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APPENDIX C: FURTHER THEORETICAL RESULTS

C.1. Heteroskedasticity

The conclusions of Propositions 3.1 and 3.2 do not require shock independence, either cross-
sectionally or across time. In particular, our proofs of these propositions and the auxiliary
lemmas in Section E replace Assumption 2.1(i) by the following:1

ASSUMPTION C.1: εt is a strictly stationary martingale difference sequence with respect
to its natural filtration; Var(εt) = D ≡ diag(σ2

1 , . . . , σ
2
m); σj > 0 for all j = 1, . . . ,m;

E[∥εt∥4]<∞; and
∑∞

ℓ=1

∑∞
τ=1 ∥Cov(εt ⊗ εt, εt−ℓ ⊗ εt−τ )∥<∞.

Assumption C.1 strictly weakens Assumption 2.1(i) by allowing the shocks to be condition-
ally heteroskedastic and by weakening mutual shock independence to orthogonality. The last
part of Assumption C.1 is a vector version of the fourth-order cumulant summability condition
of Kuersteiner (2001, Assumption A1). It restricts the higher-order dependence of the shocks,
consistent with many stationary models of conditional heteroskedasticity.2

C.2. External instruments and proxies

Our framework can accommodate identification via an external instrument (also known as
a proxy) by a simple reparametrization. To see this, let the proxy be ordered first in yt. Set
j∗ = 1, and replace Assumption 2.1(iii) with the following:

ASSUMPTION C.2: The first column of A consists of zeros, except possibly the first element;
the first row of H equals (1,0,0, . . . ,0,1); the last column of H consists of zeros, except the
first element; and the last column of α(L) consists of zeros.

This assumption imposes the following restrictions:

1It is an interesting topic for future research to investigate whether the other results in Sections 3 and 4 also hold
under the weaker condition.

2One sufficient condition is finite dependence, i.e., there exists an integer K such that {εs}s≥t+K is independent
of {εs}s≤t. Another set of sufficient conditions is that E(εt | {εs}s̸=t) = 0 and {εt⊗εt} has absolutely summable
autocovariance function. See also Kuersteiner (2001, Remark 2, p. 362).
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• The proxy y1,t equals

y1,t =A1,•yt−1 + ε1,t + εm,t + T−ζ [α1,•(L) + αm,•(L)]εt,

which generalizes Assumption 4 in Plagborg-Møller and Wolf (2021) to allow for local
contamination by lagged shocks. The last shock εm,t is viewed as measurement error or
noise (vt in the notation of Plagborg-Møller and Wolf, 2021).

• The dynamics of (y2,t, . . . , yn,t) (i.e., with the proxy excluded) follow a VAR(1), up to the
local misspecification in the form of lags of (ε1,t, . . . , εm−1,t).

• The proxy measurement error εm,t is orthogonal to all leads and lags of (y2,t, . . . , yn,t).
Now transform the shocks from εt to ε̃t = (ε̃1,t, . . . , ε̃m,t)

′ as follows:

ε̃1,t ≡ ε1,t + εm,t; ε̃j,t ≡ εj,t for j = 2, . . . ,m− 1; ε̃m,t ≡ εm,t −
σ2
m

σ2
1 + σ2

m

(ε1,t + εm,t).

By construction, the elements of ε̃t are mutually orthogonal. Note that

ε1,t =
σ2
1

σ2
1 + σ2

m

ε̃1,t − ε̃m,t; εj,t = ε̃j,t for j = 2, . . . ,m− 1; εm,t =
σ2
m

σ2
1 + σ2

m

ε̃1,t + ε̃m,t;

write Q for the m×m matrix such that εt =Qε̃t. We can then re-express the VARMA(1,∞)
model for yt in Equation (2.1) as

yt =Ayt−1 + H̃[I + T−ζα̃(L)]ε̃t, (C.1)

where

H̃ ≡HQ=


1 0 0 · · · 0 0

σ2
1

σ2
1+σ2

m
H2,1 H2,2 H2,3 · · · H2,m−1 −H2,1

...
...

σ2
1

σ2
1+σ2

m
Hn,1 Hn,2 Hn,3 · · · Hn,m−1 −Hn,1

 ,

and α̃(L)≡Q−1α(L)Q. Under Assumption C.2 above, the impulse responses of (y2,t, . . . , yn,t)
with respect to ε̃1,t in the reparametrized system (C.1) equal σ2

1/(σ
2
1 + σ2

m) times the impulse
responses of (y2,t, . . . , yn,t) with respect to ε1,t in the original parametrization in Equation
(2.1). This follows by inspection of the elements H̃i,1 for i≥ 2, the assumption that Ai,1 = 0

for i≥ 2, and the fact that the first column of H̃α̃(L) equals Hα(L)Q•,1 =
σ2
1

σ2
1+σ2

m
Hα•,1(L)

(here we use the assumption that the last column of α(L) is zero).
If the original shocks (and measurement error) εt satisfy Assumption C.1, then the trans-

formed shocks ε̃t do also, provided that the fourth-order cumulant condition holds for the
transformed shocks (recall that Assumption C.1 only requires the shocks to be mutually or-
thogonal, not independent). The transformed system (C.1) therefore satisfies Assumption C.1
and Assumption 2.1(ii)–(v), with H̃ and α̃(L) in place of H and α(L). Hence, Propositions 3.1
and 3.2 apply. We conclude that LPs on the proxy y1,t—and recursive VARs with the proxy or-
dered first—consistently estimate the true impulse responses of (y2,t, . . . , yn,t) with respect to
ε1,t, up to the scale factor σ2

1

σ2
1+σ2

m
. This scale factor, which is the same across all response vari-

ables i∗ and horizons h, reflects attenuation bias caused by the measurement error in the proxy.
It gets canceled out if one reports relative (i.e., unit-effect-normalized) impulse responses, as
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explained by Plagborg-Møller and Wolf (2021, Section 3.3). Of course, though the VAR esti-
mator is consistent, it suffers from asymptotic bias of order T−ζ , while the LP estimator has
bias of the smaller order T−2ζ .

In summary, the main results in the paper carry over to identification via an external
instrument/proxy. A caveat is that the instrument/proxy must be strong, in the sense that
σ2
1 = Var(ε1,t) is not close to zero; otherwise, we will end up dividing by a number close

to zero when computing relative impulse responses.

C.3. Data-dependent lag selection

Here we argue that local projection inference is more robust to data-dependent lag selection
errors than conventional VAR inference. The following proposition establishes the properties
of conventional information criteria in our class of DGPs.

PROPOSITION C.1: Assume that the ň-dimensional process {y̌t} is a stationary solution of
the local-to-SVAR(p0) model in Equation (2.2). Assume also that Ǎp0 ̸= 0 so that p0 is the
minimal true autoregressive lag order, ȞDȞ ′ is positive definite, and the process (written in
companion form as on p. 7 of the main paper) satisfies Assumption 2.1.

Let ˆ̌Σ(p) denote the ň× ň sample residual variance-covariance matrix from a least-squares
VAR(p) regression on the data (y̌1, . . . , y̌T ). Let {gT}T be a deterministic scalar sequence. Fix
a maximal lag length K ≥ p0. Suppose we select the lag length by minimizing an information
criterion:

p̂≡ argmin
0≤p≤K

{
log det

(
ˆ̌Σ(p)

)
+ p× gT

}
.

Then the following statements hold:
i) If gT → 0, then P (p̂ < p0)→ 0 as T →∞.

ii) If TgT →∞ and ζ ≥ 1/2, then P (p̂ > p0)→ 0 as T →∞.

The proposition implies that, when applied to a VAR in the data {y̌t}, both the BIC (gT =
ň2(logT )/T ) and AIC (gT = 2ň2/T ) select p0 or more lags with high probability in large
samples, and in fact the BIC selects exactly p0 lags asymptotically when ζ ≥ 1/2.3 Hence, in
the latter case, it follows from Corollary 3.1 that it is pointwise asymptotically valid to report a
local projection confidence interval that controls for p̂ lags of the data, where p̂ is selected by
applying the BIC to auxiliary VAR regressions as defined above.

Unlike LP inference, VAR inference is sensitive to minor model selection errors. Leeb and
Pötscher (2005) show that VAR confidence intervals with lag length selected by BIC or AIC fail
to control coverage uniformly over the VAR parameter space. The breakdown in performance
happens for (a sequence of) DGPs that satisfy a VAR(p̃0) model where the first p0 lags have
large coefficients and the remaining p̃0 − p0 lags have small coefficients of order T−1/2; this
implies a VARMA(p0,∞) representation where the moving average coefficients are of order
T−1/2. Because the BIC or AIC cannot reliably detect the small coefficients, they will tend
to select fewer than p̃0 lags (cf. Proposition C.1). The small coefficients on the omitted lags

3For additional intuition, consider the critical case ζ = 1/2 where the moving average coefficients are of order
T−1/2. Under smoothness assumptions on the density of the shocks εt, the local-to-SVAR(p0) DGP is then contigu-
ous to an exact SVAR(p0) DGP (for formal results, see Hallin and Puri, 1988, Hallin et al., 1989). Since the BIC is
consistent for p0 in latter DGP, contiguity implies that the BIC also selects p0 lags with probability approaching 1 in
the former DGP.
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impart an asymptotic bias in the VAR estimator that can cause large coverage distortions for
the associated confidence interval, consistent with Corollary 3.1. However, if in this context
the BIC-selected lag length is instead used for local projection inference, the bias imparted
by the omitted lags is much smaller than for the VAR estimator and is in fact asymptotically
negligible: this is precisely the message of Proposition 3.1. Though our arguments fall short of
proving that local projection inference with data-dependent lag length is uniformly valid over
some parameter space, they nevertheless show that LP inference remains valid under the types
of drifting parameter sequences that Leeb and Pötscher (2005) show are responsible for the
non-uniformity of VAR inference.

C.3.1. Proof of Proposition C.1

The proof follows standard arguments for exact VAR models, see Lütkepohl (2005, Chapter
4.3.2) and references therein. We merely show that extra terms induced by the vanishing mov-
ing average process are asymptotically negligible under our assumptions. Let ∥ · ∥ denote the
Frobenius norm.

Lemma E.6 implies that T−1
∑T

t=1 y̌ty̌
′
t−ℓ = T−1

∑T

t=1
˜̌yt ˜̌y

′
t−ℓ + Op(T

−ζ) for any ℓ ≥ 0,
where {˜̌yt} is a process that satisfies the VAR(p0) model with no moving average term (α(L) =
0), see also Corollary 3.2. It follows from least-squares algebra that the probability limit of ˆ̌Σ(p)
for any fixed p is the same as it would be in an exact VAR(p0) DGP with no moving average
term. Statement (i) of the proposition then follows immediately from standard arguments for
lag length estimation in exact VAR models (Lütkepohl, 2005, Proposition 4.2).

To prove statement (ii), assume p ≥ p0. It suffices to show that ˆ̌Σ(p) = ˆ̌Σ0 +Op(T
−1) for

some data-dependent matrix ˆ̌Σ0 independent of p, since this implies4

P
(
log det

(
ˆ̌Σ(p)

)
+ pgT > log det

(
ˆ̌Σ(p0)

)
+ p0gT

)
= P

(
(p− p0)TgT >Op(1)

)
→ 1

when p > p0. Let yt denote the (ňp)-dimensional companion form vector obtained by stack-
ing p lags of y̌t, as in Equation (2.2). Then ˆ̌Σ(p) is the upper left ň × ň block of the
(ňp) × (ňp) matrix Σ̂ = T−1

∑T

t=1 ûtû
′
t defined in Section 2.2. To finish the proof, we

show that T−1
∑T

t=1 ∥ût − Hεt∥2 = Op(T
−1), which by Cauchy-Schwarz implies Σ̂ =

T−1
∑T

t=1Hεtε
′
tH

′ +Op(T
−1), as needed.

Note that when the estimation lag length p weakly exceeds the true autoregressive order p0,
all results in our paper apply, as noted in the discussion surrounding Equation (2.2). Hence,
using the definition of ut in Lemma E.6,

1

T

T∑
t=1

∥ût −Hεt∥2 ≤
2

T

T∑
t=1

∥ ût − ut︸ ︷︷ ︸
(A−Â)yt−1

∥2 + 2

T

T∑
t=1

∥ ut −Hεt︸ ︷︷ ︸
T−ζHα(L)εt

∥2

≤ 2 ∥Â−A∥2︸ ︷︷ ︸
Op((T−1/2+T−ζ)2)

1

T

T∑
t=1

∥yt−1∥2︸ ︷︷ ︸
Op(1)

+2T−2ζ∥H∥2 1

T

T∑
t=1

∥α(L)εt∥2︸ ︷︷ ︸
Op(1)

=Op(T
−1 + T−2ζ),

4Actually, in order to apply the delta method to the log determinant, we also use that plim ˆ̌Σ0 = ȞDȞ′, a matrix
that is non-singular by assumption.
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where the three Op(·) statements in the penultimate line rely on Lemmas E.2 and E.8 and
Assumption 2.1(v), respectively. When ζ ≥ 1/2, the right-hand side above is Op(T

−1). Q.E.D.

C.4. Inference on multiple impulse responses

This subsection generalizes the worst-case bias formula in Proposition 4.1 to the multi-
dimensional case and derives the worst-case coverage of the Wald confidence ellipsoid.

C.4.1. Set-up

We consider inference on any combination of impulse responses for various horizons h,
response variables i∗, and shocks j∗. When referring to impulse responses and estimators of
these, we need to make the response variable and shock explicit in the notation. Thus, we write
θi∗,j∗,h,T , β̂i∗,j∗,h, and δ̂i∗,j∗,h, with the definitions being the same as in Section 2. Let k denote
the total number of impulse responses of interest. We refer to the list of impulse responses by
the collection of triples {(i∗a, j∗a, ha)}ka=1 indexing the response variable, shock variable, and
horizon, respectively. Define the k-dimensional vectors of true impulse responses and LP and
VAR estimators:

θT ≡

θi∗1 ,j∗1 ,h1,T

...
θi∗

k
,j∗

k
,hk,T

 , β̂ ≡

β̂i∗1 ,j
∗
1 ,h1

...
β̂i∗

k
,j∗

k
,hk

 , δ̂ ≡

δ̂i∗1 ,j∗1 ,h1

...
δ̂i∗

k
,j∗

k
,hk

 .

It follows from Propositions 3.1 and 3.2 that, when ζ = 1/2,

√
T

(
β̂− θT

δ̂− θT

)
d→N

((
0k×1

aBias(δ̂)

)
,

(
aVar(β̂) aCov(β̂, δ̂)

aCov(δ̂, β̂) aVar(δ̂)

))
, (C.2)

for a k-dimensional vector aBias(δ̂) (defined in the proof of Proposition C.2 below) and k× k

matrices aVar(β̂), aVar(δ̂), and aCov(β̂, δ̂) given in Corollary A.2 in Appendix A.3. This
corollary also implies that the difference β̂ − δ̂ is asymptotically independent of δ̂, which
is not surprising given the general arguments of Hausman (1978) and the facts that (i) the
asymptotic variances of the estimators are the same as in the model with α(L) = 0 and (ii) the
VAR estimator is the quasi-MLE in such a model. It follows that aVar(β̂) ≥ aVar(δ̂) in the
positive semidefinite sense.

C.4.2. Worst-case bias

The following result generalizes the univariate worst-case bias formula in Proposition 4.1.

PROPOSITION C.2: Impose Assumption 2.1, with part (iii) holding for all shock indices
j∗1 , . . . , j

∗
k , and let ζ = 1/2. Let R be a constant matrix with k columns. Then

max
α(L) : ∥α(L)∥≤M

∥RaBias(δ̂)∥2 =M2λmax

(
R[aVar(β̂)− aVar(δ̂)]R′

)
,

where λmax(B) denotes the largest eigenvalue of the matrix B.

The proposition shows that the worst-case squared norm of the bias of the VAR estimator
Rδ̂ of RθT is a function of two simple quantities: the bound M on misspecification, and the
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largest eigenvalue of the difference aVar(Rβ̂)− aVar(Rδ̂) between the variance-covariance
matrices for the LP and VAR estimators. The latter eigenvalue equals max∥ς∥=1{aVar(ς ′Rβ̂)−
aVar(ς ′Rδ̂)}, i.e., the largest efficiency gain for VAR over LP across all linear combinations
(with norm 1) of the estimated parameters. Consequently, the worst-case bias is non-negligible
if the VAR offers efficiency gains for any linear combination of the parameters of interest,
echoing our univariate results. When R is a row vector, then the proposition implies that our
conclusions from Section 4.2 extend to inference on any linear combination of impulse re-
sponses.

C.4.3. Worst-case coverage of confidence ellipsoid

We next derive the coverage of the conventional Wald confidence ellipsoid based on the VAR
estimator. The level-(1− a) confidence ellipsoid is given by

CE(δ̂)≡
{
θ̃ ∈Rk : T (δ̂− θ̃)′ aVar(δ̂)−1(δ̂− θ̃)≤ χ2

1−a,k

}
,

where χ2
1−a,k is the 1− a quantile of the χ2 distribution with k degrees of freedom.

COROLLARY C.1: Impose Assumption 2.1, with part (iii) holding for all shock indices
j∗1 , . . . , j

∗
k , and let ζ = 1/2. Assume also that aVar(δ̂) is non-singular. Then

min
α(L) : ∥α(L)∥≤M

lim
T→∞

P (θT ∈CE(δ̂)) = Fk

(
χ2

1−a,k;M
2
[
λmax(aVar(β̂) aVar(δ̂)

−1)− 1
])
,

where Fk(x; c) is the cumulative distribution function, evaluated at point x ≥ 0, of a non-
central χ2 distribution with k degrees of freedom and non-centrality parameter c≥ 0.

The worst-case coverage probability of the VAR confidence ellipsoid depends on three
scalars: the bound M on misspecification, the dimension k of the ellipsoid, and the “multi-
variate relative standard error”√
λmin(aVar(δ̂) aVar(β̂)−1) = [λmax(aVar(β̂) aVar(δ̂)

−1)]−1/2 = min
ς∈Rk

√
aVar(ς ′δ̂)/aVar(ς ′β̂).

Again, the worst-case coverage distortion is an increasing function of the largest efficiency gain
for VAR over LP across all linear combinations of the impulse responses. Since VAR impulse
response estimates are often highly correlated across horizons, this suggests that the VAR un-
dercoverage can in fact be particularly severe in the multivariate case. Numerical calculations
(available upon request from the authors) show that the coverage distortions can be severe even
when M = 1, regardless of the dimension k.

C.4.4. Proof of Proposition C.2

Define α̃ℓ =D−1/2αℓD
1/2 for all ℓ≥ 1. Notice that ∥α(L)∥2 =

∑∞
ℓ=1 ∥α̃ℓ∥2.

By Proposition 3.2, we have aBias(δ̂i∗,j∗,h) =
∑∞

ℓ=1 trace(Ξi∗,j∗,h,ℓα̃ℓ), where

Ξi∗,j∗,h,ℓ ≡D1/2H ′(A′)ℓ−1S−1Ψi∗,j∗,hHD
1/2 − 1(ℓ≤ h)D−1/2ej∗,me

′
i∗,nA

h−ℓHD1/2.

Since trace(Ξi∗,j∗,h,ℓα̃ℓ) = vec(Ξi∗,j∗,h,ℓ)
′ vec(α̃′

ℓ), we can write

aBias(δ̂) =
∞∑
ℓ=1

Υℓ vec(α̃
′
ℓ),
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where

Υℓ ≡
(
vec(Ξi∗1 ,j

∗
1 ,h1,ℓ), . . . ,vec(Ξi∗

k
,j∗

k
,hk,ℓ)

)′
∈Rk×m2

.

Hence,

max
α(L) : ∥α(L)∥≤M

∥RaBias(δ̂)∥2 = max
{α̃ℓ}∞ℓ=1

:
∑∞

ℓ=1
∥α̃′

ℓ
∥2≤M2

∥∥∥∥∥
∞∑
ℓ=1

RΥℓ vec(α̃
′
ℓ)

∥∥∥∥∥
2

.

Lemma C.1 below shows that the final expression above equals M2λmax(
∑∞

ℓ=1RΥℓΥ
′
ℓR

′)
(the lemma only explicitly considers the case M = 1, but the general case then follows
from the homogeneity of degree 1 of the norm). Finally, Lemma C.2 below shows that∑∞

ℓ=1ΥℓΥ
′
ℓ = aVar(β̂) − aVar(δ̂). This completes the proof of the proposition. The proof

of Lemma C.1 shows that the maximum above is achieved when vec(α̃′
ℓ) ∝ Υ′

ℓv (with the
constant of proportionality being independent of ℓ and chosen to satisfy the norm constraint),
where v is the eigenvector corresponding to the largest eigenvalue ofR[aVar(β̂)−aVar(δ̂)]R′.
In the univariate case k = 1, this reduces to expression (4.1) in Section 4.2. Q.E.D.

LEMMA C.1: Let X denote the set of sequences {xℓ}∞ℓ=1 of m×m matrices xℓ satisfying∑∞
ℓ=1 ∥xℓ∥2 ≤ 1. Let {Lℓ}∞ℓ=1 be a sequence of r×m2 matrices Lℓ satisfying

∑∞
ℓ=1 ∥Lℓ∥2 <

∞. Then

max
{xℓ}∞ℓ=1

∈X

∥∥∥∥∥
∞∑
ℓ=1

Lℓ vec(xℓ)

∥∥∥∥∥
2

= λmax

(
∞∑
ℓ=1

LℓL
′
ℓ

)
. (C.3)

PROOF: A short proof using abstract functional analysis is available upon request from the
authors. Below we provide a more elementary proof.

The statement of the lemma is obvious if
∑∞

ℓ=1 ∥Lℓ∥2 = 0, in which case both sides of the
above display equal 0. Hence, we may assume that the series V ≡

∑∞
ℓ=1LℓL

′
ℓ converges to a

non-zero matrix. Let v be the unit-length eigenvector corresponding to the largest eigenvalue
λ≡ λmax(V ) ∈ (0,∞) of V .

The purported maximum (C.3) is achieved by the sequence {x∗
ℓ} given by vec(x∗

ℓ ) =
λ−1/2L′

ℓv:∥∥∥∥∥
∞∑
ℓ=1

Lℓ vec(x
∗
ℓ )

∥∥∥∥∥
2

=

∥∥∥∥∥λ−1/2

∞∑
ℓ=1

LℓL
′
ℓv

∥∥∥∥∥
2

= λ−1 ∥V v∥2 = λ−1 ∥λv∥2 = λ∥v∥2 = λ,

and

∞∑
ℓ=1

∥x∗
ℓ∥2 =

∞∑
ℓ=1

vec(x∗
ℓ )

′ vec(x∗
ℓ ) = λ−1v′

∞∑
ℓ=1

LℓL
′
ℓv = λ−1v′V v = λ−1λ= 1.

We complete the proof by showing that the left-hand side of (C.3) is bounded above by the
right-hand side. Let K be an arbitrary positive integer. Then

max
{xℓ}∞ℓ=1

∈X

∥∥∥∥∥
∞∑
ℓ=1

Lℓ vec(xℓ)

∥∥∥∥∥≤ max
{xℓ}∞ℓ=1

∈X

∥∥∥∥∥
K∑
ℓ=1

Lℓ vec(xℓ)

∥∥∥∥∥+ max
{xℓ}∞ℓ=1

∈X

∥∥∥∥∥
∞∑

ℓ=K+1

Lℓ vec(xℓ)

∥∥∥∥∥ .
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The second term on the right-hand side is bounded above by (
∑∞

ℓ=K+1 ∥Lℓ∥2)1/2 by Cauchy-
Schwarz. As for the first term, standard results for the eigenvalues of finite-dimensional matri-
ces yield

max
{xℓ}∞ℓ=1

∈X

∥∥∥∥∥
K∑
ℓ=1

Lℓ vec(xℓ)

∥∥∥∥∥
2

= max
x∈RKm2

: ∥x∥≤1

∥∥(L1 L2 · · · LK

)
x
∥∥2

= λmax

((
L1 · · · LK

)′ (
L1 · · · LK

))
= λmax

((
L1 · · · LK

) (
L1 · · · LK

)′)
= λmax

(
K∑
ℓ=1

LℓL
′
ℓ

)
.

We have shown

max
{xℓ}∞ℓ=1

∈X

∥∥∥∥∥
∞∑
ℓ=1

Lℓ vec(xℓ)

∥∥∥∥∥≤
(
λmax

(
K∑
ℓ=1

LℓL
′
ℓ

))1/2

+

(
∞∑

ℓ=K+1

∥Lℓ∥2
)1/2

.

Now let K→∞. Since
∑∞

ℓ=1LℓL
′
ℓ is a convergent series, the first term on the right-hand side

above converges to λ1/2 by continuity of eigenvalues, while the second term converges to 0.
This establishes the required bound. Q.E.D.

LEMMA C.2: Under the assumptions of Proposition C.2, and using the notation in the proof
of that proposition, we have

∞∑
ℓ=1

ΥℓΥ
′
ℓ = aVar(β̂)− aVar(δ̂).

PROOF: By definition of Υℓ, it suffices to show that, for any indices a, b ∈ {1, . . . , k},

∞∑
ℓ=1

vec(Ξi∗a,j∗a,ha,ℓ)
′ vec(Ξi∗

b
,j∗

b
,hb,ℓ) = aCov(β̂i∗a,j∗a,ha , β̂i∗

b
,j∗

b
,hb

)− aCov(δ̂i∗a,j∗a,ha , δ̂i∗b ,j∗b ,hb
).

(C.4)
Multiplying out terms, we find that the left-hand side above equals

∞∑
ℓ=1

trace(Ξ′
i∗a,j∗a,ha,ℓΞi∗

b
,j∗

b
,hb,ℓ) =

∞∑
ℓ=1

trace
(
Aℓ−1Σ(A′)ℓ−1S−1Ψi∗

b
,j∗

b
,hb

ΣΨ′
i∗a,j∗a,ha

S−1
)

−
hb∑
ℓ=1

trace
(
Aℓ−1H•,j∗

b
e′i∗

b
,nA

hb−ℓΣΨ′
i∗a,j∗a,ha

S−1
)

−
ha∑
ℓ=1

trace
(
Aℓ−1H•,j∗ae

′
i∗a,nA

ha−ℓΣΨ′
i∗
b
,j∗

b
,hb
S−1

)

+ 1(j∗a = j∗b )σ
−2
j∗a

min{ha,hb}∑
ℓ=1

e′i∗
b
,nA

hb−ℓΣ(A′)ha−ℓei∗a,n.
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We now evaluate each of the four terms on the right-hand side above. The first term equals

trace

(
∞∑
ℓ=1

Aℓ−1Σ(A′)ℓ−1

︸ ︷︷ ︸
=S

S−1Ψi∗
b
,j∗

b
,hb

ΣΨ′
i∗a,j∗a,ha

S−1

)
= trace

(
Ψi∗

b
,j∗

b
,hb

ΣΨ′
i∗a,j∗a,ha

S−1
)
.

The second term (in the earlier display) equals

− trace

(
hb∑
ℓ=1

Aℓ−1H•,j∗
b
e′i∗

b
,nA

hb−ℓ

︸ ︷︷ ︸
=
∑hb

ℓ=1
Ahb−ℓH•,j∗

b
e′
i∗
b
,n

Aℓ−1=Ψi∗
b
,j∗

b
,hb

ΣΨ′
i∗a,j∗a,ha

S−1

)
=− trace

(
Ψi∗

b
,j∗

b
,hb

ΣΨ′
i∗a,j∗a,ha

S−1
)
,

and the third term (in the earlier display) also equals this quantity by a symmetric calculation.
In conclusion, we have shown

∞∑
ℓ=1

trace(Ξ′
i∗a,j∗a,ha,ℓΞi∗

b
,j∗

b
,hb,ℓ)

= 1(j∗a = j∗b )σ
−2
j∗a

min{ha,hb}∑
ℓ=1

e′i∗
b
,nA

hb−ℓΣ(A′)ha−ℓei∗a,n − trace
(
Ψi∗

b
,j∗

b
,hb

ΣΨ′
i∗a,j∗a,ha

S−1
)
.

The desired result (C.4) now follows from Corollary A.2. Q.E.D.

C.4.5. Proof of Corollary C.1

The result follows straightforwardly from (C.2) if we can show that the maximal non-
centrality parameter equals

max
α(L) : ∥α(L)∥≤M

aBias(δ̂)′ aVar(δ̂)−1 aBias(δ̂) =M2
[
λmax(aVar(β̂) aVar(δ̂)

−1)− 1
]
.

But this follows from applying Proposition C.2 with R= aVar(δ̂)−1/2, since

λmax

(
aVar(δ̂)−1/2[aVar(β̂)− aVar(δ̂)] aVar(δ̂)−1/2′

)
= λmax

(
aVar(δ̂)−1/2 aVar(β̂) aVar(δ̂)−1/2′ − Ik

)
= λmax

(
aVar(β̂) aVar(δ̂)−1

)
− 1. Q.E.D.

APPENDIX D: SIMULATION DETAILS AND FURTHER RESULTS

We here provide supplementary details for the simulation study reported in Section 5.2.

D.1. Implementation details

All inference procedures (correctly) assume homoskedastic shocks. The VAR is estimated
with an intercept, and confidence intervals are constructed either using the delta method or the
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recursive residual bootstrap; following the recommendation of Inoue and Kilian (2020), we
report the Efron bootstrap confidence interval. For LPs, we include the shock measure as the
only contemporaneous regressor, control for an intercept and the same p lags of all observables
as in the VAR, and report the OLS coefficient on the shock. Confidence intervals are constructed
either using homoskedastic OLS standard errors or by bootstrapping an auxiliary VAR as in
Montiel Olea and Plagborg-Møller (2021), but using a recursive residual bootstrap instead of
a wild bootstrap; we follow the latter paper and report the percentile-t bootstrap confidence
interval. We use 1,000 bootstrap draws, and the maximal lag length considered for the AIC is
24.

D.2. Further results

Figure D.1 shows coverage probabilities and median confidence interval lengths for longer
estimation lag lengths p ∈ {15,18}. The results are consistent with the asymptotic theory: the
longer the estimation lag length, the less severe VAR undercoverage, with correct coverage
ensured through equivalence with LP. Of course, since the true DGP is a VAR(18), the p= 18
VAR estimator is more efficient than LP at longer horizons (middle panel). The bottom panel
of the figure shows the root MSE for VAR and LP, with lag length selected by AIC. By this
measure, VAR outperforms LP, indicating that while the VAR bias is large enough to seriously
compromise inference (as shown earlier), it is not so large as to threaten the VAR estimator’s
status as a useful point estimator.

APPENDIX E: FURTHER PROOFS

We impose Assumption C.1 and Assumption 2.1(ii)–(v) throughout; as discussed in Sec-
tion C.1, none of the proofs below require Assumption 2.1(i). Let ∥B∥ denote the Frobe-
nius norm of any matrix B. It is well known that this norm is sub-multiplicative: ∥BC∥ ≤
∥B∥ · ∥C∥. Let In denote the n× n identity matrix, 0m×n the m× n matrix of zeros, and ei,n
the n-dimensional unit vector with a 1 in the i-th position. Recall from Assumption 2.1 the
definitions D ≡ Var(εt) = diag(σ2

1 , . . . , σ
2
m), ỹt ≡ (In − AL)−1Hεt =

∑∞
s=0A

sHεt−s, and
S ≡Var(ỹt).

E.1. Main lemmas

LEMMA E.1: For any i∗ ∈ {1, . . . , n} and j∗ ∈ {1, . . . ,m}, we have

yi∗,t+h = θh,T εj∗,t +B′
h,i∗,j∗yj∗,t +B′

h,i∗,j∗yt−1 + ξi∗,h,t + T−ζΘh(L)εt,

where

θh,T ≡ e′i∗,n(A
hH + T−ζ

h∑
ℓ=1

Ah−ℓHαℓ)ej∗,m,

B′
h,i∗,j∗ ≡ e′i∗,nA

hHj∗H
−1
11 ,

B′
h,i∗,j∗ ≡ e′i∗,n

[
Ah+1 −AhHj∗H

−1
11 Ij∗A

]
,

ξi∗,h,t ≡ e′i∗,nA
hHj∗εj∗,t +

h∑
ℓ=1

e′i∗,nA
h−ℓHεt+ℓ,
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COVERAGE AND LENGTH FOR LAG LENGTH p= 15

COVERAGE AND LENGTH FOR LAG LENGTH p= 18

RMSE FOR LAG LENGTH SELECTED BY AIC

FIGURE D.1.—Top two panels: coverage probability (left) and median length (right) for VAR (red) and LP (blue)
90% confidence intervals computed via the delta method or bootstrap (the latter are indicated with subscript “b” in
the legends). Bottom panel: root MSE of estimators. Lag length: p= 15 in the top panel, p= 18 in the middle panel,
and p selected by AIC in the bottom panel.
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and Θh(L) =
∑∞

ℓ=−∞Θh,ℓL
ℓ is an absolutely summable, 1×n two-sided lag polynomial with

the j∗-th element of Θh,0 equal to zero. Moreover,

T−1

T−h∑
t=1

(Θh(L)εt)εj∗,t =Op(T
−1/2).

PROOF: Iteration on the model in Equation (2.1) yields

yt+h =Ah+1yt−1 +
h∑

ℓ=0

Ah−ℓ(Hεt+ℓ + T−ζHα(L)εt+ℓ). (E.1)

As in Section 2.2, let y
j∗,t

≡ (y1,t, . . . , yj∗−1,t)
′ denote the variables ordered before yj∗,t (if

any). Analogously, let yj∗,t ≡ (yj∗+1,t, . . . yn,t)
′ denote the variables ordered after yj∗,t.

Using Assumption 2.1(iii), partition

H = (Hj∗ ,H•,j∗ ,Hj∗) =

H11 0 0
H21 H22 0
H31 H32 H33


conformably with the vector yt = (y′

j∗,t
, yj∗,t, y

′
j∗,t)

′. Let Ij∗ denote the first j∗ − 1 rows of
the n× n identity matrix. Using the definition of yt in Equation (2.1),

y
j∗,t

= Ij∗Ayt−1 +H11εj∗,t + T−ζH11Ij∗α(L)εt,

where εj∗,t = Ij∗εt. Using the previous equation to solve for εj∗,t we get

εj∗,t =H−1
11 (y

j∗,t
− Ij∗Ayt−1 − T−ζH11Ij∗α(L)εt). (E.2)

Expanding the terms in (E.1) we get:

yt+h =Ah+1yt−1 +AhHεt + T−ζAhHα(L)εt +
h∑

ℓ=1

Ah−ℓ(Hεt+ℓ + T−ζHα(L)εt+ℓ)

=Ah+1yt−1 +
(
AhHj∗εj∗,t +AhH•,j∗εj∗,t +AhHj∗εj∗,t

)
+ T−ζAhHα(L)εt +

h∑
ℓ=1

Ah−ℓ(Hεt+ℓ + T−ζHα(L)εt+ℓ)

=Ah+1yt−1 +AhHj∗H
−1
11 (y

j∗,t
− Ij∗Ayt−1 − T−ζH11Ij∗α(L)εt) +AhH•,j∗εj∗,t +AhHj∗εj∗,t

+ T−ζAhHα(L)εt +

h∑
ℓ=1

Ah−ℓ(Hεt+ℓ + T−ζHα(L)εt+ℓ),

where the last equality follows from substituting (E.2). Re-arranging terms we get

yi∗,t+h =
(
e′i∗,nA

hH•,j∗
)
εj∗,t +

(
e′i∗,nA

hHj∗H
−1
11

)︸ ︷︷ ︸
≡B′

h,i∗,j∗

y
j∗,t

+
(
e′i∗,n

[
Ah+1 −AhHj∗H

−1
11 Ij∗A

])︸ ︷︷ ︸
≡B′

h,i∗,j∗

yt−1
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+ e′i∗,n

(
AhHj∗εj∗,t +

h∑
ℓ=1

Ah−ℓHεt+ℓ

)
︸ ︷︷ ︸

=ξi∗,h,t

+ T−ζe′i∗,n

(
−AhHj∗H

−1
11 H11Ij∗α(L)εt +

h∑
ℓ=0

Ah−ℓHα(L)εt+ℓ

)
.

Using the definition of θh,T ≡ e′i∗,n(A
hH + T−ζ

∑h

ℓ=1A
h−ℓHαℓ)ej∗,m and adding and sub-

tracting e′i∗,n
(
T−ζ

∑h

ℓ=1A
h−ℓHαℓ

)
ej∗,mεj∗,t in the display above, we obtain a representa-

tion of the form

yi∗,t+h = θh,T εj∗,t +B′
h,i∗,j∗yj∗,t +B′

h,i∗,j∗yt−1 + ξi∗,h,t + T−ζũt, (E.3)

where

ũt ≡ e′i∗,n

(
−AhHj∗Ij∗α(L)εt +

h∑
ℓ=0

Ah−ℓHα(L)εt+ℓ −

(
h∑

ℓ=1

Ah−ℓHαℓej∗,me
′
j∗,m

)
εt

)
.

(E.4)
Algebra shows that ũt can be written as a two-sided lag polynomial, Θh(L) =

∑∞
ℓ=−∞Θh,ℓL

ℓ,
with coefficients of dimension 1× n given by the following formulae:

Θh,ℓ =


−e′i∗,nAhHj∗Ij∗αℓ +

∑h

s=0 e
′
i∗,nA

h−sHαℓ+s for ℓ≥ 1,∑h

s=1 e
′
i∗,nA

h−sHαs −
∑h

s=1 e
′
i∗,nA

h−sHαsej∗,me
′
j∗,m for ℓ= 0,∑h+ℓ

s=1 e
′
i∗,nA

h−s+ℓHαs for ℓ ∈ {−(h− 1), . . . ,−1},
01×n for ℓ≤−h.

In particular, Θh,0,j∗ ≡Θh,0ej∗,m = 0.
We next show that Θh(L) is absolutely summable, that is

∑∞
ℓ=−∞ ∥Θh,l∥<∞. To do this,

it suffices to show that
∑∞

ℓ=1 ∥Θh,l∥<∞, since all the coefficients with index ℓ≤−h are 0.
Note that, by definition,

∞∑
ℓ=1

∥Θh,ℓ∥ ≤ ∥Ah∥∥Hj∗Ij∗∥
∞∑
ℓ=1

∥αℓ∥+ ∥H∥
∞∑
ℓ=1

h∑
s=0

∥Ah−s∥∥αℓ+s∥.

Let λ ∈ [0,1) and C > 0 be chosen such that ∥Aℓ∥ ≤ Cλℓ for all ℓ≥ 0 (such constants exists
by Assumption 2.1(ii)). Then

∞∑
ℓ=1

h∑
s=0

∥Ah−s∥∥αℓ+s∥ ≤C

∞∑
ℓ=1

h∑
s=1

λh−s∥αℓ+s∥ ≤C

∞∑
ℓ=1

h∑
s=1

∥αℓ+s∥ ≤Ch

∞∑
ℓ=1

∥αℓ∥<∞,

where the last inequality holds because the coefficients of α(L) are summable. We thus con-
clude that

yi∗,t+h = θh,T εj∗,t +B′
h,yyj∗,t +B′

h,yyt−1 + ξi∗,h,t + T−ζΘh(L)εt,

where Θh(L) is a two-sided lag-polynomial with summable coefficients.
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Finally, we show that

T−1

T−h∑
t=1

(Θh(L)εt)εj∗,t =Op(T
−1/2). (E.5)

We can decompose (Θh(L)εt)εj∗,t into finitely many terms of the form (ψj(L)εj,t)εj∗,t for
some two-sided, absolutely summable lag polynomial ψj(L) and integer j. Since Θh,0,j∗ = 0,
each of these terms has mean zero by shock orthogonality. By Lemma E.11, each term also has
absolutely summable autocovariances. Hence, Brockwell and Davis (1991, Thm. 7.1.1) and
Chebyshev’s inequality imply that the sample average of each term is Op(T

−1/2). Q.E.D.

LEMMA E.2:

Â−A= T−ζH
∞∑
ℓ=1

αℓDH
′(A′)ℓ−1S−1 + T−1

T∑
t=1

Hεtỹ
′
t−1S

−1 + op(T
−ζ).

In particular, Â−A=Op(T
−ζ + T−1/2).

PROOF: Since,

Â−A=

(
T−1

T−h∑
t=1

uty
′
t−1

)(
T−1

T−h∑
t=1

yt−1y
′
t−1

)−1

,

the result follows from Lemmas E.7 and E.8. Q.E.D.

LEMMA E.3:

ν̂ −H•,j∗ =
1

σ2
j∗
T−1

T∑
t=1

ξ0,tεj∗,t +Op(T
−2ζ) + op(T

−1/2).

PROOF: By Lemma E.5, ν̂ = (01×(j∗−1),1, ν̂
′
), where the j-th element of ν̂ equals the on-

impact local projection of yi∗+j,t on yj∗,t, controlling for y
j∗,t

and yt−1. The statement of the
lemma is therefore a direct consequence of Proposition 3.1 and the fact that (by definition)
ξ0,i,t = 0 for i≤ j∗. Q.E.D.

LEMMA E.4: Fix h≥ 0. Consider the regression of yj∗,t on qj∗,t ≡ (y′
j∗,t

, y′t−1)
′, using the

observations t= 1,2, . . . , T − h:

yj∗,t = ϑ̂′
hqj∗,t + x̂h,t.

Note that the residuals x̂h,t are consistent with the earlier definition in the proof of Propo-
sition 3.1. Let λ′

j∗ be the row vector containing the first j∗ − 1 elements of the last row
of −H̃−1 (where H̃ is defined in Assumption 2.1(iii)). Let λ′

j∗ ≡ (−λ′
j∗ ,1,01×(n−j∗)) and

ϑ≡ (λ′
j∗ , (λ

′
j∗A))

′. Then:
i) ϑ̂h − ϑ=Op(T

−ζ + T−1/2).
ii) For j ≥ j∗, T−1

∑T−h

t=1 (x̂h,t − εj∗,t)εj,t =Op(T
−2ζ) + op(T

−1/2).
iii) For ℓ≥ 1, T−1

∑T−h

t=1 (x̂h,t − εj∗,t)εt+ℓ =Op(T
−2ζ) + op(T

−1/2).
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iv) T−1
∑T−h

t=1 (x̂h,t − εj∗,t)x̂h,t =Op(T
−2ζ) + op(T

−1/2).
v) T−1

∑T−h

t=1 x̂2
h,t

p→ σ2
j∗ .

vi) For any absolutely summable two-sided lag polynomial B(L), T−1
∑T−h

t=1 (x̂h,t −
εj∗,t)B(L)εt =Op(T

−ζ + T−1/2).

PROOF: By Equation (2.1), the outcome variables in the model satisfy

yt =Ayt−1 +H[Im + T−ζα(L)]εt, t= 1,2, . . . , T.

By Assumption 2.1(iii), the first j∗ rows of the matrixH above are of the form (H̃,0j∗×(j∗−m)),
where m is the number of shocks and H̃ is a j∗ × j∗ lower triangular matrix with 1’s on the
diagonal.

We can premultiply the first j∗ equations of (2.1) by H̃−1 to obtain:

[H̃−1,0j∗×(n−j∗)]yt = [H̃−1,0j∗×(n−j∗)]Ayt−1 + [Ij∗ ,0j∗×(m−j∗)][Im + T−ζα(L)]εt.

By definition, −λ′
j∗ is the row vector containing the first j∗ − 1 elements of the last row of

H̃−1 and λ′
j∗ ≡ (−λ′

j∗ ,1,01×(n−j∗)). Thus, we can re-write the j∗-th equation above as

[−λ′
j∗ ,1,0j∗×(n−j∗)]yt = λ′

j∗Ayt−1 + εj∗,t + T−ζαj∗(L)εt,

where αj∗(L) is the j∗-th row of α(L). Re-arranging terms we get

yj∗,t = ϑ′qj∗,t + εj∗,t + T−ζαj∗(L)εt,

where ϑ≡ (λ′
j∗ , (λ

′
j∗A))

′ and qj∗,t ≡ (y′
j∗,t

, y′t−1)
′. In a slight abuse of notation, and for nota-

tional simplicity, we henceforth replace qj∗,t by qt.
Statement (i) follows from standard OLS algebra if we can show that a) T−1

∑T−h

t=1 qtεj∗,t =

Op(T
−ζ + T−1/2), b) (T−1

∑T−h

t=1 qtq
′
t)

−1 = Op(1), and c) T−ζ−1
∑T−h

t=1 qt(αj∗(L)εt) =
Op(T

−ζ). Lemma E.9 establishes these results.
The proofs of statements (ii) and (iii) are similar, so we focus on the latter. By definition

of x̂h,t, we have x̂h,t − εj∗,t = (ϑ− ϑ̂h)
′qt + T−ζαj∗(L)εt. Let q̃t ≡ (ỹ′

j∗,t
, ỹ′t−1)

′ and ∆t ≡
qt − q̃t. Then

T−1

T−h∑
t=1

(x̂h,t − εj∗,t)εt+ℓ = (ϑ− ϑ̂h)
′

(
1

T

T−h∑
t=1

∆tεt+ℓ

)
(E.6)

+ (ϑ− ϑ̂h)
′

(
1

T

T−h∑
t=1

q̃tεt+ℓ

)
(E.7)

+
1

T ζ

(
1

T

T−h∑
t=1

(αj∗(L)εt)εt+ℓ

)
. (E.8)

By (i), (ϑ − ϑ̂h) = Op(T
−ζ + T−1/2). Lemma E.6, Assumption C.1, and Cauchy-Schwarz

imply that the sample average in parenthesis in (E.6) is Op (T
−ζ). The two sample averages in

parentheses in lines (E.7)–(E.8) have mean zero, since the shocks are white noise and mutually
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orthogonal, so Lemma E.11 and Brockwell and Davis (1991, Thm. 7.1.1) imply that they are
each Op(T

−1/2). It follows that

T−1

T−h∑
t=1

(x̂h,t − εj∗,t)εt+ℓ =Op(T
−2ζ) + op(T

−1/2).

For statement (iv), note that

T−1

T−h∑
t=1

(x̂h,t − εj∗,t)x̂h,t = T−1

T−h∑
t=1

(x̂h,t − εj∗,t)
2 + T−1

T−h∑
t=1

(x̂h,t − εj∗,t)εj∗,t.

Lemma E.10 shows that T−1
∑T−h

t=1 (x̂h,t−εj∗,t)2 =Op(T
−2ζ)+op(T

−1/2). This result, com-
bined with (ii), implies that statement (iv) holds.

For statement (v), note that

T−1

T−h∑
t=1

(x̂h,t)
2 = T−1

T−h∑
t=1

(x̂h,t − εj∗,t + εj∗,t)
2

= T−1

T−h∑
t=1

(x̂h,t − εj∗,t)
2 − 2T−1

T−h∑
t=1

(x̂h,t − εj∗,t)εj∗,t + T−1

T−h∑
t=1

ε2j∗,t.

Lemma E.10 and statement (ii) imply that the first two terms converge in probability to zero.
Since T−1

∑T−h

t=1 ε2j∗,t
p→ σ2

j∗ by Lemma E.11 and Brockwell and Davis (1991, Thm. 7.1.1),
statement (v) holds.

Finally, statement (vi) obtains by decomposing

T−1

T−h∑
t=1

B(L)εt(x̂h,t − εj∗,t) = T−1

T−h∑
t=1

B(L)εtq
′
t(ϑ− ϑ̂h) + T−ζT−1

T−h∑
t=1

B(L)εt[αj∗(L)εt]
′

=Op(1)×Op(T
−ζ + T−1/2) + T−ζ ×Op(1),

where the last line follows from statement (i), Lemma E.6, and Lemma E.11. Q.E.D.

E.2. Auxiliary numerical lemma

LEMMA E.5: Define yi,t ≡ (yi+1,t, yi+2,t, . . . , ynt)
′ to be the (possibly empty) vector of vari-

ables that are ordered after yi,t in yt. Partition

Σ̂ =

Σ̂11 Σ̂12 Σ̂13

Σ̂21 Σ̂22 Σ̂23

Σ̂31 Σ̂32 Σ̂33

 , Ĉ =

Ĉ11 0 0

Ĉ21 Ĉ22 0

Ĉ31 Ĉ32 Ĉ33

 ,

conformably with yt = (y′
j∗,t

, yj∗,t, y
′
j∗,t)

′, where Σ̂ = ĈĈ ′ (in particular, Ĉ22 = Ĉj∗,j∗ ). Then

(Σ̂31, Σ̂32)

(
Σ̂11 Σ̂12

Σ̂21 Σ̂22

)−1

ej∗,j∗ = Ĉ−1
22 Ĉ32. (E.9)



SUPPLEMENT TO “DOUBLY ROBUST LOCAL PROJECTIONS. . . ” 17

Note that the lemma implies β̂0 = δ̂0: If i∗ < j∗ or i∗ = j∗, then both estimators equal 0 or 1
(by definition), respectively; if i∗ > j∗, then β̂0 is defined as the i∗−j∗ element of the left-hand
side of (E.9) (by Frisch-Waugh), while δ̂0 is defined as the i∗ − j∗ element of the right-hand
side of (E.9).

PROOF: From the relationship Σ̂ = ĈĈ ′, we getΣ̂11 Σ̂12

Σ̂21 Σ̂22

Σ̂31 Σ̂32

=

Ĉ11Ĉ
′
11 Ĉ11Ĉ

′
21

Ĉ21Ĉ
′
11 Ĉ21Ĉ

′
21 + Ĉ2

22

Ĉ31Ĉ
′
11 Ĉ31Ĉ

′
21 + Ĉ32Ĉ22

 .

The partitioned inverse formula implies(
Σ̂11 Σ̂12

Σ̂21 Σ̂22

)−1

ej∗,j∗ =
1

Ĉ21Ĉ
′
21 + Ĉ2

22 − Ĉ21Ĉ
′
11(Ĉ11Ĉ

′
11)

−1Ĉ11Ĉ
′
21

(
−(Ĉ11Ĉ

′
11)

−1Ĉ11Ĉ
′
21

1

)
=

1

Ĉ2
22

(
−Ĉ−1′

11 Ĉ ′
21

1

)
,

so

(Σ̂31, Σ̂32)

(
Σ̂11 Σ̂12

Σ̂21 Σ̂22

)−1

ej∗,j∗ =
1

Ĉ2
22

(
−Ĉ31Ĉ

′
11Ĉ

−1′
11 Ĉ ′

21 + Ĉ31Ĉ
′
21 + Ĉ32Ĉ22

)
=

1

Ĉ22

Ĉ32.

Q.E.D.

E.3. Auxiliary asymptotic lemmas

LEMMA E.6: T−1
∑T

t=1 ∥yt− ỹt∥2 =Op(T
−2ζ) and T−1

∑T

t=1 ut(yt−1− ỹt−1)
′ =Op(T

−2ζ+
T−ζ−1/2), where ut ≡ yt −Ayt−1.

PROOF: Using Equation (2.1) and the definition ỹt ≡ (In −AL)−1Hεt, we have

yt − ỹt = T−ζ(In −AL)−1Hα(L)εt.

The lag polynomial (In −AL)−1Hα(L) is absolutely summable by virtue of being a product
of absolutely summable polynomials, see Assumption 2.1(ii) and (v).

Brockwell and Davis (1991, Prop. 3.1.1) implies E[T 2ζ∥yt − ỹt∥2]<∞. The first statement
of the lemma then follows from Markov’s inequality.

In order to establish the second part of the lemma, note that

1

T

T∑
t=1

ut (yt−1 − ỹt−1)
′ =H

(
1

T

T∑
t=1

εt (yt−1 − ỹt−1)
′

)
+T−ζH

(
1

T

T∑
t=1

α(L)εt (yt−1 − ỹt−1)
′

)
.

The product process T ζεt ⊗ (yt−1 − ỹt−1) is a martingale difference sequence with finite vari-
ance by Lemma E.11 (note that this is a standard stochastic process and not a triangular array).
Hence, the first sample average in parenthesis on the right-hand side above is Op(T

−ζ−1/2)
by Chebyshev’s inequality. The second sample average in parenthesis on the right-hand side
above is Op(T

−ζ) by Lemma E.11. Hence, the entire right-hand side in the above display is
Op(T

−ζ−1/2 + T−2ζ), as claimed. Q.E.D.
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LEMMA E.7:

T−1

T∑
t=1

uty
′
t−1 = T−ζH

∞∑
ℓ=1

αℓDH
′(A′)ℓ−1 + T−1

T∑
t=1

Hεtỹ
′
t−1 + op(T

−ζ).

PROOF:

T−1

T∑
t=1

uty
′
t−1 = T−1

T∑
t=1

utỹ
′
t−1 + T−1

T∑
t=1

ut(yt−1 − ỹt−1)
′

︸ ︷︷ ︸
=op(T−ζ) by Lemma E.6

= T−1

T∑
t=1

Hεtỹ
′
t−1 + T−ζ−1

T∑
t=1

Hα(L)εtỹ
′
t−1 + op(T

−ζ)

= T−1

T∑
t=1

Hεtỹ
′
t−1 + T−ζH

(
E[α(L)εtỹ

′
t−1] + op(1)

)
+ op(T

−ζ).

The last line invokes a law of large numbers, which applies because ỹt is an absolutely
summable linear filter of the shocks, so we can apply Lemma E.11 in conjunction with Brock-
well and Davis (1991, Thm. 7.1.1) and Chebyshev’s inequality. Finally, note that

E[α(L)εtỹ
′
t−1] =

∞∑
ℓ=1

∞∑
s=0

αℓE[εt−ℓε
′
t−s−1]H

′(A′)s =
∞∑
ℓ=1

αℓDH
′(A′)ℓ−1. Q.E.D.

LEMMA E.8: T−1
∑T

t=1 yt−1y
′
t−1

p→ S.

PROOF: By Lemma E.6 and Cauchy-Schwarz, T−1
∑T

t=1 yt−1y
′
t−1 = T−1

∑T

t=1 ỹt−1ỹ
′
t−1+

op(1). Lemma E.11, Brockwell and Davis (1991, Thm. 7.1.1), and Chebyshev’s inequality im-
ply that the law of large numbers holds for {ỹt−1ỹ

′
t−1}. Q.E.D.

LEMMA E.9: Omitting the subscript j∗ in a slight abuse of notation, let qt ≡ (y′
j∗,t

, y′t−1)
′.

Then
i) T−1

∑T−h

t=1 qtεj∗,t =Op(T
−ζ + T−1/2),

ii) (T−1
∑T−h

t=1 qtq
′
t)

−1 =Op(1),
iii) T−1

∑T−h

t=1 qt(αj∗(L)εt) =Op(1),
where αj∗(L) is the j∗-th row of α(L).

PROOF: Let q̃t ≡ (ỹ′
j∗,t

, ỹ′t−1)
′ and ∆t ≡ qt − q̃t. Note that

T−1

T−h∑
t=1

qtεj∗,t = T−1

T−h∑
t=1

∆tεj∗,t + T−1

T−h∑
t=1

q̃tεj∗,t. (E.10)

Cauchy-Schwarz implies∥∥∥∥∥T−1

T−h∑
t=1

∆tεj∗,t

∥∥∥∥∥≤
(

1

T

T−h∑
t=1

∥∆t∥2
)1/2(

1

T

T−h∑
t=1

ε2j∗,t

)1/2

=Op(T
−ζ)×Op(1),
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using Lemma E.6 and Assumption C.1. The summands in the last sample average in (E.10) have
mean zero due to shock orthogonality, so this sample average is Op

(
T−1/2

)
by Lemma E.11

and Brockwell and Davis (1991, Thm. 7.1.1). This establishes part (i) of the lemma.
For part (ii) of the lemma, note that

1

T

T−h∑
t=1

qtq
′
t =

1

T

T−h∑
t=1

∆t∆
′
t +

1

T

T−h∑
t=1

q̃t∆
′
t +

1

T

T−h∑
t=1

∆tq̃
′
t +

1

T

T−h∑
t=1

q̃tq̃
′
t. (E.11)

Lemma E.6 implies that the first term is Op (T
−2ζ). Cauchy-Schwarz, along with Lemmas E.6

and E.8, imply that the second and third terms are Op(T
−ζ). The last term converges in

probability to Var(q̃t), as in the proof of Lemma E.8. This matrix is non-singular, since
q̃t = (ỹ′

j∗,t
, ỹ′t−1)

′, where Var(ỹt−1) = S is non-singular by Assumption 2.1(iv), and Assump-
tion 2.1(iii) implies that ỹ

j∗,t
equals a linear transformation of ỹt−1 plus a non-singular orthog-

onal noise term.
Part (iii) follows from Cauchy-Schwarz, Lemma E.8, and Assumption 2.1(v). Q.E.D.

LEMMA E.10: Use the same notation as Lemma E.9, and let

x̂h,t ≡ (ϑ− ϑ̂h)
′qt + εj∗,t + T−ζαj∗(L)εt.

Then

T−1

T−h∑
t=1

(x̂h,t − εj∗,t)
2 =Op(T

−2ζ) + op(T
−1/2). (E.12)

PROOF: It suffices by the cr-inequality to show that

a) T−1
∑T−h

t=1

(
(ϑ− ϑ̂h)

′qt

)2

=Op(T
−2ζ) + op

(
T−1/2

)
,

b) T−1
∑T−h

t=1 (αj∗(L)εt)
2 =Op (1).

To establish (a), note that Cauchy-Schwarz implies

1

T

T−h∑
t=1

(
(ϑ− ϑ̂h)

′qt

)2

≤
∥∥∥ϑ− ϑ̂h

∥∥∥2( 1

T

T−h∑
t=1

∥qt∥2
)
=Op

((
T−ζ + T−1/2

)2)×Op(1),

by Lemmas E.8 and E.9. Hence, the right-hand side is Op(T
−2ζ) + op(T

−1/2).
Statement (b) follows from Assumption 2.1(v) and Markov’s inequality. Q.E.D.

LEMMA E.11: Let ψ(L) and φ(L) be two absolutely summable, univariate, two-sided lag
polynomials. Then for any j, k ∈ {1, . . . ,m}, the product process zt ≡ [ψ(L)εj,t]× [φ(L)εk,t]
has absolutely summable autocovariance function.

PROOF: Bound
∑∞

ℓ=−∞ |Cov(zt, zt+ℓ)| by

∞∑
ℓ=−∞

∞∑
τ1=−∞

∞∑
τ2=−∞

∞∑
τ3=−∞

∞∑
τ4=−∞

|ψτ1 ||φτ2 ||ψτ3 ||φτ4 ||Cov(εj,t+τ1εk,t+τ2 , εj,t+τ3+ℓεk,t+τ4+ℓ)|
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≤

(
∞∑

τ=−∞

|ψτ |

)2( ∞∑
τ=−∞

|φτ |

)2(
sup

τ1,...,τ4

∞∑
ℓ=−∞

|Cov(εj,t+τ1εk,t+τ2 , εj,t+τ3+ℓεk,t+τ4+ℓ)|

)
.

(E.13)

To finish the proof, we show that the supremum above is finite. By stationarity, the sum inside
the supremum can be written as

∞∑
r=−∞

|Cov(εj,0εk,s, εj,rεk,r+τ )|, (E.14)

where we have substituted s= τ2 − τ1, τ = τ4 − τ3, and r = ℓ+ τ3 − τ1. Now fix s and τ . Let
N : Z→{1,2,3,4} denote the function that assigns each integer r to the number of times the
maximum value of the tuple (0, s, r, r+ τ) appears in the tuple. We group the terms indexed by
r in the sum (E.14) according to their value of N(r). First, since {εt} is a martingale difference
sequence, all terms r withN(r) = 1 yield a covariance of 0 and so do not contribute to the sum.
Second, a simple enumeration of cases shows that there is at most 1 value of r with N(r) = 3
and at most one with N(r) = 4. Finally, consider terms r with N(r) = 2. If s ̸= 0 and τ ̸= 0,
then there are at most 4 such terms (since this requires r ∈ {0, s,−τ, s− τ}). If s= 0 and/or
τ = 0, terms with N(r) = 2 must be of the form |Cov(εj,0εk,0, εj,rεk,r+τ )| (with r, r+ τ < 0)
and/or |Cov(εj,0εk,0, εj,−rεk,s−r)| (with r, r− s > 0). The preceding arguments show that the
sum (E.14) is bounded by

6E[∥εt∥4] + 2
∞∑
r=1

∞∑
b=1

∥Cov(ε0 ⊗ ε0, ε−r ⊗ ε−b)∥,

which is finite by Assumption C.1 and does not depend on s or τ . Thus, the supremum in (E.13)
is finite. Q.E.D.
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