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1 Introduction

In recent years, local projection (LP) estimators of impulse response functions have become
a very popular alternative to structural vector autoregressions (henceforth interchangeably
referred to as VAR or SVAR, Sims, 1980). In addition to their simplicity, one potential
explanation for the popularity of LPs is their perceived robustness to misspecification, as
claimed by Jordà (2005) in his seminal article that proposed the estimation method:

“[T]hese projections are local to each forecast horizon and therefore more robust
[than VARs] to misspecification of the unknown DGP.”

While this sentiment has been echoed in influential reviews (e.g., Ramey, 2016; Nakamura
and Steinsson, 2018; Jordà, 2023), there so far exist essentially no theoretical results on
the relative robustness of LP and VAR inference procedures to misspecification. Plagborg-
Møller and Wolf (2021) and Xu (2023) show that the two estimators are in fact asymptotically
equivalent—and thus equally robust to misspecification—in a general VAR(∞) model if the
estimation lag length diverges to infinity with the sample size. However, this result does not
directly speak to the empirically relevant case where researchers employ small-to-moderate
lag lengths to preserve degrees of freedom. Applied researchers must therefore base their
choice of inference procedure on empirically calibrated simulation studies (Kilian and Kim,
2011; Li, Plagborg-Møller, and Wolf, 2024).

In this paper we provide a formal proof of Jordà’s claim that conventional LP confidence
intervals for impulse responses are surprisingly robust to misspecification. On the other
hand, VAR confidence intervals are robust if, and only if, they are as wide as LP intervals
asymptotically, as is the case when they control for a large number of lags. If the confidence
interval is shorter, then it is necessarily unreliable.

We consider a large class of stationary data generating processes (DGPs) that are well
approximated by a finite-order SVAR model, but subject to local misspecification in the form
of an asymptotically vanishing moving average (MA) process, of potentially infinite order.
This class is consistent with essentially all linearized structural macroeconomic models and
covers many types of dynamic misspecification, such as under-specification of the lag length,
failure to include relevant control variables, inappropriate aggregation, and measurement
error. Intuitively, with this set-up we capture the idea that finite-order VAR models provide
a good but imperfect approximation of reality.

In this setting, we prove that the conventional LP confidence interval has correct (point-
wise) asymptotic coverage even for local misspecification that is of such a large magnitude
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that it can be detected with probability 1 in large samples. This robustness property requires
that we control for those lags of the data that are strong predictors of the outcome or impulse
variables, but—crucially for applied work—the omission of lags with small-to-moderate pre-
dictive power does not threaten coverage. We argue that our result can be interpreted as
a consequence of the double robustness of the LP estimator, which is analogous to the dou-
ble robustness of modern partially linear regression estimators in the literature on debiased
machine learning.1

In stark contrast to LP, even small amounts of misspecification can cause conventional
VAR confidence intervals for impulse responses to suffer from severe undercoverage. We first
derive analytically the worst-case bias and coverage of VARs over all possible misspecification
processes, subject to a constraint on the overall magnitude of the misspecification. The
worst-case bias and coverage distortion are small if, and only if, the asymptotic variance is
close to that of LP. In general, the only way to guarantee robustness of conventional VAR
inference is thus to include so many lags that the VAR estimator is asymptotically equivalent
with LP. If instead the VAR confidence interval is much shorter (as is typically the case in
applied practice), then it will severely undercover even for a misspecification term that: (i)
is small in magnitude; (ii) has dynamic properties that cannot be ruled out ex ante based on
economic theory; and (iii) is difficult to detect ex post with model specification tests. Instead
of increasing the lag length, coverage can also be restored by using a larger bias-aware critical
value (Armstrong and Kolesár, 2021), but we show that the resulting confidence intervals
are so wide that one may as well report the LP interval.

We demonstrate the practical relevance of our theoretical results through a comprehensive
review of current practice in the applied VAR literature, together with a simulation study.
In papers published in top economics journals, researchers tend to select small to moderate
lag lengths, and often report impulse responses at horizons far exceeding the lag length.
Our theory suggests this practice is likely to render inference vulnerable to misspecification.
To substantiate this conclusion, we simulate data calibrated to the oil shock application in
Känzig (2021). The DGP is taken to be a VAR estimated on the paper’s actual data, but with
18 lags rather than 12. The VAR confidence interval materially undercovers—particularly
at medium and long horizons—if the lag length is set to 12 or selected by AIC, in line with
applied practice, while the LP interval attains close to nominal coverage. Increasing the

1Important contributions include Robins, Mark, and Newey (1992), Robins and Rotnitzky (1995), Robins,
Rotnitzky, and van der Laan (2000), Robins and Rotnitzky (2001), Bang and Robins (2005), Ai and Chen
(2007), Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018), and Chernozhukov,
Escanciano, Ichimura, Newey, and Robins (2022).
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estimation lag length beyond the conventional choices ameliorates the VAR undercoverage,
at the cost of delivering confidence intervals as wide as those of LP.

Literature. Relative to the previously cited simulation studies of LPs and VARs, we
here derive analytical results on the worst-case asymptotic properties of these two inference
procedures that hold for a wide range of stationary, locally misspecified VAR models. The
simulations in Li, Plagborg-Møller, and Wolf (2024) suggest a stark bias-variance trade-off
between LP (low bias, high variance) and moderate-lag VAR estimators (moderate bias, low
variance). The reason behind the theoretical superiority of LP proved in this paper is that,
if the objective is to construct confidence intervals with robust coverage for a wide range
of DGPs, then even a moderate amount of VAR bias cannot be tolerated, as it causes the
VAR confidence interval to be poorly centered. A concern for correct confidence interval
coverage thus effectively induces a large weight on bias in the researcher’s objective function,
justifying the use of LP despite its higher variance.

The robustness of LPs to misspecification discussed here—with stationary data and at
fixed horizons—is conceptually and theoretically distinct from the robustness of LPs to the
persistence in the data and the length of the impulse response horizon shown by Mon-
tiel Olea and Plagborg-Møller (2021). Nevertheless, it turns out that controlling for lags
(“lag augmentation”) is key to all the robustness properties established in Montiel Olea and
Plagborg-Møller (2021) and in the present paper.

We also build upon previous research into misspecified VAR models, uncovering novel
results about the robustness of LPs and the worst-case properties of VAR procedures. Braun
and Mittnik (1993) derive expressions for the probability limits of VAR estimators under
global MA misspecification; however, since bias always dominates variance asymptotically in
their framework, they do not characterize the properties of LP and VAR inference procedures,
which is the focus of our paper. Schorfheide (2005) characterizes the asymptotic mean
squared errors of iterated and direct multi-step forecasts in a reduced-form VAR model with
MA terms of order T−1/2, and González-Casasús and Schorfheide (2025) use this framework
to select hyperparameters for VAR forecasts. Müller and Stock (2011) construct Bayesian
forecast intervals in a locally misspecified univariate AR model. Relative to these papers,
we here contribute by: (i) focusing on structural impulse responses rather than forecasting;
(ii) allowing for more general rates of local misspecification, which is key to uncovering the
double robustness of LP; and (iii) deriving simple analytical formulae for worst-case bias and
coverage of VARs. As such, our results formalize concerns by applied practitioners about the
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lack of VAR robustness and sensitivity to lag length (Chari, Kehoe, and McGrattan, 2008;
Nakamura and Steinsson, 2018; see also Inoue and Kilian, 2002, and Kilian and Lütkepohl,
2017, Chapters 2.6.5 and 6.2).

Whereas our paper deals with bias imparted by dynamic misspecification, the analysis
does not capture other familiar sources of small-sample bias. In particular, our asymptotics
abstract from the order-T−1 biases that arise from (i) persistence in the data (Pope, 1990;
Kilian, 1998; Herbst and Johannsen, 2024) and (ii) the nonlinearity of the impulse response
transformation of the VAR parameters (Jensen’s inequality).

Outline. Section 2 defines the local-to-SVAR model as well as the LP and VAR estimators.
Section 3 proves the robustness of LP and the fragility of VAR confidence intervals. Section 4
derives analytically the worst-case bias and coverage of VARs, and shows that bias-aware
VAR confidence intervals tend to be wider than the LP interval. Section 5 demonstrates the
practical relevance of our theoretical results through a review of the applied literature and
a simulation study. Section 6 concludes. Replication materials are available online.2

Notation. All asymptotic limits are taken as the sample size T → ∞ and are pointwise
in the sense of fixing the true model parameters and the impulse response horizon. A sum∑b

ℓ=a cℓ is defined to equal 0 when a > b.

2 Framework

We start out by defining the model and estimators.

2.1 Model and assumptions

Extending the forecasting model of Schorfheide (2005), we consider a multivariate, stationary
structural VARMA(1,∞) model that is local to an SVAR(1) model:

yt = Ayt−1 +H[I + T−ζα(L)]εt, for all t, (2.1)

where the data vector yt = (y1,t, . . . , yn,t)′ is n-dimensional, the shock vector εt = (ε1,t, . . . , εm,t)′

is m-dimensional, A is an n×n matrix, H is an n×m matrix, α(L) = ∑∞
ℓ=1 αℓL

ℓ is an m×m

2https://github.com/ckwolf92/lp_var_inference
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lag polynomial, and T denotes the sample size. We allow the number of shocks m to poten-
tially exceed the number of variables n, and vice versa. We show below that equation (2.1)
encompasses local-to-SVAR models with p > 1 lags by writing them in companion form.

The model (2.1) captures the idea that the time series dynamics of the data are well ap-
proximated by an autoregressive model driven by unobserved white noise shocks εt, but with
a small amount of misspecification in the form of an MA process T−ζα(L)εt. The misspeci-
fication is asymptotically small in the sense that the MA coefficients converge to zero at the
rate T−ζ , though the misspecification may still affect the properties of estimators, as shown
by Schorfheide (2005) and as demonstrated below. We argue below that MA misspecification
of this form can capture many empirically relevant types of dynamic misspecification. We
consider local rather than global misspecification in the spirit of local power analysis (e.g.,
Rothenberg, 1984), since this makes the bias-variance trade-off between the VAR and LP
estimators matter even asymptotically as the sample size T diverges, allowing us to make
tractable analytical comparisons between these two procedures.

The parameter of interest is the response at horizon h of the variable yi∗,t with respect
to the shock εj∗,t for some indices i∗ ∈ {1, . . . , n} and j∗ ∈ {1, . . . ,m}, to be defined below.

Assumption 2.1. For each T , {yt}t∈Z is the stationary solution to equation (2.1), given the
following restrictions on parameters and shocks:

i) εt
i.i.d.∼ (0m×1, D), where D ≡ diag(σ2

1, . . . , σ
2
m), and the elements of εt are mutually

independent. For all j = 1, . . . ,m, σ2
j > 0 and E(ε4

j,t) < ∞.

ii) All eigenvalues of A are strictly below 1 in absolute value.

iii) The first j∗ rows of H are of the form (H̃, 0j∗×(m−j∗)), where H̃ is a j∗ × j∗ lower
triangular matrix with 1’s on the diagonal. In particular, we require j∗ ≤ n.

iv) S ≡ Var(ỹt) is non-singular, where ỹt ≡ (I − AL)−1Hεt is the stationary solution to
(2.1) when α(L) = 0. Specifically, vec(S) = (I − A⊗ A)−1 vec(Σ), where Σ ≡ HDH ′.

v) α(L) is absolutely summable.

vi) ζ > 0.

The assumptions that the shocks are mutually and serially independent are made to
simplify the exposition; we prove formally in Supplemental Appendix C.1 that our results
on the robustness of LP and on the asymptotic bias of VAR go through for a large class of
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conditionally heteroskedastic shock processes. The assumptions on H correspond to recur-
sive (also known as Cholesky) identification of the shock of interest εj∗,t, with a unit effect
normalization Hj∗,j∗ = 1. A special case is when the shock is directly observed, which corre-
sponds to ordering it first (i.e., j∗ = 1). Supplemental Appendix C.2 shows that our results
extend also to identification via external instruments or proxies (Stock and Watson, 2018).
Absolute summability of α(L) is a weak regularity condition ensuring the vector MA(∞)
process α(L)εt is well-defined (Brockwell and Davis, 1991, Proposition 3.1.1). Finally, the
assumption that ζ > 0 restricts attention to local misspecification, as discussed earlier.

The impulse response of interest is defined as

θh,T ≡ e′
i∗,n

(
AhH + T−ζ

h∑
ℓ=1

Ah−ℓHαℓ

)
ej∗,m = E[yi∗,t+h | εj∗,t = 1] − E[yi∗,t+h | εj∗,t = 0],

where ei,n denotes the n-dimensional unit vector with a 1 in position i. The first term in the
parenthesis is the usual VAR impulse response formula, while the second term arises from the
MA component. Importantly, and consistent with our focus on the consequences of dynamic
misspecification, we do not treat the VAR misspecification as non-classical measurement
error that should be ignored for structural analysis; instead, the true causal model has a
VARMA form (with small but potentially non-zero MA terms), and we care about the full
transmission mechanism of shocks in this model.

Additional lags. Our framework covers local-to-SVAR(p) models of the form

y̌t =
p∑

ℓ=1
Ǎℓy̌t−ℓ + Ȟ[I + T−ζα(L)]εt, (2.2)

where y̌t is ň-dimensional, the Ǎℓ matrices are ň× ň, and Ȟ is ň×m and satisfies Assump-
tion 2.1(iii). This fits into the original model (2.1) if we set n = ňp and define the companion
form representation

yt =



y̌t

y̌t−1

y̌t−2
...

y̌t−p+1


, A =



Ǎ1 Ǎ2 . . . Ǎp−1 Ǎp

I 0 . . . 0 0
0 I . . . 0 0
... . . . ...
0 0 . . . I 0


, H =



Ȟ

0
0
...
0


.

7



In particular, we can allow the estimation lag length p to exceed the true minimal lag length
p0 of the model by setting Ǎℓ = 0 for ℓ > p0. This fact will prove useful when we consider
what happens as the lag length of the estimated VAR is increased.

Types of misspecification. Our local-to-SVAR model (2.1) with MA misspecification
covers several empirically relevant types of model misspecification. While essentially all
modern discrete-time, linearized macro models have VARMA representations, they usually
cannot be represented exactly as finite-order VAR models (e.g., Kilian and Lütkepohl, 2017,
Chapter 6.2). Even if the true DGP were a finite-order VAR, dynamic misspecification of
the estimation model can give rise to MA terms, for example due to under-specification of
the lag length or failing to control for some of the variables in the true system. Relatedly,
MA terms may appear because of a failure of invertibility of the shocks (Alessi, Barigozzi,
and Capasso, 2011). VARMA representations can also arise from temporal or cross-sectional
aggregation of finite-order VAR models, including contamination by classical measurement
error (Granger and Morris, 1976; Lütkepohl, 1984). In all of these cases, if the number of
lags used for estimating the VAR is chosen to be sufficiently large, then the MA remainder
will be small, consistent with the spirit of our locally misspecified model (2.1).

In terms of structural shock identification, our framework accommodates both the case
of a well-identified shock (or instrument/proxy, see Supplemental Appendix C.2) but mis-
specification in other parts of the model, as well as misspecification in the structural shock
identification itself. Key to this generality is that we allow the m×m MA polynomial α(L) to
be arbitrary. To see this, consider the case j∗ = 1, so interest centers on the dynamic causal
effects of the first shock ε1,t. If the first row of α(L) is zero, then ε1,t is well-identified as the
reduced-form residual in the first equation of the VAR. If the first row of α(L) is non-zero,
then the reduced-form residual will be contaminated by lagged shocks, thus allowing for the
possibility that shock identification itself is not entirely accurate.

2.2 Estimators

We consider two estimators of the impulse response θh,T using the data {yt}T
t=1:

1. The LP estimator is the coefficient β̂h in a regression of yi∗,t+h on yj∗,t, controlling for
y

j∗,t
≡ (y1,t, . . . , yj∗−1,t)′ (i.e., the variables ordered before yj∗,t, if any) and lagged data:

yi∗,t+h = β̂hyj∗,t + ω̂′
hyj∗,t

+ γ̂′
hyt−1 + ξ̂i∗,h,t, (2.3)
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where ξ̂i∗,h,t is the least-squares residual. Recall from the previous subsection that if we
are estimating an SVAR(p) specification in the data y̌t, then the vector yt−1 actually
contains p lags y̌t−1, . . . , y̌t−p.

2. The VAR estimator is defined as the response of yi∗,t+h with respect to the j∗-th recursively
orthogonalized innovation, where the magnitude of the innovation is normalized such that
yj∗,t increases by one unit on impact:

δ̂h ≡ e′
i∗,nÂ

hν̂,

where

Â ≡
(

T∑
t=2

yty
′
t−1

)(
T∑

t=2
yt−1y

′
t−1

)−1

, ν̂ ≡ Ĉ−1
j∗,j∗Ĉ•,j∗ ,

and Ĉ•,j∗ is the j∗-th column of the lower triangular Cholesky factor Ĉ of the covariance
matrix Σ̂ ≡ 1

T

∑T
t=1 ûtû

′
t = ĈĈ ′ of the residuals ût ≡ yt − Âyt−1. Again, in the case of an

SVAR(p) specification, the above formulae operate on the companion form.

Note that the two estimators coincide at the impact horizon: β̂0 = δ̂0 (see Lemma E.5 in
Supplemental Appendix E).

It is well known that conventional confidence intervals based on both these estimators
would have correct asymptotic coverage in a well-specified VAR model. However, the pres-
ence of the additional MA term in the model (2.1) means that, in principle, both the LP
and VAR estimators ought to control for infinitely many lags of the data, rather than just
one. Nevertheless, as we will now establish, this dynamic misspecification has much more
serious consequences for the VAR procedure than for LP.

3 Robust local projections, fragile VARs

This section shows that the conventional LP confidence interval is robust to large amounts of
misspecification. In contrast, the conventional VAR confidence interval has fragile coverage,
except when it is asymptotically as wide as the LP interval, as will be the case with sufficiently
large lag length.

3.1 Large-sample distributions and confidence interval coverage

We begin by characterizing the large-sample distributions of the LP and VAR estimators.
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The robustness of LPs. Our first main result establishes that the large-sample distri-
bution of the LP estimator is unaffected by large amounts of misspecification.

Proposition 3.1. Under Assumption 2.1,

β̂h − θh,T = 1
σ2

j∗

1
T

T∑
t=1

ξi∗,h,,tεj∗,t +Op(T−2ζ) + op(T−1/2),

where
ξh,t = (ξ1,h,t, . . . , ξn,h,t)′ ≡ AhHj∗εj∗,t +

h∑
ℓ=1

Ah−ℓHεt+ℓ,

with Hj∗ ≡ (H•,j∗+1, . . . , H•,m) and εj∗,t ≡ (εj∗+1,t, . . . , εm,t)′.

Proof. See Section B.1.

The result implies that the first-order asymptotic behavior of LP does not depend on the
misspecification parameter α(L), provided ζ > 1/4 so that Op(T−2ζ) = op(T−1/2). Though
this robustness property of LP is with respect to local (i.e., asymptotically vanishing) mis-
specification, it is still quantitatively meaningful, given that MA terms of order T−ζ with
ζ ∈ (1/4, 1/2) in the model (2.1) can be detected with probability 1 asymptotically by con-
ventional VAR model specification tests, such as the Hausman test considered in Section 3.2.

Why is LP robust to misspecification of such large magnitude? We will offer two mathe-
matically equivalent pieces of intuition, with our discussion throughout deliberately heuristic.
The classic omitted variable bias (OVB) formula suggests that the bias of the LP impulse
response estimator β̂h in the regression (2.3) is proportional to the product of two factors: (i)
the direct effect of omitted lags on yi∗,t+h, and (ii) the covariance of the residualized regressor
of interest yj∗,t − E[yj∗,t | y

j∗,t
, yt−1] with the omitted lags. The factor (i) is of order T−ζ in

our local-to-SVAR model (2.1). The factor (ii) is also of order T−ζ , since the residualized
regressor equals εj∗,t +Op(T−ζ) under Assumption 2.1(iii), and the shock εj∗,t is uncorrelated
with any lagged data. Hence, the OVB is of order T−2ζ , so when ζ > 1/4, the bias of the
estimator is negligible relative to the standard deviation (which is of order T−1/2, as in the
correctly specified case). This argument relies on the LP regression controlling for the most
important lags of the data (i.e., yt−1); without lagged controls, one or both factors in the
OVB formula may not be small (González-Casasús and Schorfheide, 2025).

The preceding intuition is a special case of the double robustness property of partially
linear regressions, see Example 1.1 in Chernozhukov et al. (2018) and Example 1 in Cher-
nozhukov et al. (2022). We will now argue that this property applies also to LP, again settling

10



for a heuristic argument. For notational simplicity, set j∗ = 1 so y
j∗,t

= 0. Consider any
dynamic model (for example a VARMA(p, q)) that implies the following LP representation:

yi∗,t+h = θ0,hy1,t + γ0(yt−1) + ξi∗,h,t, where ξi∗,h,t ⊥⊥ yt ≡ (yt, yt−1, . . . ).

Here θ0,h is the true impulse response, γ0(·) is a function of lagged data, and “⊥⊥” signifies
independence. Define ν0(yt−1) ≡ E[y1,t | yt−1]. By applying the Frisch-Waugh lemma to the
regression (2.3), we see that the LP estimator β̂h is the sample analogue of the solution θ0,h

to the moment condition

E[{yi∗,t+h − θ0,hy1,t − γ0(yt−1)}{y1,t − ν0(yt−1)}] = 0.

If we evaluate the moment on the left-hand side at arbitrary functions γ(·) and ν(·) rather
than at the true ones γ0(·) and ν0(·), a simple calculation shows that it equals E[{γ0(yt−1) −
γ(yt−1)}{ν0(yt−1) − ν(yt−1)}].3 Hence, the moment condition is satisfied at the true impulse
response parameter θ0,h as long as either γ = γ0 or ν = ν0, making the LP estimator doubly
robust: it is consistent if we correctly specify either the controls γ(yt−1) in the outcome
equation or the controls ν(yt−1) in the implicit first-stage regression that isolates the shock
εj∗,t = yj∗,t − ν(yt−1). Because of double robustness, and as argued more generally by
Chernozhukov et al. (2018) (and confirmed by our proof), it turns out that estimation error in
γ0 and ν0 only affects the asymptotic distribution of β̂h through the product of the estimation
errors ∥γ̂ − γ0∥ × ∥ν̂ − ν0∥. In our local-to-SVAR model (2.1), both terms in this product
are of order T−ζ due to the omitted lags. The product is then of order T−2ζ and thus
asymptotically negligible when ζ > 1/4, consistent with our earlier intuition.

The fragility of VARs. In contrast to LP, the VAR estimator is fragile.

Proposition 3.2. Under Assumption 2.1,

δ̂h − θh,T = trace
{
S−1ΨhHT

−1
T∑

t=1
εtỹ

′
t−1

}
+ 1
σ2

j∗
e′

i∗,nA
hT−1

T∑
t=1

ξ0,tεj∗,t

+ T−ζ aBias(δ̂h) + op(T−1/2 + T−ζ),

3We can write the moment as E[{yi∗,t+h − θ0,hy1,t − γ0(yt−1) + γ0(yt−1) − γ(yt−1)}{y1,t − ν(yt−1)}] =
E[{γ0(yt−1) − γ(yt−1)}{y1,t − ν0(yt−1) + ν0(yt−1) − ν(yt−1)}], since yi∗,t+h − θ0,hy1,t − γ0(yt−1) = ξi∗,h,t

is independent of yt (orthogonality would suffice if ν(·) were linear). The claim now follows from E[y1,t −
ν0(yt−1) | yt−1] = 0 by definition of ν0(·).
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where

aBias(δ̂h) ≡ trace
{
S−1ΨhH

∞∑
ℓ=1

αℓDH
′(A′)ℓ−1

}
− e′

i∗,n

h∑
ℓ=1

Ah−ℓHαℓej∗,m,

Ψh ≡
h∑

ℓ=1
Ah−ℓH•,j∗e′

i∗,nA
ℓ−1,

and {ỹt} and S are defined in Assumption 2.1.

Proof. See Section B.2.

The convergence rate T− min{1/2,ζ} of the VAR estimator is weakly slower than the T− min{1/2,2ζ}

rate achieved by LP. This is because the VAR estimator suffers from bias of order T−ζ , while
the stochastic terms of order T−1/2 are the same as they would be in a correctly specified
SVAR(p) model.4 The VAR bias is only asymptotically negligible if ζ > 1/2, a much smaller
degree of robustness than shown above for LP. The case ζ = 1/2 is of particular interest, as
then the bias and standard deviation are of the same asymptotic order (see also Schorfheide,
2005). MA terms of order T−1/2 can be detected with asymptotic probability strictly between
0 and 1 by specification tests, as will be shown in Section 3.2.

The asymptotic bias is due to two forces: first, the coefficient matrix Â is biased due to
the endogeneity caused by the MA terms, and second, the VAR estimator extrapolates the
horizon-h impulse response based on a parametric formula Âh that does not hold exactly in
the true VARMA model (2.1). This is more easily seen in the special case of a univariate
model yt = ρyt−1 + [1 + T−ζα(L)]εt with n = m = 1, in which case

aBias(δ̂h) ≡ hρh−1︸ ︷︷ ︸
∂(ρh)

∂ρ

(1 − ρ2)
∞∑

ℓ=1
ρℓ−1αℓ︸ ︷︷ ︸

aBias(ρ̂)= Cov(α(L)εt,ỹt−1)
Var(ỹt−1)

−
h∑

ℓ=1
ρh−ℓαℓ︸ ︷︷ ︸

θh,T −ρh

,

where ρ̂ = Â is the AR(1) coefficient from an OLS regression of yt on yt−1.5 While the
dynamic responses estimated by the VAR are prone to bias, the shock identification per se
is not, in the sense that the VAR’s estimated impact (horizon-0) response is identical to the
doubly robust LP estimate (see Section 2.2).

4The first stochastic term captures sampling uncertainty in the reduced-form impulse responses Âh, while
the second term captures uncertainty in the structural impact response vector ν̂.

5Lag augmentation of the VAR impulse response estimator as in Inoue and Kilian (2020) may reduce the
first term in the bias formula, but it does not affect the second term.
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Confidence intervals. The preceding results imply that the conventional LP confidence
interval is robust to misspecification while the conventional VAR interval is not. We define
the level-(1 − a) LP and VAR confidence intervals using the standard formulae:

CI(β̂h) ≡
[
β̂h ± z1−a/2

√
aVar(β̂h)/T

]
, CI(δ̂h) ≡

[
δ̂h ± z1−a/2

√
aVar(δ̂h)/T

]
. (3.1)

Here z1−a/2 is the 1 − a/2 quantile of the standard normal distribution, and aVar(β̂h) and
aVar(δ̂h) are the asymptotic variances of the leading (order-T−1/2) stochastic terms in the
representations of the LP and VAR estimators in Propositions 3.1 and 3.2; explicit formulae
for the asymptotic variances are given in Corollary A.2 in Section A.3, which also implies
that aVar(β̂h) ≥ aVar(δ̂h). None of the results below would change if we replaced the
asymptotic variances with the conventional consistent estimates of these (that assume correct
specification, as implemented in standard econometric software packages).6

Corollary 3.1. Under Assumption 2.1 and ζ > 1/4, limT →∞ P (θh,T ∈ CI(β̂h)) = 1 − a. If
moreover aVar(δ̂h) > 0 and aBias(δ̂h) ̸= 0, then limT →∞ P (θh,T ∈ CI(δ̂h)) = limT →∞{1 −
r
(
T 1/2−ζbh; z1−a/2

)
}, where bh ≡ aBias(δ̂h)/

√
aVar(δ̂h), r(b; c) ≡ PZ∼N(0,1)(|Z + b| > c) =

Φ(−c− b) + Φ(−c+ b), and Φ(·) is the standard normal distribution function.

Proof. Considering separately the three cases ζ ∈ (1/4, 1/2), ζ = 1/2, and ζ > 1/2, the
result is an immediate consequence of Propositions 3.1 and 3.2.

LP robustly controls coverage when ζ > 1/4, while the VAR confidence interval generi-
cally has coverage converging to zero for ζ ∈ (1/4, 1/2), and strictly below the nominal level
1 − a for ζ = 1/2. Intuitively, the VAR confidence interval has the right width (the same as
in the correctly specified case) but the wrong location due to the bias.

3.2 Hausman misspecification test

To aid in interpreting the magnitude of the local misspecification in our set-up, we con-
sider a Hausman (1978) test of correct specification of the VAR model that compares the
VAR and LP impulse response estimates. This test rejects for large values of

√
T |β̂h −

6Under Assumption 2.1, homoskedastic standard errors suffice. For LP, Heteroskedasticity and Auto-
correlation Robust inference would generally be required under the weaker assumptions in Supplemental
Appendix C.1, though simple heteroskedasticity-robust standard errors suffice under the assumptions dis-
cussed by Montiel Olea and Plagborg-Møller (2021) and Xu (2023).
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δ̂h|/
√

aVar(β̂h) − aVar(δ̂h). A test of this kind was proposed by Stock and Watson (2018) in
the context of testing for invertibility.

Proposition 3.3. Impose Assumption 2.1, ζ > 1/4, and aVar(β̂h) > aVar(δ̂h) > 0. Then
the asymptotic rejection probability of the Hausman test equals

lim
T →∞

P

 √
T |β̂h − δ̂h|√

aVar(β̂h) − aVar(δ̂h)
> z1−a/2

 = lim
T →∞

r

 T 1/2−ζbh√
aVar(β̂h)/ aVar(δ̂h) − 1

; z1−a/2

 ,
where bh and r(·, ·) were defined in Corollary 3.1.

Proof. Considering separately the three cases ζ ∈ (1/4, 1/2), ζ = 1/2, and ζ > 1/2, the
result follows from Propositions 3.1 and 3.2 as well as Corollary A.2 in Section A.3.

As claimed previously, the Hausman test is consistent against MA misspecification of
order T−ζ with ζ ∈ (1/4, 1/2), except in the knife-edge case where aBias(δ̂h) = 0. When
ζ = 1/2 and aBias(δ̂h) ̸= 0, the asymptotic rejection probability is strictly between the
significance level a and 1. In Section 4 we will use the Hausman test to quantify the difficulty
of detecting especially pernicious types of model misspecification.

3.3 Lag length selection

We now elaborate further on the role of the estimation lag length. We first discuss the
properties of LP when the lag length is selected using standard information criteria. We
then show that increasing the lag length robustifies VAR inference by rendering it equivalent
with LP inference.

Lag length selection for LP. Supplemental Appendix C.3 shows that the LP confi-
dence interval maintains correct asymptotic coverage when the lag length p is selected via the
Bayesian Information Criterion (BIC), provided that ζ ≥ 1/2. Specifically, the BIC should
be applied to an auxiliary VAR in the observed data series y̌t; the selected lag length then
determines the number p of lags to control for in subsequent LP inference (which otherwise
discards the auxiliary VAR). The resulting LP inference is robust to model selection errors
that are known to cause difficulties for VAR inference (Leeb and Pötscher, 2005; Kilian and
Lütkepohl, 2017, chapter 2.6.5). At a high level, the greater reliability of LP inference with
data-dependent lag length is a consequence of the double robustness discussed earlier, see
Belloni and Chernozhukov (2013) and Chernozhukov et al. (2018).
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While the BIC suffices in theory for valid local projection inference, we follow Kilian and
Lütkepohl (2017) and recommend that researchers employ the more conservative Akaike In-
formation Criterion (AIC) in practice. The reason is that, in finite samples, the downsides of
under-specifying the lag length outweigh the slight inefficiency associated with over-selecting
the lag length. Section 5 demonstrates that this lag length selection procedure delivers LP
confidence intervals with accurate coverage in realistic DGPs.

Long-lag VARs. One simple way to remove the asymptotic bias of the VAR estimator
is to control for sufficiently many lags—typically many more lags than indicated by con-
ventional information criteria. This is because in this case the estimator is asymptotically
equivalent with the LP estimator. See Plagborg-Møller and Wolf (2021) and Xu (2023) for
related results in models without explicit MA misspecification.

Corollary 3.2. Suppose the model (2.2) written in companion form (2.1) satisfies As-
sumption 2.1 and ζ > 1/4. Let ˜̌yt denote the stationary solution to equation (2.2) when
α(L) = 0. If εj∗,t−ℓ ∈ span(˜̌yt−1, . . . , ˜̌yt−p) for all ℓ = 1, . . . , h, then aBias(δ̂h) = 0 and
aVar(δ̂h) = aVar(β̂h). In particular, these results obtain if either of the following two suffi-
cient conditions hold:

i) The model is a local-to-SVAR(p0) model (i.e., Ǎℓ = 0 for p0 < ℓ ≤ p) and h ≤ p − p0,
where p is the estimation lag length.

ii) The shock of interest is directly observed and ordered first (i.e., j∗ = 1 and Ǎ1,j,ℓ = 0
for all j, ℓ), and h ≤ p.

Proof. See Section B.3.

We see that, the larger the impulse horizon h of interest, the larger is the estimation lag
length p required for bias reduction. In fact, Section 4 shows that the only way to guarantee
that the asymptotic bias of the VAR estimator is zero is to control for so many lags that LP
and VAR are asymptotically equivalent.

4 VAR inference under bounded misspecification

To show that the fragility of VARs is likely to matter in practice, we now investigate the
worst-case properties of VAR procedures under a tight constraint on the amount of misspeci-
fication. We prove that the conventional VAR confidence interval is robust if, and only if, LP
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and VAR intervals coincide asymptotically. VARs with short-to-moderate lag lengths suffer
from severe coverage distortions even for small amounts of misspecification that are hard to
rule out either economically or statistically. Beyond increasing the lag length, an alternative
strategy to fix VAR undercoverage is to use a larger bias-aware critical value; however, we
show that the resulting confidence interval is usually wider than the LP interval. Finally, we
show that all conclusions extend to the case of joint inference on multiple impulse responses.

Throughout this section we set ζ = 1/2 so that the asymptotic bias-variance trade-off
between LP and VAR is non-trivial.

4.1 Worst-case bias and mean-squared error

Building towards our main results on VAR coverage distortions, we begin by deriving the
worst-case bias and mean-squared error of the VAR estimator.

Misspecification bound. To quantify the amount of misspecification in the local-to-
SVAR model (2.1) with ζ = 1/2, we define the noise-to-signal ratio

trace
{
Var(T−1/2α(L)εt) Var(εt)−1

}
= trace

{(
T−1

∞∑
ℓ=1

αℓDα
′
ℓ

)
D−1

}
= T−1∥α(L)∥2,

where we define the norm ∥α(L)∥ ≡
√∑∞

ℓ=1 trace{Dα′
ℓD

−1αℓ}. Suppose we are willing to
impose a priori that the noise-to-signal ratio is at most M2/T for some constant M ∈ (0,∞).
For small M2/T , this roughly means that a fraction M2/T of the variance of the model’s
error term is due to the misspecification. This corresponds to restricting the parameter
space for α(L) to all absolutely summable lag polynomials that satisfy ∥α(L)∥ ≤ M . In the
following we will consider the worst-case properties of the VAR estimator over this parameter
space, treating the other (consistently estimable) parameters (A,H,D) as fixed.

Worst-case bias.

Proposition 4.1. Impose Assumption 2.1, ζ = 1/2, and aVar(δ̂h) > 0. Then

max
α(L) : ∥α(L)∥≤M

|bh| = M

√√√√aVar(β̂h)
aVar(δ̂h)

− 1,

where we recall the definition bh = aBias(δ̂h)/
√

aVar(δ̂h). Recall also that aVar(β̂h) and
aVar(δ̂h) do not depend on α(L).
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Proof. The claim is a special case of Proposition C.2 in Supplemental Appendix C.4.

Under our bound M2/T on the noise-to-signal ratio, the worst-case (scaled) VAR bias
is a simple function of M and of the relative asymptotic precision aVar(β̂h)/ aVar(δ̂h) of
the VAR estimator vs. LP. These two quantities are “sufficient statistics” for the worst-case
bias regardless of the number n of variables in the VAR, the lag length p, the specific VAR
parameters (A,H,D), and the horizon h. Hence, our subsequent analysis of the worst-case
properties of VAR procedures depends only on M and on the relative precision, allowing
us to concisely present analytical results that cover a wide range of local-to-SVAR models
without having to resort to simulations that inevitably only cover a finite number of DGPs.

Proposition 4.1 shows that VAR estimators must trade off efficiency and robustness: the
worst-case VAR bias is small precisely when the VAR estimator has nearly the same variance
as LP. While the worst-case bias can be reduced by increasing the VAR estimation lag length
p, the proposition shows that this can only happen at the expense of increasing the variance.
If we include so many lags that the worst-case bias is zero (cf. Corollary 3.2), then the VAR
estimator must necessarily be asymptotically equivalent with LP.

Worst-case mean squared error. For future reference we briefly discuss how the
worst-case mean squared error (MSE) of the VAR estimator depends on the imposed bound
on misspecification. Based on Propositions 3.1 and 3.2 as well as Corollary A.2, we define
the asymptotic MSE of the VAR and LP estimators as follows:

aMSE(β̂h) ≡ aVar(β̂h), aMSE(δ̂h) ≡ aBias(δ̂h)2 + aVar(δ̂h).

Corollary 4.1. Impose Assumption 2.1 and ζ = 1/2. Then

sup
α(L) : ∥α(L)∥≤M

{aMSE(δ̂h) − aMSE(β̂h)} = (M2 − 1){aVar(β̂h) − aVar(δ̂h)}.

Proof. See Section B.4.

In words, the worst-case MSE regret of VAR relative to LP is proportional to the variance
reduction of VAR relative to LP, with a proportionality constant of M2 − 1. If M > 1
(corresponding to a noise-to-signal ratio greater than 1/T ), the worst-case MSE of VAR
thus strictly exceeds the MSE of LP. From here it is also straightforward to recover the
minimax optimal way to average LP and VAR estimates.
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Corollary 4.2. Impose Assumption 2.1, ζ = 1/2, and aVar(β̂h) > aVar(δ̂h). Consider the
model-averaging estimator θ̂h(ω) ≡ ωβ̂h + (1 − ω)δ̂h, and denote its asymptotic MSE by
aMSE(θ̂h(ω)). Then

argmin
ω∈R

sup
α(L) : ∥α(L)∥≤M

aMSE(θ̂h(ω)) = M2

1 +M2 .

Proof. See Section B.5.

If M = 1, it is minimax optimal to weight the LP and VAR estimates equally. If M = 2
(corresponding to a noise-to-signal ratio of 4/T ), the LP estimator receives 80% weight.

4.2 Worst-case coverage

We now turn to our main area of interest: the worst-case asymptotic coverage of the con-
ventional VAR confidence interval under our bound on the amount of misspecification. This
turns out to take a very simple form.

Corollary 4.3. Impose Assumption 2.1, ζ = 1/2, and aVar(δ̂h) > 0. Then

inf
α(L) : ∥α(L)∥≤M

lim
T →∞

P (θh,T ∈ CI(δ̂h)) = 1 − r
(
M
√

aVar(β̂h)/ aVar(δ̂h) − 1; z1−a/2

)
.

Proof. This is an immediate consequence of Corollary 3.1 and Proposition 4.1.

Based on this corollary, Figure 4.1 provides a complete characterization of the robustness-
efficiency trade-off for VAR confidence intervals. It plots the worst-case coverage probability
as a function of the ratio of standard errors for VAR and LP, given significance level a = 10%
and different values of M . The shaded area depicts an empirically relevant range of standard
error ratios obtained in four empirical applications from Ramey (2016).7 We see that, even for
M = 1 (corresponding to a noise-to-signal ratio of 1/T ), the worst-case coverage probability
is below 48% whenever the asymptotic standard deviation of the VAR estimator is less than
half that of LP—a value that is typical in applied work. Further, at the bottom end of the
empirically relevant range, the worst-case coverage probability is essentially zero as soon as
M ≥ 1. It is only at the very right side of the figure—when the VAR includes enough lags

7We replicate Ramey’s identification schemes for monetary, tax, government spending, and technology
shocks. The shaded area shows the 10th to 90th percentiles of standard error ratios at horizons exceeding 1
year. See the online replication materials for details.
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Figure 4.1: Worst-case asymptotic coverage probability of the conventional 90% VAR confidence
interval. Horizontal axis: relative asymptotic standard deviation of VAR vs. LP. Different lines:
different bounds M on ∥α(L)∥. Shaded area: empirical 10th–90th percentile range of relative
standard errors based on Ramey (2016), see the online replication materials for details. The solid
horizontal line marks the nominal coverage probability 1 − a = 90%.

to remove nearly all bias, thus increasing the standard error almost to that of LP—that the
VAR confidence interval has coverage close to the nominal level.

The potential for VAR undercoverage documented here may not be so concerning if the
worst-case misspecification can be ruled out on economic theory grounds, or if it is easily
detectable statistically. We now argue that neither appears to be the case.

Economic theory. The shape and magnitude of the least favorable misspecification is
difficult to rule out generally based on economic theory. The least favorable MA polynomial
α†(L;h,M) = ∑∞

ℓ=1 α
†
ℓ,h,ML

ℓ for VAR coverage is the same as the least favorable one for bias
(i.e., the α(L) that achieves the maximum in Proposition 4.1). Since aBias(δ̂h) is linear in
α(L), the least favorable choice given the constraint ∥α(L)∥ ≤ M follows from the Cauchy-
Schwarz inequality (see the proof of Proposition C.2 in Supplemental Appendix C.4):

α†
ℓ,h,M ∝ D1/2H ′Ψ′

hS
−1Aℓ−1HD1/2 − 1(ℓ ≤ h)σ−1

j∗ D1/2H ′(A′)h−ℓei∗,ne
′
j∗,m, ℓ ≥ 1, (4.1)

where the constant of proportionality (which does not depend on the lag ℓ) is chosen so that
∥α†(L;h,M)∥ = M . Note that the shape of the least favorable MA polynomial depends on
the particular horizon h of interest but not on M ; i.e., the bound M2/T on the noise-to-signal
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ratio only scales the polynomial up or down.
We note two main properties of the least favorable misspecification. First, the magnitude

of the MA coefficients α†
ℓ,h,M decays exponentially as ℓ → ∞. In other words, not only is

the overall magnitude of the least favorable model misspecification small (as imposed in
the noise-to-signal bound), the MA coefficients at long lags are in fact particularly small.
Second, numerical examples shown in Section A.1 suggest that the MA coefficients tend to
be largest in magnitude at horizon h, displaying either a hump-shaped pattern as a function
of ℓ—consistent with economic theories of adjustment costs or learning—or a single zig-zag
pattern—consistent with theories of overshooting or lumpy adjustment. We thus view MA
dynamics of the worst-case form as empirically and theoretically relevant.8

Statistical tests. The least favorable misspecification is also difficult to detect sta-
tistically. Propositions 3.3 and 4.1 imply that, for α(L) = α†(L;h,M), the asymptotic
rejection probability of the Hausman test of correct VAR specification equals r(M ; z1−a/2).
When M = 1 (corresponding to a noise-to-signal ratio of 1/T ), the odds of the Hausman
test failing to reject the misspecification are nearly 3-to-1 at significance level a = 10%,
since r(1; z0.95) = 26%. At significance level a = 5%, the odds are nearly 5-to-1, since
r(1; z0.975) = 17%. Standard ex post model misspecification tests are thus unlikely to indi-
cate a problem even if the potential for undercoverage is severe.

Rather than committing a priori to a parameter space for α(L) through choice of M , we
can also ask a different question: across all possible types and magnitudes of misspecification,
what is the worst-case probability that the conventional VAR confidence interval fails to cover
the true impulse response, yet we fail to reject correct specification of the VAR model?

Corollary 4.4. Impose Assumption 2.1, ζ = 1/2, and aVar(β̂h) > aVar(δ̂h) > 0. Consider
the joint event AT that θh,T /∈ CI(δ̂h) and the Hausman test in Proposition 3.3 fails to reject
misspecification. Then

sup
α(L)

lim
T →∞

P (AT ) = sup
b≥0

r(b; z1−a/2)

1 − r

 b√
aVar(β̂h)/ aVar(δ̂h) − 1

; z1−a/2

 ,
where the supremum on the left-hand side is taken over all absolutely summable lag polyno-
mials α(L).

8However, the least favorable MA polynomial derived above need not be of interest to researchers who
trust that some equations in their SVAR specification are exactly correctly specified, as this imposes the
additional restrictions that some linear combinations of the rows of the MA polynomial α(L) equal zero.
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Figure 4.2: Worst-case asymptotic probability of the joint event that the conventional VAR con-
fidence interval fails to cover the true impulse response and yet the Hausman test fails to reject
misspecification. Horizontal axis: relative asymptotic standard deviation of VAR vs. LP. The dot-
ted horizontal line marks the nominal significance level a = 10%.

Proof. See Section B.6.

Figure 4.2 plots this worst-case probability for a significance level of a = 10%, which by
Corollary 4.4 depends only on the ratio aVar(δ̂h)/ aVar(β̂h). Under correct specification, the
probability of the joint event is equal to a(1 − a) (= 9% when a = 10%). With misspecifica-
tion, the joint probability instead exceeds 46% when the asymptotic standard deviation of
the VAR estimator is less than half that of the LP estimator. As aVar(δ̂h)/ aVar(β̂h) → 0,
the worst-case joint probability approaches 1 − a. We thus again see that statistical tests
may fail to warn against the potential for severe VAR coverage distortions.

4.3 Bias-aware inference

Rather than removing bias by increasing the lag length (thus ensuring equivalence with LP),
an alternative way to fix the undercoverage of the conventional VAR confidence interval is to
adjust the critical value upward to compensate for the bias, as suggested in a general setting
by Armstrong and Kolesár (2021). Suppose again that we restrict the misspecification α(L)
to satisfy ∥α(L)∥ ≤ M . Then we define the bias-aware VAR confidence interval

CIB(δ̂h;M) ≡

δ̂h ± cv1−a

M
√√√√aVar(β̂h)

aVar(δ̂h)
− 1

√aVar(δ̂h)/T
 ,
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Figure 4.3: Relative length of bias-aware VAR confidence interval vs. conventional LP interval.
Significance level a = 10%. Horizontal axis: relative asymptotic standard deviation of VAR vs. LP.
Different lines: different bounds M on ∥α(L)∥. The solid horizontal line marks the value 1.

where the bias-aware critical value cv1−a(b) is given by the number such that r(b; cv1−a(b)) =
a, and r(·, ·) is defined in Corollary 3.1. By construction, this bias-aware confidence interval
has correct (but potentially conservative) asymptotic coverage.

Corollary 4.5. Impose Assumption 2.1, ζ = 1/2, and aVar(δ̂h) > 0. Then

inf
α(L) : ∥α(L)∥≤M

lim
T →∞

P (θh,T ∈ CIB(δ̂h;M)) = 1 − a.

Proof. The result follows immediately from Propositions 3.2 and 4.1.

It turns out, however, that a very tight bound M on the signal-to-noise ratio is required
for the bias-aware VAR interval to be shorter than the LP interval. Figure 4.3 plots the
relative interval length as a function of the relative asymptotic standard deviation of VAR
and LP, for a significance level of a = 10% and for different misspecification bounds M . The
figure shows that M has to be quite small—apparently below 1—for the bias-aware VAR
length to dominate the LP length regardless of the DGP and horizon. Even for M = 1.5,
bias-aware VAR is at best only moderately shorter than LP. Finally, for values of M above
2 (corresponding to a noise-to-signal ratio above 4/T ), bias-aware VAR is dominated by LP.

In Section A.2 we furthermore show that the conventional LP confidence interval is at
worst slightly wider than a more efficient bias-aware confidence interval centered at the model
averaging estimator θ̂h(ω) = ωβ̂h + (1 − ω)δ̂h, introduced in Corollary 4.2 above. Even if
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the weight ω is chosen to optimize confidence interval length, the gains relative to the LP
interval are very small when M ≥ 2 (corresponding to a noise-to-signal ratio above 4/T ).

We thus conclude that, while bias-aware VAR inference is possible in theory, in practice
the gains relative to the simpler LP interval are small at best, unless we put an extremely
tight bound on the noise-to-signal ratio.

4.4 Inference on multiple impulse responses

Since the least favorable MA polynomial derived in Section 4.2 depends on the horizon h of
interest, one might hope that VARs would not be as prone to bias and thereby undercoverage
if interest centers on multiple impulse responses. Unfortunately, Supplemental Appendix C.4
shows that this is not the case. There we consider inference on a vector of impulse responses
for any combination of response variables i, shocks j, and horizons h. Generalizing Propo-
sition 4.1, we show that the worst-case norm of the bias is non-negligible if the VAR offers
efficiency gains for any linear combination of the parameters of interest. This implies that
the conventional VAR confidence interval has fragile coverage even if the target parameter
is a linear combination of impulse responses (such as the integral or sum across multiple
horizons, as in the fiscal multiplier applications reviewed in Ramey, 2016). The conventional
Wald confidence ellipsoid centered at the VAR estimator is similarly fragile.

5 Practical relevance

This section establishes the practical relevance of our theoretical conclusions by compre-
hensively reviewing current practice for lag length selection in the applied VAR literature,
coupled with a simulation study calibrated to the application in Känzig (2021).

5.1 Review of current practice for VAR lag length selection

To evaluate lag length selection practice in the applied VAR literature, we created a com-
prehensive list of articles published between January 2015 and June 2025 in six top eco-
nomics journals: American Economic Review, American Economic Journal: Macroeco-
nomics, Econometrica, Journal of Political Economy, Quarterly Journal of Economics, and
Review of Economic Studies. We restrict attention to papers that use VARs on time se-
ries data (not panel data) to estimate structural impulse response functions. This yields
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81 papers total. For each paper, we picked a single specification as the “main” one.9 To
be conservative, if multiple specifications received equal attention in the main analysis, we
picked the one with the largest lag length. The full list of papers, together with the recorded
information about the VAR specifications, is provided in the online replication materials.

Our findings suggest that the theoretical results of the preceding sections are likely to
have bite in practice, as typical VAR estimation lag lengths in applied papers are short or
moderate. The modal lag length is 4 in quarterly data and 12 in monthly data, the mean
is slightly below the mode, and less than 10% of papers employ lag lengths greater than or
equal to twice the modal values.10 20% of papers select the lag length in a data-dependent
way, often using information criteria. On average across papers, the estimation lag length
is only 28% as large as the the longest reported impulse horizon. We conclude that few
applied papers follow the recommendation of Kilian and Lütkepohl (2017, pp. 58–66) to use
long lag lengths and avoid information criteria. This suggests that VAR inference results
reported in much of the applied literature could be subject to the fragility we highlighted in
the preceding sections. In fact, since around 40% of papers employ Bayesian shrinkage, the
estimation bias could be even larger than indicated by the lag length alone.

5.2 Empirically calibrated simulation study

We now show through simulations that our asymptotic results are informative about the
performance of LPs and VARs in an empirically relevant finite-sample setting when the lag
length is selected as in current applied practice. Our DGP is calibrated to the oil news shock
application in Känzig (2021).

Set-up. The DGP is a VAR estimated on the dataset of Känzig (2021), using a somewhat
longer lag length than that used in the paper. The data series are that paper’s oil shock
proxy, the real price of oil, world oil production, world oil inventories, world industrial
production, U.S. industrial production, and the U.S. consumer price index (CPI). Whereas
Känzig employs 12 lags, we estimate a recursively identified VAR(18) by OLS on his data
and use this as the simulation DGP, with i.i.d. Gaussian shocks. We do not claim that
the VAR(18) DGP is more “realistic” than a VAR(12) estimated on the same data, but we
contend that it is desirable that confidence intervals should have reliable coverage in both

9In a few cases, the main use of VARs in a paper was only reported in the appendix.
10Additionally, all the various empirical VAR specifications reported in the handbook chapters of Ramey

(2016) and Stock and Watson (2016) are consistent with these patterns.
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these DGPs.
The parameters of interest are the impulse responses of CPI to the observed oil shock.

To be consistent with our theory, we use an “internal instruments” specification that orders
the proxy first in the VAR; this differs from the “external instruments” specification used
by Känzig. The sample size is T = 720 months. We will entertain different choices of
the estimation lag length p for the LP and VAR estimators. We report results for both
delta method and bootstrap confidence intervals. Results are based on 10,000 Monte Carlo
simulations. See Supplemental Appendix D for implementation details.

Results. Figure 5.1 shows that our theoretical results on LP robustness and VAR fragility
are practically relevant. The figure depicts the coverage probabilities (left panel) and median
confidence interval length (right panel) for VARs (in red, solid and dashed) and LPs (in
blue, solid and dashed). The top panel fixes the estimation lag length at p = 12, while the
bottom panel selects the lag length by AIC. Both these choices are frequently encountered
in the applied literature, as documented earlier. Given these conventional lag lengths, VAR
confidence intervals tend to be shorter than LP intervals, but quite materially undercover,
with coverage falling below 60% at medium and long horizons. LP instead attains close to
the nominal coverage level of 90% throughout, as expected. The mean lag length selected
by AIC is 9.7, evidently insufficient to guard against dynamic misspecification.

Supplemental Appendix D illustrates that the VAR under-coverage can be ameliorated
by increasing the lag length beyond what is typically used in current applied practice, at the
expense of higher variance, consistent with Section 3.3. The supplement also reports that the
VAR estimator achieves lower MSE than LP, suggesting that—despite the poor performance
of the VAR confidence interval—the larger bias of the VAR estimator may not compromise
its usefulness as a point estimator (see also Li, Plagborg-Møller, and Wolf, 2024).

Montiel Olea, Plagborg-Møller, Qian, and Wolf (2025) find that the qualitative conclu-
sions above extend to a wide range of empirically calibrated simulation DGPs based on richly
specified dynamic factor models: VAR confidence intervals fail to adequately control cover-
age in a sizable fraction of DGPs, while LP confidence intervals robustly maintain accurate
coverage. They document that LP is not only more robust to lag length selection, but also
to the choice of control variables, consistent with the theory in this paper.
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Lag length p = 12

Lag length via AIC

Figure 5.1: Coverage probability (left) and median length (right) for VAR (red) and LP (blue)
nominal 90% confidence intervals computed via the delta method or bootstrap (the latter are
indicated with subscript “b” in the legends). Lag length: fixed at p = 12 in the top panel, and
selected using AIC in the bottom panel.

6 Conclusion

Our theoretical results suggest the following practical take-aways:

1. When the goal is to construct confidence intervals for impulse responses that have accurate
coverage in a wide range of empirically relevant DGPs—as opposed to minimizing MSE—
then the smaller bias of LPs documented in simulations by Li, Plagborg-Møller, and Wolf
(2024) is more valuable than the smaller variance enjoyed by VAR estimators.

2. Researchers who use LP should control for those lags of the data that are strong predictors
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of the outcome or impulse variables. This is important not only when the shock is
recursively identified, but even if the researcher directly observes a near-perfect proxy
for the shock of interest. However, unlike for VAR inference, it is not necessary to get the
lag length or set of control variables exactly right to achieve correct coverage. To select
the number of lags to control for in the LP, we recommend running an auxiliary VAR in
all variables used in the analysis and selecting the lag length to minimize the AIC; the
auxiliary VAR is only used as a device to select the lag length and is otherwise discarded.

3. With the moderate lag lengths typical in current applied practice, VAR confidence in-
tervals will only have accurate coverage at short horizons, and only because they are
approximately equivalent with LP intervals at these horizons. If, at some horizons of in-
terest, an estimated VAR yields confidence intervals that are substantially narrower than
the corresponding LP intervals, we recommend increasing the VAR lag length until that
is no longer the case, to guarantee robust confidence interval coverage. Conventional tests
of correct VAR specification do not suffice to guard against coverage distortions.

Is there a way forward for VAR inference, beyond just including a large number of lags?
We showed how to construct a VAR confidence interval with a bias-aware critical value that
robustly controls coverage, but found that it will typically lead to wider confidence intervals
than LP. Another option would be to estimate VARMA models rather than pure VARs,
though this would be computationally expensive, and the bias-variance trade-off relative to
LPs is unclear. In principle, VAR procedures may work better under additional restrictions
on the misspecification, such as shape restrictions on the impulse response functions.11 How-
ever, it appears that detailed application-specific restrictions would be required to generate
a negligible worst-case bias, since we have shown that the least favorable misspecification
in our baseline analysis cannot generally be ruled out based on economic theory. Rather
than restricting the parameter space, future research could instead investigate weakening
the coverage requirement, e.g., only requiring a certain coverage probability on average over
a set of horizons (Armstrong, Kolesár, and Plagborg-Møller, 2022), or by changing the target
for inference from the true impulse response function to a smooth projection of this func-
tion (Genovese and Wasserman, 2008). Finally, a subjectivist Bayesian VAR modeler need
only worry about our negative results if their prior on potential misspecification attaches
significant weight to MA processes that imply large VAR biases.

11Given any convex parameter space for the misspecification MA polynomial α(L), the worst-case bias of
the VAR estimator (see Proposition 3.2) can be computed using convex programming.
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Figure A.1: Least favorable α†(L; h) for horizons h ∈ {1, 5, 10} for local-to-AR(1) models with
different persistence parameters ρ (left, middle, and right panel).

Appendix A Further theoretical results

A.1 Least favorable misspecification

Figure A.1 plots some numerical examples of the least favorable MA polynomial α†(L;h,M) =∑∞
ℓ=1 α

†
ℓ,h,ML

ℓ discussed in Section 4.2. We focus here on a univariate local-to-AR(1) model
yt = ρyt−1 + [1 + T−1/2α(L)]εt, though unreported numerical experiments suggest that the
qualitative features mentioned below also apply to multivariate models. Recall that the least
favorable MA coefficients depend on the horizon h of interest, while M only influences the
overall scale of the coefficients, and not their shape as a function of ℓ. The figure shows that
the shape of the coefficients either takes the form of a hump or of a single zig-zag pattern,
with the largest absolute value of the coefficients generally occurring at ℓ = h. Notice that
we can flip the signs of all coefficients without changing the absolute value of the bias.

A.2 More efficient bias-aware confidence interval

Generalizing the bias-aware VAR confidence interval in Section 4.3, consider a bias-aware
confidence interval that is centered at the model averaging estimator θ̂h(ω) = ωβ̂h +(1−ω)δ̂h

from Corollary 4.2:

CIB(θ̂h(ω);M) ≡
[
θ̂h(ω) ± cv1−a

(
(1 − ω)Mτ√

1 + ω2τ 2

)√
(1 + ω2τ 2) aVar(δ̂h)/T

]
,
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where τ ≡
√

aVar(β̂h)/ aVar(δ̂h) − 1. This interval equals the conventional LP interval when
ω = 1 and the bias-aware VAR interval when ω = 0.

Corollary A.1. Impose Assumption 2.1, ζ = 1/2, and aVar(δ̂h) > 0. Then, for any ω ∈
[0, 1],

inf
α(L) : ∥α(L)∥≤M

lim
T →∞

P (θh,T ∈ CIB(θ̂h(ω);M)) = 1 − a.

Proof. The result follows from Propositions 3.1, 3.2 and 4.1, Corollary A.2, and the same
calculations as in the proof of Corollary 4.2.

Even if we choose the weight ω to minimize confidence interval length, the resulting
bias-aware interval tends to be nearly as long as the LP interval. The length-optimal weight
ω = ω∗ is given by

ω∗ ≡ argmin
ω∈[0,1]

cv1−a

(
(1 − ω)Mτ√

1 + ω2τ 2

)√
1 + ω2τ 2.

Figure A.2 shows this optimal weight as a function of M and the relative asymptotic standard
deviation of the VAR and LP estimators, while Figure A.3 shows the length of the resulting
optimal bias-aware confidence interval relative to the length of the conventional LP interval.
We see that, for M ≥ 2, there is little gain from reporting the optimal bias-aware interval
rather than the LP interval, regardless of the relative precision of VAR and LP. An additional
observation is that, for M ≥ 1.5, the length-optimal ω∗ is numerically close to the MSE-
optimal weight M2/(1 +M2) derived in Corollary 4.2.

A.3 Covariance structure of LP and VAR estimators

The following result provides the asymptotic variance-covariance matrix of the LP and VAR
estimators in the general multi-dimensional set-up of Section 4.4. Define Ψi∗,j∗,h as in Propo-
sition 3.2, but making the dependence on (i∗, j∗) explicit in the notation.

Corollary A.2. Impose Assumption 2.1, with part (iii) holding for all shock indices j∗
1 , . . . , j

∗
k.

Then for any a, b ∈ {1, . . . , k},

aCov(β̂i∗
a,j∗

a ,ha , β̂i∗
b
,j∗

b
,hb

) = 1(j∗
a = j∗

b )σ−2
j∗

a

ψa,b +
min{ha,hb}∑

ℓ=1
e′

i∗
a,nA

ha−ℓΣ(A′)hb−ℓei∗
b
,n

 ,
aCov(δ̂i∗

a,j∗
a ,ha , δ̂i∗

b
,j∗

b
,hb

) = 1(j∗
a = j∗

b )σ−2
j∗

a
ψa,b + trace

(
Ψi∗

a,j∗
a ,haΣΨ′

i∗
b
,j∗

b
,hb
S−1

)
,
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Figure A.2: Length-optimal weight on LP in bias-aware confidence interval. Significance level
a = 10%. Horizontal axis: relative asymptotic standard deviation of VAR vs. LP. Different lines:
different bounds M on ∥α(L)∥.

Figure A.3: Relative length of optimal bias-aware confidence interval vs. conventional LP interval.
Significance level a = 10%. Horizontal axis: relative asymptotic standard deviation of VAR vs. LP.
Different lines: different bounds M on ∥α(L)∥.
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aCov(β̂i∗
a,j∗

a ,ha , δ̂i∗
b
,j∗

b
,hb

) = aCov(δ̂i∗
a,j∗

a ,ha , δ̂i∗
b
,j∗

b
,hb

),

where
ψa,b ≡ e′

i∗
a,nA

haHj∗
a
Dj∗

a
H

′
j∗

a
(A′)hbei∗

b
,n,

and the “aCov” notation refers to elements of the asymptotic variance-covariance matrix in
Equation (C.2) in Supplemental Appendix C.4. In particular, aCov(β̂i∗

a,j∗
a ,ha−δ̂i∗

a,j∗
a ,ha , δ̂i∗

b
,j∗

b
,hb

) =
0.

Proof. See Section B.7.

Appendix B Proofs

Lemmas whose name begins with “E” can be found in Supplemental Appendix E.

B.1 Proof of Proposition 3.1

Lemma E.1 shows that we can represent

yi∗,t+h = θh,T εj∗,t +B′
h,yyj∗,t

+B′
h,yyt−1 + ξi∗,h,t + T−ζΘh(L)εt, (B.1)

where the expressions for the coefficient matrices and the 1 × n two-sided lag polynomial
Θh(L) = ∑∞

ℓ=−∞ Θh,ℓL
ℓ are given in Lemma E.1.

Let x̂h,t be the residual in a regression of yj∗,t on y
j∗,t

and yt−1, using data points
1, 2, . . . , T − h. By definition, x̂h,t is in-sample orthogonal to y

j∗,t
and yt−1. Hence,

β̂h =
∑T −h

t=1 yi∗,t+hx̂h,t∑T −h
t=1 x̂2

h,t

= θh,T +
∑T −h

t=1 (yi∗,t+h − θh,T x̂h,t −B′
h,yyj∗,t

−B′
h,yyt−1)x̂h,t∑T −h

t=1 x̂2
h,t

by orthogonality

= θh,T +
T−1∑T −h

t=1 (yi∗,t+h − θh,T x̂h,t −B′
h,yyj∗,t

−B′
h,yyt−1)x̂h,t

σ2
j∗ + op(1) by Lemma E.4(v)

= θh,T +
T−1∑T −h

t=1 (yi∗,t+h − θh,T εj∗,t −B′
h,yyj∗,t

−B′
h,yyt−1)x̂h,t +Op(T−2ζ) + op(T−1/2)

σ2
j∗ + op(1)

by Lemma E.4(iv)
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= θh,T + T−1∑T −h
t=1 (ξi∗,h,t + T−ζΘh(L)εt)x̂h,t +Op(T−2ζ) + op(T−1/2)

σ2
j∗ + op(1) by (B.1)

= θh,T + T−1∑T −h
t=1 (ξi∗,h,t + T−ζΘh(L)εt)εj∗,t +Op(T−2ζ) + op(T−1/2)

σ2
j∗ + op(1)

by Lemma E.4(iii) and (vi)

= θh,T + T−1∑T −h
t=1 ξi∗,h,tεj∗,t +Op(T−2ζ) + op(T−1/2)

σ2
j∗ + op(1) by Lemma E.1,

and the result follows.

B.2 Proof of Proposition 3.2

Note first that

δ̂h − e′
i∗,nA

hH•,j∗ = e′
i∗,nÂ

hν̂ − e′
i∗,nA

hH•,j∗

= e′
i∗,nÂ

hH•,j∗ − e′
i∗,nA

hH•,j∗ + e′
i∗,nÂ

h(ν̂ −H•,j∗).

Lemma E.2 shows that Â− A = Op(T−ζ + T−1/2). By Magnus and Neudecker (2007, Table
7, p. 208),

(
∂(e′

i∗,nA
hH•,j∗)

∂ vec(A)

)′

= (H ′
•,j∗ ⊗ e′

i∗,n)
(

h∑
ℓ=1

(A′)h−ℓ ⊗ Aℓ−1
)

=
h∑

ℓ=1
H ′

•,j∗(A′)h−ℓ ⊗ e′
i∗,nA

ℓ−1,

so

δ̂h − e′
i∗,nA

hH•,j∗ =
(

h∑
ℓ=1

H ′
•,j∗(A′)h−ℓ ⊗ e′

i∗,nA
ℓ−1
)

vec(Â− A) + e′
i∗,nA

h(ν̂ −H•,j∗) + op(T−ζ + T−1/2)

=
h∑

ℓ=1
e′

i∗,nA
ℓ−1(Â− A)Ah−ℓH•,j∗ + e′

i∗,nA
h(ν̂ −H•,j∗) + op(T−ζ + T−1/2)

= trace
{
Ψh(Â− A)

}
+ e′

i∗,nA
h(ν̂ −H•,j∗) + op(T−ζ + T−1/2),

where Ψh ≡ ∑h
ℓ=1 A

h−ℓH•,j∗e′
i∗,nA

ℓ−1. Lemma E.2 further implies that

trace
{
Ψh(Â− A)

}
= T−ζ trace

{
S−1ΨhH

∞∑
ℓ=1

αℓDH
′(A′)ℓ−1

}

+ trace
{
S−1ΨhHT

−1
T∑

t=1
εtỹ

′
t−1

}
+ op(T−ζ),
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where S was defined in Assumption 2.1. Lemma E.3 shows that

ν̂ −H•,j∗ = 1
σ2

j∗
T−1

T∑
t=1

ξ0,tεj∗,t + op(T−ζ + T−1/2).

Using the definition of θh,T and re-arranging terms gives the desired result.

B.3 Proof of Corollary 3.2

Use the notation E∗(z | w) = Cov(z, w) Var(w)−1w for mean-square projection. Then

σ2
j∗Ψ′

hS
−1ỹt−1 =

(
h∑

ℓ=1
(A′)h−ℓei∗,n σ

2
j∗H ′

•,j∗(A′)ℓ−1︸ ︷︷ ︸
=Cov(εj∗,t−ℓ,ỹt−1)

)
S−1ỹt−1

=
h∑

ℓ=1
(A′)h−ℓei∗,nE

∗(εj∗,t−ℓ | ỹt−1)

=
h∑

ℓ=1
(A′)h−ℓei∗,nεj∗,t−ℓ,

where the last equality uses εj∗,t−ℓ ∈ span(˜̌yt−1, . . . , ˜̌yt−p) for ℓ = 1, . . . , h. Thus,

Var(ε′
tH

′Ψ′
hS

−1ỹt−1) = Var
(

1
σ2

j∗

h∑
ℓ=1

εj∗,t−ℓε
′
tH

′(A′)h−ℓei∗,n

)

= 1
σ4

j∗

h∑
ℓ=1

Var
(
εj∗,t−ℓε

′
tH

′(A′)h−ℓei∗,n

)

= 1
σ4

j∗

h∑
ℓ=1

E(ε2
j∗,t−ℓ) Var(ε′

tH
′(A′)h−ℓei∗,n)

= 1
σ2

j∗
Var

(
e′

i∗,n

h∑
ℓ=1

Ah−ℓHεt+ℓ

)
.

It now follows as in the proof of Corollary A.2 that aVar(β̂h) = aVar(δ̂h). Then Proposi-
tion 4.1 implies that aBias(δ̂h) = 0.

B.4 Proof of Corollary 4.1

By Proposition 4.1, supα(L) : ∥α(L)∥≤M aBias(δ̂h;α(L))2 = M2{aVar(β̂h) − aVar(δ̂h)}. The
result follows.
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B.5 Proof of Corollary 4.2

Write θ̂h(ω) = δ̂h +ω(β̂h − δ̂h). By Corollary A.2, the two terms are asymptotically indepen-
dent of each other, and the second term has asymptotic variance ω2{aVar(β̂h) − aVar(δ̂h)}.
Hence,

aMSE(θ̂h(ω)) = {(1 − ω) aBias(δ̂h)}2 + aVar(δ̂h) + ω2{aVar(β̂h) − aVar(δ̂h)}.

By Proposition 4.1, the supremum of the above expression over α(L) satisfying ∥α(L)∥ ≤ M

equals

(1 − ω)2M2{aVar(β̂h) − aVar(δ̂h)} + aVar(δ̂h) + ω2{aVar(β̂h) − aVar(δ̂h)}.

To find the ω that minimizes the above expression, we can equivalently minimize the function
(1 − ω)2M2 + ω2. The result follows.

B.6 Proof of Corollary 4.4

Proposition 4.1 implies that the absolute relative VAR bias |bh| can be made to take any
value in [0,∞) as α(L) varies over the set of all absolutely summable lag polynomials. The
corollary then follows from Corollaries A.2 and 3.1 and Proposition 3.3.

B.7 Proof of Corollary A.2

We first use Proposition 3.1 to compute aCov(β̂i∗
a,j∗

a ,ha , β̂i∗
b
,j∗

b
,hb

). Define ξj∗,h,t = (ξ1,j∗,h,t, . . . , ξn,j∗,h,t)′

as in Proposition 3.1, but making the dependence on both i∗ and j∗ explicit in the notation.
Observe that

E[ξi∗
a,j∗

a ,ha,tεj∗
a ,tξi∗

b
,j∗

b
,hb,sεj∗

b
,s] = 0 for all s ̸= t.

Hence,
aCov(β̂i∗

a,j∗
a ,ha , β̂i∗

b
,j∗

b
,hb

) = 1
σ2

j∗
a
σ2

j∗
b

E[ξi∗
a,j∗

a ,ha,tεj∗
a ,tξi∗

b
,j∗

b
,hb,tεj∗

b
,t].

If j∗
a < j∗

b , then εj∗
a ,t is independent of all the other terms in the above expectation, so the

expectation equals zero; similarly if j∗
a > j∗

b . Now consider the case j∗
a = j∗

b :

aCov(β̂i∗
a,j∗

a ,ha , β̂i∗
b
,j∗

a ,hb
) = 1

σ4
j∗

a

E[ξi∗
a,j∗

a ,ha,tξi∗
b
,j∗

a ,hb,tε
2
j∗

a ,t]
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= 1
σ4

j∗
a

E[ξi∗
a,j∗

a ,ha,tξi∗
b
,j∗

a ,hb,t]E[ε2
j∗

a ,t]

= 1
σ2

j∗
a

E[ξi∗
a,j∗

a ,ha,tξi∗
b
,j∗

a ,hb,t]

= 1
σ2

j∗
a

E[e′
i∗
a,nA

haHj∗
a
εj∗

a ,tε
′
j∗

a ,tH
′
j∗

a
(A′)hbei∗

b
,n]

+ E

e′
i∗
a,n

ha∑
ℓ1=1

hb∑
ℓ2=1

Aha−ℓ1Hεt+ℓ1ε
′
t+ℓ2H

′(A′)hb−ℓ2ei∗
b
,n


= 1
σ2

j∗
a

ψa,b +
min{ha,hb}∑

ℓ=1
e′

i∗
a,nA

ha−ℓΣ(A′)hb−ℓei∗
b
,n

 ,
as claimed.

We now derive aCov(δ̂i∗
a,j∗

a ,ha , δ̂i∗
b
,j∗

b
,hb

) using Proposition 3.2. Observe that the vector
process (ε′

t ⊗ ỹ′
t−1, ξ

′
j∗

a ,0,tεj∗
a ,t, ξ

′
j∗

b
,0,tεj∗

b
,t)′ is a martingale difference sequence with respect to

the filtration generated by {εt}. Moreover, E[(εt ⊗ ỹt−1)ξ′
j∗,0,tεj∗,t] = 0 for any j∗. Hence,

aCov(δ̂i∗
a,j∗

a ,ha , δ̂i∗
b
,j∗

b
,hb

) = E
[
trace

(
S−1Ψi∗

a,j∗
a ,haHεtỹ

′
t−1

)
trace

(
S−1Ψi∗

b
,j∗

b
,hb
Hεtỹ

′
t−1

)]
+ 1
σ2

j∗
a
σ2

j∗
b

E
[
e′

i∗
a,nA

haξj∗
a ,0,tξ

′
j∗

b
,0,t(A′)hbei∗

b
,nεj∗

a ,tεj∗
b

,t

]
.

The second term on the right-hand side above equals 1(j∗
a = j∗

b )σ−2
j∗

a
ψa,b, by similar arguments

as in the earlier LP calculation. The first term on the right-hand side above equals

E
[
ỹ′

t−1S
−1Ψi∗

a,j∗
a ,haHεtε

′
tH

′Ψ′
i∗
b
,j∗

b
,hb
S−1ỹt−1

]
= trace

(
E
[
ỹt−1ỹ

′
t−1S

−1Ψi∗
a,j∗

a ,haHεtε
′
tH

′Ψ′
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b
,j∗

b
,hb
S−1
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= trace

(
E
[
ỹt−1ỹ

′
t−1

]
S−1Ψi∗

a,j∗
a ,haHE [εtε

′
t]H ′Ψ′

i∗
b
,j∗

b
,hb
S−1

)
= trace

(
SS−1Ψi∗

a,j∗
a ,haHDH

′Ψ′
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b
,j∗

b
,hb
S−1

)
= trace

(
Ψi∗

a,j∗
a ,haΣΨ′

i∗
b
,j∗

b
,hb
S−1

)
,

as claimed.
Finally, we compute aCov(β̂i∗

a,j∗
a ,ha , δ̂i∗

b
,j∗

b
,hb

) using Propositions 3.1 and 3.2. Using argu-
ments similar to above, we obtain

aCov(β̂i∗
a,j∗

a ,ha , δ̂i∗
b
,j∗

b
,hb

)
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= 1
σ2

j∗
a

∞∑
s=−∞

E

e′
i∗
a,n

ha∑
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Aha−ℓHεt+ℓεj∗
a ,t trace
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b
,j∗

b
,hb
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b )σ−2
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a
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The first term on the left-hand side above equals
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