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1 Introduction

The wage and occupational structures of the United States and other industrial
ized countries have experienced epochal changes over the past several decades. 
US wage inequality has soared, while the real wages of less-educated workers 
have stagnated or fallen, and their employment rates have declined. Simulta
neously, employment has shifted from production and clerical occupations to 
higher-paying managerial, professional, and technical jobs and various service 
occupations with lower pay. These trends have been accompanied by a lower 
labor share, especially in manufacturing, and lackluster productivity growth.1

Early research explored the contribution of labor demand to these trends using 
a (reduced-form) approach based on an aggregate production function and tech
nologies that augment skilled or unskilled labor.2 In this canonical approach, 
labor demand changes are combined with labor supply and institutional factors 
to account for the observed trends.

A more recent strand departs from this approach and starts with a setup in 
which the production of goods and services requires the completion of tasks, 
and factors of production are assigned to perform these tasks.3 For example, 

1 For a summary of the wage and inequality trends, see Goldin and Katz (2008), Acemoglu and 
Autor (2011), Acemoglu and Restrepo (2019), Autor (2019), Restrepo (2024). Karabarbounis and 
Neiman (2013) documents the decline in the labor share in the United States and other industrial
ized countries, while Acemoglu and Autor (2011) and Goos et al. (2014) show correlated shifts in 
occupational structure across several OECD economies. For recent reviews of trends in the wage 
structure in European and OECD countries, see, e.g., Gornick (2024).
2 See, among others, Bound and Johnson (1992), Katz and Murphy (1992), Berman et al. (1994) 
and Autor et al. (1998). See Acemoglu (2002) for a review and extensions of these approaches.
3 See Autor et al. (2003), Acemoglu and Autor (2011) and Autor and Handel (2013) for some of the 
early works using the task approach to study inequality. We discuss the evolution of this literature 
at the end of the Introduction.
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the production of a smartphone relies on a range of design and planning tasks; 
the manufacturing of the microchip, the battery, the camera, the speakers, the 
screen, numerous different types of sensors, and various other components; as
sembly of these components; and a series of non-production tasks, including 
various back-o˙ice activities, quality control, and inventory management. In 
addition, several marketing, advertising, transport, wholesale, and retail func
tions must be completed for smartphones to reach consumers. Each task needs 
to be assigned to various factors of production. For example, assembly can be 
performed by craft workers, low-skill workers, a combination of computerized 
equipment and human labor, or by robots.

In this task framework, the assignment of tasks to factors is shaped by tech
nology and mediates the effect of technology on productivity and wages. For 
example, the task assignment depends on whether some tasks are standardized 
and can be performed by unskilled labor or whether technology permits the 
tasks to be performed by machines or algorithms. Technological change can 
then significantly impact productivity and equilibrium factor prices by enabling 
new ways of completing tasks. This can happen via automation, which occurs 
when new equipment, robots, software, or algorithms take over tasks previously 
performed by labor, as well as via new tasks, which entails the introduction of 
new tasks performed by labor.

The task framework is useful not only because it brings greater descriptive 
realism to modeling the production process but also because it generates a more 
comprehensive set of comparative statics regarding the impact of different tech
nological advances and allows for richer substitution patterns between factors 
of production that shape their (general) equilibrium effects.

Different technologies, different effects The early literature on wage inequality 
in labor and macroeconomics assumed that all technologies work by augmenting 
factors of production, increasing the quantity or quality of their output. This 
restrictive view of technology drove some of its major conclusions. For example, 
an implication of the standard models discussed in Acemoglu (2002) is that 
skill-biased technological change (modeled as an increase in the productivity of 
skilled workers) always raises the real wages of low-skill workers, even as it 
increases inequality.4

In reality, technologies take more variegated forms and have richer effects 
on wages, inequality, and productivity. Besides augmenting workers or capital 
uniformly at all tasks, new technologies can:

• Increase workers’ productivity in some tasks currently assigned to them. For 
example, a better drill makes workers more productive at drilling but not at 
other tasks. This type of labor-augmenting change occurs at the intensive 
margin. Our framework shows that this form of technology generates rela
tively small effects on wages and inequality and ambiguous impacts on the 
labor share of national income.

4 See Acemoglu and Autor (2011) for other implications that follow from earlier modeling assump
tions.
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• Increase capital productivity in some tasks currently assigned to capital. An 
example is a new and more powerful software system replacing older inven
tory management methods. This type of capital-augmenting change at the 
intensive margin raises productivity and always pushes up real wages but has 
ambiguous and minor effects on the labor share.

More novel and unique to the task framework, new technologies can also:

• Automate work. New technologies achieve this by enabling the use of equip
ment, software, and algorithms to perform tasks previously assigned to labor. 
Examples include software systems that take over office tasks previously as
signed to workers or robots that now perform welding, cutting, painting, and 
assembly tasks. Automation can have major distributional effects, while its 
productivity impacts can be limited. Moreover, automation always reduces 
the labor share and can depress the real wages of displaced workers.

• Create new tasks. New tasks increase productivity by reorganizing produc
tion or introducing a finer division of labor. New tasks assigned to labor tend 
to raise the real wages of all skill groups and the labor share of national in
come. Computer-assisted design tools, machinery that enable novel technical 
work, and new programming, integration, and customer service functions in
troduced by recent technologies are examples of new tasks.

The discussion above showcases a key insight from the task framework: 
different technologies have different impacts. For example, labor-augmenting 
technology and new tasks can have opposite effects. Technologies that augment 
labor in some of their current tasks can reduce the real wages of affected groups, 
especially if the demand for these tasks is inelastic. In contrast, technologies 
that create new tasks for workers always increase their wages and raise the labor 
share. This critical distinction argues against the use of ``augmenting technol
ogy'' as a catchphrase for all technologies that work with labor. It also argues 
against the presumption that a technology that ``augments'' workers in some of 
their tasks necessarily raises their wages.

Flexible substitution between factors depending on comparative advantage 
Our framework distinguishes between microeconomic and macroeconomic sub
stitution. Even though different workers and capital are perfect substitutes in 
producing a given task (at the micro level), they are imperfect substitutes at the 
aggregate level because they specialize in different tasks according to their com
parative advantage. The aggregate substitution patterns depend on the strength 
of comparative advantage and the extent to which groups compete for marginal 
tasks, generating rich aggregate substitution patterns between factors.

These aggregate substitution patterns are essential for understanding the 
equilibrium effects of technology. Consider, for example, the automation of 
tasks performed by a group of workers. This shock reduces the group’s rela
tive wage, creating an endogenous reassignment of marginal tasks toward this 
group. This affects other workers’ wages and creates further reassignments. The 
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strength of these ripple effects depends on the aggregate substitution patterns 
between groups. We show that ripple effects can be summarized (up to a first 
order) by a propagation matrix. This matrix determines how shifts in demand 
or supply impact wages, not only for workers directly exposed to the change in 
technology but also for workers competing against them for tasks. The propaga
tion matrix captures the intuitive idea that a shock affecting one group generates 
an indirect impact on other highly substitutable groups.

Besides these conceptual innovations, the task model provides tractable 
equations that describe how changes in group-level wages depend on advances 
in different types of technologies and other labor demand forces, such as off
shoring, structural change, and product market structure, including markups. 
These equations can be further extended to account for institutional and supply
side factors.

The equations decompose the impact of demand-side forces into a produc
tivity effect; measures of the direct effects of technology on labor demand (e.g., 
the reallocation of tasks from labor to capital because of automation or the in
creased demand for labor in new tasks); a term capturing shifts in the economy’s 
sectoral composition; and ripple effects summarized by the propagation matrix. 
This decomposition illustrates the channels through which technology affects 
wages. For example, automation impacts labor demand mainly by reallocating 
tasks from labor to capital. Instead, industry-level productivity shocks influence 
labor demand mainly by shifting the economy’s sectoral composition.

Moreover, this characterization can be used to derive simple reduced-form 
equations or to conduct structural exercises quantifying the contribution of dif
ferent demand forces to observed changes in the wage structure. We demonstrate 
both uses with an application to US data.

Chapter outline

This chapter reviews recent advances in the task framework and shows how this 
framework can be a powerful tool for theoretical, reduced-form, and structural 
research. The first part of the chapter introduces the task framework, explains 
its distinguishing features, derives the equations for wage changes, and presents 
a range of comparative statics describing the effects of technology on wages 
and factor shares. This part of the chapter builds on Acemoglu and Restrepo 
(2022). The new element is drawing out the implications of new tasks for the 
wage and employment structure of the economy, which has not been the focus 
of past work.

Section 2 introduces a one-sector version of the task framework with mul
tiple types of skills, tasks, and technologies, and defines and characterizes the 
competitive equilibrium in this economy.

Section 3 specializes this environment to what we call the ``no-ripples econ
omy'' to provide a transparent exposition of the varying effects of different types 
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of technologies. This example economy shuts down the endogenous reassign
ment of tasks across worker groups and the resulting ripple effects.

Section 4 clarifies the distinction between microeconomic and macroeco
nomic elasticities of substitution and how the latter elasticity is shaped by 
competition for marginal tasks and comparative advantage schedules.

Section 5 introduces the propagation matrix, which summarizes the rich sub
stitution patterns implied by the task framework and uses this matrix to provide 
a full characterization of the equilibrium, including the ripple effects.

Section 6 extends this economy to a multi-sector economy, which is the ba
sis of our empirical application. This section also introduces product market 
markups and characterizes their impact on the wage structure.

In the second part of the chapter, we use the wage equations derived from 
the task model to conduct a reduced-form analysis and then a structural exercise 
quantifying the importance of automation, new tasks, and other forces to the 
observed changes in the wage structure.

Section 7 derives simple reduced-form equations that relate wage changes 
across different worker groups to measures of the direct impact of automation, 
new tasks, markups, sectoral TFP changes, and labor-augmenting technologies. 
We estimate these reduced-form equations using publicly available US data. In 
particular, we use data from 500 groups of US workers, defined by education, 
gender, age, race, and native/foreign-born status, as our skill groups and focus 
on changes from 1980 to 2016. As part of this exercise, we introduce a new 
measure of new tasks across these groups. This part of the chapter also draws 
on past work, but the estimation of the effects of new tasks are original to this 
chapter.

We document that a 10% loss of tasks for a group due to automation during 
this period leads to a 12% relative wage decline and 8.2% reduction in hours 
worked per person. Using the measure of new tasks, we document that 10% ad
ditional new tasks for a group lead to an 8.5% increase in relative wage and 26% 
increase in hours worked per person. Overall, in the reduced form, the change 
in the share of tasks across groups due to automation and new tasks accounts for 
67%-84% of the changes in the between-group wage structure in the US during 
this period and 53%-68% of the changes in group-level employment. We also 
estimate the reduced-form distributional effects of other factors, including sec
toral reallocation, sectoral TFP trends, and changes in product market markups. 
These factors appear to have played a more limited role in the changes in the 
US wage structure. For example, while automation and new tasks jointly ex
plain 67%-84% of the variation in between-group wage growth in the US from 
1980 to 2016, proxies for skill-biased factor-augmenting technologies explain 
no more than a few percentage points of these changes.

The entire real wage impacts of technology cannot be estimated using these 
reduced-form equations because the constants in the reduced-form equations ab
sorb their productivity effects and because potentially complex ripple effects are 
ignored. In Section 8, we outline a tractable structural approach for estimating 
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the first-order effects of automation, new tasks, and other shocks and estimate 
these equilibrium effects. The approach uses the equations for equilibrium wage 
changes described above combined with measures of automation and new tasks, 
our estimates of the propagation matrix, and existing estimates of the elasticities
of substitution between industries and between tasks. This method allows us to 
quantify the full general equilibrium impacts of automation and new tasks and 
conduct counterfactual analyses.

Section 9 concludes and proposes areas for future research. The Appendix 
contains proofs, theoretical derivations, and additional empirical results.

Tasks: a partial review of the theoretical literature

The microfoundations of the task model go back to Zeira (1998), who considers 
a model where aggregate output is produced from a continuum of product lines 
(similar to tasks here), which can be allocated to capital or labor. Economic 
growth is driven by innovations that reallocate product lines/tasks away from 
labor toward capital.

Acemoglu and Zilibotti (2001) build a model in which two types of labor 
have different comparative advantages across a continuum of tasks, and tech
nology affects the task production functions. This model is used to study how 
new technologies developed in the industrialized world influence inequality 
and growth in these economies as well as in developing countries, and espe
cially how these technologies may be inappropriate for the needs of developing 
economies.

The first paper to use the task framework for systematically analyzing in
equality is Autor et al. (2003). This paper builds a model with three tasks—one 
that corresponds to nonroutine problem-solving and complex communication 
activities performed by skilled labor, one that corresponds to nonroutine manual 
work performed by unskilled labor, and one that is closely associated with rou
tine cognitive and manual tasks. The authors argue that computers can replace 
workers engaged in routine cognitive and manual activities because they can 
cheaply perform routine tasks that can be codified into step-by-step instructions. 
Computers can also, directly and indirectly, complement workers in nonroutine 
problem-solving and complex communications tasks. These authors develop a 
novel empirical mapping from these tasks to data and undertake the first com
prehensive empirical analysis of the implications of the task model. Autor and 
Handel (2013) further extend both the theoretical framework and the measure
ment of the task content of occupations.

Acemoglu and Autor (2011) build a model that combines elements from the 
papers mentioned above and the classic Ricardian trade framework of Dorn
busch et al. (1977). In their model, there are three types of workers (low, middle 
and high skill) and a continuum of tasks. Higher-skilled workers are assumed to 
have a comparative advantage in higher-indexed (more complex) tasks. Tech
nological change can augment one or multiple labor types, and enables the 
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automation of some tasks using new equipment or software. This paper clarifies 
the distinction between standard (factor-augmenting) skill-biased technological 
change and automation—emphasizing how these technologies impact different 
parts of the earnings distribution and can have distinct effects on the level of 
real wages and inequality. This work also highlights the connection between the 
task framework and the earlier assignment literature for example, how the task 
approach builds on the competitive assignment setup of Sattinger (1975) and 
Teulings (1995, 2005) as well as the international trade literature focusing on 
offshoring of tasks, such as Grossman and Rossi-Hansberg (2008), Rodríguez
Clare (2010) and Acemoglu et al. (2015).

Our approach in this chapter builds more directly on recent work in task
based models. Acemoglu and Restrepo (2018b) develop a tractable task-based 
model and generalize this framework by introducing new tasks. This paper also 
demonstrates how the combination of automation and new tasks can lead to 
balanced economic growth, provided that the decline in the labor share and the 
contraction in the range of tasks induced by automation need to be compensated 
by creating new (labor-intensive) tasks. Acemoglu and Restrepo (2020b) extend 
this framework and draw the implications of automation and new tasks for wage 
inequality.

Acemoglu and Restrepo (2020a) use a task model to study the implications 
of industrial robot adoption in US manufacturing. Their work shows how simple 
estimating equations can be derived from the task model. Their estimates show 
that industrial robots impacted wages and employment, especially for workers 
specializing in manual blue-collar tasks in local labor markets exposed to these 
new technologies. This work also clarifies how the aggregate effects of this type 
of automation can be computed by combining the productivity impacts of robots 
with reduced-form estimates of the displacement effects.

Our treatment in this chapter builds most closely on Acemoglu and Restrepo 
(2022). This paper introduces a general version of the task model with multi
ple skill groups and with a flexible pattern of comparative advantage. Despite 
the generality of the model, the paper shows that the equilibrium takes a sim
ple form and enables the empirical exploration of the consequences of different 
technologies and their propagation. This paper further clarifies the distinction 
between capital-skill complementarity, which increases the quantity or quality 
of capital as discussed by Griliches (1969), Berman et al. (1994), and Krusell et 
al. (2000), and automation, which is driven by improvements in capital produc
tivity for tasks previously performed by labor. While the former process affects 
inequality indirectly—by increasing the output of capital-intensive activities or 
sectors—automation impacts inequality directly by displacing some groups of 
workers from the tasks they used to perform.

Other contributions exploring the implications of automation in task-based 
models include Acemoglu and Restrepo (2018a), Acemoglu and Restrepo 
(2019), Aghion et al. (2018), Feng and Graetz (2020), Moll et al. (2022), Naka
mura and Zeira (2024), Jones and Liu (2022), Hubmer and Restrepo (2021) and 
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Acemoglu and Loebbing (2024). Another branch of the literature proposes mod
els of factor-eliminating technical change, where technology works by reducing 
the weight of a factor in the production process (see, for example, Zuleta, 2008; 
Peretto and Seater, 2013). We show below that the task framework provides a 
microfoundation for this form of technological progress.

Tasks: a partial review of the empirical literature

An active and growing empirical literature has explored the implications of 
automation and new tasks for the wage structure. This literature is surveyed 
in Restrepo (2024). Much of this literature focuses on the US and finds evi
dence that automation technologies reduce the labor share (and increase sales 
per worker), for example, see Acemoglu and Restrepo (2020a) for the effects 
of industrial robots across industries and local labor markets, and Boustan et al. 
(2022) for the effects of CNC technologies in US manufacturing. Kogan et al. 
(2021), Dechezleprêtre et al. (2023) and Autor et al. (2024) report a negative as
sociation between the deployment of automation technologies measured using 
patent data and the labor share across US industries and occupations, while an 
extensive literature building on Autor et al. (2003) documents a negative rela
tionship between automation and employment in routine jobs (see, for example, 
Webb, 2020; Kogan et al., 2021). Autor et al. (2024) additionally show that 
occupations experiencing the introduction of new tasks expanded their employ
ment.

We see similar patterns beyond the US. Several industrial economies have 
experienced declining labor shares since the 1980s, especially in manufacturing 
(Karabarbounis and Neiman, 2013) and a declining share of employment in rou
tine occupations (Goos and Manning, 2007; Acemoglu and Autor, 2011; Goos 
et al., 2014)�-both telltale signs of automation. Consistent with this interpreta
tion, Graetz and Michaels (2018) document a link between robot adoption and 
labor share changes by exploiting cross-country and cross-industry variation. A 
growing literature using firm-level data on robot adoption across a wide range of 
countries, including Denmark (Humlum, 2020), France (Bonfiglioli et al., 2020; 
Acemoglu et al., 2020), and the Netherlands (Acemoglu et al., 2023) finds that 
robot adoption is associated with a reduction in labor shares and the share of 
employment in routine jobs, in line with the predictions of the task model. Ace
moglu et al. (2023) also show that workers specialized in blue-collar, routine 
tasks are the ones that are negatively impacted by robots, as predicted by the 
task framework.

Concurrently, we see rising wage inequality in several, though not all, in
dustrialized countries. The college premium rose in the US, Canada, Mexico, 
Japan, the UK and Sweden; remained stable in France, Italy and Russia; and 
actually decreased in Korea, Netherlands and Spain (see Katz and Autor, 1999; 
Krueger et al., 2010). The increase in wage inequality is more pervasive when 
focusing on the difference in wages between the 90th and 10th percentile or the 
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total variance of log wages. For example, total variance of log wages increased 
in the US, UK, Canada, Germany, Italy and Mexico, but decreased in Russia, 
Spain and Sweden (see Krueger et al., 2010). Similarly, Machin and Van Reenen 
(2010) and Van Reenen (2011) document growing 90-10 male wage inequality 
in Denmark, Japan, Netherlands, New Zealand, the UK and the US from 1980 
to 1990. Since 1990, we have also seen rising 90-10 inequality in Australia, 
Finland, Germany and Sweden (France being the only country in their sample 
where 90-10 inequality appears not to have increased).

The German case is particularly interesting. The comprehensive study by 
Dustmann et al. (2009) documents an increase in wage inequality in West Ger
many (measured by the dispersion in log wages) dating back to the 1970s for 
men and to the 1990s for women. The authors also show that the 85th per
centile of wages for both men and women rose more rapidly than median wages
or wages at the 15th percentile from 1975 to 2004. Wages at the bottom have 
stagnated or decreased since the early 1990s. Simultaneously, the premium paid 
to workers with an apprenticeship or college degree relative to those with no 
post-secondary schooling rose, while the premium earned by college graduates 
relative to workers with apprenticeship has remained stable.5

Overall, even though there is evidence of higher wage inequality in some 
European economies, the increase has been less pronounced and pervasive than 
in the US. One possibility is that these divergent experiences are due to dif
ferences in European labor market institutions that generate wage compression 
and limit the response of wages to changes in technology. For example, Cahuc 
(2024) argues that a high minimum wage and rigid wage structure have kept in
equality in check in France, but this came at the expense of growing disparities 
in employment rates between more and less educated workers. In light of the 
existing evidence, it is therefore reasonable to conjecture that automation could 
have been a source of declining labor shares and rising inequalities in other in
dustrialized economies as well, but we are not aware of systematic analyses of 
the effects of automation (or new tasks) on inequality in Europe. Any such study 
may have to incorporate the influence of different labor market institutions on 
wage and employment responses.

2 The task model: the one-sector case

This section introduces the task model and characterizes the equilibrium. We 
focus on the one-sector version of the model for simplicity, returning to the 
multi-sector economy in Section 6.

5 Dustmann et al. (2009) also perform an accounting exercise that removes the influence of changes 
in the supply of skills using the methodology of Katz and Murphy (1992). They find evidence of 
a rising relative demand for education, though these changes are less pronounced than those for 
the US. It is noteworthy that Dustmann et al. (2009) use the IABS dataset. Other studies using the 
GSOEP, including Fuchs-Schündeln et al. (2010), find a modest increase in total log wage variance 
and no evidence of a rising college premium (though their analysis also pools apprentices and work
ers with no post-secondary education together, rather than separating them as in Dustmann et al. 
(2009)).
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2.1 Environment

A (unique) final good y is produced by combining a set of complementary tasks 
x ∈ 𝒯 with measure M > 0. This good is set as the numeraire, with price nor
malized to 1. Task quantities y(x) are aggregated using a constant elasticity of 
substitution (CES) aggregator with elasticity λ ∈ (0,1),

y =
(︃

1 
M

∫︂
𝒯

(M · y(x))
λ−1
λ dx

)︃ λ 
λ−1

.

The set 𝒯 is assumed measurable and ``dx'' denotes the Lebesgue integral. 𝒯
could represent a continuum of tasks arranged along a line (as in Acemoglu and 
Autor, 2011), or could be a region of the plane or a multi-dimensional space.

The key economic decision in this model is the allocation of the tasks in 𝒯
to factors of production. The total quantity produced of task x is assumed to be

y(x) = Ak · ψk(x) · k(x) +
∑︂
g

Ag · ψg(x) · ℓg(x). (1)

Intuitively, tasks can be produced by workers of different skill types, indexed 
by g ∈ 𝔾 = {1,2, . . . ,G} or by (specialized) capital equipment. We denote the 
quantity of labor of skill type g used in task x by ℓg(x) and the amount of 
capital used in the production of task x by k(x). Workers in skill group g have 
productivity Ag ·ψg(x) ≥ 0 in task x, where the ψg(x) schedule represents their 
comparative advantage across tasks. Capital has productivity Ak · ψk(x) ≥ 0 in 
task x, which is equal to zero for tasks where technology does not yet permit 
capital to substitute for workers. The Ak and Ag terms represent standard factor
augmenting technologies, which make factors uniformly more productive in all 
tasks.

Eq. (1) imposes perfect substitutability of capital and the different groups 
of workers at the task level. This feature of the model is a simplifying, but 
not implausible, assumption. Many new equipment and software types, such 
as computer numerical control machinery and robots, can perform various tasks 
with little human involvement (while the programming, maintenance, and ser
vice of such equipment correspond to other tasks that remain labor-intensive). 
This feature is a simplification since some labor-intensive tasks require tools 
(e.g., hammers), but it does not affect the implications of the framework.6

Labor supply is assumed inelastic, with the total supply of group g denoted 
as ℓg , while the real wage of this group is denoted by wg. We discuss elastic 
labor supply in Section 8.

To keep the model static, capital is treated as an intermediate good, produced 
using units of the final good and used up in the same period due to depreciation. 

6 It is straightforward to generalize this production function so that labor uses some tools and 
capital equipment needs operators. So long as the share of these factors is small, all implications 
of our framework continue to hold. See the discussion in the online appendix of Acemoglu and 
Restrepo (2018b).
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Specifically, capital of type x, k(x), is produced using the final good at a constant 
marginal cost normalized to 1. Changes in the productivity and cost of capital 
are subsumed into changes in the ψk(x) schedules. Net output, which is equal to 
consumption, is therefore obtained by subtracting the production cost of capital 
goods from output:

c = y −
∫︂
𝒯

k(x) · dx.

Following Acemoglu and Restrepo (2022), throughout we impose the fol
lowing restrictions on the task space, which are sufficient for the existence of a 
unique equilibrium where all workers are assigned a positive measure of tasks 
and output is positive and finite. While these assumptions can be weakened, this 
would be at the cost of additional complications and we do not pursue this path 
here.

Assumption 1 (Restrictions on the task space). • For each task x ∈ 𝒯 , there 
exists at least one g ∈ 𝔾 such that ψg(x) > 0. Moreover, the integrals

∫︂
x:ψg(x)>0

ψg(x)λ−1 · dx

are finite.
• For each g ∈ 𝔾, there is a positive measure of tasks x for which ψg(x) > 0, 

ψg′(x) = 0 for all other g′ ≠ g, and ψk(x) = 0.
• Comparative advantage is strict. For any two groups g ≠ g′ and constant a >

0, the set of tasks such that ψg(x)/ψg′(x) = a has measure zero. For any 
group g and constant a > 0, the set of tasks such that ψg(x)/ψk(x) = a has 
measure zero.

Part 1 of the assumption is a sufficient condition for positive output in the 
economy (otherwise, such an economy may generate zero output). Part 2 guar
antees that all skill groups are necessary for production and implies that tech
nological changes will not make any skill group completely redundant. These 
conditions also ensure that output is always finite (because it rules out the pos
sibility that capital will perform all tasks). Part 3 of the assumption imposes 
strict comparative advantage. This removes any indeterminacy in the alloca
tion of tasks to workers and ensures that ties (situations in which a task can 
be produced in a cost-minimizing way with more than one factor) occur only 
on measure zero sets. Throughout, we also adopt the (non-consequential) tie
breaking rule that whenever there is a tie, tasks are allocated to capital first and 
then to lower-indexed skill types ahead of higher-indexed skill types.
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2.2 Equilibrium

A market equilibrium is defined by a positive vector of real wages w = {wg}g∈𝔾, 
an output level y, an allocation of tasks to worker groups {𝒯g}g∈𝔾 and capital 
𝒯k , task prices {p(x)}x∈𝒯 , task labor demands {ℓg(x)}g∈𝔾,x∈𝒯 and capital pro
duction levels {k(x)}x∈𝒯 such that:

E1 Task prices are equal to the minimum unit cost of producing the task:

p(x) = min

{︄
1 

Akψk(x)
,

{︃
wg

Agψg(x)

}︃
g∈𝔾

}︄
.

E2 Tasks are produced in a cost-minimizing way, with tasks

𝒯g =
{︃
x : p(x) = wg

Agψg(x)

}︃

allocated to workers from skill group g, and tasks

𝒯k =
{︃
x : p(x) = 1 

Akψk(x)

}︃

produced with capital.
E3 Task-level employment of labor and capital are given by

ℓg(x) =
{︄

y · 1 
M

· Aλ−1
g · ψg(x)λ−1 · w−λ

g for x ∈ 𝒯 g

0 otherwise.

and

k(x) =
{︄

y · 1 
M

· Aλ−1
k · ψk(x)λ−1 for x ∈ 𝒯k

0 otherwise.

E4 The labor market clears for all g:∫︂
𝒯g

ℓg(x) · dx = ℓg.

E5 The price of the final good is 1, which gives the ideal-price index condition

1 =
(︃

1 
M

∫︂
𝒯

p(x)1−λ · dx

)︃1/(1−λ)

.

Fig. 1 provides a graphical illustration of this equilibrium. The task space 
is represented as a subset of the plane, which is partitioned into G + 1 subsets, 
representing the 𝒯g’s and 𝒯k . We explicitly condition these sets on the wage 
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vector w to emphasize that task allocations depend on wages. The fact that these 
sets are shown as connected is for simplicity. It can be seen from the figure why 
the boundaries of these sets, where a task can be produced in a cost-minimizing 
way by more than one factor, are of measure zero. These sets are determined 
by comparative advantage, factor-augmenting technologies and factor prices, 
which influence the costs of performing a task with a given factor.

FIGURE 1 Equilibrium task assignment and task shares. The figure depicts the task space and 
illustrates the assignment of tasks to different groups of workers (g and g′, in this example) and 
capital (k).

2.3 Equilibrium representation in terms of task shares

Following Acemoglu and Restrepo (2022), we represent and characterize the 
equilibrium in terms of task shares.

Let 𝒯g(w) be the set of tasks that would be assigned to workers from skill 
group g at a given level of wages w = {wg}g∈𝔾. Aggregating the labor demand 
in E3 across tasks, we obtain the labor market-clearing condition∫︂

𝒯g(w)

y · 1 
M

· Aλ−1
g · ψg(x)λ−1 · w−λ

g · dx = ℓg.

Inverting this equation yields the market-clearing wage for group g,

wg =
(︃

y

ℓg

)︃1/λ

· A1−1/λ
g · Γg(w)1/λ, (2)

where the task shares are defined as

Γg(w) ≡ 1 
M

∫︂
𝒯g(w)

ψg(x)λ−1 · dx and Γk(w) ≡ 1 
M

∫︂
𝒯k(w)

ψk(x)λ−1 · dx.

Task shares summarize how the market value of tasks assigned to the different 
groups of workers change as we vary wages. The assumption of strict com
parative advantage guarantees that task shares are continuous and differentiable 
functions of factor prices and technology. Moreover, cost-minimization implies 
the symmetry property

A1−λ
g′ · wλ

g′ · ∂Γg(w)

∂wg′
= A1−λ

g · wλ
g · ∂Γg′(w)

∂wg

for g′ ≠ g. (3)
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This property says that the additional task share that g gains when wages for g′
increase equals the additional task share that g′ gains when wages for g increase.

Task shares encode all the relevant (local) information on comparative ad
vantage. For example, if the task share of a group decreases by a small (large) 
amount when its wage increases, this implies that the group has a steep (shallow) 
comparative advantage at the tasks it currently performs, and cannot be (can be) 
easily substituted by other groups of workers. Additionally, the behavior of task 
shares when we increase all wages by the same amount is informative about the 
substitutability of different groups of workers for capital in marginal tasks.

Proposition 1 (Equilibrium representation). The competitive equilibrium exists 
and is unique. The wage vector w and output level y are given by

wg =
(︃

y

ℓg

)︃1/λ

· A1−1/λ
g · Γg(w)1/λ for g ∈𝔾, (4)

1 =
(︄

Γk(w) · Aλ−1
k +

∑︂
g

Γg(w) ·
(︃

wg

Ag

)︃1−λ
)︄1/(1−λ)

⏞ ⏟⏟ ⏞
≡𝒞(w) 

, (5)

where 𝒞(w) denotes the marginal cost of producing the final good given the 
wage vector w. The equilibrium level of output can be written as a CES ag
gregator of the different labor types and capital k = ∫︁

𝒯k(w)
k(x)dx, with the 

equilibrium task shares Γg = Γg(w) and Γk = Γk(w) appearing as endogenous 
weights:

y =
(︄

Γ
1/λ
k · (Ak · k)1−1/λ +

∑︂
g

Γg
1/λ · (Ag · ℓg)

1−1/λ

)︄λ/(λ−1)

. (6)

Like all proofs in this chapter, the proof of this proposition is provided in the 
Appendix.

Eq. (4) gives the market-clearing wage. This equation demonstrates that 
equilibrium wages depend on output per worker (y/ℓg), factor-augmenting pro
ductivity terms (the Ag’s), and the task shares (the Γg(w)’s). Eq. (5) is the 
ideal-price index condition in E5, rewritten in terms of task shares. This system 
has a unique solution because task shares satisfy the gross-substitutes property: 
Γg(w) is decreasing in wg and increasing in wg′ for all g′ ≠ g.

Eq. (6) is a representation result. Once equilibrium wages and task shares 
are solved, they can be substituted back into the production function (1) to ob
tain this form. It shows that the economy behaves as if output were produced 
using a CES aggregate production function, with the CES weights determined 
endogenously by equilibrium task shares.

Task shares are the key objects governing the distribution of income in the 
task model—just as the CES weights govern the distribution of income in a 
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model with a CES aggregate production function. The share of skill group g in 
gross national income is7:

s
y
g = Γg(w) ·

(︃
wg

Ag

)︃1−λ

.

The share of all labor in gross national income is therefore

s
y
L =

∑︂
g

Γg(w) ·
(︃

wg

Ag

)︃1−λ

= 1 − Γk(w) · Aλ−1
k , (7)

and the share of capital in gross national income is

s
y
K = Γk(w) · Aλ−1

k .

Two additional objects of interest are the capital-output ratio, given by

k

y
= Γk(w) · Aλ−1

k ,

and the share of consumption in gross national income, which is

c

y
= 1 − Γk(w) · Aλ−1

k .

2.4 Beyond CES

Proposition 1 shows that the task model aggregates to an economy that behaves 
as if output were produced from a CES aggregator. In this aggregation, task 
shares determine the resulting CES weights. The fact that task shares are en
dogenous and depend both on technology and factor prices introduces the two 
key features that distinguish the task model from previous approaches that rely 
on CES production functions (or nested versions thereof).

• Different technologies, different effects: Technology operates by directly 
altering the task shares and this enables us to incorporate the distinct impacts 
of different types of technologies. To see the significance of this feature, sup
pose we treated (6) as a standard CES production function. Then, the modal 
form of technology would be a labor-augmenting one, say an increase in Ag, 
and its effects could be obtained by modifying the first and second terms in 
the wage equation (4). In this exercise, the elasticity of substitution and the 
weights would be held constant. In contrast, in our framework, a change in 
Ag would have a third important effect because it would alter all task shares. 
More importantly, in the standard framework, we would be forced to think of 

7 ``Gross'' here refers to national income inclusive of payments to capital, while net output subtracts 
these payments.
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automation—for example, the introduction of industrial robots—as increas
ing capital productivity, Ak (this is the only way in which capital can become 
more productive in that framework). This would have the unambiguous com
parative static that it always raises real wages for all worker groups. Instead, 
in our framework, automation operates entirely by changing task shares and 
output per worker (the first term), which, as we will see, has very different 
consequences.8

• Rich substitution patterns: Despite appearances, the task model does not 
force the elasticity of substitution across groups to equal λ�-the elasticity 
of substitution between tasks. This is because task shares respond to wages, 
capturing substitution generated by competition for marginal tasks. The task 
model thus allows for richer substitution patterns than a standard CES model 
and implies that the resulting macroeconomic elasticities are linked to the 
pattern of comparative advantage and competition for marginal tasks.

Section 3 introduces a special case of the framework here, which we will re
fer to as ``the no-ripples economy'', to explain the first distinctive feature, while 
Section 4 discusses the second one and presents a number of simple examples 
that illustrate the influence of comparative advantage on the macroeconomic 
elasticity of substitution. Section 5 puts these elements together and character
izes the full implications of different types of technologies in the one-sector 
model.

3 Different technology, different effects

The first distinctive feature of the task framework is its ability to differenti
ate between different types of technologies. This section describes the different 
classes of technology in this model and delineates the distinct mechanisms via 
which they affect labor demand and productivity. To facilitate the exposition, we 
focus on a special case of our framework, the ``no-ripples economy'', in which 
there is no competition for marginal tasks.

3.1 The no-ripples economy

We first characterize the impact of different technologies in an example econ
omy that shuts down ripple effects and highlights the distinct direct effects of 
technology on labor demand. This ``no-ripples economy'' imposes the following 
assumption:

Assumption 2 (No ripples). The task space can be partitioned into sets {︂
𝒯 ∗

g

}︂
g∈𝒢 and 𝒯 ∗

k such that for each g, tasks 𝒯 ∗
g can be produced only by work

ers in skill group g and tasks in 𝒯 ∗
k can be produced only by capital.

8 One could try to replicate the effects of automation by exogenously changing the weights of the 
CES production function, but this has the disadvantage of being highly reduced-form. In particular, 
there would be no way to know ex ante which weights should be changed and by how much.
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This assumption ensures that no marginal tasks are being contested between 
skill groups or between capital and labor. Task shares are pinned down by tech
nology and can be written as

Γg = 1 
M

∫︂
𝒯 ∗

g

ψg(x)λ−1 · dx for g ∈𝔾, and Γk = 1 
M

∫︂
𝒯 ∗

k

ψk(x)λ−1 · dx.

From these, one can readily compute equilibrium wages and output using (4)
and (6). We maintain Assumption 2 in this section and relax it in subsequent 
sections.

3.2 Automation

Automation technologies are those that directly displace workers from tasks they 
perform. In the smartphone production example, automation corresponds to the 
introduction of robots or computer numerical control machinery that take over 
various manufacturing and assembly tasks. One can also think of new software 
systems that automate some of the back-o˙ice tasks needed to commercialize 
smartphones.

We model automation technologies as an increase in the productivity of 
capital in tasks previously assigned to labor. In particular, we assume new 
automation technologies become available in a set of tasks 𝒜⊂ ∪g∈𝔾𝒯 ∗

k and 
increase capital productivity in these tasks discretely, from ψk(x) = 0 in x ∈ 𝒜
to ψauto

k (x) > 0. We assume that in the initial equilibrium 1 
Ak ·ψauto

k (x)
<

wg

Ag ·ψg(x)

for all x ∈ 𝒜 and for any g ∈ 𝔾. We also assume that 𝒜 is a small set (mean
ing that its measure is small), which guarantees that producing these tasks with 
capital reduces costs.9

A convenient feature of the task framework is that the effects of technology 
depend on its impact on task allocations and productivity. In the case of automa
tion technologies, we can summarize their effects via two objects: the direct task 
displacement and the cost savings that these technologies generate.

Denote the set of tasks performed by skill group g and that now become 
automated by 𝒜g = 𝒜 ∩ 𝒯 ∗

g . The direct task displacement on group g from 
automating these tasks is

d lnΓauto
g =

∫︁
𝒜g

ψg(x)λ−1 · dx∫︁
𝒯 ∗

g
ψg(x)λ−1 · dx 

≥ 0.

That is, the direct task displacement gives the proportional reduction in group 
g’s task share resulting from automation—the numerator is the share of tasks in 

9 Notice that while Assumption 2 holds in the initial equilibrium before the change in technology, 
it no longer holds after the change, because tasks in 𝒜 can be produced by more than one factor 
of production. The fact that technology changes in a small set of tasks ensures that producing au
tomated tasks with capital is still strictly profitable and thus there are effectively no marginal tasks, 
even after the change in technology.
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the set 𝒜g , while the denominator is group g’s task share in the initial equilib
rium.

The cost savings from automating task x in 𝒜g are

πauto
g (x) = 1 

1 − λ
·
(︄

1 −
[︃
wg · Ak · ψauto

k (x)

Ag · ψg(x) 

]︃λ−1
)︄

. (8)

This expression measures the decline in costs from switching to produce task 
x with the new capital instead of labor (at the initial equilibrium wages). Cost 
savings are positive by assumption. The average cost savings from automating 
tasks previously assigned to group g can then be computed as the employment
weighted average of πauto

g (x)’s:

πauto
g =

∫︁
𝒜g

ψg(x)λ−1 · πauto
g (x) · dx∫︁

𝒜g
ψg(x)λ−1 · dx 

> 0.

Fig. 2 illustrates the role of direct displacement effects from automation and 
the resulting cost savings for two skill groups.

FIGURE 2 Effects of automation on the allocation of tasks. The figure depicts the task space and 
illustrates an example of new automation technologies increasing the productivity of capital in tasks 
previously assigned to group g workers, 𝒜g . This has two consequences: direct displacement and 
cost savings.

The task displacement and cost-saving gains {d lnΓauto
g ,πauto

g }g∈𝔾 summa
rize the capabilities of new technologies, the extent to which these capabilities 
outcompete workers of different skills, and the cost savings generated in the 
process. The next proposition shows how to compute the effects of automation 
in terms of these objects.

Proposition 2 (Effects of automation in the no-ripples economy). The effects 
of automation technologies, summarized by {d lnΓauto

g ,πauto
g }g∈𝔾, are given by 

the formulas

d lnwg = (1/λ) ·
(︂
d lny − d lnΓauto

g

)︂
for g ∈ 𝔾 (9)
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∑︂
g

s
y
g · d lnwg =

∑︂
g

s
y
g · d lnΓauto

g · πauto
g⏞ ⏟⏟ ⏞

=d ln tfp 

. (10)

Eq. (9) follows by differentiating (4) and using the fact that task shares are 
independent of wages in the no-ripples economy. It shows that the impact of 
automation on wages is given by the sum of two economic forces: the first term, 
representing the productivity effect from automation, and the second term, rep
resenting the displacement effect from automation—meaning the displacement 
of workers of group g from the tasks they previously performed. The displace
ment effect is proportional to d lnΓauto

g and is straightforward to compute given 
the initial equilibrium, as we showed. The productivity effect, on the other hand, 
depends on how much output increases.

The second equation, (10), which is derived by differentiating (5), can be 
used to compute the productivity effect and pins down the impact of automation 
on real wage levels.10 This equation shows that the average increase in wages 
equals the TFP gains from automation, which can be computed with a logic 
identical to Hulten’s theorem: d ln tfp =∑︁

g s
y
g · d lnwg .11

Eq. (10) shows that automation necessarily increases the average wage�-and 
does so in proportion to its positive contribution to TFP. The fact that automa
tion increases TFP follows from the fact that, by assumption, capital produces 
the tasks in 𝒜 more cheaply than labor, which implies that πauto

g > 0. If this were 
not the case, these technologies would not be adopted. The result that automa
tion increases average wages in proportion to TFP also has a simple intuition. 
The change in TFP corresponds to how much the cost of producing the final 
good declines at given factor prices. Since this cost has to remain at 1, wages 
must increase on average by some amount proportional to TFP. This result is 
a consequence of three features: (i) capital is supplied fully elastically (see, for 
example, Simon, 1965; Caselli and Manning, 2019; Moll et al., 2022; Acemoglu 
et al., 2024); (ii) all markets are competitive (see Acemoglu and Restrepo, 2024, 
for the role of labor market imperfections); and (iii) the production technology 
exhibits constant returns to scale.

The fact that automation increases productivity and average wages does not 
imply that it does so by a significant amount or that it increases all workers’ 

10 Specifically, the productivity effect d lny can be computed by solving Eqs. (9) and (10). This 
system comprises G + 1 unknowns and G + 1 equations that can be solved together to determine 
the changes in the real wage of each group of workers and in output. An equivalent approach uses 
the fact that d lny = (1 − s

y
k
)−1 ·

(︂
d ln tfp − ds

y
k

)︂
, where sy

k
is the capital share in gross output to 

obtain this productivity effect and ds
y
k

is the change in the capital share, obtained from (11).
11 Hulten’s original result focuses on the effects of infinitesimal changes in technology. Here, we 
have a discrete jump in technology taking place over a small (infinitesimal) set of tasks, but this 
does not change the overall logic. The only difference is that, when computing πauto

g (x), we have to 
take into account the impact of this discrete jump on cost shares, which is the reason why the 1 − λ

terms appear in (8).
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wages. The formula for the productivity gains from automation shows that these 
depend on πauto

g . These cost savings can be small—which corresponds to so
so automation technologies in Acemoglu and Restrepo (2019). This will be the 
case when labor is fairly productive in these tasks to start with or when cap
ital can perform these tasks with moderate productivity (just high enough to 
outcompete labor but not so high as to yield meaningful cost savings). This ob
servation explains why significant investments in automation technologies can 
generate modest productivity and average wage growth.

Moreover, Eq. (9) highlights that while the productivity effect raises wages 
on average, the displacement effect can reduce the real wage of affected groups. 
This can be understood in the simplest way by assuming that automation only 
affects one group, g, and the new automation technologies are so-so (πauto

g = ϵ

for a small and positive ϵ). One can then show that there is some ϵ̄ such that, 
for ϵ < ϵ̄, group g’s real wage will necessarily decline. We return to a detailed 
discussion of real wage consequences of automation in the presence of ripple 
effects in Section 5.

The task framework also shows that automation is tightly linked to reduc
tions in the labor share. We can see this from the formula for the capital share in 
Eq. (7). The expansion in the set of tasks performed by capital implies that the 
labor share of national income sy

L decreases—and equivalently, the capital share 
s
y
K increases—by

ds
y
L = −

∑︂
g

s
y
g · d lnΓauto

g · (1 + (λ − 1) · πauto
g ) < 0. (11)

This result is a direct consequence of the fact that automation displaces workers 
from the tasks they used to perform, making production more capital intensive.

Offshoring The task framework can also be used to study the effects of off
shoring, which are very similar to automation (see, for example, Grossman 
and Rossi-Hansberg, 2008). Offshoring corresponds to some tasks previously 
performed domestically by labor now being transferred to workers in another 
country. This can be incorporated into our framework by interpreting k(x) to 
include imports of intermediates (or services) corresponding to task x. For ex
ample, the assembly of a smartphone can be performed by robots in the United 
States, or components can be shipped and assembled in Vietnam. From the view
point of workers in the United States, these two shifts have identical effects.12

We can therefore model the arrival of new opportunities for offshoring as 
a jump in the capabilities of the technology used for organizing global sup
ply chains for task x from ψk(x) = 0 to ψoffshore

k (x) > 0. We define the direct 

12 This is provided that trade is balanced so that a corresponding amount of the final good is trans
ferred to the foreign country to pay for the offshored tasks. In the multi-sector economy studied in 
the next section, trade balance could be achieved by exporting goods produced in specific indus
tries. If so, the effects of offshoring could differ from automation because they could also involve 
additional sectoral reallocation.
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task displacement from offshoring as d lnΓoffshore
g and the cost savings from 

offshoring as πoffshore
g analogously as we did for automation.

The objects {d lnΓoffshore
g ,πoffshore

g }g∈𝔾 summarize the impact of new off
shoring opportunities. The effects of offshoring are the same as those in Propo
sition 2, except that {d lnΓoffshore

g ,πoffshore
g }g∈𝔾 replace {d lnΓauto

g ,πauto
g }g∈𝔾. 

The impact of offshoring operates via productivity and displacement effects as 
well. Just like automation, offshoring can have a negative impact on exposed 
groups when the cost savings from offshoring are limited.

3.3 New tasks

The second class of technologies considered here are advances that enable the 
creation of new (labor-intensive) tasks. We emphasized in the Introduction the 
critical role that new tasks play in generating new opportunities and demand 
for labor—raising the labor share and counterbalancing the decline in labor 
share coming from automation. Acemoglu and Restrepo (2018b) and Autor et 
al. (2024) suggest that a significant part of employment growth over the last six 
decades is accounted for by occupations in which we see new tasks, such as 
various technical occupations, radiology, management consulting, design and 
programming.

While some new tasks emerge as a result of growing preferences for luxury 
goods (e.g., sommeliers), most new tasks result from advances in technology. 
For example, radiology became a major occupation because of advances in ra
diography technology, while management consulting and design occupations 
are dependent on a range of new communication and design tool innovations. 
New ride-sharing and delivery jobs were enabled by new platforms leveraging 
the use of smartphones and GPS technology. Likewise, new consumer products 
and services often generate new tasks for workers to perform. The defining fea
ture of these examples is that technology creates the demand for new specialized 
roles or endows workers with new capabilities to produce value and contribute 
to economic output.

We incorporate new tasks by assuming that there is a technological advance 
that enables the production of a set 𝒩 of new tasks that did not exist in 𝒯 . 
We assume that the sets {𝒩g}g∈𝔾 have small measure and that, at the initial 
equilibrium wages, firms strictly prefer to produce tasks in 𝒩g with workers 
from skill group g.13

The direct effects of new tasks can be summarized by two objects, similar to 
their counterparts for automation: direct task reinstatement and economic sur
plus from new tasks. The direct task reinstatement for group g (driven by the 

13 We can also allow for new capital-intensive tasks. For example, developing a new design for a 
widget creates a new task for CNC machinery capable of producing such design. We do not do so 
to economize space, especially since capital-intensive new tasks do not play as important a role as 
labor-intensive new tasks in accounting for changes in wage structure.
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introduction of new tasks) is

d lnΓnew
g =

∫︁
𝒩g

ψg(x)λ−1 · dx ∫︁
𝒯g(w)

ψg(x)λ−1 · dx
≥ 0

and gives the percent increase in group g’s task share resulting from the creation 
of tasks in 𝒩 . We refer to this measure as task reinstatement because it corre
sponds to the expansion of the set of tasks performed by workers in g and is thus 
the counterpart of the displacement caused by automation.

The economic surplus from new task x in 𝒩g , evaluated at the initial equi
librium wages, is defined as

πnew
g (x) = 1 

1 − λ
·
(︄[︃

wg

Ag · ψg(x)

]︃λ−1

− 1

)︄
.

The economic surplus from new tasks is positive if the cost of producing the 
task with labor wg/(Agψg(x)) is below 1�-the price of the final good and our 
choice of numeraire.14 We assume this is the case, so that new task x increases 
TFP and will be adopted. We also define average economic surplus from new 
tasks for group g as:

πnew
g =

∫︁
𝒩g

ψg(x)λ−1 · πnew
g (x) · dx∫︁

𝒩g
ψg(x)λ−1 · dx 

> 0.

Fig. 3 illustrates the role of direct reinstatement effects from new tasks and 
the economic surplus this generates.

The objects {d lnΓnew
g ,πnew

g }g∈𝔾 summarize the reinstatement effect from 
new tasks and its economic impact. The next proposition shows how to compute 
the effects of new tasks in terms of these objects.

Proposition 3 (Effects of new tasks in the no-ripples economy). The effects of 
new tasks, summarized by {d lnΓnew

g ,πnew
g }g∈𝔾, are given by the formulas

d lnwg = (1/λ) ·
(︂
d lny − d lnM + d lnΓnew

g

)︂
for g ∈ 𝔾 (12)∑︂

g

s
y
g · d lnwg =

∑︂
g

s
y
g · d lnΓnew

g · πnew
g⏞ ⏟⏟ ⏞

=d ln tfp 

. (13)

14 Note that new tasks can raise surplus even if λ < 1. This is because in our framework, the cost 
function associated with the production of the final good is c(p) =

[︂
1 
M

∫︁
𝒯 p(x)1−λ

]︂1/(1−λ)
. An 

expansion in the set of tasks can reduce the price index even if λ < 1, because of the presence of M
in the denominator. This modeling approach implies that when new tasks are introduced, the entire 
production process or organization changes. This is different from the standard way of modeling 
new varieties, whereby the arrival of a new variety reduces the cost of this latent variety from ∞ to 
some finite value.
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FIGURE 3 Effects of new tasks on the allocation of tasks. This figure depicts the task space and 
illustrates a change in technology that introduces new tasks, 𝒩g′ . This has two consequences: direct 
reinstatement and a surplus.

As in Proposition 2, these two equations can be solved together to determine 
changes in the real wages of all demographic groups as well as the increase in 
output. Eq. (12) describes the distributional effects of new tasks. Eq. (13) gives 
the TFP improvements due to new tasks and pins down their effects on wage 
levels.

The proposition shows that the wage consequences of new tasks are given 
by a combination of a productivity effect and a reinstatement effect, which is the 
converse of the displacement effect from automation. The reinstatement effect 
measures the beneficial (positive) impact from new tasks where workers will be 
employed. In addition, d lnM is included as a correction term because M , the 
measure of tasks in the economy, is in the denominator of (1). The assumption 
that there is a positive economic surplus from new task adoption is sufficient to 
ensure that average wages increase after accounting for this correction.

Because both the productivity and reinstatement effects are positive, new 
tasks increase wages for affected groups. Moreover, in contrast to automation 
technologies, new tasks increase the labor share of national income because 
they expand the set of tasks performed by labor, making the production process 
more labor-intensive.15

3.4 Labor-augmenting technologies

It is useful to distinguish between two types of labor-augmenting technolo
gies. The first (and more realistic) is in the form of new technologies that raise 
workers’ productivity at some of the tasks they currently perform. For example, 
imagine the creation of a sturdier and lighter hammer, which increases the pro
ductivity of male workers without college degrees in construction and carpentry 
tasks but not in other jobs. We refer to these as labor-augmenting technology at 

15 We provide the exact formulas for labor share changes for this and other technologies in the 
Appendix to save space in the text.
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the intensive margin. We represent the effects of labor-augmenting technology 
at the intensive margin on group g by

d lnψ intensive
g =

∫︁
𝒯 ∗

g
ψg(x)λ−1 · d lnψg(x) · dx∫︁

𝒯 ∗
g

ψg(x)λ−1 · dx 
.

This notation emphasizes that these increases in productivity occur only at tasks 
already assigned to group g.16

The second alternative involves uniformly labor-augmenting technological 
change, which increases the productivity of a factor in all tasks in the economy, 
and can be represented by increases in the Ag terms. This is the most common 
type of technological change studied in economic growth models and in pre
vious analyses of inequality. Finding examples of uniformly labor-augmenting 
technologies is challenging, but one possibility would be assistive technologies 
that improve the sight of visually impaired workers. The distinction between 
these labor-augmenting technologies is important in our general framework, 
though the next proposition shows that in the no-ripples economy, they have 
identical effects.

Proposition 4 (Labor-augmenting technologies in the no-ripples economy). 
The effects of labor-augmenting technologies are given by the formulas

d lnwg = (1/λ) ·
(︂
d lny − (1 − λ) · d lnAg − (1 − λ) · d lnψ intensive

g

)︂
for g ∈ 𝔾 (14)∑︂

g

s
y
g · d lnwg =

∑︂
g

s
y
g · (d lnAg + d lnψ intensive

g )

⏞ ⏟⏟ ⏞
=d ln tfp 

. (15)

Both forms of augmentation affect wages via a productivity effect d lny. 
In addition, both forms directly increase worker productivity one-to-one (by 
d lnAg or by d lnψ intensive

g ), but this has to be weighed against a negative 
task-price effect, given by (−1/λ) · (d lnAg + d lnψ intensive

g ). In the no-ripples 
economy, the task-price effect dominates the quantity expansion for both forms 
of augmentation in the empirically relevant case where tasks are gross comple
ments (λ < 1). This means that the benefits from labor-augmenting technologies 
accrue mostly to other workers who are not themselves becoming more produc
tive and who benefit from the increase in the price of tasks they produce.

That these two forms have identical effects in the no-ripples economy should 
not be surprising: the set of tasks performed by a factor, say, skill group g, does 
not change in response to augmenting technologies. Hence a marginal increase 

16 This discussion clarifies that we could alternatively refer to this form of augmentation as ``pro
ductivity deepening'' to capture the fact that it deepens the comparative advantage that the group has 
for the tasks it is already performing (those in the set 𝒯 ∗

g ).



26 Handbook of Labor Economics 

in Ag only improves the productivity of this factor in the tasks it is performing 
and is thus very similar to an increase in d lnψ intensive

g . For the same reason, 
labor-augmenting technologies do not affect the labor share of national income 
in the absence of ripples since none of these technologies alter the range of tasks 
assigned to capital.17

It is useful to note the key differences between labor-augmenting technolo
gies and automation and new tasks—a feature that is particularly evident in the 
no-ripples economy. All of the effects of labor-augmenting technologies are at 
the intensive margin. They only affect relative wages via task prices, but they do 
not bring about large changes in the allocation of tasks to factors. In contrast, 
both automation and new tasks work at the extensive margin—their main im
pacts are rooted in the changes in the allocation of tasks that they cause. This 
is also the reason why the balance between the distributional and productivity 
effects of these types of technologies differ.

To further illustrate this point, we compare the magnitude of the distribu
tional consequences of labor-augmenting and automation technologies (in both 
cases, relative to their productivity effects). For labor-augmenting technology, 
this ratio is

− (1 − λ) · ψ intensive
g

ψ intensive
g

= − (1 − λ) .

The numerator is the impact via the combination of task price and quantity 
effects, while the denominator is the increase in their productivity. The corre
sponding ratio for automation is

− d lnΓauto
g

d lnΓauto
g · πauto

g

= − 1 
πauto

g

.

The first of these expressions is positive when λ > 1 (because the quantity ef
fects are larger than the price effects), and even when it is negative, it takes a 
finite value less than 1. In contrast, the second expression can be unboundedly 
large, especially for so-so automation technologies (πauto

g ≈ 0).
Labor-augmenting technologies are also very different from new tasks. 

While the former increases the quantity of goods and services that workers pro
duce in existing tasks (and this comes at the expense of a reduction in the price 
of these tasks and services, putting downward pressure on their wages), new 
tasks reinstate workers into new activities, allowing them to spread their labor 
across a wider range of tasks. This is the reason why new tasks, which enable the 
labor hours of the affected group to be distributed across a larger set of tasks, do 
not run into the same diminishing returns that labor-augmenting improvements 
do.

17 This follows from the formula for the labor share in Eq. (7). The equation shows that when the 
supply of capital is elastic, the labor and capital share are pinned down by the range of tasks assigned 
to capital and the productivity of capital in these tasks but are independent of labor productivity at 
other tasks. If the supply of capital were not perfectly elastic, these changes would impact relative 
task prices and have a (typically small) impact on the labor share.
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3.5 Capital-augmenting technologies

The analysis of capital-augmenting changes is similar to that of labor-augmenting 
ones. For capital-augmenting technological change at the intensive margin, we 
define

d lnψ intensive
k =

∫︁
𝒯k

ψk(x)λ−1 · d lnψk(x) · dx∫︁
𝒯k

ψk(x)λ−1 · dx 
,

as the increase in the productivity of capital in the tasks it is already perform
ing. A uniformly capital-augmenting technological change is summarized by 
d lnAk , analogously to the previous subsection.

Proposition 5 (Capital-augmenting technologies in the no-ripples economy). 
The effects of capital-augmenting technologies are given by the formulas

d lnwg = (1/λ) · d lny for g ∈ 𝔾 (16)∑︂
g

s
y
g · d lnwg = s

y
K · (d lnAk + d lnψ intensive

k )⏞ ⏟⏟ ⏞
=d ln tfp 

. (17)

The proposition shows once more the equivalence between intensive-margin 
and uniformly capital-augmenting technologies in the no-ripples economy. One 
noteworthy point is that because, in the no-ripples economy, capital-augmenting 
technologies only change the productivity of already capital-intensive tasks, 
they do not create any adverse effects on labor, and thus always have a positive 
impact on the wages of all groups of workers. In fact, when λ < 1, capital
augmenting technological change at the intensive margin increases the labor 
share of national income.

This proposition reiterates that there is a crucial difference between capital
augmenting technologies and automation. As already noted, the latter acts ex
clusively at the extensive margin—by altering the allocation of tasks. Instead, 
capital-augmenting technologies act primarily (and in the no-ripples economy 
entirely) at the intensive margin. In fact, while automation reduces the labor 
share and could reduce the real wage of affected groups, capital-augmenting 
technologies increase all worker wages uniformly and, in the plausible scenario 
where capital and labor are gross complements, they also increase the labor 
share. This distinction clarifies why it would be incorrect to think of the de
velopment of industrial robots or other automation technologies as augmenting 
existing capital.

3.6 Microfoundation for shifting Cobb-Douglas exponents

The no-ripples economy also provides a microfoundation for a Cobb-Douglas 
aggregate production function where technology acts by changing its elastici
ties. To see this, consider the limit case with λ → 1. Output in this economy can 
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then be represented as

y = 𝒜 ·
(︃

k

Γk

)︃Γk ∏︂
g

(︃
ℓg

Γg

)︃Γg

,

where the exponents are given by the share of tasks in 𝒯 ∗
g and 𝒯 ∗

k , and ln𝒜 =
1 
M

· ∫︁
x∈𝒯 ∗

k
ln(Ak · ψg(x)) · dx +∑︁

g
1 
M

· ∫︁
x∈𝒯 ∗

g
ln(Ag · ψg(x)) · dx.

This example can be used to illustrate several of the conclusions of Propo
sitions 2--5. In particular, we can easily see how automation and new tasks can 
have sizable effects on the equilibrium by shifting the Cobb-Douglas exponents. 
In contrast, augmenting technologies work by increasing aggregate productivity 
𝒜 in a factor-neutral way.

This example also provides a microfoundation for models of factor
eliminating technologies, such as Zuleta (2008) and Peretto and Seater (2013). 
It shows that one can map automation to a reduction in the Cobb-Douglas ex
ponent for skill groups whose tasks become automated and an increase in the 
exponent for capital, while new tasks increase the Cobb-Douglas exponent for 
the favored skill groups and reduce the exponent for capital.

3.7 Taking stock

Several of the key messages discussed in the Introduction are clarified by Propo
sitions 2--5. Most importantly, these results show that new technologies affect 
equilibrium wages through three mechanisms: a productivity effect (any tech
nology that increases productivity and expands output raises labor demand and 
wages); displacement and reinstatement effects (that work at the extensive mar
gin by directly changing the allocation of tasks to factors of production); and 
task-price effects (factor-augmenting technologies increase the supply of some 
tasks and reduce their prices). Different types of technological changes generate 
different combinations of these three effects, thus having varied consequences 
in terms of aggregate productivity and inequality.

4 From micro to macro elasticities

In this section, we focus on the second distinctive feature of the task frame
work: the rich pattern of macroeconomic elasticities of substitution. This section 
defines these elasticities and shows how the pattern of comparative advantage 
shapes them. We then illustrate these patterns with a series of examples.

4.1 Macroeconomic elasticities of substitution

In the no-ripples economy studied in the previous section, any substitution be
tween factors comes only via the substitution between tasks. If high-skill work
ers become abundant, the tasks they produce also become abundant, driving 
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down their price and encouraging firms to substitute toward using these tasks 
more intensively. The general case with ripples allows for richer substitution 
patterns. As one group of workers becomes abundant, they will also substitute 
for other workers in marginal tasks. The extent of this effect depends on whether 
workers compete for marginal tasks and how steep their comparative advantage 
is in these tasks.

To explore these issues, let us define the macroeconomic elasticity of substi
tution between skill groups g and g′ as

σgg′ = 1 

s
y

g′
· d lnℓg

d lnwg′

⃓⃓⃓
y constant

.

This elasticity measures how much a proportional increase in the wage of skill 
group g′ changes the demand for skill group g. In the task framework, for g′ ≠ g, 
this elasticity is

σgg′ = λ⏞ ⏟⏟ ⏞
substitution between tasks

+ 1 

s
y

g′
· ∂ lnΓg(w)

∂ lnwg′⏞ ⏟⏟ ⏞
substitution within marginal tasks

.

With constant returns to scale, the elasticity is symmetric: σgg′ = σg′g .18

The formula illustrates the two margins of substitution. First, we have sub
stitution between tasks produced by different skill groups and controlled by λ. 
This is similar to the substitution in the standard CES production function and 
is the only margin of substitution in the no-ripples economy. Second, we have 
substitution between worker groups taking place in marginal tasks. This second 
source of substitution depends on the intensity of competition for marginal tasks 
and is shaped by the comparative advantage schedules. This term will be high 
when the two groups in question have similar comparative advantage schedules 
in marginal tasks, which in turn would imply that a small difference in costs of 
producing these marginal tasks can lead to a big shift in tasks from one group to 
the other.19

18 The notion of elasticity of substitution used here is due to Allen-Uzawa. With constant returns 
to scale, the Allen-Uzawa elasticity can be expressed in terms of the cost function 𝒞(w) as

σgg′ = 𝒞(w) · 𝒞gg′ (w) 
𝒞g(w) · 𝒞g′ (w)

,

which is symmetric due to Young’s theorem. Note that the symmetry of σgg′ is equivalent to the 
symmetry property in (3), also proving that assertion.
19 Macroeconomic elasticities of substitution can be estimated from the data, but the exact source 
of variation being exploited is important. If one focuses on situations in which tasks cannot be or 
are not reassigned between factors of production, then one would recover λ.
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The elasticity of substitution between capital and skill group g can be simi
larly computed as:

σkg = 1 

s
y
g

· ∂ ln k 
∂ lnwg

⃓⃓⃓
y constant

= λ⏞ ⏟⏟ ⏞
substitution between tasks

+ 1 

s
y
g

∂ lnΓk(w)

∂ lnwg⏞ ⏟⏟ ⏞
substitution within marginal tasks

.

The two margins of substitution are present in this case as well and play a central 
role in determining how advances in the productivity of capital in marginal tasks 
impacts workers (see Acemoglu and Loebbing, 2024).

4.2 Examples

This subsection illustrates how the macroeconomic elasticity of substitution is 
determined in a number of tractable cases, clarifying the role of comparative 
advantage.

Equilibrium with a common elasticity of substitution between tasks The sim
plest example of how the macroeconomic elasticity of substitution is determined 
by the pattern of comparative advantage comes from Acemoglu and Zilibotti 
(2001), who analyze a task model with two types of labor: low-skill (with sup
ply ℓ) and high-skill (with supply h). The task space is a line from [0,1] (so that 
M = 1), tasks are combined with an elasticity of substitution λ = 1, and

y(x) = Aℓ · (1 − x)1/κ · ℓ(x) + Ah · x1/κ · h(x), where κ > 0.

In this economy, task shares can be computed as

Γℓ(w) = (wh/Ah)
κ

(wh/Ah)κ + (wℓ/Aℓ)κ
, Γh(w) = (wℓ/Aℓ)

κ

(wh/Ah)κ + (wℓ/Aℓ)κ
,

and the macroeconomic elasticity of substitution between low and high-skill 
labor is constant and given by

σhℓ = 1 ⏞⏟⏟⏞
=λ 

+ 1 

s
y
ℓ

· ∂ lnΓh(w)

∂ lnwℓ

= 1 + 1 

s
y
ℓ

· (1 − s
y
h) · κ = 1 + κ.

In fact, the equilibrium admits a representation that takes the following CES 
form:

y =
(︂
(Aℓ · ℓ) κ

1+κ + (Ah · h)
κ

1+κ

)︂ 1+κ
κ

.

We see in this example that the macroeconomic elasticity of substitution 
between low and high-skill is 1+κ > 1, different both from the (infinite) within
task elasticity of substitution and the elasticity of substitution between tasks 
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(which is equal to λ = 1). Intuitively, a greater value for κ makes the com
parative advantage of high-skill labor relative to low-skill labor shallower in 
marginal tasks, facilitating the assignment of more tasks to the type of labor that 
is cheaper. In contrast, when κ is low, the productivity of high-skill labor rela
tive to low-skill labor declines sharply as more tasks are assigned to high-skill 
workers.

Macroeconomic elasticity of substitution with correlated Frechet distributions 
This example generalizes the previous one to a setting with multiple (> 2) skill 
groups. It is also an adaptation of the commonly-used parameterization of Eaton 
and Kortum (2002) of the original Dornbusch et al. (1977) model, with skill 
groups taking the place of countries and no trade costs.20 This example illus
trates how correlation and (lack of dispersion) in task-level productivities makes 
skill groups more substitutable in the aggregate.

Consider a version of the task model with multiple types of workers and no 
capital. The task space is a line from [0,1] (so that M = 1), tasks are combined 
with an elasticity of substitution λ ∈ (0,1), and

y(x) =
∑︂
g

Ag · ψg(x) · ℓg(x).

Suppose that for each task x, the task-level productivities of the different worker 
groups ψg(x) are drawn from a correlated Frechet distribution with CDF:

Pr(ψ1(x) ≤ a1, . . . ,ψG(x) ≤ aG) = exp

⎧⎨
⎩−

[︄∑︂
g

a
−κ/(1−ρ)
g

]︄1−ρ
⎫⎬
⎭ .

In this specification, ρ ∈ [0,1) measures the correlation between the productivi
ties of different groups of workers, and κ > 0 is an inverse measure of dispersion 
in productivities. The case ρ = 0 gives the commonly used case of independent 
Frechet distributions.

In this example, task shares can be computed as

Γg(w) =
(︃

wg

Ag

)︃λ−1−κ/(1−ρ)

·
⎡
⎣∑︂

g′

(︃
wg′

Ag′

)︃−κ/(1−ρ)
⎤
⎦

λ−1−κ/(1−ρ)
κ/(1−ρ) 

,

which implies a common macroeconomic elasticity of substitution between skill 
groups

σgg′ = λ

⏞ ⏟⏟ ⏞
between tasks

+ 1 

s
y

g′
· ∂ lnΓg(w)

∂ lnwg′⏞ ⏟⏟ ⏞
within marginal tasks

= λ +
(︃

κ

1 − ρ
− λ + 1

)︃
.

20 Lind and Ramondo (2023) utilize this parametrization in a trade context, while Dvorkin and 
Monge-Naranjo (2019) and Freund (2024) use it in task models.
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Equilibrium output again aggregates to a CES representation, this time with 
elasticity 1 + κ/(1 − ρ) and productivity level 𝒜 (for some constant 𝒜):

y = 𝒜 ·
(︄∑︂

g

(Ag · ℓg)
κ

1−ρ+κ

)︄ 1−ρ+κ
κ

.

The macroeconomic elasticity of substitution, 1 + κ/(1 − ρ), exceeds λ be
cause it accounts for substitution in marginal tasks. Note that when κ is larger, 
skills are less dispersed, and comparative advantage across workers is shal
lower, translating into greater substitution between worker types. Substitution 
in marginal tasks also increases with ρ. Greater correlation in workers’ produc
tivity implies a more intense competition for marginal tasks.

The macroeconomic elasticity of substitution between capital and labor The 
setup of Hubmer and Restrepo (2021) provides an example where tasks are com
plements but the macroeconomic elasticity of substitution between capital and 
labor becomes 1.

Suppose that there are two factors of production: labor ℓ and capital k. The 
task space is the line [0,1] (so that M = 1) and tasks are combined with an 
elasticity λ ∈ (0,1). Suppose also that the productivities of capital and labor in 
task x are

ψk(x) = x
1−1/γk

1−λ · (1 − x)
1+1/γk

1−λ and ψℓ(x) = x
1+1/γℓ

1−λ · (1 − x)
1−1/γℓ

1−λ .

Equilibrium output now takes a Cobb-Douglas form

y = 𝒜 · k
γk

γk+γℓ · ℓ
γℓ

γk+γℓ

and we can also see that the macroeconomic elasticity of substitution between 
capital and labor is unity. This is because, in this case, the additional substitu
tion coming from the comparative advantage schedules adds to the elasticity of 
substitution between tasks, λ < 1. The γ parameters determine the importance 
of capital and labor in this Cobb-Douglas aggregator.

5 Putting it all together: shocks and propagation in the 
one-sector economy

In this section, we provide a characterization of the full equilibrium in the one
sector economy, bringing together the analysis of different types of technologies 
from Section 3 and the macroeconomic patterns of substitution from Section 4. 
The main tool for this analysis is the propagation matrix, which we introduce 
in the next subsection. We will also see that the effects of different types of 
technologies are richer in this case because of the substitution patterns that they 
initiate. Throughout, we focus on first-order approximations to the equilibrium 
effects of various changes, meaning that the formulas we present apply to small 
changes in technology.
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5.1 Equilibrium: ripple effects and the propagation matrix

In the no-ripples economy, technology affected task shares directly. For exam
ple, in Proposition 2 automation reduces exposed groups’ relative wage and 
potentially their real wage via a displacement effect. More generally, however, 
once group g experiences a decline in its relative wage, it becomes more prof
itable for some firms to use this group of workers in marginal tasks, substituting 
for other groups and putting pressure on their wages. This competition for 
marginal tasks is the source of ripple effects, which capture the indirect con
sequences of the reallocation of tasks between groups.

Fig. 4 illustrates the role of ripple effects in an example where automation 
displaces workers from group g and new tasks are created for group g′. Both 
technological developments increase the relative wage of group g′, encouraging 
firms to substitute capital or workers from skill group g for those from group 
g′ in marginal tasks. This endogenous reallocation of tasks is depicted by the 
dotted lines.

FIGURE 4 Direct effects of technology and ripple effects. The figure depicts the task space and 
shows the direct and the ripple effects caused by automation and new tasks (dotted and dashed lines).

To understand the implications of ripple effects, consider a demand shock 
affecting group g. This could be automation, labor-augmenting technological 
change, new tasks or other forms of technology. In the no-ripples economy, the 
impact of this shock on group g can be decomposed into its productivity d lny

and direct effects zg , so that d lnwg = (1/λ) · (d lny + zg). In the general case 
with ripples, differentiating the wage equation (4) yields

d lnwg = 1 
λ

· d lny + 1 
λ

· zg + 1 
λ

· ∂ lnΓg(w)

∂ lnw 
· d lnw, (18)

where d lnw = (d lnw1, . . . , d lnwG) is the column vector of all wage changes. 
These wage changes affect the equilibrium wage of group g by reallocating 
marginal tasks. This effect is summarized by the Jacobian ∂ lnΓg(w)/∂ lnw, 
written as the row vector of marginal changes in group g’s task share.

Stacking (18) for all groups and collecting the terms involving d lnw on 
the left-hand side allows us to solve for the endogenous change in wages as 
a function of the vector (z1, z2, . . . , zG). In what follows, we use the notation 
stack(zg) to represent this vector.
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Proposition 6 (Effects of technology with ripple effects). Consider a set of 
technological changes with direct effects stack(zg), which jointly reduce the 
marginal cost of producing the final good by π = −d ln𝒞(w)|w=constant > 0
holding all wages constant. The effect of these technological changes on wages 
and output is given by

d lnw = Θ · stack
(︁
d lny + zg

)︁
(19)∑︂

g

s
y
g · d lnwg = π ⏞⏟⏟⏞

=d ln tfp

, (20)

where

Θ = 1 
λ

·
(︃
1− 1 

λ
· ∂ lnΓg(w)

∂ lnw 

)︃−1

is the propagation matrix.

Eq. (19) provides a general formula that applies to all forms of technologi
cal change. It shows that we can decompose the effects of any technology into 
a productivity effect d lny, direct effects zg (which include task displacement, 
task reinstatement, and task-price substitution effects), and the ripple effects 
subsumed in the propagation matrix Θ. The reason why the propagation matrix 
takes the form of a Leontief inverse is that it accumulates the impacts result
ing from the reallocation of marginal tasks between g and g′, which then leads 
to a second round of reallocation of marginal tasks between g′ and g′′, and so 
on. Eq. (20), on the other hand, shows that the TFP gains and average wage in
crease due to technology are the same as in the no-ripples case. This is because 
our economy is competitive and, with the standard envelope theorem logic, the 
substitution of one group of workers for another at marginal tasks does not gen
erate any first-order gains in productivity. These G + 1 equations can again be 
solved together to obtain wage changes for the G groups of workers and the 
change in output for the unique final good.

5.2 Properties of the propagation matrix

When there is no competition for marginal tasks, as in the case studied in the 
no-ripples economy, the propagation simplifies to

Θ =

⎛
⎜⎜⎝

1 
λ

0 ... 0
0 1 

λ
... 0
...

0 0 ... 1 
λ

⎞
⎟⎟⎠ ,

and we recover the formulas for the no-ripples economy.
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For the general case, the Appendix establishes that the propagation matrix is 
well defined and has non-negative entries. The off-diagonal entries θgg′ ≥ 0 cap
ture the extent to which group g′ competes directly or indirectly (via subsequent 
rounds of reassignment) for marginal tasks with workers in group g.

The propagation matrix has several important properties:

1. Dampening: All eigenvalues of Θ are real and in the [0,1/λ] interval. This 
means that ripple effects dampen the distributional consequences of a shock. 
Intuitively, once a group is able to compete for and take over marginal tasks 
from others, the burden of the direct shocks it suffers will be lessened. This 
force exhibits itself by the diagonal element of Θ corresponding to group g
being less than 1/λ (recalling that the direct effect of a shock is (1/λ) · zg).

2. Monotonicity: for all g′ ≠ g, we have

θgg ≥ θg′g,

so that the maximum entry along a column of the propagation matrix is in 
the diagonal. This implies that a shock directly increasing (reducing) de
mand for g cannot increase (decrease) the wage of group g′ by more than 
g’s wage. This monotonicity property ensures that relative demand curves 
for skill groups are downward sloping.

3. Row sums: Row sums of the propagation matrix are

ρg =
∑︂
g′

θgg′ = 1 
λ

·
[︃

1 + s
y
K ·

(︃
σ̄kg

λ 
− 1

)︃]︃−1

for g ∈ 𝔾,

where σ̄kg = ∑︁
g′(θgg′/ρg) · σkg′ and sy

K is the share of capital in national 
income. In the special case where there is no capital, this simplifies to ρg =∑︁

g′ θgg′ = 1/λ for all groups. Another noteworthy special case is when all 
groups are equally substitutable with capital, i.e., σkg = σk , in which case we 
have

ρg =
∑︂
g′

θgg′ = 1 
λ

·
[︂
1 + s

y
K ·

(︂σk

λ 
− 1

)︂]︂−1
for g ∈ 𝔾.

The comparison of these two expressions shows that skill groups that are 
more substitutable for capital tend to have lower row sums.

4. Propagation and substitution: The propagation matrix Θ is related to the 
matrix of elasticities of substitution Σ = {σgg′ }g,g′∈𝔾 via the identity

Θ = diag

(︃
1 
sy

)︃
· (λ − Σ)−1 ,

where diag(1/sy) is a diagonal matrix with entries (1/s
y

1 , . . . ,1/s
y
G). This 

equation thus clarifies the tight connection between ripple effects and substi
tutability between labor types—greater substitution generates more substan
tial ripple effects and leads to smaller diagonals in the propagation matrix.
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5. Symmetry: The propagation matrix satisfies the symmetry property 
θgg′/sy

g′ = θg′g/s
y
g �-a corollary of the symmetry of task shares and elas

ticities of substitution.

To illustrate these properties, we can return to the examples introduced 
above. In the Frechet example, the propagation matrix is

Θ =

⎛
⎜⎜⎝

1 
κ/(1−ρ)+1 + κ/(1−ρ)+1−λ 

(κ/(1−ρ)+1)·λ · sy

1
κ/(1−ρ)+1−λ 
(κ/(1−ρ)+1)·λ · sy

2 ...
κ/(1−ρ)+1−λ 
(κ/(1−ρ)+1)·λ · sy

G

κ/(1−ρ)+1−λ 
(κ/(1−ρ)+1)·λ · sy

1
1 

κ/(1−ρ)+1 + κ/(1−ρ)+1−λ 
(κ/(1−ρ)+1)·λ · sy

2 ...
κ/(1−ρ)+1−λ 
(κ/(1−ρ)+1)·λ · sy

G

...

κ/(1−ρ)+1−λ 
(κ/(1−ρ)+1)·λ · sy

1
κ/(1−ρ)+1−λ 
(κ/(1−ρ)+1)·λ · sy

2 ... 1 
κ/(1−ρ)+1 + κ/(1−ρ)+1−λ 

(κ/(1−ρ)+1)·λ · sy
G

⎞
⎟⎟⎠ .

With the Frechet parameterization, ripple effects are uniform—so that a shock 
to group g creates the same wage consequences across all other groups. All 
eigenvalues of this matrix are equal to 1/(κ/(1 − ρ) + 1), and thus all shocks 
are dampened by λ/(κ/(1 − ρ) + 1). Naturally, the task framework is more 
general and allows for richer (and less restrictive) propagation patterns.

In the rest of this section, we study how different types of technological 
and factor supply changes impact the economy via their direct effects and their 
indirect effects working through the propagation matrix.

5.3 Automation

We first use Proposition 6 to study the implications of automation technologies 
(as in Section 3, the same results apply to offshoring and we do not repeat those 
here).

Consider new technologies leading to the automation of the set of tasks 𝒜=
∪g𝒜g (with the same convention as before that 𝒜g comprises tasks previously 
performed by skill group g). Let us also assume, for simplicity, that, for each 
g, 𝒜g is in the interior of the set of tasks performed by this group, 𝒯g. Then 
we can again summarize the share of tasks lost to automation for each skill 
group by {d lnΓauto

g }g , and cost savings from automation can be written as π =∑︁
g s

y
g ·d lnΓauto

g ·πauto
g , where πauto

g is the average cost savings from automating 
tasks previously performed by skill group g.

Proposition 6 implies that the effects of automation on wages are given by

d lnw = Θ · stack
(︂
d lny − d lnΓauto

g

)︂
(21)∑︂

g

s
y
g · d lnwg =

∑︂
g

s
y
g · d lnΓauto

g · πauto
g .

⏞ ⏟⏟ ⏞
=d ln tfp 

(22)

Eq. (9) from the no-ripples economy is a special case of (21), with the propaga
tion matrix replaced by a matrix with 1/λ on the diagonal. All discussion of that 
equation applies in this case as well: automation again works via the produc
tivity effect summarized by the increase in output and the displacement effects 
summarized by d lnΓauto

g .
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Importantly, however, the full distributional effects of automation differ from 
those in the special case with no ripples. In the general case, groups of workers 
displaced from their tasks by automation intensify the competition for marginal 
tasks against groups with whom they are highly substitutable. This competition 
mitigates the adverse effects of automation on exposed groups by spreading the 
incidence of this shock more broadly. The formula for wages in (21) shows 
that, in equilibrium, the downward wage pressure exerted by automation on a 
group not only depends on the displacement it experiences directly, as in the no 
ripple case, but also on whether groups competing for marginal tasks are being 
displaced, and groups competing against these groups are being displaced, and 
so on, as accounted for by the propagation matrix.

The TFP impact of automation in Eq. (22) is identical between the 
economies with and without ripples. This is because of the same envelope the
orem logic explained above. The reason why the automation shock itself has 
an impact on TFP is that it is not second-order—it corresponds to a discrete 
increase in the productivity of capital in a small set of tasks.

When does automation reduce real wages? We can use the general formula 
for the wage effects of automation in Eq. (21) to identify the circumstances that 
can lead to real wage declines for exposed groups of workers.

As we have seen, the combination of competitive markets, constant returns 
to scale production possibilities, and a fully elastic supply of capital ensure that 
automation increases real wages on average. This is true in the economy with 
ripples as well as in the no-ripples economy. However, this positive average 
wage effect can coexist with significant negative impacts on some groups of 
workers. Proposition 6 allows for a sharper characterization of the conditions 
under which negative wage effects can arise.

From Eq. (21), the full impact of automation technologies on group g is

d lnwg = ρg · d lny −
∑︂
g′

θgg′ · d lnΓauto
g′ ,

where ρg is the gth row sum of the entries of Θ.
Three conditions are needed for automation to reduce the real wages of 

group g:

i the task displacement from automation concentrates on group g;
ii group g is not highly substitutable with unaffected groups of workers;

iii the cost savings from automation are limited, or automation is ``so-so.''

The example outlined in our discussion of Proposition 2 satisfies these three 
requirements. In the example, we consider a case in which d lnΓauto

g > 0 and 
d lnΓauto

g′ = 0 for all other groups. This means that the displacement effect of au
tomation is highly concentrated on group g as opposed to being equally shared 
among all workers. The example was also given in the context of the no-ripples 
economy. Because there are no marginal tasks in this economy, exposed groups 
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(and, in fact, all groups) are not highly substitutable. As a result, the propagation 
matrix is diagonal, with entries 1/λ, and all groups bear the full incidence of any 
labor demand shock affecting them. Finally, and as discussed above, this form 
of automation reduces the wages of a group g when πauto

g = ϵ for some positive 
ϵ smaller than ϵ̄.

To understand why these three conditions are needed, let us modify our 
example. Imagine first that the task displacement from automation is not con
centrated on a handful of groups and suppose, on the contrary, that automation 
is fully even across groups, that is, d lnΓauto

g = d lnΓauto > 0. Proposition 2
implies that in the case with no ripples d lnwg = (1/λ) · (d lny − d lnΓauto)

and Proposition 6 shows that in the case with ripples this extends to d lnwg =
ρg · (d lny − d lnΓauto). In both cases, wages change by a proportional amount. 
This makes intuitive sense, as all workers share the productivity gains and dis
placement effects from automation evenly. From the fact that average wages 
must increase following any technological advance, we can conclude that 
d lny − d lnΓauto > 0 and no group can experience a real wage decline.

Next, to understand the role of substitutability of different work groups, 
consider the polar opposite of the no-ripples economy, where task-level produc
tivities are highly correlated across groups. In this case, worker groups compete 
strongly for marginal tasks and become highly substitutable in the aggregate. 
For example, consider the economy with correlated Frechet draws discussed in 
the previous section and focus on the limit case where the correlation parameter 
ρ goes to 1. In the limit, the propagation matrix converges to

Θ =

⎛
⎜⎜⎝

s
y

1 s
y

2 ... s
y
G

s
y

1 s
y

2 ... s
y
G

...

s
y

1 s
y

2 ... s
y
G

⎞
⎟⎟⎠ .

Proposition 6 implies that in this case all wages change by an equal amount 
d lnwg = d lny −∑︁

g′ s
y

g′d lnΓauto
g′ > 0 (and this holds even if the displacement 

effects from automation were uneven to begin with). Intuitively, when workers 
compete very strongly for marginal tasks, ripple effects will be equal to direct 
effects, and the incidence of a demand shock is evenly shared across all workers. 
Then, because average wages increase following any technological advance, all 
groups must experience a common real wage increase.

The role of cost savings was discussed in detail above, and large cost sav
ings imply that, regardless of the presence of ripple effects, the productivity 
gains dominate the displacement effect for all groups, leading to an increase 
in real wages for all. This reasoning establishes that only ``so-so'' automation 
technologies can reduce the wages of exposed workers.

One way to summarize this discussion is as follows. Automation has two 
effects: it raises group wages on average and creates dispersion around that com
mon wage increase. The common level shift depends on how sizable the cost 
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savings from automation are. The dispersion or inequality brought by automa
tion depends on how concentrated the shock is and the extent to which workers 
bear or spread the incidence of this shock. If the shock is evenly spread or the in
cidence is widely shared (because workers are highly substitutable in marginal 
tasks), automation will have limited effects on inequality, and all groups will 
see their real wages increase. Otherwise, automation will have sizable effects 
on inequality. The cost savings will then determine whether workers who lost in 
relative terms from automation will also lose in real terms.

To conclude our discussion, we note that automation can also reduce the 
wages of groups that are not directly exposed to it but are highly substitutable 
with exposed groups. For example, imagine two groups whose task-level pro
ductivities are highly correlated. In the limit, these groups have identical rows 
in the propagation matrix. Proposition 6 then implies that if automation reduces 
the real wage of one of these groups, it must also reduce the wages of the other 
via their strong competition for marginal tasks. This example explains why au
tomating tasks held by middle-skilled workers can also reduce wages at the 
bottom of the wage distribution.

5.4 New tasks

Proposition 6 generalizes Proposition 3 in the case of new tasks. The full effects 
of new tasks on wages and output are now given by

d lnw = Θ · stack
(︂
d lny − d lnM + d lnΓnew

g

)︂
d ln tfp =

∑︂
g

s
y
g · d lnwg =

∑︂
g

s
y
g · d lnΓnew

g · πnew
g .

Wages depend on a productivity effect, a task reinstatement effect, and ripples, 
which account for the propagation of shocks across worker groups due to the 
endogenous reassignment of tasks. Note that here, ripple effects generate a pos
itive impact on other groups, even if they do not benefit from new tasks directly. 
This is because workers who obtain new tasks become more expensive and thus 
less competitive for previously marginal tasks, increasing the demand for other 
skill groups in those tasks.

5.5 Labor-augmenting technology

In the presence of ripple effects, uniformly labor-augmenting technologies and 
increases in productivity at the intensive margin have different impacts. The re
sults from Proposition 6 extend to these technologies and imply that their effects 
on wages are now given by
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d lnw = Θ · (d lny − (1 − λ) · stack(d lnAg + d lnψ intensive
g )⏞ ⏟⏟ ⏞

negative task-price decline
from no-ripples case

)

+ (1− Θλ) · stack(d lnAg)⏞ ⏟⏟ ⏞
reallocation from

uniform improvements

, (23)

while the contribution of these technologies to TFP (which pins their effect on 
wage levels) is the same as in the no-ripples economy.21

Labor-augmenting technologies at the intensive margin affect wages via a 
productivity effect and via the same adverse task-price declines we saw for the 
no-ripples economy. These effects then propagate via Θ.

Uniform labor-augmenting technologies additionally allow groups becom
ing more productive to outcompete others for marginal tasks, increasing their 
task shares. This reallocation is also governed by the propagation matrix, which 
explains the extra term (1− Θλ) · stack(d lnAg) in the equation. This is always 
beneficial for own wages because 1−Θλ has a positive diagonal (and also nega
tive off-diagonals, which correspond to marginal tasks being lost to other groups 
that have become more productive). This positive benefit dominates the adverse 
price declines at the intensive margin if θgg is below one, meaning that, group g
has a sufficiently high macroeconomic elasticity of substitution with other skill 
groups.

This discussion further clarifies the difference between (uniform) factor
augmenting technological change—the form of technological progress typically 
emphasized in the literature on skill-biased technical change building on Katz 
and Murphy (1992)�-and automation, as analyzed in Acemoglu and Restrepo 
(2022). In particular, Eq. (23) clarifies that the distributional effects of factor
augmenting improvements in technology are fully mediated by the macroe
conomic elasticities of substitution, summarized by the propagation matrix. If 
macroeconomic elasticities are not far from unity, as many available estimates 
suggest, factor-augmenting technologies will have modest distributional effects. 
Put differently, with macroeconomic elasticities close to unity, one would need 
very large increases in group-level productivities to generate a meaningful di
vergence in wages across groups. In contrast, automation works at the extensive 
margin, and if it displaces low-education groups from tasks they were previously 
performing, its direct impacts could be much larger—regardless of the macroe
conomic elasticities of substitution since its main effect work by directly chang
ing task shares. This explains why automation can have sizable distributional 
consequences, even when different factors of production have macroeconomic 

21 In contrast to the no-ripple economy, labor-augmenting technologies can now change the labor 
share, and whether the labor share increases or decreases depends on how the task share of capital 
changes.
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elasticities of substitution near one.22 We return to this issue in Section 8, where 
we explore this distinction quantitatively (see also the discussion in Acemoglu 
and Restrepo, 2020b).

5.6 Capital-augmenting technologies

In an economy with ripples, capital-augmenting technological change at the 
intensive margin and uniformly capital-augmenting technological change have 
different implications. The results from Proposition 6 extend to these technolo
gies and imply that their effects on wages are now given by

d lnwg = ρg · d lny − (1 − λ · ρg) · d lnAk

while the effects on TFP are identical to those in the no-ripples economy. In 
this expression, ρg ∈ [0,1/λ] are the row sums of the propagation matrix. As in 
Proposition 5, capital-augmenting technologies at the intensive margin benefit 
all worker groups because they make capital more productive, generating a pro
ductivity effect, but they do not make capital more competitive in any marginal 
tasks. In contrast, the implications of uniformly capital-augmenting technolo
gies differ because they now make capital more competitive in marginal tasks. 
This extra competition is captured by the negative term (1 − λ · ρg) · d lnAk , 
where a larger difference between 1 and λ · ρg signifies that group g is more 
substitutable for capital in marginal tasks.

As with uniform labor augmenting technologies, we see here that the distri
butional effects of uniform capital augmenting technologies are entirely deter
mined by the macro elasticities of substitution between capital and labor, which 
are subsumed in the row sums of the propagation matrix. If these elasticities are 
not far from unity, uniform advances in capital, as those considered in Krusell 
et al. (2000) and the literature on investment-specific technical change, do not 
generate sizable distributional effects. Moreover, if these macro elasticities are 
below one, uniform advances in capital cannot generate the observed decline of 
the labor share. This contrasts with our findings for automation. The effects of 
automation on the wage distribution and factor shares are fully decoupled from 
these macro elasticities because automation shifts the allocation of tasks directly 
at the extensive margin.

The formulas above provide a different microfoundation for skill-specific 
elasticities of substitution between capital and labor (a possibility first consid
ered by Griliches, 1969). As an example, consider an economy with two types 
of labor, low-skill and high-skill. Suppose that high-skill labor has a very steep 

22 A related distinction explained in Acemoglu (2002) and Acemoglu and Autor (2011) is that, in 
canonical models of skill-biased technical change with two skill groups, technological change that 
makes highly-educated workers more productive necessarily increases wages for the low-education 
group (an implication of q-complementarity with two factors of production and constant returns 
to scale). Instead, and as shown here, models of automation can generate large wage declines for 
exposed groups.
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comparative advantage schedule in tasks in which it is competing against capital, 
while low-skill labor has a flatter comparative advantage. A uniform increase in 
capital-augmenting technological change will then increase inequality because 
it de facto complements high-skill labor, while creating a more intense compe
tition against low-skill labor.

5.7 Changes in labor supply

The following proposition shows that the propagation matrix also mediates the 
effect of labor supply changes.

Proposition 7 (Effects of exogenous changes in labor supply). The effects of 
exogenous changes in {ℓg}g∈𝔾 are given by

d lnw = Θ · stack(d lny − d lnℓg) (24)

where d lny is pinned down by 
∑︁

g s
y
g · d lnwg = 0.

Labor supply changes affect the wage structure through the propagation ma
trix because a labor supply expansion generates competition for marginal tasks 
from the expanding groups. This competition then determines the impact on the 
wages of both the expanding group and others. The propagation matrix sum
marizes these cross-group elasticities as well as the demand elasticity for the 
affected group. The substitution patterns summarized in the propagation matrix 
also point to the possibility that a particular group (say, domestic low-education 
workers) may suffer lower wages because of the increase in the supply of an
other group that is highly substitutable to them (such as immigrant workers).23

This proposition also provides guidance on how to account for the effects 
of exogenous labor supply changes on the wage structure, generalizing the ap
proach in Katz and Murphy (1992) and Card and Lemieux (2001), who assume 
that substitution patterns are given by a nested CES.

23 In this case, we would have that the two groups are q-substitutes (as opposed to the more standard 
notion of q-complementarity). The propagation matrix contains all relevant information on whether 
different skill groups are q-complements or q-substitutes. Consider, for example, a case with no 
capital. An increase in the supply of skill group g increases output by d lny = s

y
g ·d lnℓg and reduces 

this group’s wages by θgg · (1 − s
y
g ). The diagonal terms in the propagation matrix thus specify the 

slope of the aggregate elasticity of demand for group g. The supply shift alters other groups’ wages 
by d lnwg′ = ( 1 

λ ·sy
g −θg′g) ·d lnℓg and we can see that g and g′ are q-complements if 1 

λ > 1 
s
y
g

·θg′g

(or equivalently, from symmetry 1 
λ > 1 

s
y

g′
· θgg′ ). Pairs of groups with large corresponding off

diagonal entries can be q-substitutes. With the standard CES aggregate production function (with a 
common elasticity of substitution), all groups are q-complements.
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6 The multi-sector economy

In this section, we generalize our results to a multi-sector economy. The multi
sector extension is important for several reasons. First, the way we measure 
direct task displacement in the rest of the paper relies on this extension since, 
in reality, the rate at which tasks are automated varies substantially across in
dustries. Second, the multi-sector economy enables us to incorporate the conse
quences of a richer menu of competing technological effects—including those 
that work through industry-level productivity shocks—and the implications of 
changes in markups.

6.1 Environment

A (unique) final good y is produced by combining the output yi of a finite num
ber of industries, indexed by i ∈ 𝕀 = {1,2, . . . , I }, via a constant returns to scale 
function y = f (y1, . . . , yI ). We denote the unit-cost function for the final good 
by cf (p), where p = (p1, . . . , pI ) is the vector of sector prices. We also denote 
the share of industry i in the economy by sy

i (p) = ∂ ln cf (p)/∂ lnpi , which de
pends on the vector of sector prices (where the equality is a consequence of 
Shephard’s lemma). We continue to set the final goal as the numeraire.

Production in each sector yi requires the completion of the tasks in the set 
𝒯i , where 𝒯i has positive measures given by Mi > 0. We assume without loss of 
generality that the sets {𝒯i}i∈𝕀 are disjoint and denote their union by 𝒯 , which 
makes up the tasks space of the entire economy.24 As in our one-sector setup, 
task quantities y(x) are aggregated using a constant elasticity of substitution 
(CES) aggregator with elasticity λ ∈ (0,1):

yi = Ai ·
(︃

1 
Mi

∫︂
𝒯i

(Mi · y(x))
λ−1
λ dx

)︃ λ 
λ−1

,

where the new term, Ai , is a Hicks-neutral sector-specific productivity term.
An additional new element is that we allow for exogenous sector-specific 

markups, denoted by μi ≥ 1. This assumption allows us to model labor market 
implications of changing markups within the US economy (as studied, for ex
ample, in De Loecker et al., 2020). The case with μi = 1 for all i ∈ 𝕀 is a special 
case corresponding to a competitive economy.

As in the one-sector model, tasks are produced according to (1). We continue 
to assume that labor is inelastically supplied while the capital needed for any 
task x ∈ 𝒯 is produced from the final good at a constant marginal cost of 1.

We also continue to impose Assumption 1 from the one-sector model, except 
that the finite integrals and strict comparative advantage are now imposed sector 
by sector.

24 It is straightforward to allow for the same tasks to be performed in different industries, and 
whether we do so or not has no relevance for the results below.
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6.2 Equilibrium

A market equilibrium is given by a positive vector of real wages w = {wg}g∈𝔾, 
a positive vector of sectoral prices p = {pi}i∈𝕀, an aggregate output level y, 
an allocation of tasks to skill groups {𝒯gi}g∈𝔾,i∈ 𝕀 and capital {𝒯ki}i∈𝕀 in each 
industry, task prices {p(x)}x∈𝒯 , task labor demands {ℓg(x)}g∈𝔾,x∈𝒯 and capital 
production levels {k(x)}x∈𝒯 such that:

E1 Task prices are equal to the minimum unit cost of producing the task:

p(x) = min

{︄
1 

Akψk(x)
,

{︃
wg

Agψg(x)

}︃
g∈𝔾

}︄
.

E2 Tasks are produced in a cost-minimizing way, which means that for each 
sector i ∈ 𝕀, the set of tasks

𝒯gi(w) =
{︃
x : p(x) = wg

Agψg(x)

}︃

is allocated to workers from skill group g ∈𝔾, and the set of tasks

𝒯ki(w) =
{︃
x : p(x) = 1 

Akψk(x)

}︃

is produced with capital (where we condition on the vector of wages for 
later reference).

E3 Task-level demands for labor (for any g ∈𝔾) and capital are given by

ℓg(x) =
{︄

yi · pλ
i · μ−λ

i · Aλ−1
i · 1 

Mi

· Aλ−1
g · ψg(x)λ−1 · w−λ

g for x ∈ 𝒯gi(w)

0 otherwise.

and

k(x) =
⎧⎨
⎩ yi · pλ

i · μ−λ
i · Aλ−1

i · 1 
Mi

· Aλ−1
k · ψk(x)λ−1 for x ∈ 𝒯ki(w)

0 otherwise.

E4 The labor market clears for all g:

∑︂
i

∫︂
𝒯gi

ℓg(x) · dx = ℓg.

E5 Sector i’s price is given by its marginal cost times markup μi :

pi = μi · 1 
Ai

·
(︃

1 
Mi

∫︂
𝒯i

p(x)1−λ · dx

)︃1/(1−λ)

.
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E6 The price of the final good is 1, which implies

1 = cf (p).

In addition, as in the one-sector model, we use the tie-breaking rule that 
when a task can be performed at equal cost by multiple factors, it is first as
signed to capital and then to lower-indexed skill groups ahead of higher-indexed 
groups. Strict comparative advantage again ensures that such ties can occur only 
on a set of measures zero, and thus this tie-breaking rule is inconsequential.

Fig. 5 provides a graphical illustration of the equilibrium, emphasizing the 
allocation of the tasks in each industry to different factors and their aggregation 
to the production of the unique final good.

FIGURE 5 Equilibrium task assignment and task shares. The figure depicts the task space of a 
multi-sector economy and shows automation and new tasks taking place in industry i.

Most of these equilibrium conditions are familiar from the one-sector model. 
E1-E2 are identical to before and leverage cost-minimization. E3 and E5 are 
different from before because of the presence of markups: the latter condition 
imposes that industry prices incorporate markups, and the former adjusts factor 
demands for the presence of markups—higher markups translate into lower fac
tor demands. E4 aggregates the demand for labor across industries, while E6 is 
again the numeraire condition.

As before, we can represent the equilibrium in terms of task shares, but now 
defined separately by sector i ∈ 𝕀:

Γgi(w) ≡ 1 
Mi

∫︂
𝒯gi (w)

ψg(x)λ−1 · dx for i ∈ 𝕀 and g ∈𝔾

Γki(w) ≡ 1 
Mi

∫︂
𝒯ki (w)

ψk(x)λ−1 · dx for i ∈ 𝕀.
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Proposition 8 (Equilibrium representation). Equilibrium wages w, industry 
prices p, and level of output y, solve the system of equations

wg =
(︃

y

ℓg

)︃1/λ

· A1−1/λ
g ·

[︄∑︂
i

s
y
i (p) · pλ−1

i · μ−λ
i · Aλ−1

i · Γgi(w)

]︄1/λ

for g ∈𝔾, (25)

pi = μi · 1 
Ai

·
(︄

Γki(w) · Aλ−1
k +

∑︂
g

Γgi(w) ·
(︃

wg

Ag

)︃1−λ
)︄1/(1−λ)

⏞ ⏟⏟ ⏞
≡𝒞i (w) 

for i ∈ 𝕀,

(26)

1 = cf (p), (27)

where 𝒞i (w) denotes the marginal cost of producing output of sector i.

This characterization is analogous to the one in Proposition 1 for the one
sector model, except that we now also have an additional equilibrium condition 
for sectoral prices.

6.3 Effects of technology in the multi-sector economy

We can use the characterization in Proposition 8 to derive the effects of different 
types of technologies on the equilibrium wage structure. To do this, we rely 
again on the propagation matrix, which in this case can be written as

Θ = 1 
λ

·
(︃
1− 1 

λ
· ∂ lnΓ(w)

∂ lnw 

)︃−1

,

where the Jacobian ∂ lnΓ(w)/∂ lnw is now the G × G matrix with its gg′th 
entry given by ∑︂

i

ωgi · ∂ lnΓgi(w)

∂ lnwg′
,

where ωgi denotes wage payments received by group g in industry i as a share 
of total group wage payments. This matrix summarizes how changes in the wage 
of group g′ affects group g by summing over the effects taking place in different 
industries.

As in the previous section, we start with the direct effects of new technolo
gies, represented by the vector z, on the demand for skill group g. Define zgi

as the percent change in demand for workers from group g in industry i due 
to a change in technology at constant factor and sectoral prices. For automa
tion, new tasks, and augmenting technologies, this coincides with the effects 
of these technologies on workers’ task shares in industry i. We also define the 
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productivity gains at the sectoral level from these technological advances as 
πi = −d ln𝒞i (w)|w=constant > 0, which summarizes the contribution of technol
ogy to TFP in sector i. Finally, to simplify the exposition, we assume industries 
are combined into the final good with a constant elasticity of substitution η, 
though this can be relaxed.

Proposition 9 (Effects of technology in the multi-sector economy). Consider 
a change in technology with direct effects {zgi}g∈𝔾,i∈𝕀 and productivity gains 
{πi}i∈𝕀. The effect of this technology on wages, sectoral prices, and output is 
given by

d lnw = Θ · stack

(︄
d lny +

∑︂
i

ωgi · zgi + (λ − η) ·
∑︂

i

ωgi · d lnpi

)︄
(28)

d lnpi =
∑︂
g

s
yi
g · d lnwg − πi for i ∈ 𝕀 (29)

0 =
∑︂

i

si · d lnpi. (30)

Here syi
g is the share of payments to skill group g in value-added in industry i, si

is the share of industry i in total costs, and ωgi denotes wage payments received 
by group g in industry i as a share of total group wages.

The proposition decomposes the effects of technology on the wage structure 
into four distinct channels. The first is the productivity effect, represented by 
d lny. The second comprises the usual direct effects of technology, the zgi’s, 
except that these are now at the industry level and have to be aggregated. The 
third is captured by the propagation matrix, Θ, pre-multiplying the vector on the 
right-hand side of Eq. (28), which again summarizes the role of ripple effects.

The fourth and new element is the last term on the right side of (28). This 
corresponds to changes in the sectoral composition of the economy, which can 
be non-neutral if expanding sectors differ from contracting ones in their fac
tor demands. Conversely, these changes are neutral when all sectors employ the 
same input mix. More generally, this term captures two forces. On the one hand, 
a reduction in the price of sector i increases its quantity, raising its demand 
for labor. This sectoral-demand effect depends on the elasticity of substitution 
between sectors (assumed to be equal to η). On the other hand, a reduction in 
the price of sector i reduces the value of the marginal product of workers and 
the demand for their services with an elasticity λ. When λ > η, the first ef
fect dominates, and sectoral shifts benefit workers in sectors experiencing less 
productivity growth. This captures the same economic mechanism as in the cele
brated Baumol effect (Baumol et al., 2012): workers specializing in sectors with 
lower (technological) productivity growth, such as healthcare, tend to benefit 
because the relative prices of these sectors increase strongly as aggregate output 
expands.
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Finally, the exact equilibrium changes in sectoral prices can be obtained from 
(29), while Eq. (30) pins down the change in the output level.

It is useful to illustrate the results of Proposition 9 for automation technolo
gies. The effects of automation on wages are now given by

d lnw = Θ · stack

(︄
d lny − d lnΓauto

g + (λ − η) ·
∑︂

i

ωgi · d lnpi

)︄
, (31)

with d lnΓauto
g the total direct task displacement due to automation experienced 

by group g,

d lnΓauto
g =

∑︂
i

ωgi · d lnΓauto
gi . (32)

This is obtained by summing the direct task displacement from automation ex
perienced by group g in industry i, d lnΓauto

gi , across industries. The summation 
weights are given by the shares of wage payments from industry i in group 
g’s total wage payments. The wage equation (31) again contains the usual pro
ductivity and displacement effects of automation, as well as the ripples via the 
propagation matrix.

The new element here relative to the single-sector economy is the indi
rect effect of automation working via its impact on sectoral prices, which 
shifts the composition of the economy. These effects depend on the contri
bution of automation to the TFP of the different sectors, which is given by 
πi = ∑︁

g s
yi
g · d lnΓauto

gi · πauto
gi , where the πauto

gi ’s are the average cost savings 
from automation in sector i. For λ > η, which is the case we consider in our 
quantitative exercise, automation reallocates labor demand away from sectors 
that automate at a higher rate, reducing the relative wages of workers in these 
industries.

The equilibrium here is not generically efficient because of the presence of 
markups. Nevertheless, when there are no markups or when markups are uni
form across sectors (μi = μ), the equilibrium is again efficient. In that case, 
Eqs. (29) and (30) imply that average wage changes from automation are∑︂

g

s
y
g · d lnwg =

∑︂
i

si
∑︂
g

s
yi
g · d lnΓauto

gi · πauto
gi ,

⏞ ⏟⏟ ⏞
=d ln tfp 

where the term on the right-hand side is aggregate TFP, obtained by summing 
the cost savings due to automation in different industries. As in the single-sector 
model, we can see the effect of automation on wage levels depends on its con
tribution to TFP, and could be large or small depending on how big the cost 
savings due to this technology are.
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6.4 Sectoral TFP and markups

The multi-sector economy allows us to study the labor market implications of 
sector-specific (Hicks-neutral) technological advances and changes in markups. 
In particular, Proposition 9 also applies to sector-specific technologies, which 
are important drivers of structural change in the economy (see Ngai and Pis
sarides, 2007; Buera et al., 2021). The effect of these technologies satisfies

d lnw = Θ · stack

(︄
d lny − (1 − λ) ·

∑︂
i

ωgi · d lnAi + (λ − η) ·
∑︂

i

ωgi · d lnpi)

)︄

d lnpi =
∑︂
g

s
yi
g · d lnwg − d lnAi for i ∈ 𝕀

0 =
∑︂

i

si · d lnpi.

Hicks-neutral increases in sectoral TFP affect the wage structure via the four 
channels identified above. The first is the productivity effect, which corresponds 
to the expansion of output, d lny. The second works through the reduction in 
task prices for the sectors that become more productive. Task-price effects are 
aggregated according to the exposure of different skill groups to the industry in 
question, as measured by the wage-bill shares ωgi . The third channel is via the 
ripple effects, encoded in the propagation matrix Θ. The fourth is the sectoral 
price changes in the last term on the right-hand side of the wage equation.

The comparison of this wage equation to (31) shows the differences be
tween sectoral TFP improvements and automation. Automation works via the 
extensive-margin of task reallocation taking place within sectors, while there 
is no equivalent of these effects in the case of sectoral TFP, which works by 
reallocating labor demand across sectors.

Finally, we can derive the effects of changes in markups. This follows from 
our characterization of the equilibrium in Proposition 8 and is presented next.

Proposition 10 (Effects of markups in the multi-sector economy). Consider 
an exogenous change in sectoral markups {d lnμi}i∈𝕀. The impact on wages, 
sectoral prices, and output is given by

d lnw = Θ · stack

(︄
d lny − λ ·

∑︂
i

ωgi · d lnμi + (λ − η) ·
∑︂

i

ωgi · d lnpi

)︄

(33)

d lnpi =
∑︂
g

s
yi
g · d lnwg + d lnμi for i ∈ 𝕀 (34)

0 =
∑︂

i

si · d lnpi. (35)
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This proposition shows that markups affect the wage structure via the same 
four channels identified in Proposition 9. The first is the productivity effect, 
given by d lny, which results from the fact that increases in markups can reduce 
output. The second is the direct impact of the changes in markups, which are 
aggregated using wage-bill shares. This effect is negative because markups re
duce (relative) production in the affected sectors. The third is through the ripple 
effects that these changes induce, which work via the propagation matrix, Θ, as 
characterized above. The fourth channel is the shifts in the sectoral composition 
of the economy due to markups.

Just like the sector-specific technology terms discussed above, markups’ im
pact all workers in an industry uniformly. This is why their distributional effects 
work through shifts in labor demand across sectors—and they do not generate 
any displacement or reinstatement. The distributional effects of this reallocation 
across sectors will be muted if expanding and contracting sectors do not differ 
substantially in their skill mixes. This is the reason why we expect, from a theo
retical point of view, these effects to be less pronounced than those coming from 
automation and new tasks, and this is indeed what we document in our empirical 
application, presented next.

7 Reduced-form evidence

In this section, we estimate reduced-form equations derived from the task frame
work. We focus on US labor markets between 1980 and 2016. The estimates 
support the key prediction of the task framework, showing that extensive-margin 
changes in the allocation of tasks to factors, driven by automation and new tasks, 
have first-order effects on the wage structure. In fact, these effects are much 
larger than those estimated for other technologies. Consistent with the expecta
tion that automation and new tasks shift labor demand, we find that these forces 
have had large impacts on employment outcomes as well.

We first summarize the trends in wages and employment that we seek to 
explain. We then derive our reduced-form specification and discuss how we 
measure the displacement due to automation and reinstatement due to new tasks 
experienced by US worker groups.

7.1 US labor market trends

Fig. 6 depicts the major wage inequality trends in the US. It plots cumulative 
real hourly wage growth since 1960 by gender (separately in the left and the 
right panels) and education level. We show data from the CPS (with connected 
dots) and the decennial Censuses and the ACS (with diamonds). In the 1960s 
and 70s, hourly wages grew by 1.5%-2% per year for all groups, and the real 
wage growth tracked labor productivity, implying that the labor share of national 
income remained stable. From 1980 to 2016, we see a strikingly different pat
tern: hourly real wages continue to grow for workers with a college degree and 
even more so for those with a postgraduate degree, while wages for noncollege 
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FIGURE 6 Cumulative growth in real hourly wages for men and women by education level (GTC: 
postgraduate degree, CLG: college degree, SCL: some college, HSG: high school degree, HSD: high 
school dropout), 1960--2022. Diamonds: data from the US Census and the American Community 
Survey. Connected line: data from the Current Population Survey. Wages deflated using the personal 
consumption expenditure index from the Bureau of Economic Analysis.

workers stagnated and, for men with a high school degree or less, even declined 
in some periods.

In line with the tepid wage growth observed during this period, the labor 
share of national income declined markedly since 1980, as shown in Fig. 7, 
especially in manufacturing and retail.

FIGURE 7 The evolution of labor shares in manufacturing, wholesale, retail, utilities and trans
portation. Data from the BEA-BLS Integrated Industry Accounts, 1963--2016.

These unequal wage trends coincided with rising disparities in employment 
rates, shown in Fig. 8. Since 1980, employment rates for college-graduate men 
have remained stable, and employment rates for college graduate women have 
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continued to increase. At the same time, employment rates for men without a 
college degree declined (though the beginning of this trend dates to the 1970s), 
while employment rates among women with a high school degree and an asso
ciate degree decelerated and started to decline.

FIGURE 8 Employment rates for men and women by education level (GTC: postgraduate degree, 
CLG: college degree, SCL: some college, HSG: high school degree, HSD: less than high school), 
1960--2022. Data from the US Census and the American Community Survey are shown as diamonds, 
and data from the Current Population Survey are shown as the connected lines.

7.2 Specification

For our reduced-form analysis, we organize the data at a more granular level 
than in Figs. 6 and 8 and look at 500 demographic groups, proxying for skill 
groups in our theory. These demographic groups are defined by the five educa
tion levels, gender, five age groups (16--25 years of age, 26--35, 36--45, 46--55, 
56--65), ethnicity (White, Black, Hispanic, and Asian), and native vs. foreign
born status. For each group, we compute the change in log hourly wages and 
the change in log hours worked from 1980 to 2016 using the 1980 Census and 
pooling five years of the American Community Survey (ACS) between 2014 
and 2018. Our reduced-form specification relates wage changes experienced by 
groups between 1980 and 2016 to proxies of automation, new tasks, sectoral 
TFP growth and markups.

To motivate our specification, start from Eq. (28) and rewrite it as

d lnwg = θgg ·
(︄

d lny +
∑︂

i

ωgi · zgi + (λ − η) ·
∑︂

i

ωgi · d lnpi

)︄

+ Ripple effectsg, (36)

where the Ripple effectsg term captures spillovers from shocks impacting other 
worker groups. Our reduced-form analysis treats the ripple effects as part of the 
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error term and focuses exclusively on the relationship between shocks directly 
affecting a group and its outcomes. In addition, we assume that the diagonal 
entries θgg = θ are equal, which motivates a simple linear model for group wage 
changes. We estimate the ripple effects in Section 8.

Our specification accounts for various technologies affecting labor demand 
directly, via the term 

∑︁
i ωgi · zgi above. First, we consider the role of automa

tion, whose direct effect d lnΓauto
g , was defined in (32) as the summation of 

industry-level task displacements d lnΓauto
gi ’s across industries. Second, we con

sider the role of new tasks, whose direct effect is to reinstate group g. This 
reinstatement effect is also given by a summation across industries:

d lnΓnew
g =

∑︂
i

ωgi · d lnΓnew
gi .

Additionally, we assume that labor-augmenting technologies, d lnAg , satisfy

d lnAg = δeducationg + δ genderg + ug,

where ug is a residual independent of other covariates. The term δeducationg in
corporates common improvements in labor productivity that apply to all workers 
with the same education level. This formulation is similar to but more general 
than those typically considered in the skill-biased technical change literature.25

The term δgenderg allows for shifts in technology or labor market discrimination 
affecting women relative to men.

The resulting estimation equation is

Δ lnwg = constant + βauto · Task displacement from automation1980−2016
g

+ βnew · Task reinstatement from new tasks1980−2016
g

+ Dummies for education level + Dummies for gender

+ βsector · Sectoral shiftsg + Ripplesg + ug⏞ ⏟⏟ ⏞
=νg

, (37)

where we rewrote Eq. (36) for wage changes between 1980 and 2016. In this 
regression model, the productivity effect, d lny, is included in the constant. We 
also replaced d lnΓauto

g and d lnΓ new
g with their empirical counterparts, whose 

construction we discuss below. The education and gender dummies are included 
to account for the common shifts in labor-augmenting technology for all workers 
of a given education level or gender, as explained above. The error term is then 

25 One could also introduce changes in labor-augmenting technology at the intensive margin in a 
similar way. As with uniform changes, any increase in labor-augmenting technology at the inten
sive margin (the d lnψ intensive

g s) that is common across educational groups would be subsumed 
by education fixed effects, and residual changes would be part of the error term in the estimation 
equation.
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a combination of the ripple effects and residual changes in group-level produc
tivity. We present estimates that condition on education and gender dummies 
and estimates that do not, which allows us to explore the extent to which the 
reduced-form model can explain the observed wage trends between and within 
educational groups and gender.

Our regression model also includes extra terms to control for sectoral shocks
and changes in sectoral composition. As a first strategy, in some of our regres
sion models, we account for the influence of changes in sectoral markups and 
TFP on the wage structure. Building on the analysis in Section 6, the influence 
of these forces on the wage structure can be expressed as

Sectoral TFPg =
∑︂

i

ωgi · Δ ln Multifactor TFPi ,

Sectoral markupsg =
∑︂

i

ωgi · Δ ln Markupsi ,

where ωgi is the share of wages group g receives from industry i (computed us
ing the 1980 Census), Δ ln Multifactor TFPi is the change in industry TFP over 
1980--2016 (computed for 50 industries using the BEA-BLS Integrated Industry 
Accounts, which are then matched to the 1980 Census), and Δ ln Markupsi are 
estimates of the average markup change for these industries (taken from Hubmer 
and Restrepo, 2021).

As a second strategy, we follow Acemoglu and Restrepo (2022) and explore 
regression models that directly control for the observed changes in sectoral value 
added, including a term of the form

Sectoral value-added sharesg =
∑︂

i

ωgi · Δ ln Value-added sharei ,

where Δ ln Value-added sharei is the change in industry value added over 
1980--2016 (computed from the BEA-BLS Integrated Industry Accounts). This 
control captures the influence of all observed shifts in the sectoral composition 
of the US economy during this period, including changes induced by automa
tion and new tasks, on group g’s wages. For this reason, these estimates remove 
any indirect effects of automation and new tasks working through changes in 
the sectoral composition of the economy (i.e., the term (λ − η) ·∑︁i ωgi · d lnpi

in Proposition 9). Our quantitative exercise in Section 8 returns to this issue and 
shows that these indirect effects of automation and new tasks are estimated to 
be small during this period.

Besides the regression model in (37), we estimate equations with changes in 
log hours worked per person in each group as outcome. Since the technology 
terms on the right side of (37) shift labor demand, we expect them to impact 
employment in the same direction.
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7.3 Measuring automation and new tasks

As in Acemoglu and Restrepo (2022), we measure task displacement due to 
automation using automation-induced industry labor share changes and infor
mation on which types of workers within an industry are likely to be impacted 
by automation. We assume that automation in an industry only displaces work
ers in routine occupations and that such displacement takes place at equal rates 
for workers in these occupations, regardless of their groups. This means that if 
there are workers from two demographic groups g and g′ in a routine occupa
tion undergoing automation, then the same proportion of workers from these 
two demographic groups in this occupation will be displaced.

Under these assumptions, we show in the Appendix that task displacement 
due to automation in industry i can be obtained as26:

d lnΓauto
gi = RCA routinegi · (−Δ ln s

yi ,auto
L ). (38)

Combining this with (32), our measure of total task displacement experienced 
by group g is:

Task displacement from automation1980−2016
g

=
∑︂

i

ωgi · RCA routinegi · (−Δ ln s
yi ,auto
L ), (39)

where

• RCA routinegi is the revealed comparative advantage of group g in routine 
tasks in industry i. This term adjusts for the incidence of automation across 
workers in an industry. Intuitively, if group g performs all routine tasks in in
dustry i, then an increase in automation in that industry will displace group g
only. If multiple groups perform routine tasks in the industry, then an increase 
in automation in that industry will displace them in proportion to the share of 
routine tasks they perform in that industry (which our revealed comparative 
advantage captures). This term is computed from the 1980 Census as the ratio 
of wages earned by group g in routine jobs in industry i divided by all wage 
payments in routine jobs in the industry. We define routine jobs as the top 
one-third of occupations with the highest routine content, using the measure 
of routine tasks from ONET from Acemoglu and Autor (2011).

• −Δ ln s
yi ,auto
L is automation-induced percent reduction in labor share in in

dustry i. This term corresponds to the total share of tasks lost to automation 
among all workers in the industry. This automation-induced change in labor 
share is computed in two steps. In the first step, we run a regression of the 
observed percent decline in industry labor shares from 1987 to 2016 from the 
BEA-BLS integrated industry accounts against three proxies of automation. 

26 This formula is exact for λ = 1. The general case with non-unitary elasticity of substitution 
between tasks includes an additional adjustment term, but does not appreciably change the results, 
as we further discuss in the next section.
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These proxies include the adjusted penetration of robots over 1993--2007, 
computed from European countries that are ahead of the US in terms of robot 
adoption and incorporating the adjustment discussed in Acemoglu and Re
strepo (2020a); the change in expenditure on dedicated machinery divided 
by industry value added, 1987-2016, and the change in expenditure on spe
cialized software divided by industry value added, 1987-2016 (the latter two 
sourced from the BLS detailed capital tables). These regressions are reported 
in Acemoglu and Restrepo (2022) and show that these three proxies account 
for 50% of the cross-industry variation in labor shares. In a second step, we 
take the predicted labor share change from this cross-industry regression and 
use it as a measure of the labor share decline driven by automation.
Fig. 9 summarizes the results of this measurement exercise. It depicts both the 
observed labor share declines and the predicted declines driven by automa
tion (both in percent terms, and the former in blue and the latter in orange). 
Observed labor share declines and those driven by automation are highly cor
related, but there are also some notable exceptions. Several industries that are 
part of the transport sector have large overall declines in labor share, but only 
moderate predicted declines due to automation—because they have relatively 
low levels of robot penetration and small changes in dedicated machinery and 
specialized software expenditures. Several other industries, including auto
mobile manufacturing, show both sizable observed declines and predicted 
declines.27

• ωgi is group g’s exposure to industry i, which is used as weight in summing 
across industry-level task displacements. This term captures the importance 
of tasks performed in industry i for group g, and is computed from the 1980 
Census for 50 industries that we can track consistently in the BEA-BLS inte
grated industry accounts.

Our measure of reinstatement due to new tasks uses data from Lin (2011), 
which are also analyzed in Acemoglu and Restrepo (2018b). These data, in turn, 
rely on new job titles from the Dictionary of Occupational of Titles (DOT) in 
1977 and 1991 and from the 2000 Census. Using these data, we construct task 
reinstatement for group g in industry i as

d lnΓnew
gi =

∑︂
o

ω1980
gio · Share new job titles DOT 1977

+
∑︂

o

ω1990
gio · Share new job titles DOT 1991

+
∑︂

o

ω2000
gio · Share new job titles Census 2000,

27 One could use these proxies directly as regressors or instruments, and we do this in Acemoglu 
and Restrepo (2022). Projecting these measures on the labor share decline is helpful because it 
converts them into units of ``tasks lost'' to automation and allows us to summarize their effects in a 
single variable representing the task displacement associated with these technologies.
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FIGURE 9 Percent decline in industry labor shares (in blue) and the predicted labor share declines 
due to automation (in orange). The observed declines are computed from the BEA-BLS Integrated 
Industry Accounts. The predicted declines are from a regression of the observed declines on the 
adjusted penetration of robots (from Acemoglu and Restrepo, 2020a), as well as the increases in 
expenditures in dedicated machinery and specialized software as a share of value added (both from 
the BLS Detailed Capital Tables).

where ωgio denotes the share of total wage payments to group g in industry i
that come from occupation o. Analogous to the total task displacement measure, 
total task reinstatement for group g is computed as

Task reinstatement from new tasks1980−2016
g =

∑︂
i

ωgi · d lnΓnew
gi . (40)

The assumption behind these measures is that new job titles proxy for new tasks 
(and are not just a relabeling of existing jobs), that each new job title has the 
same positive impact on new tasks, and that new tasks are proportionately spread 
among workers in the occupations in which they emerge. These considerations 
also motivate the use of the wage-bill share of different demographic groups 
in the occupation in the concurrent period to capture the importance of these 
new tasks for each group. We compute this measure using data for 300 detailed 
occupations that we can trace consistently over time and across Censuses and 
different waves of the ACS.28

Before describing group-level patterns, we show in Fig. 10 that, at the occu
pational level, there is a strong positive association between new tasks (summed 

28 Notice that this is different from the measurement strategy of our baseline automation measure, 
which uses beginning of sample (1980) weights. This difference stems from the fact that, in the 
theory, new tasks benefit workers who end up taking over these tasks, while automation affects 
workers who used to work in the now-automated tasks. Tables A1 and A2 in the Appendix show 
that our reduced-form results are robust if we compute the new task measures using occupational 
shares fixed in 1980.
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FIGURE 10 Changes in log total wage bill across occupations, 1980--2016 against share of new 
job titles introduced in each occupation (from DOT 1977, DOT 1991, and Census 2000). Data for 
300 occupations.

FIGURE 11 Left panel shows direct task displacement due to automation, 1980--2016 for 500 
groups of US workers, and the right panel shows task reinstatement due to new job titles for these 
groups. Both panels plot these data against group average hourly wages in 1980, from the Census. 
Marker sizes are proportional to hours worked in 1980. Marker colors distinguish groups with dif
ferent education levels.

over 1977, 1991 and 2000 measures) and labor demand. A 10 pp increase in job 
titles over this time window is associated with a 0.4 pp higher yearly growth rate 
of wage payments in that occupation from 1980 to 2016. This reproduces and 
extends the results reported in Acemoglu and Restrepo (2018b).

Fig. 11 provides a first comparison of our measures of task displacement 
from automation and reinstatement due to new tasks. The figure plots both vari
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ables against group-level hourly wages in 1980, to indicate where in the wage 
distribution the effects of displacement and reinstatement are felt. The left panel 
shows that, on average, US workers experienced a reduction in task shares of 
19% during this period, but this was quite unevenly distributed in the population. 
While noncollege workers saw task share declines in the range of 20--30%, col
lege and postgraduate workers were mostly shielded from such displacement.29

The right panel, on the other hand, indicates that, on average, US workers ben
efited from a 22% expansion in their task shares due to new tasks. In contrast to 
automation, reinstatement effects are higher for more educated workers.

7.4 Reduced-form estimates

We begin by exploring the relationship between automation and labor market 
outcomes graphically. The top two panels in Fig. 12 provide bivariate scatter 
plots of the change in group wages from 1980--2016 (top left panel) and log 
hours per person (top right panel) against our measure of task displacement due 
to automation for this period. The bottom panel provides residual scatter plots 
that partial out education and gender dummies and sectoral value-added shares. 
Overall, the figure shows a negative association between task displacement due 
to automation and wage and employment changes. The associations are sta
ble regardless of whether we include covariates. The estimated effects are also 
sizable. In the bottom panel, a 10 pp increase in task displacement for a skill 
group is associated with a 14.5% decline in wages and a 18.3% decline in hours 
worked relative to other groups.

Fig. 13 presents the analogous specifications for new tasks—with the top 
panel depicting the bivariate relationships and the bottom panel partialing out 
covariates. It shows a positive association between reinstatement due to new 
tasks and changes in wage and employment. The estimated effects are also siz
able. In the bottom panel, a 10 pp more reinstatement due to new job titles is 
associated with a 17.6% increase in wages and a 14.0% increase in hours worked 
relative to other groups.

Figs. 12 and 13 support the key implications of the task framework: task 
displacement from automation is associated with negative wage consequences 
for exposed workers relative to others, while reinstatement due to new tasks is 
associated with positive wage effects. These technologies also have commensu
rate effects on employment—groups experiencing more task displacement have 
(relatively) lower hours worked, while the pattern is the opposite for those ben
efiting from greater task reinstatement.

Table 1 provides estimates for the change in log hourly wages as the out
come. Column 1 in Panels A and B report estimates of the bivariate relationships 
shown in the top-left panels of Figs. 12 and 13. The regression coefficient for 

29 Because this measure is based on predicted labor share declines over 1987--2016, we re-scale 
it to a 37-year equivalent change that matches the length of time used for the dependent variables 
(1980-2016).
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FIGURE 12 Reduced-form relationship between change in log hourly wages and change in log 
hours worked per person vs. task displacement due to automation, 1980--2016. The top panel 
presents bivariate scatter plots. The bottom panels present residual plots partialling out gender and 
education dummies and changes in sectoral value-added shares. Marker sizes are proportional to 
hours worked in 1980. Marker colors distinguish groups with different education levels.

task displacement is −1.65 (standard error = 0.10), while the coefficient for task 
reinstatement is 2.32 (standard error = 0.19).

Column 1 in Panel C includes both explanatory variables together. The coef
ficient for task displacement due to automation is now −1.19 (standard error = 
0.23), and the coefficient for tasks reinstatement is 0.85 (standard error = 0.33). 
The point estimates are attenuated compared to Panels A and B, especially for 
new tasks, reflecting the fact that these two measures are negatively correlated. 
Nevertheless, these two variables jointly explain a remarkable 67% of the ob
served wage changes across worker groups in the US between 1980 and 2016, 
with automation accounting for 46% and new tasks for the remaining 20%.30

30 Throughout this section, we follow Klenow and Rodríguez-Clare (1997) and decompose the 
total R2 into contributions from subsets of the variables by equally distributing the covariance terms 
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FIGURE 13 Reduced-form relationship between change in log hourly wages and change in log 
hours worked per person vs. reinstatement due to new tasks, 1980--2016. The top panel presents 
bivariate scatter plots. The bottom panels present residual plots partialling out gender and education 
dummies and changes in sectoral value-added shares. Marker sizes are proportional to hours worked 
in 1980. Marker colors distinguish groups with different education levels.

Note that these models do not include any other covariates, which means that 
our task displacement and reinstatement measures alone are responsible for the 
high explanatory power. Moreover, the high R2 of these models shows that our 
task measures do an excellent job at accounting for the divergent wage trends 
across education and gender groups depicted in Fig. 6 and 8. This is because, as 

between them. This means that the contribution of a covariate xj to the explanatory power of a 
model of the form y =∑︁

βj xj + u is

R2 from xj = βj · cov(xj , y)

var(y)
.

By construction, these sum up to the model’s total R2 when added across all variables (subject to 
rounding).
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highlighted in Fig. 10, our measures predict that non-college workers lost more 
tasks to automation and at the same time gain fewer new tasks than college 
educated workers.

The parameter estimates also imply sizable effects from both variables. A 
10 pp increase in task displacement for a demographic is associated with 11.9% 
lower (relative) wages, while a 10 pp increase in task reinstatement is associated 
with 8.5% higher (relative) wages.

Panel D leverages the fact that task displacement and reinstatement are con
structed to be in the same units and are thus predicted to impact wages with 
the same coefficient but opposite signs. This panel therefore combines these 
measures into a single explanatory variable, ``net task change,''constructed as 
the difference between task reinstatement and displacement. This variable has 
a positive and precisely estimated coefficient, 1.05 (standard error = 0.07). In
terestingly, this restriction only leads to a small reduction in the explanatory 
power of automation and new tasks, which, together, still account for 67% of 
the total variation in wage trends between demographic groups. This estimate 
implies that a 10 pp higher net task change is associated with a 10.5% increase 
in relative wages.

The remaining columns in Table 1 explore the robustness of these reduced
form relationships to the inclusion of various covariates. Column 2 controls for 
sectoral value-added shares, with little effect on the coefficient estimates for task 
displacement and reinstatement. Column 3 directly controls for sectoral shocks,
and controls for changes in sectoral TFP and markups. The results are once more 
very similar, suggesting that automation and new tasks are distinct from these 
sectoral trends. More tellingly, we find that the sectoral variables explain 3--8% 
of the variance in wage trends across groups, while our task measures jointly 
explain 62--64%.

More importantly, Columns 4 and 5 add the education and gender dummies 
to the specifications from columns 2 and 3. In both specifications we continue 
to estimate a sizable negative association between group outcomes and automa
tion and a substantial positive association with new tasks, with point estimates 
that are quite similar to those in column 1. Recall that education dummies ac
count for the role of skill-biased (factor-augmenting) technologies benefiting 
more educated workers. These specifications thus suggest that automation and 
new tasks are distinct from these other forms of technological progress empha
sized in previous literature. Moreover, the R2 decomposition in these columns 
indicates that the explanatory power of education dummies is quite limited. The 
educational dummies (together with gender dummies and sectoral covariates) 
explain only 4--6% of the variance in wage trends across groups, while our task 
measures continue to jointly explain 78--80%. These decompositions imply that 
the extensive-margin changes associated with task displacement and reinstate
ment are more important drivers of wage trends between groups than the forces 
commonly emphasized in the literature and captured by the educational dum
mies and sectoral controls.
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TABLE  1 Reduced-form evidence: changes in real hourly wages regressed 
on automation and new tasks, 1980--2016.

Dependent variables:
Change in log hourly wages, 1980--2016

(1) (2) (3) (4) (5) (6) (7)

Panel A. Only displacement from automation
Automation task 
displacement

−1.65 −1.41 −1.50 −1.45 −1.41 −1.71 −1.75
(0.10) (0.20) (0.11) (0.18) (0.19) (0.25) (0.32)

R2 for model 0.64 0.66 0.69 0.82 0.83 0.76 0.76
R2 for automation 0.64 0.55 0.59 0.56 0.55 0.67 0.68
R2 remaining covs 0.11 0.10 0.26 0.28 0.09 0.08
Observations 500 500 500 500 500 492 492

Panel B. Only reinstatement from new tasks
New tasks 
reinstatement

2.32 2.09 2.37 1.76 1.56 2.18 2.94
(0.19) (0.35) (0.26) (0.41) (0.47) (0.69) (1.10)

R2 for model 0.56 0.56 0.59 0.78 0.77 0.26 0.07
R2 for new tasks 0.56 0.51 0.57 0.43 0.38 0.53 0.71
R2 remaining covs 0.06 0.01 0.35 0.40 −0.27 −0.64
R2 remaining covs 500 500 500 500 500 492 492

Panel C. Both explanatory variables
Automation task 
displacement

−1.19 −1.18 −1.27 −1.28 −1.32 −1.55 −1.70
(0.23) (0.23) (0.22) (0.16) (0.17) (0.22) (0.29)

New tasks 
reinstatement

0.85 0.75 0.50 1.16 1.18 1.18 1.53
(0.33) (0.38) (0.37) (0.32) (0.37) (0.36) (0.47)

R2 for model 0.67 0.67 0.69 0.84 0.84 0.77 0.76
R2 for automation 0.46 0.46 0.50 0.50 0.51 0.60 0.66
R2 for new tasks 0.20 0.18 0.12 0.28 0.29 0.28 0.37
R2 remaining covs 0.03 0.08 0.06 0.04 −0.12 −0.27
Observations 500 500 500 500 500 492 492

Panel D. Net task change due to new tasks minus automation
Net task change (new 
tasks-automation)

1.05 1.05 1.00 1.24 1.29 1.46 1.67
(0.07) (0.14) (0.08) (0.13) (0.17) (0.19) (0.29)

R2 for model 0.67 0.67 0.69 0.84 0.84 0.76 0.75
R2 for net task changes 0.67 0.66 0.63 0.78 0.81 0.92 1.06
R2 remaining covs 0.00 0.05 0.06 0.03 −0.16 −0.30
R2 remaining covs 500 500 500 500 500 492 492

Other covariates:
Sectoral value added ✓ ✓ ✓
Sectoral TFP ✓ ✓ ✓
Sectoral markups ✓ ✓ ✓
Gender and education 
dummies

✓ ✓ ✓ ✓

Labor supply shifts ✓ ✓
Notes: This table presents estimates of the relationship between automation, new tasks, and the 
change in hourly wages across 500 demographic groups, defined by gender, education, age, race, 
and native/immigrant status. The dependent variable is the change in log hourly wages for each 
group between 1980 and 2016. Panel A reports results using only our task displacement measure. 
Panel B only uses our task reinstatement measure. Panel C includes both task displacement and task 
reinstatement on the right-hand side. Panel D combines task displacement and reinstatement into a 
net task change measure. The bottom rows list additional covariates included in each specification. 
In columns 6 and 7, we instrument changes in labor supply using changes in total hours worked 
by group from 1970 to 1980. All regressions are weighted by total hours worked by each group in 
1980, as in Acemoglu and Restrepo (2022). Standard errors robust to heteroskedasticity are reported 
in parentheses.
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Finally columns 6 and 7 control for labor supply changes, incorporating 
the supply-side forces highlighted in Katz and Murphy (1992) and Card and 
Lemieux (2001). These supply terms are measured as the total increase in hours 
worked per group and instrumented using pre-existing trends in hours during 
1970--1980. This strategy isolates the variation in hours due to demographic 
trends and trends in educational attainment. Controlling for changes in labor 
supply does not change the qualitative picture, but raises the explanatory power 
of our task displacement and reinstatement measures. For example, in column 
7 Panel C, automation accounts for 66% of variation in between-group wage 
changes, and new tasks contribute another 37%, while the other variables have a 
negative contribution. This reflects the fact that demographic trends from 1980 
onwards, especially in educational attainment, have gone in favor of groups ex
periencing more task displacement and less reinstatement during our sample 
period, and thus, according to our estimated model, without the task displace
ment and reinstatement developments, these groups would have experienced 
higher—rather than lower—relative wage growth.

Table 2 turns to analogous specifications for hours worked. Column 1 reports 
estimates of the bivariate relationship shown in the top panels of Figs. 12 and 
13. In Panel A, the coefficient estimate for task displacement is −2.25 (standard 
error = 0.30), and in Panel B, the coefficient estimate for task reinstatement 
is 3.62 (standard error = 0.49). Panel C includes both explanatory variables 
together, with the corresponding coefficients being, respectively, −0.82 (stan
dard error = 0.39) and 2.61 (standard error = 0.71). In this specification, our 
measures of task changes due to automation and new tasks explain 53% of the 
variation in changes in hours worked across demographic groups between 1980 
and 2016. The remaining columns show that the employment effects are also 
fairly unchanged when we control for different measures of sectoral realloca
tion, education and gender dummies, and supply-side factors.

7.5 Robustness

Acemoglu and Restrepo (2022) documented the robustness of the automation 
results to several other specifications, including those that control for exposure 
to imports from China and offshoring, those that allow for differential trends for 
routine jobs and for industries experiencing labor share declines (the two con
stituent components of our task displacement measure) and those that control 
for the effects of minimum wages and union coverage. Similar results were also 
obtained in stacked-differences models and when exploiting variation across US 
regions.

In the Appendix, we show that the results reported here are robust to the 
following variations. First, we obtain similar results when we construct the rein
statement due to new tasks using wage-bill variation from 1980 (see Tables A1
and A2). Table A3 decomposes the employment effects into an extensive and 
intensive margin changes. While the task displacement from automation has 
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TABLE  2 Reduced-form evidence: changes in hours worked per person re
gressed on automation and new tasks, 1980--2016.

Dependent variables:
Change in log hours worked per person, 1980--2016

(1) (2) (3) (4) (5) (6) (7)

Panel A. Only displacement from automation
Automation task 
displacement

−2.25 −1.58 −1.96 −1.83 −1.93 −2.21 −2.59
(0.30) (0.40) (0.27) (0.40) (0.41) (0.61) (0.78)

R2 for model 0.44 0.48 0.50 0.68 0.67 0.61 0.56
R2 for automation 0.44 0.31 0.38 0.36 0.38 0.43 0.51
R2 remaining covs 0.17 0.11 0.32 0.29 0.18 0.05
Observations 500 500 500 500 500 492 492

Panel B. Only reinstatement from new tasks
New tasks 
reinstatement

3.62 3.40 3.56 1.40 1.46 1.97 3.67
(0.49) (0.91) (0.46) (0.75) (0.91) (1.19) (1.86)

R2 for model 0.51 0.51 0.51 0.64 0.62 0.22 −0.09
R2 for new tasks 0.51 0.48 0.50 0.20 0.20 0.28 0.51
R2 remaining covs 0.03 0.01 0.44 0.41 −0.06 −0.61
Observations 500 500 500 500 500 492 492

Panel C. Both explanatory variables
Automation task 
displacement

−0.82 −0.81 −0.95 −1.75 −1.86 −2.13 −2.55
(0.39) (0.40) (0.40) (0.40) (0.40) (0.59) (0.77)

New tasks 
reinstatement

2.61 2.48 2.16 0.58 0.93 0.61 1.55
(0.71) (0.95) (0.61) (0.63) (0.79) (0.68) (0.85)

R2 for model 0.53 0.53 0.53 0.68 0.67 0.61 0.55
R2 for automation 0.16 0.16 0.19 0.34 0.37 0.42 0.50
R2 for new tasks 0.37 0.35 0.30 0.08 0.13 0.08 0.22
R2 remaining covs 0.02 0.04 0.26 0.17 0.11 −0.17
R2 remaining covs 500 500 500 500 500 492 492

Panel D. Net task change due to new tasks minus automation
Net task change (new 
tasks-automation)

1.52 1.32 1.37 1.41 1.63 1.76 2.39
(0.19) (0.32) (0.17) (0.30) (0.33) (0.49) (0.71)

R2 for model 0.51 0.52 0.53 0.68 0.67 0.58 0.53
R2 for net task changes 0.51 0.45 0.46 0.48 0.55 0.59 0.81
R2 remaining covs 0.07 0.06 0.20 0.12 −0.01 −0.28
Observations 500 500 500 500 500 492 492

Other covariates:
Sectoral value added ✓ ✓ ✓
Sectoral TFP ✓ ✓ ✓
Sectoral markups ✓ ✓ ✓
Gender and education 
dummies

✓ ✓ ✓ ✓

Labor supply shifts ✓ ✓
Notes: This table presents estimates of the relationship between automation, new tasks, and the 
change in hours worked per person across 500 demographic groups, defined by gender, education, 
age, race, and native/immigrant status. The dependent variable is the change in log hours per person 
for each group between 1980 and 2016. Panel A reports results using only our task displacement 
measure. Panel B only uses our task reinstatement measure. Panel C includes both task displacement 
and task reinstatement on the right-hand side. Panel D combines task displacement and reinstate
ment into a single net task change measure. The bottom rows list additional covariates included in 
each specification. As in Acemoglu and Restrepo (2022), we instrument changes in labor supply in 
columns 6 and 7 using trends in total hours worked by group from 1970 to 1980. All regressions are 
weighted by total hours worked by each group in 1980. Standard errors robust to heteroskedasticity 
are reported in parentheses.
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a robust negative association with both margins, new tasks are more strongly 
associated with increases in employment at the extensive margin. Finally, we 
show in Table A4 that the coefficients on task displacement and reinstatement 
variables are comparable when we estimate the models separately for workers 
with and without a college degree. This exercise shows that the benefits from 
new tasks and the costs of automation are visible even when focusing on these 
specific segments of the labor force.

7.6 Taking stock

Our reduced-form findings support the main implications of the task framework: 
task displacement due to automation has a sizable negative effect on the relative 
wages of exposed groups, and reinstatement driven by new tasks has a sizable 
positive effect on relative wages. These two variables explain at least 60% of the 
total variation in between-group wage changes between 1980 and 2016. Con
sistent with the expectation that these technology measures shift the relative 
demand for labor from different skill groups, we find that they have commen
surate effects on employment as well. The two measures together account for 
approximately 53% of the variation in the changes in hours worked for the same 
time period. In line with our theory, the estimates also suggest that technologies 
that cause extensive-margin changes (thus reallocating tasks from one factor 
to another) explain the bulk of variation in the changes in the wage and em
ployment structure, and have much greater explanatory power than proxies for 
factor-augmenting and sectoral technology variables.

Despite the clear empirical associations uncovered here, it is important to 
exercise caution in interpreting these reduced-form results. First, our proxies 
for factor-augmenting and sectoral changes are imperfect. The education dum
mies may capture other trends as well as factor-augmenting technologies, while 
the reduced-form estimates of the contribution of sectoral variables may be 
attenuated. Second, we are ignoring ripple effects, which link the wages of a 
skill group to the task displacement experienced by other groups of workers�-
especially when there are high levels of substitutability between the groups in 
question. Third, productivity effects are subsumed into the constant. All of these 
considerations motivate our approach in the next section, which further lever
ages the structure of the model to estimate the propagation matrix and productiv
ity implications of different types of technologies, and performs counterfactual 
exercises to measure their contribution to the changes in wage inequality since 
1980.

8 Estimation of general equilibrium effects and 
counterfactuals

This section uses the task model to quantify the equilibrium effects of differ
ent technologies on the US wage structure. We use the equations characterizing 
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the impacts of technology, inclusive of the ripple effects. We implement these 
equations using the measures of the direct effects of different technologies in
troduced above, and combine them with external information on a number of 
key elasticities of substitution and our estimates of the propagation matrix.

This exercise adds to the reduced-form findings in three ways. First, it ac
counts for the effects of technology on wage levels working via the productivity 
effect. As explained previously, the reduced-form evidence is informative about 
relative change in wages and employment for exposed groups—but not about 
the effects of different technologies. Second, it enables us to estimate ripple 
effects. Finally, this exercise incorporates the effects of technology working 
through changes in sectoral composition. Reduced-form models controlled for 
sectoral shifts but did not estimate the effects of different types of technologies 
working through the sectoral changes that they induced. Our results from this 
structural exercise suggest that automation and new tasks are important drivers 
of the changes in the US wage structure.

8.1 General equilibrium effects of technology and markups

Our objective is to estimate separate effects of automation, new tasks, Hicks
neutral sectoral productivity (TFP) shifters and markups on hourly wages. We 
return to the contribution of factor-augmenting technologies later. The analysis 
can be expanded to include other factors, but we do not do so to keep the chapter 
focused on the consequences of technology trends.

From Propositions 9 and 10, the change in group wages can be written as

d lnw = Θ · stack

(︄
d lny − d lnM − d lnΓauto

g + d lnΓnew
g

− (1 − λ) ·
∑︂

i

ωgi · d lnAi − λ ·
∑︂

i

ωgi · d lnμi

+ (λ − η) ·
∑︂

i

ωgi · d lnpi

)︄
+ υ.

In this equation, υ is an error term subsuming all other forces shaping the wage 
structure. The endogenous price changes {d lnpi}i associated with these shocks 
satisfy

d lnpi =
∑︂
g

s
yi
g · d lnwg −

∑︂
g

s
yi
g · d lnΓauto

gi · πauto
gi −

∑︂
g

s
yi
g · d lnΓnew

gi · πnew
gi

− d lnAi + d lnμi. (41)

To determine the effects of these technologies on output, we simplify the anal
ysis by assuming that, initially, μi = 1 for all i. This assumption implies that 
the sectoral value-added shares are equal to sectoral cost shares and that, as in 
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Section 5, the change in aggregate output, d lny, is determined by the following 
equation, which relates average wage changes to changes in TFP and markups:

∑︂
g

s
y
g · d lnwg =

∑︂
i

si ·
[︄∑︂

g

s
yi
g · d lnΓauto

gi · πauto
gi

+
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g

s
yi
g · d lnΓnew

gi · πnew
gi + d lnAi − d lnμi

]︄
. (42)

Because we are looking at first-order approximations, these three equations pro
vide an additive decomposition of the contribution of technologies and markups.

To implement this decomposition, we need estimates of (i) initial factor 
shares; (ii) elasticities {λ,η}; (iii) direct task displacement and reinstatement, 
{d lnΓauto

g , d lnΓnew
g }g; (iv) sectoral TFP growth, {d lnAi}i , and sectoral markup 

changes {d lnμi}i ; and (v) the propagation matrix, Θ.

• For (i), we take factor shares directly from the Census data matched to the 
BEA-BLS industry accounts.

• For (ii), we set λ = 0.5 and η = 0.3. The task-elasticity of substitution λ
comes from Humlum (2020), who estimates it on Danish manufacturing data. 
The estimate for the sectoral elasticity of substitution is from Buera et al. 
(2021) and is a standard value used in the structural transformation literature.

• For (iii), we continue to use the measure of new task reinstatement in (40), but 
a slightly different measure for task displacement due to automation, given 
by

d lnΓauto
gi = RCA routinegi · −Δ ln s

yi ,auto
L

1 + (λ − 1) · syi

ℓ · πauto
i

(43)

for group g in industry i. This expression differs from the measure used in 
the reduced-form analysis, Eq. (38), because of the term (λ − 1) · syi

ℓ · π auto
i

in the denominator, which adjusts for the effect of automation on the labor 
share working via substitution towards the cheaper newly-automated tasks. 
The earlier expression obtains when λ = 1. We used this restriction in our 
reduced-form analysis to simplify the exposition. Here, we construct the ad
justment term using λ = 0.5 and πauto

i = 30%. Total task displacement due 
to automation d lnΓauto

g aggregates the new measures for d lnΓauto
gi across in

dustries, as in Eq. (39).31

To obtain cost savings from these technologies, we follow Acemoglu and 
Restrepo (2022) and set πgi = 30%. This choice is motivated by available 
estimates of cost savings due to the adoption of industrial robots in US man
ufacturing. This choice assumes the same savings for automation in other 

31 The reduced-form results are very similar with the adjusted measure shown here and other vari
ants, and are presented in the Appendix of Acemoglu and Restrepo (2022).
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sectors, which is an assumption that can be relaxed in the future using ad
ditional data. For new tasks, we set πnew

gi = 30% for symmetry, since we do 
not have direct estimates of the surplus generated by new tasks. This number 
implies that a 10% increase in new tasks for all worker groups would raise 
TFP by 3%, which is a reasonable number.32

• For (iv), we estimate the sectoral Hicks-neutral productivity shifters 
{d lnAi}i’s by subtracting the implied TFP gains due to automation and 
new tasks from observed industry TFP changes. The left panel in Fig. 14
depicts observed industry TFP changes together with the implied estimates 
for the d lnAi’s.33 Computers and electronics and transportation pipelines 
experienced the largest sectoral productivity increases, while legal services 
and transportation services experienced the least. Overall, the two series are 
highly correlated, but there are some notable exceptions, such as motor ve
hicles, where observed TFP exceeds our estimate for d lnAi by a sizable 
amount, since this industry has made large automation investments during 
this period.
For markups, we use the estimates from Hubmer and Restrepo (2021). These 
are estimated using the production function approach and Compustat data as 
in De Loecker et al. (2020), but allow firm-level output elasticities to vary by 
size, and also aggregate these markups using their sales-weighted harmonic 
mean to obtain aggregate industry markups. These estimates are shown in the 
right Panel of Fig. 14.

8.2 Estimating the propagation matrix

The wage equation in the multi-sector model, (28), can be rewritten as

Δ lnwg = 1 
λ

·(d lnΓnew
g −d lnΓauto

g )+β ·Xg + 1 
λ

· ∂ lnΓg

∂ lnw 
·stack(Δ lnwg′)+ug,

(44)
where Xg is a vector that contains sectoral shifts and education and gender dum
mies, proxying for other technological trends. Rather than solving out for the 
vector of wage effects using the propagation matrix as in (28), here we include 
the vector of wage changes for other demographic groups on the right-hand side, 
which highlights that these will impact the wage of group g via the gth row of 
the task-shares Jacobian matrix, ∂ lnΓ 

∂ lnw
. The error term ug contains all unobserved 

labor demand and supply shocks impacting demographic group g.

32 Our prior is that this number should be bigger since new tasks enable various e˙iciency
enhancing improvements and the reorganization of production process as explained in footnote 14. 
Nevertheless, we choose 30% to err on the conservative side.
33 For simplicity, our theory used value-added production functions at the industry level (with ma
terial inputs solved out). To match this choice, we use measures of value-added TFP instead of 
gross-output TFP. While it would be preferable to use measures of TFP for gross output (so that 
they can be readily interpreted as technology), this would require modeling input-output linkages 
across industries, which we do not pursue for this chapter.
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FIGURE 14 The top panel depicts the percent change in TFP (in blue) and Hicks-neutral tech
nology (in orange) for US industries. The Hicks-neutral component is obtained by subtracting the 
contribution of new tasks and automation to sectoral TFP. The bottom panel provides estimates for 
the change in markups across US industries, from Hubmer and Restrepo (2021).

Our strategy is to estimate the Jacobian using GMM (Generalized Method 
of Moments). In this estimation, we impose external values for λ and use the 
orthogonality conditions

d lnΓauto
g , d lnΓnew

g ,Xg ⊥ ug′ for g,g′ ∈ 𝔾,

which impose that task displacement and reinstatement terms as well as the 
education and gender dummies and sectoral shifters in Xg are orthogonal to 
the error term. This orthogonality assumption was implicit in the reduced-form 
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models estimated in the previous section. Once the Jacobian matrix is estimated, 

the propagation matrix can be obtained as Θ = 1 
λ

·
(︂
1− 1 

λ
· ∂ lnΓ 

∂ lnw

)︂−1
.

The Jacobian is a G × G matrix, and hence it would be impossible to esti
mate all of its entries in an unrestricted fashion. Instead, we follow Acemoglu 
and Restrepo (2024) and parameterize the entries of the Jacobian in terms of 
similarities between groups.34 This approach operationalizes the intuitive idea 
that the Jacobian matrix is informative about the extent of substitutability be
tween groups and such substitutability should depend on how similar the groups 
are. We assume that the off-diagonal terms of the Jacobian (for g′ ≠ g) can be 
parameterized as

∂ lnΓg

∂ lnwg′
= s

y

g′ · φ +
∑︂
n 

ωgn · sn
g′

· [︁γ + γjob · job similaritygg′ + γedu-age · edu-age similaritygg′
]︁
,

while the diagonal terms take the form

∂ lnΓg

∂ lnwg′
= (s

y
g − 1) · φ −

∑︂
n 

∑︂
g′≠g

ωgn · sn
g′

· [︁γ + γjob · job similaritygg′ + γedu-age · edu-age similaritygg′
]︁
.

This parameterization implies that competition for marginal tasks between 
skill groups takes place within job categories, denoted by n. In the data, we as
sume that there are 96 job categories, given by combinations of 16 aggregated 
industries and six aggregated occupations. The summation terms indicate that 
the effects of competition from group g′ on group g in category n depend on the 
importance of this category for group g, summarized by the share of category n
in the total wage payments for group g (ωgn), and the share of wage payments 
in job category n accruing to group g′ (sn

g′ ). Both of these objects are computed 
from the 1980 Census. Intuitively, groups with greater wage shares should gen
erate more competitive pressure on other groups in the same job category, as 
implied, for example, by the Frechet parameterization of comparative advan
tage in Section 4. In addition, the three terms in square brackets represent three 
dimensions of competition between groups. The first, with coefficient γ ≥ 0, 
corresponds to the component of competition that is common to all workers in a 
job category. The second, with coefficient γjob ≥ 0, is from the similarity of the 
jobs performed by the two demographic groups. In particular, we use the cosine 
similarity of job categories performed by groups g′ and g in the 1980 Census. 
This functional form is also motivated by the Frechet example, where a higher 

34 In Acemoglu and Restrepo (2022), we directly parameterized and estimated the propagation 
matrix. We prefer the current approach because it is easier to develop an intuition about the entries 
of the Jacobian, which correspond to first-round ripple effects (rather than the Leontief inverse of 
this matrix, which depends on higher-round ripples).
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correlation in task-level productivities results in higher substitutability. The third 
term, with coefficient γedu-age ≥ 0, parameterizes the extent to which competi
tion for tasks is stronger for workers of similar education and experience, as 
in Card and Lemieux (2001). We compute this similarity measure as follows: 
we run a Mincer wage equation for log hourly wages in 1980, as a function of 
age and education dummies, and then construct the education-age similarity be
tween two groups as the inverse distance between the predicted wage level of 
groups g and g′ in 1980. This procedure captures how similar the two groups 
are in terms of their education and age, with each of these dimensions weighted 
by their Mincer coefficients.

Finally, the parameter φ ≥ 0 regulates the extent of competition between 
capital and workers for marginal tasks, which is assumed to be uniform across 
groups. Our parametrization implies that the row sums of the Jacobian are equal 
to −sK · φ. Using the definitions in Section 4, we see that the macroeconomic 
elasticity of substitution between capital and labor is σk = λ + φ.35 We set 
φ = 0.1, so that σk matches estimates of the elasticity of substitution between 
capital and labor in Oberfield and Raval (2021) of around 0.6. This parameter
ization therefore fixes the row sums of the Jacobian, ∂ lnΓ 

∂ lnw
, and allows the data 

to determine the γ coefficients, which determine the strength of competition for 
marginal tasks between different groups.

Table 3 reports our estimates for the γ ’s obtained from Eq. (44). For these 
estimates, we additionally impose the restriction that γ, γjob, γedu-age ≥ 0. When 
we include all three terms simultaneously, the first two are estimated to have 
zero coefficients (given our nonnegativity constraint) and the spillover patterns 
are explained by the education-age similarity measure, as in the specifications 
in columns 3 and 6. In what follows, we take column 3�-which has γ = 0, 
γjob = 0, and γedu-age = 0.8�-as our preferred specification.

The estimated propagation matrix has an average diagonal of 0.84, and the 
row sum of the off-diagonal terms is about 1. This implies that workers from 
group g bear about 45% of the incidence of a direct shock reducing their labor 
demand, with the rest being shifted to other groups via competition for marginal 
tasks.

Another way to illustrate the structure of the estimated propagation matrix is 
by looking at the implied elasticity of substitution between skill groups. Fig. 15
provides this information by computing the unweighted average of pairwise 
elasticities of substitution across indication groups (on the left) and age groups 
(on the right). The average elasticity of substitution between groups with a col
lege and postgraduate degree is estimated to be 2, while the average elasticity 
of substitution between groups with a college degree and those without a high 
school degree is 0.95.

35 Recall that due to symmetry, σkg = σgk . Moreover, we can write σgk = λ +
1 

s
y
K

(−∑︁
g′ ∂ lnΓg(w)

∂ lnwg′ ), since a change in the cost of capital is equivalent to an increase in all wages. 
This implies σkg = σgk = λ + φ.
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TABLE  3 Estimates of the task-shares Jacobian.
Dependent variables:

Change in log hourly wages, 1980--2016
(1) (2) (3) (4) (5) (6)

Baseline competition γ 0.39 0.33
(0.13) (0.16)

Job-similarity 
competition γjob

0.74 0.68
(0.21) (0.25)

Education-age 
competition γedu-age

0.80 0.84
(0.22) (0.31)

Observations 500 500 500 500 500 500

Covariates:
Gender and education 
dummies

✓ ✓ ✓ ✓ ✓ ✓

Sectoral value added 
control

✓ ✓ ✓

Sectoral TFP and 
markups

✓ ✓ ✓

Notes: This table presents estimates of the (task share) Jacobian, using the parameterization in 
Section 8. The estimation equation can be written as σΔ lnwg + d lnΓauto

g − d lnΓnew
g = β̃Xg +

γ · ∑︁g′
∑︁

n ωgn · sn
g′ · (Δ lnwg′ − Δ lnwg) + γjob · ∑︁g′

∑︁
n ωgn · sn

g′ · job similaritygg′ · (Δ lnwg′ −
Δ lnwg) + γedu-age · ∑︁g′

∑︁
n ωgn · sn

g′ · edu-age similaritygg′ · (Δ lnwg′ − Δ lnwg) + ν̃, where β̃ and 
ν̃ are linear transformations of β and ν respectively. The ripple terms are instrumented using ∑︁

g′
∑︁

n ωgn · sn
g′ · (Δ ln ŵg′ − Δ ln ŵg), ∑︁g′

∑︁
n ωgn · sn

g′ · job similaritygg′ · (Δ ln ŵg′ − Δ ln ŵg) and ∑︁
g′
∑︁

n ωgn · sn
g′ · edu-age similaritygg′ · (Δ ln ŵg′ − Δ ln ŵg), respectively, where Δ ln ŵg is the pre

dicted wage change based on task displacement, task reinstatement and the covariates. Columns 1 
and 4 present estimates for γ excluding the other two spillover terms. Columns 2 and 5 present esti
mates for γjob excluding the other two spillover terms. Columns 3 and 6 present estimates for γedu-age
excluding the other two spillover terms. When all three measures of competition are included and the 
restriction that they must have non-negative coefficient is imposed, the first two are estimated to have 
zero effects and the results are identical to those in columns 3 and 6. All estimates are weighted by 
total hours worked by each group in 1980. Standard errors robust to heteroskedasticity are reported 
in parentheses.

FIGURE 15 The figure reports average elasticities of substitution between educational and age 
groups. These averages are obtained from our estimates of the propagation matrix.
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8.3 Decompositions

We first illustrate the effects of each type of technological change, highlighting 
the different pathways via which they affect labor demand.

Fig. 16 depicts the effects of automation. The panels plot estimates of the dif
ferent mechanisms, which we accumulate from left to right, with the rightmost 
panel corresponding to the total effect of the technology in question. The vertical 
axes show the model estimates (in units of change in hourly wages from 1980 
to 2016), while the horizontal axis ranks groups according to hourly wages in 
1980. Panel A starts with the productivity gains from automation, (1/λ) · d lny. 
We see here that automation increased output by 20% over this period, which 
raised the wages by 40%.

FIGURE 16 This figure decomposes the effects of automation on hourly wages between 1980 
and 2016 into four components. Panels sequentially add productivity effects, industry shifts, task 
displacement from automation, and ripple effects. The horizontal axis ranks groups according to 
hourly wages in 1980. Marker sizes are proportional to hours worked in 1980, and marker colors 
distinguish groups by education.

Panel B adds the effects of automation working through changes in the sec
toral composition of the economy by plotting (1/λ) · (d lny + (λ − η)

∑︁
i ωgi ·

d lnpi). Note that here we only account for the change in sectoral prices due 
to automation, computed according to Eq. (41). The change in sectoral prices 
due to automation does not generate much variation in terms of relative wage 
changes. This is because the skill composition of sectors expanding due to au
tomation is similar to the rest.

Panel C adds the direct task displacement due to automation and plots 
(1/λ) · (d lny −d lnΓauto

g + (λ−η)
∑︁

i ωgi ·d lnpi). The uneven impacts across 
groups are now clearly visible. For example, task displacement reduces the 
wages for some groups by as much as 30%, while the real wages of highly
educated groups shielded from automation increase by more than 40%. This 
panel confirms that automation works primarily by displacing workers from 
their tasks, shifting labor demand within sectors—rather than by shifting the 
sectoral composition of the economy, as in Panel B.

Panel D adds the ripple effects generated by automation. We see here that 
ripples play an equalizing role, consistent with our discussion in Section 5. This 
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is because groups that experience a large reduction in their task share due to au
tomation are able to compete for marginal tasks previously performed by other 
groups. This reallocation spreads the negative incidence of automation to other 
groups and mitigates the adverse effects on exposed groups. Our estimates imply 
that high school graduates experienced on average a 4.3% wage decline due to 
automation, and groups with less than high school experienced even steeper de
clines of 8.1%. College graduates and postgraduates, on the other hand, enjoyed 
17.6% and 22.9% wage increases from automation. Underscoring the equalizing 
role of the ripple effects, the declines in the real wages of high school gradu
ates and less than high school groups would have been, respectively 10.1% and 
16.2%, if these groups had not been able to compete for marginal tasks and shift 
some of the burden of task displacement to other groups.

Fig. 17 depicts the estimated effects of new tasks on wages from 1980 to 
2016. The panels have the same organization as before. Our estimates imply 
that new tasks reduce output by a small amount. This does not mean that the 
economy is made less productive by new tasks. In fact, new tasks raise TFP 
by 5%, and average wages and aggregate consumption by 7%. The reason why 
output declines is because new tasks make the production process less capital 
intensive and as a result the share of capital and investment decrease (recall the 
relationship between TFP change and output change in footnote 10).

FIGURE 17 This figure decomposes the effects of new tasks on hourly wages between 1980 and 
2016 into four components. Panels sequentially add productivity effects, industry shifts, task rein
statement from new tasks, and ripple effects. The horizontal axis ranks groups according to hourly 
wages in 1980. Marker sizes are proportional to hours worked in 1980, and marker colors distin
guish groups by education.

New tasks benefit all groups but generate more pronounced gains for highly
educated and highly-paid workers. New tasks thus contributed to rising inequal
ity, even if by a much smaller amount than automation. This result aligns with 
our reduced-form findings, where automation explains a larger share of the ob
served variance in wage trends than do new tasks. The overall wage increase 
due to new tasks ranges from 5.30% for groups with less than high school to 
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10.1% for college workers in Panel C. This heterogeneity is, as usual, further 
compressed by the ripple effects in Panel D.36

FIGURE 18 This figure decomposes the effects of sectoral TFP changes on hourly wages between 
1980 and 2016 into four components. Panels sequentially add productivity effects, industry shifts, 
effects via task prices, and ripple effects. The horizontal axis ranks groups according to hourly 
wages in 1980. Marker sizes are proportional to hours worked in 1980, and marker colors distinguish 
groups by education.

FIGURE 19 This figure decomposes the effects of sectoral markups on hourly wages between 
1980 and 2016 into four components. Panels sequentially add productivity effects, industry shifts, 
direct effects of markups, and ripple effects. The horizontal axis ranks groups according to hourly 
wages in 1980. Marker sizes are proportional to hours worked in 1980, and marker colors distinguish 
groups by education.

Figs. 18 and 19 plot the results for sectoral TFP changes and markups, which 
are estimated to have modest distributional implications. Changes in sectoral 
TFP increase wages for all groups by about 15%. Due to the fact that η < 1, 
they also reallocate labor towards high-skill services, which benefits workers 
with a post-graduate degree.37

36 New tasks increase the total mass of tasks M by d lnM = (1 − (λ − 1) · πnew
g ) · ∑︁g∈𝒢 sL

g ·
d ln Γnew

g . This effect is common to all workers and is included in Panel C.
37 This is in line with previous work by Buera et al. (2021), who also document that the process of 
structural transformation in the US raised the relative demand for college-educated workers.
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Markups reduce output and real wages, but affect groups uniformly. This is 
because the sectors experiencing the most pronounced increase in markups are 
similar to the rest in terms of the composition of their workforces.

Fig. 20 aggregates the effects of automation, new tasks, sectoral TFP 
changes, and markups for 1980-2016 and compares their estimated wage im
pacts to observed wage changes in this period. These trends combined account 
for 72% of between-group wage changes from 1980 to 2016.

FIGURE 20 The figure plots observed wage changes in (real) hourly wages, 1980-2016, vs. pre
dicted changes based on the combined effects of automation, new tasks, sectoral TFP changes, and 
sectoral markup changes estimated using our model.

Table 4 summarizes the individual contribution of the different technologies 
studied here and sectoral markups to the observed wage changes. Automa
tion technologies introduced since 1980 account for 55% of the observed wage 
trends across worker groups. New tasks contributed 8.7%, as they have favored 
highly-educated workers the most. Changes in sectoral TFP contributed 7.5%, 
while changes in sectoral markups had minor effects.

The second column reports predicted average wage growth coming from 
each source. Despite generating large distributional effects, automation brought 
a modest increase in average wages of about 4.4%. The opposite holds for 
Hicks’ neutral sectoral TFP improvements, which increased average wages by 
15.4%, with modest distributional effects in comparison. Overall, predicted 
wage growth from the model exceeds the composition-adjusted real wage 
growth in the US economy over the same time period, which is about 5%. This 
could be because other factors (for example, related to non-competitive ele
ments in the labor market discussed below) may have put additional downward 
pressure on wages.

Fig. 21 provides additional details on the impacts of different types of tech
nologies on the wage structure. It depicts the contribution of the same four 
factors to the wage premium earned by college-educated workers relative to 
those with high school or less; the premium of college-educated workers relative 
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TABLE  4 Share of variance in wage trends across groups explained by differ
ent technologies and markups.

Share wage changes 
explained, 1980--2016

Contribution to average 
wage growth, 1980--2016

(1) (2)
Automation 55.34% 4.38%

New task creation 8.70% 7.06%

Sectoral TFP changes 7.47% 15.39%

Markups 0.69% −3.87%

Total 72.20% 22.96%

Notes: Column 1 reports the contribution of the indicated technology term to observed wage changes 
across 500 demographic groups between 1980 and 2016. This is weighted by total hours worked by 
each group in 1980. Column 2 reports predicted average (real) wage growth between 1980 and 2016 
from the indicated types of technological change.

to those with some college; and the premium earned by postgraduate workers 
relative to those with a college degree. Automation is the most important driver 
of the increase in the college premium and also plays an important role in ex
plaining the rising postgraduate premium. New tasks and sectoral TFP trends 
also contributed to the rising college premium, though with a smaller role than 
automation. Sectoral TFP trends had a more prominent role in explaining the 
rise in the postgraduate premium since 1980, partly because a few sectors that 
disproportionately employ postgraduates, such as legal services and health care, 
experienced lackluster productivity growth, which led to their expansion as a 
share of value added.

FIGURE 21 The figure reports the estimated contribution of technology and markups to the 
changes in various educational premia, 1980--2016. The bars represent the effects of different tech
nologies or sectoral markup changes.
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8.4 Limited distributional impacts of labor-augmenting technologies

Our decomposition exercise ignored the role of labor-augmenting technological 
changes, because we have no direct measures of such technologies. In this sub
section, we perform a bounding exercise to show these technologies are unlikely 
to be important drivers of the changes in the US wage structure between 1980 
and 2016.

We consider three types of technological changes: automation, uniformly 
labor-augmenting technologies, and labor-augmenting technologies at the in
tensive margin. For each technology, we consider a shock that generates a 1% 
increase in TFP and then trace its contribution to inequality. Because each of the 
shocks we are considering is chosen to raise TFP by 1%, we know from theory 
that their impact on average wages is to increase them by 1.5% (this follows 
from 

∑︁
g s

y
g · d lnwg = d ln tfp).

In the top panel of Table 5, we investigate how large the distributional ef
fects of automation are relative to their TFP impact. We consider advances in 
automation equally affecting all skill groups with the same education level. 
For example, the first row considers the hypothetical effects of advances in au
tomation affecting only high-school dropouts, and reports the effects of these 
advances on the wages of workers of different educational levels (in each case 
averaged across demographic groups with the same level of education). In this 
exercise we keep πauto

g fixed and set the fraction of automated tasks to ensure a 
1% increase in aggregate TFP.

Panel A shows that automation has significant distributional effects. For in
stance, a (uniform) automation shock impacting all groups with less than high 
school reduces these groups’ own wage by, on average, −21.88%. The impact 
on other demographic groups, operating via the productivity and ripple effects, 
is positive. For instance, the effect on college-graduate groups is an 8.07% in
crease. This implies that automation affecting workers with less than high school 
is increasing inequality between this group and college graduates by about 30%.

Panel B shows positive but comparatively much smaller effects on own 
group wages from uniformly labor-augmenting technologies, which reflects the 
fact that the macroeconomic elasticities between groups (taking into account 
the ripple effects) are close to 1. For example, a technological improvement 
raising the productivity of workers with less than high school degree uniformly 
increases their wages by 2%, and has a very similar impact on groups with col
lege or more. The quantitative pattern in the other rows is similar: uniformly 
labor-augmenting technologies have a limited effect on inequality and generate 
similar wage gains across all educational groups.

Panel C of Table 5 repeats this exercise for labor-augmenting changes at 
the intensive margin. As highlighted in Proposition 6, these technologies have 
a more negative impact on the group experiencing the increase in productivity 
because they do not generate the same beneficial impact via competition for 
marginal tasks. This is why the diagonal in Panel C with the own-group effects is 
negative. Despite reducing the wages of exposed groups, the effects of this form 
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TABLE  5 Effects on average wages due to a 1% increase in TFP by demo
graphic group.

Effects on average real hourly wages (%):
Shock to High School 

Dropout
High School 

Graduate
Some 

College
College Postgradu

ate
Panel A. Automation

High School Dropout −21.88 4.25 5.98 8.07 8.86
High School Graduate 4.15 −8.57 5.38 7.06 8.05
Some College 5.8 5.26 −13.41 5.9 6.68
College 7.96 6.92 5.71 −27.65 3.13
Postgraduate 9.12 8.15 6.47 2.63 −27.86

Panel B. Uniform factor-augmenting
High School Dropout 2.02 0.84 1.34 1.94 2.16
High School Graduate 0.81 1.85 1.16 1.65 1.93
Some College 1.29 1.13 2.29 1.32 1.54
College 1.91 1.61 1.26 2.30 0.51
Postgraduate 2.24 1.96 1.48 0.36 0.84

Panel C. Intensive-margin factor-augmenting
High School Dropout −2.11 1.88 2.20 2.56 2.75
High School Graduate 1.85 −0.03 2.09 2.38 2.58
Some College 2.16 2.06 −0.74 2.17 2.32
College 2.54 2.35 2.14 −2.91 1.67
Postgraduate 2.78 2.59 2.27 1.60 −3.16

Notes: This table shows the effects on average wages in demographic groups due to a rise in factor
augmenting technologies that result in a 1% increase in TFP. The detailed breakdown by panel 
facilitates understanding of the differential impact across various scenarios of technological advance
ment and educational strata.

of technology on inequality are modest, especially when compared to the effects 
of automation in Panel A. For example, an intensive-margin labor-augmenting 
technology raising the productivity of skill groups with less than high school 
reduces their wages by about 2.11% and increases the wages of other groups 
by 1.88%-2.75%, thus amounting to a 4.5% widening of between-group wages. 
This quantitative impact is an order of magnitude smaller than the distributional 
implications of automation technologies.

The limited distributional impacts of labor-augmenting technologies are 
also implied by the small explanatory power of the education and gender 
dummies estimated in the reduced-form models, recalling that these flexibly 
subsume education-augmenting and gender-augmenting technological develop
ments. Overall, factor-augmenting technologies appear to have fairly limited 
distributional effects in this framework.

We have so far emphasized the success of the task framework in accounting 
for various recent labor market trends. We conclude this section by highlighting 
two puzzles that this framework generates, which require further work.

8.5 The missing technology puzzle

Our decomposition exercise focused on accounting for wage changes across 
skill groups. A related but distinct exercise is to explore the contribution of dif
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ferent technological trends to total demand shifts. Since 1980, the US workforce 
has become significantly more educated, which translates into large changes in 
the size of more educated skill groups. As emphasized in Katz and Murphy 
(1992), all else equal, this demographic shift should have raised the relative 
wages of less educated workers. From the viewpoint of the standard relative 
supply-demand framework, this implies that the relative demand changes have 
been even larger and have favored the more educated groups.

Following Katz and Murphy (1992), we can use the framework here to quan
tify the extent of these demand shifts. In particular, given the propagation matrix 
Θ, which summarizes all the relevant elasticities, the demand shifts across de
mographic groups since 1980 can be computed as

demand shiftg = Δ lnwg + Θg · stack(Δ ln populationg + Δ lnℓg), (45)

where Δ ln populationg are changes in log group size and Δ lnℓg denotes 
changes in log hours per capita. This expression leverages the fact that the prop
agation matrix also controls how changes in the supply of skills affect wages, as 
explained in Proposition 7.

FIGURE 22 The figure plots the total demand shifts computed from Eq. (45) between 1980 and 
2016 for 500 demographic groups. These are compared to observed wage changes during this period 
in the horizontal axis. Marker sizes are proportional to hours worked in 1980, and marker colors 
indicate education levels.

Fig. 22 compares the measured demand shifts with observed wage changes 
and underscores the point we made above: demand shifts are more pronounced 
than wage movements because supply shifts have favored low-education and 
low-pay groups. But then, what explains these demand shifts? According to our 
estimates, automation explains about 14.5% of the total demand shifts, while 
new tasks explain about 2.1%, and sectoral TFP and markups explain 1.4% and 
0.1%, respectively. Close to 82% of relative demand shifts remain unexplained. 
Since, as we have argued, factor-augmenting technologies are unlikely to con
tribute much to these between-group shifts, our framework highlights a puzzle: 
a sizable share of the implied relative demand shifts in the US economy since 
1980 remains unexplained.
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8.6 The incidence puzzle

Our reduced-form evidence revealed sizable effects of automation and new tasks 
on wages and employment. A natural way to think about employment effects is 
to introduce an endogenous labor supply margin so that demand shifts induce 
moves along an upward-sloping labor supply curve. For example, we may posit 
that the quantity of labor from skill group g is determined according to the labor 
supply schedule

ℓg = χg · wε
g,

where ε ≥ 0 is the net elasticity of labor supply (inclusive of income effects) 
and mg a supply shifter. The case of inelastic labor supply studied so far is 
obtained when ε = 0. This labor supply curve can be the result of frictions (as in 
Kim and Vogel, 2021) or derived from household optimization with quasi-linear 
preferences (as in Acemoglu and Restrepo, 2022).

Proposition 9 extends to this environment, with now

d lnw = Θ∗ · stack

(︄
d lny +

∑︂
i

ωgi · zgi + (λ − η) ·
∑︂

i

ωgi · d lnpi

)︄
,

where the propagation matrix, inclusive of endogenous supply responses, takes 
the form

Θ∗ = 1 
λ + ε

·
(︃
1− 1 

λ + ε
· ∂ lnΓ(w)

∂ lnw 

)︃−1

.

The key difference with the previous matrix is that in place of λ, we have 
λ + ε. This extra term captures the intuitive fact that wage effects are less pro
nounced when labor supply is elastic since more of the adjustment takes place 
via quantities. Endogenous labor supply responses also weaken ripple effects, 
as lower hours worked for (negatively) affected groups means less competition 
for marginal tasks.

The incidence puzzle is that for realistic values of the labor supply elasticity,
it is hard to make sense of the sizable reduced-form coefficients on our task 
variables. There are two ways of seeing the problem. First, as in a standard 
incidence analysis (and ignoring all general equilibrium interactions), the effect 
of a 1% decline in labor demand (measured as the shift in quantity demanded at 
constant prices) should be to reduce wages and employment by

d lnwg = − 1 
σg + ε

· shift in demand

d lnℓg = − ε

σg + ε
· shift in demand,

where σg is the demand elasticity for group g labor. This elasticity exceeds λ
in our model, and so the incidence of a demand shock on wages and employ
ment must be bounded above by 1 

λ+ε
and ε

λ+ε
, respectively. Ripple effects and 
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other forces should, if anything, dampen the incidence of demand shocks, which 
means that these are upper bounds.

Alternatively, one can follow the derivations in Section 2, which imply that 
the row sum of Θ∗ should be less than or equal to 1/(λ + ε). This places the 
same bound on our reduced-form estimates of the incidence of demand shocks 
on wages and employment.38

The value of λ = 0.5 from Humlum (2020) and the estimate for ε = 0.5
reported in Chetty et al. (2011) yields an upper bound on the incidence rate 
of 1 for wages and 0.5 for employment, both of which are exceeded by our 
empirical estimates in Tables 1 and 2, centered around 1.25 for wages and 1.4 
for hours worked per person. The root of the puzzle is the large estimates for 
employment. One could make sense of the estimated incidence on wages by 
positing lower values for λ or ε, but this would still predict an incidence in 
employment below 1.

The incidence problem is neither a technical problem nor an entirely new 
one. Rather, it reflects the fact that with elastic labor supply responses, it be
comes impossible to generate large wage changes in general, as most of the 
adjustment is in quantities rather than prices.

We conjecture that both puzzles are related to the assumption that labor 
markets are fully competitive, and introducing non-competitive elements would 
provide at least a partial solution to both puzzles. For example, when the labor 
market is non-competitive, the implied relative demand shifts could be a sig
nificant exaggeration of the true changes in relative demand, which could be 
one reason why there appears to be a missing technology puzzle, and why em
ployment responses are larger than predicted by the competitive benchmark. 
Relatedly, the presence of rents (wages that are above the opportunity cost 
of labor) for some groups, for instance as in Acemoglu and Restrepo (2024), 
would multiply the effects of automation on wages but also shift the economy 
off the labor supply curve. Such non-competitive elements could also amplify 
task displacement because they can induce additional automation as a means of 
dissipating rents accruing to certain worker groups.

9 Conclusion

This paper has reviewed and extended the recent literature on the task frame
work, where the production process is explicitly modeled as being based on the 
allocation of a range of tasks to different factors of production.

38 The corresponding equation for employment becomes

d lnℓg = ε · Θ∗ · stack

⎛
⎝d lny +

∑︂
i

ωgi · zgi + (λ − η) ·
∑︂
i

ωgi · d lnpi

⎞
⎠ .

The reduced-form estimates are now bounded above by ε times the row sums of Θ∗, which are less 
than ε

λ+ε
.
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The task model provides an attractive tool for studying ongoing labor market 
transformations in the United States and other industrialized nations for several 
reasons. To start with, an essential aspect of these transformations appears to 
be related to large changes in the nature of tasks—and occupations—that dif
ferent types of workers perform in the labor market. Moreover, both the wage 
and occupational changes appear to be related to the rollout of new automation 
technologies that have substituted capital equipment and algorithms for tasks 
previously performed by some worker groups (Autor et al., 2003; Acemoglu 
and Autor, 2011; Acemoglu and Restrepo, 2022). Less appreciated but equally 
important are the effects of new technologies that have introduced new tasks for 
certain worker groups, ranging from new technical occupations to those based 
on digital tools, such as programming, design, integration functions and related 
service responsibilities (Lin, 2011; Acemoglu and Restrepo, 2018b; Autor et al., 
2024). Automation and the introduction of new tasks cannot be easily studied in 
existing frameworks, which typically focus on factor-augmenting technological 
advances and do not distinguish the effects of different types of technologies.

The task framework not only adds descriptive realism to the modeling of 
the production process and the labor market, but leads to new comparative 
statics concerning the effects of technologies on the labor market. These new 
results are rooted in the extensive-margin effects of new technologies—that is, 
the reallocation of tasks away from certain worker groups as well as the rein
statement of some groups into new tasks—at given wages. We represent these 
extensive-margin influences via (direct) task displacement caused by automa
tion and reinstatement generated by new tasks, and theoretically establish that 
they are very different than the consequences of technologies that make work
ers more productive in tasks they already perform or general factor-augmenting 
technologies that make factors uniformly more productive in all tasks.

The theoretical analysis in this chapter also builds a natural bridge between 
theory and empirics, and we exposited and utilized this bridge at two different 
levels. The first is via a set of reduced-form equations that can be estimated 
to link relative wage (and employment) changes at the level of skill groups 
(e.g., groups distinguished by education, gender, age, ethnicity, etc.) to empir
ical measures of direct task displacement and reinstatement, as well as proxies 
for factor-augmenting technologies and sectoral reallocations. When estimated 
via reduced-form methods, this empirical framework points to a significant role 
of task displacement and reinstatement in accounting for the changes in the US 
wage and employment structure—in all cases explaining more than 50% of the 
variation between 1980 and 2016. In contrast, our proxies for other technolog
ical factors appear much less important in the distributional changes observed 
since 1980. This reduced-form evidence thus suggests that the extensive-margin 
effects of new technologies, typically ignored or bundled with other factors in 
standard approaches, should be the main focus when exploring the determinants 
of the recent evolution of the wage structure in the US and other industrialized 
economies.
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Despite their simplicity and tight connection to theory, reduced-form equa
tions have important limitations. First, they ignore the ripple effects that result 
from the spillovers from the technological changes impacting other worker 
groups. Second, reduced-form models are only informative about relative wage 
changes because productivity effects are subsumed into the constant term of the 
regression. Third, while the task displacement and reinstatement terms can be 
reasonably well approximated with the data we have available, our proxies for 
other technological influences may be less reliable. These shortcomings are rec
tified by a more structural approach that the task framework also enables—and 
we derived systematically from the multi-sector version of the model.

Specifically, the framework shows that the full effects of technological de
velopments can be summarized by the following channels: a productivity effect, 
the direct extensive-margin effects on task allocations, task-price substitution 
effects, sectoral reallocations triggered by the uneven incidence of the technol
ogy in question across sectors, and the ripple effects. The ripple effects can be 
summarized (up to a first-order approximation) by a propagation matrix, which 
we develop and estimate via GMM from the same wage and task displacement 
and reinstatements data. The remaining effects can be disciplined with external 
information on the elasticity of substitution between tasks within a sector and 
the elasticity of substitution between the outputs of different industries in the 
production of the final good.

Using this structural approach, our estimates of the propagation matrix and 
external estimates on the relevant elasticities, we carry out a full general equilib
rium decomposition of the contribution of different technologies. We once again 
conclude that more than 50% of the changes in the US wage structure between 
1980 and 2016 are driven by automation and new tasks.

One of the attractive features of the task framework is its flexibility, which 
we illustrated by showing how complex economic interactions can be modeled 
within this framework. There are several other directions for future work, which 
we hope our chapter will encourage:

• In this chapter, we focused on competitive models, with the exception of the 
exogenous sectoral markups that were introduced in the multi-sector model. 
The task framework naturally allows for the modeling of various imperfec
tions. For example, the allocation of tasks to factors can be frictional due to 
search and matching considerations, discrimination against some groups in 
certain tasks or licensing. Additionally, the task model allows for e˙iciency
wage type considerations, rent-sharing, or explicit bargaining at the task level 
(e.g., Acemoglu and Restrepo, 2024). Such frictions not only cause ineffi
cient assignment of tasks to factors, but also significantly enrich the effects 
of automation technologies, because these now have the additional role of dis
sipating worker rents and the adoption of these technologies can take place 
inefficiently as a result of employers’ efforts to avoid paying worker rents. 
As mentioned above, non-competitive approaches can also hold the key to 
resolving the two puzzles we highlighted at the end of the previous section.
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• More general preference structures, for example, including non-homothetic 
utility over different goods and services can be easily incorporated into this 
framework in order to study the process of structural change in the economy 
and its implications for the labor market. Such an extension can enable a 
more holistic analysis of the joint process of structural transformation and 
inequality following different types of technological influences.

• The task framework is ideally suited to studying the implications of trade 
in goods and services, offshoring and reshoring, and can be developed in 
the context of a multi-country setup in a relatively tractable form (Kikuchi, 
2024).

• The task framework can be useful for exploring the effects of immigration 
and related changes on the supply side, making explicit how the effects of 
these developments depend on which tasks new or expanded labor groups 
compete for. For example, the framework suggests that the implications of an 
immigration shock should be very different when immigrants perform com
plementary tasks to natives; when they compete against machines; and when 
they compete for the tasks that certain native skill groups were previously 
performing.

• A major economic transformation will likely result from the rollout of new 
artificial intelligence (AI) tools in the coming decades. There is consider
able uncertainty about the extent to which AI will be used to automate tasks, 
whether it can create new labor-intensive tasks and the magnitude of its pro
ductivity effects. It is also likely that developments in the AI industry can 
change product market competition and markups. These considerations in
crease the benefits of the task framework applied to study AI’s variegated 
effects on the labor market (see, for example, Acemoglu, 2024; Acemoglu et 
al., 2022; Babina et al., 2024).

• The empirical work reported in this chapter uses publicly-available data, 
though we also mentioned an emerging literature using firm-level data. There 
is much more to be done with firm-level data and matched firm-worker data 
to investigate how task displacement and reinstatements take place and how 
this triggers a series of indirect effects, as not just the factors of production 
but also as firms compete with each other following the uneven adoption of 
various technologies.

• This chapter highlighted the importance of new tasks, which are challenging 
to measure in practice, and emphasized that future empirical work on the 
measurement of new tasks and their effects on different labor groups is an 
important direction (see Autor et al., 2024, for recent work on this).

• Finally, it would be useful to extend the theoretical and empirical approaches 
reviewed in this chapter, which relied on first-order approximations in order 
to incorporate the higher-order, nonlinear effects from large changes in tech
nology or supplies.
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Appendix A Equilibrium existence and uniqueness

This section proves Proposition 1, establishing the uniqueness of the equilib
rium.

We first derive the equilibrium conditions in the text and provide a lemma 
for the Jacobian of task shares that will be used to establish the uniqueness of 
the equilibrium.

Preliminaries This section derives the equilibrium conditions E1-E5. E1 and 
E2 follow from cost minimization. For E3, note that the production of the final 
good is competitive, so task prices equal their marginal product p(x) = M−1/λ ·(︂

y
y(x)

)︂1/λ

, and

y(x) = 1 
M

· y · p(x)−λ. (A46)

For tasks in 𝒯g(w), Eq. (A46) implies

Ag · ψg(x) · ℓg(x)⏞ ⏟⏟ ⏞
y(x) 

= 1 
M

· y ·
(︃

wg

Agψg(x)

)︃−λ

⏞ ⏟⏟ ⏞
p(x) 

,

which can be rearranged into E3. The same steps establish the corresponding 
equation for capital.

E4 imposes labor market clearing.
For E5, we multiply Eq. (A46) by px and integrate∫︂

y(x) · p(x) · dx⏞ ⏟⏟ ⏞
y

=
∫︂
𝒯

px · yx · dx = 1 
M

· y ·
∫︂
𝒯

p1−λ
x · dx.

Canceling y on both sides yields the ideal-price index equation E5.

The Jacobian lemma The following lemma will be used in our proofs.

Lemma A1. Let ℋ = 1 − 1 
λ

∂ lnΓ(w)
∂ lnw . For all wage vectors w, the matrix Σ

is non-singular. Moreover, ℋ is a P -matrix of the Leontief type (i.e., with 
non-positive off-diagonal entries) whose inverse has all entries that are non
negative.

Proof. Assumption 1 ensures that task shares are continuous and differentiable 
functions of wages. We now establish the properties of ℋ.

First, because ∂Γg(w)/∂wg′ ≥ 0 for g′ ≠ g, ℋ is a Z-matrix (it has negative 
off diagonals).

Second, ℋ has a positive dominant diagonal. This follows from the fact that 
ℋgg = 1 − 1 

λ

∂ lnΓg(w)

∂ lnwg
> 0, and ℋgg − ∑︁

g′≠g |ℋgg′ | = 1 − ∑︁
g′ 1 

λ

∂ lnΓg(w)

∂ lnwg′ >
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1. This last inequality follows because 
∑︁

g′
∂ lnΓg(w)

∂ lnwg′ ≤ 0: when all wages rise 

by the same amount, workers lose tasks to capital but do not experience task 
reallocation among themselves.

Third, all eigenvalues of ℋ have real parts that exceed 1. This follows from 
Gershgorin’s circle theorem: for each eigenvalue ζ of ℋ, we can find a dimen
sion g such that ||ζ − ℋgg|| <

∑︁
g′≠g |ℋgg′ |. This inequality implies ℜ(ζ ) ∈[︂

ℋgg −∑︁
g′≠g |ℋgg′ |,ℋgg +∑︁

g′≠g |ℋgg′ |
]︂
. Because ℋgg −∑︁

g′≠g |ℋgg′ | > 1

for all g, all eigenvalues of ℋ have real parts greater than 1.
Fourth, since ℋ is a Z-matrix whose eigenvalues have positive real parts, it 

is also an M-matrix and a P -matrix of the Leontief type. The inverse of such 
matrices exists and has non-negative real entries.

Proof of Proposition 1. The derivations for the market-clearing wage in (4)
were presented in the text.

The numeraire condition in (5) is obtained by substituting the expression for 
prices in E1 into the ideal price index in E5.

We now turn to existence and uniqueness. To prove that (4) and (5) ad
mit a unique solution, we first show that, given a level for output y, there is 
a unique set of wages {wg(y)}g that satisfies the market clearing conditions in 
(2). We then show there is a unique level of output that satisfies (5) evaluated at 
{wg(y)}g .

For the first step, Assumption 1 implies that Γg(w) lies in a compact set 

[Γ, Γ̄]. 𝕋 : w → (𝕋w1, . . . ,𝕋wG)′ defined by 𝕋wg =
(︂

y
ℓg

)︂ 1 
λ · A1−1/λ

g · Γg(w)
1 
λ

for g = 1,2, . . . ,G is a continuous mapping from the compact convex set 𝕏 =∏︁G
g=1[

(︁
y/ℓg

)︁ 1 
λ ·A1−1/λ

g ·Γ 1 
λ ,
(︁
y/ℓg

)︁ 1 
λ ·A1−1/λ

g ·Γ̄ 1 
λ ] onto itself. The existence of 

a positive wage vector {wg(y)}g solving this fixed-point problem follows from 
Brouwer’s fixed point theorem.

We now turn to uniqueness of {wg(y)}g . We can rewrite the system of equa
tions {wg(y)}g defining {wg(y)}g in logs as F(x) = 1 

λ
· stack(lny − lnℓg), 

where x = (lnw1, . . . , lnwG) and F(x) = (f1(x), . . . , fG(x)) with fg(x) =
xg − 1 

λ
· lnΓg(x) − (1 − 1 

λ
) · lnAg .

The Jacobian of F is given by the M-matrix ℋ. Theorem 5 from Gale and 
Nikaido (1965) shows that the solution to the system F(x) = a is unique if the 
Jacobian of F is a P -matrix of the Leontief type. The theorem also shows that 
the unique solution x(a) is increasing in a. As a result, the unique solution to 
the system of equations in (4) is {wg(y)}g with wg(y) strictly increasing in y. 
We also note that (y/ℓg)

1/λ · A1−1/λ
g · Γ1/λ ≤ (y/ℓg)

1/λ · A1−1/λ
g · Γ̄1/λ, so that 

wg(y) → ∞ as y → ∞, and wg(y) → 0 as y → 0.
To conclude, we show that there is a unique y that satisfies the ideal-price 

index equation (5). This condition can be written as F(y) = 1, where

F(y) =
(︄

1 
M

∫︂
𝒯

[︃
min

{︃
min

g

{︃
wg(y) 

Ag · ψg(x)

}︃
,

1 
Ak · ψk(x)

}︃]︃1−λ

· dx

)︄1/(1−λ)

.
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Because wages are increasing in y, F(y) is also increasing in y. Assumption 1
also ensures that a positive mass of tasks must be allocated to labor at any wage 
level, which implies that F(y) is increasing in y. The function F(y) can be 
written as

F(y) =
(︄

(Aλ−1
k · Γk(w(y)) +

∑︂
g

Aλ−1
g · Γg(w(y)) · wg(y)1−λ

)︄1/(1−λ)

.

As y → ∞, Γg(w) · wg(y)1−λ → ∞ (since Γg(w) is bounded from below 
and λ < 1) and Γk(w(y)) ≥ 0. This implies F(y) → ∞. Moreover, as y → 0, 
Γg(w) · wg(y)1−λ → 0 (since λ < 1) and Γk(w(y)) = 0 (since, by Assump
tion 1, all tasks can be produced by at least one type of worker). This implies 
F(y) → 0.

Because F(y) is increasing in y, there is a unique y ∈ (0,∞) for which 
F(y) = 1 and, therefore, a unique equilibrium with wages wg = wg(y). The 
equilibrium wages and the tie-breaking rule for tasks where there is indifference 
uniquely determine the task allocation.

Our argument for uniqueness also shows that, under Assumption 1, the 
unique equilibrium features finite output, positive wages, and positive task 
shares for all workers. Moreover, from F(y) = 1, we obtain that, in equilibrium, 
1 − Aλ−1

k · Γk(w) > 0.

Appendix B Effects of technology

This section provides formulas for the effects of technology on wages.
Our comparative statics involve characterizing the change in task shares and 

equilibrium objects in response to infinitesimal changes in technology. For aug
menting technologies this can be done via traditional differentiation, considering 
infinitesimal changes in ψg(x), ψk(x), Ag or Ak . Automation and new tasks 
creation, on the other hand, correspond to discrete shifts in capital and labor pro
ductivities over sets of positive or infinitesimal measure (e.g., capital becoming 
much more productive in many or a few tasks). In this Appendix, we define the 
notion of total derivatives of task shares with respect to these changes, which 
we use in the text. This definition applies to both the economy with and without 
ripples.

Let us write task shares in general as Γg(Ψ), where Ψ designates all relevant 
parameters, including factor-augmenting terms, the Ag’s, and the measure of 
tasks M , with respect to which derivatives are defined in the usual manner. In 
the economy with ripples, one may also include wages as part of Ψ.

Consider a ``small'' (possibly infinitesimal) change in technology and wages. 
This change can be described as follows. Fix a small ϵ (so that infinitesimal 
changes correspond to ϵ → 0):
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i. The automation of tasks in the set 𝒜g , with (Lebesgue) measure 𝒪(ϵ) (i.e., 
there exists a constant c̄ such that the measure of 𝒜g is less than c̄ϵ). In this 
case, the quantity

ag = 1 
M

∫︂
𝒜g

ψg(x)λ−1dx

gives the infinitesimal change in the task share of group g due to automation 
and

rg = 1 
M

∫︂
𝒜g

ψauto
k (x)λ−1dx

gives the infinitesimal change in the task share of capital due to the automa
tion of tasks in 𝒜g, where ψauto

k (x) is the productivity of capital in task 
x ∈𝒜g after the change in automation technology.

ii. The creation of new tasks in the set 𝒩g , with (Lebesgue) measure 𝒪(ϵ). 
The quantity

ng = 1 
M

∫︂
𝒩g

ψnew
g (x)λ−1dx

gives the infinitesimal change in the task share of group g due to new tasks, 
with ψnew

g (x) being the productivity of labor of type g in tasks x ∈𝒩g after 
the creation of new tasks.

iii. The change in Ψ, dΨ, which is assumed to be of 𝒪(ϵ) (i.e., there exists a 
constant c̄ such that ||dΨ|| is less than c̄ϵ).

Our notion of total derivatives of task shares is based on these quantities. In 
particular, define the total derivative of Γg(Ψ) with respect to these infinitesimal 
changes as

dΓg(Ψ) = −ag + ng + ∂Γg

∂Ψ 
· dΨ.

We show next that, just like the standard notion of total derivatives, this total 
derivative approximates the change in task shares with an error of order o(ϵ), 
meaning that it goes to zero faster than ϵ as ϵ goes to zero.

Likewise, define the total derivative of Γk(Ψ) with respect to these infinites
imal changes as

dΓk(Ψ) =
∑︂
g

rg + ∂Γk

∂Ψ 
· dΨ.

Moreover, the total derivative of any differentiable function h({Γg(Ψ)}g, 
Γk(Ψ),Ψ) can be determined via the chain rule as

dh({Γg(Ψ)}g,Γk(Ψ),Ψ) =
∑︂
g

∂h 
∂Γg

(︃
−ag + ng + ∂Γg

∂Ψ 
· dΨ

)︃

+ ∂h 
∂Γk

(︄∑︂
g

rg + ∂Γk

∂Ψ 
· dΨ

)︄
+ ∂h 

∂Ψ
· dΨ.
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The next lemma shows that, as for traditional derivatives, the total deriva
tives defined here for task shares—and via the chain rule for functions of 
task shares—provide a first-order approximation (in ϵ) to the change in 
h({Γg(Ψ)}g,Γk(Ψ),Ψ).

Lemma A2. Let h = h({Γg(Ψ)}g,Γk(Ψ),Ψ). Suppose h(.) and Γ(.) are dif
ferentiable in Ψ (both before and after the change in technology). Suppose the 
sets 𝒜g and 𝒩g have Lebesgue measures 𝒪(ϵ) and Ψ changes by dΨ of order 
𝒪(ϵ). Then the total change in h satisfies

h′ − h =
∑︂
g

∂h 
∂Γg

·
(︃

−ag + ∂Γg

∂Ψ 
· dΨ

)︃
+ ∂h 

∂Γk

·
(︄∑︂

g

rg + ∂Γk

∂Ψ 
· dΨ

)︄

+ ∂h 
∂Ψ

· dΨ + o(ϵ). (A47)

Proof. We show this for automation. New tasks can be handled in the same 
manner. Note that

h
′\𝒜g
g (Ψ + dΨ)}g,Γ∪g𝒜g

k (Ψ + dΨ),Ψ + dΨ) − h({Γg(Ψ)},Γk(Ψ),Ψ),

where the notation Γ
\𝒜g
g indicates that the task share is now computed over the 

set 𝒯g \ 𝒜g . The notation Γ
∪g𝒜g

k indicates that the task share of capital is now 
computed over the set 𝒯k ∪g 𝒜g . This expression uses the fact that tasks in 𝒜g

are automated in equilibrium by assumption.
A first-order Taylor expansion of h around {Γg}, Γk and Ψ yields

h′ − h =
∑︂
g

∂h 
∂Γg

·
(︂
Γ

\𝒜g
g (Ψ + dΨ) − Γg(Ψ)

)︂

+ ∂h 
∂Γk

·
(︂
Γ

∪g𝒜g

k (Ψ + dΨ) − Γk(Ψ)
)︂

+ ∂h 
∂Ψ

· dΨ + o(ϵ).

This step uses the fact that Γ
\𝒜g
g (Ψ + dΨ) − Γg(Ψ) and Γ

∪g𝒜g

k (Ψ + dΨ) −
Γk(Ψ) and dΨ are all 𝒪(ϵ), so that the approximation error in the Taylor expan

sion is o(ϵ). This follows from Γ
\𝒜g
g (Ψ + dΨ) = Γ

\𝒜g
g (Ψ) +𝒪(ϵ) (from con

tinuity), which implies Γ
\𝒜g
g (Ψ + dΨ) − Γg(Ψ) = Γ

\𝒜g
g (Ψ) − Γg(Ψ) +𝒪(ϵ). 

The right side is 𝒪(ϵ) because Γ
\𝒜g
g (Ψ) − Γg(Ψ) differ over a set of measure 

𝒪(ϵ). The argument for Γ
∪g𝒜g

k (Ψ + dΨ) − Γk(Ψ) is the same.

A second first-order Taylor expansion, this time of the task shares Γ
\𝒜g
g (Ψ +

dΨ) and Γ
∪g𝒜g

k (Ψ + dΨ) around Ψ gives



92 Handbook of Labor Economics 

h′ − h =
∑︂
g

∂h 
∂Γg

·
(︄

−ag + ∂Γ
\𝒜g
g

∂Ψ 
· dΨ

)︄

+ ∂h 
∂Γk

·
(︄∑︂

g

rg + ∂Γ
∪g𝒜g

k

∂Ψ 
· dΨ

)︄
+ ∂h 

∂Ψ
· dΨ + o(ϵ). (A48)

We now show that ∂Γ
\𝒜g
g

∂Ψ · dΨ = ∂Γg

∂Ψ · dΨ + o(ϵ) and ∂Γ
∪g𝒜g
g

∂Ψ · dΨ =
∂Γk

∂Ψ · dΨ + o(ϵ). We establish this claim by considering the different elements 
in Ψ one by one. Changes in wages and uniformly augmenting technologies 
only affect task shares by reallocating marginal tasks. By assumption 𝒜g is in 
the interior of 𝒯g and all of the tasks in this set are strictly cheaper when auto

mated (i.e., are not marginal). This implies ∂Γ
\𝒜g
g

∂w = ∂Γg

∂w and 
∂Γ

∪g𝒜g
k

∂w = ∂Γk(Ψ)
∂w . 

The same logic implies that for factor-augmenting technologies Ag, we have 
∂Γ

\𝒜g
g

∂Ag′ = ∂Γg

∂Ag′ and 
∂Γ

∪g𝒜g
k

∂Ag′ = ∂Γk

∂Ag′ . For augmenting technologies at the intensive 

margin, the set of automated tasks and the set of tasks with productivity im
provements may overlap. However, the improvements are 𝒪(ϵ) and the range of 
overlap is 𝒪(ϵ), which means that the overlap is 𝒪(ϵ2), which is at least as fast 
as o(ϵ) as claimed. Substituting these back into (A48) gives (A47).

Remark 1. The proof uses the fact that all tasks in 𝒜g become automated. The 
assumption that πauto

g (x) > 0 ensures this, because, at the initial equilibrium 
wages, producing these tasks with capital is cheaper than assigning them to 
labor. Because the change in wages is also small, the same remains true in the 
new equilibrium. Note that this logic can fail for large automation shocks, in 
which case only a subset of tasks in 𝒜g may become automated in equilibrium.

Remark 2. Applying the lemma to h = Γg(Ψ) or h = Γk(Ψ) shows that our 
definition of derivatives provides a first-order approximation to the change in 
Γg(Ψ) and Γk(Ψ) whose error term is o(ϵ).

Remark 3. If h, Γg , and Γk are twice differentiable, then the same steps estab
lish the sharper bound

h′ − h = dh({Γg(Ψ)}g,Γk(Ψ),Ψ) +𝒪(ϵ2).

This means that the derivative dh({Γg(Ψ)}g,Γk(Ψ),Ψ) approximates the 
change in h′ − h with a small approximation error that goes to zero no slower 
than ϵ2.

Remark 4. Equilibrium wages are one of the variables in Ψ and our expressions 
so far assume that changes in wages are also 𝒪(ϵ). We show here that this is 
indeed the case. In particular, note that equilibrium wages solve a system of the 
form

h({Γg(Ψ0,Ω)}g,Γk(Ψ0,Ω),Ψ0,Ω) = 0, (A49)
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where, for emphasis, we have separated wages from exogenous technological 
parameters in Ψ0. Recall also that h is differentiable in w (by virtue of Assump
tion 1) and the Jacobian of h with respect to w, denoted by Jw is non-singular—a 
consequence of the uniqueness of the equilibrium established in Proposition 1.

Consider a change in automation, new tasks, and other technologies of order 
ϵ, and denote the new equilibrium wage by w′ = w + dw. Applying Lemma A2
to differentiate h with respect to automation, new tasks, and Ψ0 (all changes of 
order 𝒪(ϵ)) yields

0 =
∑︂
g

∂h 
∂Γg

(︃
−ag + ng + ∂Γg

∂Ψ0
· dΨ0

)︃
+ ∂h 

∂Γk

(︄∑︂
g

rg + ∂Γk

∂Ψ0
· dΨ0

)︄

+ ∂h 
∂Ψ0

· dΨ0 + R1+ h({Γg(Ψ0,Ω + dΩ)}g,Γk(Ψ0,Ω + dΩ),Ψ0,Ω + dΩ)

− h({Γg(Ψ0,Ω)}g,Γk(Ψ0,Ω),Ψ0,Ω), (A50)

where the approximation error R1 is o(ϵ) and the derivatives in the first line are 
evaluated at the new equilibrium wages w′ = w + dw. Taking limits in (A50) as 
ϵ → 0 implies

0 = h({Γg(Ψ0,w + dw)}g,Γk(Ψ0,w + dw),Ψ0,w + dw)

− h({Γg(Ψ0,w)}g,Γk(Ψ0,w),Ψ0,w).

By the continuity of h as a function of w, this equality can only hold if dw → 0
as ϵ → 0. We finally show that dw → 0 at the same rate as ϵ → 0, establishing 
the claim that dw is 𝒪(ϵ). Suppose by way of contradiction that ϵ/||dw|| → 0
as ϵ → 0, so that dw is not 𝒪(ϵ). A Taylor expansion of the second line in (A50)
around wages of order dw yields

0 =
∑︂
g

∂h 
∂Γg

(︃
−ag + ng + ∂Γg

∂Ψ0
· dΨ0

)︃
+ ∂h 

∂Γk

(︄∑︂
g

rg + ∂Γk

∂Ψ0
· dΨ0

)︄

+ ∂h 
∂Ψ0

· dΨ0 + Jw · dw + R1 + R2,

where R2 is o(||dw||). Dividing both sides by ||dw|| and taking limits as ϵ → 0
yields

0 =
∑︂
g

∂h 
∂Γg

(︃
−ag

ϵ

ϵ

||dw|| + ng

ϵ

ϵ

||dw|| + ∂Γg

∂Ψ0
· dΨ0

ϵ

ϵ

||dw||
)︃

+ ∂h 
∂Γk

(︄∑︁
g rg

ϵ

ϵ

||dw|| + ∂Γk

∂Ψ0
· dΨ0

ϵ

ϵ

||dw||

)︄

+ ∂h 
∂Ψ + 0

· dΨ0

ϵ

ϵ

||dw|| + Jw · dw 
||dw|| + R1

ϵ

ϵ

||dw|| + R2

||dw||
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⇔ 0 = lim 
ϵ→0

Jw · dw 
||dw|| .

This is because the ||dw|| in the denominators dominates all terms except Jw ·
dw. Because Jw is non-singular, this yields a contradiction and we conclude 
that dw is of order 𝒪(ϵ) as claimed.

We will use the lemma repeatedly in the appendix. In particular, our strat
egy is to totally differentiate equilibrium conditions to obtain a linear system 
in dw and dy (the change in wages and output) relating these to the infinites
imal changes in technology (summarized by ag, ng , rg , and dΨ0). Lemma A2
implies that solving for dw and dy in this linear system approximates the equi
librium change with an error of order o(ϵ). The same lemma can be applied 
to the multi-sector economy, and there we also obtain linear equations for dw, 
dp, and dy (the change in wages, sectoral prices, and output) which can also 
be solved and provide a first order approximation to the equilibrium change in 
these endogenous objects.

B.1 No-ripple economy

This section derives the formulas for the effects of technology in the no-ripple 
economy in Propositions 2, 3, 4, and 5. We also provide formulas for the effects 
of these technologies on the labor share and output.

Proof of Proposition 2. Consider a new technology that automates tasks in 𝒜g.
To derive Eq. (9), we start from (4) and compute its total derivative

d lnwg = 1 
λ

· d lny − 1 
λ

∫︁
𝒜g

ψg(x)λ−1 · dx∫︁
𝒯 ∗

g
ψg(x)λ−1 · dx 

= 1 
λ

·
(︂
d lny − d lnΓauto

g

)︂
.

To derive Eq. (10), we start from the definition of the cost function on the 
right-side of (5) (in logs). In equilibrium, lnC(w) = 0. Computing its total 
derivative yields

d ln𝒞(w) =
∑︂
g

s
y
g · d lnwg

+
∑︂
g

1 
1 − λ

· 1 
M

·
[︄

s
y
K

Γk

·
∫︂
𝒜g

ψauto
k (x)

λ−1 · dx − s
y
g

Γg

·
∫︂
𝒜g

ψg(x)λ−1 · dx

]︄
.

The first term gives the effect of wage changes on cost, which is derived from 
Shephard’s lemma.

Using the fact that sy
K = Γk · Aλ−1

k and sy
g = Γg · Aλ−1

g · w1−λ
g , the change in 

costs can be rewritten as
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d ln𝒞(w) =
∑︂
g

s
y
g · d lnwg

+
∑︂
g

1 
1 − λ

· 1 
M

·
[︄∫︂

𝒜g

Aλ−1
k · ψauto

k (x)
λ−1 · dx

−
∫︂
𝒜g

Aλ−1
g · ψg(x)λ−1 · w1−λ

g · dx

]︄

=
∑︂
g

s
y
g · d lnwg −

∑︂
g

Aλ−1
g · w1−λ

g · 1 
M

∫︂
𝒜g

ψg(x)λ−1 · πauto
g (x) · dx

=
∑︂
g

s
y
g · d lnwg

−
∑︂
g

Γg · Aλ−1
g · w1−λ

g⏞ ⏟⏟ ⏞
s
y
g

·
∫︁
𝒜g

ψg(x)λ−1 · dx∫︁
𝒯 ∗

g
ψg(x)λ−1 · dx ⏞ ⏟⏟ ⏞

d lnΓauto
g

·
∫︁
𝒜g

ψg(x)λ−1 · πauto
g (x) · dx∫︁

𝒜g
ψg(x)λ−1 · dx ⏞ ⏟⏟ ⏞

πauto
g

,

which shows that d ln𝒞(w) = ∑︁
g s

y
g · d lnwg − ∑︁

g s
y
g · d lnΓauto

g · πauto
g . In 

equilibrium, d ln𝒞(w) = 0, which establishes (10).
We now provide expressions for output and the labor share. Solving for out

put from (9) and (10), we obtain

d lny =
∑︂
g

s
y
g

s
y
L

· d lnΓauto
g · (1 + λ · πauto

g ).

The change in the labor share can then be computed from d ln s
y
L = 1 

s
y
L

∑︁
g s

y
g ·

d lnwg − d lny as

d ln s
y
L = −

∑︂
g

s
y
g

s
y
L

· (1 − (1 − λ) · πauto
g ) · d lnΓauto

g .

Finally, the capital share can be obtained from d ln s
y
K = −ds

y
L

s
y
K

= − s
y
L

s
y
K

· d ln s
y
L

as

d ln s
y
K =

∑︂
g

s
y
g

s
y
k

· (1 − (1 − λ) · πauto
g ) · d lnΓauto

g .

Proof of Proposition 3. To derive Eq. (12), we start from (4) and totally differ
entiate it to obtain

d lnwg = 1 
λ

·
(︂
d lny + d lnΓnew

g − d lnM
)︂
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= 1 
λ

·
(︄

d lny +
∫︁
𝒩g

ψg(x)λ−1 · dx∫︁
𝒯 ∗

g
ψg(x)λ−1

− d lnM

)︄
.

To derive Eq. (13), we start from the definition of the cost function on the 
right-side of (5). As before, the change in log cost is

d ln𝒞(w) =
∑︂
g

s
y
g · d lnwg

+
∑︂
g

1 
1 − λ

· 1 
M

[︄
s
y
g

Γg

·
∫︂
𝒩g

ψg(x)λ−1 · dx −
∫︂
𝒩g

dx

]︄
,

where we used the fact that d lnM = 1 
M

∑︁
g

∫︁
𝒩g

dx. The first term gives the 
effect of wage changes on cost, which is derived from Shephard’s lemma.

Using the fact that sy
g = Γg ·Aλ−1

g ·w1−λ
g , the change in costs can be rewritten 

as

d ln𝒞(w) =
∑︂
g

s
y
g · d lnwg

+
∑︂
g

1 
1 − λ

· 1 
M

·
[︄∫︂

𝒩g

Aλ−1
g · ψg(x)λ−1 · w1−λ

g · dx −
∫︂
𝒩g

dx

]︄

=
∑︂
g

s
y
g · d lnwg −

∑︂
g

1 
M

· Aλ−1
g · w1−λ

g ·
∫︂
𝒩g

ψg(x)λ−1 · πnew(x) · dx

=
∑︂
g

s
y
g · d lnwg

−
∑︂
g

Γg · Aλ−1
g · w1−λ

g⏞ ⏟⏟ ⏞
s
y
g

·
∫︁
𝒩g

ψg(x)λ−1 · dx∫︁
𝒯g

ψg(x)λ−1 · dx ⏞ ⏟⏟ ⏞
d lnΓnew

g

·
∫︁
𝒩g

ψg(x)λ−1 · πnew(x) · dx∫︁
𝒩g

ψg(x)λ−1 · dx ⏞ ⏟⏟ ⏞
πnew

g

which shows that d ln𝒞(w) =∑︁
g s

y
g ·d lnwg −∑︁

g s
y
g ·d lnΓnew

g ·πnew
g . In equi

librium, d ln𝒞(w) = 0, which establishes (13).

We now provide expressions for output and the labor share. Solving for out

put from (12) and (13), we obtain

d lny =
∑︂
g

s
y
g · d lnΓnew

g ·
[︄

1 − 1 

s
y
L

+
(︄

(1 − λ) + 1 

s
y
L

· λ
)︄

· πnew
g

]︄
.
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The change in the labor share can then be computed from d ln s
y
L = 1 

s
y
L

∑︁
g s

y
g ·

d lnwg − d lny as

d ln s
y
L = s

y
k

s
y
L

·
∑︂
g

s
y
g · d lnΓnew

g · (1 + (1 − λ) · πnew
g )

Finally, the capital share can be computed from d ln s
y
K = −ds

y
L

s
y
K

= − s
y
L

s
y
K

· d ln s
y
L

as

d ln s
y
K = −

∑︂
g

s
y
g · d lnΓnew

g · (1 + (1 − λ) · πnew
g ).

Proof of Proposition 4. Differentiating Eq. (4) establishes (14):

d lnwg = 1 
λ

· d lny + (1 − 1/λ) · d lnAg

+ (1 − 1/λ) ·
∫︁
𝒯 ∗

g
ψg(x)λ−1 · d lnψg(x) · dx∫︁

𝒯 ∗
g

ψg(x)λ−1 · dx ⏞ ⏟⏟ ⏞
d lnψ intensive

g

.

Total differentiation of the cost function 𝒞(w) on the right-hand side of (5)
implies

d ln𝒞(w) =
∑︂
g

s
y
g · d lnwg −

∑︂
g

s
y
g · d lnAg

−
∑︂
g

s
y
g ·

∫︁
𝒯 ∗

g
ψg(x)λ−1 · d lnψg(x) · dx∫︁

𝒯 ∗
g

ψg(x)λ−1 · dx ⏞ ⏟⏟ ⏞
d lnψ intensive

g

,

establishing (15). As before, the first term gives the effect of wage changes on 
cost, which is derived from Shephard’s lemma.

We now provide expressions for output and the labor share. Solving for out
put from (14) and (15), we obtain

d lny =
∑︂
g

s
y
g

s
y
L

· (d lnAg + d lnψintensive
g ).

In this case, the labor share (and hence the capital share) remains unchanged. 
This follows from the fact that, in the no-ripple economy, 𝒯k does not change in 
response to labor-augmenting technologies.
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Proof of Proposition 5. Total differentiation of Eq. (4) implies

d lnwg = 1 
λ

· d lny,

establishing (16).
Total differentiation of the cost function 𝒞(w) in the right-hand side of (5)

implies

d ln𝒞(w) = 
∑︂
g

s
y
g · d lnwg − s

y
K · d lnAk − s

y
K ·

∫︁
𝒯 ∗

k
ψk(x)λ−1 · d lnψk(x) · dx∫︁

𝒯 ∗
k

ψk(x)λ−1 · dx ⏞ ⏟⏟ ⏞
d lnψ intensive

k

,

establishing (17). As before, the first term gives the effect of wage changes on 
cost, which is derived from Shephard’s lemma.

We now provide expressions for output and the labor share. Solving for out
put from (16) and (17), we obtain

d lny = λ · s
y
k

s
y
L

· (d lnAk + d lnψintensive
k ).

The change in the labor share can then be computed from d ln s
y
L = 1 

sℓ

∑︁
g s

y
g ·

d lnwg − d lny as

d ln s
y
L = (1 − λ) · s

y
k

s
y
L

· (d lnAk + d lnψintensive
k ).

Finally, the capital share can be computed from d ln s
y
K = −ds

y
L

s
y
K

= − s
y
L

s
y
K

· d ln s
y
L

as

d ln s
y
K = −(1 − λ) · (d lnAk + d lnψintensive

k ).

B.2 Effects of technology with ripples

This section proves Proposition 6 and explains the details of how we apply it 
to characterize the effects of the different technologies. We then prove Proposi
tion 7.

Proof of Proposition 6. Lemma A2 shows that we can totally differentiate (4)
in response to an infinitesimal change in technology (or automation and new 
tasks in sets of infinitesimal measure) to obtain (18) in the main text, where zg

depends on the shocks considered. Stacking (18) and solving for wages gives 
(19).

Eq. (20) follows from the fact that d ln𝒞(w) =∑︁
g s

y
g ·d lnw−π . As before, 

the first term gives the effect of wage changes on cost, which is derived from 
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Shephard’s lemma. Note that here, π is computed as in the no-ripple economy, 
since it is by definition equal to the effect of technology holding wages constant.

The calculation of the effects of uniform-augmenting technologies in terms 
of the propagation matrix requires some further explanation. For uniform-labor 
augmenting improvements, differentiating (4) yields

d lnwg = 1 
λ

· d lny + (1 − 1/λ) · d lnAg − 1 
λ

∂ lnΓg(w)

∂ lnw 
· d lnA⏞ ⏟⏟ ⏞

zg

+ 1 
λ

· ∂ lnΓg(w)

∂ lnw 
· d lnw,

where d lnA = (d lnA1, . . . , d lnAG) and we used the fact that an increase in 
Ag generates an equal task reassignment as a commensurate decrease in wg. 
Solving for d lnw yields d lnw = Θ · d lny + (1− Θ) · d lnA, which is equiva
lent to the formula used in the text.

For uniform-capital augmenting improvements, differentiating (4) yields

d lnwg = 1 
λ

· d lny +
∑︂
g′

1 
λ

· ∂ lnΓg(w)

∂ lnwg′
· d lnAk

⏞ ⏟⏟ ⏞
zg

+1 
λ

· ∂ lnΓg(w)

∂ lnw 
· d lnw,

where this expression uses the fact that an increase in Ak generates the same 
reallocation of tasks as an increase in all wages of the same magnitude. Solving 
for d lnw yields d lnw = Θ · (d lny + λ · d lnAk) − d lnAk , or equivalently 
d lnwg = ρg · d lny − (1 − ρg · λ) · d lnAk as claimed in the text.

Proof of Proposition 7. The expression for the change in wages in (24) follows 
from differentiating Eq. (4):

d lnwg = 1 
λ

· d lny − 1 
λ

· d lnℓg + 1 
λ

· ∂ lnΓg(w)

∂ lnw 
· d lnw.

Stacking across groups and solving for d lnwg yields (24).
The fact that there are no average wage changes follows from differentiating 

the cost function in (5). Because technology does not change, we have

d ln𝒞(w) =
∑︂
g

s
y
g · d lnwg = 0,

which follows from Shephard’s lemma.

Appendix C Equilibrium in the multi-sector economy

This section provides details and proofs for the multi-sector economy.



100 Handbook of Labor Economics 

Preliminaries we first derive the equilibrium conditions E1-E6.
E1 and E2 follow from cost minimization.
For E3, because producers in sector i face an exogenous markup μi , they use 

task x ∈ 𝒯i until pi · M−1/λ
i · A1−1/λ

i ·
(︂

yi

y(x)

)︂1/λ = μi · p(x), so that the value 
of the task marginal product (on the left) exceeds its marginal cost (on the right) 
by a factor of μi . The quantity of task x ∈ 𝒯i used is then

y(x) = yi · pλ
i · μ−λ

i · Aλ−1
i · 1 

Mi

· p(x)−λ. (A51)

For tasks in 𝒯gi(w), Eq. (A51) implies

Ag · ψg(x) · ℓg(x)⏞ ⏟⏟ ⏞
y(x) 

= yi · pλ
i · μ−λ

i · Aλ−1
i · 1 

Mi

·
(︃

wg

Agψg(x)

)︃−λ

⏞ ⏟⏟ ⏞
p(x) 

,

which explains E3. The same steps establish the corresponding equation for 
capital.

E4 imposes labor market clearing, now adding labor demand across all sec
tors.

For E5, multiply Eq. (A51) by μi · px and integrate

μi ·
∫︂

y(x) · p(x) · dx⏞ ⏟⏟ ⏞
yi ·pi

=
∫︂
𝒯i

yi · pλ
i · μ1−λ

i · Aλ−1
i · 1 

Mi

· p(x)1−λ · dx.

Canceling yi on both sides and solving for pi gives the price index equation E5.
Finally, E6 follows the numeraire condition and requires the price of the final 

good to be 1.

Proofs for multi-sector model propositions We now prove Proposition 8 de
scribing the equilibrium in the multi-sector economy and then turn to Propo
sitions 9 and 10 characterizing the impact of technology and markups, respec
tively.

Proof of Proposition 8. We first derive the expression for the market-clearing 
wage in Eq. (25). Aggregating E3 across all tasks assigned to group g in all sec
tors, and using the definition of Γgi(w), we can write the labor market clearing 
condition as

y · Aλ−1
g · w−λ

g ·
[︄∑︂

i

s
y
i (p) · pλ−1

i · μ−λ
i · Aλ−1

i · Γgi(w)

]︄
= ℓg.

Isolating wg from this equation yields (25).
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The formula for sectoral prices in terms of task shares in (26) is obtained by 
substituting the expression for prices in E1 into the price index formula in E5.

The final equilibrium equation in (27) is just E6.

Proof of Proposition 9. Lemma A2 implies that we can totally differentiate (25)
as

d lnwg = 1 
λ

· d lny + 1 
λ

·
∑︂

i

ωgi · zgi + 1 
λ

· (λ − η) ·
∑︂

i

ωgi · d lnpi

+ 1 
λ

· ∂ lnΓ(w)

∂ lnw 
· d lnw. (A52)

Stacking (A52) and solving for wages gives (28).
Eq. (29) follows from the fact that d lnpi = d ln𝒞i (w) =∑︁

g s
yi
g ·d lnw−π , 

again from Shephard’s lemma. Finally, Eq. (30) follows from the fact that 0 =
d ln cf (p) = ∑︁

i si · d lnpi , again from Shephard’s lemma, but applied to the 
production of the final good.

Proof of Proposition 10. Totally differentiating (25), we obtain

d lnwg = 1 
λ

· d lny −
∑︂

i

ωgi · d lnμi + 1 
λ

· (λ − η) ·
∑︂

i

ωgi · d lnpi

+ 1 
λ

· ∂ lnΓ(w)

∂ lnw 
· d lnw.

Stacking these equations for all groups and solving for wages gives (33).
Eq. (34) follows from the fact that d lnpi = d ln𝒞i (w) = ∑︁

g s
yi
g · d lnw +

d lnμi , again from Shephard’s lemma.
Finally, Eq. (35) follows from the fact that 0 = d ln cf (p) =∑︁

i si · d lnpi , 
again from Shephard’s lemma, but applied to the production of the final good. 

Appendix D Endogenous labor supply

The following proposition extends our analysis to a multi-sector economy with 
endogenous labor supply. For this proposition, we assume labor supply is given 
by ℓg = χg · wε

w.

Proposition A1 (Effects of technology in the multi-sector economy). With an 
endogenous labor supply, equilibrium wages w, industry prices p, and the level 
of output y, solve the system of equations
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wg =
(︃

y

χg

)︃1/(λ+ε)

· A(λ−1)/(λ+ε)
g

·
[︄∑︂

i

s
y
i (p) · pλ−1

i · μ−λ
i · Aλ−1

i · Γgi(w)

]︄1/(λ+ε)

for g ∈𝔾, (A53)

pi = μi · 1 
Ai

·
(︄

Γki(w) · Aλ−1
k +

∑︂
g

Γgi(w) ·
(︃

wg

Ag

)︃1−λ
)︄1/(1−λ)

⏞ ⏟⏟ ⏞
≡𝒞i (w) 

for i ∈ 𝕀,

(A54)

1 = cf (p), (A55)

where 𝒞i (w) denotes the marginal cost of producing output of sector i.
In addition, the effect of a change in technology with direct effect {zgi}g∈𝔾,i∈𝕀

and productivity gains {πgi}g∈𝔾,i∈𝕀 on wages, sectoral prices, and output is 
given by the formulas in Proposition 9, with the propagation matrix redefined 
as

Θ∗ = 1 
λ + ε

·
(︃
1− 1 

λ + ε
· ∂ lnΓ(w)

∂ lnw 

)︃−1

,

and direct effect re-scaled by λ + ε (so that direct effect are (1/(λ + ε)) · zgi).

Proof. The equilibrium conditions in this case are still given by E1--E6. The 
only difference is that the market clearing condition in E4 is now∑︂

i

∫︂
𝒯gi

ℓg(x) · dx = χg · wε
g.

Following the same steps as in the proof of Proposition 8, we can write this 
condition as

y · Aλ−1
g · w−λ

g ·
[︄∑︂

i

s
y
i (p) · pλ−1

i · μ−λ
i · Aλ−1

i · Γgi(w)

]︄
· = χg · wε

g.

Isolating wg from this equation yields (A53).
The formula for sectoral prices in terms of task shares in (A54) is obtained 

by substituting the expression for prices in E1 into the price index formula in 
E5.

The final equilibrium equation in (A55) is E6.
We now show that the formulas for the effects of technology coincide with 

those in Proposition 9 with Θ∗ in place of Θ.
Totally differentiating (A53) yields

d lnwg = 1 
λ + ε

d lny + 1 
λ + ε

∑︂
i

ωgi · zgi + (λ − η)

λ + ε 
·
∑︂

i

ωgi · d lnpi
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+ 1 
λ + ε

· ∂ lnΓ(w)

∂ lnw 
· d lnw. (A56)

Stacking these equations and solving for wages, we obtain

d lnw = Θ∗ · stack

(︄
d lny +

∑︂
i

ωgi · zgi + (λ − η) ·
∑︂

i

ωgi · d lnpi

)︄
,

as claimed.

Appendix E Derivations for the Allen-Uzawa elasticities of 
substitution and properties of the propagation 
matrix

This section proves several properties of task shares, elasticities of substitution, 
and the propagation matrix mentioned in the text.

Symmetry of the task-share Jacobian Eq. (3) shows that the task-share Ja
cobian satisfies a symmetry property. To prove this, consider a proportional 
increase in wg by Δwg = wg · ϵ for some ϵ > 0, a set ℳ(ϵ) of these tasks 
are assigned to g′ and increase g′ task share by ΔΓg′ = ∫︁

ℳ(ϵ)
ψg′(x)λ−1 · dx. 

Therefore,

∂Γg′(w)

∂wg

= lim 
ϵ→0

∫︁
ℳ(ϵ)

ψg′(x)λ−1 · dx

wg · ϵ .

Now, suppose that wg′ decreases proportionally by Δwg′ = −wg′ · ϵ for some 
ϵ > 0. The same set ℳ(ϵ) of tasks switch to g′ and decrease skill group g’s task 
share by ΔΓg = − ∫︁

ℳ(ϵ)
ψg(x)λ−1 · dx. Now noting that for marginal tasks we 

have wg

Ag ·ψg(x)
= w′

g

Ag′ ·ψg′ (x)
, we can conclude

∂Γg(w)

∂wg′
= lim 

ε→0

∫︁
ℳ(ε)

ψg′(x)λ−1 ·
(︂

wg

w′
g

)︂λ−1 ·
(︂

Ag′
Ag

)︂λ−1 · dx

wg′ · ε 

=
(︄

wg

w′
g

)︄λ

·
(︃

Ag′

Ag

)︃λ−1

· ∂Γg′(w)

∂wg

.

Properties of the propagation matrix We now prove the properties of the prop
agation matrix mentioned for the one-sector economy.

I. Dampening: Gershgorin’s circle theorem in the proof of Lemma A1 already 
implied that the real part of all eigenvalues of ℋ are above 1. We now show that 
all eigenvalues of ℋ are real. To show this, first note that diag(sy)ℋ = ℋsym

is a symmetric matrix with off-diagonal entry gg′ given by − 1 
λ

· s
y
g · ∂ lnΓg(w)

∂ lnwj
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and entry g′g given by − 1 
λ

· sy

g′ · ∂ lnΓg′ (w)

∂ lnwg
, which are equal due to the symmetry 

property of the Jacobian. Suppose ζ is an eigenvalue of ℋ with eigenvector v. 
Using upper bars to denote complex conjugates and superscript T to denote the 
transpose operation, we obtain

ζ · v̄T · diag(sy) · v =v̄T · (diag(sy) · ζ · v)

=v̄T · (diag(sy) ·ℋ · v)

=v̄T · (ℋsym · v)

=(ℋsym · v̄)T · v
=(ℋsym · v̄)T · v
=(diag(sy) ·ℋ · v̄)T · v
=(ζ̄ · diag(sy) · v̄)T · v
=ζ̄ · v̄T · diag(sy) · v.

This string of identities implies that ζ equals its complex conjugate ζ̄ (since 
vT · diag(sy) · v is a weighted vector norm, which must be positive) and must 
therefore be real. The justification for the steps involved is as follows. The first 
line uses the fact that ζ is a scalar. The second line uses the fact that ζ is an 
eigenvalue with eigenvector v. The third line uses the definition of ℋsym. The 
fourth line applies the transpose operator and uses the symmetry of ℋsym. The 
fifth line uses the fact that ℋsym is real. The sixth line uses once more the defini
tion of ℋsym. The seventh line uses the fact that ζ̄ is also an eigenvalue of ℋsym

with eigenvector v̄. The last line applies the transpose operator once more. The 
idea behind the claim is intuitive: ℋ is a stretched version of a real symmetric 
matrix (which must therefore have all real eigenvalues and eigenvectors), and 
such stretching should not introduce complex eigenvalues.

The above derivations then show that all eigenvalues of ℋ are real and in 
(1,∞) This implies that all eigenvalues of Θ = 1 

λ
· ℋ−1 are also real and in 

[0,1/λ].
II. Monotonicity: We now turn to the monotonicity property, which says that 
θgg > θg′g along a column. Suppose to obtain a contradiction that θg′g ≥ θgg and 
let g′ = arg max θg′g be the index for the maximum along column g. We have 
that ℋ · Θ = 1 

λ
. This requires entry g′g in this product to be zero or

(1 − 1 
λ

· ∂ lnΓg′(w)

∂ lnwg′
) · θg′g =

∑︂
j≠g′,g

∂ lnΓg′(w)

∂ lnwj

· θjg + ∂ lnΓg′(w)

∂ lnwg

· θgg.

By assumption, θjg and θgg are all less than or equal to θg′g . This implies

(1 − 1 
λ

· ∂ lnΓg′(w)

∂ lnwg′
) · θg′g ≤

∑︂
j≠g′,g

∂ lnΓg′(w)

∂ lnwj

· θg′g + ∂ lnΓg′(w)

∂ lnwg

· θg′g,
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dividing by θg′g and rearranging, we see that this yields

1 ≤
∑︂
j

1 
λ

· ∂ lnΓg′(w)

∂ lnwj

,

which is a contradiction since the sums 
∑︁

j
1 
λ

· ∂ lnΓg′ (w)

∂ lnwj
are 0 or negative (a 

common increase in wages causes all workers to loose tasks to capital).

III. Row sums: We now turn to the properties of the row sums of the propaga
tion matrix, denoted by ρg. First, note that the elasticity of substitution between 
capital and group g can also be written in symmetrical form as

σkg = σgk = λ − 1 

s
y
K

·
∑︂
g′

∂ lnΓg(w)

∂ lnwg′
,

since a percent increase in the user cost of capital generates the same substitution 
patterns as a commensurate percent reduction in all wages. This identity can be 
written in matrix form as

−1 
λ

∂ lnΓ(w)

∂ lnw 
· stack(1) = stack

(︂
s
y
K · (σkg

λ 
− 1)

)︂
,

or equivalently

ℋ · stack(1) = stack
(︂

1 + s
y
K · (σkg

λ 
− 1)

)︂
.

Multiplying by Θ on the left of both sides yields

1 
λ

· stack(1) = Θ · stack
(︂

1 + s
y
K · (σkg

λ 
− 1)

)︂
.

Comparing row g on both sides, we get

ρg + s
y
K ·

∑︂
g′

θgg′ ·
(︂σkg′

λ 
− 1

)︂
= 1 

λ
,

or equivalently

ρg = 1 
λ

·
[︃

1 + s
y
K ·

(︃
σ̄kg

λ 
− 1

)︃]︃−1

,

which gives the formula in the main text. Note that this formula implies that 
ρg ∈ (0,1/λ], as also claimed in the main text.

IV. Relationship to elasticities of substitution: We now derive the expression 
that relates the propagation matrix to the matrix of elasticities of substitution Σ. 
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First, we have

σgg = 1 

s
y
g

· d lnℓg

d lnwg

⃓⃓⃓
⃓⃓
y constant

= λ − λ 

s
y
g

+ 1 

s
y
g

· ∂ lnΓg(w)

∂ lnwg

,

σgg′ = 1 

s
y

g′
· d lnℓg

d lnwg′

⃓⃓⃓
⃓⃓
y constant

= λ + 1 

s
y

g′
· ∂ lnΓg(w)

∂ lnwg′
.

We can then write

Σ = λ − λ · diag

(︃
1 
sy

)︃
+ ∂ lnΓ 

∂ lnw
· diag

(︃
1 
sy

)︃
.

Rearranging this yields

ℋ · λ · diag

(︃
1 
sy

)︃
= λ − Σ.

Pre-multiplying by Θ on both sides yields

diag

(︃
1 
sy

)︃
= Θ · (λ − Σ),

and solving for Θ yields the relationship outlined in the text

Θ = diag

(︃
1 
sy

)︃
· (λ − Σ)−1.

V Symmetry: The above identity also guarantees that diag (sy) ·Θ = (λ−Σ)−1

is symmetric, which implies θgg′/sy

g′ = θg′g/s
y
g .

Appendix F Additional empirical results

F.1 Robustness checks

The tables in this part of the Appendix report a series of robustness checks on 
our reduced-form analysis.

• Table A1 reports the same specifications shown in Table 1 for wages in the 
main text, but proxies for new tasks as

d lnΓnew
g =

∑︂
o

ω1980
go · Share new job titles DOT 1977

+
∑︂

o

ω1980
go · Share new job titles DOT 1991

+
∑︂

o

ω1980
go · Share new job titles Census 2000.
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This measure apportions new tasks across groups based on 1980 employment 
shares.

• Table A2 reports the same specifications shown in Table 2 for hours worked 
per person in the main text, but apportions new tasks across groups based on 
1980 employment shares.

• Table A3 decomposes the effects of automation and new tasks into an exten
sive and intensive margin of employment.

• Table A4 reports estimates for wages and hours worked separately for work
ers with no college degree and those with a college degree.

F.2 Estimating the propagation matrix

Once we impose our parameterization of the Jacobian, we can rewrite the esti
mating equation in (44) as

σΔ lnwg + d lnΓauto
g − d lnΓnew

g

= β̃Xg + γ ·
∑︂
g′

∑︂
n 

ωgn · sn
g′ · (Δ lnwg′ − Δ lnwg)

+ γjob ·
∑︂
g′

∑︂
n 

ωgn · sn
g′ · job similaritygg′ · (Δ lnwg′ − Δ lnwg)

+ γedu-age ·
∑︂
g′

∑︂
n 

ωgn · sn
g′ · edu-age similaritygg′ · (Δ lnwg′ − Δ lnwg)

+ ν̃,

where β̃ and ν̃ are linear transformations of β and ν respectively.
This equation can be estimated via GMM/2SLS after imposing σ = λ +

φ = 0.6 (as discussed in the text). Our estimation imposes the restriction that 
γ, γjob, γedu-age ≥ 0.

The ripple terms on the right hand side are instrumented using

Zg =
∑︂
g′

∑︂
n 

ωgn · sn
g′ · (Δ ln ŵg′ − Δ ln ŵg)

Zjob,g =
∑︂
g′

∑︂
n 

ωgn · sn
g′ · job similaritygg′ · (Δ ln ŵg′ − Δ ln ŵg)

Zedu-age,g =
∑︂
g′

∑︂
n 

ωgn · sn
g′ · edu-age similaritygg′ · (Δ ln ŵg′ − Δ ln ŵg),

respectively. Here Δ ln ŵg is the predicted wage change based on groups ex
perienced task displacement from automation, exposure to new tasks, and the 
exogenous covariates in the model. We get very similar results if we instead use 
Δ ln ŵg = d lnΓnew

g − d lnΓauto
g to form these instruments. 
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TABLE  A1 Reduced-form evidence: changes in real hourly wages regressed 
on automation and new tasks, 1980--2016. Robustness check using alterna
tive measure of new tasks.

Dependent variables:
Change in log hourly wages, 1980--2016

(1) (2) (3) (4) (5) (6) (7)

Panel A. Only displacement from automation
Automation task 
displacement

−1.65 −1.41 −1.50 −1.45 −1.41 −1.71 −1.75
(0.10) (0.20) (0.11) (0.18) (0.19) (0.25) (0.32)

R2 for model 0.64 0.66 0.69 0.82 0.83 0.76 0.76
R2 for automation 0.64 0.55 0.59 0.56 0.55 0.67 0.68
R2 remaining covs 0.11 0.10 0.26 0.28 0.09 0.08
Observations 500 500 500 500 500 492 492

Panel B. Only reinstatement from new tasks
New tasks 
reinstatement

2.82 3.57 3.07 2.93 2.52 3.39 3.47
(0.21) (0.45) (0.25) (0.46) (0.52) (0.62) (0.82)

R2 for model 0.63 0.64 0.65 0.79 0.79 0.65 0.58
R2 for new tasks 0.63 0.80 0.69 0.66 0.56 0.76 0.78
R2 remaining covs −0.16 −0.04 0.14 0.22 −0.11 −0.19
Observations 500 500 500 500 500 492 492

Panel C. Both explanatory variables
Automation task 
displacement

−0.94 −0.90 −1.05 −1.17 −1.25 −1.42 −1.53
(0.26) (0.26) (0.26) (0.27) (0.26) (0.31) (0.31)

New tasks 
reinstatement

1.46 2.06 1.13 1.09 0.72 0.98 0.80
(0.47) (0.61) (0.54) (0.75) (0.71) (0.79) (0.76)

R2 for model 0.69 0.70 0.70 0.83 0.83 0.78 0.77
R2 for automation 0.37 0.35 0.41 0.46 0.49 0.55 0.60
R2 for new tasks 0.33 0.46 0.25 0.24 0.16 0.22 0.18
R2 remaining covs −0.11 0.04 0.13 0.18 0.00 −0.01
Observations 500 500 500 500 500 492 492

Panel D. Net task change due to new tasks minus automation
Net task change (new 
tasks-automation)

1.12 1.18 1.07 1.15 1.12 1.31 1.35
(0.06) (0.15) (0.07) (0.13) (0.15) (0.18) (0.24)

R2 for model 0.69 0.69 0.70 0.83 0.83 0.78 0.77
R2 for automation 0.69 0.72 0.66 0.71 0.69 0.80 0.83
R2 remaining covs −0.03 0.04 0.12 0.14 −0.02 −0.06
Observations 500 500 500 500 500 492 492

Other covariates:
Sectoral value added ✓ ✓ ✓
Sectoral TFP ✓ ✓ ✓
Sectoral markups ✓ ✓ ✓
Gender and education 
dummies

✓ ✓ ✓ ✓

Labor supply shifts ✓ ✓
Notes: This table presents estimates of the relationship between automation, new tasks, and the 
change in hourly wages across 500 demographic groups, defined by gender, education, age, race, 
and native/immigrant status. The specifications are the same as in Table 1. The difference is that 
we now use a measure of new tasks that holds occupational shares fixed in 1980. The dependent 
variable is the change in log hourly wages for each group between 1980 and 2016. Panel A reports 
results using only our task displacement measure. Panel B only uses our task reinstatement measure. 
Panel C includes both task displacement and task reinstatement on the right-hand side. Panel D 
combines task displacement and reinstatement into a single net task change measure. The bottom 
rows list additional covariates included in each specification. As in Acemoglu and Restrepo (2022), 
we instrument changes in labor supply in columns 6 and 7 using trends in total hours worked by 
group from 1970 to 1980. All regressions are weighted by total hours worked by each group in 1980. 
Standard errors robust to heteroskedasticity are reported in parentheses.
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TABLE  A2 Reduced-form evidence: changes in hours worked per person re
gressed on automation and new tasks, 1980--2016. Robustness check using 
alternative measure of new tasks.

Dependent variables:
Change in log hours worked per person, 1980--2016

(1) (2) (3) (4) (5) (6) (7)

Panel A. Only displacement from automation
Automation task 
displacement

−2.25 −1.58 −1.96 −1.83 −1.93 −2.21 −2.59
(0.30) (0.40) (0.27) (0.40) (0.41) (0.61) (0.78)

R2 for model 0.44 0.48 0.50 0.68 0.67 0.61 0.56
R2 for automation 0.44 0.31 0.38 0.36 0.38 0.43 0.51
R2 remaining covs 0.17 0.11 0.32 0.29 0.18 0.05
Observations 500 500 500 500 500 492 492

Panel B. Only reinstatement from new tasks
New tasks 
reinstatement

4.47 6.15 4.84 4.29 4.04 4.84 5.60
(0.53) (1.21) (0.50) (0.99) (1.01) (1.32) (1.58)

R2 for model 0.59 0.61 0.60 0.68 0.65 0.57 0.43
R2 for new tasks 0.59 0.81 0.64 0.56 0.53 0.64 0.74
R2 remaining covs −0.20 −0.04 0.11 0.12 −0.07 −0.30
Observations 500 500 500 500 500 492 492

Panel C. Both explanatory variables
Automation task 
displacement

−0.22 −0.10 0.01 −1.25 −1.50 −1.56 −2.06
(0.52) (0.52) (0.48) (0.57) (0.60) (0.68) (0.89)

New tasks 
reinstatement

4.16 5.98 4.87 2.34 1.86 2.19 2.02
(1.04) (1.64) (0.93) (1.47) (1.52) (1.47) (1.56)

R2 for model 0.59 0.61 0.60 0.69 0.67 0.64 0.58
R2 for automation 0.04 0.02 −0.00 0.25 0.30 0.31 0.40
R2 for new tasks 0.55 0.79 0.64 0.31 0.24 0.29 0.27
R2 remaining covs −0.20 −0.04 0.14 0.13 0.05 −0.09
Observations 500 500 500 500 500 492 492

Panel D. Net task change due to new tasks minus automation
Net task change (new 
tasks-automation)

1.62 1.51 1.49 1.52 1.59 1.73 2.05
(0.20) (0.34) (0.18) (0.29) (0.29) (0.44) (0.57)

R2 for model 0.53 0.53 0.55 0.69 0.67 0.64 0.58
R2 for task changes 0.53 0.50 0.49 0.50 0.52 0.57 0.67
R2 remaining covs 0.04 0.06 0.19 0.15 0.07 −0.09
Observations 500 500 500 500 500 492 492

Other covariates:
Sectoral value added ✓ ✓ ✓
Sectoral TFP ✓ ✓ ✓
Sectoral markups ✓ ✓ ✓
Gender and education 
dummies

✓ ✓ ✓ ✓

Labor supply shifts ✓ ✓
Notes: This table presents estimates of the relationship between automation, new tasks, and the 
change in hours worked per person across 500 demographic groups, defined by gender, education, 
age, race, and native/immigrant status. The specifications are the same as in Table 2. The difference 
is that we use a measure of new tasks that holds occupational shares fixed in 1980. The dependent 
variable is the change in log hours per person for each group between 1980 and 2016. Panel A 
reports results using only our task displacement measure. Panel B only uses our task reinstatement 
measure. Panel C includes both task displacement and task reinstatement on the right-hand side. 
Panel D combines task displacement and reinstatement into a single net task change measure. The 
bottom rows list additional covariates included in each specification. As in Acemoglu and Restrepo 
(2022), we instrument changes in labor supply in columns 6 and 7 using trends in total hours worked 
by group from 1970 to 1980. All regressions are weighted by total hours worked by each group in 
1980. Standard errors robust to heteroskedasticity are reported in parentheses.
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TABLE  A3 Reduced-form evidence: changes in hours intensive and exten
sive margin regressed on automation and new tasks, 1980--2016.

Dependent variables:
Change in (log) employment to 

population ratios, 1980--2016
Change in (log) hours per 
working adult, 1980--2016

(1) (2) (3) (4)

Panel A. Only displacement from automation
Automation task 
displacement

−0.77 −0.76 −0.99 −1.16
(0.26) (0.26) (0.32) (0.31)

R2 for model 0.73 0.72 0.42 0.42
R2 for automation 0.19 0.18 0.34 0.40
R2 remaining covs 0.54 0.54 0.08 0.02
Observations 500 500 500 500

Panel B. Only reinstatement from new tasks
New tasks 
reinstatement

0.80 0.81 0.49 0.83
(0.41) (0.48) (0.48) (0.56)

R2 for model 0.71 0.71 0.35 0.35
R2 for new tasks 0.16 0.16 0.11 0.18
R2 remaining covs 0.55 0.54 0.25 0.17
Observations 500 500 500 500

Panel C. Both explanatory variables
Automation task 
displacement

−0.70 −0.71 −0.99 −1.12
(0.25) (0.25) (0.33) (0.31)

New tasks 
reinstatement

0.47 0.60 0.03 0.51
(0.35) (0.44) (0.42) (0.50)

R2 for model 0.73 0.72 0.42 0.42
R2 for automation 0.17 0.17 0.34 0.39
R2 for new tasks 0.10 0.12 0.01 0.11
R2 remaining covs 0.47 0.43 0.07 −0.07
Observations 500 500 500 500

Panel D. Net task change due to new tasks minus automation
Net task change (new 
tasks-automation)

0.63 0.68 0.71 0.97
(0.20) (0.21) (0.24) (0.25)

R2 for model 0.73 0.72 0.41 0.42
R2 for task changes 0.28 0.31 0.40 0.55
R2 remaining covs 0.45 0.42 0.01 −0.13
Observations 500 500 500 500

Other covariates:
Sectoral value added ✓ ✓
Sectoral TFP ✓ ✓
Sectoral markups ✓ ✓
Gender and education 
dummies

✓ ✓ ✓ ✓

Notes: This table presents estimates of the relationship between automation, new tasks, and the 
change in hours worked per person across 500 demographic groups, defined by gender, education, 
age, race, and native/immigrant status. The dependent variable is the change in (log) hours per worker 
(columns 1 and 2) and the change in (log) employment to population for each group between 1980 
and 2016. Panel A reports results using only our task displacement measure. Panel B only uses our 
task reinstatement measure. Panel C includes both task displacement and task reinstatement on the 
right-hand side. Panel D combines task displacement and reinstatement into a single net task change 
measure. The bottom rows list additional covariates included in each specification. All regressions are 
weighted by total hours worked by each group in 1980. Standard errors robust to heteroskedasticity 
are reported in parentheses.
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TABLE  A4 Reduced-form evidence: changes in real hourly wages and hours 
worked regressed on automation and new tasks, 1980--2016. Robustness 
check reporting estimates for groups with and without a college degree.

Dependent variables:
Change (log) hourly wages, 

1980--2016
Change (log) hours worked, 

1980--2016
(1) (2) (3) (4) (5) (6)

Panel A. Workers with no college degree
Automation task 
displacement

−0.76 −1.16 −1.20 −1.12 −1.59 −1.74
(0.31) (0.20) (0.22) (0.57) (0.50) (0.53)

New tasks 
reinstatement

1.04 2.16 1.95 3.47 2.97 2.07
(0.42) (0.76) (0.79) (0.87) (1.47) (1.91)

R2 for model 0.42 0.74 0.72 0.52 0.64 0.61
R2 for automation 0.30 0.45 0.47 0.22 0.31 0.34
R2 for new tasks 0.25 0.52 0.47 0.49 0.42 0.29
R2 remaining covs −0.24 −0.21 −0.08 −0.03
Observations 300 300 300 300 300 300

Panel B. Workers with a college degree
Automation task 
displacement

−2.34 −1.84 −1.56 −0.87 −2.14 −1.16
(0.58) (0.62) (0.49) (0.80) (0.78) (0.70)

New tasks 
reinstatement

0.86 0.83 0.93 −0.11 0.07 0.20
(0.28) (0.21) (0.25) (0.37) (0.34) (0.42)

R2 for model 0.21 0.60 0.59 0.03 0.64 0.60
R2 for automation 0.91 0.72 0.61 0.17 0.42 0.23
R2 for new tasks 0.21 0.20 0.22 −0.01 0.01 0.03
R2 remaining covs −0.32 −0.25 0.21 0.34
Observations 200 200 200 200 200 200

Other covariates:
Sectoral value added ✓ ✓
Sectoral TFP ✓ ✓
Sectoral markups ✓ ✓
Gender and education 
dummies

✓ ✓ ✓ ✓

Notes: This table presents estimates of the relationship between automation, new tasks, and the 
change in hourly wages and hours worked per person across 500 demographic groups, defined by 
gender, education, age, race, and native/immigrant status. The dependent variable is the change in 
(log) hourly wages (columns 1--3) and the change in (log) hours worked (columns 4--6) from 1980 
and 2016. Panel A provides estimates for groups of workers with no college degree. Panel B provides 
estimates for groups of workers with a college degree. The bottom rows list additional covariates 
included in each specification. All regressions are weighted by total hours worked by each group in 
1980. Standard errors robust to heteroskedasticity are reported in parentheses.
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