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Abstract

AT technology can generate speculative-growth equilibria. These are rational but
fragile: elevated valuations support rapid capital accumulation, yet persist only as long
as beliefs remain coordinated. Because Al capital is labor-like, it expands effective labor
and dampens the normal decline in the marginal product of capital as the capital stock
grows. The gains from this expansion accrue disproportionately to capitalists, whose
saving rate rises with wealth, raising aggregate saving. Building on |Caballero et al.
(2006), I show that these features generate a funding feedback—rising capitalist wealth
lowers the required return—that can produce multiple equilibria. With intermediate
adjustment costs, elevated valuations are the mechanism that sustains a transition
toward a high-capital equilibrium; a loss of confidence can precipitate a self-fulfilling
crash and reversal.
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1 Introduction

Today’s high valuations of Al-exposed firms are often described as either fundamentally jus-
tified or bubble-like. This paper argues both descriptions can be correct: elevated valuations
can be warranted by fundamentals along an optimistic equilibrium path, yet remain fragile.

Drawing on the speculative-growth framework of Caballero et al. (2006, henceforth CFH),
I argue that Al makes the CFH mechanism arise naturally. CFH requires a funding feed-
back: some mechanism that lowers the required return as capital expands, allowing elevated

valuations to be sustained. Two features of Al technology deliver this:

1. Labor-like AI and a flat marginal product of capital region. Because Al can
substitute for labor across a broad range of tasks (Restrepol 2025), effective labor
expands alongside Al capital, keeping the capital-to-effective-labor ratio stable and
hence the MPK constant. This flat-MPK region makes multiple steady states more
likely.

2. Distribution and the funding feedback. As Al shifts income toward capitalists and
wealth concentrates, aggregate saving rises with wealth and the required return falls
(Straubj, |2019)). This provides the funding feedback that sustains elevated valuations
at high levels of capital.

A third condition is required for the transition mechanism to operate, but it is not specific
to Al

3. Intermediate adjustment costs. Adjustment costs must fall in an intermediate
range: high enough that valuations can depart from replacement cost during the tran-
sition, yet low enough to permit rapid accumulation. This condition is not specific
to Al, and there is no particular reason to expect Al-related investment frictions to

violate it. When it holds, elevated valuations can sustain the transition.

When these forces are present, the economy can feature both a low-capital and a high-
capital equilibrium. The difference between them is not the long-run valuation level-—which
returns to replacement cost in steady state—but the path: under coordinated optimism,
elevated valuations support rapid accumulation toward the high-capital outcome, whereas a
loss of confidence can trigger a self-fulfilling crash and reversal.

Section [2| presents the model. Section |3| characterizes the steady states and conditions
for multiplicity. Section [4] studies speculative-growth transitions and fragility. Section [5|con-

cludes. Appendices collect derivations, equilibrium dynamics, and the baseline calibration.



2 Model: AI Technology and the Funding Feedback

This section presents a model that delivers the two primitives identified above and includes
adjustment costs, which shape transition dynamics. Derivations and supporting details are
in the appendices: Appendix [A] derives the MPK schedule, Appendix [B] microfounds the

consumption rule, and Appendix [C] collects the equilibrium dynamics.

2.1 Technology

In a standard neoclassical model, the return to capital falls steadily as capital accumulates.
Al technology differs in an important respect. Following the task-based approach synthesized
in Restrepo| (2025), production involves many discrete tasks. Some tasks are performed by
workers, others by machines. Traditional capital can only perform “machine tasks,” but Al,
like robotization, can also perform worker tasks.

This distinction has implications for diminishing returns. As Al capital accumulates,
it does not merely add machines alongside a fixed labor force. Instead, Al operates as
labor, expanding effective labor (now comprising both humans and Al) that works alongside
conventional capital.

The result is a region where the MPK is constant. In this “Al deployment” region, each
additional unit of AI capital adds effective labor, keeping the effective capital-labor ratio

constant. Since the MPK depends on this ratio, diminishing returns are forestalled.

To study the implications of this technology for equilibrium dynamics, I now embed this

technology in a continuous-time model. Output is produced with capital and labor:
Y = AKON'™2,

where K, is conventional capital, N is effective labor, and a € (0, 1).

Capital can be used in two ways: as conventional capital K. or as Al capital K, that
substitutes for labor. Total capital is K = K.+ K,. Al capital produces “Al labor” at a rate
of v per unit, so effective labor is N = 1 + vK,. However, Al deployment faces a capacity
constraint K,—reflecting limits on data, compute, or organizational capacity.

Firms allocate capital optimally between the two uses. As shown in Appendix [A] this

generates the three-region MPK schedule in Figure [I}
e Region I (K < Kap): No Al deployment. Standard diminishing returns % =

aAK* 1,

e Region II (K5 < K < Kg): Al deployment phase. The MPK is constant at
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e Region IIT (K > K,): Al saturated at K, = K,. Diminishing returns resume
T’K = &A(K — K()a_l(l + ’)/Rg)l_a.
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Figure 1: The marginal product of capital with Al technology. In Region II, Al deployment
keeps the MPK flat as capital accumulates.

The thresholds Ka; and K, mark, respectively, the onset of Al deployment and the full
utilization of Al capacity. Both are derived in Appendix [A]

2.2 Households

The introduction described how Al activates the funding feedback. I now formalize this with
a two-group household structure: workers and capitalists.

Workers supply labor, earn wages, hold no assets, and consume their entire income:
Cw = W.

Capitalists own all capital and have non-homothetic preferences. Following Straub

(2019), their consumption is given by:
c=rkW?, k>0, 0<o<l, (1)

where W is wealth and k, ¢ are parameters. The key feature is ¢ < 1: consumption rises
less than proportionally with wealth. Equivalently, the saving rate rises with wealth.

This specification is a tractable approximation to optimal behavior under non-homothetic
preferences. Appendix [B] provides microfoundations and shows how to calibrate xk and ¢ to

match steady-state behavior exactly.



2.3 Investment and Asset Pricing

Investment faces adjustment costs. Let ¢ denote Tobin’s ¢—the ratio of market value to

replacement cost of capital. The investment rate responds to g:

%:wlnq—&

where 1) > 0 governs the responsiveness of investment to valuations and ¢ is the depreciation
rate. When ¢ > 1 (market value exceeds replacement cost), gross investment is positive;
when ¢ < 1, gross investment is negative (scrapping).
Asset pricing requires that the return on holding capital equals the required return:
i_5 . W g
q q

N—— N——
capital gain  dividend yield

where R is the required return. The latter depends on capitalist wealth through the saving
behavior implied by . Across steady states, higher wealth means a lower required return—
this is the funding feedback.

3 Multiple Steady States

The flat-MPK region and the funding feedback combine to produce multiple steady states.
This section characterizes these steady states; the next section asks whether and how the
economy can transition between them.

At a steady state, investment exactly covers depreciation (K = 0), which requires ) In g =
0, hence:

q= e,

At this valuation, asset market clearing requires that the MPK equals the required rental
rate. Setting ¢ = 0 gives r(K)/q = R+ 6, or equivalently r%(K) = [R + 0]q. At a steady
state where ¢ = ¢ and W = ¢K:

r™(K) = [R(GK) + 0]q. (2)

The left side is the MPK; the right side is the required rental rate.
Figure [2| plots both sides against K. The MPK follows the “down-flat-down” pattern

from Figure [II The required rental rate is strictly decreasing in K: higher capital means



more wealth, which raises saving, lowers R, and hence lowers the required rental rate.

Figure 2: Multiple steady states. The economy can rest at KL (low-capital, high required
return) or at K7 (high-capital, low required return). The middle intersection K is unstable.

The curves cross three times, generating three steady states:

o K©: Low-capital, no Al, high required return.

o KM: Middle-capital, partial Al, intermediate required return. Unstable.
e KH: High-capital, saturated Al, low required return.

The flat region in the MPK schedule enables three crossings. In Region II, the MPK
holds steady while the required rental rate continues to fall with K. This allows the curves
to cross, separate, and cross again.

Appendix @ provides the formal conditions for three steady states and proves that K*
and K are saddle-path stable while K is unstable.

Although ¢ equals g at both stable steady states, total market capitalization gK is sub-
stantially higher at K. The high-capital equilibrium thus features not only a larger capital
stock but also greater aggregate wealth.

Having characterized the steady states, I now turn to equilibrium selection and transition

dynamics.

4 Speculative Growth and Fragility

Section [3] established that multiple steady states can exist. But can the economy transition
from K* to Kf? Whether such a transition exists depends on the magnitude of adjustment

costs, which I discuss next.



4.1 The Role of Adjustment Costs

Multiple steady states are necessary but not sufficient for a speculative-growth transition.
As in CFH, the transition requires adjustment costs in an intermediate range. If adjustment
costs are very low, ¢ remains close to replacement cost and capital gains are too small
to support a valuation-driven boom. If adjustment costs are very high, sustaining rapid
accumulation would require valuations so large as to be implausible. I treat intermediate

adjustment costs as given here and relegate the formal characterization (in terms of ) to
Appendix [}

4.2 The Speculative Growth Path

Figure [3| plots the (K, ¢) phase diagram. The dashed horizontal line is the K = 0 locus,
which lies at the steady-state valuation ¢ = ¢*%. The non-monotonic orange curve is the
¢ = 0 locus. The green curve is the stable manifold of the high-capital steady state (K, q);
it describes the speculative-growth trajectory.

Capital cannot jump, but asset prices can. Starting from the low-capital steady state

(KT, q), a speculative-growth episode proceeds as follows:
1. Expectations shift. Agents coordinate on optimistic beliefs.
2. Valuations jump. q rises discretely from q to ¢o > q.

3. Investment booms. The rise in ¢ makes investment profitable and capital starts to

accumulate.

4. Al deploys. As K crosses Kap, firms deploy Al raising the capital share and concen-
trating wealth.

5. The required return falls. As capitalists become wealthier, their saving rate rises,

lowering the required return.

6. Convergence. The economy converges to (K, q): capital reaches its high steady

state and valuations eventually return to ¢, now consistent with a lower required return.

The phase diagram also makes clear why elevated valuations are integral to the transition.
At (K%, q) the economy is at rest; to induce capital accumulation one must have ¢ > q.
Moreover, reaching K requires staying on the stable manifold, which lies above ¢ throughout
the transition. High valuations are therefore not a symptom of irrational exuberance; they

are the equilibrium mechanism that makes the transition feasible.
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Figure 3: Phase diagram and speculative-growth path. Starting from (K%, ), optimistic
beliefs trigger an upward jump in ¢. The economy then converges along the stable manifold
(green) to (KH,q).

4.3 Time Paths Along the Speculative Growth Trajectory

Figure [ shows the corresponding time paths along the speculative-growth trajectory. The
economy is shown for a short pre-jump interval (so the initial discrete jump is visible) and
then follows the post-jump path on the (speculative-growth) stable manifold. The key real-

side driver is the investment response to valuations. Since

I
éz@blnqt,

the jump in ¢; produces an immediate increase in the investment rate. What happens
thereafter depends on the evolution of ¢; along the manifold: ¢; can continue rising for a
time (even as K, increases) before eventually peaking and mean-reverting toward ¢ as the
economy approaches the high-capital steady state.

The Required Return. Aggregate wealth W, = ¢, K; pins down the required return.
Using ¢; = mWf and the Euler equation in Appendix

p— WO — N
- 4 ,

R(W) (3)
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Figure 4: Time paths along the speculative-growth trajectory. The economy starts at the
low-capital steady state and jumps onto the speculative-growth manifold. Panel (a): required
return R;; Panel (b): wage wy; Panel (c): labor share sz ;; Panel (d): investment rate I;/K;.

Differentiating yields
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Near the low-capital steady state, R(W) is locally flat. The W¢~! term reflects consumption

R(W) = ¢prWo2 [1 — A—W} :

growth—faster consumption growth requires a higher return—while the W¢ term captures
the wealth effect on desired saving. Around W’ these forces nearly offset.

Early in Region I, wealth therefore rises with only a gradual decline in R;. The jump in
q; at t = 0 does raise W, discretely, but the implied change in R; is small under the baseline
calibration—hence not visually salient in panel (a).

The key change occurs in Region II. There, the flat MPK allows ¢; to stay elevated
while K; expands rapidly, accelerating wealth growth. Since R(W) steepens as W rises,
this produces a sharper decline in the required return. As the economy approaches K and
@ — @, wealth stabilizes and R; converges to its new, lower steady-state level.

Wages and the labor share. Wages w; and the labor share s;; depend on the econ-
omy'’s effective labor N;. As the trajectory enters the Al-deployment region, N, rises because

AT expands effective labor. Output increases while wages initially stagnate, compressing the
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Once Al saturates (Region I1I), N, stabilizes and the labor share converges to a permanently
lower level, while wages resume rising with capital deepening.

Investment dynamics. The evolution of I,/ K, reflects the forward-looking behavior of
¢; along the speculative-growth path. The economy first experiences an upward jump in ¢
onto the stable manifold. Crucially, ¢; begins rising already in Region I: investors anticipate
Region II, where the flat MPK will allow valuations to remain elevated without being eroded
by falling returns. The resulting increase in ¢; strengthens Tobin’s ¢ incentives and drives a
further rise in the investment rate.

In Region II, the stabilization of the marginal product of capital allows ¢; to remain
elevated—and often to keep rising for some time despite ongoing capital deepening—thereby
sustaining high investment. Eventually, as the economy approaches the high-capital steady
state, ¢; peaks and mean-reverts toward ¢, bringing I;/ K; down gradually until it converges

to its steady-state level.

4.4 Fragility: The Crash

The speculative-growth path is fragile. The same mechanism that enables the boom also
enables its reversal.

Consider an economy partway through the transition to the high-capital equilibrium:
capital has accumulated to some K > K and valuations remain elevated at ¢ > ¢. Suppose
confidence weakens—due to negative news about Al capabilities, a financial shock, or a shift
in sentiment.

If valuations decline—even absent any change in fundamentals—the economy can depart
from the speculative-growth path. A sufficiently large decline places the economy on the
only alternative equilibrium path-—one converging to K rather than K*.

Figure |5| illustrates this scenario. The red segment represents a crash: holding K fixed,
q drops discretely to the stable manifold associated with the low-capital steady state. The
red path shows the subsequent dynamics: investment collapses, capital decumulates, and
the economy returns to K L

The crash is self-fulfilling: a downward revision in beliefs lowers valuations today, which
reduces investment and reverses capital accumulation. The weaker capital path then vali-
dates the pessimistic beliefs.

This analysis clarifies the sense in which Al valuations can be simultaneously “not a

bubble” and fragile. They are not a bubble in the traditional sense because the growth and
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Figure 5: A crash along the speculative-growth path. A drop in valuations places the
economy on a trajectory (red) leading back to K*.

wealth they generate can ultimately validate those valuations. They are fragile because that

validation requires sustained confidence throughout a potentially lengthy transition.

5 Conclusion

I have applied the speculative-growth framework of CFH to an Al-driven macroeconomic
environment. Al activates CFH’s funding feedback through two channels: labor-like capital
that dampens diminishing returns, and a distributional shift toward capitalists that raises
aggregate saving and lowers the required return.

Several implications emerge:

e Elevated valuations may be integral to the transition. The investment boom
that validates optimistic expectations requires those expectations to manifest in high
asset prices. Labeling Al valuations as merely a bubble overlooks the self-fulfilling

nature of the transition.

e The transition is fragile. The same multiplicity that enables the boom also enables
its reversal. A loss of confidence—whatever its source—can derail the transition and

return the economy to the low-capital steady state.

10



e The high-capital outcome and elevated valuations are inseparable. One can-
not reach the high-capital equilibrium without traversing a path of elevated asset prices.
This interdependence is what makes the current situation both an opportunity and a

source of macroeconomic risk.

To be clear, this is a possibility argument. My goal is to isolate a coherent mechanism that
could rationalize the joint behavior of valuations and investment, not to provide conclusive
evidence. Nor do I mean to imply that the valuations and investment rates we are currently
observing are fully consistent with a rational expectations model. Rather, the point is that
behavioral narratives aligned with a rational-expectations equilibrium will tend to persist.
This happens not because agents understand the underlying mechanism, but because the

equilibrium itself sustains beliefs that happen to point in the right direction.
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A Technology Details

A.1 Setup

Total capital K = K.+ K, is divided between conventional capital K. > 0 and Al capital
K, > 0. Effective labor is
N =1+ ~ymin{ Ky, K},

where v > 0 is the labor equivalence of Al and K, is the Al capacity constraint.
Production is Cobb-Douglas: Y = AK*N!~.
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A.2 Optimal Allocation

Given K, firms choose K. and K, to maximize output. At an interior solution:

oy oy L o (1—a)y
0K. 0K, K. N
Define b = (1 — a)y/a. The optimality condition becomes N = bK,, yielding:

CAK+1 CbK—1
T oy+b ] R

This interior solution is valid when K, € [0, K], i.e., when K € [Kj, K] where:

Ky=-=—2% g, -0k
Al b (1_04)77 t b

A.3 The MPK Schedule

The marginal product of capital is:

OéAKa_l, K < KAI;
r(K) = adb— = rl | Ka < K < K,

QAK — Ko)* M1+ vK)'7, K > K.

In Region II, the MPK is constant because as K rises, K, rises proportionally, keeping
the capital-to-effective-labor ratio K./N = 1/b constant.

B Microfoundations for the Consumption Rule

B.1 Preferences

Capitalists maximize:

/ e P Inc, + AW, dt,
0

subject to Wt = R,W,; — ¢;. The term AW, captures direct utility from wealth (wealth as a
“luxury good”).

12



B.2 Euler Equation

The Hamiltonian is H = Inc+ AW + u(RW — ¢). First-order conditions:

OH

— =0 =
Oc

1
- =K,
C

OH
1= pp— —— = pp— A\ — pR.
= pp = mr = g f

Combining: i/ = p — Ac — R. Since pu = 1/¢, we have j1/u = —¢é/c, yielding:
R=p+°-)e
c

B.3 Steady-State Consumption

At a steady state, ¢ =W =0, so R** = p — \¢*® and ¢** = R**W. Solving:

pW p

SS W — SS — .
W)= W) =1
B.4 The Isoelastic Approximation
The consumption-wealth elasticity at a steady state is:
dlIn c* 1
p(W) = € (0,1).

T dlnW 1+ AW

I approximate the optimal policy with ¢ = kW, calibrating ¢ and « at a reference wealth

W+
1

O= T
Equivalently, calibrating to match the exact steady-state policy at W*,

K= pp(W*)' .

(W) pW*/(1+ AW*) o
mz(wﬂ¢=p Uk =po (W,

where the last equality uses 1 + AW* = 1/¢.
This approximation is exact at W* and first-order accurate nearby. Taking W* = gK*

(the low steady state) yields an upper bound on ¢ for the transition, since ¢(W) is decreasing.

13



C Equilibrium Dynamics
C.1 Laws of Motion
Capital accumulates according to:
K = (¢Ing — K.
C.2 Required Return
Using the consumption rule ¢ = kW¢ with W = ¢K:
¢ = WO IW = oW HRW — ¢) = oW (R — kW),
Substituting into the Euler equation R = p + ¢/c — Ae:
R=p+ ¢(R— kW) — AsW?.
Solving for R:
P WL — AW

1—0¢
At a steady state where ¢ = 0, this simplifies to R**(W) = p/(1 + A\W).

R(W)

C.3 Asset Pricing

The return on holding capital equals the required return:

r(K)
q

— 6 = R(qK).

Rearranging:
q = [R(¢K) + dlg — r"(K).

C.4 Phase Diagram Loci

The K = 0 locus is ¢ = ¢ = €%/¥ (horizontal).
The ¢ = 0 locus is [R(¢K) + d]g = r(K), which varies with the three-region MPK

structure.

14



C.5 Output, Wages, and Labor Share

Output in each region:

AK®, K < Kar,
Y = AKIN'™ with K, = 22 N = 0K, Kua < K < Ka,
A(K — Kz)a(l -+ ’ng)l_a, K > K.

The wage equals the marginal product of human labor:

Y
=(1—-a)=.
w=(1-a)y
The labor share (human labor’s share of output) is:

_wL_l—a
SL_Y_ N’

where I = 1 is human labor supply. In Region II, N rises with K, so s, falls.

D Proof of Three Steady States

Define A(K) = r%(K) — [R**(K) + ]q. A steady state exists where A(K) = 0.

Here R**(K) is shorthand for the required return R**(W) evaluated at steady-state wealth
W =gqK,ie., R*(K)= R*(GK).

Region I: A(K) — 400 as K — 0 (since r — 0o). If the multiplicity condition holds,
A(Ka1) < 0. By continuity, 3K € (0, K1) with A(KL) = 0.

Region I1: 7% is constant while R**(K) is decreasing, so A is increasing. The multiplicity
condition implies A(Ka;) < 0 and A(Ky) > 0. By continuity, 3K € (Kay, Kq) with
A(KM) = 0.

Region ITI: At K, A > 0. As K — oo, r® — 0 while [R** + §]g — 67 > 0, so A < 0.
By continuity, IK# € (K, 00) with A(KH) = 0.

Multiplicity condition:

[R¥(K 1) +0]q > rhe, > [R* (Kgat) + 6]G. (5)

15



E Local Stability

The linearized system around a steady state (K*,q) is:

(5=

The Jacobian elements are:

oK

Ji1 = 8_K B =0,
oK K

Jpp=—1| = w? > 0,
dq |, q

Jo = QL Ry (K 4 PRV
K | )
o

e = a—g = R 16+ R (W*)K*.

Since R'(W) < 0 (higher wealth lowers required return), the trace is:
tr(J) = Jao = R* 4+ 0+ qR(W*)K* >0
for reasonable parameters.

The determinant is:

VK

q

det(J) = —Jig - Joy = — [— (™) (K*) + @R (WH)] .

The sign of det(.J) depends on (r¥)'(K*):

e At K% and K#: (r®)'(K*) < 0 (diminishing returns). Since R'(W*) < 0, the bracketed
term is positive provided —(r®)/(K*) > ¢?| R'(W*)|. Under the baseline calibration this
condition holds at K* and K| hence det(J) < 0. These are saddle points.

o At KM: (rK)Y(KM) =0 (flat region). The bracketed term is negative, so det(J) > 0.
With tr(J) > 0, K is an unstable node.

Since K is predetermined and ¢ is a jump variable, saddle-path stability at K* and K#
means these are locally stable steady states, while K is unstable. With one predetermined
variable and one jump variable, a saddle point—one stable and one unstable eigenvalue—

implies a unique convergent path.
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F Intermediate Adjustment Costs and the Speculative-
Growth Path

This appendix formalizes the claim in Section [4| that the speculative-growth trajectory (the
stable manifold of the high-capital steady state) reaches back to K at elevated but plausible
valuations only for an intermediate range of . Throughout, fix all parameters other than
¢ and assume the multiplicity condition of Appendix [D] holds, so the three steady states
(KL, q), (KM, q), and (KH,q) exist.

F.1 Setup and definitions
Consider the dynamical system (Appendix |C]):

K= (¢Ing—0) K, (6)
¢=F(K,q) = [R(gK) + 6] q — r™(K). (7)

For a given ¢, let W7 denote the (one-dimensional) stable manifold of the saddle steady

state (K™ (), (1)), where (1) = e?/".
Since K is predetermined and ¢ is a jump variable, a speculative-growth episode starting

from K" is feasible if and only if one can jump from (K*,7) to a point on W with ¢ > .

Definition 1 (Reach-back at elevated-plausible valuations). Fizn > 0 and Q > 1. We say
that W reaches back to K L at elevated-plausible valuations if

W3 N {(K.q): K = K, q € [(1+m)a(w), Ql} # 0.

F.2 Two limiting lemmas

The first lemma makes precise the “i too small” statement: G(v) itself becomes arbitrarily

large.
Lemma 1 (High adjustment costs: 1 too small). Fiz any plausibility cap Q > 1. If

0
InQ’

then q(v) = %Y > Q, hence reach-back in the sense of Deﬁm’tion 18 1mpossible.

¢ S ¢min(@)

Proof. If ¢ < §/InQ, then §/1) > InQ and therefore g(1)) = /¥ > e"Q = Q. Any

q > (1+n)q(¢)) then exceeds Q. O
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The second lemma makes precise the “i) too large” statement using a time-scale argument:
for large v, if one starts at K* with ¢ bounded away from g by a fixed fraction, then K
moves too fast relative to the maximal speed at which ¢ can fall within a bounded valuation

region.

Lemma 2 (Low adjustment costs: v too large). Fiz (n,Q) with n >0 and Q > 1. Because
F(K,q) in is continuous, there ezists a finite bound

M(Q) = sup{|F(K,q)| : (K, q) € [K", K] x [1,Q]} < oo.

(Note that G(x) > 1 for finite ¥, so [q(¢),Q] C [1,Q] and this bound is conservative.)
Then there exists PYmax(n, Q) such that for all 1 > Vma(n, Q), Wy, cannot intersect the line

K = K" at any q € [(1+n)q(v), Q).

Proof. Fix (,@Q). Consider any v and suppose, for contradiction, that there exists a point

(K", q0) € W with go € [(1+1)g(¢), Q).
Step 1 (fast capital growth). While ¢(t) > (14 1n/2)g(v), capital grows at a uniform

exponential rate. Since g(¢) = e¥/¥,

Ylng(t) =6 = Y In((1+n/2)q(¥)) — 6 = (1 +n/2).
Hence on any interval where ¢(t) > (1 +1/2)q(v)),

K(t)

m > In(l+n/2).

Let
. 1n(KH/KL)

YT (1 +n/2)
If q(t) > (1 +n/2)q(x)) on [0,Ty], then K(Ty) > K*.
Step 2 (bounded speed of ¢). As long as ¢(t) € [1,Q] we have |(t)] < M(Q), so

q(t) > q— M(Q)t fort>0.

Choose 9 large enough so that

A sufficient condition is

2M(Q) In(K" /Y
nin(l+n/2)
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Y > Ymax(n, Q) =




Then for all ¢ € [0, Ty],
a(t) > q0 = M(Q)T, > (1+m)a(¥) — 23(v) = (1+1/2)3().

Combining with Step 1 yields K(Ty) > K and ¢(Ty) > (1 +1/2)q(¢)) > q(¢).

Step 3 (overshoot contradiction). For ¢ large enough, Steps 1-2 imply that at time
Ty the trajectory satisfies K (Ty,) > K¥ and ¢(Ty) > q(¢). Suppose, toward a contradiction,
that this trajectory lies on the stable manifold W.

By standard local dynamics around a saddle, the stable manifold passes through (K, q)

with negative slope. In our system,

so the slope of the stable eigenvector in (K, ¢)-space is

_dK
=

As

stable J 12

< 0.

ms

Thus, in a neighborhood of (K*§), points on Wy with K > K*H must satisfy ¢ < ¢, while
points with K < K must satisfy ¢ > .

However, for large ¢ the point (K (Ty),q(Ty)) lies in the region K > K and ¢ > ¢,
which is inconsistent with this local characterization of Wj. Hence (K(Ty),q(Ty)) cannot
belong to the stable manifold, contradicting the assumption that (K%, qy) € W O

F.3 Intermediate ¢

Proposition 1 (Intermediate 1 is necessary (and locally sufficient)). Fiz (n, Q). Then:
1. If ¥ < ¥uin(Q), reach-back in the sense of Deﬁnition is impossible.
2. If Y > Yumax(n, Q), reach-back in the sense of Deﬁmtion 1S impossible.

Moreover, if for some ¥* € (Ymin(Q), Ymax(n, Q)) there exists an elevated-plausible intersec-
tion of Wi. with the line K = K that is transverse, then the intersection (hence reach-back)

persists for all 1 in an open neighborhood of ¥*.

Proof. The necessity statements are Lemmas [1H2]
For persistence, (K2 (1), q(1))) is a hyperbolic saddle over the multiplicity range, so by
the Stable Manifold Theorem the local stable manifold depends smoothly on parameters.

A transverse intersection with the vertical line K = K implies the corresponding defining
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equation has a nonzero derivative with respect to the local manifold parameter, so the
Implicit Function Theorem yields a locally unique intersection point that varies continuously
with . O

G Baseline Calibration

G.1 Parameter Values

The figures use:

A=00729, a=033 ~=185 K,=025 p=008 X=20, §=0.05 1 =3.0.

G.2 Derived Quantities

From the technology block:

(1—a)y 0.67x185

b= ~ 3.76.
o} 0.33

The boundaries of the flat-MPK region:

1+ (v+b)K,

= 0.641.
b 0.6

Kar = % = 0.266, K =
The flat-region MPK:
Ty = @ Ab'™* =0.33 x 0.0729 x 3.76%%7 ~ 0.058.
The steady-state valuation:

g = eV = e00/30 ~ 1.0168.

G.3 Computing Steady States

At a steady state with wealth W = gK, the required return R**(W) evaluated at this wealth
level is:
_ p
R¥*(K) = ———.
@) = T3k
Steady states solve r®(K) = [R**(gK) + 6]g. For the baseline calibration, the three
solutions are:

KT =0.224, KM = (.384, K =0.790.
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G.4 Verifying the Multiplicity Condition

The multiplicity condition (b)) requires:
[R**(Kar) +0]7 > v > [R*(Kaat) + )7

At the boundaries:

0.08

1+20 x 1.0168 x 0.266
0.08

1420 x 1.0168 x 0.641

[R**(Kar) + 0] = [ + 0.051 x 1.0168 ~ 0.062,

[R**(Kyat) + 0]G = [ + 0.05} x 1.0168 ~ 0.056.

Since 0.062 > 0.058 > 0.056, the multiplicity condition is satisfied.
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