measure zero. These sets are determined
by comparative advantage, factor-augmenting technologies and factor prices,
which influence the costs of performing a task with a given factor.

Task share for group g
1
r,(w)= —J q/,(,\')”’]d,\'
g M . g
Task share for capital

Lw) = LJ 1//‘(x)"‘"c1,\‘
Tiw)
Task space I
FIGURE 1 Equilibrium task assignment and task shares. The figure depicts the task space and
illustrates the assignment of tasks to different groups of workers (g and g’, in this example) and
capital (k).

2.3 Equilibrium representation in terms of task shares

Following Acemoglu and Restrepo (2022), we represent and characterize the
equilibrium in terms of task shares.

Let T, (w) be the set of tasks that would be assigned to workers from skill
group g at a given level of wages w = {w,}¢ec. Aggregating the labor demand
in E3 across tasks, we obtain the labor market-clearing condition

1 A—1 A=l —a
y-—-A “Pg(x) cw, "t dx =4,
f7§(w) M & &

Inverting this equation yields the market-clearing wage for group g,

1/
1—
wf(é) AT ) @)

where the task shares are defined as

1 1
Fg(w)Eﬁ_/:f( )wg(x)k—l -dx and Fk(w)sﬁﬁr( )wk(x)x—l dx.
glw k(w

Task shares summarize how the market value of tasks assigned to the different
groups of workers change as we vary wages. The assumption of strict com-
parative advantage guarantees that task shares are continuous and differentiable
functions of factor prices and technology. Moreover, cost-minimization implies
the symmetry property

o Aew) o AT (w)

1-a
A" ws,
g g 8 g
dwg dwyg

for g’ #g. 3)
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This property says that the additional task share that g gains when wages for g’
increase equals the additional task share that g’ gains when wages for g increase.
Task shares encode all the relevant (local) information on comparative ad-
vantage. For example, if the task share of a group decreases by a small (large)
amount when its wage increases, this implies that the group has a steep (shallow)
comparative advantage at the tasks it currently performs, and cannot be (can be)
easily substituted by other groups of workers. Additionally, the behavior of task
shares when we increase all wages by the same amount is informative about the
substitutability of different groups of workers for capital in marginal tasks.

Proposition 1 (Equilibrium representation). The competitive equilibrium exists
and is unique. The wage vector w and output level y are given by

wf(é)w'Aé_””Fg(w)l“forgeG, 0
o 1 1/(1=3)
1=(rk(w)-A£—1 +Xg:rg(w) : (A—Z) ) : (5)
=C(w)

where C(w) denotes the marginal cost of producing the final good given the
wage vector w. The equilibrium level of output can be written as a CES ag-
gregator of the different labor types and capital k = fﬁ w) k(x)dx, with the
equilibrium task shares T'g = I'g(w) and T'y = T'y(w) appearing as endogenous
weights:

A/ (=1)
y= (F,l/’\ (Ar ~k)1_1/” + ngl/x - (Ag _gg)l—l/k) _ (6)
4

Like all proofs in this chapter, the proof of this proposition is provided in the
Appendix.

Eq. (4) gives the market-clearing wage. This equation demonstrates that
equilibrium wages depend on output per worker (y/¢,), factor-augmenting pro-
ductivity terms (the A,’s), and the task shares (the I'g(w)’s). Eq. (5) is the
ideal-price index condition in ES, rewritten in terms of task shares. This system
has a unique solution because task shares satisfy the gross-substitutes property:
'y (w) is decreasing in w, and increasing in w for all g’ # g.

Eq. (6) is a representation result. Once equilibrium wages and task shares
are solved, they can be substituted back into the production function (1) to ob-
tain this form. It shows that the economy behaves as if output were produced
using a CES aggregate production function, with the CES weights determined
endogenously by equilibrium task shares.

Task shares are the key objects governing the distribution of income in the
task model—just as the CES weights govern the distribution of income in a
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model with a CES aggregate production function. The share of skill group g in
gross national income is’:

1-A
w
sgy=rg(w).<A—Z> :

The share of all labor in gross national income is therefore
wa\ 17
1= Tew)- (£ =1—Tp(w) A 7
SL - g(w) <Ag k(w) k ( )

and the share of capital in gross national income is
) A1
sg = Tre(w) - A7

Two additional objects of interest are the capital-output ratio, given by
k -
5 = ) A

and the share of consumption in gross national income, which is

STy - A
y

2.4 Beyond CES

Proposition 1 shows that the task model aggregates to an economy that behaves
as if output were produced from a CES aggregator. In this aggregation, task
shares determine the resulting CES weights. The fact that task shares are en-
dogenous and depend both on technology and factor prices introduces the two
key features that distinguish the task model from previous approaches that rely
on CES production functions (or nested versions thereof).

o Different technologies, different effects: Technology operates by directly
altering the task shares and this enables us to incorporate the distinct impacts
of different types of technologies. To see the significance of this feature, sup-
pose we treated (6) as a standard CES production function. Then, the modal
form of technology would be a labor-augmenting one, say an increase in Ag,
and its effects could be obtained by modifying the first and second terms in
the wage equation (4). In this exercise, the elasticity of substitution and the
weights would be held constant. In contrast, in our framework, a change in
A, would have a third important effect because it would alter all task shares.
More importantly, in the standard framework, we would be forced to think of

7 “Gross” here refers to national income inclusive of payments to capital, while net output subtracts
these payments.
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automation—for example, the introduction of industrial robots—as increas-
ing capital productivity, Ay (this is the only way in which capital can become
more productive in that framework). This would have the unambiguous com-
parative static that it always raises real wages for all worker groups. Instead,
in our framework, automation operates entirely by changing task shares and
output per worker (the first term), which, as we will see, has very different
consequences.”

e Rich substitution patterns: Despite appearances, the task model does not
force the elasticity of substitution across groups to equal A—the elasticity
of substitution between tasks. This is because task shares respond to wages,
capturing substitution generated by competition for marginal tasks. The task
model thus allows for richer substitution patterns than a standard CES model
and implies that the resulting macroeconomic elasticities are linked to the
pattern of comparative advantage and competition for marginal tasks.

Section 3 introduces a special case of the framework here, which we will re-
fer to as “the no-ripples economy”, to explain the first distinctive feature, while
Section 4 discusses the second one and presents a number of simple examples
that illustrate the influence of comparative advantage on the macroeconomic
elasticity of substitution. Section 5 puts these elements together and character-
izes the full implications of different types of technologies in the one-sector
model.

3 Different technology, different effects

The first distinctive feature of the task framework is its ability to differenti-
ate between different types of technologies. This section describes the different
classes of technology in this model and delineates the distinct mechanisms via
which they affect labor demand and productivity. To facilitate the exposition, we
focus on a special case of our framework, the “no-ripples economy”, in which
there is no competition for marginal tasks.

3.1 The no-ripples economy

We first characterize the impact of different technologies in an example econ-
omy that shuts down ripple effects and highlights the distinct direct effects of
technology on labor demand. This “no-ripples economy” imposes the following
assumption:

Assumption 2 (No ripples). The task space can be partitioned into sets
{7;,* ]geg and 7" such that for each g, tasks 7,* can be produced only by work-

ers in skill group g and tasks in 7" can be produced only by capital.

8 One could try to replicate the effects of automation by exogenously changing the weights of the
CES production function, but this has the disadvantage of being highly reduced-form. In particular,
there would be no way to know ex ante which weights should be changed and by how much.
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This assumption ensures that no marginal tasks are being contested between
skill groups or between capital and labor. Task shares are pinned down by tech-
nology and can be written as

1 1
= —/ Yo (x)* ! dxforgeG, and Ty= —/ Y (x)* !
M T M T

From these, one can readily compute equilibrium wages and output using (4)
and (6). We maintain Assumption 2 in this section and relax it in subsequent
sections.

3.2 Automation

Automation technologies are those that directly displace workers from tasks they
perform. In the smartphone production example, automation corresponds to the
introduction of robots or computer numerical control machinery that take over
various manufacturing and assembly tasks. One can also think of new software
systems that automate some of the back-office tasks needed to commercialize
smartphones.

We model automation technologies as an increase in the productivity of
capital in tasks previously assigned to labor. In particular, we assume new
automation technologies become available in a set of tasks A C Uge((;,’ﬁ(* and
increase capital productivity in these tasks discretely, from 1 (x) = 0 in x G A
to wauto (x) > 0. We assume that in the initial equ111br1um W Yy} wg )

for all x € A and for any g € G. We also assume that A4 is a small set (mean—
ing that its measure is small), which guarantees that producing these tasks with
capital reduces costs.”

A convenient feature of the task framework is that the effects of technology
depend on its impact on task allocations and productivity. In the case of automa-
tion technologies, we can summarize their effects via two objects: the direct task
displacement and the cost savings that these technologies generate.

Denote the set of tasks performed by skill group g and that now become
automated by A, = AN 7, The direct task displacement on group g from
automating these tasks is

Ia Iﬂg(x))‘ 1 dx

dlnrduto
fT* ‘ﬁg(x))L ! dx

That is, the direct task displacement gives the proportional reduction in group
g’s task share resulting from automation—the numerator is the share of tasks in

9 Notice that while Assumption 2 holds in the initial equilibrium before the change in technology,
it no longer holds after the change, because tasks in A can be produced by more than one factor
of production. The fact that technology changes in a small set of tasks ensures that producing au-
tomated tasks with capital is still strictly profitable and thus there are effectively no marginal tasks,
even after the change in technology.



Tasks at work Chapter | 1 19

the set A,, while the denominator is group g’s task share in the initial equilib-
rium.
The cost savings from automating task x in A, are

®)

L[ A o]
1—-A

auto _ .
e (0= Ag - g (x)

This expression measures the decline in costs from switching to produce task
x with the new capital instead of labor (at the initial equilibrium wages). Cost
savings are positive by assumption. The average cost savings from automating
tasks previously assigned to group g can then be computed as the employment-
weighted average of ng}”m (x)’s:

o _ L Vo @) - d

N e R

Fig. 2 illustrates the role of direct displacement effects from automation and
the resulting cost savings for two skill groups.

Automated
tasks o/,

Direct
displacement
1
dInTg" and

cost saving
auto
g

Task space T

FIGURE 2 Effects of automation on the allocation of tasks. The figure depicts the task space and
illustrates an example of new automation technologies increasing the productivity of capital in tasks
previously assigned to group g workers, Ag. This has two consequences: direct displacement and
cost savings.

The task displacement and cost-saving gains {d In Fguto, 712“‘0} ¢eG summa-
rize the capabilities of new technologies, the extent to which these capabilities
outcompete workers of different skills, and the cost savings generated in the
process. The next proposition shows how to compute the effects of automation
in terms of these objects.

Proposition 2 (Effects of automation in the no-ripples economy). The effects
of automation technologies, summarized by {d In l"fg”””, né‘”"’} ¢cG, are given by
the formulas

dlnwg=(1/x).(dlny—dlnrg“m) forgeG 9)
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D syednwg =) sy dInTg . g (10)
8 8

=dIntfp

Eq. (9) follows by differentiating (4) and using the fact that task shares are
independent of wages in the no-ripples economy. It shows that the impact of
automation on wages is given by the sum of two economic forces: the first term,
representing the productivity effect from automation, and the second term, rep-
resenting the displacement effect from automation—meaning the displacement
of workers of group g from the tasks they previously performed. The displace-
ment effect is proportional to d In I‘;“to and is straightforward to compute given
the initial equilibrium, as we showed. The productivity effect, on the other hand,
depends on how much output increases.

The second equation, (10), which is derived by differentiating (5), can be
used to compute the productivity effect and pins down the impact of automation
on real wage levels.'” This equation shows that the average increase in wages
equals the TFP gains from automation, which can be computed with a logic
identical to Hulten’s theorem: dIntfp = Zg sg -dlIn wg.] :

Eq. (10) shows that automation necessarily increases the average wage—and
does so in proportion to its positive contribution to TFP. The fact that automa-
tion increases TFP follows from the fact that, by assumption, capital produces
the tasks in .4 more cheaply than labor, which implies that Jré,‘u“’ > 0. If this were
not the case, these technologies would not be adopted. The result that automa-
tion increases average wages in proportion to TFP also has a simple intuition.
The change in TFP corresponds to how much the cost of producing the final
good declines at given factor prices. Since this cost has to remain at 1, wages
must increase on average by some amount proportional to TFP. This result is
a consequence of three features: (i) capital is supplied fully elastically (see, for
example, Simon, 1965; Caselli and Manning, 2019; Moll et al., 2022; Acemoglu
et al., 2024); (ii) all markets are competitive (see Acemoglu and Restrepo, 2024,
for the role of labor market imperfections); and (iii) the production technology
exhibits constant returns to scale.

The fact that automation increases productivity and average wages does not
imply that it does so by a significant amount or that it increases all workers’

10 Specifically, the productivity effect dIny can be computed by solving Egs. (9) and (10). This
system comprises G + 1 unknowns and G + 1 equations that can be solved together to determine
the changes in the real wage of each group of workers and in output. An equivalent approach uses

the fact thatdlny = (1 — s,f)*l . (d Intfp— ds,'(v), where s,f is the capital share in gross output to

obtain this productivity effect and dslf is the change in the capital share, obtained from (11).

' Hulten’s original result focuses on the effects of infinitesimal changes in technology. Here, we
have a discrete jump in technology taking place over a small (infinitesimal) set of tasks, but this
does not change the overall logic. The only difference is that, when computing n;}uto (x), we have to
take into account the impact of this discrete jump on cost shares, which is the reason why the 1 — A
terms appear in (8).
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wages. The formula for the productivity gains from automation shows that these
depend on nz}u“’. These cost savings can be small—which corresponds to so-
so automation technologies in Acemoglu and Restrepo (2019). This will be the
case when labor is fairly productive in these tasks to start with or when cap-
ital can perform these tasks with moderate productivity (just high enough to
outcompete labor but not so high as to yield meaningful cost savings). This ob-
servation explains why significant investments in automation technologies can
generate modest productivity and average wage growth.

Moreover, Eq. (9) highlights that while the productivity effect raises wages
on average, the displacement effect can reduce the real wage of affected groups.
This can be understood in the simplest way by assuming that automation only
affects one group, g, and the new automation technologies are so-so (rr;,‘”m =€
for a small and positive €). One can then show that there is some € such that,
for € < €, group g’s real wage will necessarily decline. We return to a detailed
discussion of real wage consequences of automation in the presence of ripple
effects in Section 5.

The task framework also shows that automation is tightly linked to reduc-
tions in the labor share. We can see this from the formula for the capital share in
Eq. (7). The expansion in the set of tasks performed by capital implies that the
labor share of national income sz decreases—and equivalently, the capital share
s;v< increases—by

dsp == sy - dInTg" - (1+ (1) - 7g") <0. (an
8

This result is a direct consequence of the fact that automation displaces workers
from the tasks they used to perform, making production more capital intensive.

Offshoring The task framework can also be used to study the effects of off-
shoring, which are very similar to automation (see, for example, Grossman
and Rossi-Hansberg, 2008). Offshoring corresponds to some tasks previously
performed domestically by labor now being transferred to workers in another
country. This can be incorporated into our framework by interpreting k(x) to
include imports of intermediates (or services) corresponding to task x. For ex-
ample, the assembly of a smartphone can be performed by robots in the United
States, or components can be shipped and assembled in Vietnam. From the view-
point of workers in the United States, these two shifts have identical effects. 12
We can therefore model the arrival of new opportunities for offshoring as
a jump in the capabilities of the technology used for organizing global sup-
ply chains for task x from ¥ (x) =0 to IlflgffShore (x) > 0. We define the direct

12 This is provided that trade is balanced so that a corresponding amount of the final good is trans-
ferred to the foreign country to pay for the offshored tasks. In the multi-sector economy studied in
the next section, trade balance could be achieved by exporting goods produced in specific indus-
tries. If so, the effects of offshoring could differ from automation because they could also involve
additional sectoral reallocation.
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task displacement from offshoring as d In and the cost savings from

offshoring as rr;,’ffShore

offshore
Fg

analogously as we did for automation.

The objects {d In FgffShore, g Offshorey ¢eG summarize the impact of new off-
shoring opportunities. The effects of offshoring are the same as those in Propo-
sition 2, except that {dIn FgffShore, ngffShore} ¢eG replace {dInT§"°, mg"%) .
The impact of offshoring operates via productivity and displacement effects as
well. Just like automation, offshoring can have a negative impact on exposed
groups when the cost savings from offshoring are limited.

3.3 New tasks

The second class of technologies considered here are advances that enable the
creation of new (labor-intensive) tasks. We emphasized in the Introduction the
critical role that new tasks play in generating new opportunities and demand
for labor—raising the labor share and counterbalancing the decline in labor
share coming from automation. Acemoglu and Restrepo (2018b) and Autor et
al. (2024) suggest that a significant part of employment growth over the last six
decades is accounted for by occupations in which we see new tasks, such as
various technical occupations, radiology, management consulting, design and
programming.

While some new tasks emerge as a result of growing preferences for luxury
goods (e.g., sommeliers), most new tasks result from advances in technology.
For example, radiology became a major occupation because of advances in ra-
diography technology, while management consulting and design occupations
are dependent on a range of new communication and design tool innovations.
New ride-sharing and delivery jobs were enabled by new platforms leveraging
the use of smartphones and GPS technology. Likewise, new consumer products
and services often generate new tasks for workers to perform. The defining fea-
ture of these examples is that technology creates the demand for new specialized
roles or endows workers with new capabilities to produce value and contribute
to economic output.

We incorporate new tasks by assuming that there is a technological advance
that enables the production of a set N of new tasks that did not exist in 7.
We assume that the sets {N,},cc have small measure and that, at the initial
equilibrium wages, firms strictly prefer to produce tasks in N, with workers
from skill group g."”

The direct effects of new tasks can be summarized by two objects, similar to
their counterparts for automation: direct task reinstatement and economic sur-
plus from new tasks. The direct task reinstatement for group g (driven by the

13 We can also allow for new capital-intensive tasks. For example, developing a new design for a
widget creates a new task for CNC machinery capable of producing such design. We do not do so
to economize space, especially since capital-intensive new tasks do not play as important a role as
labor-intensive new tasks in accounting for changes in wage structure.
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introduction of new tasks) is

JIn Y — ngwg(x))h_LdX N
T T Ve T dx

and gives the percent increase in group g’s task share resulting from the creation
of tasks in AV. We refer to this measure as task reinstatement because it corre-
sponds to the expansion of the set of tasks performed by workers in g and is thus
the counterpart of the displacement caused by automation.

The economic surplus from new task x in A, evaluated at the initial equi-
librium wages, is defined as

1 we =l
Ty (x)=1_)h' |:Ag-1ﬁg(x)1| —1

The economic surplus from new tasks is positive if the cost of producing the
task with labor wg /(Agv4(x)) is below 1—the price of the final good and our
choice of numeraire.!* We assume this is the case, so that new task x increases
TFP and will be adopted. We also define average economic surplus from new
tasks for group g as:

A—1 _new .
n“ewszgwg(x) Y

8 ng I/fg(x))‘_l .dx

Fig. 3 illustrates the role of direct reinstatement effects from new tasks and
the economic surplus this generates.

The objects {dInT;*", 7"} ;e summarize the reinstatement effect from
new tasks and its economic impact. The next proposition shows how to compute
the effects of new tasks in terms of these objects.

Proposition 3 (Effects of new tasks in the no-ripples economy). The effects of
new tasks, summarized by {d InTp®", 13"} o, are given by the formulas

dlnwgz(l/k).(dlny—dlnM—i—dlnl";‘e”’) forgeG  (12)

ng'dlnwg=Zs§-dlanew~ng‘)w. (13)
g g

=dIntfp

14 Note that new tasks can raise surplus even if A < 1. This is because in our framework, the cost
MRIVEeN)
)] A

expansion in the set of tasks can reduce the price index even if A < 1, because of the presence of M
in the denominator. This modeling approach implies that when new tasks are introduced, the entire
production process or organization changes. This is different from the standard way of modeling
new varieties, whereby the arrival of a new variety reduces the cost of this latent variety from oo to
some finite value.

function associated with the production of the final good is c¢(p) = [ﬁ fT p(x n
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New
tasks

Direct
reinstatement
dln I“Zf"" and

surplus 7"

Task space T

FIGURE 3 Effects of new tasks on the allocation of tasks. This figure depicts the task space and
illustrates a change in technology that introduces new tasks, N, 2 This has two consequences: direct
reinstatement and a surplus.

As in Proposition 2, these two equations can be solved together to determine
changes in the real wages of all demographic groups as well as the increase in
output. Eq. (12) describes the distributional effects of new tasks. Eq. (13) gives
the TFP improvements due to new tasks and pins down their effects on wage
levels.

The proposition shows that the wage consequences of new tasks are given
by a combination of a productivity effect and a reinstatement effect, which is the
converse of the displacement effect from automation. The reinstatement effect
measures the beneficial (positive) impact from new tasks where workers will be
employed. In addition, dIn M is included as a correction term because M, the
measure of tasks in the economy, is in the denominator of (1). The assumption
that there is a positive economic surplus from new task adoption is sufficient to
ensure that average wages increase after accounting for this correction.

Because both the productivity and reinstatement effects are positive, new
tasks increase wages for affected groups. Moreover, in contrast to automation
technologies, new tasks increase the labor share of national income because
they expand the set of tasks performed by labor, making the production process
more labor-intensive. >

3.4 Labor-augmenting technologies

It is useful to distinguish between two types of labor-augmenting technolo-
gies. The first (and more realistic) is in the form of new technologies that raise
workers’ productivity at some of the tasks they currently perform. For example,
imagine the creation of a sturdier and lighter hammer, which increases the pro-
ductivity of male workers without college degrees in construction and carpentry
tasks but not in other jobs. We refer to these as labor-augmenting technology at

15 we provide the exact formulas for labor share changes for this and other technologies in the
Appendix to save space in the text.
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the intensive margin. We represent the effects of labor-augmenting technology
at the intensive margin on group g by

f7}* Ve ()1 dInyrg(x) - dx
f7? Ye(x) 1 dx

d 111 I/f;ntenswe —

This notation emphasizes that these increases in productivity occur only at tasks
already assigned to group g.'°

The second alternative involves uniformly labor-augmenting technological
change, which increases the productivity of a factor in all tasks in the economy,
and can be represented by increases in the A terms. This is the most common
type of technological change studied in economic growth models and in pre-
vious analyses of inequality. Finding examples of uniformly labor-augmenting
technologies is challenging, but one possibility would be assistive technologies
that improve the sight of visually impaired workers. The distinction between
these labor-augmenting technologies is important in our general framework,
though the next proposition shows that in the no-ripples economy, they have
identical effects.

Proposition 4 (Labor-augmenting technologies in the no-ripples economy).
The effects of labor-augmenting technologies are given by the formulas

dlnwg =(1/A)- (dlny —(1=2A) .d]nAg —(1=2) ,dlnwéntensive)

forgeG (14)
ngy -dInwg = ng +(dInAg +dIny ey (15)
g 8
=dIntfp

Both forms of augmentation affect wages via a productivity effect d1ny.
In addition, both forms directly increase worker productivity one-to-one (by
dInAg or by dln w;,“‘enswe), but this has to be weighed against a negative
task-price effect, given by (—=1/1) - (dInAg +dIn w;memi"e). In the no-ripples
economy, the task-price effect dominates the quantity expansion for both forms
of augmentation in the empirically relevant case where tasks are gross comple-
ments (A < 1). This means that the benefits from labor-augmenting technologies
accrue mostly to other workers who are not themselves becoming more produc-
tive and who benefit from the increase in the price of tasks they produce.

That these two forms have identical effects in the no-ripples economy should
not be surprising: the set of tasks performed by a factor, say, skill group g, does
not change in response to augmenting technologies. Hence a marginal increase

16 This discussion clarifies that we could alternatively refer to this form of augmentation as “pro-
ductivity deepening” to capture the fact that it deepens the comparative advantage that the group has
for the tasks it is already performing (those in the set ’7;,*).



26 Handbook of Labor Economics

in Az only improves the productivity of this factor in the tasks it is performing
and is thus very similar to an increase in d Iny/'""IV¢_ For the same reason,
labor-augmenting technologies do not affect the labor share of national income
in the absence of ripples since none of these technologies alter the range of tasks
assigned to capital.'’

It is useful to note the key differences between labor-augmenting technolo-
gies and automation and new tasks—a feature that is particularly evident in the
no-ripples economy. All of the effects of labor-augmenting technologies are at
the intensive margin. They only affect relative wages via task prices, but they do
not bring about large changes in the allocation of tasks to factors. In contrast,
both automation and new tasks work at the extensive margin—their main im-
pacts are rooted in the changes in the allocation of tasks that they cause. This
is also the reason why the balance between the distributional and productivity
effects of these types of technologies differ.

To further illustrate this point, we compare the magnitude of the distribu-
tional consequences of labor-augmenting and automation technologies (in both
cases, relative to their productivity effects). For labor-augmenting technology,
this ratio is

_ . ./sintensive
=,
Vg
The numerator is the impact via the combination of task price and quantity
effects, while the denominator is the increase in their productivity. The corre-
sponding ratio for automation is

dInT2ue 1

- auto . -auto . auto
dlIn Fg 3 Ty

The first of these expressions is positive when A > 1 (because the quantity ef-
fects are larger than the price effects), and even when it is negative, it takes a
finite value less than 1. In contrast, the second expression can be unboundedly
large, especially for so-so automation technologies (712,‘““’ ~0).

Labor-augmenting technologies are also very different from new tasks.
While the former increases the quantity of goods and services that workers pro-
duce in existing tasks (and this comes at the expense of a reduction in the price
of these tasks and services, putting downward pressure on their wages), new
tasks reinstate workers into new activities, allowing them to spread their labor
across a wider range of tasks. This is the reason why new tasks, which enable the
labor hours of the affected group to be distributed across a larger set of tasks, do
not run into the same diminishing returns that labor-augmenting improvements
do.

17" This follows from the formula for the labor share in Eq. (7). The equation shows that when the
supply of capital is elastic, the labor and capital share are pinned down by the range of tasks assigned
to capital and the productivity of capital in these tasks but are independent of labor productivity at
other tasks. If the supply of capital were not perfectly elastic, these changes would impact relative
task prices and have a (typically small) impact on the labor share.
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3.5 Capital-augmenting technologies

The analysis of capital-augmenting changes is similar to that of labor-augmenting
ones. For capital-augmenting technological change at the intensive margin, we
define
-1
dln Ip,icmensive — f77c Wk () ~din wk (x) - dx
S W) - dx
as the increase in the productivity of capital in the tasks it is already perform-
ing. A uniformly capital-augmenting technological change is summarized by
d In Ay, analogously to the previous subsection.

Proposition 5 (Capital-augmenting technologies in the no-ripples economy).
The effects of capital-augmenting technologies are given by the formulas

dlnwg = (1/1)-dIny forgeG (16)
Y sy -dInwg =sk - (dIn Ag +dIny ") (17)
8 =dIntfp

The proposition shows once more the equivalence between intensive-margin
and uniformly capital-augmenting technologies in the no-ripples economy. One
noteworthy point is that because, in the no-ripples economy, capital-augmenting
technologies only change the productivity of already capital-intensive tasks,
they do not create any adverse effects on labor, and thus always have a positive
impact on the wages of all groups of workers. In fact, when A < 1, capital-
augmenting technological change at the intensive margin increases the labor
share of national income.

This proposition reiterates that there is a crucial difference between capital-
augmenting technologies and automation. As already noted, the latter acts ex-
clusively at the extensive margin—by altering the allocation of tasks. Instead,
capital-augmenting technologies act primarily (and in the no-ripples economy
entirely) at the intensive margin. In fact, while automation reduces the labor
share and could reduce the real wage of affected groups, capital-augmenting
technologies increase all worker wages uniformly and, in the plausible scenario
where capital and labor are gross complements, they also increase the labor
share. This distinction clarifies why it would be incorrect to think of the de-
velopment of industrial robots or other automation technologies as augmenting
existing capital.

3.6 Microfoundation for shifting Cobb-Douglas exponents

The no-ripples economy also provides a microfoundation for a Cobb-Douglas
aggregate production function where technology acts by changing its elastici-
ties. To see this, consider the limit case with A — 1. Output in this economy can
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then be represented as

k Iy Eg Iy
)
I'r 1;[ I
where the exponents are given by the share of tasks in Tg* and 7%, and In A =

& rer (ALK Y (1) -dx + 3, & vers IN(Ag - g (1)) - dix.

This example can be used to illustrate several of the conclusions of Propo-
sitions 2-5. In particular, we can easily see how automation and new tasks can
have sizable effects on the equilibrium by shifting the Cobb-Douglas exponents.
In contrast, augmenting technologies work by increasing aggregate productivity
A in a factor-neutral way.

This example also provides a microfoundation for models of factor-
eliminating technologies, such as Zuleta (2008) and Peretto and Seater (2013).
It shows that one can map automation to a reduction in the Cobb-Douglas ex-
ponent for skill groups whose tasks become automated and an increase in the
exponent for capital, while new tasks increase the Cobb-Douglas exponent for
the favored skill groups and reduce the exponent for capital.

3.7 Taking stock

Several of the key messages discussed in the Introduction are clarified by Propo-
sitions 2—5. Most importantly, these results show that new technologies affect
equilibrium wages through three mechanisms: a productivity effect (any tech-
nology that increases productivity and expands output raises labor demand and
wages); displacement and reinstatement effects (that work at the extensive mar-
gin by directly changing the allocation of tasks to factors of production); and
task-price effects (factor-augmenting technologies increase the supply of some
tasks and reduce their prices). Different types of technological changes generate
different combinations of these three effects, thus having varied consequences
in terms of aggregate productivity and inequality.

4 From micro to macro elasticities

In this section, we focus on the second distinctive feature of the task frame-
work: the rich pattern of macroeconomic elasticities of substitution. This section
defines these elasticities and shows how the pattern of comparative advantage
shapes them. We then illustrate these patterns with a series of examples.

4.1 Macroeconomic elasticities of substitution

In the no-ripples economy studied in the previous section, any substitution be-
tween factors comes only via the substitution between tasks. If high-skill work-
ers become abundant, the tasks they produce also become abundant, driving
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down their price and encouraging firms to substitute toward using these tasks
more intensively. The general case with ripples allows for richer substitution
patterns. As one group of workers becomes abundant, they will also substitute
for other workers in marginal tasks. The extent of this effect depends on whether
workers compete for marginal tasks and how steep their comparative advantage
is in these tasks.

To explore these issues, let us define the macroeconomic elasticity of substi-
tution between skill groups g and g’ as

dlnt,

1
Og¢ = 3 " . :
Sg/ d In u)g/ y constant
This elasticity measures how much a proportional increase in the wage of skill
group g’ changes the demand for skill group g. In the task framework, for g’ # g,
this elasticity is

1 o0lnTy(w)
)= A — &7
%8s + s dlnw,g
8
N———

substitution between tasks  qubstitution within marginal tasks

With constant returns to scale, the elasticity is symmetric: 04y = ag/g.lg

The formula illustrates the two margins of substitution. First, we have sub-
stitution between tasks produced by different skill groups and controlled by A.
This is similar to the substitution in the standard CES production function and
is the only margin of substitution in the no-ripples economy. Second, we have
substitution between worker groups taking place in marginal tasks. This second
source of substitution depends on the intensity of competition for marginal tasks
and is shaped by the comparative advantage schedules. This term will be high
when the two groups in question have similar comparative advantage schedules
in marginal tasks, which in turn would imply that a small difference in costs of
producing these marginal tasks can lead to a big shift in tasks from one group to
the other.'”

18 The notion of elasticity of substitution used here is due to Allen-Uzawa. With constant returns
to scale, the Allen-Uzawa elasticity can be expressed in terms of the cost function C(w) as

C(w)-ng/(w)
O,y = ———22——
88 Co(w)-Cyr(w)

which is symmetric due to Young’s theorem. Note that the symmetry of o, is equivalent to the
symmetry property in (3), also proving that assertion.

19 Macroeconomic elasticities of substitution can be estimated from the data, but the exact source
of variation being exploited is important. If one focuses on situations in which tasks cannot be or
are not reassigned between factors of production, then one would recover A.



30 Handbook of Labor Economics

The elasticity of substitution between capital and skill group g can be simi-
larly computed as:

1 odlnk 1 9InTg(w)
ok = Blnwg ly - * s) dlnw,
Sg nwg y constant sg nwg
——

substitution between tasks  substitution within marginal tasks

The two margins of substitution are present in this case as well and play a central
role in determining how advances in the productivity of capital in marginal tasks
impacts workers (see Acemoglu and Loebbing, 2024).

4.2 Examples

This subsection illustrates how the macroeconomic elasticity of substitution is
determined in a number of tractable cases, clarifying the role of comparative
advantage.

Equilibrium with a common elasticity of substitution between tasks The sim-
plest example of how the macroeconomic elasticity of substitution is determined
by the pattern of comparative advantage comes from Acemoglu and Zilibotti
(2001), who analyze a task model with two types of labor: low-skill (with sup-
ply €) and high-skill (with supply /). The task space is a line from [0, 1] (so that
M = 1), tasks are combined with an elasticity of substitution A = 1, and

yx)=Ar- (1 =)< e(x)+ Ay - x'/“ - h(x), where k > 0.
In this economy, task shares can be computed as

(wn/Ap)* (we/Ag)*

r = r =
) = oTanr + oA ) S o A + A

and the macroeconomic elasticity of substitution between low and high-skill
labor is constant and given by

o= 1 +i.wzl+i.(l—sy)-/(:l+lc.
— sz dlnwy sy h

14

In fact, the equilibrium admits a representation that takes the following CES
form:

14k

Y= ((A’Z OTE + (A -h)ﬁ) €

We see in this example that the macroeconomic elasticity of substitution
between low and high-skill is 1+« > 1, different both from the (infinite) within-
task elasticity of substitution and the elasticity of substitution between tasks
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(which is equal to A = 1). Intuitively, a greater value for « makes the com-
parative advantage of high-skill labor relative to low-skill labor shallower in
marginal tasks, facilitating the assignment of more tasks to the type of labor that
is cheaper. In contrast, when « is low, the productivity of high-skill labor rela-
tive to low-skill labor declines sharply as more tasks are assigned to high-skill
workers.

Macroeconomic elasticity of substitution with correlated Frechet distributions
This example generalizes the previous one to a setting with multiple (> 2) skill
groups. It is also an adaptation of the commonly-used parameterization of Eaton
and Kortum (2002) of the original Dornbusch et al. (1977) model, with skill
groups taking the place of countries and no trade costs.’ This example illus-
trates how correlation and (lack of dispersion) in task-level productivities makes
skill groups more substitutable in the aggregate.

Consider a version of the task model with multiple types of workers and no
capital. The task space is a line from [0, 1] (so that M = 1), tasks are combined
with an elasticity of substitution A € (0, 1), and

YO =Y Ag - Yrg(x) - g ().
8

Suppose that for each task x, the task-level productivities of the different worker
groups V¥, (x) are drawn from a correlated Frechet distribution with CDF:

I—p
Pr(y(x) <ay,...,¥g(x) <ag) =exp 3} — |:Zag—f</(l—p)j|
g

In this specification, p € [0, 1) measures the correlation between the productivi-
ties of different groups of workers, and k¥ > 0 is an inverse measure of dispersion
in productivities. The case p = 0 gives the commonly used case of independent
Frechet distributions.

In this example, task shares can be computed as

A—l-k/(1—p)
k/(1=p)

r—1—k/(1—p) —«/(1—p)
w W o'
[e(w) = (—Ag) - E <Ag ) .
g o g

which implies a common macroeconomic elasticity of substitution between skill

groups
1 dInTy(w K

Ogg = A +—y'7g()=k+(——)\+1>.
Sy Olnwg 1—p

—— [ —
between tasks  within marginal tasks

20 Lind and Ramondo (2023) utilize this parametrization in a trade context, while Dvorkin and
Monge-Naranjo (2019) and Freund (2024) use it in task models.
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Equilibrium output again aggregates to a CES representation, this time with
elasticity 1 + «/(1 — p) and productivity level A (for some constant A):

y=A. (Z(Ag .gg)l—/K>—+K>

8

1—p+«
[3

The macroeconomic elasticity of substitution, 1 4+ «/(1 — p), exceeds A be-
cause it accounts for substitution in marginal tasks. Note that when « is larger,
skills are less dispersed, and comparative advantage across workers is shal-
lower, translating into greater substitution between worker types. Substitution
in marginal tasks also increases with p. Greater correlation in workers’ produc-
tivity implies a more intense competition for marginal tasks.

The macroeconomic elasticity of substitution between capital and labor The
setup of Hubmer and Restrepo (2021) provides an example where tasks are com-
plements but the macroeconomic elasticity of substitution between capital and
labor becomes 1.

Suppose that there are two factors of production: labor ¢ and capital k. The
task space is the line [0, 1] (so that M = 1) and tasks are combined with an
elasticity A € (0, 1). Suppose also that the productivities of capital and labor in
task x are

1-1/y 1+1/yg 1+1/yp 1-1/yp
i) =x"T7 -(1—x)"™  and Ye(x)=x 7 -(I—x) T+ .

Equilibrium output now takes a Cobb-Douglas form
v
y= A - kvtre - gvtve

and we can also see that the macroeconomic elasticity of substitution between
capital and labor is unity. This is because, in this case, the additional substitu-
tion coming from the comparative advantage schedules adds to the elasticity of
substitution between tasks, A < 1. The y parameters determine the importance
of capital and labor in this Cobb-Douglas aggregator.

5 Putting it all together: shocks and propagation in the
one-sector economy

In this section, we provide a characterization of the full equilibrium in the one-
sector economy, bringing together the analysis of different types of technologies
from Section 3 and the macroeconomic patterns of substitution from Section 4.
The main tool for this analysis is the propagation matrix, which we introduce
in the next subsection. We will also see that the effects of different types of
technologies are richer in this case because of the substitution patterns that they
initiate. Throughout, we focus on first-order approximations to the equilibrium
effects of various changes, meaning that the formulas we present apply to small
changes in technology.



Tasks at work Chapter | 1 33

5.1 Equilibrium: ripple effects and the propagation matrix

In the no-ripples economy, technology affected task shares directly. For exam-
ple, in Proposition 2 automation reduces exposed groups’ relative wage and
potentially their real wage via a displacement effect. More generally, however,
once group g experiences a decline in its relative wage, it becomes more prof-
itable for some firms to use this group of workers in marginal tasks, substituting
for other groups and putting pressure on their wages. This competition for
marginal tasks is the source of ripple effects, which capture the indirect con-
sequences of the reallocation of tasks between groups.

Fig. 4 illustrates the role of ripple effects in an example where automation
displaces workers from group g and new tasks are created for group g’. Both
technological developments increase the relative wage of group g’, encouraging
firms to substitute capital or workers from skill group g for those from group
g’ in marginal tasks. This endogenous reallocation of tasks is depicted by the
dotted lines.

Automated New

tasks
tasks o, .

N

4

Ripple effects
Task space 7

FIGURE 4 Direct effects of technology and ripple effects. The figure depicts the task space and
shows the direct and the ripple effects caused by automation and new tasks (dotted and dashed lines).

To understand the implications of ripple effects, consider a demand shock
affecting group g. This could be automation, labor-augmenting technological
change, new tasks or other forms of technology. In the no-ripples economy, the
impact of this shock on group g can be decomposed into its productivity d1ny
and direct effects zg, so that dInwg = (1/1) - (dIny + zg). In the general case
with ripples, differentiating the wage equation (4) yields

dl Doy gt g4t 200 ) (18)
nwe=—-dln —Zet+——2—2.dhw,
Y Y T  Shw v
where dlnw = (dInwy,...,dInwg) is the column vector of all wage changes.

These wage changes affect the equilibrium wage of group g by reallocating
marginal tasks. This effect is summarized by the Jacobian 0InI"g(w)/dInw,
written as the row vector of marginal changes in group g’s task share.

Stacking (18) for all groups and collecting the terms involving dlnw on
the left-hand side allows us to solve for the endogenous change in wages as
a function of the vector (z1, 22, ..., 2g). In what follows, we use the notation
stack(z) to represent this vector.
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Proposition 6 (Effects of technology with ripple effects). Consider a set of
technological changes with direct effects stack(zg), which jointly reduce the
marginal cost of producing the final good by m = —dInC(w)|y=constant > 0
holding all wages constant. The effect of these technological changes on wages
and output is given by

dlnw=®~stack(dlny+zg) (19)
D spedinwg= 71, (20)
8 =dIntfp

where

—1
o=l (-1 8Inle@w)
A A dlnw

is the propagation matrix.

Eq. (19) provides a general formula that applies to all forms of technologi-
cal change. It shows that we can decompose the effects of any technology into
a productivity effect dIny, direct effects zg (which include task displacement,
task reinstatement, and task-price substitution effects), and the ripple effects
subsumed in the propagation matrix ®. The reason why the propagation matrix
takes the form of a Leontief inverse is that it accumulates the impacts result-
ing from the reallocation of marginal tasks between g and g’, which then leads
to a second round of reallocation of marginal tasks between g’ and g”, and so
on. Eq. (20), on the other hand, shows that the TFP gains and average wage in-
crease due to technology are the same as in the no-ripples case. This is because
our economy is competitive and, with the standard envelope theorem logic, the
substitution of one group of workers for another at marginal tasks does not gen-
erate any first-order gains in productivity. These G 4 1 equations can again be
solved together to obtain wage changes for the G groups of workers and the
change in output for the unique final good.

5.2 Properties of the propagation matrix

When there is no competition for marginal tasks, as in the case studied in the
no-ripples economy, the propagation simplifies to

1
00
o_| 0} ol
1
0 0 . I

and we recover the formulas for the no-ripples economy.
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For the general case, the Appendix establishes that the propagation matrix is
well defined and has non-negative entries. The off-diagonal entries 64, > O cap-
ture the extent to which group g’ competes directly or indirectly (via subsequent
rounds of reassignment) for marginal tasks with workers in group g.

The propagation matrix has several important properties:

1. Dampening: All eigenvalues of ® are real and in the [0, 1/)] interval. This
means that ripple effects dampen the distributional consequences of a shock.
Intuitively, once a group is able to compete for and take over marginal tasks
from others, the burden of the direct shocks it suffers will be lessened. This
force exhibits itself by the diagonal element of ® corresponding to group g
being less than 1/A (recalling that the direct effect of a shock is (1/A) - zg).

2. Monotonicity: for all g’ # g, we have

Ogg > Ogg,

so that the maximum entry along a column of the propagation matrix is in
the diagonal. This implies that a shock directly increasing (reducing) de-
mand for g cannot increase (decrease) the wage of group g’ by more than
g’s wage. This monotonicity property ensures that relative demand curves
for skill groups are downward sloping.

3. Row sums: Row sums of the propagation matrix are

1 O -1
pg=Z¢9gg,=X-[l+s[y<-<Tg— )] for geG,
g/

where 63, = Zg, (Bgg'/Pg) - Oy and sly( is the share of capital in national
income. In the special case where there is no capital, this simplifies to p, =
> ¢ 0g¢' = 1/A for all groups. Another noteworthy special case is when all
groups are equally substitutable with capital, i.e., oxg = 0%, in which case we
have

1 Ok -1
pgzzegg/zx-[l+sly<-(7—l>] for geG.
g/

The comparison of these two expressions shows that skill groups that are
more substitutable for capital tend to have lower row sums.

4. Propagation and substitution: The propagation matrix ® is related to the
matrix of elasticities of substitution ¥ = {oge'}, o’ via the identity

1
0 = diag (—y) =),
S

where diag(1/s”) is a diagonal matrix with entries (1/s7, ..., 1/s%). This
equation thus clarifies the tight connection between ripple effects and substi-
tutability between labor types—greater substitution generates more substan-
tial ripple effects and leads to smaller diagonals in the propagation matrix.
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5. Symmetry: The propagation matrix satisfies the symmetry property
9,88’ /séy, ;= 0grg ./sgi—a corollary of the symmetry of task shares and elas-
ticities of substitution.

To illustrate these properties, we can return to the examples introduced
above. In the Frechet example, the propagation matrix is

k/(0—p)+1-1 ¥ k/(—p)+1-1 ¥ k/(1—p)+1—2

1 Y
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O = (k/(A=p)+D-a 1 k/(1=p)+1 w/(T=p)+D-a "2 k/(I=p)+D-x  °G
k/(A=p)+1=2 ¥ k/(l1=p)+l1=21 ¥y k/(l1=p)+l=2 ¥y
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With the Frechet parameterization, ripple effects are uniform—so that a shock
to group g creates the same wage consequences across all other groups. All
eigenvalues of this matrix are equal to 1/(x/(1 — p) + 1), and thus all shocks
are dampened by A/(x/(1 — p) + 1). Naturally, the task framework is more
general and allows for richer (and less restrictive) propagation patterns.

In the rest of this section, we study how different types of technological
and factor supply changes impact the economy via their direct effects and their
indirect effects working through the propagation matrix.

5.3 Automation

We first use Proposition 6 to study the implications of automation technologies
(as in Section 3, the same results apply to offshoring and we do not repeat those
here).

Consider new technologies leading to the automation of the set of tasks .4 =
U A, (with the same convention as before that A, comprises tasks previously
performed by skill group g). Let us also assume, for simplicity, that, for each
8, Ayg is in the interior of the set of tasks performed by this group, 7,. Then
we can again summarize the share of tasks lost to automation for each skill
group by {dIn Fg““’} ¢» and cost savings from automation can be written as 7 =
P 53 -dIn L3031, where 75" is the average cost savings from automating
tasks previously performed by skill group g.

Proposition 6 implies that the effects of automation on wages are given by

dlnw:@-stack(dlny—dlnr‘g‘“o) Q1)
D sy edinwg =) sy -dInD3M . g2, (22)
8 8
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Eq. (9) from the no-ripples economy is a special case of (21), with the propaga-
tion matrix replaced by a matrix with 1/ on the diagonal. All discussion of that
equation applies in this case as well: automation again works via the produc-
tivity effect summarized by the increase in output and the displacement effects
summarized by d In 3"
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Importantly, however, the full distributional effects of automation differ from
those in the special case with no ripples. In the general case, groups of workers
displaced from their tasks by automation intensify the competition for marginal
tasks against groups with whom they are highly substitutable. This competition
mitigates the adverse effects of automation on exposed groups by spreading the
incidence of this shock more broadly. The formula for wages in (21) shows
that, in equilibrium, the downward wage pressure exerted by automation on a
group not only depends on the displacement it experiences directly, as in the no
ripple case, but also on whether groups competing for marginal tasks are being
displaced, and groups competing against these groups are being displaced, and
so on, as accounted for by the propagation matrix.

The TFP impact of automation in Eq. (22) is identical between the
economies with and without ripples. This is because of the same envelope the-
orem logic explained above. The reason why the automation shock itself has
an impact on TFP is that it is not second-order—it corresponds to a discrete
increase in the productivity of capital in a small set of tasks.

When does automation reduce real wages? We can use the general formula
for the wage effects of automation in Eq. (21) to identify the circumstances that
can lead to real wage declines for exposed groups of workers.

As we have seen, the combination of competitive markets, constant returns
to scale production possibilities, and a fully elastic supply of capital ensure that
automation increases real wages on average. This is true in the economy with
ripples as well as in the no-ripples economy. However, this positive average
wage effect can coexist with significant negative impacts on some groups of
workers. Proposition 6 allows for a sharper characterization of the conditions
under which negative wage effects can arise.

From Eq. (21), the full impact of automation technologies on group g is

dinwg =pg-diny — Y Oy -dInTH,
g/

where o, is the gth row sum of the entries of ©.
Three conditions are needed for automation to reduce the real wages of
group g:
i the task displacement from automation concentrates on group g;
ii group g is not highly substitutable with unaffected groups of workers;
iii the cost savings from automation are limited, or automation is “so-so.”

The example outlined in our discussion of Proposition 2 satisfies these three
requirements. In the example, we consider a case in which dIn Fg”m > ( and
dIn T3 = ( for all other groups. This means that the displacement effect of au-
tomation is highly concentrated on group g as opposed to being equally shared
among all workers. The example was also given in the context of the no-ripples
economy. Because there are no marginal tasks in this economy, exposed groups
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(and, in fact, all groups) are not highly substitutable. As a result, the propagation
matrix is diagonal, with entries 1/A, and all groups bear the full incidence of any
labor demand shock affecting them. Finally, and as discussed above, this form
of automation reduces the wages of a group g when ngum = € for some positive
€ smaller than €.

To understand why these three conditions are needed, let us modify our
example. Imagine first that the task displacement from automation is not con-
centrated on a handful of groups and suppose, on the contrary, that automation
is fully even across groups, that is, dIn Fg”m = dInI'®° > (. Proposition 2
implies that in the case with no ripples dlnwg = (1/1) - (dIny — dInT?"°)
and Proposition 6 shows that in the case with ripples this extends to dInw, =
pg - (dIny —dInT"°). In both cases, wages change by a proportional amount.
This makes intuitive sense, as all workers share the productivity gains and dis-
placement effects from automation evenly. From the fact that average wages
must increase following any technological advance, we can conclude that
dIny — dInT?"° > ( and no group can experience a real wage decline.

Next, to understand the role of substitutability of different work groups,
consider the polar opposite of the no-ripples economy, where task-level produc-
tivities are highly correlated across groups. In this case, worker groups compete
strongly for marginal tasks and become highly substitutable in the aggregate.
For example, consider the economy with correlated Frechet draws discussed in
the previous section and focus on the limit case where the correlation parameter
p goes to 1. In the limit, the propagation matrix converges to

y Y y

S%) S% SS;;

O = 1 8% - Sg
y y y

S Sy - Sg

Proposition 6 implies that in this case all wages change by an equal amount
dlnwg=dlny—3_, Sg/d InT'3"® > 0 (and this holds even if the displacement
effects from automation were uneven to begin with). Intuitively, when workers
compete very strongly for marginal tasks, ripple effects will be equal to direct
effects, and the incidence of a demand shock is evenly shared across all workers.
Then, because average wages increase following any technological advance, all
groups must experience a common real wage increase.

The role of cost savings was discussed in detail above, and large cost sav-
ings imply that, regardless of the presence of ripple effects, the productivity
gains dominate the displacement effect for all groups, leading to an increase
in real wages for all. This reasoning establishes that only “so-so” automation
technologies can reduce the wages of exposed workers.

One way to summarize this discussion is as follows. Automation has two
effects: it raises group wages on average and creates dispersion around that com-
mon wage increase. The common level shift depends on how sizable the cost
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savings from automation are. The dispersion or inequality brought by automa-
tion depends on how concentrated the shock is and the extent to which workers
bear or spread the incidence of this shock. If the shock is evenly spread or the in-
cidence is widely shared (because workers are highly substitutable in marginal
tasks), automation will have limited effects on inequality, and all groups will
see their real wages increase. Otherwise, automation will have sizable effects
on inequality. The cost savings will then determine whether workers who lost in
relative terms from automation will also lose in real terms.

To conclude our discussion, we note that automation can also reduce the
wages of groups that are not directly exposed to it but are highly substitutable
with exposed groups. For example, imagine two groups whose task-level pro-
ductivities are highly correlated. In the limit, these groups have identical rows
in the propagation matrix. Proposition 6 then implies that if automation reduces
the real wage of one of these groups, it must also reduce the wages of the other
via their strong competition for marginal tasks. This example explains why au-
tomating tasks held by middle-skilled workers can also reduce wages at the
bottom of the wage distribution.

5.4 New tasks

Proposition 6 generalizes Proposition 3 in the case of new tasks. The full effects
of new tasks on wages and output are now given by

dlnw:@-stack(dlny—dlnM—i—dlanew)

dintfp=> sy -dInwy=> 53 -dInTp™ - 7p".
8 8

Wages depend on a productivity effect, a task reinstatement effect, and ripples,
which account for the propagation of shocks across worker groups due to the
endogenous reassignment of tasks. Note that here, ripple effects generate a pos-
itive impact on other groups, even if they do not benefit from new tasks directly.
This is because workers who obtain new tasks become more expensive and thus
less competitive for previously marginal tasks, increasing the demand for other
skill groups in those tasks.

5.5 Labor-augmenting technology

In the presence of ripple effects, uniformly labor-augmenting technologies and
increases in productivity at the intensive margin have different impacts. The re-
sults from Proposition 6 extend to these technologies and imply that their effects
on wages are now given by
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dinw=0-(dIny— (1 —1)-stack(dIn Ag + d In "))

negative task-price decline
from no-ripples case

+ (1 — O1) -stack(dIn Ay), 23)

reallocation from
uniform improvements

while the contribution of these technologies to TFP (which pins their effect on
wage levels) is the same as in the no-ripples economy.”!

Labor-augmenting technologies at the intensive margin affect wages via a
productivity effect and via the same adverse task-price declines we saw for the
no-ripples economy. These effects then propagate via ©.

Uniform labor-augmenting technologies additionally allow groups becom-
ing more productive to outcompete others for marginal tasks, increasing their
task shares. This reallocation is also governed by the propagation matrix, which
explains the extra term (1 — ©2) - stack(d In Ay ) in the equation. This is always
beneficial for own wages because 1 — ® has a positive diagonal (and also nega-
tive off-diagonals, which correspond to marginal tasks being lost to other groups
that have become more productive). This positive benefit dominates the adverse
price declines at the intensive margin if 65, is below one, meaning that, group g
has a sufficiently high macroeconomic elasticity of substitution with other skill
groups.

This discussion further clarifies the difference between (uniform) factor-
augmenting technological change—the form of technological progress typically
emphasized in the literature on skill-biased technical change building on Katz
and Murphy (1992)—and automation, as analyzed in Acemoglu and Restrepo
(2022). In particular, Eq. (23) clarifies that the distributional effects of factor-
augmenting improvements in technology are fully mediated by the macroe-
conomic elasticities of substitution, summarized by the propagation matrix. If
macroeconomic elasticities are not far from unity, as many available estimates
suggest, factor-augmenting technologies will have modest distributional effects.
Put differently, with macroeconomic elasticities close to unity, one would need
very large increases in group-level productivities to generate a meaningful di-
vergence in wages across groups. In contrast, automation works at the extensive
margin, and if it displaces low-education groups from tasks they were previously
performing, its direct impacts could be much larger—regardless of the macroe-
conomic elasticities of substitution since its main effect work by directly chang-
ing task shares. This explains why automation can have sizable distributional
consequences, even when different factors of production have macroeconomic

21 n contrast to the no-ripple economy, labor-augmenting technologies can now change the labor
share, and whether the labor share increases or decreases depends on how the task share of capital
changes.
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elasticities of substitution near one.>> We return to this issue in Section 8, where
we explore this distinction quantitatively (see also the discussion in Acemoglu
and Restrepo, 2020b).

5.6 Capital-augmenting technologies

In an economy with ripples, capital-augmenting technological change at the
intensive margin and uniformly capital-augmenting technological change have
different implications. The results from Proposition 6 extend to these technolo-
gies and imply that their effects on wages are now given by

dlnwg =pg-dlny — (1 —=X-pg)-dInAg

while the effects on TFP are identical to those in the no-ripples economy. In
this expression, p, € [0, 1/A] are the row sums of the propagation matrix. As in
Proposition 5, capital-augmenting technologies at the intensive margin benefit
all worker groups because they make capital more productive, generating a pro-
ductivity effect, but they do not make capital more competitive in any marginal
tasks. In contrast, the implications of uniformly capital-augmenting technolo-
gies differ because they now make capital more competitive in marginal tasks.
This extra competition is captured by the negative term (1 — A - p,) - d1In Ay,
where a larger difference between 1 and A - p, signifies that group g is more
substitutable for capital in marginal tasks.

As with uniform labor augmenting technologies, we see here that the distri-
butional effects of uniform capital augmenting technologies are entirely deter-
mined by the macro elasticities of substitution between capital and labor, which
are subsumed in the row sums of the propagation matrix. If these elasticities are
not far from unity, uniform advances in capital, as those considered in Krusell
et al. (2000) and the literature on investment-specific technical change, do not
generate sizable distributional effects. Moreover, if these macro elasticities are
below one, uniform advances in capital cannot generate the observed decline of
the labor share. This contrasts with our findings for automation. The effects of
automation on the wage distribution and factor shares are fully decoupled from
these macro elasticities because automation shifts the allocation of tasks directly
at the extensive margin.

The formulas above provide a different microfoundation for skill-specific
elasticities of substitution between capital and labor (a possibility first consid-
ered by Griliches, 1969). As an example, consider an economy with two types
of labor, low-skill and high-skill. Suppose that high-skill labor has a very steep

22 A related distinction explained in Acemoglu (2002) and Acemoglu and Autor (2011) is that, in
canonical models of skill-biased technical change with two skill groups, technological change that
makes highly-educated workers more productive necessarily increases wages for the low-education
group (an implication of g-complementarity with two factors of production and constant returns
to scale). Instead, and as shown here, models of automation can generate large wage declines for
exposed groups.
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comparative advantage schedule in tasks in which it is competing against capital,
while low-skill labor has a flatter comparative advantage. A uniform increase in
capital-augmenting technological change will then increase inequality because
it de facto complements high-skill labor, while creating a more intense compe-
tition against low-skill labor.

5.7 Changes in labor supply

The following proposition shows that the propagation matrix also mediates the
effect of labor supply changes.

Proposition 7 (Effects of exogenous changes in labor supply). The effects of
exogenous changes in {€g}occ are given by

dlnw =0 -stack(dIny —dInfg) 24)

where dIny is pinned down by Zg sg ~dInw, =0.

Labor supply changes affect the wage structure through the propagation ma-
trix because a labor supply expansion generates competition for marginal tasks
from the expanding groups. This competition then determines the impact on the
wages of both the expanding group and others. The propagation matrix sum-
marizes these cross-group elasticities as well as the demand elasticity for the
affected group. The substitution patterns summarized in the propagation matrix
also point to the possibility that a particular group (say, domestic low-education
workers) may suffer lower wages because of the increase in the supply of an-
other group that is highly substitutable to them (such as immigrant workers).”

This proposition also provides guidance on how to account for the effects
of exogenous labor supply changes on the wage structure, generalizing the ap-
proach in Katz and Murphy (1992) and Card and Lemieux (2001), who assume
that substitution patterns are given by a nested CES.

23 In this case, we would have that the two groups are g-substitutes (as opposed to the more standard
notion of g-complementarity). The propagation matrix contains all relevant information on whether
different skill groups are g-complements or g-substitutes. Consider, for example, a case with no
capital. An increase in the supply of skill group g increases output by dlny = sg,) -dIn£g and reduces
this group’s wages by 6g - (1 — sg). The diagonal terms in the propagation matrix thus specify the
slope of the aggregate elasticity of demand for group g. The supply shift alters other groups’ wages
by dIn Wy = (% -sg —0,r¢) -dn¢g and we can see that g and g’ are g-complements if % > é Ogrg

(or equivalently, from symmetry % > % - Oggr). Pairs of groups with large corresponding off-
Sor

g
diagonal entries can be g-substitutes. With the standard CES aggregate production function (with a
common elasticity of substitution), all groups are g-complements.
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6 The multi-sector economy

In this section, we generalize our results to a multi-sector economy. The multi-
sector extension is important for several reasons. First, the way we measure
direct task displacement in the rest of the paper relies on this extension since,
in reality, the rate at which tasks are automated varies substantially across in-
dustries. Second, the multi-sector economy enables us to incorporate the conse-
quences of a richer menu of competing technological effects—including those
that work through industry-level productivity shocks—and the implications of
changes in markups.

6.1 Environment

A (unique) final good y is produced by combining the output y; of a finite num-

ber of industries, indexed by i e [ = {1,2, ..., I}, via a constant returns to scale
function y = f(y1, ..., yr). We denote the unit-cost function for the final good
by ¢/ (p), where p = (p1, ..., pr) is the vector of sector prices. We also denote

the share of industry i in the economy by siy(p) =0dln cf(p)/E) In p;, which de-
pends on the vector of sector prices (where the equality is a consequence of
Shephard’s lemma). We continue to set the final goal as the numeraire.
Production in each sector y; requires the completion of the tasks in the set
Ti, where T; has positive measures given by M; > 0. We assume without loss of
generality that the sets {7;};<r are disjoint and denote their union by 7, which
makes up the tasks space of the entire economy.”* As in our one-sector setup,
task quantities y(x) are aggregated using a constant elasticity of substitution
(CES) aggregator with elasticity A € (0, 1):
o
1

1 Al =
yi=A;- (M /Ti(Mi -y (x)) dx) ,

where the new term, A;, is a Hicks-neutral sector-specific productivity term.

An additional new element is that we allow for exogenous sector-specific
markups, denoted by p; > 1. This assumption allows us to model labor market
implications of changing markups within the US economy (as studied, for ex-
ample, in De Loecker et al., 2020). The case with u; = 1 for all i € L is a special
case corresponding to a competitive economy.

As in the one-sector model, tasks are produced according to (1). We continue
to assume that labor is inelastically supplied while the capital needed for any
task x € 7 is produced from the final good at a constant marginal cost of 1.

We also continue to impose Assumption | from the one-sector model, except
that the finite integrals and strict comparative advantage are now imposed sector
by sector.

2 1t is straightforward to allow for the same tasks to be performed in different industries, and
whether we do so or not has no relevance for the results below.
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6.2 Equilibrium

A market equilibrium is given by a positive vector of real wages w = {wg}¢cG,
a positive vector of sectoral prices p = {p;}ic1, an aggregate output level y,
an allocation of tasks to skill groups {7,;i}¢eG.ic 1 and capital {7x;};cr in each
industry, task prices {p(x)}.e7, task labor demands {£¢(x)},c,xe7 and capital
production levels {k(x)},<7 such that:

El Task prices are equal to the minimum unit cost of producing the task:

(x) = min ! { e }
P = Api(x) " | Agrg (x) 2€G .

E2 Tasks are produced in a cost-minimizing way, which means that for each
sector i € I, the set of tasks

7;i(w)={x:p<x)=ﬁg(x)
8Y8

is allocated to workers from skill group g € G, and the set of tasks

Tii (w) = {X tpx) = m

is produced with capital (where we condition on the vector of wages for
later reference).
E3 Task-level demands for labor (for any g € G) and capital are given by

1
I Y .| a1 Al —a
ﬂg(x)z{ Vi piug A .E-Ag P ()T w, for x € Tgi (w)

0 otherwise.
and
1
R S W | r—1 r—1
ko= ) e pE e AT e AT o) for x € Tei (w)
0 otherwise.

E4 The labor market clears for all g:

Z/ Lo(x)-dx = L.
i VT

E5 Sector i’s price is given by its marginal cost times markup ;:

1 1 - 1/(1-2)
= — - — —*.d .
Di = Wi A, <Mi /Tl_p(x) x>



Tasks at work Chapter | 1 45

E6 The price of the final good is 1, which implies

1=c/(p).

In addition, as in the one-sector model, we use the tie-breaking rule that
when a task can be performed at equal cost by multiple factors, it is first as-
signed to capital and then to lower-indexed skill groups ahead of higher-indexed
groups. Strict comparative advantage again ensures that such ties can occur only
on a set of measures zero, and thus this tie-breaking rule is inconsequential.

Fig. 5 provides a graphical illustration of the equilibrium, emphasizing the
allocation of the tasks in each industry to different factors and their aggregation
to the production of the unique final good.

Final good y
Automated Dew
tasks
tasks o/}, Ky
-
J ig
Sector 1 Sector i Sector /

FIGURE 5 Equilibrium task assignment and task shares. The figure depicts the task space of a
multi-sector economy and shows automation and new tasks taking place in industry i.

Most of these equilibrium conditions are familiar from the one-sector model.
E1-E2 are identical to before and leverage cost-minimization. E3 and ES are
different from before because of the presence of markups: the latter condition
imposes that industry prices incorporate markups, and the former adjusts factor
demands for the presence of markups—higher markups translate into lower fac-
tor demands. E4 aggregates the demand for labor across industries, while E6 is
again the numeraire condition.

As before, we can represent the equilibrium in terms of task shares, but now
defined separately by sector i € I:

i

1
Tgi(w) =—- Ye(x)* . dx fori elTand g € G
M 7 w)

1
i (w) EM/T ( )Iﬁk(x)}‘_l -dx fori el.
% (w

i
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Proposition 8 (Equilibrium representation). Equilibrium wages w, industry
prices p, and level of output y, solve the system of equations

, U 1/x
1-1/1 -1 - -
wg:<_£> AgY [E s'(p)-p it AL ]'ng(w)}
8 i

forg e@G, (25)
) o\ 1 1/(1—2)

— i — AT w) . A N ] ;
pi=niy (rk,(w) Ay +Xg:rg,(w) <Ag) ) foriel,
=C; (w)

(26)
l=cy(p), 27

where C;(w) denotes the marginal cost of producing output of sector i.

This characterization is analogous to the one in Proposition | for the one-
sector model, except that we now also have an additional equilibrium condition
for sectoral prices.

6.3 Effects of technology in the multi-sector economy

We can use the characterization in Proposition 8 to derive the effects of different
types of technologies on the equilibrium wage structure. To do this, we rely
again on the propagation matrix, which in this case can be written as

1 1 -1
o=l (gL 2l
A A Jlnw

where the Jacobian dInT'(w)/dInw is now the G x G matrix with its gg'th
entry given by

where w,; denotes wage payments received by group g in industry i as a share
of total group wage payments. This matrix summarizes how changes in the wage
of group g’ affects group g by summing over the effects taking place in different
industries.

As in the previous section, we start with the direct effects of new technolo-
gies, represented by the vector z, on the demand for skill group g. Define zg;
as the percent change in demand for workers from group g in industry i due
to a change in technology at constant factor and sectoral prices. For automa-
tion, new tasks, and augmenting technologies, this coincides with the effects
of these technologies on workers’ task shares in industry i. We also define the
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productivity gains at the sectoral level from these technological advances as
7; = —d InC; (W) |w=constant > 0, which summarizes the contribution of technol-
ogy to TFP in sector i. Finally, to simplify the exposition, we assume industries
are combined into the final good with a constant elasticity of substitution 7,
though this can be relaxed.

Proposition 9 (Effects of technology in the multi-sector economy). Consider
a change in technology with direct effects {z;4i}geG,ic1 and productivity gains
{mi}tie1. The effect of this technology on wages, sectoral prices, and output is
given by

dlnw=®.stack<dlny+za)gi - Zgi +(A—n).za)gi .dlnp,-> (28)

1 1

dlnpi=Zs§i-dlnwg—ni foriel (29)

8
0=> si-dlnp;. (30)
i

Here sgi is the share of payments to skill group g in value-added in industry i, s;
is the share of industry i in total costs, and wg; denotes wage payments received
by group g in industry i as a share of total group wages.

The proposition decomposes the effects of technology on the wage structure
into four distinct channels. The first is the productivity effect, represented by
dIny. The second comprises the usual direct effects of technology, the zg;’s,
except that these are now at the industry level and have to be aggregated. The
third is captured by the propagation matrix, ®, pre-multiplying the vector on the
right-hand side of Eq. (28), which again summarizes the role of ripple effects.

The fourth and new element is the last term on the right side of (28). This
corresponds to changes in the sectoral composition of the economy, which can
be non-neutral if expanding sectors differ from contracting ones in their fac-
tor demands. Conversely, these changes are neutral when all sectors employ the
same input mix. More generally, this term captures two forces. On the one hand,
a reduction in the price of sector i increases its quantity, raising its demand
for labor. This sectoral-demand effect depends on the elasticity of substitution
between sectors (assumed to be equal to ). On the other hand, a reduction in
the price of sector i reduces the value of the marginal product of workers and
the demand for their services with an elasticity A. When A > 7, the first ef-
fect dominates, and sectoral shifts benefit workers in sectors experiencing less
productivity growth. This captures the same economic mechanism as in the cele-
brated Baumol effect (Baumol et al., 2012): workers specializing in sectors with
lower (technological) productivity growth, such as healthcare, tend to benefit
because the relative prices of these sectors increase strongly as aggregate output
expands.
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Finally, the exact equilibrium changes in sectoral prices can be obtained from
(29), while Eq. (30) pins down the change in the output level.

It is useful to illustrate the results of Proposition 9 for automation technolo-
gies. The effects of automation on wages are now given by

dlnw = © - stack (dlny—dlnF?”t°+(A— n).Za)gi .dlnpi), 31

1

with d In Fg“to the total direct task displacement due to automation experienced
by group g,

dInT3" =" wg - dInT3". (32)

1

This is obtained by summing the direct task displacement from automation ex-
perienced by group g in industry i, d In Fg?“’, across industries. The summation
weights are given by the shares of wage payments from industry i in group
g’s total wage payments. The wage equation (31) again contains the usual pro-
ductivity and displacement effects of automation, as well as the ripples via the
propagation matrix.

The new element here relative to the single-sector economy is the indi-
rect effect of automation working via its impact on sectoral prices, which
shifts the composition of the economy. These effects depend on the contri-
bution of automation to the TFP of the different sectors, which is given by
=), -dln F;‘;m . n;,‘;.“o, where the ngfm’s are the average cost savings
from automation in sector i. For A > n, which is the case we consider in our
quantitative exercise, automation reallocates labor demand away from sectors
that automate at a higher rate, reducing the relative wages of workers in these
industries.

The equilibrium here is not generically efficient because of the presence of
markups. Nevertheless, when there are no markups or when markups are uni-
form across sectors (u; = w), the equilibrium is again efficient. In that case,
Egs. (29) and (30) imply that average wage changes from automation are

Yy _ . i auto _auto
ng-dlnwg—Zs,ng dlani Tgi s
8 8

i

=dIntfp

where the term on the right-hand side is aggregate TFP, obtained by summing
the cost savings due to automation in different industries. As in the single-sector
model, we can see the effect of automation on wage levels depends on its con-
tribution to TFP, and could be large or small depending on how big the cost
savings due to this technology are.
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6.4 Sectoral TFP and markups

The multi-sector economy allows us to study the labor market implications of
sector-specific (Hicks-neutral) technological advances and changes in markups.
In particular, Proposition 9 also applies to sector-specific technologies, which
are important drivers of structural change in the economy (see Ngai and Pis-
sarides, 2007; Buera et al., 2021). The effect of these technologies satisfies

dlnw:@-stack(dlny—(l—A)-ngi -dlnAi—i-(k—n)-ngi 'dlnpi)>

l 1

dinp; =Y sy -dlnwy —dInA; foriel
8
0=> si-dlnp;.
i

Hicks-neutral increases in sectoral TFP affect the wage structure via the four
channels identified above. The first is the productivity effect, which corresponds
to the expansion of output, d Iny. The second works through the reduction in
task prices for the sectors that become more productive. Task-price effects are
aggregated according to the exposure of different skill groups to the industry in
question, as measured by the wage-bill shares w,;. The third channel is via the
ripple effects, encoded in the propagation matrix ®. The fourth is the sectoral
price changes in the last term on the right-hand side of the wage equation.

The comparison of this wage equation to (31) shows the differences be-
tween sectoral TFP improvements and automation. Automation works via the
extensive-margin of task reallocation taking place within sectors, while there
is no equivalent of these effects in the case of sectoral TFP, which works by
reallocating labor demand across sectors.

Finally, we can derive the effects of changes in markups. This follows from
our characterization of the equilibrium in Proposition 8 and is presented next.

Proposition 10 (Effects of markups in the multi-sector economy). Consider
an exogenous change in sectoral markups {dInu;};cr. The impact on wages,
sectoral prices, and output is given by

dlnw = © - stack (dlny—k~2wgi “dlnpi + (O —n)- ngi ~dlnp,->
i i

(33)
dinp; =Y sy -dInwg+dlny; foriel (34)

8
0=Zsi-dlnpi. (35)
i
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This proposition shows that markups affect the wage structure via the same
four channels identified in Proposition 9. The first is the productivity effect,
given by d In y, which results from the fact that increases in markups can reduce
output. The second is the direct impact of the changes in markups, which are
aggregated using wage-bill shares. This effect is negative because markups re-
duce (relative) production in the affected sectors. The third is through the ripple
effects that these changes induce, which work via the propagation matrix, ®, as
characterized above. The fourth channel is the shifts in the sectoral composition
of the economy due to markups.

Just like the sector-specific technology terms discussed above, markups’ im-
pact all workers in an industry uniformly. This is why their distributional effects
work through shifts in labor demand across sectors—and they do not generate
any displacement or reinstatement. The distributional effects of this reallocation
across sectors will be muted if expanding and contracting sectors do not differ
substantially in their skill mixes. This is the reason why we expect, from a theo-
retical point of view, these effects to be less pronounced than those coming from
automation and new tasks, and this is indeed what we document in our empirical
application, presented next.

7 Reduced-form evidence

In this section, we estimate reduced-form equations derived from the task frame-
work. We focus on US labor markets between 1980 and 2016. The estimates
support the key prediction of the task framework, showing that extensive-margin
changes in the allocation of tasks to factors, driven by automation and new tasks,
have first-order effects on the wage structure. In fact, these effects are much
larger than those estimated for other technologies. Consistent with the expecta-
tion that automation and new tasks shift labor demand, we find that these forces
have had large impacts on employment outcomes as well.

We first summarize the trends in wages and employment that we seek to
explain. We then derive our reduced-form specification and discuss how we
measure the displacement due to automation and reinstatement due to new tasks
experienced by US worker groups.

7.1 US labor market trends

Fig. 6 depicts the major wage inequality trends in the US. It plots cumulative
real hourly wage growth since 1960 by gender (separately in the left and the
right panels) and education level. We show data from the CPS (with connected
dots) and the decennial Censuses and the ACS (with diamonds). In the 1960s
and 70s, hourly wages grew by 1.5%-2% per year for all groups, and the real
wage growth tracked labor productivity, implying that the labor share of national
income remained stable. From 1980 to 2016, we see a strikingly different pat-
tern: hourly real wages continue to grow for workers with a college degree and
even more so for those with a postgraduate degree, while wages for noncollege
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A. Real hourly wages for men, 1960-2022 B. Real hourly wages for women, 1960-2022

£ ¢ ° £
o %

3 s 3 o
o o
[ (]
<) >
= =
o 41 o 41
= =
s s s
g g
£ 2 £ 2 / LA
=1 =3 4
(&] (&)

0 04s

3

N $

°

24 2

r T v T v v T , T T v v Y v

1960 1970 1980 1990 2000 2010 2020 1960 1970 1980 1990 2000 2010 2020

Year Year

FIGURE 6 Cumulative growth in real hourly wages for men and women by education level (GTC:
postgraduate degree, CLG: college degree, SCL: some college, HSG: high school degree, HSD: high
school dropout), 1960-2022. Diamonds: data from the US Census and the American Community
Survey. Connected line: data from the Current Population Survey. Wages deflated using the personal
consumption expenditure index from the Bureau of Economic Analysis.

workers stagnated and, for men with a high school degree or less, even declined
in some periods.

In line with the tepid wage growth observed during this period, the labor
share of national income declined markedly since 1980, as shown in Fig. 7,
especially in manufacturing and retail.

Labor share in value added, 1963-2016
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FIGURE 7 The evolution of labor shares in manufacturing, wholesale, retail, utilities and trans-
portation. Data from the BEA-BLS Integrated Industry Accounts, 1963-2016.

These unequal wage trends coincided with rising disparities in employment
rates, shown in Fig. 8. Since 1980, employment rates for college-graduate men
have remained stable, and employment rates for college graduate women have
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continued to increase. At the same time, employment rates for men without a
college degree declined (though the beginning of this trend dates to the 1970s),
while employment rates among women with a high school degree and an asso-
ciate degree decelerated and started to decline.

A. Employment rates for men, 1960-2022 B. Employment rates for women, 1960-2022
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FIGURE 8 Employment rates for men and women by education level (GTC: postgraduate degree,
CLG: college degree, SCL: some college, HSG: high school degree, HSD: less than high school),
1960-2022. Data from the US Census and the American Community Survey are shown as diamonds,
and data from the Current Population Survey are shown as the connected lines.

7.2 Specification

For our reduced-form analysis, we organize the data at a more granular level
than in Figs. 6 and 8 and look at 500 demographic groups, proxying for skill
groups in our theory. These demographic groups are defined by the five educa-
tion levels, gender, five age groups (16-25 years of age, 26-35, 3645, 46-55,
56-65), ethnicity (White, Black, Hispanic, and Asian), and native vs. foreign-
born status. For each group, we compute the change in log hourly wages and
the change in log hours worked from 1980 to 2016 using the 1980 Census and
pooling five years of the American Community Survey (ACS) between 2014
and 2018. Our reduced-form specification relates wage changes experienced by
groups between 1980 and 2016 to proxies of automation, new tasks, sectoral
TFP growth and markups.
To motivate our specification, start from Eq. (28) and rewrite it as

dlnwg =04 - dlny+Za)gi~Zgi+()»—n)~Za)gi-dlnpi
i i

+ Ripple effects,, (36)

where the Ripple effects, term captures spillovers from shocks impacting other
worker groups. Our reduced-form analysis treats the ripple effects as part of the
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error term and focuses exclusively on the relationship between shocks directly
affecting a group and its outcomes. In addition, we assume that the diagonal
entries 0, = 6 are equal, which motivates a simple linear model for group wage
changes. We estimate the ripple effects in Section 8.

Our specification accounts for various technologies affecting labor demand
directly, via the term »_ ; Wgi - Zgi above. First, we consider the role of automa-
tion, whose direct effect dIn Fgu“’, was defined in (32) as the summation of
industry-level task displacements d In Fa‘i’to’s across industries. Second, we con-
sider the role of new tasks, whose direct effect is to reinstate group g. This

reinstatement effect is also given by a summation across industries:

dInTy = " -dIn T
i

Additionally, we assume that labor-augmenting technologies, d In A, satisfy
dlnAg = Seducationg +46 gender, +ug,

where u, is a residual independent of other covariates. The term Seducaﬁong in-
corporates common improvements in labor productivity that apply to all workers
with the same education level. This formulation is similar to but more general
than those typically considered in the skill-biased technical change literature.”
The term Sgenderg allows for shifts in technology or labor market discrimination
affecting women relative to men.

The resulting estimation equation is

Alnwg = constant + B0 . Task displacement from automationi,ggo_zo16

1980—-2016
8

+ Dummies for education level + Dummies for gender

+ BSeCtor . Sectoral shifts, + Ripples, + ug., (7

[ —
=Vg

+ B"Y . Task reinstatement from new tasks

where we rewrote Eq. (36) for wage changes between 1980 and 2016. In this
regression model, the productivity effect, d In y, is included in the constant. We
also replaced d In Fg““’ and dInT"j" with their empirical counterparts, whose
construction we discuss below. The education and gender dummies are included
to account for the common shifts in labor-augmenting technology for all workers
of a given education level or gender, as explained above. The error term is then

25 One could also introduce changes in labor-augmenting technology at the intensive margin in a
similar way. As with uniform changes, any increase in labor-augmenting technology at the inten-
sive margin (the d In l/fgime“sms) that is common across educational groups would be subsumed
by education fixed effects, and residual changes would be part of the error term in the estimation
equation.
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a combination of the ripple effects and residual changes in group-level produc-
tivity. We present estimates that condition on education and gender dummies
and estimates that do not, which allows us to explore the extent to which the
reduced-form model can explain the observed wage trends between and within
educational groups and gender.

Our regression model also includes extra terms to control for sectoral shocks
and changes in sectoral composition. As a first strategy, in some of our regres-
sion models, we account for the influence of changes in sectoral markups and
TFP on the wage structure. Building on the analysis in Section 6, the influence
of these forces on the wage structure can be expressed as

Sectoral TFP, = Z wg; - AlnMultifactor TFP;,

1

Sectoral markups, = Z wg; - AlnMarkups;,

1

where wy; is the share of wages group g receives from industry i (computed us-
ing the 1980 Census), A In Multifactor TFP; is the change in industry TFP over
1980-2016 (computed for 50 industries using the BEA-BLS Integrated Industry
Accounts, which are then matched to the 1980 Census), and A InMarkups; are
estimates of the average markup change for these industries (taken from Hubmer
and Restrepo, 2021).

As a second strategy, we follow Acemoglu and Restrepo (2022) and explore
regression models that directly control for the observed changes in sectoral value
added, including a term of the form

Sectoral value-added shares, = Z wg; - Aln Value-added share;,

1

where A lInValue-added share; is the change in industry value added over
1980-2016 (computed from the BEA-BLS Integrated Industry Accounts). This
control captures the influence of all observed shifts in the sectoral composition
of the US economy during this period, including changes induced by automa-
tion and new tasks, on group g’s wages. For this reason, these estimates remove
any indirect effects of automation and new tasks working through changes in
the sectoral composition of the economy (i.e., the term (A — 1) - Zi wgi -dIn p;
in Proposition 9). Our quantitative exercise in Section 8 returns to this issue and
shows that these indirect effects of automation and new tasks are estimated to
be small during this period.

Besides the regression model in (37), we estimate equations with changes in
log hours worked per person in each group as outcome. Since the technology
terms on the right side of (37) shift labor demand, we expect them to impact
employment in the same direction.
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7.3 Measuring automation and new tasks

As in Acemoglu and Restrepo (2022), we measure task displacement due to
automation using automation-induced industry labor share changes and infor-
mation on which types of workers within an industry are likely to be impacted
by automation. We assume that automation in an industry only displaces work-
ers in routine occupations and that such displacement takes place at equal rates
for workers in these occupations, regardless of their groups. This means that if
there are workers from two demographic groups g and g’ in a routine occupa-
tion undergoing automation, then the same proportion of workers from these
two demographic groups in this occupation will be displaced.

Under these assumptions, we show in the Appendix that task displacement

due to automation in industry i can be obtained as”®:

dInT%' = RCA routine; - (—AIns}" ™). (38)

Combining this with (32), our measure of total task displacement experienced
by group g is:

1980—-2016
8

=) w,i - RCA routineg; - (—Alns)" ™), (39)

1

Task displacement from automation

where

o RCA routine,; is the revealed comparative advantage of group g in routine
tasks in industry 7. This term adjusts for the incidence of automation across
workers in an industry. Intuitively, if group g performs all routine tasks in in-
dustry 7, then an increase in automation in that industry will displace group g
only. If multiple groups perform routine tasks in the industry, then an increase
in automation in that industry will displace them in proportion to the share of
routine tasks they perform in that industry (which our revealed comparative
advantage captures). This term is computed from the 1980 Census as the ratio
of wages earned by group g in routine jobs in industry i divided by all wage
payments in routine jobs in the industry. We define routine jobs as the top
one-third of occupations with the highest routine content, using the measure
of routine tasks from ONET from Acemoglu and Autor (2011).

e —Aln si“auw is automation-induced percent reduction in labor share in in-
dustry i. This term corresponds to the total share of tasks lost to automation
among all workers in the industry. This automation-induced change in labor
share is computed in two steps. In the first step, we run a regression of the
observed percent decline in industry labor shares from 1987 to 2016 from the
BEA-BLS integrated industry accounts against three proxies of automation.

26 This formula is exact for A = 1. The general case with non-unitary elasticity of substitution
between tasks includes an additional adjustment term, but does not appreciably change the results,
as we further discuss in the next section.
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These proxies include the adjusted penetration of robots over 1993-2007,
computed from European countries that are ahead of the US in terms of robot
adoption and incorporating the adjustment discussed in Acemoglu and Re-
strepo (2020a); the change in expenditure on dedicated machinery divided
by industry value added, 1987-2016, and the change in expenditure on spe-
cialized software divided by industry value added, 1987-2016 (the latter two
sourced from the BLS detailed capital tables). These regressions are reported
in Acemoglu and Restrepo (2022) and show that these three proxies account
for 50% of the cross-industry variation in labor shares. In a second step, we
take the predicted labor share change from this cross-industry regression and
use it as a measure of the labor share decline driven by automation.
Fig. 9 summarizes the results of this measurement exercise. It depicts both the
observed labor share declines and the predicted declines driven by automa-
tion (both in percent terms, and the former in blue and the latter in orange).
Observed labor share declines and those driven by automation are highly cor-
related, but there are also some notable exceptions. Several industries that are
part of the transport sector have large overall declines in labor share, but only
moderate predicted declines due to automation—because they have relatively
low levels of robot penetration and small changes in dedicated machinery and
specialized software expenditures. Several other industries, including auto-
mobile manufacturing, show both sizable observed declines and predicted
declines.”’

® wg; is group g’s exposure to industry 7, which is used as weight in summing
across industry-level task displacements. This term captures the importance
of tasks performed in industry i for group g, and is computed from the 1980
Census for 50 industries that we can track consistently in the BEA-BLS inte-
grated industry accounts.

Our measure of reinstatement due to new tasks uses data from Lin (2011),
which are also analyzed in Acemoglu and Restrepo (2018b). These data, in turn,
rely on new job titles from the Dictionary of Occupational of Titles (DOT) in
1977 and 1991 and from the 2000 Census. Using these data, we construct task
reinstatement for group g in industry i as

dInTyY = "% Share new job titles DOT 1977

gio

o
+ ) wy? - Share new job titles DOT 1991
o

+ Z w§?20 - Share new job titles Census 2000,
o

27 One could use these proxies directly as regressors or instruments, and we do this in Acemoglu
and Restrepo (2022). Projecting these measures on the labor share decline is helpful because it
converts them into units of “tasks lost” to automation and allows us to summarize their effects in a
single variable representing the task displacement associated with these technologies.
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FIGURE 9 Percent decline in industry labor shares (in blue) and the predicted labor share declines
due to automation (in orange). The observed declines are computed from the BEA-BLS Integrated
Industry Accounts. The predicted declines are from a regression of the observed declines on the
adjusted penetration of robots (from Acemoglu and Restrepo, 2020a), as well as the increases in
expenditures in dedicated machinery and specialized software as a share of value added (both from
the BLS Detailed Capital Tables).

where wg;, denotes the share of total wage payments to group g in industry i
that come from occupation o. Analogous to the total task displacement measure,
total task reinstatement for group g is computed as

Task reinstatement from new tasks}g%o_2016 = Z wei -dIn F;?W. (40)

1

The assumption behind these measures is that new job titles proxy for new tasks
(and are not just a relabeling of existing jobs), that each new job title has the
same positive impact on new tasks, and that new tasks are proportionately spread
among workers in the occupations in which they emerge. These considerations
also motivate the use of the wage-bill share of different demographic groups
in the occupation in the concurrent period to capture the importance of these
new tasks for each group. We compute this measure using data for 300 detailed
occupations that we can trace consistently over time and across Censuses and
different waves of the ACS.”

Before describing group-level patterns, we show in Fig. 10 that, at the occu-
pational level, there is a strong positive association between new tasks (summed

28 Notice that this is different from the measurement strategy of our baseline automation measure,
which uses beginning of sample (1980) weights. This difference stems from the fact that, in the
theory, new tasks benefit workers who end up taking over these tasks, while automation affects
workers who used to work in the now-automated tasks. Tables Al and A2 in the Appendix show
that our reduced-form results are robust if we compute the new task measures using occupational
shares fixed in 1980.



58 Handbook of Labor Economics

© Farmers (owners and tenants)
pst
o
‘\.‘
o 15%
[ce]
D
~
& © Chief executives, public administrators, and legislators
2
= 10%+ :
2 o
.

> = o
© o @ ° oManagement analysts
e o]

o7 | oo
g,) 5% 2 ©Pharmacists ©
g 8 "o * @Engineers and other professionals, n.e.c
— % - @ ROG eneral office clerks
= 0% ) Q OSOP/NH:JM ers
® q
(=]
c
@©
‘5 -5% @Telephone operators
©
E ol e%? milling, and tuming machine operatives
c
< -10%-

T T T T T T T T
0% 20% 40% 60% 80%  100% 120% 140%
Share new job titles from 1980-2016
FIGURE 10 Changes in log total wage bill across occupations, 1980-2016 against share of new

job titles introduced in each occupation (from DOT 1977, DOT 1991, and Census 2000). Data for
300 occupations.

o 9%
Sk Postgraduate i
" ® College ©
@ 30% 1 - Some college &
- 0/, -
é i , & Highschool % 40%
&S 5% » Highschool dropout s
S oo &S P .
& (] <
o= 20%-| o, < 30% % 2
g 7 s € -89
I ‘ ] <
@ = ° .
S 15% IS & )
o = a2 v
10% 3 g
é N ® g = 1 - Postgraduate
= [ I R k9]
5% ® . S 10% ® College
. N AR 2
& [} ® _% Some college
. T o Highschool
0% T T T T T T T 0% Highschool dropout
$75 $10 $133 $17.8 $237 $316 $42 L T T T T T T
Hourly wage in 1980 §75 8§10 $133 $17.8 $237 $31.6 842
(logarithmic scale, 2008 dollars) Hourly wage in 1980 (logarithmic scale, 2008 dollars)

FIGURE 11 Left panel shows direct task displacement due to automation, 1980-2016 for 500
groups of US workers, and the right panel shows task reinstatement due to new job titles for these
groups. Both panels plot these data against group average hourly wages in 1980, from the Census.
Marker sizes are proportional to hours worked in 1980. Marker colors distinguish groups with dif-
ferent education levels.

over 1977, 1991 and 2000 measures) and labor demand. A 10 pp increase in job
titles over this time window is associated with a 0.4 pp higher yearly growth rate
of wage payments in that occupation from 1980 to 2016. This reproduces and
extends the results reported in Acemoglu and Restrepo (2018b).

Fig. 11 provides a first comparison of our measures of task displacement
from automation and reinstatement due to new tasks. The figure plots both vari-
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ables against group-level hourly wages in 1980, to indicate where in the wage
distribution the effects of displacement and reinstatement are felt. The left panel
shows that, on average, US workers experienced a reduction in task shares of
19% during this period, but this was quite unevenly distributed in the population.
While noncollege workers saw task share declines in the range of 20-30%, col-
lege and postgraduate workers were mostly shielded from such displacement.”’
The right panel, on the other hand, indicates that, on average, US workers ben-
efited from a 22% expansion in their task shares due to new tasks. In contrast to
automation, reinstatement effects are higher for more educated workers.

7.4 Reduced-form estimates

We begin by exploring the relationship between automation and labor market
outcomes graphically. The top two panels in Fig. 12 provide bivariate scatter
plots of the change in group wages from 1980-2016 (top left panel) and log
hours per person (top right panel) against our measure of task displacement due
to automation for this period. The bottom panel provides residual scatter plots
that partial out education and gender dummies and sectoral value-added shares.
Overall, the figure shows a negative association between task displacement due
to automation and wage and employment changes. The associations are sta-
ble regardless of whether we include covariates. The estimated effects are also
sizable. In the bottom panel, a 10 pp increase in task displacement for a skill
group is associated with a 14.5% decline in wages and a 18.3% decline in hours
worked relative to other groups.

Fig. 13 presents the analogous specifications for new tasks—with the top
panel depicting the bivariate relationships and the bottom panel partialing out
covariates. It shows a positive association between reinstatement due to new
tasks and changes in wage and employment. The estimated effects are also siz-
able. In the bottom panel, a 10 pp more reinstatement due to new job titles is
associated with a 17.6% increase in wages and a 14.0% increase in hours worked
relative to other groups.

Figs. 12 and 13 support the key implications of the task framework: task
displacement from automation is associated with negative wage consequences
for exposed workers relative to others, while reinstatement due to new tasks is
associated with positive wage effects. These technologies also have commensu-
rate effects on employment—groups experiencing more task displacement have
(relatively) lower hours worked, while the pattern is the opposite for those ben-
efiting from greater task reinstatement.

Table | provides estimates for the change in log hourly wages as the out-
come. Column 1 in Panels A and B report estimates of the bivariate relationships
shown in the top-left panels of Figs. 12 and 13. The regression coefficient for

29 Because this measure is based on predicted labor share declines over 1987-2016, we re-scale
it to a 37-year equivalent change that matches the length of time used for the dependent variables
(1980-2016).
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FIGURE 12 Reduced-form relationship between change in log hourly wages and change in log
hours worked per person vs. task displacement due to automation, 1980-2016. The top panel
presents bivariate scatter plots. The bottom panels present residual plots partialling out gender and
education dummies and changes in sectoral value-added shares. Marker sizes are proportional to
hours worked in 1980. Marker colors distinguish groups with different education levels.

task displacement is —1.65 (standard error = 0.10), while the coefficient for task
reinstatement is 2.32 (standard error = 0.19).

Column 1 in Panel C includes both explanatory variables together. The coef-
ficient for task displacement due to automation is now —1.19 (standard error =
0.23), and the coefficient for tasks reinstatement is 0.85 (standard error = 0.33).
The point estimates are attenuated compared to Panels A and B, especially for
new tasks, reflecting the fact that these two measures are negatively correlated.
Nevertheless, these two variables jointly explain a remarkable 67% of the ob-
served wage changes across worker groups in the US between 1980 and 2016,
with automation accounting for 46% and new tasks for the remaining 20%."

30 Throughout this section, we follow Klenow and Rodriguez-Clare (1997) and decompose the
total R? into contributions from subsets of the variables by equally distributing the covariance terms
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FIGURE 13 Reduced-form relationship between change in log hourly wages and change in log
hours worked per person vs. reinstatement due to new tasks, 1980-2016. The top panel presents
bivariate scatter plots. The bottom panels present residual plots partialling out gender and education
dummies and changes in sectoral value-added shares. Marker sizes are proportional to hours worked
in 1980. Marker colors distinguish groups with different education levels.

Note that these models do not include any other covariates, which means that
our task displacement and reinstatement measures alone are responsible for the
high explanatory power. Moreover, the high R? of these models shows that our
task measures do an excellent job at accounting for the divergent wage trends
across education and gender groups depicted in Fig. 6 and 8. This is because, as

between them. This means that the contribution of a covariate x; to the explanatory power of a
model of the form y =Y B;x; +u is

cov(xj, y)

2
R* fi i=B;-
rom x; = B; var(y)

By construction, these sum up to the model’s total R? when added across all variables (subject to
rounding).
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highlighted in Fig. 10, our measures predict that non-college workers lost more
tasks to automation and at the same time gain fewer new tasks than college
educated workers.

The parameter estimates also imply sizable effects from both variables. A
10 pp increase in task displacement for a demographic is associated with 11.9%
lower (relative) wages, while a 10 pp increase in task reinstatement is associated
with 8.5% higher (relative) wages.

Panel D leverages the fact that task displacement and reinstatement are con-
structed to be in the same units and are thus predicted to impact wages with
the same coefficient but opposite signs. This panel therefore combines these
measures into a single explanatory variable, “net task change,’constructed as
the difference between task reinstatement and displacement. This variable has
a positive and precisely estimated coefficient, 1.05 (standard error = 0.07). In-
terestingly, this restriction only leads to a small reduction in the explanatory
power of automation and new tasks, which, together, still account for 67% of
the total variation in wage trends between demographic groups. This estimate
implies that a 10 pp higher net task change is associated with a 10.5% increase
in relative wages.

The remaining columns in Table | explore the robustness of these reduced-
form relationships to the inclusion of various covariates. Column 2 controls for
sectoral value-added shares, with little effect on the coefficient estimates for task
displacement and reinstatement. Column 3 directly controls for sectoral shocks,
and controls for changes in sectoral TFP and markups. The results are once more
very similar, suggesting that automation and new tasks are distinct from these
sectoral trends. More tellingly, we find that the sectoral variables explain 3—8%
of the variance in wage trends across groups, while our task measures jointly
explain 62-64%.

More importantly, Columns 4 and 5 add the education and gender dummies
to the specifications from columns 2 and 3. In both specifications we continue
to estimate a sizable negative association between group outcomes and automa-
tion and a substantial positive association with new tasks, with point estimates
that are quite similar to those in column 1. Recall that education dummies ac-
count for the role of skill-biased (factor-augmenting) technologies benefiting
more educated workers. These specifications thus suggest that automation and
new tasks are distinct from these other forms of technological progress empha-
sized in previous literature. Moreover, the R?> decomposition in these columns
indicates that the explanatory power of education dummies is quite limited. The
educational dummies (together with gender dummies and sectoral covariates)
explain only 4-6% of the variance in wage trends across groups, while our task
measures continue to jointly explain 78—-80%. These decompositions imply that
the extensive-margin changes associated with task displacement and reinstate-
ment are more important drivers of wage trends between groups than the forces
commonly emphasized in the literature and captured by the educational dum-
mies and sectoral controls.
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TABLE 1 Reduced-form evidence: changes in real hourly wages regressed
on automation and new tasks, 1980-2016.

Automation task
displacement

R? for model

R? for automation
R? remaining covs
Observations

New tasks
reinstatement

R? for model

R? for new tasks
R? remaining covs
R? remaining covs

Automation task
displacement
New tasks
reinstatement

R? for model

R? for automation
R? for new tasks
R? remaining covs
Observations

Net task change (new
tasks-automation)

R? for model

R? for net task changes
R? remaining covs

R? remaining covs

Other covariates:
Sectoral value added
Sectoral TFP

Sectoral markups
Gender and education
dummies

Labor supply shifts

(1)

—1.65
(0.10)

0.64

0.64

500

2.32
(0.19)
0.56
0.56

500

—1.19
(0.23)
0.85
(0.33)
0.67
0.46
0.20

500

Dependent variables:
Change in log hourly wages, 1980-2016

(©)) 3 (C)) () 6)
Panel A. Only displacement from automation
—1.41 —1.50 —1.45 —1.41 —1.71
020)  (0.11)  (0.18)  (0.19)  (0.25)
0.66 0.69 0.82 0.83 0.76
0.55 0.59 0.56 0.55 0.67
0.11 0.10 0.26 0.28 0.09
500 500 500 500 492

Panel B. Only reinstatement from new tasks

2.09 2.37 1.76 1.56 2.18
035  (026)  (041)  (047)  (0.69)
0.56 0.59 0.78 0.77 0.26
0.51 0.57 0.43 0.38 0.53
0.06 0.01 0.35 040  —0.27

500 500 500 500 492

Panel C. Both explanatory variables

—1.18 -127 -128 —132 —155
023)  (022)  (0.16)  (0.17)  (0.22)
0.75 0.50 1.16 1.18 1.18
038)  (0.37)  (0.32)  (0.37)  (0.36)
0.67 0.69 0.84 0.84 0.77
0.46 0.50 0.50 0.51 0.60
0.18 0.12 0.28 0.29 0.28
0.03 0.08 0.06 0.04  —0.12

500 500 500 500 492

(@)

-1.75
(0.32)
0.76
0.68
0.08
492

2.94
(1.10)
0.07
0.71
—0.64
492

—-1.70
(0.29)
1.53
(0.47)
0.76
0.66
0.37
—0.27
492

Panel D. Net task change due to new tasks minus automation

1.05
(0.07)
0.67
0.67

500

1.05 1.00 1.24 1.29 1.46
0.14)  (0.08)  (0.13)  (0.17)  (0.19)
0.67 0.69 0.84 0.84 0.76
0.66 0.63 0.78 0.81 0.92
0.00 0.05 0.06 0.03  —0.16
500 500 500 500 492

v v v
v v
v v

v v v

v

1.67
(0.29)
0.75
1.06
~0.30
492

SNENEN

v

Notes: This table presents estimates of the relationship between automation, new tasks, and the
change in hourly wages across 500 demographic groups, defined by gender, education, age, race,
and native/immigrant status. The dependent variable is the change in log hourly wages for each
group between 1980 and 2016. Panel A reports results using only our task displacement measure.
Panel B only uses our task reinstatement measure. Panel C includes both task displacement and task
reinstatement on the right-hand side. Panel D combines task displacement and reinstatement into a
net task change measure. The bottom rows list additional covariates included in each specification.
In columns 6 and 7, we instrument changes in labor supply using changes in total hours worked
by group from 1970 to 1980. All regressions are weighted by total hours worked by each group in
1980, as in Acemoglu and Restrepo (2022). Standard errors robust to heteroskedasticity are reported

in parentheses.



64 Handbook of Labor Economics

Finally columns 6 and 7 control for labor supply changes, incorporating
the supply-side forces highlighted in Katz and Murphy (1992) and Card and
Lemieux (2001). These supply terms are measured as the total increase in hours
worked per group and instrumented using pre-existing trends in hours during
1970-1980. This strategy isolates the variation in hours due to demographic
trends and trends in educational attainment. Controlling for changes in labor
supply does not change the qualitative picture, but raises the explanatory power
of our task displacement and reinstatement measures. For example, in column
7 Panel C, automation accounts for 66% of variation in between-group wage
changes, and new tasks contribute another 37%, while the other variables have a
negative contribution. This reflects the fact that demographic trends from 1980
onwards, especially in educational attainment, have gone in favor of groups ex-
periencing more task displacement and less reinstatement during our sample
period, and thus, according to our estimated model, without the task displace-
ment and reinstatement developments, these groups would have experienced
higher—rather than lower—relative wage growth.

Table 2 turns to analogous specifications for hours worked. Column 1 reports
estimates of the bivariate relationship shown in the top panels of Figs. 12 and
13. In Panel A, the coefficient estimate for task displacement is —2.25 (standard
error = 0.30), and in Panel B, the coefficient estimate for task reinstatement
is 3.62 (standard error = 0.49). Panel C includes both explanatory variables
together, with the corresponding coefficients being, respectively, —0.82 (stan-
dard error = 0.39) and 2.61 (standard error = 0.71). In this specification, our
measures of task changes due to automation and new tasks explain 53% of the
variation in changes in hours worked across demographic groups between 1980
and 2016. The remaining columns show that the employment effects are also
fairly unchanged when we control for different measures of sectoral realloca-
tion, education and gender dummies, and supply-side factors.

7.5 Robustness

Acemoglu and Restrepo (2022) documented the robustness of the automation
results to several other specifications, including those that control for exposure
to imports from China and offshoring, those that allow for differential trends for
routine jobs and for industries experiencing labor share declines (the two con-
stituent components of our task displacement measure) and those that control
for the effects of minimum wages and union coverage. Similar results were also
obtained in stacked-differences models and when exploiting variation across US
regions.

In the Appendix, we show that the results reported here are robust to the
following variations. First, we obtain similar results when we construct the rein-
statement due to new tasks using wage-bill variation from 1980 (see Tables Al
and A2). Table A3 decomposes the employment effects into an extensive and
intensive margin changes. While the task displacement from automation has
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TABLE 2 Reduced-form evidence: changes in hours worked per person re-
gressed on automation and new tasks, 1980-2016.

Automation task
displacement

R? for model

R? for automation
R? remaining covs
Observations

New tasks
reinstatement

R? for model

R? for new tasks
R? remaining covs
Observations

Automation task
displacement
New tasks
reinstatement

R? for model

R? for automation
R? for new tasks
R? remaining covs
R? remaining covs

Net task change (new
tasks-automation)

R? for model

R? for net task changes
R? remaining covs
Observations

Other covariates:
Sectoral value added
Sectoral TFP

Sectoral markups
Gender and education
dummies

Labor supply shifts

Dependent variables:
Change in log hours worked per person, 1980-2016

()

—2.59
(0.78)
0.56
0.51
0.05
492

3.67
(1.86)
—0.09
0.51
—0.61
492

—2.55
0.77)
1.55
(0.85)
0.55
0.50
0.22
—0.17
492

2.39
(0.71)
0.53
0.81
—0.28
492

SNENEN

1) ) 3) “4) ©) (6)
Panel A. Only displacement from automation
=275 —1.58 —1.96 —1.83 —1.93 —2.21
030)  (0.40)  (027)  (040)  (041)  (0.61)
0.44 0.48 0.50 0.68 0.67 0.61
0.44 0.31 0.38 0.36 0.38 0.43
0.17 0.11 0.32 0.29 0.18
500 500 500 500 500 492
Panel B. Only reinstatement from new tasks
3.62 3.40 3.56 1.40 1.46 1.97
049  (091)  (046) (075  (091)  (1.19)
0.51 0.51 0.51 0.64 0.62 0.22
0.51 0.48 0.50 0.20 0.20 0.28
0.03 0.01 0.44 0.41 —0.06
500 500 500 500 500 492
Panel C. Both explanatory variables
—0.82 —0.81 —0.95 -1.75 —1.86 —2.13
(0.39) (0.40) (0.40) (0.40) (0.40) (0.59)
2.61 2.48 2.16 0.58 0.93 0.61
071) (095  (0.61)  (0.63)  (0.79)  (0.68)
0.53 0.53 0.53 0.68 0.67 0.61
0.16 0.16 0.19 0.34 0.37 0.42
0.37 0.35 0.30 0.08 0.13 0.08
0.02 0.04 0.26 0.17 0.11
500 500 500 500 500 492
Panel D. Net task change due to new tasks minus automation
1.52 1.32 1.37 1.41 1.63 1.76
0.19)  (032)  (0.17)  (030)  (0.33)  (0.49)
0.51 0.52 0.53 0.68 0.67 0.58
0.51 0.45 0.46 0.48 0.55 0.59
0.07 0.06 0.20 0.12 —0.01
500 500 500 500 500 492
v v v
v v
v v
v v v
v

v

Notes: This table presents estimates of the relationship between automation, new tasks, and the
change in hours worked per person across 500 demographic groups, defined by gender, education,
age, race, and native/immigrant status. The dependent variable is the change in log hours per person
for each group between 1980 and 2016. Panel A reports results using only our task displacement
measure. Panel B only uses our task reinstatement measure. Panel C includes both task displacement
and task reinstatement on the right-hand side. Panel D combines task displacement and reinstate-
ment into a single net task change measure. The bottom rows list additional covariates included in
each specification. As in Acemoglu and Restrepo (2022), we instrument changes in labor supply in
columns 6 and 7 using trends in total hours worked by group from 1970 to 1980. All regressions are
weighted by total hours worked by each group in 1980. Standard errors robust to heteroskedasticity

are reported in parentheses.
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a robust negative association with both margins, new tasks are more strongly
associated with increases in employment at the extensive margin. Finally, we
show in Table A4 that the coefficients on task displacement and reinstatement
variables are comparable when we estimate the models separately for workers
with and without a college degree. This exercise shows that the benefits from
new tasks and the costs of automation are visible even when focusing on these
specific segments of the labor force.

7.6 Taking stock

Our reduced-form findings support the main implications of the task framework:
task displacement due to automation has a sizable negative effect on the relative
wages of exposed groups, and reinstatement driven by new tasks has a sizable
positive effect on relative wages. These two variables explain at least 60% of the
total variation in between-group wage changes between 1980 and 2016. Con-
sistent with the expectation that these technology measures shift the relative
demand for labor from different skill groups, we find that they have commen-
surate effects on employment as well. The two measures together account for
approximately 53% of the variation in the changes in hours worked for the same
time period. In line with our theory, the estimates also suggest that technologies
that cause extensive-margin changes (thus reallocating tasks from one factor
to another) explain the bulk of variation in the changes in the wage and em-
ployment structure, and have much greater explanatory power than proxies for
factor-augmenting and sectoral technology variables.

Despite the clear empirical associations uncovered here, it is important to
exercise caution in interpreting these reduced-form results. First, our proxies
for factor-augmenting and sectoral changes are imperfect. The education dum-
mies may capture other trends as well as factor-augmenting technologies, while
the reduced-form estimates of the contribution of sectoral variables may be
attenuated. Second, we are ignoring ripple effects, which link the wages of a
skill group to the task displacement experienced by other groups of workers—
especially when there are high levels of substitutability between the groups in
question. Third, productivity effects are subsumed into the constant. All of these
considerations motivate our approach in the next section, which further lever-
ages the structure of the model to estimate the propagation matrix and productiv-
ity implications of different types of technologies, and performs counterfactual
exercises to measure their contribution to the changes in wage inequality since
1980.

8 Estimation of general equilibrium effects and
counterfactuals

This section uses the task model to quantify the equilibrium effects of differ-
ent technologies on the US wage structure. We use the equations characterizing
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the impacts of technology, inclusive of the ripple effects. We implement these
equations using the measures of the direct effects of different technologies in-
troduced above, and combine them with external information on a number of
key elasticities of substitution and our estimates of the propagation matrix.

This exercise adds to the reduced-form findings in three ways. First, it ac-
counts for the effects of technology on wage levels working via the productivity
effect. As explained previously, the reduced-form evidence is informative about
relative change in wages and employment for exposed groups—but not about
the effects of different technologies. Second, it enables us to estimate ripple
effects. Finally, this exercise incorporates the effects of technology working
through changes in sectoral composition. Reduced-form models controlled for
sectoral shifts but did not estimate the effects of different types of technologies
working through the sectoral changes that they induced. Our results from this
structural exercise suggest that automation and new tasks are important drivers
of the changes in the US wage structure.

8.1 General equilibrium effects of technology and markups

Our objective is to estimate separate effects of automation, new tasks, Hicks-
neutral sectoral productivity (TFP) shifters and markups on hourly wages. We
return to the contribution of factor-augmenting technologies later. The analysis
can be expanded to include other factors, but we do not do so to keep the chapter
focused on the consequences of technology trends.

From Propositions 9 and 10, the change in group wages can be written as

dlnw:@-Stack(dlny—dlnM—dlnI‘gum—i—dlaneW

—-Q —A)-ngi -dInA; —A-ngi -dlnp;
i i

+(A—n)~2wgi~dlnpi>+v.

i

In this equation, v is an error term subsuming all other forces shaping the wage
structure. The endogenous price changes {d In p;}; associated with these shocks
satisfy

dinp; =5y ~dlnwg — Y 53" -dIn DO . g2 ngl dInTie™ e
g

—dInA; +dInp;. 41

To determine the effects of these technologies on output, we simplify the anal-

ysis by assuming that, initially, u; = 1 for all i. This assumption implies that
the sectoral value-added shares are equal to sectoral cost shares and that, as in
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Section 5, the change in aggregate output, d In y, is determined by the following
equation, which relates average wage changes to changes in TFP and markups:

D sy edinwg =) ;- ng’ ~dInTg . i
8 i
+Zsyf dInT™Y . 7Y 4 d1n A; — dlnuw; 42
g’ gi "lgi i i |- (42)

Because we are looking at first-order approximations, these three equations pro-
vide an additive decomposition of the contribution of technologies and markups.

To implement this decomposition, we need estimates of (i) initial factor
shares; (ii) elasticities {X, n}; (iii) direct task displacement and reinstatement,
{dIn Fg‘“o, dln Fgew} ¢; (iv) sectoral TFP growth, {d In A;};, and sectoral markup
changes {d In u;};; and (v) the propagation matrix, ®.

e For (i), we take factor shares directly from the Census data matched to the
BEA-BLS industry accounts.

e For (ii), we set A = 0.5 and n = 0.3. The task-elasticity of substitution A
comes from Humlum (2020), who estimates it on Danish manufacturing data.
The estimate for the sectoral elasticity of substitution is from Buera et al.
(2021) and is a standard value used in the structural transformation literature.

e For (iii), we continue to use the measure of new task reinstatement in (40), but
a slightly different measure for task displacement due to automation, given
by

yi,auto

—Alnsj
L+ — 1)) - e

1

dln FZ,“,-“O = RCA routine,; - (43)
for group g in industry i. This expression differs from the measure used in
the reduced-form analysis, Eq. (38), because of the term (A — 1) - 5" - 77,
in the denominator, which adjusts for the effect of automation on the labor
share working via substitution towards the cheaper newly-automated tasks.
The earlier expression obtains when A = 1. We used this restriction in our
reduced-form analysis to simplify the exposition. Here, we construct the ad-
justment term using A = 0.5 and 7" = 30%. Total task displacement due
to automation d In Fa““’ aggregates the new measures for d In Fa”m across in-

dustries, as in Eq. (39).3l

To obtain cost savings from these technologies, we follow Acemoglu and
Restrepo (2022) and set mg; = 30%. This choice is motivated by available
estimates of cost savings due to the adoption of industrial robots in US man-
ufacturing. This choice assumes the same savings for automation in other

31 The reduced-form results are very similar with the adjusted measure shown here and other vari-
ants, and are presented in the Appendix of Acemoglu and Restrepo (2022).
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sectors, which is an assumption that can be relaxed in the future using ad-
ditional data. For new tasks, we set n;iew = 30% for symmetry, since we do
not have direct estimates of the surplus generated by new tasks. This number
implies that a 10% increase in new tasks for all worker groups would raise
TFP by 3%, which is a reasonable number.3?

e For (iv), we estimate the sectoral Hicks-neutral productivity shifters

{dIn A;};’s by subtracting the implied TFP gains due to automation and
new tasks from observed industry TFP changes. The left panel in Fig. 14
depicts observed industry TFP changes together with the implied estimates
for the dIn A;’s.>> Computers and electronics and transportation pipelines
experienced the largest sectoral productivity increases, while legal services
and transportation services experienced the least. Overall, the two series are
highly correlated, but there are some notable exceptions, such as motor ve-
hicles, where observed TFP exceeds our estimate for dIn A; by a sizable
amount, since this industry has made large automation investments during
this period.
For markups, we use the estimates from Hubmer and Restrepo (2021). These
are estimated using the production function approach and Compustat data as
in De Loecker et al. (2020), but allow firm-level output elasticities to vary by
size, and also aggregate these markups using their sales-weighted harmonic
mean to obtain aggregate industry markups. These estimates are shown in the
right Panel of Fig. 14.

8.2 Estimating the propagation matrix
The wage equation in the multi-sector model, (28), can be rewritten as

1 Iy
A dlnw

-stack(AInwg) +ug,

(44
where X is a vector that contains sectoral shifts and education and gender dum-
mies, proxying for other technological trends. Rather than solving out for the
vector of wage effects using the propagation matrix as in (28), here we include
the vector of wage changes for other demographic groups on the right-hand side,
which highlights that these will impact the wage of group g via the gth row of
the task-shares Jacobian matrix, g}gg) . The error term u contains all unobserved

labor demand and supply shocks impacting demographic group g.

1
Alnw, = X~(dlnl“;ew—dlnr‘gum)—f—ﬂXg—l-

32 Our prior is that this number should be bigger since new tasks enable various efficiency-
enhancing improvements and the reorganization of production process as explained in footnote 14.
Nevertheless, we choose 30% to err on the conservative side.

33 For simplicity, our theory used value-added production functions at the industry level (with ma-
terial inputs solved out). To match this choice, we use measures of value-added TFP instead of
gross-output TFP. While it would be preferable to use measures of TFP for gross output (so that
they can be readily interpreted as technology), this would require modeling input-output linkages
across industries, which we do not pursue for this chapter.
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FIGURE 14 The top panel depicts the percent change in TFP (in blue) and Hicks-neutral tech-

nology (in orange) for US industries. The Hicks-neutral component is obtained by subtracting the

contribution of new tasks and automation to sectoral TFP. The bottom panel provides estimates for

the change in markups across US industries, from Hubmer and Restrepo (2021).

Our strategy is to estimate the Jacobian using GMM (Generalized Method

of Moments). In this estimation, we impose external values for A and use the

orthogonality conditions

,XgJ_ug/ forg,g' €G,

new
8

auto
2 ,dInl’

dInT"

which impose that task displacement and reinstatement terms as well as the

education and gender dummies and sectoral shifters in X, are orthogonal to
the error term. This orthogonality assumption was implicit in the reduced-form
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models estimated in the previous section. Once the Jacobian matrix is estimated,

dlnl"
dlnw

The Jacobian is a G x G matrix, and hence it would be impossible to esti-
mate all of its entries in an unrestricted fashion. Instead, we follow Acemoglu
and Restrepo (2024) and parameterize the entries of the Jacobian in terms of
similarities between groups.** This approach operationalizes the intuitive idea
that the Jacobian matrix is informative about the extent of substitutability be-
tween groups and such substitutability should depend on how similar the groups
are. We assume that the off-diagonal terms of the Jacobian (for g’ # g) can be
parameterized as

the propagation matrix can be obtained as ® = % . (]1 - % .

dInly y
Blnwg ¢+ng,, S

. [y + Yjob - jOb 51mllaritygg/ + Vedu-age - €du-age similaritygg/] ,
while the diagonal terms take the form

dInl, y "
Tl I R e DY DL
nog'#g
. [y + Yjob - job Similaritygg/ + Yedu-age - €du-age similaritygg/] .

This parameterization implies that competition for marginal tasks between
skill groups takes place within job categories, denoted by #. In the data, we as-
sume that there are 96 job categories, given by combinations of 16 aggregated
industries and six aggregated occupations. The summation terms indicate that
the effects of competition from group g’ on group g in category n depend on the
importance of this category for group g, summarized by the share of category n
in the total wage payments for group g (wg,), and the share of wage payments
in job category n accruing to group g’ (s;f,). Both of these objects are computed
from the 1980 Census. Intuitively, groups with greater wage shares should gen-
erate more competitive pressure on other groups in the same job category, as
implied, for example, by the Frechet parameterization of comparative advan-
tage in Section 4. In addition, the three terms in square brackets represent three
dimensions of competition between groups. The first, with coefficient y > 0,
corresponds to the component of competition that is common to all workers in a
job category. The second, with coefficient yjop > 0, is from the similarity of the
jobs performed by the two demographic groups. In particular, we use the cosine
similarity of job categories performed by groups g’ and g in the 1980 Census.
This functional form is also motivated by the Frechet example, where a higher

34 In Acemoglu and Restrepo (2022), we directly parameterized and estimated the propagation
matrix. We prefer the current approach because it is easier to develop an intuition about the entries
of the Jacobian, which correspond to first-round ripple effects (rather than the Leontief inverse of
this matrix, which depends on higher-round ripples).
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correlation in task-level productivities results in higher substitutability. The third
term, with coefficient yYedu-age > 0, parameterizes the extent to which competi-
tion for tasks is stronger for workers of similar education and experience, as
in Card and Lemieux (2001). We compute this similarity measure as follows:
we run a Mincer wage equation for log hourly wages in 1980, as a function of
age and education dummies, and then construct the education-age similarity be-
tween two groups as the inverse distance between the predicted wage level of
groups g and g’ in 1980. This procedure captures how similar the two groups
are in terms of their education and age, with each of these dimensions weighted
by their Mincer coefficients.

Finally, the parameter ¢ > 0 regulates the extent of competition between
capital and workers for marginal tasks, which is assumed to be uniform across
groups. Our parametrization implies that the row sums of the Jacobian are equal
to —sk - ¢. Using the definitions in Section 4, we see that the macroeconomic
elasticity of substitution between capital and labor is op = A + ¢.> We set
¢ = 0.1, so that o} matches estimates of the elasticity of substitution between
capital and labor in Oberfield and Raval (2021) of around 0.6. This parameter-
ization therefore fixes the row sums of the Jacobian, 3%25} and allows the data
to determine the y coefficients, which determine the strength of competition for
marginal tasks between different groups.

Table 3 reports our estimates for the y’s obtained from Eq. (44). For these
estimates, we additionally impose the restriction that y, yjob, Yedu-age > 0. When
we include all three terms simultaneously, the first two are estimated to have
zero coefficients (given our nonnegativity constraint) and the spillover patterns
are explained by the education-age similarity measure, as in the specifications
in columns 3 and 6. In what follows, we take column 3—which has y = 0,
Yjob = 0, and Yequ-age = 0.8—as our preferred specification.

The estimated propagation matrix has an average diagonal of 0.84, and the
row sum of the off-diagonal terms is about 1. This implies that workers from
group g bear about 45% of the incidence of a direct shock reducing their labor
demand, with the rest being shifted to other groups via competition for marginal
tasks.

Another way to illustrate the structure of the estimated propagation matrix is
by looking at the implied elasticity of substitution between skill groups. Fig. 15
provides this information by computing the unweighted average of pairwise
elasticities of substitution across indication groups (on the left) and age groups
(on the right). The average elasticity of substitution between groups with a col-
lege and postgraduate degree is estimated to be 2, while the average elasticity
of substitution between groups with a college degree and those without a high
school degree is 0.95.

35 Recall that due to symmetry, oy, = Ogr. Moreover, we can write Ogr = A +

alnT . . I . . .
% =X o anln i](lf}) ), since a change in the cost of capital is equivalent to an increase in all wages.
Sk g

This implies oy = ogr = A + ¢.
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TABLE 3 Estimates of the task-shares Jacobian.

Dependent variables:
Change in log hourly wages, 1980-2016

(1 2) (3) @) ) (©)
Baseline competition y 1 0.33

(0.13) (0.16)
Job-similarity 0.74 0.68
competition Yjob (0.21) (0.25)
Education-age 0.80 0.84
COMPELItion Vedy-age (0.22) (0.31)
Observations 500 500 500 500 500 500
Covariates:
Gender and education v v v v v v
dummies
Sectoral value added v v
control
Sectoral TFP and v v v
markups

Notes: This table presents estimates of the (task share) Jacobian, using the parameterization in
Section 8. The estimation equation can be written as o Alnwg + dInT3"° — dInTP™Y = X, +
y - Zg/ Do wgn ‘s;, “(Alnwy — Alnwg) + ¥joh - Zg/ Do wgn ‘s;, - job similarity ., - (Alnw, —
Alnwg) + Yedu-age * 2g/ 2n @gn ~s;/ - edu-age similarity .,/ - (Alnw,s — Alnwg) + ¥, where g and
v are linear transformations of g and v respectively. The ripple terms are instrumented using
Zg/ Do wen -s;’, . (Alnﬁ)g/ — Alnig), Zg/ Do wen -s;, - job similarity , ./ - (Alnlﬁg/ — Alnig) and
Do/ 2n @wgn - 5y, - edu-age similarity , o - (Alnib, — Alnidg), respectively, where Alnig is the pre-
dicted wage change based on task displacement, task reinstatement and the covariates. Columns 1
and 4 present estimates for y excluding the other two spillover terms. Columns 2 and 5 present esti-
mates for yjqp, excluding the other two spillover terms. Columns 3 and 6 present estimates for yeqy_age
excluding the other two spillover terms. When all three measures of competition are included and the
restriction that they must have non-negative coefficient is imposed, the first two are estimated to have
zero effects and the results are identical to those in columns 3 and 6. All estimates are weighted by

total hours worked by each group in 1980. Standard errors robust to heteroskedasticity are reported
in parentheses.
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FIGURE 15 The figure reports average elasticities of substitution between educational and age
groups. These averages are obtained from our estimates of the propagation matrix.
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8.3 Decompositions

We first illustrate the effects of each type of technological change, highlighting
the different pathways via which they affect labor demand.

Fig. 16 depicts the effects of automation. The panels plot estimates of the dif-
ferent mechanisms, which we accumulate from left to right, with the rightmost
panel corresponding to the total effect of the technology in question. The vertical
axes show the model estimates (in units of change in hourly wages from 1980
to 2016), while the horizontal axis ranks groups according to hourly wages in
1980. Panel A starts with the productivity gains from automation, (1/A) -dIny.
We see here that automation increased output by 20% over this period, which
raised the wages by 40%.

. A. Productivity effect - B. Adds sectoral shifts - C. Adds task displacement - D. Adds ripples
0% T 89 0% et WY . s o
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FIGURE 16 This figure decomposes the effects of automation on hourly wages between 1980
and 2016 into four components. Panels sequentially add productivity effects, industry shifts, task
displacement from automation, and ripple effects. The horizontal axis ranks groups according to
hourly wages in 1980. Marker sizes are proportional to hours worked in 1980, and marker colors
distinguish groups by education.

Panel B adds the effects of automation working through changes in the sec-
toral composition of the economy by plotting (1/A) - (dIny + (A — 1) Y_; wgi -
dIn p;). Note that here we only account for the change in sectoral prices due
to automation, computed according to Eq. (41). The change in sectoral prices
due to automation does not generate much variation in terms of relative wage
changes. This is because the skill composition of sectors expanding due to au-
tomation is similar to the rest.

Panel C adds the direct task displacement due to automation and plots
(1/A)-(dIny —d1In Fgum + (A —n) Y ; wgi -dIn p;). The uneven impacts across
groups are now clearly visible. For example, task displacement reduces the
wages for some groups by as much as 30%, while the real wages of highly-
educated groups shielded from automation increase by more than 40%. This
panel confirms that automation works primarily by displacing workers from
their tasks, shifting labor demand within sectors—rather than by shifting the
sectoral composition of the economy, as in Panel B.

Panel D adds the ripple effects generated by automation. We see here that
ripples play an equalizing role, consistent with our discussion in Section 5. This
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is because groups that experience a large reduction in their task share due to au-
tomation are able to compete for marginal tasks previously performed by other
groups. This reallocation spreads the negative incidence of automation to other
groups and mitigates the adverse effects on exposed groups. Our estimates imply
that high school graduates experienced on average a 4.3% wage decline due to
automation, and groups with less than high school experienced even steeper de-
clines of 8.1%. College graduates and postgraduates, on the other hand, enjoyed
17.6% and 22.9% wage increases from automation. Underscoring the equalizing
role of the ripple effects, the declines in the real wages of high school gradu-
ates and less than high school groups would have been, respectively 10.1% and
16.2%, if these groups had not been able to compete for marginal tasks and shift
some of the burden of task displacement to other groups.

Fig. 17 depicts the estimated effects of new tasks on wages from 1980 to
2016. The panels have the same organization as before. Our estimates imply
that new tasks reduce output by a small amount. This does not mean that the
economy is made less productive by new tasks. In fact, new tasks raise TFP
by 5%, and average wages and aggregate consumption by 7%. The reason why
output declines is because new tasks make the production process less capital
intensive and as a result the share of capital and investment decrease (recall the
relationship between TFP change and output change in footnote 10).

A. Productivity effect B. Adds sectoral shifts C. Adds task reinstatement D. Adds ripples
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FIGURE 17 This figure decomposes the effects of new tasks on hourly wages between 1980 and
2016 into four components. Panels sequentially add productivity effects, industry shifts, task rein-
statement from new tasks, and ripple effects. The horizontal axis ranks groups according to hourly
wages in 1980. Marker sizes are proportional to hours worked in 1980, and marker colors distin-
guish groups by education.

New tasks benefit all groups but generate more pronounced gains for highly-
educated and highly-paid workers. New tasks thus contributed to rising inequal-
ity, even if by a much smaller amount than automation. This result aligns with
our reduced-form findings, where automation explains a larger share of the ob-
served variance in wage trends than do new tasks. The overall wage increase
due to new tasks ranges from 5.30% for groups with less than high school to
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10.1% for college workers in Panel C. This heterogeneity is, as usual, further
compressed by the ripple effects in Panel D.*°
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FIGURE 18 This figure decomposes the effects of sectoral TFP changes on hourly wages between
1980 and 2016 into four components. Panels sequentially add productivity effects, industry shifts,
effects via task prices, and ripple effects. The horizontal axis ranks groups according to hourly
wages in 1980. Marker sizes are proportional to hours worked in 1980, and marker colors distinguish
groups by education.
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FIGURE 19 This figure decomposes the effects of sectoral markups on hourly wages between
1980 and 2016 into four components. Panels sequentially add productivity effects, industry shifts,
direct effects of markups, and ripple effects. The horizontal axis ranks groups according to hourly
wages in 1980. Marker sizes are proportional to hours worked in 1980, and marker colors distinguish
groups by education.

Figs. 18 and 19 plot the results for sectoral TFP changes and markups, which
are estimated to have modest distributional implications. Changes in sectoral
TFP increase wages for all groups by about 15%. Due to the fact that n < 1,
they also reallocate labor towards high-skill services, which benefits workers
with a post-graduate degree.’’

36 New tasks increase the total mass of tasks M by dlnM = (1 — (A — 1) - ngew) . deg sgL .
dIn I'g®". This effect is common to all workers and is included in Panel C.

37 This is in line with previous work by Buera et al. (2021), who also document that the process of
structural transformation in the US raised the relative demand for college-educated workers.
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Markups reduce output and real wages, but affect groups uniformly. This is
because the sectors experiencing the most pronounced increase in markups are
similar to the rest in terms of the composition of their workforces.

Fig. 20 aggregates the effects of automation, new tasks, sectoral TFP
changes, and markups for 1980-2016 and compares their estimated wage im-
pacts to observed wage changes in this period. These trends combined account
for 72% of between-group wage changes from 1980 to 2016.

Actual vs. predicted wage change, 1980-2016
60% G y
40%
20%

Postgraduate

* College

Some college
Highschool
Highschool dropout

0%

Model-implied wage change, 1980-2016

-20%

-26% O‘I% 20|% 46% SOI%
Observed wage change, 1980-2016
FIGURE 20 The figure plots observed wage changes in (real) hourly wages, 1980-2016, vs. pre-
dicted changes based on the combined effects of automation, new tasks, sectoral TFP changes, and
sectoral markup changes estimated using our model.

Table 4 summarizes the individual contribution of the different technologies
studied here and sectoral markups to the observed wage changes. Automa-
tion technologies introduced since 1980 account for 55% of the observed wage
trends across worker groups. New tasks contributed 8.7%, as they have favored
highly-educated workers the most. Changes in sectoral TFP contributed 7.5%,
while changes in sectoral markups had minor effects.

The second column reports predicted average wage growth coming from
each source. Despite generating large distributional effects, automation brought
a modest increase in average wages of about 4.4%. The opposite holds for
Hicks’ neutral sectoral TFP improvements, which increased average wages by
15.4%, with modest distributional effects in comparison. Overall, predicted
wage growth from the model exceeds the composition-adjusted real wage
growth in the US economy over the same time period, which is about 5%. This
could be because other factors (for example, related to non-competitive ele-
ments in the labor market discussed below) may have put additional downward
pressure on wages.

Fig. 21 provides additional details on the impacts of different types of tech-
nologies on the wage structure. It depicts the contribution of the same four
factors to the wage premium earned by college-educated workers relative to
those with high school or less; the premium of college-educated workers relative
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TABLE 4 Share of variance in wage trends across groups explained by differ-
ent technologies and markups.

Share wage changes Contribution to average
explained, 1980-2016 wage growth, 19802016
(1 )
Automation 55.34% 4.38%
New task creation 8.70% 7.06%
Sectoral TFP changes 7.47% 15.39%
Markups 0.69% —3.87%
Total 72.20% 22.96%

Notes: Column 1 reports the contribution of the indicated technology term to observed wage changes
across 500 demographic groups between 1980 and 2016. This is weighted by total hours worked by
each group in 1980. Column 2 reports predicted average (real) wage growth between 1980 and 2016
from the indicated types of technological change.

to those with some college; and the premium earned by postgraduate workers
relative to those with a college degree. Automation is the most important driver
of the increase in the college premium and also plays an important role in ex-
plaining the rising postgraduate premium. New tasks and sectoral TFP trends
also contributed to the rising college premium, though with a smaller role than
automation. Sectoral TFP trends had a more prominent role in explaining the
rise in the postgraduate premium since 1980, partly because a few sectors that
disproportionately employ postgraduates, such as legal services and health care,
experienced lackluster productivity growth, which led to their expansion as a
share of value added.

College+Post vs. High School+Below College+Post vs. Some College Postgraduate vs. College
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FIGURE 21 The figure reports the estimated contribution of technology and markups to the
changes in various educational premia, 1980-2016. The bars represent the effects of different tech-
nologies or sectoral markup changes.
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8.4 Limited distributional impacts of labor-augmenting technologies

Our decomposition exercise ignored the role of labor-augmenting technological
changes, because we have no direct measures of such technologies. In this sub-
section, we perform a bounding exercise to show these technologies are unlikely
to be important drivers of the changes in the US wage structure between 1980
and 2016.

We consider three types of technological changes: automation, uniformly
labor-augmenting technologies, and labor-augmenting technologies at the in-
tensive margin. For each technology, we consider a shock that generates a 1%
increase in TFP and then trace its contribution to inequality. Because each of the
shocks we are considering is chosen to raise TFP by 1%, we know from theory
that their impact on average wages is to increase them by 1.5% (this follows
from s - dInwg =dIntfp).

In the top panel of Table 5, we investigate how large the distributional ef-
fects of automation are relative to their TFP impact. We consider advances in
automation equally affecting all skill groups with the same education level.
For example, the first row considers the hypothetical effects of advances in au-
tomation affecting only high-school dropouts, and reports the effects of these
advances on the wages of workers of different educational levels (in each case
averaged across demographic groups with the same level of education). In this
exercise we keep ngm" fixed and set the fraction of automated tasks to ensure a
1% increase in aggregate TFP.

Panel A shows that automation has significant distributional effects. For in-
stance, a (uniform) automation shock impacting all groups with less than high
school reduces these groups’ own wage by, on average, —21.88%. The impact
on other demographic groups, operating via the productivity and ripple effects,
is positive. For instance, the effect on college-graduate groups is an 8.07% in-
crease. This implies that automation affecting workers with less than high school
is increasing inequality between this group and college graduates by about 30%.

Panel B shows positive but comparatively much smaller effects on own
group wages from uniformly labor-augmenting technologies, which reflects the
fact that the macroeconomic elasticities between groups (taking into account
the ripple effects) are close to 1. For example, a technological improvement
raising the productivity of workers with less than high school degree uniformly
increases their wages by 2%, and has a very similar impact on groups with col-
lege or more. The quantitative pattern in the other rows is similar: uniformly
labor-augmenting technologies have a limited effect on inequality and generate
similar wage gains across all educational groups.

Panel C of Table 5 repeats this exercise for labor-augmenting changes at
the intensive margin. As highlighted in Proposition 6, these technologies have
a more negative impact on the group experiencing the increase in productivity
because they do not generate the same beneficial impact via competition for
marginal tasks. This is why the diagonal in Panel C with the own-group effects is
negative. Despite reducing the wages of exposed groups, the effects of this form
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TABLE 5 Effects on average wages due to a 1% increase in TFP by demo-
graphic group.

Effects on average real hourly wages (%):

Shock to High School High School Some College Postgradu-
Dropout Graduate College ate
Panel A. Automation
High School Dropout —21.88 4.25 5.98 8.07 8.86
High School Graduate 4.15 —8.57 5.38 7.06 8.05
Some College 5.8 5.26 —13.41 5.9 6.68
College 7.96 6.92 5.71 —27.65 3.13
Postgraduate 9.12 8.15 6.47 2.63 —27.86
Panel B. Uniform factor-augmenting
High School Dropout 2.02 0.84 1.34 1.94 2.16
High School Graduate 0.81 1.85 1.16 1.65 1.93
Some College 1.29 1.13 2.29 1.32 1.54
College 1.91 1.61 1.26 2.30 0.51
Postgraduate 2.24 1.96 1.48 0.36 0.84
Panel C. Intensive-margin factor-augmenting
High School Dropout —2.11 1.88 2.20 2.56 2.75
High School Graduate 1.85 —0.03 2.09 2.38 2.58
Some College 2.16 2.06 —0.74 2.17 2.32
College 2.54 2.35 2.14 —2.91 1.67
Postgraduate 2.78 2.59 2.27 1.60 -3.16

Notes: This table shows the effects on average wages in demographic groups due to a rise in factor-
augmenting technologies that result in a 1% increase in TFP. The detailed breakdown by panel
facilitates understanding of the differential impact across various scenarios of technological advance-
ment and educational strata.

of technology on inequality are modest, especially when compared to the effects
of automation in Panel A. For example, an intensive-margin labor-augmenting
technology raising the productivity of skill groups with less than high school
reduces their wages by about 2.11% and increases the wages of other groups
by 1.88%-2.75%, thus amounting to a 4.5% widening of between-group wages.
This quantitative impact is an order of magnitude smaller than the distributional
implications of automation technologies.

The limited distributional impacts of labor-augmenting technologies are
also implied by the small explanatory power of the education and gender
dummies estimated in the reduced-form models, recalling that these flexibly
subsume education-augmenting and gender-augmenting technological develop-
ments. Overall, factor-augmenting technologies appear to have fairly limited
distributional effects in this framework.

We have so far emphasized the success of the task framework in accounting
for various recent labor market trends. We conclude this section by highlighting
two puzzles that this framework generates, which require further work.

8.5 The missing technology puzzle

Our decomposition exercise focused on accounting for wage changes across
skill groups. A related but distinct exercise is to explore the contribution of dif-
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ferent technological trends to total demand shifts. Since 1980, the US workforce
has become significantly more educated, which translates into large changes in
the size of more educated skill groups. As emphasized in Katz and Murphy
(1992), all else equal, this demographic shift should have raised the relative
wages of less educated workers. From the viewpoint of the standard relative
supply-demand framework, this implies that the relative demand changes have
been even larger and have favored the more educated groups.

Following Katz and Murphy (1992), we can use the framework here to quan-
tify the extent of these demand shifts. In particular, given the propagation matrix
®, which summarizes all the relevant elasticities, the demand shifts across de-
mographic groups since 1980 can be computed as

demand shift, = Alnwg + ®, - stack(A In populationg + Alnéy), 45)

where AlInpopulation, are changes in log group size and Aln¢, denotes
changes in log hours per capita. This expression leverages the fact that the prop-
agation matrix also controls how changes in the supply of skills affect wages, as
explained in Proposition 7.
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FIGURE 22 The figure plots the total demand shifts computed from Eq. (45) between 1980 and
2016 for 500 demographic groups. These are compared to observed wage changes during this period
in the horizontal axis. Marker sizes are proportional to hours worked in 1980, and marker colors
indicate education levels.

Fig. 22 compares the measured demand shifts with observed wage changes
and underscores the point we made above: demand shifts are more pronounced
than wage movements because supply shifts have favored low-education and
low-pay groups. But then, what explains these demand shifts? According to our
estimates, automation explains about 14.5% of the total demand shifts, while
new tasks explain about 2.1%, and sectoral TFP and markups explain 1.4% and
0.1%, respectively. Close to 82% of relative demand shifts remain unexplained.
Since, as we have argued, factor-augmenting technologies are unlikely to con-
tribute much to these between-group shifts, our framework highlights a puzzle:
a sizable share of the implied relative demand shifts in the US economy since
1980 remains unexplained.
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8.6 The incidence puzzle

Our reduced-form evidence revealed sizable effects of automation and new tasks
on wages and employment. A natural way to think about employment effects is
to introduce an endogenous labor supply margin so that demand shifts induce
moves along an upward-sloping labor supply curve. For example, we may posit
that the quantity of labor from skill group g is determined according to the labor
supply schedule

leg=Xg- wg,,
where ¢ > 0 is the net elasticity of labor supply (inclusive of income effects)
and mg a supply shifter. The case of inelastic labor supply studied so far is
obtained when ¢ = 0. This labor supply curve can be the result of frictions (as in
Kim and Vogel, 2021) or derived from household optimization with quasi-linear

preferences (as in Acemoglu and Restrepo, 2022).
Proposition 9 extends to this environment, with now

dlnw:@*-stack(dlny+2a)gi - Zgi +(A—n)-za)gi -dlnpi),

1 1

where the propagation matrix, inclusive of endogenous supply responses, takes

the form
-1
o 1 (]l 1 0 lnl"(w)) .

:)\—i—s. _)L—i—e. Jdlnw

The key difference with the previous matrix is that in place of A, we have
A + ¢. This extra term captures the intuitive fact that wage effects are less pro-
nounced when labor supply is elastic since more of the adjustment takes place
via quantities. Endogenous labor supply responses also weaken ripple effects,
as lower hours worked for (negatively) affected groups means less competition
for marginal tasks.

The incidence puzzle is that for realistic values of the labor supply elasticity,
it is hard to make sense of the sizable reduced-form coefficients on our task
variables. There are two ways of seeing the problem. First, as in a standard
incidence analysis (and ignoring all general equilibrium interactions), the effect
of a 1% decline in labor demand (measured as the shift in quantity demanded at
constant prices) should be to reduce wages and employment by

- shift in demand

dlnu)gz—(I e
g

dinly =— - shift in demand,

og+¢€
where oy is the demand elasticity for group g labor. This elasticity exceeds A
in our model, and so the incidence of a demand shock on wages and employ-

ment must be bounded above by )Llﬁ and A‘%, respectively. Ripple effects and
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other forces should, if anything, dampen the incidence of demand shocks, which
means that these are upper bounds.

Alternatively, one can follow the derivations in Section 2, which imply that
the row sum of ®* should be less than or equal to 1/(A + ¢). This places the
same bound on our reduced-form estimates of the incidence of demand shocks
on wages and employment.>®

The value of A = 0.5 from Humlum (2020) and the estimate for ¢ = 0.5
reported in Chetty et al. (2011) yields an upper bound on the incidence rate
of 1 for wages and 0.5 for employment, both of which are exceeded by our
empirical estimates in Tables | and 2, centered around 1.25 for wages and 1.4
for hours worked per person. The root of the puzzle is the large estimates for
employment. One could make sense of the estimated incidence on wages by
positing lower values for A or ¢, but this would still predict an incidence in
employment below 1.

The incidence problem is neither a technical problem nor an entirely new
one. Rather, it reflects the fact that with elastic labor supply responses, it be-
comes impossible to generate large wage changes in general, as most of the
adjustment is in quantities rather than prices.

We conjecture that both puzzles are related to the assumption that labor
markets are fully competitive, and introducing non-competitive elements would
provide at least a partial solution to both puzzles. For example, when the labor
market is non-competitive, the implied relative demand shifts could be a sig-
nificant exaggeration of the true changes in relative demand, which could be
one reason why there appears to be a missing technology puzzle, and why em-
ployment responses are larger than predicted by the competitive benchmark.
Relatedly, the presence of rents (wages that are above the opportunity cost
of labor) for some groups, for instance as in Acemoglu and Restrepo (2024),
would multiply the effects of automation on wages but also shift the economy
off the labor supply curve. Such non-competitive elements could also amplify
task displacement because they can induce additional automation as a means of
dissipating rents accruing to certain worker groups.

9 Conclusion

This paper has reviewed and extended the recent literature on the task frame-
work, where the production process is explicitly modeled as being based on the
allocation of a range of tasks to different factors of production.

38 The corresponding equation for employment becomes

i l

dlntg =¢-©* - stack (dlny-i—ngi~zgi+()~—n)-2a)gi -dlnp,-).

The reduced-form estimates are now bounded above by ¢ times the row sums of ®*, which are less
than 3£
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The task model provides an attractive tool for studying ongoing labor market
transformations in the United States and other industrialized nations for several
reasons. To start with, an essential aspect of these transformations appears to
be related to large changes in the nature of tasks—and occupations—that dif-
ferent types of workers perform in the labor market. Moreover, both the wage
and occupational changes appear to be related to the rollout of new automation
technologies that have substituted capital equipment and algorithms for tasks
previously performed by some worker groups (Autor et al., 2003; Acemoglu
and Autor, 2011; Acemoglu and Restrepo, 2022). Less appreciated but equally
important are the effects of new technologies that have introduced new tasks for
certain worker groups, ranging from new technical occupations to those based
on digital tools, such as programming, design, integration functions and related
service responsibilities (Lin, 201 1; Acemoglu and Restrepo, 2018b; Autor et al.,
2024). Automation and the introduction of new tasks cannot be easily studied in
existing frameworks, which typically focus on factor-augmenting technological
advances and do not distinguish the effects of different types of technologies.

The task framework not only adds descriptive realism to the modeling of
the production process and the labor market, but leads to new comparative
statics concerning the effects of technologies on the labor market. These new
results are rooted in the extensive-margin effects of new technologies—that is,
the reallocation of tasks away from certain worker groups as well as the rein-
statement of some groups into new tasks—at given wages. We represent these
extensive-margin influences via (direct) task displacement caused by automa-
tion and reinstatement generated by new tasks, and theoretically establish that
they are very different than the consequences of technologies that make work-
ers more productive in tasks they already perform or general factor-augmenting
technologies that make factors uniformly more productive in all tasks.

The theoretical analysis in this chapter also builds a natural bridge between
theory and empirics, and we exposited and utilized this bridge at two different
levels. The first is via a set of reduced-form equations that can be estimated
to link relative wage (and employment) changes at the level of skill groups
(e.g., groups distinguished by education, gender, age, ethnicity, etc.) to empir-
ical measures of direct task displacement and reinstatement, as well as proxies
for factor-augmenting technologies and sectoral reallocations. When estimated
via reduced-form methods, this empirical framework points to a significant role
of task displacement and reinstatement in accounting for the changes in the US
wage and employment structure—in all cases explaining more than 50% of the
variation between 1980 and 2016. In contrast, our proxies for other technolog-
ical factors appear much less important in the distributional changes observed
since 1980. This reduced-form evidence thus suggests that the extensive-margin
effects of new technologies, typically ignored or bundled with other factors in
standard approaches, should be the main focus when exploring the determinants
of the recent evolution of the wage structure in the US and other industrialized
economies.
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Despite their simplicity and tight connection to theory, reduced-form equa-
tions have important limitations. First, they ignore the ripple effects that result
from the spillovers from the technological changes impacting other worker
groups. Second, reduced-form models are only informative about relative wage
changes because productivity effects are subsumed into the constant term of the
regression. Third, while the task displacement and reinstatement terms can be
reasonably well approximated with the data we have available, our proxies for
other technological influences may be less reliable. These shortcomings are rec-
tified by a more structural approach that the task framework also enables—and
we derived systematically from the multi-sector version of the model.

Specifically, the framework shows that the full effects of technological de-
velopments can be summarized by the following channels: a productivity effect,
the direct extensive-margin effects on task allocations, task-price substitution
effects, sectoral reallocations triggered by the uneven incidence of the technol-
ogy in question across sectors, and the ripple effects. The ripple effects can be
summarized (up to a first-order approximation) by a propagation matrix, which
we develop and estimate via GMM from the same wage and task displacement
and reinstatements data. The remaining effects can be disciplined with external
information on the elasticity of substitution between tasks within a sector and
the elasticity of substitution between the outputs of different industries in the
production of the final good.

Using this structural approach, our estimates of the propagation matrix and
external estimates on the relevant elasticities, we carry out a full general equilib-
rium decomposition of the contribution of different technologies. We once again
conclude that more than 50% of the changes in the US wage structure between
1980 and 2016 are driven by automation and new tasks.

One of the attractive features of the task framework is its flexibility, which
we illustrated by showing how complex economic interactions can be modeled
within this framework. There are several other directions for future work, which
we hope our chapter will encourage:

e In this chapter, we focused on competitive models, with the exception of the
exogenous sectoral markups that were introduced in the multi-sector model.
The task framework naturally allows for the modeling of various imperfec-
tions. For example, the allocation of tasks to factors can be frictional due to
search and matching considerations, discrimination against some groups in
certain tasks or licensing. Additionally, the task model allows for efficiency-
wage type considerations, rent-sharing, or explicit bargaining at the task level
(e.g., Acemoglu and Restrepo, 2024). Such frictions not only cause ineffi-
cient assignment of tasks to factors, but also significantly enrich the effects
of automation technologies, because these now have the additional role of dis-
sipating worker rents and the adoption of these technologies can take place
inefficiently as a result of employers’ efforts to avoid paying worker rents.
As mentioned above, non-competitive approaches can also hold the key to
resolving the two puzzles we highlighted at the end of the previous section.
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e More general preference structures, for example, including non-homothetic
utility over different goods and services can be easily incorporated into this
framework in order to study the process of structural change in the economy
and its implications for the labor market. Such an extension can enable a
more holistic analysis of the joint process of structural transformation and
inequality following different types of technological influences.

e The task framework is ideally suited to studying the implications of trade
in goods and services, offshoring and reshoring, and can be developed in
the context of a multi-country setup in a relatively tractable form (Kikuchi,
2024).

e The task framework can be useful for exploring the effects of immigration
and related changes on the supply side, making explicit how the effects of
these developments depend on which tasks new or expanded labor groups
compete for. For example, the framework suggests that the implications of an
immigration shock should be very different when immigrants perform com-
plementary tasks to natives; when they compete against machines; and when
they compete for the tasks that certain native skill groups were previously
performing.

e A major economic transformation will likely result from the rollout of new
artificial intelligence (AI) tools in the coming decades. There is consider-
able uncertainty about the extent to which Al will be used to automate tasks,
whether it can create new labor-intensive tasks and the magnitude of its pro-
ductivity effects. It is also likely that developments in the Al industry can
change product market competition and markups. These considerations in-
crease the benefits of the task framework applied to study AI’s variegated
effects on the labor market (see, for example, Acemoglu, 2024; Acemoglu et
al., 2022; Babina et al., 2024).

e The empirical work reported in this chapter uses publicly-available data,
though we also mentioned an emerging literature using firm-level data. There
is much more to be done with firm-level data and matched firm-worker data
to investigate how task displacement and reinstatements take place and how
this triggers a series of indirect effects, as not just the factors of production
but also as firms compete with each other following the uneven adoption of
various technologies.

e This chapter highlighted the importance of new tasks, which are challenging
to measure in practice, and emphasized that future empirical work on the
measurement of new tasks and their effects on different labor groups is an
important direction (see Autor et al., 2024, for recent work on this).

e Finally, it would be useful to extend the theoretical and empirical approaches
reviewed in this chapter, which relied on first-order approximations in order
to incorporate the higher-order, nonlinear effects from large changes in tech-
nology or supplies.
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Appendix A Equilibrium existence and uniqueness

This section proves Proposition 1, establishing the uniqueness of the equilib-
rium.

We first derive the equilibrium conditions in the text and provide a lemma
for the Jacobian of task shares that will be used to establish the uniqueness of
the equilibrium.

Preliminaries This section derives the equilibrium conditions E1-E5. E1 and
E2 follow from cost minimization. For E3, note that the production of the final
good is competitive, so task prices equal their marginal product p(x) = M~1/*.

y 1/x
(y(—x)) N and

1
NOESVENE p)™ (A46)

For tasks in 7, (w), Eq. (A46) implies
A Wg) - Lg () = ~ < g )_A
. X) - X)) = —- y . R s
N A V] Ao (x)
y(x)
px)

which can be rearranged into E3. The same steps establish the corresponding
equation for capital.

E4 imposes labor market clearing.

For ES, we multiply Eq. (A46) by p, and integrate

1 —
/y(x)'P(x)‘dX=/ px'yx'dx=ﬁ~y-/ pl T dx.
T T

y

Canceling y on both sides yields the ideal-price index equation ES.

The Jacobian lemma The following lemma will be used in our proofs.

Lemma Al. Let H=1 — %% For all wage vectors w, the matrix %
is non-singular. Moreover, H is a P-matrix of the Leontief type (i.e., with
non-positive off-diagonal entries) whose inverse has all entries that are non-

negative.

Proof. Assumption | ensures that task shares are continuous and differentiable
functions of wages. We now establish the properties of H.

First, because 9" (w)/dwy > 0 for g’ # g, H is a Z-matrix (it has negative
off diagonals).

Second, H has a positive dominant diagonal. This follows from the fact that

_ 1 0InT, (w) _ 1 9InT, (w)
Heg =1— 5w, >0, and Hgg — YgsgHeg | =1 = g 5 Timu,

g
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dInT'g(w)
! dlnw,/

1. This last inequality follows because p < 0: when all wages rise

by the same amount, workers lose tasks to capital but do not experience task
reallocation among themselves.

Third, all eigenvalues of H have real parts that exceed 1. This follows from
Gershgorin’s circle theorem: for each eigenvalue ¢ of H, we can find a dimen-
sion g such that || — Hge|| < Zg’;ég |Hge |- This inequality implies R(¢) €

(o = Cyse Mgl Mo + Syosy [Hgg'| ] Because Hog = Yy [Hgr| > 1
for all g, all eigenvalues of H have real parts greater than 1.

Fourth, since H is a Z-matrix whose eigenvalues have positive real parts, it
is also an M-matrix and a P-matrix of the Leontief type. The inverse of such
matrices exists and has non-negative real entries. O

Proof of Proposition 1. The derivations for the market-clearing wage in (4)
were presented in the text.

The numeraire condition in (5) is obtained by substituting the expression for
prices in E1 into the ideal price index in ES.

We now turn to existence and uniqueness. To prove that (4) and (5) ad-
mit a unique solution, we first show that, given a level for output y, there is
a unique set of wages {wg(y)}, that satisfies the market clearing conditions in
(2). We then show there is a unique level of output that satisfies (5) evaluated at
{we (M}

For the first step, Assumption 1 implies that I'g(w) lies in a compact set

1
[[,T].T:w— (Twi,..., Twg) defined by Twg = (%)A . Aé_l/k . Fg(w)%
forg=1,2,..., G is a continuous mapping from the cémpact convex set X =

1 1
]_[g:1 [(y/tg)* ~Aé,71/)‘ T3, (v/5)* ~Aifl/)” .T'7] onto itself. The existence of
a positive wage vector {wg(y)}, solving this fixed-point problem follows from
Brouwer’s fixed point theorem.

We now turn to uniqueness of {wg(y)},. We can rewrite the system of equa-
tions {wg(y)}, defining {wg(y)}, in logs as F(x) = % - stack(Iny — In£y),
where x = (Inwy,...,Inwg) and F(x) = (f1(x),..., fc(x)) with f,(x) =
Xg— 1 -InTg(x) — (1 — 1) - InAg.

The Jacobian of F is given by the M-matrix H. Theorem 5 from Gale and
Nikaido (1965) shows that the solution to the system F(x) = a is unique if the
Jacobian of F is a P-matrix of the Leontief type. The theorem also shows that
the unique solution x(a) is increasing in a. As a result, the unique solution to
the system of equations in (4) is {wg(y)}e With wg(y) strictly increasing in y.
We also note that (y/£,)!/* - Aé_l/k TV <yl Aé_l/A -T1/*, 5o that
wg(y) —> ooasy — 0o, and wg(y) - Oas y — 0.

To conclude, we show that there is a unique y that satisfies the ideal-price
index equation (5). This condition can be written as F(y) = 1, where

n=|— min { min , -dx
M)y ¢ | Ag v | Ar (o)

1/(1-2)
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Because wages are increasing in y, F'(y) is also increasing in y. Assumption |
also ensures that a positive mass of tasks must be allocated to labor at any wage
level, which implies that F'(y) is increasing in y. The function F'(y) can be
written as

1/(1=3)
F(y)= (mz] D)) + Y AL Te(w(y) - wy (y)“) :

8

As y — 00, Ty(w) - wg(y)!™ — oo (since Ty(w) is bounded from below

and A < 1) and I'x(w(y)) > 0. This implies F(y) — oo. Moreover, as y — 0,
Fe(w) - wg(y)l_k — 0 (since A < 1) and T'x(w(y)) = 0 (since, by Assump-
tion 1, all tasks can be produced by at least one type of worker). This implies
F(y)— 0.

Because F(y) is increasing in y, there is a unique y € (0, oo) for which
F(y) =1 and, therefore, a unique equilibrium with wages w, = wg(y). The
equilibrium wages and the tie-breaking rule for tasks where there is indifference
uniquely determine the task allocation.

Our argument for uniqueness also shows that, under Assumption 1, the
unique equilibrium features finite output, positive wages, and positive task
shares for all workers. Moreover, from F(y) = 1, we obtain that, in equilibrium,
1— A Tr(w) > 0. O

Appendix B  Effects of technology

This section provides formulas for the effects of technology on wages.

Our comparative statics involve characterizing the change in task shares and
equilibrium objects in response to infinitesimal changes in technology. For aug-
menting technologies this can be done via traditional differentiation, considering
infinitesimal changes in ¥ (x), Y (x), Ag or A;. Automation and new tasks
creation, on the other hand, correspond to discrete shifts in capital and labor pro-
ductivities over sets of positive or infinitesimal measure (e.g., capital becoming
much more productive in many or a few tasks). In this Appendix, we define the
notion of total derivatives of task shares with respect to these changes, which
we use in the text. This definition applies to both the economy with and without
ripples.

Let us write task shares in general as I'g (W), where W designates all relevant
parameters, including factor-augmenting terms, the A,’s, and the measure of
tasks M, with respect to which derivatives are defined in the usual manner. In
the economy with ripples, one may also include wages as part of W.

Consider a “small” (possibly infinitesimal) change in technology and wages.
This change can be described as follows. Fix a small € (so that infinitesimal
changes correspond to € — 0):
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i. The automation of tasks in the set A,, with (Lebesgue) measure O(e) (i.e.,
there exists a constant ¢ such that the measure of Ay is less than ce). In this
case, the quantity

1 _
agzﬁng wg(x))‘ dx

gives the infinitesimal change in the task share of group g due to automation
and

1 A—1
rg:M/Ag YO (x) " dx

gives the infinitesimal change in the task share of capital due to the automa-
tion of tasks in Ag, where y{"/°(x) is the productivity of capital in task
x € Ayg after the change in automation technology.

ii. The creation of new tasks in the set N, with (Lebesgue) measure O(e).
The quantity

1 e A—1
ng = i /Ng wgf‘w(x) dx

gives the infinitesimal change in the task share of group g due to new tasks,
with 5" (x) being the productivity of labor of type g in tasks x € N after
the creation of new tasks.

iii. The change in W, dW¥, which is assumed to be of O(¢) (i.e., there exists a
constant ¢ such that ||dW|| is less than ce).

Our notion of total derivatives of task shares is based on these quantities. In
particular, define the total derivative of I'g (W) with respect to these infinitesimal
changes as

AT (W) = —a + 1y + 22 . gy
= —dy n . .
8 QT T By

We show next that, just like the standard notion of total derivatives, this total
derivative approximates the change in task shares with an error of order o(e€),
meaning that it goes to zero faster than € as € goes to zero.
Likewise, define the total derivative of I'y (W) with respect to these infinites-
imal changes as
al'y

AT (V) = ng +5u AW,
8

Moreover, the total derivative of any differentiable function 2({I'g (W)},
'y (W), W) can be determined via the chain rule as

oh or
AT (W) Te), ) = Y 2 (=g 58w )
g 8

h AT, h
o Tk oaw )+ 2w,
T (Xg:rg"La\y )+axy
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The next lemma shows that, as for traditional derivatives, the total deriva-
tives defined here for task shares—and via the chain rule for functions of
task shares—provide a first-order approximation (in €) to the change in
h({Tg(W)}g, Tk (W), W).

Lemma A2. Let h = h({I'g(\W)}g, T (W), W). Suppose h(.) and I'(.) are dif-
ferentiable in V (both before and after the change in technology). Suppose the
sets Ag and Ny have Lebesgue measures O(€) and W changes by d\V of order
O(€). Then the total change in h satisfies

oh ar oh oy
Weh=3" (a4 T8 qu)+ 22 Tk gy
Xg:arg (ag+a\1/ >+ark (;rﬁa\y )

oh
— . dW¥ . A47
+ T dW¥ +o(e) (A47T)

Proof. We show this for automation. New tasks can be handled in the same
manner. Note that

Wy (U 4 d W)}, T (W 4 W), W+ dW) — h({T, (), T (), W),

. Ag ... .
where the notation F; # indicates that the task share is now computed over the

set Tg \ A,. The notation F;g ¢ indicates that the task share of capital is now
computed over the set T; U, Ag. This expression uses the fact that tasks in A,
are automated in equilibrium by assumption.

A first-order Taylor expansion of 4 around {I'g}, I'x and ¥ yields

oh \A

/I _ _ . 8 _

h—h= Eg —aFg (Fg (W +dVv) Fg(\lf)>
oh

Ug A oh
M (rY L qwy—T w) g .
+ o (T @ +aw) - Tuw)) + 20 d 0

This step uses the fact that [y (U + dW) — [y(¥) and I'*™ (¥ + dw) —
'y (W) and d W are all O(¢), so that the approximation error in the Taylor expan-
sion is o(¢). This follows from F;Ag (W +dV¥) = F;,Ag(\ll) + O(e) (from con-
tinuity), which implies F;Ag (W +d¥) Ty () = F;Ag (W) =T (W) + O(e).
The right side is O(¢€) because F;Ag (V) — Iy (W) differ over a set of measure
O(e). The argument for F:gAg (W 4+ dW) — T (V) is the same.

A second first-order Taylor expansion, this time of the task shares F;Ag W+
dW¥) and F,t)gAg (W 4 dW) around ¥ gives
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\A,g
oh or
W—h=Y — |—a,+—5—.av
T, oW
Ug A
dh ) dh
—_— -dW — - dV . A48
I8 <§rg+ 9 +50 +o(e).  (A48)
A\ Ag . aYgAg
We now show that agg\y - d¥ = %% -dW¥ + o(¢) and dr({’;w - dWV =

% -dW 4 o(e). We establish this claim by considering the different elements

in W one by one. Changes in wages and uniformly augmenting technologies
only affect task shares by reallocating marginal tasks. By assumption 4, is in
the interior of 7, and all of the tasks in this set are strictly cheaper when auto-

A \Ag AUgAg
. . .. . ol _ ol ol _ (W)
mated (i.e., are not marginal). This implies g = g and b =

The same logic implies that for factor-augmenting technologies A,, we have
\A Ug A

821; jg/g = % d % = %. For augmenting technologies at the intensive

margin, the set of automated tasks and the set of tasks with productivity im-

provements may overlap. However, the improvements are O(¢) and the range of

overlap is O(€), which means that the overlap is O(€?), which is at least as fast

as o(¢) as claimed. Substituting these back into (A48) gives (A47). O

Remark 1. The proof uses the fact that all tasks in A, become automated. The
assumption that n?ut"(x) > 0 ensures this, because, at the initial equilibrium
wages, producing these tasks with capital is cheaper than assigning them to
labor. Because the change in wages is also small, the same remains true in the
new equilibrium. Note that this logic can fail for large automation shocks, in
which case only a subset of tasks in .A; may become automated in equilibrium.

Remark 2. Applying the lemma to 2 = I'g (W) or & = I'y(¥) shows that our
definition of derivatives provides a first-order approximation to the change in
"¢ (W) and 'y (W) whose error term is o(€).

Remark 3. If i, I'g, and Iy, are twice differentiable, then the same steps estab-
lish the sharper bound

B —h=dh({Te(¥)}g, Tx (), ¥) + O(e?).

This means that the derivative dh({I'g(¥)},, ['x(¥), W) approximates the
change in i/ — h with a small approximation error that goes to zero no slower

than €2.

Remark 4. Equilibrium wages are one of the variables in W and our expressions
so far assume that changes in wages are also O(¢). We show here that this is
indeed the case. In particular, note that equilibrium wages solve a system of the
form

h({T'g (Wo, )} ¢, 't (Yo, £2), Wo, ) =0, (A49)
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where, for emphasis, we have separated wages from exogenous technological
parameters in Wq. Recall also that / is differentiable in w (by virtue of Assump-
tion 1) and the Jacobian of /# with respect to w, denoted by J,, is non-singular—a
consequence of the uniqueness of the equilibrium established in Proposition 1.

Consider a change in automation, new tasks, and other technologies of order
¢, and denote the new equilibrium wage by w’ = w + dw. Applying Lemma A2
to differentiate & with respect to automation, new tasks, and Wy (all changes of
order O(¢)) yields

h T oh ATy
0= (_ T8 gy )+ 22 Tk gy
9T ( et gy, °>+ark (Xg:’ﬁa% 0)
oh
+BT-d\l’0+R1+h({Fg(‘~I’0,Q+d9)}g,rk(‘l’o,Q+d§2),‘1’0,§2+d9)
0

- h({rg(qJO’ Q)}g’ Fk("IJOv Q)’ \I'IO’ 9)5 (ASO)

where the approximation error R is o(€) and the derivatives in the first line are
evaluated at the new equilibrium wages w’ = w + dw. Taking limits in (A50) as
€ — 0 implies

0=h({Te(Yo, w +dw)}g, T'r (Yo, w +dw), Yo, w + dw)
- h({rg(\ljo’ w)}g’ Fk(‘ljo, w)’ ‘IIO, w)

By the continuity of / as a function of w, this equality can only hold if dw — 0
as € — 0. We finally show that dw — 0 at the same rate as € — 0, establishing
the claim that dw is O(€). Suppose by way of contradiction that €/||dw]|] — 0
as € — 0, so that dw is not O(¢). A Taylor expansion of the second line in (A50)
around wages of order dw yields

oh T oh ATy
0= 2 (- 28 qwy ) 4+ == Tk g
Xg:arg(“g+”g+awo 0>+ark (Xg:rﬁa% 0)
h
+ —-dW¥o+ Jy-dw+ Ry + Ry,

A

where R is o(||[dw]|). Dividing both sides by ||dw|| and taking limits as € — 0
yields

dh Iy dV
0= g € e € L 9g dF0 €
— T \ e lldwll € [ldw|l " 8% e [ldul|

oh (Zgrg €, Mk d¥y e )

aly € |ldw|| 0¥y € ||dwl]|
oh d¥g € dw Ry € R>
— w + — +
V40 e [ldw]| lldwl| = € [ldw]l [ldwl]]|




94 Handbook of Labor Economics

0= 1lim J, - -2
=lim J,, - ——.
—0""" |ldw]|
This is because the ||dw|| in the denominators dominates all terms except Jy, -
dw. Because J,, is non-singular, this yields a contradiction and we conclude
that dw is of order O(¢) as claimed.

We will use the lemma repeatedly in the appendix. In particular, our strat-
egy is to totally differentiate equilibrium conditions to obtain a linear system
in dw and dy (the change in wages and output) relating these to the infinites-
imal changes in technology (summarized by ag, ng, rg, and dWo). Lemma A2
implies that solving for dw and dy in this linear system approximates the equi-
librium change with an error of order o(¢). The same lemma can be applied
to the multi-sector economy, and there we also obtain linear equations for dw,
dp, and dy (the change in wages, sectoral prices, and output) which can also
be solved and provide a first order approximation to the equilibrium change in
these endogenous objects.

B.1 No-ripple economy

This section derives the formulas for the effects of technology in the no-ripple
economy in Propositions 2, 3, 4, and 5. We also provide formulas for the effects
of these technologies on the labor share and output.

Proof of Proposition 2. Consider a new technology that automates tasks in Ay.
To derive Eq. (9), we start from (4) and compute its total derivative

1 14, Y@ dx
dinwg = —-dlny — ~ — P =_'(dlny—dlnr‘guw).
A )»ff,;,* Vo) ~lodx A

To derive Eq. (10), we start from the definition of the cost function on the
right-side of (5) (in logs). In equilibrium, In C(w) = 0. Computing its total
derivative yields

dInC(w) =Y sy -dInw,
8

_,_ZLL %/ wf“to(x)kl.dx_g./ Yo () dx |
— 11— M |Tc Ja, Ty Ja, ¢

The first term gives the effect of wage changes on cost, which is derived from
Shephard’s lemma.

Using the fact.that sf( =T Az_l and sg =TI, Ag_l . w;,_)‘, the change in
costs can be rewritten as
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dlnC(w):ng-dlnwg
8

r—1 auto ;\A—1
+ZI—A M [/AgA Vi@

—/A AT g o g ~dx:|

8

1
= ngy ~dlnwg — ZAgf1 . w;f)‘ . M/ wg(x))‘*1 -n?uw(x) ~dx
g g Ag
=Y sy -dlnw,
g

fA 1pg(x)k_l -dx fA l/fg(x))‘_l ‘ﬂgmo(x) ~dx
_ Z T, - Ag—l ) w;—x IAg — A i ’
g f'];* wg(.x) .dx ng ‘(ﬁ‘g(_x) .dx

y auto auto
Sg dInT} TE

which shows that dInC(w) = 3", 53 - dInwg — 3, 53 - dInT3"° - 72, In
equilibrium, d InC(w) = 0, which establishes (10).

We now provide expressions for output and the labor share. Solving for out-
put from (9) and (10), we obtain

y
dlny=Zj—§ LdIn T (1 4 2. 7840),
L

The change in the labor share can then be computed from d In s{ = &lv > ¢ sg .
L

dlnwg —dlIny as

y

dlnsz = — Z S—‘§ . (1 — (1 — k) . ﬁgum) . dlnréa,uto.
g L
Finally, the capital share can be obtained from d In s;; = 7vdysi = _% .dln s{
53 %
as
s)
dlnsly<=2_§'(1—(1—)»)~7T§m0)'dlnl"g”m, 0
s
g k

Proof of Proposition 3. To derive Eq. (12), we start from (4) and totally differ-
entiate it to obtain

1

dinw, = (dmny+dinrye —dinm)
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Y PR L
=3 ny fT; ey n .

To derive Eq. (13), we start from the definition of the cost function on the
right-side of (5). As before, the change in log cost is

dInC(w) =Y sy -dlnw,
8

N
+Zl—)\, M|: g / ¢g(x)k ! ~dx — /Ngdx:|’

where we used the fact that dInM = ﬁ > e / A, dx. The first term gives the
8
effect of wage changes on cost, which is derived from Shephard’s lemma.

Using the fact that sg =T A;‘l ‘W ;,_A, the change in costs can be rewritten

as

dlnC(w)zzsg-dlnwg
8

+ fAAIW(x)Al lAdx—/dx
ZI—A M |:/\/g N,
' 1
=2s§ ~dlnwg — ZM ~A2_1 -wél,_k / 1/fg(x))‘_1 "W (x) - dx
8 8 Ne
=Y sy -dlnw,
8

= T A wy ,ngwg(x)A_l'dx,/Ng‘/fg(x)k_l'ﬂ“ew(xydx
8 g g f'];, I/fg(x))n—l ~dx ng wg(x))»—l dx

y new new
Sy dInl’ F; Ty

which shows that dInC(w) = Y, sg -dInwg — 3", 53 -d InT3*™ - 7%, In equi-
librium, d InC(w) = 0, which establishes (13).

We now provide expressions for output and the labor share. Solving for out-
put from (12) and (13), we obtain

1 1
dl“yzzsg-dlnrﬁe“’-[l—s—ﬁ ((1—x)+s—y-x> .ngfe“’]

g L L
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The change in the labor share can then be computed from d In s{ = Sl} > e sg .
°L

dlnw, —dlIny as

y
)
dins) =% ng dInTg" - (14 (1 =2y - 7pe")

s 4
Finally, the capital share can be computed from dInsy = 7:1;? = —:—16( -dlInsy
as
dinsy == sy -dInT" - (14 (1= 1) - 7p"). O
g

Proof of Proposition 4. Differentiating Eq. (4) establishes (14):

1
dinwg =~ -dIny+(1—1/3)-dInAg
Jre VeGP - dIn g (1) - dx
fﬁ* Ye(x) 1. dx '

dln 1’[,lirntensive

+ (1 =1/1)-

Total differentiation of the cost function C(w) on the right-hand side of (5)
implies

dInC(w) = ng ~dlnwg — ng -dInAg
g g

e v dInyrg (x) - dx
o ng’ ’ : r—1 d ’
. f7? Yo () 1. dx

dln 1llg,mensive

establishing (15). As before, the first term gives the effect of wage changes on
cost, which is derived from Shephard’s lemma.

We now provide expressions for output and the labor share. Solving for out-
put from (14) and (15), we obtain

y
dlny = Z j_§ . (d In Ag + dln 1p;ntenslve).
g "L

In this case, the labor share (and hence the capital share) remains unchanged.
This follows from the fact that, in the no-ripple economy, 7 does not change in
response to labor-augmenting technologies. O
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Proof of Proposition 5. Total differentiation of Eq. (4) implies
dl ! dl
nw,=—-dlny,
8= y
establishing (16).
Total differentiation of the cost function C(w) in the right-hand side of (5)
implies

S @ dIng (x) - dx
dInC(w) =Zs§ ~dlnwg — sly( -dIn Ay —S1y< L fﬁ* e ()1 dx ’

4
dln ¢ ]inlensive

establishing (17). As before, the first term gives the effect of wage changes on
cost, which is derived from Shephard’s lemma.

We now provide expressions for output and the labor share. Solving for out-
put from (16) and (17), we obtain

y

N . .

dlny=2- % -(dInA; +dIn I//ll(ntenszve).
SL

The change in the labor share can then be computed from dIn sz = % > < sg .
dlnwg —dlIny as

s

dlns{ ={1-x)- S_]; -(dInAg +dIn 1ﬁ]imensive).
L
_ds’ y
Finally, the capital share can be computed from d In sly< = sdf:L = _ETIL,( .dln s{
as
dlns%=_(1_)\')'(dlnAk'i‘dlIllﬁ]intenSiUe)_ 0

B.2 Effects of technology with ripples

This section proves Proposition 6 and explains the details of how we apply it
to characterize the effects of the different technologies. We then prove Proposi-
tion 7.

Proof of Proposition 6. Lemma A2 shows that we can totally differentiate (4)
in response to an infinitesimal change in technology (or automation and new
tasks in sets of infinitesimal measure) to obtain (18) in the main text, where z,
depends on the shocks considered. Stacking (18) and solving for wages gives
(19).

Eq. (20) follows from the fact that d InC(w) = > _ < sg -dInw — . As before,
the first term gives the effect of wage changes on cost, which is derived from
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Shephard’s lemma. Note that here, 7 is computed as in the no-ripple economy,
since it is by definition equal to the effect of technology holding wages constant.

The calculation of the effects of uniform-augmenting technologies in terms
of the propagation matrix requires some further explanation. For uniform-labor
augmenting improvements, differentiating (4) yields

dl L odiny+(—1/3)-dina, — 22Ty
n = — - n — . n _ 2 . n
We=y amy 7% dhw
ig
1 olnD
+_'n7g(w)'dlnw’

A dlnw

where dInA = (dIn Ay, ...,dInAg) and we used the fact that an increase in

A, generates an equal task reassignment as a commensurate decrease in wy.
Solving for dInw yieldsdlnw =® -dIny 4+ (1 — ®) - d In A, which is equiva-
lent to the formula used in the text.

For uniform-capital augmenting improvements, differentiating (4) yields

1 1 9Inl,(w) 1 0Inl,(w)
dinwg = — -dl - — A+ —2— dInw,
s A ny—i—;)\ dlnwgy n k+}L dlnw fhw
ig

where this expression uses the fact that an increase in A; generates the same
reallocation of tasks as an increase in all wages of the same magnitude. Solving
for dinw yields dlnw =0 - (dIny + A - dInAy) — d1n Ag, or equivalently
dlnwg = pg-dIny — (1 — pg - 1) - dIn Ay as claimed in the text. O

Proof of Proposition 7. The expression for the change in wages in (24) follows
from differentiating Eq. (4):
1 9InTg(w)

—- dlnw
A d0lnw

1 1
dlnwgzx-dlny—x-dlnﬁg—i-

Stacking across groups and solving for d Inw, yields (24).
The fact that there are no average wage changes follows from differentiating
the cost function in (5). Because technology does not change, we have

dInC(w) :ng ~dlnwg =0,
g

which follows from Shephard’s lemma. O

Appendix C Equilibrium in the multi-sector economy

This section provides details and proofs for the multi-sector economy.
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Preliminaries we first derive the equilibrium conditions E1-E6.
El and E2 follow from cost minimization.
For E3, because producers in sector i face an exogenous markup w;, they use

i - S\ 1/A
task x € 7; until p; - M, 1/)L'Ai1 . %

of the task marginal product (on the left) exceeds its marginal cost (on the right)
by a factor of w;. The quantity of task x € 7; used is then

= ui - p(x), so that the value

o 1 _
yx) =yi-phopt- Al l-ﬁm(x) r, (A51)

1

For tasks in 7,; (w), Eq. (A51) implies

1 w —*
Ag - Yo(x) - £ (x):y‘-p?”-pL._}"-A?‘_l~—~<—g> i
8 8 8 l i i i Mi Ag‘(/jg(x)

px)

y(x)

which explains E3. The same steps establish the corresponding equation for
capital.

E4 imposes labor market clearing, now adding labor demand across all sec-
tors.

For E5, multiply Eq. (A51) by u; - px and integrate

1
— 'p(x)l_k ~dx.

A 1-a A—1
ui~/y(x)~p(x)~dx=/ﬂyi~p,-~M,~ - Aj M

Yi-Pi

Canceling y; on both sides and solving for p; gives the price index equation ES.
Finally, E6 follows the numeraire condition and requires the price of the final
good to be 1.

Proofs for multi-sector model propositions We now prove Proposition 8 de-
scribing the equilibrium in the multi-sector economy and then turn to Propo-
sitions 9 and 10 characterizing the impact of technology and markups, respec-
tively.

Proof of Proposition 8. We first derive the expression for the market-clearing
wage in Eq. (25). Aggregating E3 across all tasks assigned to group g in all sec-
tors, and using the definition of I'y; (w), we can write the labor market clearing
condition as

gt Dt | <t
i

Isolating w, from this equation yields (25).
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The formula for sectoral prices in terms of task shares in (26) is obtained by
substituting the expression for prices in E1 into the price index formula in ES.
The final equilibrium equation in (27) is just E6. O

Proof of Proposition 9. Lemma A2 implies that we can totally differentiate (25)
as

1 1 1
dlnwg:X-dlny—i—x-Za)gi~Zgi+x~()»—n)~2a)g,~~dlnp,-
i i

1 0InT'(w)
+z~m~d1nw. (A52)
Stacking (A52) and solving for wages gives (28).

Eq. (29) follows from the fact that d In p; =d InC; (w) = Zg sgi -dlnw —m,
again from Shephard’s lemma. Finally, Eq. (30) follows from the fact that 0 =
dinc/ (p) = > i si - dIn p;, again from Shephard’s lemma, but applied to the
production of the final good. O

Proof of Proposition 10. Totally differentiating (25), we obtain

1 1
dlnwgzx~d1ny—2a)g,-~dlnu,~+x-(k—n)'Za)g,wdlnpi
i i

1 9lnI"(w)
4+ - ——dhhw
A dlnw
Stacking these equations for all groups and solving for wages gives (33).
Eq. (34) follows from the fact that d1n p; = dInC; (w) = Zg sgi -dlnw +
dIn p;, again from Shephard’s lemma.
Finally, Eq. (35) follows from the fact that 0 =dInc/(p) =Y ;s; - dInp;,
again from Shephard’s lemma, but applied to the production of the final good.
O

Appendix D Endogenous labor supply

The following proposition extends our analysis to a multi-sector economy with
endogenous labor supply. For this proposition, we assume labor supply is given

by £e = xg - w5,.

Proposition A1 (Effects of technology in the multi-sector economy). With an
endogenous labor supply, equilibrium wages w, industry prices p, and the level
of output y, solve the system of equations
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1/(A+e)
Wy = <L> .Aé)ufl)/()whz)
Xg

1/(A+e)
-[Zsf’(p)-p?‘l-u,-‘*~A?‘1-Fg,~<w) forgeG,  (AS3)
i

i o\ 1 1/(1=2)
pl-=u,-~;-(rki(w)~A2‘1+Zng<w>-<A—g) ) fori el
8

! g

=C;(w)
(A54)

1=cs(p), (AS5)

where C;(w) denotes the marginal cost of producing output of sector i.

In addition, the effect of a change in technology with direct effect {zgi}¢eG,iel
and productivity gains {mgi}geG,icl on wages, sectoral prices, and output is
given by the formulas in Proposition 9, with the propagation matrix redefined

as
-1
o — 1 (1- 1 _BlnF(w) ’
A+e Ate Jdlnw

and direct effect re-scaled by A + ¢ (so that direct effect are (1/(A +¢€)) - z4i)-

Proof. The equilibrium conditions in this case are still given by E1-E6. The
only difference is that the market clearing condition in E4 is now

Z/ Cg(x) - dx = xg - wE.
i T

Following the same steps as in the proof of Proposition 8, we can write this
condition as

y - A§_1 . w;)‘ . [Zsiy(p).pix—l .Ml_—x . Aix—l .ng(w)] =X w;_

i

Isolating w, from this equation yields (A53).

The formula for sectoral prices in terms of task shares in (A54) is obtained
by substituting the expression for prices in E1 into the price index formula in
ES.

The final equilibrium equation in (A55) is E6.

We now show that the formulas for the effects of technology coincide with
those in Proposition 9 with ®* in place of ®.

Totally differentiating (A53) yields

1 1 (A —mn)
dlnwgzmdlny+m2wgi~zgi+ e ~ng,--dlnp,~
i i
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1 dInT"(w)
At+e  Odlnw

dlnw. (A56)

Stacking these equations and solving for wages, we obtain

dlnw:@*-stack(dlny+2wgi * Zgi +()»—77)-ng,- -dlnp,-),

] 1

as claimed. O

Appendix E Derivations for the Allen-Uzawa elasticities of
substitution and properties of the propagation
matrix

This section proves several properties of task shares, elasticities of substitution,
and the propagation matrix mentioned in the text.

Symmetry of the task-share Jacobian Eq. (3) shows that the task-share Ja-
cobian satisfies a symmetry property. To prove this, consider a proportional
increase in w, by Awg = w, - € for some € > 0, a set M(e) of these tasks
are assigned to ¢’ and increase g’ task share by AT’y = fM(E) Y ()1 dx.
Therefore,

g w) . g Yer ) -dx
_— = hm .
ng e—0 Wy - €

Now, suppose that w, decreases proportionally by Aw, = —w, - € for some
€ > 0. The same set M (¢) of tasks switch to g’ and decrease skill group g’s task
share by AI'y = — f/vt(e) ¥ (x)*~! - dx. Now noting that for marginal tasks we

have we can conclude

We 8
A V) — Ay g )

A—1 A \A1
r—1 W
g(w) Sy Ve @) (w—Z) '(Ai) dx
= lim
8wg/ e—>0 Wy - €

A AN
(s (A )
- wy Ag dwg

Properties of the propagation matrix We now prove the properties of the prop-
agation matrix mentioned for the one-sector economy.

I. Dampening: Gershgorin’s circle theorem in the proof of Lemma Al already
implied that the real part of all eigenvalues of H are above 1. We now show that

all eigenvalues of H are real. To show this, first note that diag(s”)H = Hsym

. . L . . InT
is a symmetric matrix with off-diagonal entry gg’ given by —% . sg 2 ; lni’u(@
J
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. , dlnT,

and entry g'g given by —1 ~s2,, . glnigu;w)
property of the Jacobian. Suppose ¢ is an eigenvalue of ‘H with eigenvector v.
Using upper bars to denote complex conjugates and superscript 7' to denote the

transpose operation, we obtain

, which are equal due to the symmetry

¢-v! -diag(s”) - v=0v" - (diag(s”) - ¢ - v)
=v! . (diag(s”) - H - v)
7. (Hsym - v)
=Hsym - 9l v
=Hsym )" v
=(diag(s*) - H- )T -v
=( - diag(s") - ©)" -v
=C - o' - diag(s”) - v.

This string of identities implies that ¢ equals its complex conjugate ¢ (since
vT - diag(s?) - v is a weighted vector norm, which must be positive) and must
therefore be real. The justification for the steps involved is as follows. The first
line uses the fact that ¢ is a scalar. The second line uses the fact that ¢ is an
eigenvalue with eigenvector v. The third line uses the definition of Hyy,,. The
fourth line applies the transpose operator and uses the symmetry of Hy,,. The
fifth line uses the fact that Hy,, is real. The sixth line uses once more the defini-
tion of Hy,,. The seventh line uses the fact that ¢ is also an eigenvalue of Hyn,
with eigenvector v. The last line applies the transpose operator once more. The
idea behind the claim is intuitive: H is a stretched version of a real symmetric
matrix (which must therefore have all real eigenvalues and eigenvectors), and
such stretching should not introduce complex eigenvalues.

The above derivations then show that all eigenvalues of H are real and in
(1, 0o) This implies that all eigenvalues of ® = % - H~! are also real and in
[0, 1/A].

I1. Monotonicity: We now turn to the monotonicity property, which says that
Ogg > 04 along a column. S}lppose to obtain a.contradiction that 04, > 04, and
let ¢’ = argmax 6y, be the index for the maximum along column g. We have

that H-© = % This requires entry g’g in this product to be zero or

1 0lnTy(w)
1__.75’7 -9/ =
( A Blnwg/ ) &8 Z,
J#8' .8

dInTg (w) ;. dInTg (w) .

J8 88"

dlnw; dInw,

By assumption, 6, and 6, are all less than or equal to 6,/,. This implies

1 9InTy(w) dInTy (w) dInTy (w)
(I= =) Oy < Z ot g’g+m' 8’8’
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dividing by 6, and rearranging, we see that this yields

1 0InTy(w)
1< _.757’
_;A dlnw;

dInT,/(w) .
g
Tnw,  Are 0 or negative (a

common increase in wages causes all workers to loose tasks to capital).

which is a contradiction since the sums ) f % .

II1. Row sums: We now turn to the properties of the row sums of the propaga-
tion matrix, denoted by p,. First, note that the elasticity of substitution between
capital and group g can also be written in symmetrical form as

1 _Zalnrg(w)

2
Sx - dln Wy

Okg = Ogk =\ —

since a percent increase in the user cost of capital generates the same substitution
patterns as a commensurate percent reduction in all wages. This identity can be
written in matrix form as

1oInT (w)

- - stack(1) = stack (sy . (% - 1))
A dlnw a K- ’

or equivalently
H - stack(1) = stack(l + 5% - (% - 1)) )
Multiplying by ©® on the left of both sides yields
% -stack(1) = O - stack(l +s;v< . (iﬁ — 1)) .

Comparing row g on both sides, we get

y ng’ _1
pg 5k D g - (T - 1) =0
g/

1 (% -
pgzx-[l-FS}{-(Tg— )i| )

which gives the formula in the main text. Note that this formula implies that
pg € (0,1/A], as also claimed in the main text.

or equivalently

IV. Relationship to elasticities of substitution: We now derive the expression
that relates the propagation matrix to the matrix of elasticities of substitution X.
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First, we have

1 dnt, A 1 0Inlg(w)
Ogg_s_y.dlnw - 55 +s_y dolnw

8 8 y constant 8 8 8

1 ding, 1 9Inlg(w)
Ugg/_s_y dlnw, =4 s dlnwy

g 8 y constant g 8

We can then write

5= —a-diag [~ )+ 2L giag (2
=A—A-diag| — -diag| — ).
& sy dlnw & sy

Rearranging this yields

1
H.A.diag(—):x—z.
sy

Pre-multiplying by ® on both sides yields

diag (siy) =0-(-1%),

and solving for ® yields the relationship outlined in the text
: 1 .
O=diag|{—)- A—%)"".
sY

V Symmetry: The above identity also guarantees that diag (s”)-® = (A — >)~!
is symmetric, which implies 0,4, /52 Sgr = =0, g/sg

Appendix F Additional empirical results
F.1 Robustness checks

The tables in this part of the Appendix report a series of robustness checks on
our reduced-form analysis.

e Table Al reports the same specifications shown in Table 1 for wages in the
main text, but proxies for new tasks as

dln F“ew Z a)lggo Share new job titles DOT 1977
+ Z 3o - Share new job titles DOT 1991

+ Z w1980 Share new job titles Census 2000.
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This measure apportions new tasks across groups based on 1980 employment
shares.

e Table A2 reports the same specifications shown in Table 2 for hours worked
per person in the main text, but apportions new tasks across groups based on
1980 employment shares.

e Table A3 decomposes the effects of automation and new tasks into an exten-
sive and intensive margin of employment.

e Table A4 reports estimates for wages and hours worked separately for work-
ers with no college degree and those with a college degree.

F.2 Estimating the propagation matrix

Once we impose our parameterization of the Jacobian, we can rewrite the esti-
mating equation in (44) as

¢
oAlnw, +d1nF§u° —dlaneW

=BXg+y DY g sk (Alnwy — Alnw,)

g/ n
=+ Yjob * Z Za)gn ~sg, - Job similarity, ., - (Alnwgy — Alnwy)
g n
~+ Vedu-age * Z ng” -s;’, - edu-age similarity . - (Alnwy — Alnwyg)
g

+v,

where A and ¥ are linear transformations of 8 and v respectively.

This equation can be estimated via GMM/2SLS after imposing 0 = A +
¢ = 0.6 (as discussed in the text). Our estimation imposes the restriction that
V> Yjobs Vedu-age > 0.

The ripple terms on the right hand side are instrumented using

Ze=)_Y wen st (Alny — Alnidy)
g
Zjob,g = ZZa)gn ~s;,’, - job similarity .. - (Aln Wy — Alnibg)
g
Zedu-age,g = Z Za)gn -s;’, -edu-age similarity,, - (Alng — Alny),
g/ n

respectively. Here Alni, is the predicted wage change based on groups ex-
perienced task displacement from automation, exposure to new tasks, and the
exogenous covariates in the model. We get very similar results if we instead use
Alndy =dInTg®™ —dIn 5" to form these instruments.
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TABLE A1 Reduced-form evidence: changes in real hourly wages regressed
on automation and new tasks, 1980-2016. Robustness check using alterna-
tive measure of new tasks.

Automation task
displacement

R? for model

R? for automation
R? remaining covs
Observations

New tasks
reinstatement

R? for model

R? for new tasks
R? remaining covs
Observations

Automation task
displacement
New tasks
reinstatement

R? for model

R? for automation
R? for new tasks
R? remaining covs
Observations

Net task change (new

tasks-automation)

R? for model

R? for automation
R? remaining covs
Observations

Other covariates:

Sectoral value added

Sectoral TFP
Sectoral markups

Gender and education

dummies
Labor supply shifts

Dependent variables:
Change in log hourly wages, 1980-2016

1) 2 (3) “4) () (6) (O]
Panel A. Only displacement from automation
—1.65 —1.41 —-1.50 —1.45 —1.41 —1.71 —-1.75
(0.10) (0.20) (0.11) (0.18) (0.19) (0.25) (0.32)
0.64 0.66 0.69 0.82 0.83 0.76 0.76
0.64 0.55 0.59 0.56 0.55 0.67 0.68
0.11 0.10 0.26 0.28 0.09 0.08
500 500 500 500 500 492 492
Panel B. Only reinstatement from new tasks
2.82 3.57 3.07 2.93 2.52 3.39 3.47
021) (045 (025  (046)  (0.52)  (0.62)  (0.82)
0.63 0.64 0.65 0.79 0.79 0.65 0.58
0.63 0.80 0.69 0.66 0.56 0.76 0.78
—0.16 —0.04 0.14 0.22 —0.11 —0.19
500 500 500 500 500 492 492
Panel C. Both explanatory variables
—0.94 —0.90 —1.05 —1.17 —1.25 —1.42 —1.53
026)  (026) (026)  (027)  (026) (031  (0.31)
1.46 2.06 1.13 1.09 0.72 0.98 0.80
047)  (0.61) (054 (075  (071) (079  (0.76)
0.69 0.70 0.70 0.83 0.83 0.78 0.77
0.37 0.35 0.41 0.46 0.49 0.55 0.60
0.33 0.46 0.25 0.24 0.16 0.22 0.18
—0.11 0.04 0.13 0.18 0.00 —0.01
500 500 500 500 500 492 492
Panel D. Net task change due to new tasks minus automation
1.12 1.18 1.07 1.15 1.12 1.31 1.35
0.06)  (0.15)  (0.07)  (0.13)  (0.15)  (0.18)  (0.24)
0.69 0.69 0.70 0.83 0.83 0.78 0.77
0.69 0.72 0.66 0.71 0.69 0.80 0.83
—0.03 0.04 0.12 0.14 —0.02 —0.06
500 500 500 500 500 492 492
v v v
v v v
v v v
v v v v
v v

Notes: This table presents estimates of the relationship between automation, new tasks, and the
change in hourly wages across 500 demographic groups, defined by gender, education, age, race,
and native/immigrant status. The specifications are the same as in Table 1. The difference is that
we now use a measure of new tasks that holds occupational shares fixed in 1980. The dependent
variable is the change in log hourly wages for each group between 1980 and 2016. Panel A reports
results using only our task displacement measure. Panel B only uses our task reinstatement measure.
Panel C includes both task displacement and task reinstatement on the right-hand side. Panel D
combines task displacement and reinstatement into a single net task change measure. The bottom
rows list additional covariates included in each specification. As in Acemoglu and Restrepo (2022),
we instrument changes in labor supply in columns 6 and 7 using trends in total hours worked by
group from 1970 to 1980. All regressions are weighted by total hours worked by each group in 1980.
Standard errors robust to heteroskedasticity are reported in parentheses.
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TABLE A2 Reduced-form evidence: changes in hours worked per person re-
gressed on automation and new tasks, 1980-2016. Robustness check using
alternative measure of new tasks.

Automation task
displacement

R? for model

R? for automation
R? remaining covs
Observations

New tasks
reinstatement

R? for model

R? for new tasks
R? remaining covs
Observations

Automation task
displacement
New tasks
reinstatement

R? for model

R? for automation
R? for new tasks
R? remaining covs
Observations

Net task change (new

tasks-automation)
R? for model

R? for task changes
R? remaining covs
Observations

Other covariates:

Sectoral value added

Sectoral TFP
Sectoral markups

Gender and education

dummies
Labor supply shifts

Dependent variables:

Change in log hours worked per person, 1980-2016

(1) () (3) “4) ) (6) ()
Panel A. Only displacement from automation
—2.25 —1.58 —-1.96 —1.83 —-1.93 —2.21 -2.59
(0.30) (0.40) (0.27) (0.40) (0.41) (0.61) (0.78)
0.44 0.48 0.50 0.68 0.67 0.61 0.56
0.44 0.31 0.38 0.36 0.38 0.43 0.51
0.17 0.11 0.32 0.29 0.18 0.05
500 500 500 500 500 492 492
Panel B. Only reinstatement from new tasks
4.47 6.15 4.84 4.29 4.04 4.84 5.60
0.53) (121) (0500 (099  (1.01)  (1.32)  (1.58)
0.59 0.61 0.60 0.68 0.65 0.57 0.43
0.59 0.81 0.64 0.56 0.53 0.64 0.74
—0.20 —0.04 0.11 0.12 —0.07 —0.30
500 500 500 500 500 492 492
Panel C. Both explanatory variables
—0.22 —0.10 0.01 —1.25 —1.50 —1.56 —2.06
0.52)  (0.52)  (048)  (0.57)  (0.60)  (0.68)  (0.89)
4.16 5.98 4.87 2.34 1.86 2.19 2.02
(1.04) (164  (0.93) (147  (1.52)  (1.47)  (1.56)
0.59 0.61 0.60 0.69 0.67 0.64 0.58
0.04 0.02 —0.00 0.25 0.30 0.31 0.40
0.55 0.79 0.64 0.31 0.24 0.29 0.27
—0.20 —0.04 0.14 0.13 0.05 —0.09
500 500 500 500 500 492 492
Panel D. Net task change due to new tasks minus automation
1.62 1.51 1.49 1.52 1.59 1.73 2.05
0200 (034  (0.18) (029 (029  (0.44)  (0.57)
0.53 0.53 0.55 0.69 0.67 0.64 0.58
0.53 0.50 0.49 0.50 0.52 0.57 0.67
0.04 0.06 0.19 0.15 0.07 —0.09
500 500 500 500 500 492 492
v v v
v v v
v v v
v v v v
v v

Notes: This table presents estimates of the relationship between automation, new tasks, and the
change in hours worked per person across 500 demographic groups, defined by gender, education,
age, race, and native/immigrant status. The specifications are the same as in Table 2. The difference
is that we use a measure of new tasks that holds occupational shares fixed in 1980. The dependent
variable is the change in log hours per person for each group between 1980 and 2016. Panel A
reports results using only our task displacement measure. Panel B only uses our task reinstatement
measure. Panel C includes both task displacement and task reinstatement on the right-hand side.
Panel D combines task displacement and reinstatement into a single net task change measure. The
bottom rows list additional covariates included in each specification. As in Acemoglu and Restrepo
(2022), we instrument changes in labor supply in columns 6 and 7 using trends in total hours worked
by group from 1970 to 1980. All regressions are weighted by total hours worked by each group in
1980. Standard errors robust to heteroskedasticity are reported in parentheses.
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TABLE A3 Reduced-form evidence: changes in hours intensive and exten-
sive margin regressed on automation and new tasks, 1980-2016.

Automation task
displacement

R? for model

R? for automation
R? remaining covs
Observations

New tasks
reinstatement

R? for model

R? for new tasks
R? remaining covs
Observations

Automation task
displacement
New tasks
reinstatement

R? for model

R? for automation
R? for new tasks
R? remaining covs
Observations

Net task change (new
tasks-automation)

R? for model

R? for task changes
R? remaining covs
Observations

Other covariates:
Sectoral value added
Sectoral TFP

Sectoral markups
Gender and education
dummies

Dependent variables:

Change in (log) employment to
population ratios, 1980-2016

Change in (log) hours per
working adult, 1980-2016

@) (2) (3) “4)
Panel A. Only displacement from automation
—0.77 —0.76 —0.99 —1.16
(0.26) (0.26) (0.32) (0.31)
0.73 0.72 0.42 0.42
0.19 0.18 0.34 0.40
0.54 0.54 0.08 0.02
500 500 500 500
Panel B. Only reinstatement from new tasks
0.80 0.81 0.49 0.83
(0.41) (0.48) (0.48) (0.56)
0.71 0.71 0.35 0.35
0.16 0.16 0.11 0.18
0.55 0.54 0.25 0.17
500 500 500 500
Panel C. Both explanatory variables
-0.70 —0.71 —0.99 —1.12
(0.25) (0.25) (0.33) (0.31)
0.47 0.60 0.03 0.51
(0.35) (0.44) (0.42) (0.50)
0.73 0.72 0.42 0.42
0.17 0.17 0.34 0.39
0.10 0.12 0.01 0.11
0.47 0.43 0.07 —0.07
500 500 500 500
Panel D. Net task change due to new tasks minus automation
0.63 0.68 0.71 0.97
(0.20) 0.21) (0.24) (0.25)
0.73 0.72 0.41 0.42
0.28 0.31 0.40 0.55
0.45 0.42 0.01 —0.13
500 500 500 500
v v
v v
v v
v v v v

Notes: This table presents estimates of the relationship between automation, new tasks, and the
change in hours worked per person across 500 demographic groups, defined by gender, education,
age, race, and native/immigrant status. The dependent variable is the change in (log) hours per worker
(columns 1 and 2) and the change in (log) employment to population for each group between 1980
and 2016. Panel A reports results using only our task displacement measure. Panel B only uses our
task reinstatement measure. Panel C includes both task displacement and task reinstatement on the
right-hand side. Panel D combines task displacement and reinstatement into a single net task change
measure. The bottom rows list additional covariates included in each specification. All regressions are
weighted by total hours worked by each group in 1980. Standard errors robust to heteroskedasticity

are reported in parentheses.
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TABLE A4 Reduced-form evidence: changes in real hourly wages and hours
worked regressed on automation and new tasks, 1980-2016. Robustness
check reporting estimates for groups with and without a college degree.

Dependent variables:
Change (log) hourly wages, Change (log) hours worked,

1980-2016 1980-2016
(1) (2) (3) (4) (5) (6)
Panel A. Workers with no college degree
Automation task —0.76 —1.16 —1.20 —1.12 —1.59 —1.74
displacement (0.31) (0.20) (0.22) (0.57) (0.50) (0.53)
New tasks 1.04 2.16 1.95 3.47 2.97 2.07
reinstatement (0.42) (0.76) (0.79) (0.87) (1.47) (1.91)
R? for model 0.42 0.74 0.72 0.52 0.64 0.61
R? for automation 0.30 0.45 0.47 0.22 0.31 0.34
R2 for new tasks 0.25 0.52 0.47 0.49 0.42 0.29
R? remaining covs —0.24 —0.21 —0.08 —0.03
Observations 300 300 300 300 300 300
Panel B. Workers with a college degree

Automation task —2.34 —1.84 —1.56 —0.87 —2.14 —1.16
displacement (0.58) (0.62) (0.49) (0.80) (0.78) (0.70)
New tasks 0.86 0.83 0.93 —0.11 0.07 0.20
reinstatement (0.28) 0.21) (0.25) (0.37) (0.34) (0.42)
R2 for model 0.21 0.60 0.59 0.03 0.64 0.60
R? for automation 0.91 0.72 0.61 0.17 0.42 0.23
R2 for new tasks 0.21 0.20 0.22 —0.01 0.01 0.03
R? remaining covs —0.32 —0.25 0.21 0.34
Observations 200 200 200 200 200 200
Other covariates:
Sectoral value added v v
Sectoral TFP v v
Sectoral markups v v
Gender and education v v v v

dummies

Notes: This table presents estimates of the relationship between automation, new tasks, and the
change in hourly wages and hours worked per person across 500 demographic groups, defined by
gender, education, age, race, and native/immigrant status. The dependent variable is the change in
(log) hourly wages (columns 1-3) and the change in (log) hours worked (columns 4-6) from 1980
and 2016. Panel A provides estimates for groups of workers with no college degree. Panel B provides
estimates for groups of workers with a college degree. The bottom rows list additional covariates
included in each specification. All regressions are weighted by total hours worked by each group in
1980. Standard errors robust to heteroskedasticity are reported in parentheses.
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