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ABSTRACT

Many instrumental variables applications specify a single Bernoulli treatment. But instruments may
change outcomes through multiple pathways or by varying treatment intensity. Lottery instruments
that boost charter school enrollment, for instance, may affect outcomes by lengthening time
enrolled in a charter school and by moving students between charter schools of different types. We
analyze the identification problem such scenarios present in a framework that generalizes the
always-taker/never-taker/complier partition of treatment response types to cover a wide range of
multinomial and ordered treatments with heterogenous potential outcomes. This framework yields
novel estimators in which a single randomly assigned instrument identifies (i) causal effects
averaged over complier types and (ii) a causal conditional expectation function that captures effects
for each element in a set of response types. Three empirical applications demonstrate the utility of
these results. The first extends an earlier analysis of the Head Start Impact Study allowing for
multiple fallbacks. The second examines two causal channels for the impact of post-secondary
financial aid on degree completion. The third estimates effects of additional births (an ordered
treatment) on mothers’ earnings.
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Instrumental variables (IV) research designs exploit natural experiments or intentional ran-
dom assignment as a source of variation in treatment variables of all kinds. Many of the most
compelling instruments leverage random assignment. For instance, many IV studies of charter
schools (surveyed in Chabrier et al. (2016)) use conditionally-random admissions lotteries as
instruments for charter-school enrollment. Under plausible assumptions, IV estimates using
randomized charter offers to instrument a charter enrollment dummy identify causal effects of
charter attendance in the population induced to enroll by random assignment. Other lottery
designs derive instruments for Medicaid (analyzed in Finkelstein et al. (2012)) and the draft
lottery that determined eligibility for Vietnam-Era conscription (analyzed in Angrist (1990)).
In clinical trials with partial compliance, random assignment to treatment, also called intention-
to-treat, can be used to instrument treatment received, identifying effects on trial participants
who comply with the trial protocol (Angrist and Hull, 2023).

Random assignment alone does not guarantee instrument validity. Angrist and Imbens
(1995) and Andresen and Huber (2021) note that quotidian implementation details such as
recoding an ordered treatment as Bernoulli may cause an exclusion restriction failure, thereby
muddling IV estimates. Rose and Shem-Tov (2024) likewise highlight this point, arguing that
the Medicaid treatment in Finkelstein et al. (2012) can be seen as years of exposure rather
than as a dummy treatment indicating any Medicaid enrollment. Relying on an additive linear
model for identification, Abdulkadiroglu et al. (2017) and other charter lottery studies similarly
code charter treatment exposure as years enrolled. Angrist and Evans (1998), by contrast, uses
dummies indicating multiple second births and samesex sibships to instrument a dummy indi-
cating the presence of a third child. Exclusion fails here if these instruments shift childbearing
at parities higher than three.

Exclusion failures can arise when a single instrument affects outcomes through multiple
channels. For example, Angrist and Chen (2011) uses randomly assigned Vietnam-Era draft
eligibility as an instrument for schooling. This identification strategy is motivated by the GI
Bill, a major source of post-secondary aid for Vietnam veterans and a possible explanation of
earnings gaps by veteran status. But draft-eligibility also increases the likelihood of military
service, arguably the dominant channel through which draft eligibility affects earnings and other
long-run outcomes. Angrist and Chen (2011) allows for this using additive constant-effects
models with two treatments, identified by multiple instruments. In the charter school research
domain, Abdulkadiroglu et al. (2017) uses parametric models to distinguish causal effects of
different sorts of charter schools. However, two-stage least squares (2SLS) estimators with
two additive treatments may fail to identify average causal effects in a world of heterogeneous
potential outcomes (a point made in Behagel et al. (2013) and Kirkeboen et al. (2016)).

The interpretation of IV estimates is also complicated by heterogeneous counterfactuals.
Abdulkadiroglu et al. (2017) notes, for instance, that a given charter school offer may pull
applicants from other charters, possibly differing in type or quality, as well as increasing the
odds of any-charter enrollment. Similarly, in a re-analysis of data from a randomized evaluation
of the Head Start preschool program, Kline and Walters (2016) uses the random assignment of
Head Start seats and a structural model to distinguish causal effects of Head Start for children

drawn into the program from home care and from competing preschools. Potential outcomes



in these scenarios are determined by multinomial treatments any one of which may be changed
by the instrument at hand.

Some multinomial treatment variables are meant to explain causal effects. For example,
Angrist et al. (2022) analyzes data from a randomized trial that offered generous financial
aid to college-bound high school seniors in the treatment group. This intervention boosted
BA completion rates sharply. Angrist et al. (2022) argues that the resulting degree gains
are caused exclusively by early four-year engagement as measured by college credits earned in
freshman year. But other channels such as a reduction in the burden of growing college debt
may matter as much or more than early engagement. Revisiting this application, we show how a
single experiment can be used to distinguish the early engagement and loan reduction channels
generating causal effects.

This paper develops identification and estimation strategies for a broad class of such prob-
lems. Specifically, we state assumptions and establish identification results for potential out-
comes models that use a single instrument to identify a class of average causal effects in settings
with ordered and multinomial treatments. We also extend the weighting strategy introduced
in Abadie (2003) to identify a causal conditional expectation function that characterizes mean
potential outcomes conditional on potential Bernoulli treatments. Our extensions identify av-
erage causal effects in settings beyond those with Bernoulli treatments, while delineating the
assumptions needed to deliver identification in these contexts.

Our analysis contributes to a large literature on I'V identification focused on beyond-Bernoulli
treatments. We share with Heckman et al. (2006), Lee and Salanié (2018), Pinto (2021), Dutz
et al. (2021), Goff (2024), and Nibbering and Oosterveen (Forthcoming) (among others) use
of restrictions on choice behavior to identify causal parameters. Mogstad and Torgovitsky
(2024) surveys alternative IV paradigms for analysis of models with heterogeneous potential out-
comes. Our analysis also complements Torgovitsky (2015), D’Haultfoeuille and Février (2015),
and Chernozhukov et al. (2024) which likewise study identification using discrete instruments,
though using assumptions unrelated to ours. In extensions of Imai et al. (2010), Frolich and
Huber (2017), Kwon and Roth (2025), and Athey et al. (2025) explore the identifying power of
IV-inspired restrictions on potential treatments like monotonicity in causal mediation analysis.

The identification strategies developed here are closely related to the principal stratifica-
tion approach to causal inference pioneered in Frangakis and Rubin (2002). Principal strata
are conditioning sets defined by latent response types; conditional on these (and possisbly on
covariates), treatment is independent of potential outcomes. The next section starts with a
restatement of this foundational result. Heckman and Pinto (2018) extends the principal strata
idea to IV models with unordered treatments and discusses identification under various restric-
tions on latent response types. Unlike Heckman and Pinto (2018), we introduce limited homo-
geneity restrictions on potential outcomes to facilitate identification of average causal effects for
individual response types. This leads to looser, easily-verified alternatives to the restrictions on
response types considered in earlier work.

We also build on Navjeevan et al. (2023), which gives high-level necessary and sufficient con-
ditions for identification of causal parameters in a general class of potential outcomes models.

We apply and extend lessons from Navjeevan et al. (2023) by introducing new causal parame-



ters and novel, widely-applicable identifying restrictions. Our results leverage unique features
of models powered by a single Bernoulli instrument to obtain transparent, verifiable (in the
context of a particular model) necessary and sufficient conditions for identification. Finally,
we derive simple weighted least squares estimands for parameters identified by our extensions
of Abadie (2003), as well as straightforward IV estimands. Our results are unique in their
derivation of a minimum mean-squared error approximation to underlying, possibly nonlinear,
causal models for beyond-Bernoulli treatments. An appendix collects asymptotic results for
estimators constructed as the sample analog of the estimands developed here. The utility of
our theoretical results is demonstrated in empirical applications revisiting questions addressed
in Kline and Walters (2016), Angrist et al. (2022), and Angrist and Evans (1998).

1 Econometric Framework

We begin by describing the causal models of interest. The data consist of an outcome Y € R, a
discrete treatment 7' € T = {t1,...,t4}, a Bernoulli instrument Z € Z = {0, 1}, and covariates

X € X. Since d may exceed two, treatments can be ordered or multinomial. Observed outcomes

Y =) YV OUT =t}
teT
are determined by a vector of potential outcomes Y* = (Y*(t1),...,Y*(ty)) € R% The realized
treatment determines which potential outcome we see. Observed treatments 7" = T7(0)(1 —
Z) + T*(1)Z are determined by a pair of potential treatments, 7 = (7%(0),7%(1)) € T x T.
Response type for each individual is defined by the pair of potential treatments.

The following assumption encapsulates this setup.

Assumption 1.1. (i) Y* = (Y*(t1),...,Y*(ty)) € R, Z ¢ Z = {0,1}, X € X, and T* =
(T*(0),7*(1)) with T*(z) € T = {t1,...,tq} for z € {0,1}; (is) T = T*(0)(1 — Z2)+T*(1)Z
and Y = Y, o Y*)H{T = t}; (ii) (Y*,T*) is independent of Z conditional on X; (iv)
E[|Y*(t)|]] < oo for allt € T and P(Z = 1|X) € (0,1) with probability one.

Assumption 1.1(iii) says that instrumental variable Z is as good as randomly assigned in the
sense of being independent of response types and potential outcomes (conditional on covariates).
This assumption implies an exclusion restriction since, for a given treatment value, potential
outcomes are presumed to be unrelated to the value of Z. Assumption 1.1(iv) also ensures that
Z varies conditional on covariates and that average potential outcomes are well-defined.

Given Assumption 1.1, average causal effects are identified by restrictions on the manner in
which an instrument affects treatment. Imbens and Angrist (1994) monotonicity, for example,
says that Z can move a Bernoulli treatment in one direction only. Monotonicity is extended
here to a wide class of restrictions suitable for ordered and multinomial treatments. These
restrictions limit the set of possible response types. Specifically, T* is presumed to belong to a
known set M, of which a subset are induced by an instrument to change treatment status. In

formalizing this, we use the notation t* = (¢*(0),¢*(1)) to denote possible values of T* € M.

Assumption 1.2. (i) P(T* € M) = 1 for a set of response types, M C T x T; (ii) Subset
S={t"eM:t"(1) #t*(0)} of M, is non-empty and P(T* € S) > 0.



Assumption 1.2(ii) says that an assignment model characterized by M includes a non-empty
subset of potential response types, denoted S, induced by the instrument to switch from one
treatment to another. Our results identify average causal effects for switchers, that is, for
response types in S.

The Imbens and Angrist (1994) setup without covariates illustrates this framework. In this
case, T' € {0,1} and monotonicity restricts 7™ to satisfy 7%(1) > T77(0) with probability one.
In our notation, monotonicity is equivalent to setting M = {t* : t*(1) > ¢*(0)}. The subset
of switchers, S, contains a single type (compliers), so S = {(0,1)}. Under monotonicity and
Assumptions 1.1 and 1.2, a Wald-IV estimand identifies a local average treatment effect (LATE):

ElY|Z =1] - E[Y|Z = 0]
E[T|\Z =1] - E[T|Z = (]

= E[Y*(1) — Y*(0)|T*(1) > T*(0)] = 7.

The causal effect here is for a single switcher type, the set of compliers, while the set of allowable
response types includes compliers plus always-takers (with 7%(1) = T%(0) = 1) and never-takers
(with T*(1) = T%(0) = 0). The fact that causal effects are identified only for a subset of
potential response types, those induced to change treatment status by changing 7, is key to the
development that follows.

As a stepping stone to more general results, note that 7, is the slope in a causal conditional
expectation function (CCEF) that describes the expectation of potential outcomes conditional
on potential assignments. This is a consequence of Assumption 1.1(iii) (independence of Z and
(Y*,T*) conditional on X), Assumption 1.1(iv) (P(Z = 1|X) € (0,1)) implying compliers are
treated with probability strictly between zero and one, and Assumption 1.2(ii) (P(T* € S) > 0)
requiring that the probability of compliance be positive. The CCEF for basic LATE is:

E[Y|T,T*(1) > T*(0)] = E[Y*(T)|T,T*(1) > T*(0)]
= E[Y*(0)|T*(1) > T*(0)] + 7 x T.

Because T disappears from the conditional expectation function for potential outcomes, the
CCEF is generated by a notional randomized trial in which T is randomly assigned in the
population of compliers. The CCEF is causal since it generates comparisons of mean potential
outcomes for a fixed reference population, in this case, the population of compliers.

Heckman and Pinto (2018) note that this insight extends to a general potential-outcomes
model with more elaborate treatment variables. Specifically, for an ordered or multinomial
treatment, the conditional expectation of outcomes given treatment, response types, and co-
variates identifies average causal effects of treatment on outcome Y for treatment values and
response types compatible with Assumption 1.2. In the terminology introduced in Frangakis
and Rubin (2002), response types define principal strata. The following proposition expresses

this result in our notation.’

Proposition 1.1 (CCEF Properties). If Assumptions 1.1, 1.2 hold, then for any t* € M with
P(T*=t*X) >0 and t € {T*(0),T*(1)} the CCEF, E[Y|T,T* = t*, X|, satisfies:

E[Y|T =t,T* = t*, X] = E[Y*(t)|T* = t*, X].

! Appendix A.1 proves the theoretical results stated in Sections 1 and 2.



Therefore, for any t* € M such that P(T* = t*|X) > 0, the CCEF generates response-type-

specific average treatment effects as follows:

E[Y*(T*(1)) = Y*(T"(0))|T" = t*, X] (1)
= E[Y|T =T*(1),T* = t*, X] — E[Y|T = T*(0),T* = t*, X].

The causal contrasts in (1) are useful only for response types that switch from one treatment
to another in response to the instrument—otherwise 77 (0) equals 7*(1) and (1) is zero. Propo-
sition 1.1 implies that, for switchers, conditional-on-T* comparisons of mean outcomes between
groups with 7%(1) = ¢t and T*(0) = ¢ equal average causal effects of changing treatment from

t' to t. We therefore seek to identify the CCEF and type-specific average causal effects:
T(T7) = E(E[Y*(T"(1)) = Y*(T7(0)|T", X]|T™), (2)

for T* € S. For instance, with an ordered treatment in {0, 1,2} that satisfies monotonicity (a
scenario considered in Angrist and Imbens (1995)), 7(T™) takes up to three values according to
whether T™ equals (0, 1), (0,2), or (1,2).

The basic LATE scenario illustrates a key feature of the CCEF that we aim to exploit.
Suppose again that T € {0,1}, we can ignore covariates, and potential response types satisfy
monotonicity. In this case, 7(7T™") equals 7,, an average causal effect for the single response
type (compliers). At the same time, 7, is also the slope coefficient in a regression of Y on T'

for compliers. That is, 7, equals £ in the regression
(Bo, Br) = argmin E[(EY [T, T*(1) > T*(0)] = bp — by T)*[T*(1) > T*(0)] (3)
0,91

= arggnbrllE[(Y — by — 01 T)*1{T*(1) > T*(0)}].

Moreover, while individual compliers are not identified (because one of 77(1),77*(0) is coun-
terfactual), Abadie (2003) shows that (3) is equivalent to a feasible weighted-least squares

minimand. Specifically, the objective in (3) satisfies
E[(Y — by — 0/ T)*1{T*(1) > T*(0)}] = E[(Y — by — . T)?*k(T, Z)),

where
. T-2) (1-17)Z
K(T,Z)J—P(Z:O)—P(Z:l). (4)

Without covariates, the regression function obtained by x-weighting is the basic LATE CCEF.
With covariates, the Abadie (2003) k-weighted minimand generates a best linear approximation
to the CCEF.

The next section extends IV and k-weighting identification strategies to accommodate or-
dered and multinomial treatments of the sort allowed by Assumption 1.1. Importantly, in this
more general setting, the set of switchers may contain more than one type. The generalization
of the LATE Theorem established here therefore identifies causal contrasts 7(7™) averaged over
possible types 7™ in S. This parameter, which we call switcher LATE (SLATE), is defined by:

7(S) = E[r(T")|T* € S].



SLATE generalizes an estimand defined in Kline and Walters (2016) for a trinomial treatment
variable. We revisit this connection in Sections 2.2 and 3.

For basic (Bernoulli treatment) LATE with no covariates, 7(S) coincides with the effect on
compliers obtained using (3). Beyond this scenario, however, k-weighted construction of the
CCEF potentially delivers more than SLATE, distinguishing average causal effects for distinct
switcher types. This leads us to derive conditions under which the CCEF is identified. The
solution here is characterized by a model, denoted F(7T,X;[), that depends on parameter

vector, 8. These parameters are defined by:
B = argmin B[(E[Y|T,T", X] - F(T, X; b))?|T* € S]
= argmbinE[(Y — F(T, X;b))*1{T* € S}],

which we show are identified by a feasible weighted least squares problem. This minimization
problem is shown to provide a foundation for identification of the response-type-specific average

causal effects defined in (2).

2 Identification of Causal Parameters

This section begins by establishing necessary and sufficient conditions for identification of
SLATE. These conditions are then extended to derive a weighted least squares minimand that
identifies the CCEF. The latter identification problem is more demanding and therefore requires

stronger assumptions than the former.

2.1 SLATE

SLATE averages type-specific causal contrasts, 7(7*), over the subset of switchers S C M
defined in Assumption 1.2. The following lemma shows that identification of the probability of
being a switcher is key to identification of SLATE.

Lemma 2.1. Suppose Assumptions 1.1 and 1.2 are satisfied. Then,
E[r(T*)1{T* € S}|=E(E|Y|Z=1,X]|—-E[Y|Z =0,X])

and therefore
E(E[Y|Z=1,X]|—-E[Y|Z=0,X])

P(T*e8)

This result raises the question of when P(T™ € S) is identified so that the lemma can

T(S) =

be used to construct 7(S). The answer is surprisingly simple and determined by whether a
particular set of linear equations is consistent, that is, has a solution, or inconsistent, meaning
no solution exists. This can be shown by supplementing Corollary 4.3 in Navjeevan et al. (2023)
and Assumptions 1.1 and 1.2 with two regularity conditions.” In stating these conditions, Pap
and P4 p denote the joint and conditional distributions of any two random variables (4, B),

while P4 < Pp means that Py is absolutely continuous with respect to Pg.?

?Heckman and Pinto (2018) gives sufficient conditions for identification of P(T* € S).
3A distribution P4 is absolutely continuous with respect to a distribution Pp if any set C' that has zero
probability under Pp also has zero probability under P4 —i.e. Pg(C) = 0 implies P4(C) = 0.



Theorem 2.1 (Identification of P(T* € S)). Suppose Assumptions 1.1, 1.2 hold. Assume also
that: (i) For some € > 0, with probability one, e < P(Z =1|X)<1—¢ and P(T* =t*|X) > ¢
for all t* € M; (ii) Py«pox < {Pyx}? < Py«px and P = Py xPrzx satisfies P <
Py «rszx with dJS/dPy*T*ZX bounded. Then P(T* € S) is identified if and only if there are
functions vy and vy of T that satisfy:

w(T7(0)) + i (T7(1)) = {T" € S}, (5)
with probability one.

The regularity conditions imposed by Theorem 2.1 require the instrument-assignment propensity
score, P(Z = 1/X), to be bounded away from zero and one, and the probability of response
types allowed for by M to be bounded away from zero. The theorem also imposes absolute
continuity requirements that restrict the joint support of the vector of potential outcomes in a
manner that seems uncontroversial.’

Theorem 2.1 gives conditions under which restrictions on M are necessary and sufficient to
identify P(T™ € S). The most important of these is equation (5). Importantly, because T* € M
under Assumption 1.2, solutions to (5) depend on the restrictions embodied in M but not on
the distribution of the data. We call (5) ISP as a reminder that this is equivalent to an identified
switcher probability. ISP is formalized as:

Assumption ISP There are functions vy and vy of T' satisfying
w(T7(0)) + w1 (T7(1)) = HT* € 8}, (6)

with probability one over T* € M.

Unsurprisingly, ISP is satisfied in the basic LATE scenario featured in Imbens and Angrist
(1994). Recall that M in this case allows for three response types, T* = (7%(0),7*(1)) equal
to (0,0),(1,1), or (0,1). Setting vy(t) = —t and v;(t) =t for t € {0,1}, we have:

v (T7(0)) + i (T7(1)) = T*(1) = T*(0),

which equals 1{7*(1) > T*(0)} = 1{T™ € S}, as required by ISP. More generally, ISP generates
a system of |M]| linear equations that may or may not have a solution.
Given Assumptions 1.1 and 1.2, ISP is sufficient for a Wald-type estimand to identify 7(S),

as shown in the following result.

Theorem 2.2 (ISP Identifies SLATE). Suppose Assumptions 1.1, 1.2, and ISP hold, and, for
some e >0, e < P(Z=1|X) <1— ¢ with probability one. Let

Z—P(Z=1|X)

Z= P(Z = 0| X)P(Z = 1|X)

(7)

4These require, for instance, the support of Y* conditional on T* to be unrelated to T* and are used to show
the necessity part of the statement (i.e., that identification of P(T™ € S) implies that a solution to (5) exists).
Theorem 2.2 below shows that the existence of a solution to (5) is sufficient for identification of P(T* € S)
without absolute continuity conditions.



and, for functions vy and v satisfying ISP, let V. = v1(T)Z —vy(T)(1 — Z). Then:
P(T* € S) = B(E[V|Z =1,X] - E[V|Z = 0, X)) = E[ZV]

Q_E@WM:LM—EWM:&XD_E@H .
t T E(EV|Z=1,X]-E[V|Z=0,X])  E[ZV] (8)

This theorem identifies SLATE as an IV estimand in which treatment variable V' is determined
by functions vy and v satisfying ISP. The first representation in (8) marginalizes over covariates
in the manner discussed by Frolich (2007) for basic LATE. The second is derived using inverse
propensity-score weighting (IPW), as suggested by Tan (2006).°
When does ISP fail? Consider a simplified ordered treatment model with 7' € {0, 1,2},
no covariates, and monotonicity. The set of response types T* = (T*(0),7*(1)) allowed by
M then consists of three types of stayers, {(0,0),(1,1),(2,2)}, and three types of switchers,
{(0,1),(0,2),(1,2)} = S. In this case, ISP does not hold because no functions vy and v satisfy
restriction (6). To see why, note first that evaluation of restriction (6) at staying response type
(T*(0), T*(1)) = (1,1) yields
(1) +v1(1) =0. 9)

Similarly, evaluating (6) at switching response types T* € {(0, 1), (0,2),(1,2)} gives

1(0) +1(1) =1 for T* = (0,1) (10)
1(0) +v1(2) =1 for T* = (0, 2) (11)
(1) +11(2) =1 for T" = (1,2). (12)

Equations (9)-(12) have no solution (in vy, v1) because (10) and (11) imply v1(1) = v1(2), which
together with (12) yields vp(1) + v1(1) = 1. This in turn contradicts (9). Since ISP does not
hold, SLATE is unidentified without further restrictions on M.°

The identifying power of ISP is highlighted by a model adding Rose and Shem-Tov (2024)
extensive margin compliance only (EMCO) assumption to our simple ordered-treatment story.
EMCO says that an instrument induces shifts only from no treatment to positive treatment.
With three treatment levels, EMCO allows three types of stayers, {(0,0), (1,1),(2,2)}, but only
two types of switchers, {(0,1),(0,2)} = S. Because EMCO rules out switcher type T = (1, 2),
we can drop (12). Evaluating (6) for stayers, ISP requires vy and v satisfy

vo(t) +v1(t) =0 for all t € {0,1,2}. (13)

The system of equations consisting of (10), (11), and (13) is solved by vi(¢t) = 1{t > 0} and
vo(t) = —vi(t). Hence, ISP holds and SLATE is identified. Specifically, since V = 11(T)Z —

®An IPW estimand for the conditional reduced form in the second line of (8) is

YZ Y(1-2)

E P(Z=1X) 1-P(Z=1X)

= E[ZY].

The equality above is obtained by bringing the elements of this expression over a common denominator. A
parallel operation yields the denominator in the characterization of 7(S).

SWeighted average LATEs computed over overlapping groups of switchers may be identified without ISP, as
shown in Angrist and Imbens (1995). Angrist et al. (2024) extends that approach to cover dynamic treatment
effects in randomized trials with time-varying compliance.



vo(T)(1 — Z) equals V = 1{T" > 0}, Theorem 2.2 implies:

B E[Y|Z =1] - E[Y|Z = 0]
 E[{T >0}|Z=1]-E[I{T >0}|Z =0]’

~(S) (14)
a result obtained (following a different path) in Rose and Shem-Tov (2024).7
ISP is also satisfied by a latent-index ordered choice model like ordered probit. To see this,

suppose ¢ is continuously distributed on the real line, and that treatment status is governed by:

0 ifzn+e<¢
T (2)=¢ 1 ifcg<zrt+e<cy (15)
2 ifey <zm+e,

where ¢ is independent of Z and 7 > 0. This model imposes restrictions on 7™ that go beyond
monotonicity. Suppose initially that m > ¢ — ¢;. In this scenario, 7%(0) =1 (i.e., ¢; < e < ¢2)
implies T*(1) = 2, because then m4& > co. Hence, while there are up to three types of switchers,
{(0,1),(0,2), (1,2)}, this restriction leaves only two types of stayers, {(0,0),(2,2)}.
Evaluating the ISP restrictions in (6) at these five possible response types yields:

vo(0) +v1(1) =1 for T" = (0, 1)
1(0) +v1(2) =1 for T* = (0, 2)
vo(l) +11(2) =1 for T" = (1,2)
19(0) + v1(0) = 0 for T = (0,0)
(2) +v1(2) =0 for T" = (2,2)

These equations are solved by vy(t) = —1{t = 2} and v;(t) = 1{t > 0}. Therefore, ISP holds,
and Theorem 2.2 implies SLATE equals:
ElY|Z =1] - E[Y|Z =0
T(S) = .
E[{T > 0}|Z =1] - E[I{T =2}|Z = (]

(16)

What happens if m < ¢cg — ¢1? ISP is satisfied even so. To see this, note first that, in this
case, T*(0) = 0 (i.e., € < ¢1) implies T*(1) < 2, because then w4 ¢ < ¢3. So, when 7 < ¢3 — ¢1,
there are no switchers with 7% = (0,2). That leaves three stayer types, {(0,0),(1,1),(2,2)},
and two switcher types, {(0,1),(1,2)}. Evaluating the ISP restrictions at these five response
types yields:

v(0) +v1(1) =1 for T* = (0,1)
vo(1) + v1(2) = 1 for T* = (1,2)
v9(0) + v1(0) = 0 for T = (0,0)
(1) +v1(1) =0 for 7% = (1,1)
(2) +v1(2) =0 for T = (2,2)

These equations are solved by v1(t) =t and vy(t) = —t, again implying ISP holds and SLATE

"Rose and Shem-Tov (2024) also derives k-weights that identify expectations of functions of observables for
switchers under EMCO. As we discuss in the next section, these weights are important, but not sufficient, for
identifying the CCEF.



is identified. Applying Theorem 2.2 in this scenario yields:

_ElY|Z=1]-E[Y|Z =0
~ E[T|Z=1]-E[T|Z=0]

7(S) (17)

and hence SLATE equals the Wald-IV estimand in which we instrument for 7. Thus, the con-
struction and interpretation of SLATE turns on first-stage parameter values. Yet, the ordered
assignment model delivers an average causal effect either way. Appendix A.2 shows that this
conclusion holds for latent-index ordered-assignment models with more than three treatments,
gives general formulas for 1y and v, characterizes the set of switchers in these models, and gives

restrictions under which SLATE can be constructed by instrumenting for 7.

SLATE by x-Weighting

A restriction on allowable assignment types beyond ISP leads to new k-weighted least squares
estimands for both SLATE and the CCEF. This in/out/stay (I0S) assumption uses the following

taxonomy of response types. For each possible treatment, ¢, define:

in(t) = {t* €e M : t*(1) # t*(0) and ¢"(1) =t}
out(t) = {t* € M : t*(1) # t*(0) and t*(0) = t}
stay(t) = {t* € M : t*(0) = ¢t*(1) = ¢}.

This taxonomy divides response types that may select treatment level ¢ into: (i) Switchers who
select t when Z = 1, that is, they switch in to ¢ when the instrument is turned on; (ii) Switchers
who select t when Z = 0, that is, they switch out of ¢ when the instrument is turned on; and (iii)
Stayers who select ¢ regardless of Z. In the basic LATE setup, for instance, stay(0) contains
never-takers, stay(1l) contains always-takers, out(0) and in(1) contain compliers, while in(0)
and out(1) are empty.

Using this notation, 10S is stated as:
Assumption I0S. For allt € T, at least one of in(t), out(t), and stay(t) is empty.
108 says that there is no treatment level that is selected by some switchers when Z = 1, selected
by other switchers when Z = 0, and at which some stayers stay regardless of Z. In the context
of a particular model, IOS is more easily checked than ISP since, for the former, no system
of equations need be solved. Rather, for each treatment level, ¢, IOS is verified by examining
response types in M that can choose t.

Under 10S, both a Wald-type estimand and x-weighting identify SLATE. The probability
of T* belonging to any set of types in(t) or out(t) is also identified under I0S. These results

build on a partition of the set of possible treatment levels into four groups:

T; ={te€T:in(t) # 0 and out(t) = 0}
T, ={t€T:in(t) =0 and out(t) # 0}
Ti, = {t € T:in(t) # 0 and out(t) # 0}
Ts={t e T:in(t) =0 and out(t) = 0}.

The set T; consists of treatments that response types may switch into, but not out of, when
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Z =1. Set T, consists of treatments that response types may switch out of, but not into, when
Z = 0. Switchers can switch in or out of treatments in T;,, while treatments in T are never
selected by switchers. In the basic LATE scenario, for example, T = {0,1} and monotonicity
implies T; = {1}, T, = {0}, and both T, and Ts are empty.

We first use the partition of T into these four subsets to derive generalized k-type weights
under 108, denoted x*. Specifically, for Z as defined in (7), define

KNT,Z,X) = Z({T € T1}P(Z =1|X) — 1{T € T} P(Z = 0|X)) + 1{T € Ty, }. (18)
IOS enables SLATE identification via x*-weighting. This is formalized by the following theorem:
Theorem 2.3 (k* for SLATE). Suppose Assumptions 1.1, 1.2, and 10S hold.

(i) Then, ISP holds with vo(T) = —1{T € Ti} and v1(T) = 1{T € T1 UTio}. Therefore,
7(S) equals IV estimand (8) with V. =1{T € Ty} + 1{T € Ti,}Z. Moreover,

P(T* € S) = E[x*(T, Z, X)).

(ii) Let ho(X) = 1/P(Z = 0|X) and hi(X) = 1/[P(Z = 0|X)P(Z = 1|X)]. Also, suppose
that E[Y?] < oo and, for somee > 0, ¢ < P(Z = 1|X) < 1—¢ with probability one. Then,
7(S) = B1 defined by

(Y b ho(X) B Vhi(X)
OFlho(X)|T*€S]  'Em(X)|T*€S

0,b1

]>2 (T, Z, X)

(Bo, 1) = arg (min FE

The first part of Theorem 2.3 says that 10S implies ISP. As we illustrate below, however,
some models satisfy ISP only. Theorem 2.3(i) also says that the Wald-IV representation for
SLATE obtained in Theorem 2.2 simplifies to IV with Bernoulli treatment V' = 1{T € T;} +
{T € Tio}Z. The second part of the theorem says that SLATE equals a x*-weighted least
squares estimand. In particular, without covariates, Theorem 2.3(ii) implies SLATE is the
slope of a k*-weighted regression of Y on a constant and V. With covariates, SLATE can be
obtained using a weighting scheme involving assignment propensity scores and the conditional
variance of assignment. This result appears to be new even in the Bernoulli treatment case with
monotonicity and covariates studied by Abadie (2003).%

To illustrate Theorem 2.3, we return to T € {0, 1,2} without covariates and the ordered
latent-index model for T* given by (15). This setup satisfies ISP. Here, in(1) and out(1) are
non-empty. But when 7w < ¢o — ¢, stay(l) is also non-empty since ¢; < € < ¢y — 7 generates
response type T* = (1,1). Therefore, I0S fails even though ISP holds. If m > ¢o — ¢1, however,
stay(1) is empty. Since in(0) and out(2) are also empty, IOS holds. Moreover, T; = {2} and
Tio ={1},50 V=T € Ty} + 1{T € Tio}Z equals I{T" =2} + 1{T' = 1,Z = 1}. Theorem
2.3(i) then implies

o ElY|Z=1] - E[Y|Z = (]
"8) = BT > 0}z = 1) = BT = 2}Z = 0]

8In a basic LATE scenario with covariates required for identification, Abadie (2003) minimizes E[(Y — by —
biT — X'be)?k(T, Z, X)) or some other parametric model for the CCEF allowing for covariate effects on potential
outcomes. The minimand in Theorem 2.3(ii) requires no such specification, requiring only a model for the
assignment propensity score.
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the result obtained in (16) using ISP and Theorem 2.2.

Now, replace the latent-index model for T* with EMCO. As we have noted, EMCO allows
five response types, three stayers ({(0,0), (1,1),(2,2)}) and two switchers ({(0,1), (0,2)}). IOS
holds here because in(0), out(1), and out(2) are empty. Moreover, since T; = {1,2} while T,
is empty, V = 1{T € Ti} + 1{T € Ti,}Z equals 1{T > 0}. Theorem 2.1(i) therefore implies:
B E[Y|Z =1] - E[Y|Z =1]

E[{T > 0}|Z=1] - E[{T > 0}|Z =0]’

7(S)

the result obtained in (14) using ISP and Theorem 2.2.

SLATE is an easily computed summary causal effect that is likely to be useful in many
applications. For example, Kline and Walters (2016) interprets a conventional Wald estimand
as SLATE in a scenario with a trinomial unordered treatment. The treatment variable in this
case is defined by preschool sector, either Head Start, competing (non-Head Start) preschools,
or home care. The Kline and Walters (2016) version of SLATE averages effects of movements
into Head Start from the other two sectors. We reconsider this application in Section 2.2 and
Section 3. As it turns out, the key identifying assumption here implies 10S.

In applications with ordered treatments, SLATE is likely to be most useful under monotonic-
ity. To see this, consider a modified basic LATE scenario with no always-takers while allowing
defiance. I0S fails here because stay(0), in(0), out(0) are non-empty. ISP holds, however, with
vo(t) = v1(t) = t. SLATE therefore equals:

_EY|Z=1]-E[Y|Z=1]

E[T|\Z =1]+ E[T|Z = 0]

= pEY(1) = Y(0)[T™(1) > T*(0)] + (1 — pe) E[Y*(0) = Y*(1)|T™(1) < T*(0)],

7(S)

where p. = P(T*(1) > T*(0)|T* € S). Suppose now that the causal effect of treatment is a
constant, 7. The usual Wald-IV estimand identifies 7. However, 7(S) differs from 7 because
SLATE averages Y (7%(1)) — Y(7(0)) for compliers, for whom 7%(1) = 1 and 77(0) = 0, with
the corresponding effects for defiers, for whom 7%(1) = 0 and 7%(0) = 1. Under constant effects,
the first effect is 7 while the second is —7; SLATE weights these by p. and 1 — p,, respectively.”’

SLATE does not distinguish causal effects for different types of switchers, but IOS identifies
features of the distribution of switcher types. Specifically, under 10S, the probability T™* belongs
to in(t) and the probability 7™ belongs to out(t) are identified for all t € T consistent with M.

The following lemma formalizes this result.
Lemma 2.2 (Probabilities of in(t) and out(t)). If Assumptions 1.1, 1.2, and 10S hold, then

P(T* € in(t)
P(T* € out(t)

X)=E[T =t}|Z=1,X] - EQ{T =t}|Z=0,X] forallte T,
X)=ET =t}|Z=0,X] - EQ{T =t}|Z=1,X] forallt e T,

9The de Chaisemartin (2017) compliers-defiers condition, requiring that there be a subpopulation of compliers,
Cr, of the same size and with the same average treatment effect as defiers, yields 7(S) = P(Cy|T* € S)E[Y*(1) —
Y*(0)|Cv], where Cv is the complement of Cr in the set of compliers. This follows from the reduced form
here equaling P(Cv)E[Y™(1) — Y*(0)|Cv]. This result also holds when there are more compliers than defiers
conditional on the difference in potential outcomes.
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and, for allt € T;,,

P(T* € in(t) | X) = E[I{T =t}|Z = 1, X]
and P(T* € out(t) |X) = E[I{T =t}|Z =0, X].

Moreover, defining Z = (Z — P(Z = 1|X))/(P(Z = 1|X)P(Z = 0|X)), we obtain

P(T* € in(t)) = E[I{T =t}Z] forallte T;,
P(T* € out(t)) = —E[1{T =t}Z] forallteT,,

and, for allt € T;,,

P(T* € in(t)) = E[I{T =t} Z7]

and P(T* € out(t)) = —E[{T =t}(1 — 2)Z].
This lemma links the distribution of switcher types to first-stage relationships for the set of
treatment indicators of the form 1{7" = t}. For some models, this result also identifies the
probability distribution of switcher types, T*. This is illustrated in the context of Head Start

at the end of the next section.

2.2 CCEF Identification

When are the underlying average causal effects defined by (2) identified? This question is
answered by studying identification of the CCEF. Beyond basic LATE as in Imbens and Angrist
(1994), resolution of this more challenging identification problem typically requires stronger
assumptions than does identification of SLATE.

The CCEF is assumed to be modeled or approximated by a function F(T, X; ) of parameter
vector, 3. The parameters we seek are defined by fitting F' to the CCEF for switchers:

B = argmbinE[(E[Y\T, T*, X] — F(T, X;b))?|T* € S|
= argmin B[(Y — F(T, X; b))*1{T* € S}].

Proposition 1.1 implies that if F' is correctly specified (i.e., matches the CCEF), then covariate-

specific average causal effects for a given switcher type T™ are given by:
EYX(T(1)) = YH(T*(0))[T, X] = F(T™(1), X; B) = F(T7(0), X; 8). (19)

When F differs from the CCEF, F(T, X; ) is a minimum mean-squared error (MMSE) approx-
imation to it.

We start by assuming that the CCEF is a function of T" and X only, omitting 7%. This is
formalized by the following representation in observables (RIO) assumption:
Assumption RIO. There is a function C(T, X) satisfying

P(E[Y|T,T*,X] = C(T, X)|T* € S) = 1

In a basic LATE scenario without covariates, RIO is ensured since monotonicity allows only
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one type of switcher. In particular, the LATE CCEF can be written:
EY|T, T = (0,1)] = C(T) = fo + 5T,

where (1 equals LATE and 5y = E[Y*(0)|T™* = (0, 1)].

Applications with non-Bernoulli treatments often generate multiple switcher types, in which
case, RIO is more demanding. The following corollary to Proposition 1.1 characterizes the
restrictions RIO imposes on the CCEF.

Corollary 2.1 (Interpreting RIO). Suppose Assumptions 1.1, 1.2 hold, and that P(T* =
t*|X) > 0 for all t* € S with probability one. Then, RIO is satisfied if and only if

EY*(t)|T* =t", X] = E[Y*(t)|T* € in(t) Uout(t), X], (20)
for all t* € in(t) Uout(t).

RIO limits heterogeneity by requiring mean potential outcomes at treatment level ¢ be the same
for all switcher types that can choose t. This homogeneity facilitates CCEF identification since
it implies that, conditional on a treatment level, the CCEF does not depend on unobserved
switcher type T™*. For treatment values chosen by only one type of switcher, (20) imposes no
restriction. Returning to T' € {0, 1,2} under EMCO, for instance, the instrument moves some
switchers from 0 to 1 and some from 0 to 2. Corollary 2.1 requires the mean of Y*(0) be the
same for these two types, while leaving the means of Y*(1) and Y*(2) for switchers unrestricted.
Although strong, RIO has antecedents in the literature on IV identification (see, for example,
Mountjoy (2022), Angrist and Fernandez-Val (2013)).

The following result shows that IOS is central to identification of a RIO-compliant CCEF.

Theorem 2.4 (The CCEF and I0S). Suppose Assumption 1.1, 1.2, and RIO hold, and: (i) For
some e > 0, with probability one, e < P(Z =1|X) < 1—e, P(T* =t*|X) > ¢ for allt* € M, and
Var{Y*(t)| X} > e; (ii) Y*(t) is bounded for allt € T; (iii) Py«p+x < {Py|x}* < Py+p-x and
P = Py x - - Pyey)x Prezx satisfies P < Py«r«zx with dP/dPy7+zx bounded. Then
the CCEF is identified if and only if IOS holds.

Remarkably, IOS is both necessary and sufficient for CCEF identification under the conditions
of Theorem 2.4.
IOS is also sufficient for identification of £ as the solution to a feasible k*-weighted least

squares minimand. This is formalized by:

Theorem 2.5 (k* for the CCEF). Suppose Assumptions 1.1, 1.2, and 10S hold, and that, for
some e >0, e < P(Z =1|X) <1— ¢ with probability one. Then:

(i) For any g satisfying E[|g(Y, T, X)|] < oo,
ElgY,T,X)x*(T,Z,X)| = E[g(Y,T, X)1{T™* € S}]. (21)

(ii) Suppose that in addition to the conditions for part (i), RIO holds and g(Y,T,X) = (Y —
F(T, X;b))? satisfies E[|g(Y, T, X)|] < co for all b. Then, the CCEF, denoted C(T,X),
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equals or is approzimated by F(T, X; 3), where
B = argmin E[(C(T, X) - F(T, X; b)?|T* € S] (22)
= argmin E[(Y — F(T, X; b)2*(T, Z, X)]

and the solution to (22) is assumed to be unique.

(iii) If Ts =0, then:
* _ V(l-2) (1-V)Z

fOT' V= 1{T S Tl} + l{T S Tio}Z-

Part (i) of Theorem 2.5 says that x*-weighting delivers identification of the expectation of any
function of (Y,T, X) for switchers. This result holds without RIO and enables identification
of, for instance, the weights used to construct SLATE in Theorem 2.3(ii).!" Theorem 2.5(ii)
uses k*-weights and RIO to identify the CCEF, or to obtain an MMSE approximation to it.
For a saturated linear CCEF specifications without covariates, the first order conditions for
the minimization problem in the theorem imply uniqueness of 8 as long as the probabilities in
Lemma 2.2 are nonzero.

The third part of Theorem 2.5 says that in models in which every treatment value t € T is
selected by some switcher, so Tg = (), the k*-weights used in (22) are of the form derived by
Abadie (2003) for basic LATE. Here, however, a conventional treatment dummy is replaced by

auxiliary treatment variable V' that depends on (non-Bernoulli) 7" and, possibly, instrument Z.

From SLATE to the CCEF with an Unordered Treatment

Head Start is a large and long-running federally-funded program providing free preschool to
disadvantaged children. An investigation of Head Start enrollment effects on test scores inspired
by Kline and Walters (2016) illustrates identification of causal effects using Theorems 2.3 and
2.5. The instrument here is a randomized offer of Head Start placement in a sample of three-
and four-year-old Head Start applicants participating in the Head Start Impact Study (HSIS).
The outcome is a composite test score constructed from achievement tests taken after random
assignment.

Randomized offers of Head Start seats increase the probability of Head Start enrollment in
the year after random assignment by around 68 percentage points. This is also an estimate of the
overall probability of switching. Importantly, Head Start switchers (defined as children placed
in Head Start as a consequence of these offers) are drawn from two groups: applicants enrolled
in competing non-Head Start preschools and applicants in home care (meaning no preschool).
This leads to a scenario with a trinomial unordered treatment variable that we represent by T' €
{h,e,n}, where h denotes Head Start attendance, ¢ denotes competing preschool attendance,
and n denotes home care. All HSIS children fall into one of these three groups.

Kline and Walters (2016) and Feller et al. (2016) assume Head Start offers leave the choice

between ¢ and n unchanged since both options are available to everyone regardless of random

10T6 do this, set g(Y, T, X) equal to ho(X) and hi(X).
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assignment. In our notation, this can be written as:
T*(1) #7T(0) = T%(1) = h. (23)

This EMCO-like restriction leaves two types of switchers, T* = (n,h) and T* = (¢, h). These
switchers generate two corresponding Head Start effects, E[Y™*(h) — Y*(¢)|T* = (c,h)] for
switchers out of competing preschools and E[Y*(h) — Y*(n)|T* = (n, h)| for switchers out of
home care. Response types also include stayers at all three levels (a few applicants not offered
Head Start manage to find their way to a Head Start program anyway). Restriction (23) is
sufficient for IOS since out(h), in(c), and in(n) are empty.

Ignoring covariates and applying Theorem 2.3(i), SLATE equals

ElY|Z =1] - E[Y|Z = 0]
T EV|Z=1-EV|Z=0]

7(S)
where

V=H{TeT:}+1{T' € Ti,}Z
= 1{T = h},

since T, is empty. In this case, therefore, 7(S) is a conventional Wald-IV estimand instrument-
ing 1{T = h}. As noted in Kline and Walters (2016) and Feller et al. (2016), this IV estimand
is a weighted average of E[Y*(h) — Y*(n)|T* = (n,h)] and E[Y*(h) — Y*(c)|T* = (¢, h)]. The
weights are given by the share of each switcher type among switchers.

Our framework disentangles switcher-specific average causal effects by adding RIO to (23).
Since t = h is the only treatment level selected by both types of switchers, Corollary 2.1 implies
that RIO is equivalent to the restriction

EY*(W)|T" = (¢,h)] = E[Y*(R)[T" = (n, h)]. (24)

This says that average outcomes in the Head Start treatment are the same for both switcher
types, while allowing unrestricted counterfactuals. In the same spirit, Kline and Walters (2016)
restricts the relationship between selection bias and covariates.

Given (24), RIO holds and the CCEF is therefore a function of 7" only:

F(T;8) = {T = h}Bh + HT = c}Be + YT = n}py.
Since 10S is satisfied, Theorem 2.5(ii) implies 8 = (B, B¢, Bn) can be obtained as
B = argmin E[(Y — F(T; b)2K*(T, Z)). (25)

Moreover, because V' = 1{T = h}, Theorem 2.5(iii) implies that x*-weights simplify to

HT=h(1-2) YT #h}Z

w(T2) =1~ P(Z =0) P(Z=1)"

These match Abadie (2003) x-weights for Bernoulli treatment 1{7" = h}.
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The CCEF identified by (25) generates causal effects for the two switcher types:

EY*(h) =Y (0)IT" = (¢, h)] = Bn — Be
EY"(h) =Y*(n)[T* = (n,h)] = Bn — Bn.

RIO notwithstanding, this parameterization allows causal effects of Head Start to differ for
switchers into Head Start from home and switchers into Head Start from competing preschools.
This feature of our setup holds more generally because RIO leaves potential outcomes seen for
only one switcher type unrestricted. In the Head Start study, switcher types are distinguished
by the (unique) nature of their no-Head Start counterfactuals.

An IV interpretation of k*-weighting illuminates the identifying information that drives
these results. Setting p = P(Z = 1), the first order conditions for the k*-weighted least squares

problem in (25) can be written:

0=E[(Z—-p)H{T =t}(Y - )]
=E[(Z —p){T = t}Y]| - BE[(Z — p){T =t}],

implying
E[(Z —p){T = t}Y]

=Bz T =0

(26)

for each t € {h,c,n}. Equation (26) casts each f; as an instrumental variable estimand with
outcome 1{7T = t}Y and treatment 1{7T = t}, instrumented by Z.

Given I0S, Lemma 2.2 ensures that the first stages in this context (the denominators of
(26) at each t, divided by the variance of Z) identify the probability switchers select treatment
level t for any t € T; U T, U T;,. Applying the lemma to Head Start,

E[{T =h}|Z =1]— E[I{T = h}|Z =0] = P(T* € in(h)) = P(T™ € S),
where the second equality follows from the fact that all switchers switch in to h. Similarly,
E{T =c}|Z =1 - E[I{T = c¢}|Z =0] = —P(T" € out(c)) = —P(T* = (¢, h)),

and likewise for T* = (n,h). In this application, each of the relevant identified switcher sets
includes only one type; the share of each type is therefore identified. Note also that both switcher
types must occur with positive probability for the full set of 5; to be identified. Among the
68% of children in the Head Start study who are switchers, we show below that a little over

one-third of these come from competing preschools.

2.3 Relaxing RIO

In requiring (20), RIO rules out some types of selection bias. RIO can be partly relaxed,
however, by allowing the CCEF to be a function of the instrument as well as of T" and X.
We dub this more flexible CCEF restriction ARIO, a mnemonic for “augmented” RIO. This
condition is formalized by:

Assumption ARIO There is a function Co(T, Z, X) satisfying

P(E]Y|T,T*,X] = Co(T, Z, X)|T* € S) = 1.
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Although the CCEF defined in Proposition 1.1 does not condition on Z, we show below that
interactions between T and Z contain information regarding 7™ for specifications of M such
that Tj, is non-empty. This information is useful because it allows CCEF dependence on T™*.

The following corollary to Proposition 1.1 characterizes the more limited homogeneity im-
posed by ARIO.

Corollary 2.2 (Interpreting ARIO). Suppose Assumptions 1.1 and 1.2 hold, and that P(T* =
t*|X) > 0 for all t* € S with probability one. Then:

(i) ARIO is satisfied if and only if:

E[Y*(t)|T* = t*, X] = E[Y*(t)|T* € in(t), X]  for all t* € in(t) (27)
E[Y*(t)|T* = t*, X] = E[Y*(t)|T* € out(t), X] for all t* € out(t).

(i1) If ARIO holds, covariate-specific causal effects for any t* = (t*(0),t*(1)) € S equal
EY*(T*(1)) = Y*(T*(0)|T* =t*, X] = Co(t*(1),1, X) — Cy(t*(0),0, X). (28)
Moreover, ARIO implies there are functions C1(T, X) and Co(T, Z, X) such that
P(Co(T, Z,X) = C1(T, X)1{T € T; UTo} + Co(T, Z, X)1{T € T1o}|T* € S) = 1.

The first part of the corollary shows that ARIO differs from RIO when there are treatment
levels t such that some switcher types are observed at T' = t when the instrument is switched
on and some switcher types are observed at T' = t when the instrument is switched off. RIO
restricts mean potential outcomes at this level to be the same across these switcher types while
ARIO does not. In other words, ARIO drops restrictions across switcher types for treatment
values in T;,. Suppose, for instance, T' € {0, 1,2} under monotonicity but not EMCO, ignoring
covariates. Then in(1) = {(0,1)}, out(1) = {(1,2)}, and Ti, = {1}. By Corollary 2.1, RIO
requires

EY*WIT" = (0,1)] = Ey*()[T" = (1,2)], (29)

because the union of in(1) and out(1) equals {(0,1),(1,2)}. ARIO, by contrast, relaxes this
restriction. Because out(0) = {(0,1),(0,2)} and in(2) = {(0,2), (1,2)} while in(0) and out(2)
are empty, Corollary 2.2 implies ARIO here requires only

EY*(0)|IT" = (0,2)] = E[Y™(0)[T" = (0,1)]
E[Y*(2)IT* = (0,2)] = EY*(2)|T" = (1,2)],

as does RIO.

The second part of Corollary 2.2 explains how the CCEF can be used to derive switcher-
type specific average causal effects under ARIO. This part of the corollary also shows that under
ARIO, the CCEF for switchers depends on the instrument only at values of the treatment in
Ti,. We therefore focus on CCEF specifications satisfying

F.(T,Z,X;8)=F(T,X;8){T € T; UT.} + F»(T, Z, X; B)1{T € Ti,}, (30)

for functions F; and F5.
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Instrument-treatment interactions distinguish between switcher types that select treatment
levels t € Ti,. Returning to the scenario where 7' € {0,1,2} under monotonicity without
EMCO, treatment level 7" = 1 is chosen by two types of switchers, 7* = (0,1) and 7™ = (1, 2).
Conditional on T™ being a switcher, the interaction term 1{7" = 1}(1 — Z) indicates type
T* = (1,2) since this type of switcher has treatment level 1 when the instrument is switched
off. Likewise, the interaction term 1{T" = 1}Z7 indicates a switcher of type T™ = (0, 1) since this
type of switcher has treatment level 1 when the instrument is switched on.

CCEF specifications satisfying (30) are identified as follows.

Theorem 2.6 (Z-augmented Identification). Assume 1.1, 1.2, and 10S hold, that F, satisfies
(30), and that for somee >0, e < P(Z =1|X) < 1 — & with probability one. Then,

E[(Y — F (T, Z,X;b))?s*(T, Z, X)| = E[(Y — Fo(T, Z, X;b))?1{T* € S}] (31)

provided E[(Y — Fy(T, Z,X;b))?] < oo for all b. Moreover, given ARIO, the CCEF equals or is
approzimated by Fo(T, Z, X; B), where (3 is the (assumed to be unique) solution to

B = argmin B[(Co(T, 2, X) = Fa(T, Z, X; b))?|T* € S] (32)
= argmin B[(Y — Fy(T, Z, X; b))’&*(T, Z, X)].

Absent covariates, ARIO and Corollary 2.2(ii) ensure that the CCEF takes the form of a linear
model saturated in T with a full set of T, Z interactions for treatment levels in T;,. Theorem
2.6 delivers identification of the coefficients in such a specification, and hence of the CCEF, by
r*-weighted least squares. With covariates, Fj, is not guaranteed to match the CCEF unless
covariates are discrete and Fj, is fully saturated in X, including X interactions with 7" and T'Z.
When F; does not match the CCEF, Theorem 2.6 provides an MMSE approximation in the
class of functions to which F,(T, Z, X;b) belongs.

2.4 IV and x* Estimands for the CCEF

Under ARIO, the CCEF can be constructed from a set of IV estimands. This result, which uses
Theorem 2.6 and the first-order conditions for x*-weighted minimization to generalize (26), is

formalized below.

Theorem 2.7 (CCEF 1V). Suppose Assumptions 1.1, 1.2, and 10S hold, and that, for some
e>0,e < P(Z=1X) <1-— ¢ with probability one. Assume also that P(T* = t*|X) > 0 for
all t* € S with probability one and let Z be as defined in (7).

(i) Suppose ARIO holds. Then, for any t* € S and t € {t*(0),t*(1)},

E[Z x {T = t}Y|X]
E[Z x 1{T = t}|X]
E[Y*(#)|T* = t*, X] = EE[[szxlffT::ti}Z;g] ift € Tyo, t* € in(t)
E[Z x {T =t}(1 — Z)Y|X]
E[Z x 1{T =t}(1 — Z)|X]

ElY*()|T" =t*,X] =

Z'ftETiUTO

ElY*)|T" =t*,X] =

if t € Tio, t" € out(t)
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(ii) Replace ARIO with the following unconditional analog:

EY*(t)|T* =t*] = E[Y*(t)|T* € in(t)]  for all t* € in(t) (33)
E[Y*()|T* =t*] = E[Y*(t)|T* € out(t)] for all t* € out(t).

Then, for any t* € S and t € {t*(0),t*(1)},

E[Z x {T = t}Y]

E[Z x 1{T =t}]
E[Z x {T =t} ZY]

E[Z x {T =t} 7]
_EZx YT =t}(1-2)Y]
 E[Zx T =t(1-2)]

E[Y*($)|T* = t*] = ifteTiUT,

E[Y*t)|T* = t'] =

if t € Tio, t* € in(t)

E[Y*(t)|T* = t*] if t € Tio, t* € out(t)
Part (i) of Theorem 2.7 shows how the CCEF can be constructed from IV estimands that
condition on X. The first of these estimands, identifying the CCEF at levels ¢t € T; UT, for all
switchers that select ¢, uses Z to instrument 1{T = t} in an estimating equation with dependent
variable 1{T = t}Y. The second, identifying the CCEF at levels t € T, for response types t* €
in(t), instruments 1{T" = ¢}Z in an estimating equation with dependent variable 1{T" = ¢}ZY".
The third, identifying the CCEF at levels ¢ € T, for response types t* € out(t), instruments
H{T =t}(1 — Z) in an estimating equation with dependent variable 1{T =t}(1 — Z)Y".

The second part of the theorem lays the foundation for IV identification of unconditional

(on covariates) average treatment effects of the form
T(t*) = E[Y*(T*(1)) = Y (T*(0))|T" = t*].

These effects (introduced in equation (2)) depend on the marginalized (over X ) CCEF, evaluated

at a particular value T* = t*:

E[Y*()|T* = t] = B(B[Y*(t)|T* = t*, X] |T* = t*).

CCEF

This marginalization weights the CCEF at each value of X by the distribution of X for a
particular switcher type, t*. However, Theorems 2.5 and 2.6 identify the distribution of X

for the set of all switchers rather than for specific switcher types. This problem is solved by
replacing ARIO with (33) in Theorem 2.7(ii).

Back to x*

Many causal investigations feature an exploration of variations in impact with covariates. IV
estimators based on Theorem 2.7(ii), however, leave the role of covariates in the CCEF un-
specified (instrument Z is uncorrelated with X by construction). Moreover, neither conditional
nor unconditional IV estimands in Theorem 2.7 lend themselves to imposition of parametric
restrictions on the CCEF or to nonlinear models for the CCEF like probit or logit.

The x*-weighted least squares estimand in Theorem 2.6 facilitates identification and estima-
tion of CCEF models and approximations that incorporate covariates. In addition to generating

interactions that may be of substantive interest, covariates in F, can boost the precision of
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CCEF estimates, much as covariates in an OLS estimator boost precision by reducing residual
variance. Moreover, as noted in Abadie (2003), estimands of this form readily accommodate
nonlinear models for the CCEF.

In practice, k*-weighted least squares is complicated by the fact that x* can be negative,
making the minimand non-convex. Theorem 2.7(i) motivates a computationally attractive so-

lution to this problem. Define

- IxUT'=t}Y
"7 BIZ x 1T = t}|X]
v ZxUT =tY1—-2)Y
T RZ < T =1 - 2)|X]
. Zx YT =t}z2Y

Yii=—=
E[Z x T = t}2]X]

(34)

and positive weights

w(X)=PZ=1X)(P(T=tZ=1,X)-P(T=t2Z=0,X))+ ifteTy (35)
w(X)=P(Z=0|X)(P(T=t|Z=0,X)-P(T=1|Z=1,X))s ifteT,
U.)t,Z(X):P(T:t,Z:Z‘X) if t € Tyo,

where ay = max(0,a) for any a. The following theorem shows that § solves an w-weighted
least squares problem whenever F, satisfies Fo(T,Z, X;b) = Fi(T,X;b)1{T € T; UT,} +
Fy(T,Z,X;b)1{T € Ti,} for some F; and Fj.

Theorem 2.8. Suppose the conditions of Theorems 2.6 and 2.7(i) are satisfied. Then,

g =argmin E Z (YV; — Fi(t, X;0))%wi(X) (36)
b tGTiUTo

+ Y (Ve — Byt 2, X30) 2w .(X)
t€Ty,,2€{0,1}

for parameter vector B defined in Theorem 2.6.

This result, which combines key relationships in our framework, is most easily seen when T,
and Ty are empty, so T = T; UT,. Note first that Corollary 2.2 and Theorem 2.6 then imply

B = argmin I [(C(T, X) — Fy(T, X;b)*|T* € S] (37)
= argmin £ > (Ci(t, X) = Fi(t, X)) E[{T = t}r*(t, Z, X)|X] | .
teT

Using the x* representation from Theorem 2.5(iii) to evaluate E[1{T = t}x*(T, Z, X )| X], we
have that:
BT = t}#*(T, 2, X)|X]

_ { P(Z=1X)P(T=tZ=1,X)-P(T=t2Z=0,X)] ifteT;

P(Z=0X)[P(T=tZ=0,X)-P(T=t2=1X)] ifteT, (38)
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Since the two quantities on the right-hand side of (38) are positive by Lemma 2.2, this establishes
E[{T = t}x*(T, Z, X)|X]| = wi(X). Using this to substitute for E[1{T = t}x*(T, Z, X)|X] in
(37) gives

p=argmin £ > (Ci(t, X) = Fi(t, X)) °wi(X) (39)
teT
= argmin B ;(ﬁ — Fi(t, X; b))2wt(X)] : (40)

where the final equality follows from the fact that Theorem 2.7(i) implies E[Y;|X] = Cy(t, X).
The argument for the case where T, is not empty is similar, using wt ,(X) = E[I{T =t,Z =
z2}k*(T, Z, X)|X] for any t € T, to simplify the term involving F5(T, Z, X;b)1{T € Ti,}.
Theorem 2.8 offers a novel solution to the problem of negative weights in an estimand for
the full CCEF. This strategy can be compared with that in Abadie et al. (2002), which re-
places k-weights with theoretically non-negative E[x(T, Z, X)|T, X,Y] in a basic LATE setting.
Nonparametric estimates of E[k(T,Z, X)|T, X,Y]| can be sensitive to the choice of smooth-
ing parameters when Y is continuous. Theorem 2.8, by contrast, requires only estimates of
the distribution of (Z,T") given X. Since Z and T are discrete, this estimation is relatively

straightforward when X is also discrete.

CCEF Identification Under Ordered Selection

The added flexibility afforded by ARIO is evident in a scenario with 7" € {0, 1,2}, no covariates,
and ordered selection model (15). This model satisfies ISP for all 7, so SLATE is identified.
Moreover, when m > ¢; — ¢g I0OS also holds.

In combination, ARIO and IOS identify the CCEF. Assuming m > ¢; — ¢ so IOS holds, and
that € has large support, this model has two stayer types, T* € {(0,0),(2,2)}, and up to three
switcher types, T* € {(0, 1), (0,2), (1,2)}. By Corollary 2.2(i), ARIO then requires

E[Y*(0)|T* = (0,1)] = E[Y*(0)|T* = (0,2)] (from (27) at ¢ = 0)
E[Y*(2)|T* = (0,2)] = E[Y*(2)|T* = (1,2)]  (from (27) at ¢ = 2).

Since treatment level ¢ = 1 is in T;,, RIO adds an additional restriction to these two:
ElY*()|T* =(0,1)] = E[Y*()|T* = (1,2)] (from (20) at t =1).
Under ARIO, Corollary 2.2(ii) implies that the CCEF can be written

Fu(T, Z; 8) = {T = 0} + {T = 2}82 + {T = 1}(B1 + Zbn), (41)

Fi(T;8)1{T€TUTo } Fa(T,2;8)1{T €T}

since T; UT, = {0,2} and T;, = {1}. This specification generates three causal effects:

E[Y*(2) = Y™(0)|T" = (0,2)] = Fa(2,1; 8) — Fa(0,0; 8) = B2 — Bo (42)
E[Y*(z) - Y*(1)|T* = (172)] = Fa(27 1;6) - Fa(LO;ﬁ) =f2— B
E[Y*(1) = Y*(0)|T* = (0,1)] = Fo(1,1; 8) — F,(0,0; 8) = (B1 + B11) — Do-

22



Note that effects for switchers from 0 to 1 and from 1 to 2 need not sum to the effect for
switchers from 0 to 2.

Theorem 2.7 shows how to compute 3 using IV. Since T, = {0} and switcher types T* =
(0,1) and T* = (0,2) can both select treatment level 0, we have:
Bl(Z - p)I{T = 0}Y]

E[Y*(0)|T" = (0,1)] = E[Y*(0)|T" = (0,2)] = E[(Z — p)I{T = 0}]

= o,

where p = P(Z = 1). Similarly, since T; = {2} and switcher types 7" = (0,2) and T* = (1, 2)
can both select treatment level 2, we also have:

E((Z - p){T = 2}Y]
B((Z - p)|{T = 2J]

EY*(2)IT" = (0,2)] = EY*(2)IT" = (1,2)] = = Pa.

Finally, Ti, = {1} with switcher type T* = (0,1) belonging to in(1), and switcher type
T* = (1,2) belonging to out(1). Theorem 2.7 therefore implies

El(Z -p){T =1}(1 - 2)Y]
El(Z —p){T =1}(1 - 2)]

E((Z -p){T =1}2Y] _
E[(Z-p){T=1}7] fi + P

EY*()[T* = (1,2)] = =B

EY*()[T* = (0,1)] =

These IV estimands are easily rearranged to generate the causal effects of interest.

Theorems 2.6 and 2.8 allow us to identify and estimate the CCEF and associated causal
effects by k*-weighting. Since T; = {2} and T;, = {1}, V as written in Theorem 2.5(iii) equals
V =1{T =2} +1{T = 1}Z. The relevant k*-weights therefore simplify to

V(l—-Z 1-V)Z
n*(T,Z):l—P((ZZO;—l(D(Z:)l) (43)
WHr=2}(1-2) 1T =0}7
P(Z =0) P(Z=1)"

=1

Using these weights, Theorem 2.6 identifies S as the solution to
B = argmin B[(Y — Fu(T’, Z;b))*k* (T’ Z)),

where F, is as defined in (41). Theorem 2.8 provides a computationally attractive implementa-

tion of this minimand.

3 Applications

Three empirical applications illustrate our theoretical results. The first revisits the Head Start
study discussed in Section 2.2. We compute both IV and x*-weighted estimates of Head Start
effects for two switcher types. The second analyzes data from the Angrist et al. (2022) post-
secondary aid randomized trial. The effect of financial aid on degree completion is modeled as
mediated by a pair of underlying treatments. The third application examines effects of child-
bearing, an ordered treatment, on mothers’ weeks worked. As in Angrist and Evans (1998),
childbearing effects are identified using dummies for multiple second births and samesex sibships

to instrument the number of children in households with at least two children. The family-size
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application features treatment levels in T';,, so CCEF specifications that depend on Z are fruit-
ful. The applications discussion in the text skips most estimation issues; Appendix A.3 details
estimation procedures and establishes consistency and asymptotic normality of estimators based

on the identification results in Section 2.

3.1 Multinomial Head Start Effects

Section 2.2 shows that SLATE for Head Start can be estimated using a dummy indicating
randomly assigned offers of a place in Head Start (Z) to instrument a dummy for Head Start
enrollment (1{7 = h}). This IV estimand is a weighted average of E[Y*(h) —Y™*(n)|T* = (n, h)]
and E[Y*(h) — Y*(c)|T* = (c,h)]. These are Head Start achievement effects for two switcher
types: children drawn into Head Start from home and children drawn into Head Start from
competing preschools.

Our HSIS estimation sample includes 3,571 Head Start applicants aged 3 and 4 at the time of
application. The outcome variable is a composite test score derived from tests taken in the first
year following random assignment. Test scores are standardized to be mean zero and standard
deviation one in the random assignment control group, separately by application cohort and
age. The HSIS design was such that interested families applied to one of 383 Head Start centers
and were either offered a seat there or turned away. The probability applicants were offered a
place in Head Start varies by center, but estimates that control for center dummies are similar
to those reported here.!'!

Conventional 2SLS estimates of the effects of Head Start enrollment using random assign-
ment to instrument a dummy for Head Start enrollment appear in the first two columns of
Table 1. These show that randomly assigned offers of a Head Start seat boosted Head Start
enrollment by 68 percentage points. The 2SLS estimate generated by this first stage suggests
Head Start enrollment yielded an achievement gain of 0.25 standard deviations; this replicates
results from a comparable specification reported in Kline and Walters (2016) Table VIII. As in
Kline and Walters (2016), these estimates control for dummies indicating applicant sex, race,
Spanish language use, teen mother, mother’s marital status, presence of both parents in the
home, family size, special education status, income quartile dummies, and a cubic function of
baseline scores.

In the context of our HSIS analysis, SLATE and 2SLS estimators differ in two ways: (i)
SLATE instrument Z is centered using a nonlinear model for E[Z|X] (our applications specifies
probit), while 2SLS uses a linear model to control for covariates; (ii) SLATE marginalizes
covariate-specific reduced-form and first-stage estimates in the numerator and denominator of
(8) using inverse propensity score weighting, while 2SLS implicitly averages covariate-specific
LATESs, weighting these by the conditional variance of first-stage fitted values. In other words,
the 2SLS weighting function estimates (or approximates) the variance of E[D|Z, X] given X
(Angrist and Imbens, 1995).

Estimates of the overall switching probability and of SLATE, reported in columns 3 and 4 of

1 Applicants are coded as enrolling in Head Start if they enrolled any time between assignment and test-taking.
Competing preschool enrollment is determined from parent and provider interviews. Kline and Walters (2016)
details the analysis sample further.
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Panel A in Table 1, are virtually indistinguishable from the 2SLS estimates reported in the first
two columns. The similarity here reflects the fact that F[D|Z, X] and the assignment propensity
score, E[Z|X], vary little with X. This scenario makes the 2SLS conditional-variance weighting
scheme over covariate-specific causal effects inconsequential.'” x*-based estimates of SLATE,
computed using Theorem 2.3 and reported in Panel B of Table 1, also equal the corresponding
2SLS estimates up to reported precision.

The restrictions on Head Start response types described in Section 2.2 satisfy 10S. Given
RIO, these restrictions imply a CCEF with three values, generating distinct causal effects for
two types of switchers conditional on X. In particular, assuming average Head Start outcomes
conditional on X are the same for the two switcher types, the CCEF is a function of 7" and X
only. This CCEF is identified by the IV estimands in Theorem 2.7(i). Provided the uncondi-
tional version of RIO given in (24) holds, the marginalized-over-covariates CCEF is identified
by the IV estimands in Theorem 2.7(ii).

Marginalized CCEF estimates computed from the sample analog of the IV estimands in
Theorem 2.7(ii), reported in Panel A of Table 1, indicate children in Head Start have the highest
achievement levels, with average test scores of 0.24 standard deviations. This is followed by the
average achievement of children in competing preschools at 0.094, with children in home care
scoring well below the scores of children enrolled in either type of preschool. These estimates
appear (along with standard errors) in column 5 of Table 1. As can be seen in column 7 of
the table, roughly 24% of Head Start applicants are switchers drawn from competing preschool
programs, while 44% are switchers drawn from home care. These quantities amount to 35%
and 65% of all switchers, respectively.

Estimated causal effects of Head Start enrollment differ markedly across switcher types.
The estimates in column 8 of Panel A in Table 1 indicate Head Start boosts achievement by
roughly 0.14 for children drawn from competing programs, while gains for children switching
in to Head Start from home care are estimated to be over twice as large at 0.31. Estimated
Head Start effects for both switcher types are significantly different from zero; these estimates
are also significantly different from each other. While qualitatively similar to the estimates of
switcher-specific effects reported in Kline and Walters (2016), our estimates of these parameters
are much more precise. The Kline and Walters (2016) control function estimates of the effect
of Head Start for children drawn from competing programs aren’t significantly different from
zero, while we obtain an estimate of roughly 0.14 with a standard error around 0.054 for this
group. '

IV estimates of SLATE and the CCEF are compatible in the sense that SLATE is a type-
share weighted average of CCEF-implied causal effects for all response types. Appendix Lemma
A5 establishes this equivalence for SLATE and CCEF parameters, for the corresponding IV
estimands, and for IV estimates of SLATE and the CCEF (assuming these are constructed
using the same estimated propensity score). Consistent with this, the SLATE estimate of 0.25

129SLS weights can be written V(E[D|Z, X]|X), where V(-|X) denotes conditional variance. When the first
stage is additive in X and Z, this is proportional to V' (Z|X). Blandhol et al. (2022) highlights the fact that convex
2SLS weighting requires either saturated covariate control or a correct model for the assignment propensity score.
13Standard errors for estimates of E[Y*(h)—Y*(c)|T* = (c, k)] in Kline and Walters (2016) Table VIII, labeled
“subLATESs”, range from 0.15—0.47. Feller et al. (2016) distinguishes switcher-specific effects using a parametric
Bayesian framework, focusing on an outcome different from that examined here and in Kline and Walters (2016).
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in column 4 of Table 1 equals .238 x .136 + .443 x .312 divided by an overall probability of
switching estimated at 0.68.

Estimates generated by minimizing the sample analog of the x*-weighted least squares mini-
mand in Theorem 2.8 are similar to the corresponding IV estimates (using a CCEF specification
with additive control for covariates). In particular, x*-based estimates of the CCEF and the
corresponding causal effects by switcher type, reported in Panel B of Table 1, show the same
order of achievement levels and much larger Head Start gains for children drawn from home
care than for children drawn from competing preschool programs.'* The x*-based treatment
effect estimated for switchers from competing preschools exceeds the corresponding I'V estimate,
though only by about one standard error. Estimates of the CCEF in Panel B are more precise
than those in Panel A, though standard errors for the two pairs of estimated treatment effects
are close.

The x*-weighted estimand in Theorem 2.8 facilitates estimation of CCEF models allowing
for interactions between switcher type and covariates. These estimates can then be transformed
into causal effects using formula (19) under RIO or (28) under ARIO. In the context of Head
Start, for instance, we’d like to know whether differences in impact across covariate groups
are similar for both switcher types and whether differences in impact by type are similar across
covariates. Such interactions are easily explored through restrictions on a CCEF approximation,
F(T, X; 3), identified by x*-weighting. This can be more straightforward than an IV strategy
that estimates points in the support of C(T', X) one at a time. In our application, x*-weighting
also yields a precision gain for estimates of the CCEF. This likely reflects the fact that the
weighting estimator models CCEF dependence on covariates while the IV estimator does not.

Many evaluations of education interventions report differences in impact by sex.'” CCEF
estimates allowing differences in Head Start impact by sex suggest Head Start produces larger
achievement gains for girls than for boys. These estimates appear in Panel A of Figure 1, which
graphs estimated treatment effects separately by sex within switcher types. Sex differences
in impact are around .16 for both types, though only the difference in impact for switchers
from home care clears 10% significance. Differences in impact by whether English is the main
language at home, graphed in Panel B of the figure, are more mixed. Gains for switchers
from home care are largest for English-speakers (a marginally significant gap of around 0.21).
But estimates for switchers from competing programs are similar for the two language groups.
Finally, differences in impact by switcher type are similar in three out of four demographic
groups. Statistical tests of whether differences in impact by switcher type differ by sex and

language fail to reject the null.

1To compute the weights and dependent variables used in Theorem 2.8, propensity score E[Z|X] is estimated
by probit and P(T|Z, X) is estimated using multinomial probit. Probabilities P(T, Z|X) and P(T|X) used to
construct the terms in (34) are obtained by manipulating these estimates. Both probit specifications are additive
in explanatory variables. Standard errors and the p-value in Panel B come from a cluster bootstrap procedure
(clustering on center) detailed in Appendix A.3.

5For instance, Angrist and Lavy (2009) finds high school girls respond more than boys to financial incentives,
while Gray-Lobe et al. (2023) reports larger long-term preschool effects for boys.
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3.2 Multiple Mediators of Financial Aid Effects

Does post-secondary financial aid boost degree completion or simply transfer resources to stu-
dents who would earn degrees anyway? This question motivated a large randomized trial that
allocated full grant funding to public college and university students in Nebraska. In the trial, aid
awards came from the Susan Thompson Buffett Foundation (STBF) Buffett Scholars program.
Buffett Scholarships fund roughly 11% of Nebraska public university and college enrollment.
A key outcome in this research, results of which are reported in Angrist et al. (2022), is BA
completion.

Among STBF aid applicants who indicated a desire to attend four-year programs, STBF
awards boosted BA completion in the treatment group by around eight percentage points. Since
awards were randomly assigned (with groups or strata), this overall impact is easily estimated.
It’s harder to identify the mechanisms explaining why grant aid matters. On one hand, STBF
awards might help aid recipients who’ve enrolled in a four-year degree programs stay on track,
perhaps by reducing the need to work while in school. Grant aid also reduces student loans,
thereby reducing worries related to increasing indebtedness while in school. Alternatively, or
in addition, grant aid might encourage or allow Buffett scholars who would otherwise attend
two-year schools or remain unenrolled to embark on a four-year program. Angrist et al. (2022)
refers to this channel for aid effects as early engagement.

The early-engagement hypothesis is assessed here using a model that allows for two treatment
variables that might mediate BA completion. The first treatment mediator indicates students
who borrowed little in their first-year financial aid package (STBF awards are roughly constant
across years for students in good academic standing). The second indicates Buffett applicants
strongly engaged with a four-year degree program in the first year after random assignment.
STBF awards affect both channels, reducing loans and boosting early engagement. We’d like to
know whether aid awards boost BA completion when loans are reduced without changing early
four-year engagement, or whether increased early engagement is necessary for loan reduction
to have an impact.'®

For the purposes of this investigation, loan reduction is coded as a dummy variable, denoted
by D, indicating students who borrowed 1000$ or less as part of their first-year financial aid
package. Roughly 46% of controls borrowed less than 1000$ in the first year after random
assignment. STBF awards boosted this low-loan rate by roughly 25 percentage points. Early
four-year engagement is coded as a dummy variable, denoted by S, indicating students who
completed at least 24 credits at a four-year school (the STBF definition of a full course load) in
the year after random assignment. STBF awards boosted this by roughly 10 percentage points,
with a control-group base of 60%.'"

This setting can be described by treatment vector T = (D, S) € {0,1} x {0,1}. Response
types T*(z) = (D*(z),S*(z)) are indexed against Bernoulli instrument Z indicating randomly
assigned STBF awards. We distinguish D and S effects by restricting 7*. Specifically, we

16 Angrist et al. (2022) explores an alternative version of the early engagement hypothesis, without allowing
for direct loan effects.

17Qur analysis is limited to applicants who listed a four-year school as their first choice on the STBF aid appli-
cation. In this sample, mean first-year loan amounts are $1366 and $4282 for treatment and control applicants,
respectively.
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consider the identifying power of D-dominance, a restriction discussed in Navjeevan et al. (2023).

In this context, D-dominance says that:
1. Awards weakly reduce student loans;
2. Awards weakly increase early engagement;
3. Awards increase early engagement only if they reduce student loans.

D-dominance therefore consists of monotonicity restrictions for each underlying treatment while
also requiring awards to reduce loans if they are to boost early engagement. In other words,
awards without financial consequences do not change behavior. This restriction is supported
by the timing of STBF awards, which are announced before students commit to program type

or course load.'® In the notation of Assumption 1.2, D-dominance means:
M ={T*: D*(1) > D*(0), S*(1) > S*(0), and D*(1) = D*(0) = S*(1) = S*(0)}.

Under D-dominance, I0S is satisfied. This can be seen by recoding the multinomial (D, .S)

treatment into a scalar treatment variable, T', as follows:

T =0 if (D, S) = (0,0)
T =1if (D,S) = (1,0)
T =2if (D,S) = (0,1)
T =3 if (D, S) = (1,1).

D-dominance allows 3 types of switchers, 7% € {(0,1), (2,3),(0,3)} and four types of stayers,
one for each value of T'. TOS is satisfied because the sets in(0), out(1), in(2), out(3) are empty.
Because 10S holds, Theorem 2.3(i) identifies SLATE by instrumenting V = 1{T" € T} +
T € Tio}Z with Z. Moreover, since T, is empty, auxiliary treatment variable V' simplifies
to
V=1{TeT;}=D.

The second equality here is a consequence of the fact that T; contains treatment values 7' = 1
and T = 3, and these are observed if and only if D = 1. In this application, SLATE is a weighted
average of causal effects for the three switcher types observed under D-dominance. Specifically,
SLATE averages effects of loan reduction without early engagement, effects of loan reduction for
students who engage early regardless of award status, and an effect of combined loan reduction
and early engagement. With covariates, SLATE averages over the covariate distribution as well
as over these three switcher types.

As can be seen in Panel A of Table 2, the estimated (linear) first stage effect of Buffett awards
on treatment variable D, computed with saturated controls for randomization strata, is around
0.25. The corresponding 2SLS estimate, reported in column 3 of Table 2, is roughly 0.33."7

As noted in our discussion of 2SLS for Head Start, with saturated controls for discrete strata

18Nibbering and Qosterveen (Forthcoming) uses a version of this assumption to bound the effect of going from
(0,0) to (1,1) for all compliers.

9STBF awards were offered at different rates conditional on application year and the school applicants iden-
tified as the one they aspire to attend. These variables define randomization strata.
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(or when the assignment propensity score is additive), a conventional 2SLS estimate averages
strata-specific conditional IV estimands using a conditional-variance weighting scheme.

Estimates of switching probabilities and SLATE, reported in columns 4-5 of Panel A in
Table 2 are similar to the corresponding linear first stage and 2SLS estimates. These estimates
are computed as described in Appendix A.3. Briefly, estimated SLATE is the sample analog
of semiparametric IV estimand (8), with E[Z]X] estimated by probit. Estimated P(T™* € S) is
the denominator of this IV estimate. Standard errors for these estimates are computed using
a generalized method of moments (GMM) procedure that accounts for sampling error in the
estimated F[Z|X]; see Appendix A.3 for details. In principle, 2SLS estimates differ from the
sample analog of (8) by virtue of the weights used to marginalize over X. In practice, the award
propensity score is close to one-half across strata. This and the fact that V = D likely explains
the similarity of 2SLS and SLATE estimates in Table 2.

Results with baseline covariates added to the set of randomization strata controls appear in
Panel B of Table 2 (the additional controls are dummies for the baseline characteristics listed
in the table note). Covariates here are additive, meaning conditioning vector X in this case
does not amount to a saturated parameterization. The addition of numerous baseline controls
leaves both 2SLS and SLATE estimates virtually unchanged. This likely reflects the fact that,
conditional on randomization strata, the instrument is independent of baseline covariates.

SLATE for effects of STBF financial aid is arguably harder to interpret than SLATE for
Head Start. This reflects the fact that SLATE in the aid application averages the effects of two
distinct treatments (D and S), while SLATE for Head Start averages effects of a common Head
Start treatment relative to two possible counterfactuals. But because 10S identifies the CCEF,
we can potentially distinguish switcher-specific effects. This distinction turns in part on RIO,

which in this case says that:

EY(0)|T" = (0, )] = E[Y*(0)|T" = (0,3)]
EY ()T = (2,3)] = E[Y*(3)|T" = (0,3)].

As with Head Start, these restrictions equate potential outcome means at shared levels for
switcher types that access these levels. For instance, RIO requires average Y*(0) to be the
same for switcher types T* = (0,1) and T* = (0, 3) since both switch out of 0. At the same
time, RIO allows causal effects to differ for all three switcher types.?

The distribution of T, reported in column 2 of Table 3, shows that most STBF applicants
either had reduced loans or engaged early with a four-year degree program. For many, however,
only one or the other of these mediators is switched on, and roughly 12% neither reduced
loans nor engaged early. CCEF estimates for each of the four treatments, computed using
the IV estimands defined in Theorem 2.7, appear in column 3 of the table. Early engagement
is associated with a high probability of four-year degree completion regardless of borrowing

behavior. But students who borrow heavily without engaging (for whom (D, S) = (0,0)) are

20The two RIO restrictions can be benchmarked against the range of CCEF specifications possible in this
context. Three switcher types with two potential outcome levels identified for each yields six distinct potential
outcome means when unrestricted. The most restrictive homogeneity assumption equates all of these for a total
of five restrictions and treatment effects constant at zero. Non-zero constant effects imposes two restrictions on
a particular linear combination of CCEF levels.
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substantially more likely to earn a BA than are students who borrow little without engaging
((D,S) = (1,0)). Without covariates, the estimated rate of degree completion in the latter
group is negative, though small and imprecise. The addition of baseline covariates moves this
parameter estimate to a positive 0.023 while also increasing precision.

The distribution of switcher types indicates that roughly 10% of STBF applicants are in-
duced by awards to both reduce loans and engage early. Estimated switching probabilities
appear in column 5 of Table 3. Switchers induced to borrow less while engaging in a BA
program whether or not they receive STBF awards are more prevalent, amounting to roughly
17% of the applicant population. But loan reduction without engagement is rare: the esti-
mated prevalence of switcher types reducing loans without engagement is —0.025. It should be
noted, however, that the fact that the estimate here is negative may signal problems with either
D-dominance or with the independence restriction invoked in Assumption 1.1(iii).

Differences in CCEF levels for each switcher type give switcher-specific causal effects. Causal
effects of STBF awards, reported in column 6 of Table 3, are broadly consistent with the early-
engagement hypothesis. Estimates for switcher type 7% = (0, 3) imply that STBF applicants
induced by awards both to borrow less and to engage early saw their odds of degree completion
increase by a little over 60 percentage points—relative to 0.22 when both channels are switched
off. Induced loan reduction alone, however, did little for switcher type T = (2, 3), the group
of applicants who engage early with or without the benefit of an STBF award. These estimates
are reasonably tight zeros, with standard errors of 0.036. As in Table 2, the addition of baseline
covariates matters little for the estimates CCEF.

While the estimates for switcher types T* = (0,3) and 7™ = (2, 3) are precisely estimated
and offer a sharp contrast, results for switcher type T = (0,1) are muddier. Estimates for this
group, which reduces borrowing without engaging early, are negative though not significantly
different from zero. The imprecision of these estimates reflects the paucity of switcher switcher
type T = (0, 1). It seems noteworthy that control for covariates moderately boosts the precision

of the IV estimate of the T* = (0, 1) effect, though the estimate remains imprecise.

3.3 Ordered Models for Childbearing Effects

Do falling fertility rates explain rising female labor force participation in the twentieth century?
Births are strongly negatively correlated with mothers’ work and earnings, but these correla-
tions might reflect selection bias. Specifically, mothers in larger families may be predisposed to
work less regardless of family size. Angrist and Evans (1998) tackles selection bias with two in-
strumental variables. The twins instrument indicates mothers who experienced multiple second
births, while a samesex instrument indicates same-sex sibships at births one and two. Twin
births increase family size sharply for the 1% of mothers who have twins, while samesex sibship
pairs, which occur in roughly half of the population having two children, motivate further child-
bearing among parents who seek a diversified sibling-sex portfolio. Assuming twins and samesex
instruments satisfy Assumption 1.1, they arguably identify causal effects of childbearing.
Angrist and Evans (1998) codes treatment as a dummy variable indicating mothers with
more than two children in a sample of mothers having at least two. Among women with more

than two children, however, fertility instruments can shift the distribution of family size at
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parities above two. Evidence on this point includes Angrist et al. (2010), which shows that
the event of a multiple second birth moves some Israeli mothers from three to more than three
children as well as from two to more than two. Similarly, samesex sibships at births one and
two prompt some mothers to have more than three children in pursuit of a mixed-sex sibship.
As first shown in Angrist and Imbens (1995), instrument-induced changes in the distribution of
treatment can make IV estimates based on a Bernoulli treatment variable misleading.

These considerations lead us to consider identification strategies for effects of an ordered
treatment, namely the number of children rather than a dummy for more than two. In this
case, treatment T' € T = {2,...,5}, where T = 5 for women with five or more children (a
rare event in the Angrist and Evans (1998) samples). For both twins and samesex instruments,

potential treatment is assumed to satisfy monotonicity, that is,
T*(1) > T*(0).
This restriction allows six possible switcher types:
S =1{(2,3),(2,4),(2,5),(3,4),(3,5), (4,5)}.

An ordered probit model of treatment assignment reduces the number of latent response
types, thereby identifying SLATE and, possibly, the CCEF. To this end, treatment status is
assumed here to follow (15) with 7 > 0 and a normal error, extended to five levels of treatment.?!
Ordered probit first-stage estimates for twins and samesex instruments appear in Table 4.
Estimates in even-numbered columns are from models that include as covariates mother’s age,
age at first birth, ages of first two children, and indicators for male first and second births,
Black, Hispanic, and other race. With or without covariates, both instruments are estimated
to induce large, precisely-estimated increases in family size. The first-stage coefficient for twins
exceeds that for samesex by almost an order of magnitude.

The first-stage estimates in Table 4 rule out twins-induced switchers from two to five. This
follows from the fact that type T* = (2,5) requires cutoffs such that ¢ < ¢3 and 7 + ¢ > ¢;.
This event has positive probability in the ordered probit model if and only if 7 > ¢5 — c3, which
doesn’t hold for the estimates in columns 1-2. This leaves five switcher types for twins. On the
other hand, since the estimated samesex 7 is less than than any consecutive difference in cutoffs,
samesex sibships induce at most one additional child. This leaves up to three samesex switcher
types, (2,3),(3,4), and (4,5). Lemma A.4 generalizes these observations, characterizing the
set of switcher types for any latent-index ordered choice model where the latent variable has
sufficiently large support.

As noted in Section 2.1, an ordered probit assignment scheme satisfies ISP. SLATE for both
instruments is therefore identified and given by the IV estimand in Theorem 2.2. Formulas
for auxiliary treatment variable V' for each instrument follow from the first-stage estimates in

Table 4 and from Lemma A.4 in Appendix A.2. The estimated 7 for twins exceeds the largest

21This specification is in the spirit of Kline and Walters (2016), which uses a multinomial probit first stage in
a model identified by a control function.
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difference in consecutive ordered probit cutoffs. Lemma therefore A.4(ii) implies:

V=UH{TeT} +1{T €T, }Z
=HT'=5}+1{2<T <5}Z

for twins. At the same time, since the estimated samesex 7 is smaller than the minimum
difference in consecutive ordered probit cutoffs, Lemma A.4(iii) says that samesex SLATE is
identified by instrumenting V = T.??

Conventional 2SLS estimates of the effect of number of children on mothers’ weeks worked,
reported in the first two columns of Table 5, range from around —3.2 when estimated using
twins and to roughly —4.4 when estimated using samesex. This difference in magnitudes mirrors
that reported in Angrist and Evans (1998) and discussed in Angrist and Fernandez-Val (2013).
Outside of a linear constant-effects world, however, it’s unclear whether 2SLS can be seen as
estimating weighted average marginal effects of the effects of additional childbearing. SLATE,
by contrast, averages causal effects over switcher types. For twins, these types consist of a
mix of switchers induced to have 1-2 additional children while samesex switchers increment
childbearing by one child only.

As it turns out, the estimated SLATE for samesex switchers, reported in column 6 of Table
5, is indistinguishable from the corresponding 2SLS estimate. Since V' = T for samesex, the only
difference between samesex SLATE and 2SLS is in the weighting scheme used to marginalize
over covariates. But samesex is essentially orthogonal to covariates, so the covariate weighting
scheme here is inconsequential. In contrast with samesex, twins auxiliary treatment variable
V differs from 7. Estimated twins SLATE is smaller in magnitude than the corresponding
2SLS estimate. This is explained by the fact that the overall probability of switching for twins,
reported in the first row of column 5 in Table 5, exceeds the corresponding twins first stage.??
Even so, the difference here is only about one standard error using the standard error associated
with either estimate.

The first stage estimates in Table 4 imply that the set of possible switcher types for twins
satisfies 10S. This is a consequence of the fact that m exceeds the largest consecutive difference
in cutoffs, so there are no stayers at treatment levels other than endpoints 2 and 5. At the
same time, since 7 is positive, no one is switched into 2 or out of 5. The upshot is that the
CCEF for twins switchers is identified under ARIO by either IV as in Theorem 2.7 or using x*
as in Theorem 2.8. ARIO supersedes RIO in this context because T';, contains treatment levels
3 and 4. For these treatment levels, we obtain a pair of CCEF values according to whether
switchers are of a type that has 7™ € in(t) or of a type that has T € out(t).

Since two twins switcher types taking values in T;,, ARIO is the relevant homogeneity

22Gince = is smaller than any consecutive difference in cutoffs, there are stayers at all treatment levels and
samesex sibships induce one additional child among switchers. Therefore, T%(1) — 7" (0) = 0 for stayers and
T%(1) — T*(0) = 1 for switchers, which implies v1(T") = —o(T') = T satisfy the condition for ISP given in (6).
This in turn means V = 11 (T)Z — vo(T)(1 — Z) = T in the IV estimand for SLATE.

23Conventional first-stage estimates can be written as a weighted average of the effect of the instrument on
treatment for each switcher type, weighted by the probability of this type. Since switchers types are mutually
exclusive and all types are induced to increase childbearing by at least 1 child, this average should exceed the
estimated overall probability of switching. In this case, however, ordered probit (which we use to determine the
set of switchers S and therefore the formula for V) generates something higher, a sign the ordered probit model
may be misspecified.
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restriction for identification of the twins CCEF. With five switcher types accessing two levels
each, the twins CCEF has 10 point of support. ARIO imposes four pairwise restrictions on
these:

EY*(2)IT" = (2,3)] = EY"(2)|T" = (2,4)]
EY*(3)[T" = (3,4)] = E[Y"3)[T" = (3,5)]
EY* (4T = (2,4)] = E[Y"(4)|T" = (3,4)]
EY ()T = (3,5)] = E[Y*(5)|T" = (4,5)].

Although switcher types T* = (2,3) and T = (3,4) both access T' = 3, one type belongs to
in(3) and one type belongs to out(3). ARIO therefore leaves the difference in CCEF values for
this pair unrestricted. Likewise, ARIO imposes no equality restriction on the pair 7% = (2, 3)
and T = (3,5) and the pair 7% = (2,4) and T* = (4,5).

Estimates of the CCEF for twins instruments, reported in columns 3-4 of Table 6, show
monotonically declining weeks worked as a function of family size for both switcher types. It’s
noteworthy that alternative estimates of the CCEF are similar at treatment levels common
to types in Ti,. For T' = 3, for instance, the difference between E[Y*(3)|T* € in(3)] and
E[Y*(3)|T* € out(3)] is less than a week, while the gap between E[Y*(4)|T* € in(4)] and
E[Y*(4)|T* € out(4)] is even smaller. As can be seen in column 5 in the table, neither difference
is significantly different from zero in a 5% test.

Table 7 summarizes the implications of Table 6 for individual treatment effects by switcher
type. Estimated treatment effects are largest in magnitude for the two types induced to have
two additional children by twinning, 7% = (2,4) and 7% = (3,5). These estimates, equality of
which is tested in column 4, average —3.1 per child. Estimates for one-child switchers range
from around —2 for 7% = (3,4) to —3.8 for T* = (2,3) and average —3. A test of equality
for these types, reported in column 4, is also consistent with constant effects. A test of equal
per-child effects for all five switcher types clearly rejects the null hypothesis of full homogeneity.
This is driven by the difference between —1.96 for T* = (3,4) and the per-child estimate of —3.3
for T* = (2,4). This difference aside, however, the estimates in Table 7 align around per-child
effects of about —3.

4 Summary and Directions for Further Work

The theoretical framework developed here uses a single instrumental variable to identify aver-
age causal effects in diverse applications involving multifaceted treatments. Our identification
results are founded in part on the concept of instrument-induced switchers, an extension of the
ideas behind Angrist et al. (1996) compliers and Frangakis and Rubin (2002) principal strata.
Switcher treatment status changes in response to instrument assignment. This includes changes
in multinomial, multiple, and ordered treatments.

Our framework leverages restrictions on the distribution of switcher types to identify a
single average causal effect for all switchers, a parameter we’ve dubbed SLATE. We also use
a combination of restrictions on switcher types and average potential outcomes to identify a

general CCEF. The CCEF characterizes average potential outcomes and average causal effects
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for specific switcher types conditional on covariates. SLATE and CCEF parameters are shown
to be identified both by IV estimands and by a weighting scheme that generalizes Abadie (2003)
k-weights for multiple treatments.

The utility of these results is demonstrated in three applications. Building on Kline and
Walters (2016), we first consider average causal effects of Head Start preschool attendance on
test scores in a setting with multinomial preschool treatments. As in Kline and Walters (2016),
the estimates reported here suggest Head Start generates substantially larger achievement gains
for children drawn into Head Start from home care than for children drawn into Head Start
from competing programs. At the same time, our estimates of Head Start effects for children
who switch into Head Start from competing programs are notably more precise than those
reported in Kline and Walters (2016). Estimates of CCEF specifications allowing for covariate
interactions are easily computed using k*-weighting to estimate parsimonious approximations
to a higher-dimensional CCEF. These show larger gains from Head Start for switchers from
home care than for switchers from competing programs across covariate groups. Moreover,
consistently across switcher types, girls benefit more from Head Start than do boys.

Our second application allows for two distinct pathways through which post-secondary grant
aid boosts BA completion. The resulting estimates suggest early engagement with four-year
college programs is the primary channel by which financial aid boosts degree completion; loan
reduction alone does not seem to matter. The third application identifies and estimates the
CCEF for effects of childbearing, an ordered treatment, on mothers’ labor supply. Estimates of
the CCEF for effects of childbearing on weeks worked show roughly constant and approximately
linear reductions in labor supply of around three weeks per child, across switcher types.

In future work, we plan to extend the framework developed here to exploit multiple in-
struments in models with multinomial and ordered treatments. Much work also remains to be
done regarding estimation and specification testing in these settings. In addition to questions
of efficiency, the homogeneity restrictions (RIO and ARIO) and restrictions on switcher types
like D-dominance seem likely to lead to new tests of key identifying assumptions. These tests

should be useful in a wide range of IV applications.
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Table 1: Estimates of Head Start Effects on Test Scores

2SLS SLATE Causal Effects

Treatment First Stage Estimate P(T* € S) Estimate CCEF Switcher Types P(T* =t*) Estimate
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. IV-based estimates

Head Start 0.679 0.250 0.680 0.250 0.230
(0.018) (0.030) (0.018) (0.030)  (0.033)
Competing preschools 0.094 (c,h) 0.238 0.136
(0.057) (0.015) (0.054)
Home care -0.081 (n,h) 0.443 0.312
(0.048) (0.020) (0.039)
p-value for impact difference by switcher type 0.012

Panel B. k*-based estimates

Head Start 0.680 0.250 0.238
(0.018) (0.030)  (0.024)
Competing preschools 0.043 (c,h) 0.238 0.194
(0.051) (0.015) (0.054)
Home care -0.042 (n,h) 0.443 0.280
(0.034) (0.020) (0.036)
p-value for impact difference by switcher type 0.166

Notes: This table reports 2SLS, SLATE, and CCEF estimates characterizing the effect of Head Start enrollment on test scores in the first

year following random assignment. Parameters are identified by random assignment of Head Start offers. Treatment variable T' € {n,c, h}
denotes no preschool enrollment (n), other center enrollment (¢), or Head Start (h). Column 1 reports conventional first stage estimates,
with the corresponding 2SLS estimates instrumenting 1{7" = h} shown in column 2. SLATE averages effects for the two switcher types
(T™) listed in column 6. SLATE (column 4) and the overall switching probability (column 3) in Panel A are estimated using Theorem 2.2
and setting V' = 1{T = h}, as described in Appendix A.3. SLATE (column 4) and the overall switching probability (column 3) in Panel
B are estimated using Theorem 2.3. The CCEF (column 5) in Panel A is estimated by IV using Theorem 2.7, as described in Appendix
A.3. The CCEF (column 5) in Panel B is estimated by x*-weighting using Theorem 2.8, as described in Appendix A.3. Column 6 lists
possible switcher types and column 7 shows the estimated probability of switcher types; these are computed using Lemma 2.2 as described
in Appendix A.3. Column 8 reports estimated causal effects on test scores for each type, computed from the CCEF estimates in column
5. The p-value in Panel B is computed using the cluster bootstrap (clustering on center) as described in Appendix A.3. All models control
for applicant sex, race, Spanish language use, teen mother, mother’s marital status, presence of both parents in the home, family size,
special education status, income quartile dummies, and a cubic function of baseline scores. The propensity score is estimated using probit.
P(T =t|Z,X) is estimated using multinomial probit. Standard errors in columns 1-2 (reported in parentheses) cluster on center. Standard
errors in columns 3-5 and 7-8 (Panel A) are computed as described in Appendix A.3, also clustering on center. Standard errors in columns
5 and 8 in Panel B are computed using a cluster bootstrap (1,000 simulations) detailed in Appendix A.3. N = 3,571.
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Figure 1: Estimates of Head Start Effects on Test Scores by Sex and Primary Language

Panel A: By sex
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Notes: This figure graphs estimated causal effects of Head Start on test scores by switcher type and sex (in Panel
A) and by switcher type and language spoken at home (in Panel B). Causal effects are computed from a CCEF
estimated by k*—weighting using Theorem 2.8, as described in Appendix A.3. P-values are for tests of differences in
impact by demographic group within switcher types. Confidence intervals and p-values are computed using a cluster
bootstrap (clustering on center), as discussed in Appendix A.3. The propensity score is estimated using probit;
P(T =t|Z, X) is estimated using multinomial probit. All models control for applicant sex, language spoken at home,
race, teen mother status, mother’s marital status, presence of both parents, family size, special education status,
income quartile dummies, and a cubic function of baseline scores. N = 3,571.
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Table 2: Estimates of Financial Aid Effects on BAs Pooling Switchers

2SLS (instrumenting D) SLATE (V = D)

Instrument  Switcher Types  First Stage  Estimate P(T* € S) Estimate

(1) (2) 3) (4) (5)

Panel A. Randomization strata controls

Aid award ~ (0,1), (2,3), (0,3)  0.245 0.329 0.246 0.325
(0.012) (0.050) (0.012)  (0.049)

Panel B. Baseline covariates + randomization strata controls

0.245 0.346 0.246 0.342
(0.011) (0.047) (0.011)  (0.047)

Notes: This table reports 2SLS and SLATE estimates for the effects of financial aid on BA completion.
Parameters are identified by the random assignment of STBF aid awards. Treatment T € {0, 1,2, 3}
recodes the pair of Bernoulli treatments (D, S) € {(0,0),(1,0),(0,1),(1,1)} into four levels, where D
indicates reduced loans and S indicates early engagement. 2SLS estimates use aid offers to instrument
D. SLATE averages effects for the three switcher types (1) listed in column 1. SLATE (column 5) and
overall switching probability (column 4) are estimated using Theorem 2.2, as described in Appendix A.3,
setting V' = D. Baseline covariates include dummies for Pell eligibility, white race, above-median high
school GPA, above-median ACT, community college alternate, Omaha resident, and first-generation
college student. The propensity score is estimated using probit. 2SLS standard errors, reported in
parentheses, are robust. Standard errors in columns 4-5 are computed as described in Appendix A.3.
N = 6,845.
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Table 3: Estimates of the CCEF for Aid Effects on BA Completion

Causal Effects
Treatment Level (D,S) P(T'=t) CCEF Switcher Type P(T*=1t*) IV Estimates
(1) (2) (3) (4) (5) (6)

Panel A. Randomization strata controls

0 (0,0) 0124  0.223 (0, 3) 0.103 0.626
(0.049) (0.012) (0.053)
1 (1,0) 0238  -0.005 (0, 1) -0.025 -0.228
(0.276) (0.010) (0.281)
2 (0,1)  0.304  0.790 (2, 3) 0.168 0.059
(0.030) (0.011) (0.036)
3 (1,1) 0334  0.849
(0.020)

Panel B. Baseline covariates + randomization strata controls

0 (0,0) 0124  0.222 (0, 3) 0.107 0.630
(0.048) (0.011) (0.052)
1 (1,0) 0238  0.023 (0, 1) -0.028 -0.200
(0.238) (0.010) (0.244)
2 (0,1) 0304  0.787 (2, 3) 0.167 0.065
(0.030) (0.011) (0.036)
3 (1,1) 0334  0.852
(0.020)

Notes: This table reports the estimated CCEF and corresponding treatment effects for effects of reduced loans
(D) and early engagement (S) on BA completion. Parameters are identified by the random assignment of STBF
aid awards. Column 2 gives sample proportions at each treatment level. Column 3 shows the CCEF, estimated by
IV using Theorem 2.7, as described in Appendix A.3. Column 4 lists possible switcher types under D-dominance
and column 5 shows the estimated probability of switcher types; these are computed as described in Appendix A.3.
Column 6 reports estimated causal effects on BA completion for each type, computed from the CCEF estimates
in column 3. Baseline covariates are as for Table 2. The propensity score is estimated using probit. Standard
errors for the estimates in columns 3, 5, and 6 are computed as described in Appendix A.3. N = 6, 845.
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Table 4: Ordered Probit First-Stage Estimates for Twins & Samesex Instruments

Twins Samesex
Parameter (1) (2) (3) (4)
™ 1.084 1.315 0.147 0.170

(0.0114)  (0.0150) (0.0047) (0.0049)

Marginal Effects  0.870 0.901 0.089 0.087
(0.0106) (0.0119) (0.0029) (0.0025)

c3 0.314 -0.308 0.379 -0.210
(0.0025) (0.0251) (0.0035) (0.0252)
c4 1.324 0.886 1.385 0.976
(0.0035) (0.0252) (0.0044) (0.0253)
s 2.009 1.708 2.068 1.795
(0.0055) (0.0255) (0.0061) (0.0257)
c4 — C3 1.010 1.193 1.005 1.185
c5 — C3 1.695 2.015 1.689 2.004
C5 — C4 0.685 0.822 0.684 0.819
max Ce41 — Ct 1.010 1.193 1.005 1.185
min ceyq1 — ¢ 0.685 0.822 0.684 0.819
Covariates No Yes No Yes

Notes: This table reports estimates of the ordered choice model detailed

in Lemma A.4, assuming ¢ is normally distributed. The dependent vari-
able is the number of children (7") for mothers of two or more. The second
row of the table reports average marginal effects of each instrument on
E|T|Z,X]. Data are from the Angrist and Evans (1998) 1980 Census
sample of 254,652 married mothers. Treatment T € {2,3,4,5} is the
number of children censored at 5. Controls are age, age at first birth, age
of first two children (in quarters), and indicators for boy 1st, boy 2nd,
black, hispanic, and other race. Robust standard errors are reported in
parenthesis.

Table 5: Estimates of Childbearing Effects Pooling Switchers Using Twins & Samesex Instruments

25LS SLATE
Instrument  Switcher Types  First Stage Estimate A% P(T* €S) Estimate
(1) (2) (3) (4) () (6)
Twins (2,3),(2,4),(3,4), 0.824 -3.22 {T =5} 0.976 -2.71
(3,5),(4,5) (0.0116) (0.535) +1{2<T <5}Z  (0.0005) (0.455)
Samesex (2,3),(3,4),(4,5) 0.083 -4.36 T-2 0.083 -4.36
(0.0026) (1.007) (0.0026) (1.008)

Notes: This table reports 2SLS and SLATE estimates of effects of childbearing on weeks worked. Parameters are identified
using twins and samesex instruments. Treatment 7' € {2,3,4,5} is the number of children censored at 5. 2SLS estimates
use twin and samesex dummies to instrument 7. SLATE averages effects for the three switcher types listed in column 1;
switcher types follow from Lemma A.4(iv) and the ordered probit estimates in Table 4. Formulas for V' in Column 4 follow
from Lemma A.4(ii) for twins and A.4(iii) for samesex. SLATE (column 5) and overall switching probabilities (column 4)
are estimated using Theorem 2.2, as described in Appendix A.3. Covariates and sample are as for Table 4. The propensity
score is estimated using probit. 2SLS standard errors, reported in parentheses, are robust. The probability of switching and
SLATE standard errors are computed as described in Appendix A.3. N = 254, 652.
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Table 6: The CCEF for Childbearing Effects on Weeks Worked

CCEF
Treatment Level — Switcher Types P(T =t) in(t) out(t) col 2— col3

(1) (2) B @ (5)

2 (2,3),(2,4) 0.619 0 21.1 —
(0.06)

3 (2,3),(3,4),(3,5)  0.285 173 164 0.918
(0.52) (0.08)  (0.5240)

4 (2,4),(3,4),(4,5)  0.072 144 14.0 0.438
(1.00) (0.15)  (1.0115)

5 (3,5), (4,5) 0.023 10.6 0 —
(2.86)

Notes: This table reports the estimated CCEF for effects of childbearing on weeks worked.
Parameters are identified using the twins instrument. Treatment T € {2,3,4,5} is the number
of children censored at 5. Column 1 reports switcher types getting into or out of ¢. Column
2 gives sample proportions at each treatment level. Columns 3 and 4 report CCEF estimates
for switchers in the sets in(t) and out(t); these sets are obtained from Lemma A.4 and the
ordered probit estimates in Table 4. CCEF is estimated by IV using Theorem 2.7, as described in
Appendix A.3. Column 5 computes and tests CCEF differences for levels common to in(t) and
out(t). The propensity score is estimated using probit. Covariates and sample are as for Table 4.
Standard errors for the estimates in columns 3, 4, and 5 are computed as described in Appendix
A.3. N = 254,652.

Table 7: CCEF-Derived Estimates of Effects of Childbearing on Weeks Worked

Average Effects

Switcher Type Causal Effect Per-child Effect Switchers Included Average Equality Test
(1) (2) (3) (4)

(2, 3) -3.75 same as (1) (2,3),(3,4),(4,5) -3.03 0.296
(0.521) (1.020) df=2
(3,4) -1.96 same as (1) (2,4),(3,5) -3.10 0.782
(1.004) (0.756) df=1
(4, 5) -3.39 same as (1) all switchers -3.06 0.000
(1.004) (0.911) df=4
(2, 4) -6.63 -3.31
(1.002) (0.501)
(3, 5) -5.79 -2.89
(2.861) (1.431)

Notes: This table reports estimates of causal effects of childbearing on weeks worked. Parameters are identified using
the twins instrument. Treatment 7" € {2,3,4,5} is the number of children censored at 5. Switcher types follow from
Lemma A .4(iv) and the ordered probit estimates in Table 4. Column 1 reports causal effects estimates based on the
CCEF estimates in Table 6. Column 2 reports per-child effects. Column 3 reports, respectively, average incremental
effect for switcher types (2,3), (3,4), and (4,5), average of per-child effects for two-child switchers, and average of
per-child effects for all switchers; corresponding standard errors are in parentheses. Column 4 reports the p-value for
the test that the underlying effects in the corresponding row in column 3 are all equal. Covariates and sample are as
for Table 4. The propensity score is estimated using probit. Standard errors are computed as described in Appendix
A.3. N = 254,652.
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A Appendix

Identification and estimation results are proved in separate appendices.

A.1 Proofs for Section 1 and 2
A.1.1 Proof of Proposition 1.1
Using that Y =3, . Y*(t)1{T' =t} and T = T*(0)(1 — Z) + T*(1)Z, we can obtain that
EYUT =t}1{T* =t"}|X] = E[Y*(\)1{t*(Z) = t}1{T" = t*}| X] (44)
= EY" ()T = "} X|P(#"(2) = t]X),

for any t € {t*(0),t*(1)}, where the second equality follows from the law of iterated expectations

and Lemma A.1l in Navjeevan et al. (2023). Furthermore, by the same arguments we also have
E[{T* = t'}1{T = t}|X] = E[L{T* = '}|X|P(t*(Z) = t|X). (45)

Therefore, the theorem follows from dividing (44) by (45) and employing that P(t*(Z) = t|X) >
0 for any ¢t € {t*(0),t"(1)} dueto0 < P(Z=1|X)< 1. m

A.1.2 Proof of Lemma 2.1

First note that since P(T* € M) = 1 by Assumption 1.2(i), for any z € {0, 1} it follows

EY|Z=2X]= Y EYUI*=t}Z=zX] (46)
t*eM
= Y EY*(t()HT* =t'}Z =2, X] = Y E[Y*(£*(2){T* = t"}|X]
t*eM t*eM

where the second equality follows from Assumption 1.1(ii) and the third from (Y*,T™*) being
independent of Z conditionally on X. Therefore, since t*(1) = ¢t*(0) for any t* € M \ S, result
(46) and the law of iterated expectations yield

BIEY|Z = 1,X] - E[Y|Z = 0.X]] = ¥ E[(Y*(t"(1)) - Y (O)YT* = '}]  (47)
t*€eS
= E[r(T*)1{T* € S}],

which establishes the first claim of the lemma. The second claim is immediate by dividing both
sides of (47) by P(T* € S), which is positive by Assumption 1.2(ii). m

A.1.3 Proof of Theorem 2.1
First define the function ¢(7*) = 1{T™ € S} and observe that by definition we have
P(T* € S) = E[((T™)). (48)

Corollary 4.3 in Navjeevan et al. (2023) provides necessary and sufficient conditions for the
identification of moments with the structure in (48). In order to apply said Corollary, let

Um denote the uniform distribution on M and set y = {Py|X}dUMPZPX. By lemma A.1,
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Py«p«zx < 1 and therefore Assumption 1.1 implies that Assumptions 2.1 and 2.2 of Navjeevan
et al. (2023) are satisfied with @ = Q = L'(u). Moreover, since Lemma A.1 further establishes
that i < Py«7+zx, we may set QQ = Py«p+zx. Condition (ii) of the Theorem therefore implies
that Q'* < Q with dQ**/dQ bounded as required by Corollary 4.3 in Navjeevan et al. (2023).

Moreover, by definition of i, we have

APyx _ dPyx
dpz|x dPz —

because P(Z = z|X) > ¢ for some ¢ > 0 and all z € {0,1} by assumption. Finally, we note
that since ¢ is bounded, condition (i) of the Theorem implies all the remaining requirements
of Corollary 4.3(b) in Navjeevan et al. (2023) are satisfied. Therefore, Corollary 4.3(b) in
Navjeevan et al. (2023) implies that P(T* € S) is identified if and only if there exists a function
fof (T, Z, X) satistying E[f(T, Z, X)|] < oo and

PO By (2, X)UTH(2) = )] = 4(T)) = 1 (49)
teT
where Euz| . denotes an expectation taken with respect to the conditional distribution of Z

given X under p. Next, note that P(Z = 1) € (0,1), puyx = Pz, and pr-x = Pr«x by

definition of y imply that requirement (49) is equivalent to
Prox(Y D fltz X)UYT*(2) =t} = ((T*)) = 1 (50)
teT ze{0,1}

holding for some function f of (T,Z, X). Moreover, since Pp«Px < Pp«x due to P(T* =
t*|X) > e > 0 for all t* € M, condition (50) is itself equivalent to

PrPe(S S flts XOUT () = t} = (T") = 1, (51)
teT ze{0,1}
Next, note that for any (¢,z) € T x {0,1}, we obtain from 7* being independent of Z condi-
tionally on X and P(Z = z|X) > ¢ for some ¢ > 0 that
P(T=1t7Z=z2X)=P(T*(z) =t X)P(Z =2/ X) < P(T"(2) =t|X) (52)

= Y P(T=t1X) < #{t' e M:t*(z) =t} < P(T"(2) = 1),
t*eM:t* (z)=t

where the fourth result follows from P(T* = t*|X) > ¢ for all t* € M, and the final result from
P(T*(z) =t) = 0 if and only if t*(z) # ¢ for all t* € M due to P(T"* = t*|X) > ¢. Moreover, by

the law of iterated expectations and result (52) we also obtain
PT=tZ=2)=EPT=t7Z=zX)=<P(T(2)=t) < P(T=t27=zX). (53)

In particular, note that P(T =t,Z = z) < P(T*(z) =t) for all (t,2) € T x {0,1} implies that

condition (51), and hence identification of (48), is equivalent to

PrPx( Y Y faX)UT () =t} = 4(T7) = 1. (54)

2€{0,1} : P(T=t,Z=2)>0

To conclude, note that if (5) holds, then (54), and hence identification of P(T™ € S), holds
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due to T* € M with probability one by Assumption 1.2 and P(T =t,Z = z) < P(T*(z) = t)
for all (t,z) € T x {0,1}. For the converse, suppose that (54) holds for some f satisfying
E[|f(T,Z,X)|] < co. Then note that for any set E C X, Bayes Rule and result (54) imply for
any (t,z) € T x {0,1} satisfying P(T'=t,Z = z) > 0 that
P(XE€ET=t,Z=2)P(T=t2="2)
P(T=t,7Z=2X € E)

P(X €E)= ~P(X€ET=t2Z=2z). (55

In particular, result (55) implies that E[|f(¢,z, X)|] S E[|f(T, Z,X)|] for any (¢, z) satisying
P(T =t7Z==z)>0. Since E[|f(T,Z,X)|] < co we may therefore define

(t.2) El|f(t,z2,X)]] HPT=t,Z=2)>0
v(t,z) = .

0 if P(T=t,7=2)=0
Finally, note that condition (54) implies that with Pp« probability one we have that

> > v(t, )T (z) =t} = Y Y v(t,2)l{T"(z) =t} (56)

2€{0,1} t: P(T=t,Z=2)>0 z€{0,1} teT
where the final equality follows from P(T =t,Z = z) < P(T*(z) = t) by (53). Since P(T* =
t*|X) > eforall t* € M, result (56) implies that (5) holds with vy (t) = v(¢,0) and v () = v(¢, 1),
and therefore that the identification of P(T™ € S) implies (5). m

A.1.4 Proof of Theorem 2.2

To establish the result, we first use the law of iterated expectations to show that

E[Em(T)|Z = 0, X] + El (T)|Z = 1, X]) (57)
B 1-2) Z
= E[VO(T)m + V1(T)m]
HT_tZ_O} T =t,7 =1}
_gyho Z = 0[X) {O=pz =1k

Moreover, using the fact that response types T are independent of Z conditional on X yields

pHT=1.2=0 T =t,Z7=1
2.0 7 —orx>}+”1(“ {P<Z—1|X>}] o
ZE:EprPa”m)zﬂXiigiggg+VN®PHWG)=ﬂXﬁ¥§iiB3]
teT
= Elpo(t)1{T*(0) = t} + () 1{T*(1) = t}].
teT

Since T* € M with probability one, ISP implies that the last display in (58) equals P(T™* € S).
The first claim of the Theorem follows from (57), (58), and V = 11 (T)Z — v(T)(1 — Z). For
the second claim note that for any W with E[|[W]] < oo we have
_ w2z W(l - 2)
EWZ =F —
w2l [P(Z =1X) P(Z=0X)

| = E[E[Y|Z=1,X]-E[Y|Z=0,X]].

Therefore, the second claim of the Theorem follows from Lemma 2.1 and P(T* € S) =
E(E|V|Z =1,X]| - E[V|Z =0, X]), as shown in the first part of the result. m
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A.1.5 Proof of Theorem 2.3

To establish part (i) note that for vo(T) = —1{T € Ti} and 11 (T) = 1{T € T; UTi,},

Y () (0) =t} + (8 1{t*(1) = 1}

teT
= (—1{t € To}1{t*(0) =t} + 1{t € T UTs }1{t*(1) = t}) = 1{t" € 8},
teT
where the second equality follows by noting that if t* € M\ S then t*(0) = t*(1) ¢ Ti, by
definition of T;, and I0S, while if ¢* € S then 1{t*(1) = ¢t} = 1 for some t € T; U T;, and
1{t*(0) =t} = 0 for all ¢t € T;. Hence, IOS implies ISP as claimed. Moreover, we have

~Z({T € T3} + 1{T € To} + {T € T3, })P(Z = 0|X) (59)
Z —P(Z=1X))
- P(Z=1X)

KT, Z,X) = ZV

ANR

v

1{T € T,}

by definition of k*, V', and direct calculation. Since we have 1{T™* € stay(t) for some ¢t € Ts} =
1{T € T} by definition of Tg and T™ is independent of Z conditional on X by Assumption
1.1(iii), result (59) and Theorem 2.2 imply E[s*(T, Z, X)]| = E[ZV] = P(T* € S), and therefore
part (i) of the theorem follows.

In order to establish part (ii) of the Theorem, note that Theorem A.l implies that

ho(X) Vhi(X)

(Bo, 1) = awg min EI(Y —bo g mv e gy ~ P B x0T € 81)2’”"*@’ 2 X))
B ho(X) Vhi(X) "
= BlY - bOE[hO(X)|T* es] blE[hl(X)\T* € S])Ql{T €S}

Next, note that 1{T*(Z) € T;,T* € S} = 1{T*(1) € Ty, T* € S}Z by definition of Tj;.
Therefore, using that V' = 1{T € Ty} + 1{T € Ti,, Z = 1} we are able to conclude that

V1{T* € S} = 1{T*(1) € T; UT;,} Z1{T* € S} = Z1{T* € S}. (60)

Therefore, result (60) and Z being independent of 7™ conditional on X yields that

EWVho ()l (X)UT* € 8} = Bl o) (61)
Combining result (61) with the law of iterated expectations then enables us to conclude
EVho(X)h(X)HT* € $))/ Bl (X)|T" € S|Blho(X)|T* €] _ Blho(X)[T* €8]
E[h§(X)I{T* € S}]/(E[ho(X)|T* € 8])? Eh (X)|T* € S]
Thus, the Frisch-Waugh-Lovell theorem yields that £y is the minimizer to the problem
= anggin E(Y — (o ) -  ME P esy (o
b1

— arg min E[(Y — (Vhy(X) = ho(X))*1{T" € S}].

E[h (X)[T" € S]

Next observe that result (60), Z being independent of (Y*,T%) conditional on X, the definitions

44



of hg and h1, and the law of iterated expectations imply

E[Y (Vhi(X) — ho(X)1{T* € S}] (64)
(YZ+Y (1~ 2)(Zhi(X) — ho(Z){T* € S}]

(Y (T (1) Z(h(X) — ho(X)) = Y*(T*(0))(1 — Z)ho(X)1{T* € S}]

(V¥ (T*(1)) = Y*(T*(0)))L{T" € S}

I
SR I

Moreover, again using result (60) and the law of iterated expectations further implies

E[(Vhi(X) — ho(X))*1{T* € S}| (65)
= B{(ZhA(X) — Zhi(X)ho(Z) + W2(X)1{T* € S}] = B[l (X)1{T" € S}I.

Therefore, by combining results (63), (64), and (65) we are able to conclude that

8 = E[Y(Vhi(X) — ho(X)){T* € S}]/E[h(X)|T* € S]
P B(VA(X) = ho(X)?{T* € S}]/(E[l (X)|T* € S])?
_ By (1 (1)) = Y*(T7(0)))H{T" € SHE[M(X)[T" € S]
Elm(X){T* € S}]

(66)

=7(9),

which establishes the second claim of the Theorem. m

A.1.6 Proof of Lemma 2.2

The claim for ¢t € T; U'T, follows from Lemma A.2 and the law of iterated expectations. The
claim for t € T, follows by noting that if ¢ € Ts,, then 1{Z = 1}1{T =t} = 1{Z = 1}1{T* €
in(t)} and 1{Z = 0}1{T =t} = 1{T™ € out(t)}. Therefore, we have

E[{T = t}|Z = 1,X] = E[1{T* € in(t)}|Z = 1, X] = P(T* € in(t) |X)
E[L{T = t}|Z = 0, X] = E[1{T* € out(t)}|Z = 0, X] = P(T € out(t) | X)

because T* is independent of Z conditional on X by Assumption 1.1(iii). Marginalization over

the distribution of X proceeds as in the end of the proof of Theorem 2.2. m

A.1.7 Proof of Corollary 2.1

For any t* € S and ¢ € {t*(0),t*(1)} we have P(T' = t,T* = t*|X) > 0 by Assumption 1.1(iv)
and P(T* = t*|X) > 0 for all t* € S. Therefore, Proposition 1.1 and RIO imply

E[Y*@®)|T* = t*, X] = C(t, X) (67)

for any t* € S and t € {t*(0),¢*(1)}. In particular, (67) implies E[Y*(¢)|T* = t*, X] is constant
in t* € in(t) Uout(t) and therefore that RIO implies (20) holds.
Conversely, if condition (20) is satisfied, then we may set C'(¢, X) to equal

O(t, X) = E[Y*(t)|T* € in(t) U out(t), X], (68)

where we have used that the right-hand side of (68) depends only on (¢, X). Property (20) and
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Proposition 1.1 then imply RIO holds. m

A.1.8 Proof of Theorem 2.4

We first show that if the CCEF is identified, then IOS holds. We establish this direction by
showing that, if the CCEF is identified, then at every ¢t € T one of the sets stay(t), in(t), and
out(t) is empty. To this end, note that if t € T, then by definition in(t) and out(t) are empty.
We therefore focus on ¢t ¢ Ts. At any such ¢ either in(t) or out(t) is non-empty, and therefore
there exists a t* € S such that ¢t € {¢t*(0),¢*(1)}. Hence, because RIO holds and the CCEF is

identified, the law of iterated expectations implies

S E[Y - Ct, X)UT = t}{T* =t"}] = 0. (69)
t*eS
Next, note that T =T*(0)(1 — Z) + T*(1)Z and (Y*,T*) 1L Z|X by Assumption 1.1(iii) imply
that

> EBIY - C(t, X){T = t}1{T* = t*}] (70)
h = t; E[(Y*(t) - C(t, X)) H{T" = "} 1{t"(Z) = t}]
= EE[(Y*(t) - C(t,X)){t*ZE:S HT* =t} P(t"(Z) = t|X)}].
Moreover, because the probability P(t*(Z) = t|X) is identified to equal either P(Z = 0|X) (if
t* € out(t)) or P(Z = 1|X) (if t* € in(t)) it follows that the function

(T*, X) = > YT* =t"}P(t*(Z) = t|X) (71)
t*eS
is identified. Hence, so is the function (Y*(¢) — C(t, X))6:(T*, X) because C (T, X) is identified
by hypothesis. Also note that results (69) and (70) then imply that

E[(Y*(t) = Ct, X))(T", X)] (72)

is identified.

Corollary 4.4 in Navjeevan et al. (2023) provides necessary and sufficient conditions for
identification of moments with the structure E[p(Y™*(¢))¢(T*, X)] to be identified when p and
¢ are identified. The arguments in Corollary 4.4 in Navjeevan et al. (2023), however, apply
verbatim when p is allowed to depend on X as well, which maps into (72). To verify that
the conditions of the corollary are satisfied, let Upg be a uniform distribution on M and set
= {Py|X}dUMPZX. By Lemma A.1, Py«p+«zx < p and, therefore Assumption 1.1 implies
that Assumptions 2.1 and 2.2 of Navjeevan et al. (2023) are satisfied with Q = Q = L(p).
Lemma A.1 further implies that p < Py+p+zx, and we may therefore set Q = Pysp+zx in
Corollary 4.4 of Navjeevan et al. (2023). Condition (iii) of the theorem therefore verifies the
requirements that Q*° < @ and dQ*°/dQ be bounded, while condition (i) of the theorem implies
Q(T* = t*) > 0 for all * € M. Since (Y*(¢t) — C(t,X)) is bounded by condition (ii) of the
theorem, ¢; is bounded by construction, and Var{Y*(¢) — C(t, X)|X} > € by condition (ii) of
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the theorem, it follows that all the requirements of Corollary 4.4 in Navjeevan et al. (2023) are
satisfied. Therefore, we may apply said corollary to conclude that identification of (72) implies
that there is a function f of (Z, X) satisfying E[|f(Z, X)|] < co and

P(Egx[f(2, X)H{T"(Z) = t}] = 4(T", X)) = 1, (73)

where Ezx denotes an expectation taken with respect to the distribution of Z given X.
Next, note that (73) holding with probability one under Pr«x, the definition of ¢; in (71),
and P(T* = t*|X) > 0 for all t* € M imply that (73) requires that

F(1,X)P(Z = 1|X) = P(Z = 1|X) if in(t) # 0 (74)
£(0,X)P(Z = 0|1X) = P(Z = 0|X) if out(t) # 0
£(0,X)P(Z = 0|X) + f(1,X)P(Z = 1|X) = 0 if stay(t) £ 0

almost surely in X. However, since P(Z = z|X) > ¢ for any z € {0, 1}, there exists no solution
to (74) whenever in(t), out(t), and stay(t) are simultaneously non-empty. Hence, identification
of the CCEF implies that one of in(t), out(t), and stay(t) is empty and therefore that IOS
holds.

To conclude, it remains to show that if IOS holds, then the CCEF is identified. To this
end, note that since P(T* = t*|X) > 0 for any t* € M, Assumption 1.1(iv) implies that
P(T =t,T*=t|X) >0 for any t € {t*(0),t*(1)} and t* € M. It is also helpful to note that for
any t* € S and ¢ € {¢*(0),¢*(1)}, RIO and Corollary 2.1 imply that

E[Y|T =t,T* = t*,X] = E[Y|T = t,T* € in(t) Uout(t), X]. (75)

We establish identification of the CCEF by considering the cases t € Tg, t € Ti,, t € Ty,
and t € T, separetely. For any t € Ty, the only t* € M that selects ¢ is the stayer t* =
(t*(0),t*(1)) = (t,t). Therefore, 1{T =t} = 1{T™* = (t,t)}, which implies

E[{T =t}|X]  E{T =t,T* = (t,)}|X] =E[Y|T =t,T" = (t,t),X].  (76)

Similarly, for any ¢ € Ti,, IOS implies stay(t) = 0. Therefore, 1{T = t} = 1{T* €
in(t) Uout(t)} and result (75) allows us to conclude that

E[YYT = t}|X] E[YUT = #,T" € in(t) Uout(t)}| X] .
E[{T =t}|X] ~ E[{T =+t1" € in(t) Uout(t) }|X] 70

= E[Y|T =t,T* € in(t)Uout(t), X] = E[Y|T = t,T* = t*, X]

for any t* € in(t) Uout(t). Next, note that for any ¢ € T;, Lemma A.2, the law of iterated
expectations, Corollary 2.1, and out(t) = () imply for any ¢* € in(t) that

E[YUT =t} Z|X] _ E[Y*(t)L{T" € in(t)}|X] (78)
E[{T =t}Z|X] P(T* € in(t) | X)

= EY*()|T* = t*,X| = E[Y|T =, T* = t*, X],

where the final equality follows from Proposition 1.1. Moreover, since out(t) = @ we have
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HT' =t,7Z =0} =1{T" € stay(t), Z = 0} and hence Assumption 1.1(iii) yields
EYUT =t,Z=0}|X] E[Y*(t)1{T* € stay(t), Z = 0}|X]
E[l{T =t,Z =0}|X]  E[{T* € stay(t),Z = 0}| X]
= E[Y*()|T" € stay(t), X] = E[Y|T' =t,T" = (t,1)],

(79)

where the final equality follows from Proposition 1.1 and stay(t) = {(¢,¢)}. The identification
of the CCEF at any ¢t € T, follows by applying the same arguments but replacing Z with —Z
in (78) and Z = 0 with Z =1 in (79). Hence, IOS implies identification of the CCEF and the

theorem follows. m

A.1.9 Proof of Theorem 2.5

Parts (i) and (ii) of the Theorem follow from Theorem A.l1. To establish part (iii) of the
Theorem, first note that by definition of Z we have that

Z({T € Tio,Z =1}P(Z =1|X) — T € T30, Z = 0} P(Z = 0| X))
=T €T, Z=1}+1{T € Ti,,Z =0} = 1{T € Ti,}. (80)
Also note that T = T; U T, 4+ T, because T is empty by hypothesis. Therefore, since

V=1{T eT:}+1{T € Ty, Z = 1} it follows that 1 — V = 1{T € To} + 1{T € Ty,, Z = 0}.
Hence, the definition of k* and result (80) yield that

KNT,Z,X)=VZP(Z=1|X)-(1-V)ZP(Z =0|X). (81)

Part (iii) of the theorem then follows from (81) and the definition of Z. m

A.1.10 Proof of Corollary 2.2

For the first claim, note that P(T = ¢, T* = t*|X) > 0 for any t* € S and t € {t*(0),t*(1)} by
Assumption 1.1(iv) and P(T* = t*|X) > 0 for all t* € S. We first show that condition (27)
implies ARIO. To this end, note that Proposition 1.1 and 1{T = ¢,T* = t*,T* € S} equaling
zero whenever t* ¢ in(t) Uout(t) imply

ElY|T,T*, X|1{T* € S} (82)
- ¥ Y BTt =t X|YT =t,T" =t}

te€TiUTo,UTi, t*€in(t) Uout(t)
with probability one, and where we used in(t) = () and out(t) = 0 for all ¢ € T. Therefore, if
condition (27) holds, then result (82) implies that with probability one

EY|T,T*, X|{T* €S} = Y E[Y*(t)|T" € in(t), X]{T = t,T" € in(t)}
teT;UT,

+ Y EB[Y*(#)|T" € out(t), X]1{T =t,T" € out(t)}.
teToUT o
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Hence, using that 1{T =¢,T* € in(t)} = {T =t,Z = 1,T* € S} and similarly 1{T' =¢,T" €
out(t)} = I{T'=1t,Z =0,T* € S} allows us to conclude that

EY|T, T X]{T* €S} = Y E[*()|T" € in(t), X]{T = t,Z = 1}1{T" € S}
teT;UT;,

+ S EY )T € out(t), X]T =1+, Z = 0}1{T* € S},
teTUTio

which implies ARIO holds. For the converse, suppose (27) holds and note that for any ¢ €
T; UT;, and t* € in(t) we have that 1{T = ¢,T* = t*} implies Z = 1. Hence,

E[Y|T =t,T* = t* X|I{T = t,T* = t*} (83)
= E[Y*(O)|T* = t*, X|{T =, T* = t*, Z = 1} = C,(t, 1, X).

Since (83) holds for any t* € in(t), we can conclude that the first display in (27) holds. Similarly,
since 1{T" = t,T* = t*} implies Z = 0 for any ¢* € out(t) we have

E[Y|T = tT* = t*, X|I{T = t,T* = t*} (84)
= E[Y*(O)|T* = t*, X|I{T = t,T* = t*, Z = 0} = C,(t,0, X).

for any t* € out(t). Hence, it follows that the second display in (27) holds and therefore that
ARIO implies (27).

For the second claim of the corollary, note that (83) holding for any ¢t € T; U T;, and
t* € in(t) and (84) holding for any t € T, U T, and t* € out(t) imply that

EY*(T*(1)) - Y*(T*(0))|T* = ¢, X] = Ca(t*(1), 1, X) — Ca(t*(0),0,X)  (85)

for any t* = (¢*(0),t*(1)) € S. Finally, note that T € T; and T* € S imply Z = 1 because
out(t) = 0 for all t € T;. Similarly, T € T, and T* € S imply Z = 0 because in(t) = () for all

t € T,. Therefore, we can conclude that

Co(T, Z, X)1{T € T3 UT,}1{T* € S}
= (Cu(T, 1, X)U{T € Ts} + Co(T, 0, X)1{T € T })1{T* € S},

which establishes the final claim of the corollary. m

A.1.11 Proof of Theorem 2.6

The result follows by setting g(Y, T, Z, X) = (Y — F,(T, Z, X;b))? in Theorem A.1 and noting
that h = ¢ in the notation of that theorem due to (30). m

A.1.12 Proof of Theorem 2.7

We first derive some results that are helpful for establishing both parts (i) and (ii). Note that

for any t € T; we have from Lemma A.2 and the law of iterated expectations that

E[f(Y*(t)){T" € in(t)}|X] = B[f(Y){T = t}Z|X]. (86)
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Similarly, for any t € T,, Lemma A.2 and the law of iterated expectations imply that
E[f(Y*(t)H{T™" € out(t)}| X] = —E[f(Y){T =t} Z|X].

Finally, Assumption 1.1(iii), and I{T' =¢,Z =1} = 1{Z = 1,T* € in(t)} and I{T =¢,Z =
0} =1{Z =1,T* € out(t)} for any ¢ € T;, imply for any function f that

E[f(Y* () 1{T" € in(t)}|X] = E[f(Y) 1{1:5(; tjp:ol} X] (87)
E[f(Y"()HT" € out(0)}|X] = E[f(¥) ”gé t_’iu:oo} X]

for any t € Ti,. Also note Z(Z — P(Z =1|X)) = Z(1 — P(Z = 1|X)) implies that

UT =t,7 =1}
P(Z = 11X)

E[f(Y) |1X] = BIf(Y){T =t} Z2Z|X]. (83)

Similarly, since (1 — Z)(Z — P(Z =1|X)) = (1 — Z)(—P(Z = 1|X)) we have that

YT =t,7=0}

P(Z =0[X) | X] :—E[f(Y)l{T:t}(l_Z)ZLX]‘ (89)

E[f(Y)

We can now establish part (i) of the Theorem. To this end note that P(T* € in(t) |X) > 0
for any t € T; and P(T* € out(t)|X) > 0 for any t € T, because P(T* = t*|X) > 0 for any
t* € S by assumption. Therefore, evaluating results (86) and (87) at f(Y) =Y and f(Y) =1

we are able to conclude that

ElZxU{T=tY|X] | E[Y*t)|T*€in(t),X] ifteT;
ElZ x {T =t}|X] | E[Y*(t)|T* € out(t),X] ifteT,

Similarly, evaluating results (87), (88), and (89) at f(Y) =Y and f(Y) =1 implies that

E[Y*(t)|T* € in(t), X] = EE[[ZZXxll{fT::ti}ZZTg ] v
E[Z x YT = t}(1 = 2)Y|X]

E[Z x {T =t}(1 — 2)|X]

E[Y*()|T* € out(t), X] =

for any t € Ti,. The first part of the theorem then follows from ARIO, (88) and (90).
For the second part of the theorem, we take expectations (over X) of results (86) and (87)
evaluated at both f(Y) =Y and f(Y) =1 to obtain that

E[ZxU{T=t}Y] | E[Y*(t)|T* €in(t)] ifteT; o1)
ElZxU{T =t} | E[Y*@t)|T* cout(t)] ifteT,
Similarly, evaluating results (87), (88), and (89) at f(Y) =Y and f(Y) =1 implies that
E[Y*()|T* < in(t)] = EIZx UL =12V (92)

E[Z x {T =t}Z]
E[Z x YT =t}(1 - 2)Y]

E[Y*()|T* € out(t)] = FE LT =2

The second part of the theorem therefore follows from (92) and condition (33). m
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A.1.13 Proof of Theorem 2.8

Given a CCEF specification F, satisfying (30), Corollary 2.2(ii) and Theorem A.1 taken together
imply

B = argmin E(Co(T, Z, X) = Fu(T, 2, X; b)?1{T* € S}] (93)
— argmin B[(Cu(T, 2, X) — Fu(T, 2, X30))** (T, Z, X)) .
Using the fact that *(¢, Z, X) = 0 for any ¢t € T and the law of iterated expectations yields

E[(Cy(T,Z,X) — F (T, Z,X;b))*k*(T, Z, X)] (94)

= Z Z E[(Ca(t, 2, X) — Fo(t, 2, X; b))21{T =t,7Z= Z}K*(t’ z, X)]
teT\Ts 2€{0,1}

= > > E[(Calt,z,X) = Fult, 2, X;0))’P(T =t,Z = 2| X)x*(t, 2, X)] .
teT\Ts z€{0,1}

Note also that for any ¢t € T; we have that 1{T*(1) = t} = 1{T* € stay(t)Uin(t)} and
{T*(0) =t} = 1{T™ € stay(t)}. Therefore, Assumption 1.1(iii) implies

P(T=tZ=1X)-P(T=tZ=0,X) (95)
= P(T*(1) = t|X) — P(T*(0) = t|X) = P(T* € in(t)|X) > 0 .

Likewise, for any treatment level ¢ € T,
PT=tZ=0,X)-P(T=tZ=1,X)=P(T" € out(t)|X)>0. (96)

The facts that C, (T, Z, X) = C1(T, X)I{T € T; UT,} + Co(T, Z, X)1{T € T;,} by Corollary
2.2(ii) and that F, satisfies (30) imply that, for any t € T3 UT,,

Y El(Calt,z, X) = Fult, 2, X;0))°P(T = t,Z = 2| X)r*(t, 2, X)] (97)
z€{0,1}
= E[(Cl(t7X) - Fl(taX; b))2 Z P(T =t7= Z|X)H*(t,Z,X)]
z€{0,1}
= E[(C1(t, X) — Fi(t, X;b))*wi(X)]

where the final equality follows from (95) and (96), the definition of £*, and direct calculation.
Similarly, since k*(¢,z,X) = 1 when ¢ € T;,, we have that for any ¢t € T,

> El(Ca(t,2,X) = Fult, 2, X;0)*P(T =t,Z = 2| X)] (98)
z€{0,1}

= Y E[(Ca(t,2,X) — Fa(t, 2, X;b))%w (X)) .
2€{0,1}
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Hence, combining (93), (94), (97), and (98), and using T \ Ts = T; UT, U T},, yields

8= argmbin {E[ Z (Cy(t, X) — Fi(t, X; b)) wi(X)] (99)
teT;UT,

+E[Y. Y (cg(t,z,X)—Fg(t,z,x;b)mt,z(xn}.

t€Ti, z€{0,1}

Finally, note that Corollary 2.2, the definition of ¥;, and Theorem 2.7(i) imply that

Ci(t, X) = E[Y*(t)|T* = t*, X] = E[Y;|X] for any t € T3, t* € in(t) (100)
Ci(t, X) = E[Y*(t)|T* = t*, X] = E[Y;|X] for any t € Ty, t* € out(t) .

Similarly, Corollary 2.2, the definition of 17}72, and Theorem 2.7(i) together imply
Ca(t,0,X) = E[Y*(t)|T* =t", X] = E[Y/Z,O\X] for any t € Ti,, t* € out(t) (101)
Ca(t,1,X) = E[Y*(t)|T* =t", X] = E[YQ1|X] for any t € Ti,, t* € in(t).

The corollary then follows from (99), (100), and (101). m

A.1.14 Supporting Results

Lemma A.1. Suppose Assumptions 1.1, 1.2 hold, Py«p-x < {PY‘X}d < Py«|pex, and that
for some € > 0, with probability one, we have P(T* = t*|X) > ¢ for allt* € M and e < P(Z =
11X) < 1—e. Letting Unt be the uniform distribution on M and setting p = {Py|X}dUMPZPX,
it then follows that Py«p+zx < < Py«przx.

Proof. First note that because (Y*,T*) is independent of Z conditinally on X by Assumption
1.1(iii) and T € M with probability one by Assumption 1.2 we obtain that

Py«rezx = Py«p=z2x Prezx Pzx < Py«r-xUmPzx < p, (102)

where the final result follows from the definition of 11, Pzx < PzPx, and Py« 1-x < {Py x ¢
by hypothesis. Next, note that P(Z = z|X) > ¢ for some ¢ > 0 and all z € {0,1} implies that
Py Px < Pzx. Therefore, since {Py|X}d < Py« |p«x by assumption and P(T™ = t*|X) > ¢ for
all t* € M we also obtain that

M= {Py|X}dUMP2PX <K Py*|T*XPT*|XPZX - PY*T*ZX7 (103)

where the final result follows from (Y*,7*) being independent of Z conditionally on X by
Assumption 1.1(iii). The lemma therefore follows from (102) and (103). m

Theorem A.1l. Suppose Assumptions 1.1, 1.2, and 1OS hold, and that, for some e > 0, ¢ <
P(Z =1]X) <1 — e with probability one. For any function g of (Y,T,Z,X) define

g(Y,t,1,X)  foranyte T and z € {0,1}
h’(thaZ7X) = g(YataOaX) fOT’ any t € T, and z € {071} : (104)
g(Y,t,z, X) otherwise
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If h satisfies E[|h(Y, T, Z, X)|] < oo, then it follows that
EIR(Y,T, 2, X)5*(T, Z,X)] = Elg(Y,T, 2, X)1{T" € S} (105)

Proof. First, note the definition of £* in (18) and P(Z = z|X) > ¢ > 0 for z € {0,1}
by hypothesis, imply that x* € L*°(P). Hence, it follows that k*h € L'(P) because h €
L'(P) by hypothesis. Next, observe that Lemma A.2(i), the law of iterated expectations, and
h(Y*(t),t,1,X) = h(Y*(t),t,0,X) when t € T; yield

> EMY,T, 2, X){T =t} ZP(Z = 1|X)] (106)
teT;
=Y E[(Y*(t),t, Z, X){T* € in(t)} P(Z = 1|X)]
teTi
=Y E[L(Y,T, 2, X)I{T* € in(t)}1{T = t}],
teT;

where the second equality follows from Lemma A.2(ii). Moreover, by similar arguments

> EWY,T,Z, X){T = t}(—Z)P(Z = 0|X)] (107)
teT,
= Y E[W(Y*(t),t, Z,X)1{T" € out(t)}P(Z = 0|X)]
t€T,
=Y E[(Y,T, 2, X)I{T* € out(t)}I{T = t}],
t€Ts,
where the first and second equalities again rely on Lemmas A.2(i) and A.2(ii). On the other
hand, by IOS, any t € T;, satisfies stay(t) = ), and hence

T = t}1{Z = 0} = 1{T = t}1{T* € out(t)} (108)
YT = t}1{Z =1} = 1{T = t}1{T* € in(t)}

for any t € Ti,. Therefore, we can conclude from result (108) and Z € {0, 1} that

> EMY,T, 2, X)I{T = t}] (109)
teTio
= Y ERY,T,Z X){T = t}(1{Z = 0} + I{Z = 1})]
teTio
= Y E[h(Y,T,Z X)1{T = t}1{T* € out(t) Uin(t)}].
tETio
Next, note that for any ¢t € T; and t* € S, 1{T™* = t*}1{T =t} = 1 implies that 7™ € in(t)
due to out(t) = () when ¢t € T;. Therefore, using that in(t) C S, we obtain

> EY,T, 2, X)1{T* € in(t)}1{T = t}] (110)
teT;

= > ) ERY,T, 2, X){T* € in(t)}I{T* = t}1{T = t}]

teT; t*eS

= > > EhY, T, 2, X){T* = t"}1{T = t}].

teT; t*eS
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Similarly, since for any ¢ € T, and t* € S it follows that 1{7" = t*}1{T = ¢t} = 1 implies

T* € out(t) , we can conclude from the set inclusion out(t) C S that

> E[L(Y,T,Z,X)1{T* € out(t)}1{T = t}] (111)
teT,
=3 Y EY,T, 2, X){T" = t'}1{T =t}].
tET, t*€S
Furthermore, because 1{T" = t*}1{T = t} = 1 implies T* € in(¢) U out(t) for any ¢ € T;, and
t* € S, it also follows from the set inclusion in(¢) Uout(t) C S that

> E[MY,T, 2, X)I{T = t}1{T" € out(t) U in(t)}] (112)
teTio
=Y Y ERY,T,Z X){T* =t }1{T = t}].
teTio t*ES
To conclude, note 1{T" = ¢}1{T™ = t*} = 0 for any ¢t* € S and ¢t € Ts. Since Ts, T;, T,,
and T;, form a partition of T, we can combine the definition of x* in (18) with results (106),
(107), (109), (111), and (112) together with Lemma A.3 to obtain that

EWY,T,Z,X)s"(T, 2, X)) = > Y EL(Y,T, 2, X){T* = t*}1{T = t}] (113)
teT t*€S
=Y E[g(Y,T, 2, X)I{T* = t*}],
t*eS

which verifies the claim of the theorem. m
Lemma A.2. If Assumptions 1.1(i)-(iii) hold, then: (i) The following equalities hold:

E[{T =t}Z|Y*,T*, X] = 1{T* € in(t)} for allt € T;
—E[{T =t}Z|Y*,T*, X] = 1{T* € out(t)} for all t € Ty;

and (i) For any function h of (Y,T,Z, X) satisfying h(Y,t,0,X) = h(Y,t,1,X) for any t €
T; UT, and E[|W(Y,T,Z,X)|] < oo it follows that
Z E[{T* € in()}({T = t}n(Y,T,Z,X) — P(Z = 1| X)h(Y*(t),t, Z,X)] =0
teT;
Z E[{T* € out(t) (AT =t}n(Y,T,Z,X) — P(Z = 0| X)h(Y™(¢),t,Z, X)] = 0.

teT,

Proof. To establish (i), first note Z e L'(P) by the law of iterated expectations. Letting F 71X
denote expectations with respect to the conditional distribution of Z given X, it then follows
from Corollary A.1 in Navjeevan et al. (2023) that for any ¢t € T

Z — P(Z=1|X)
P(Z=1X)P(Z =0|X)
=U1{T*(1) =t} — {T"(0) =t} = 1{T" € in(t)},

E[{T = t}Z|Y*,T*, X] = Ezx| T*(Z) = t}] (114)

where the first equality holds by definition of Z, and the final equality follows from out(t) = ()
for any t € T;. Moreover, again relying on Corollary A.1 in Navjeevan et al. (2023) and the
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definition of Z yields, for any ¢ € T,, that

PZ=1X)-Z
P(Z=1|X)P(Z =0|X)
=1{T"(0) =t} — 1{T"(1) =t} = 1{T™ € out(t)},

—E[{T = }Z|Y*,T*,X] = Eyx| HT*(Z) = t}] (115)

where in the final equality we used that in(¢) = () for any ¢t € T,. Therefore, part (i) of the
lemma follows from results (114) and (115).
In order to establish part (ii) of the lemma, first note that for any ¢t € T we have

HT =¢}1{T* € in(t)} = 1{Z = 1}1{T* € in(t)} (116)
HT =t}1{T" € out(t)} = 1{Z = 0}1{T™ € out(t)}
by definition of the sets in(t) and out(¢). Hence, by employing (116) we can conclude
> E[W(Y,T,Z, X){T = t}1{T* € in(t)}] (117)

teT;

=" E[h(Y*(t),t,1, X)I{T" € in()}1{Z = 1}]
teT;

= 3 B (6),t, 2, X)1{T* € in(®)}P(Z = 1]X)],
teTy
where the second equality follows from the law of iterated expectations, (Y*,T%) being indepen-
dent of Z conditionally on X by Assumption 1.1(iii), and h(Y™*(¢),t,1, X) = h(Y*(¢),t,0, X)
for any ¢t € T; by hypothesis. Similarly, we also have
> EMY,T, 2, X)I{T = t}1{T" € out(t)}] (118)
teT,

- Z E[R(Y*(t),t,0, X)1{T* € out(t)}1{Z = 0}]
teT,

=Y E[W(Y*(t),t, 2, X)1{T" € out(t)}P(Z = 0|X)]
teT,

and therefore part (ii) of the lemma follows from results (117) and (118). m
Lemma A.3. Let Assumptions 1.1, 1.2 hold. For any function g of (Y,T,Z,X) set

g(Y,t,1,X) foranyte T and z € {0,1}
hY,t,z,X) =1 g(Y,t,0,X) foranyt €T, and z € {0,1}
g(Y,t,z, X) otherwise

Then, it follows that g and h satisfy the following equality with probability one

S WY, Z,X)UT =t} =Y g(V,T, 2, X){T* =t*}.
t*eS t*eS

Proof. First note that Tg, Ti,, Ti, and T, form a partition of the set of possible treatments T.
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Therefore, by definition of h we can conclude that

> 9V, T, 2, X){T € T3, UT,, T = t*}
t*eS
=Y WY,T,Z,X){T € T3, UT,, T* = t*}. (119)
t*eS
Moreover, note that if t € T, then out(t) = @, which implies 1{T" € T;,T* = t*} = I{T €
T, T* =t*,Z = 1} for any t* € S. Hence, we can conclude that

> 9V, T, 2, X){T € T3, T* = t"} (120)
t*eS
=> g\ T, Z,X){{T € Ty, T* =t Z =1}
t*eS
=Y WY, T,Z, X){T € Ty, T* = t*},
t*eS

where the final equality holds by definition of A. By similar arguments we also obtain

> gV T, 2, X)HT € To, T* =t"} = > h(Y,T,Z, X)1{T € To, T* ="}, (121)
t*€S t €S
and therefore the lemma follows form (119), (120), (121), and Tg, Ti,, T, and T, forming a
partition of T. m

A.2 Ordered Choice, ISP, and 10S

This appendix shows that latent-index ordered choice models generalizing (15) necessarily sat-
isfy ISP and that these models satisfy IOS under additional, easily-verified restrictions. The
auxiliary treatment variable V is defined here as in Theorem 2.2, while ¢ denotes an arbitrary
scalar random variable. Although the lemma below holds regardless, when combined with
ISP or IOS in pursuit of causal effects, ¢ is assumed to be independent of Z so that T%(z) is

independent of Z.

Lemma A.4. Assume discrete ordered treatment T € T = {Jj,...,J"} and that treatment

status is determined according to

Ji if zm+e < cpi
Troy =] T Hem ST e st
J4 if cju < zm+¢
with m > 0 and cj41 < cj42 < ... < cju. Also set cj;, = —00 and cjui1 = +00 and define the

set A={J; <t < J":P(ey <e <1 —m) >0}, Given this choice model:

(i) ISP holds with functions vy and vy given by v1(t) = |{s € A: s < t}| and

Vo(t):{ 1—wn(t) ift¢ A

—u(t)  ifte A (122)

(ii) If cov1—cp < forall j+1 <t < J%“—1, then 1IOS holds. If in addition ¢ is continuously
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distributed with support including the interval [(cj,+1 A (Cj42 — 7)) — 6, ¢ju + 0] for some
d > 0, then 10S holds if and only if ciy1 — e < 7 for all J+1 <t < J% — 1, in which
case

V=l{TeT:i}+{T eTi} Z=H{T=J"}+{J, <T < J"}Z

(11i) If Assumption 1.1 holds, m < ¢i41 — ¢ for all Jy+1 <t < J%—1 and the conditional
distribution of € given X is continuous with support including [(cj,+1 —m) — 9, cju + 6] for
some 6 > 0 (with probability one over X ), then

() = BEIYIZ =1,X] - BY|Z =0, X))
7(S) = )
E(E[T|Z =1,X] - E[T|Z = 0, X))

() If € is continuously distributed with support including the interval [(cj,4+1 A (Cj42 —T)) —
J, (cju_1 V (cju —m)) + 0] for some 6 > 0, then

S={({t,t") eTxT:cy —ctp1 <7< cCpy1—Ct}
and P(T* =t*) > 0 for all t* € S.

Proof. First, note that for any J; < ¢t < J" it follows that (77(0),7*(1)) = (¢,t) if and only if
¢t < € and € < ¢i41 — 7. Therefore, the ordered model is such that stay(t) # 0 if and only if
P(e; < e <1 —m) > 0. Hence, by definition of A it follows that

A={teT:stay(t) #0}. (123)

Also observe that any switching type T* € S with T* = (T7%(0),7%(1)), corresponds to an &
satisfying € < ¢« ()41 and € + 7 > cps«(q) implying m > cp«(1) — cp=(g)41- Since ¢j41 < ¢j42 <
. < ¢ju, the definition of A implies that for any switcher T* € S we have

{se A:T*0) < s <T*1)} = 0. (124)

To verify ISP here, consider T* ¢ S. Any such T satisfies (7%(0),7%(1)) = (¢,t) for some
t € A by result (123). Therefore, the definition of vy in (122) implies

vo(T*(0)) + v1(T*(1)) =0 for any T™ ¢ S. (125)

Next, consider any 7% € S, which implies 7%(0) < 7%(1). If 7%(0) ¢ A, then (124) and
the definition of vy imply v1(7%(0)) = v1(T*(1)). Since vo(T*(0)) = 1 — v1(T*(0)) because
T*(0) ¢ A, it follows that vo(7*(0)) + v1(7*(1)) = 1. On the other hand, if 7%(0) € A, then
vi(T*(1)) = vi(T*(0)) + 1 by (124) and the definition of v;. Since vo(T*(0)) = —v1(T%(0))
because T*(0) € A, we have vo(T*(0)) + 11 (T*(1)) = 1 and

vo(T*(0)) + 1 (T*(1)) =1 for any T € S, (126)

Together, results (125) and (126) verify ISP holds and hence part (i) follows.

To establish part (ii), note that 7 > 0 implies in(J;) = 0 and out(J*) = (). Therefore, IOS
holds if and only if for every J; < ¢t < J" at least one of in(t), out(t), or stay(t) is empty.
However, ¢;y1 — ¢ < mforall Jj+1 <t < J%—11implies P(¢; < € < ¢441 — ) = 0 for all
Ji+1 <t < J*—1. Therefore, result (123) implies stay(t) =0 for all J;+1 <t < J*—1, and
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therefore IOS holds.
Now, suppose ¢ is continuously distributed and its support includes [(cj,+1 A (cj42 — 7)) —
J, cyu+ 9] for some 6 > 0. For any J;+1 <t < J"—1, then note that a T € out(t) corresponds

to an € satisfying ¢; < &€ < ¢;41 and € > 41 — m. Hence, since
P(Ct V (Ct+1 — 7T) <e< Ct+1) >0 (127)

for all J;+1 <t < J*—1 due to our assumption on the support of £, we obtain that out(t) # ()
for all J;+1 <t < J*— 1. Similarly, since any T* € in(t) corresponds to an ¢ satisfying

¢t <e+m < cp1 and € < ¢, and our assumptions on € imply
Ple,—m<e<cA(ct41—m) >0 (128)

for any J;+1 <t < J%—1, it follows that in(t) # ) for any J;+1 < ¢ < J*—1. Therefore, IOS
holds if and only if stay(t) = () for all J;+1 < ¢ < J*—1. By result (123) and our assumptions
on ¢, this condition is equivalent to ¢;y1 — ¢ < 7 for all J;+1 <t < J% — 1, and therefore the
lemma follows.

For part (iii), note that the fact that e is continuously distributed with support including
[(cj41 — ™) — d,cyu + 6] for some 6 > 0 implies that A = {J;,...,J"}. By part (i), therefore,
vi(t) =t —J; and vy(t) = —t + J;. Note, however, that o4 (t) = —p(t) = t also satisfy ISP. Part
(iii) then follows from Theorem 2.2.

Finally, to establish part (iv) of the lemma, consider type t* = (¢t,¢') € T x T with ¢ # .
This types has ¢ satisfying ¢; < € < ¢i41 and ¢y < 14+ < ¢py1. Under the support condition in
the statement of part (iv), max{c;, ¢y —7} < min{cy 11—, ci41} if, and only if, P(T* = t*) > 0.
Given c¢j,41 < -+ < ¢ju, max{c, ¢y — 7} < min{cpy1 — 7, 41} if, and only if, ¢ < ey — 7

and ¢y — T < ¢py1. M

A.3 Estimation and Inference

Section 3 discusses estimates of SLATE and the CCEF constructed using the IV estimands in
Theorems 2.2 and 2.7, respectively, as well as the CCEF weighted least squares estimand in
Theorem 2.8. These are two-step estimates in which the first step is to estimate a (possibly
parametric) estimate of the conditional distribution of (7, Z) (or Z alone) given X. Although
the causal estimands of interest here are novel, the properties of the estimators they generate
follow from standard results on the distribution of generalized method of moments (GMM)

estimators. These properties are discussed below.

SLATE Estimators Using Theorem 2.2

Theorem 2.2 identifies SLATE as a marginalized Wald-IV estimand and as an IPW based
estimand. These formulas coincide with those for basic LATE, though modified here by replacing
the usual treatment with V' as defined in Theorem 2.2.

In our empirical applications, we estimate SLATE using the IPW estimand of SLATE:




To construct Z, we assume P(Z = 1|X) is unknown and estimated using a parametric model
like probit or logit. These models are written P,(Z = 1/X) to denote their dependence on
a parameter vector, c. Estimates of this parameter vector, denoted, &, may be obtained by
maximum likelihood, non-linear least squares, or covariate balancing as described in Imai and
Ratkovic (2014).

Defining
o Zi — Pa(Z = 1|1X5)
Ri(a) = Py(Z =1|X;)(1 — Py(Z = 1|1X;))’
7 is estimated by
N
o 1 )
Zi(&) = Ri(&) — N Z R;(&). (129)
j=1

When the sample mean of R;(&) is zero, Z;(&) equals R;(&). This happens if & is estimated by
covariate balancing with a constant included in the covariate vector, but not necessarily when
estimated by maximum likelihood. Forcing Zi(d) to have a sample mean of zero generates
second-step estimators that are invariant to additive shifts in ¥ or V.?*

Setting V; = v1(T;)Z; — vo(T;)(1 — Z;) generates second-step estimators of SLATE and the
probability of switching that can be written:

Y1 Zi(@)Y:
SN Zi(a)V;

The asymptotic properties of these estimators follow from the fact that they have a GMM

N
A e « 1 Z 5

representation. Specifically, 7(S) is the value of b; that solves

1 N Y —by— b1V _
N; ( (Y —bo — b1 Vi) Ri(&) ) =0 (131)

When & has a GMM representation, the asymptotic distribution of 7(S) accounting for propen-
sity score estimation follows from adding the relevant moment conditions to (131). Similarly,

the value of b; that solves

Ri(&) — by -
Z( Vi(Ri(@) - )—m)o’ (132)

is a GMM estimator of P(T* € S). The GMM representation makes inference on P(T* €
S) and 7(S) straightforward (we use Stata’s gmm command). The GMM framework easily

accommodates clustered data, as in our Head Start application.

24Gloczymiski et al. (2025) discusses normalization of weighting estimators in the context of basic LATE.
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CCEF 1V Estimators Using Theorem 2.7(ii)

Under the assumptions of Theorem 2.7(ii), the CCEF depends only on the treatment level and
whether 7™ € in(t) or 7™ € out(t). Denote these values of the CCEF by

= EY* )T =t*] ift € T; UT,
Yo = EY™(t)|T = t*] if t € Tio, t* € out(t)
i = E[Y*(4)|T = t*] if t € Tyo, t* € in(t).

Theorem 2.7(ii) shows that these parameters are identified by the IV estimands:

E[Z x 1{T = t}Y]

= = for any t € T; UT, 133
TR Z < T = 1] Y (133)
ElZ x T =t}(1 - 2)Y
Vo = [ ~X { £ )Y] for any t € T,
E[Z x {T =t}(1 — 2)]
ElZ x {T =t}ZY
Vi = £ x 14 12V for any t € Ti,.

E[Z x {T =t}Z]

As with SLATE, the CCEF is estimated using sample analogs of the corresponding IV
estimands with Z;(&) (as defined in (129)) as instrument. These CCEF estimators are:

N 5oa
Zi(6) 14T, =t}Y;
Y= 2iz1 ~(a2 { ) for any t € T; U'T,
izt Zi(@)UHT; =t}
N 5 a
(T =t 1 - Z,)Y;
Vo = Zl?vl ~(a) { it ) for any t € T;,
>zt Zi(@)H{T; = t}(1 - Z;)
N 5oa
()T =t} 2;Y;
Vi = Lizi ~(a2 { ; for any ¢t € Ts,.
izt Zi(@)UHT; = t}Z;

Similarly, P(T* € in(t)) and P(T* € out(t)) in Lemma 2.2 are consistently estimated by the

corresponding sample analogs of these parameters:

1 N 2N .
. ~ > T =t} Z; fteT;
P(T* €in(t) =4 N 2};—1 {1 =1} 7;(0‘2 ' (134)
~ Zz’:l 1{TZ = t}ZiZi(Oé) if t € Ty,
and N
1 N .
A x> U =t} Z; fteT
P(T* cout(t) =4 %Zl—l {T: =1}2:(a) ! ° (135)
—~ 2wt T = t}(1 — Z;) Zi(&)  if t € Tyo.
Limiting distributions again follow from the GMM representation of IV estimation. This in-
cludes inference for causal effects, since these are linear combinations of CCEF levels.
CCEF and and SLATE are compatible in the sense that SLATE can be obtained as a
weighted average of the elements of the CCEF. The next lemma shows this holds both for

parameters, estimands, and for the IV estimators detailed in this appendix.

Lemma A.5. SLATE and CCEF parameters and estimators are related as follows.
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(i) Suppose Assumptions 1.1 and 1.2 hold. Then SLATE and the CCEF satisfy:

P(T* € in(t))

7(8) = tquu:TmE[Y*(tﬂT* € in(0)] * —prm g
— Y BT € ous(t)] x = (§Z; Z“;()”). (136)

teToUTs,

(ii) Suppose Assumptions 1.1, 1.2 hold, and E[V Z] # 0. Then (136) holds replacing SLATE
by the corresponding estimand in Theorem 2.2, replacing the CCEF by the corresponding
estimand in Theorem 2.7(ii), and replacing switcher probabilities by the corresponding

estimands in Lemma 2.2. In terms of estimands, we have:

ElYZ] _ 3 E[ZU{T =t}Y] s E[Z1{T =t}ZY]

EVZ] & E[VZ] et E[VZ]
E[Z1{T =t}Y] E[ZUT =t}(1 - 2)Y]
2 EVZ 2 E[VZ] B

tGTo tETio

(iii) Suppose Zfil ViZi(&) # 0 and Zf\il Y; Zi(&)1{T; € T} = 0 (for ezample, when Ts =0).
Then (137) holds for estimators in the form of sample analogs:

i, YiZi(a) _ 3 Yl Zi@) T = 1Y | .S >y Zi@)UT, = 1} 2,Y,

Y ViZa) A YLz A& vV i
SN Z@OUL =0~ T 20T =50 - Z)Y,
LT vae >N ViZi(a) - )

Part (i) of this lemma aligns CCEF and SLATE parameters. Part (ii) shows the equality holds
for estimands as well as parameters. This result requires neither ISP or I0S, and thus holds
under weaker conditions than the results that justify the estimands. Part (iii) says that our IV
estimators of SLATE and the CCEF are similarly compatible under minimal assumptions. This
result requires only a non-zero first stage for treatment V and that SN | ¥;Z;(&)1{T; € T} = 0.
The latter condition assuredly holds whenever Ty is empty.

Some specifications of M facilitate identification of the distribution of response types T™.
In this case, Lemma A.5(iii) implies that the SLATE estimator equals a weighted average of
switcher-specific effects. In the Head Start application, for instance, Ty = {h}, T, = {n,c},
and Ti, and Ty are empty. Since out(c) = {(¢, h)} and out(n) = {(n, h)}, we have

P(T* = (¢,h)) = P(T* € out(c)) P(T* = (n,h)) = P(T* € out(n)). (139)

By Lemma 2.2 the probability of each of these switcher type is identified. Using (135), set

Zi(&){T; = n}

||Mz

P(T* = Z AT, =cy  P(T* =
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and note that

P(T" € in(h)) = Zi(6){T; = h}

2=
1=

@
Il
—_

Zi(@)(1 = Ty = ¢} — 1{T; = n})

I
2|~
e

=1
= P(T* = (n,h)) + P(T* = (¢, b)),

because the mean of Z;(&) is zero by construction. Lemma A.5(iii) therefore implies

S YiZi(@) _ 3L Zi(@UT = hYY; s Y, Zi(@) YT, = )Y
YL, ViZi(a) i, ViZi(a) tefon) YL, ViZi(a)
. P(€in(h))  P(T*cout(c) . P(T* € out(n))
U hres) U Bres) " Bres) |
. NPT =) . P(T*=(ch)
- (70 ’Yn) p(T* c S) + (76 ’Yh) P(T* c S) .

This explains why estimated SLATE for Head Start in Section 3.1 equals a weighted average of
the corresponding CCEF estimates.

Proof of Lemma A.5. In order to establish part (i), we first equivalently express SLATE as
(S) = 1 X Z E[(Y*(t*(1)) = Y*(t*(0)))1{T* = t*}] (140)
T - = :
P(T* € 8S) 5=

Since for any response type t* € S we must have t*(1) € T; U T},, it therefore follows that

SCEV )T =t} =) Y EYTHUT =t }{t (1) = t}]

t*eS t*€SteTiUTs,

= Y By O YT =) =t = Y EY'(OUT €in(t)}], (141)

teT:UT}, t*€S teT;UTio
where the final equality follows by definition of in(t). By similar arguments we have that
SCEYHE )T =t} = Y E[Y*(t)1{T* € out(t)}] (142)
t*ES teToUTio

and therefore the second claim of the lemma follows from results (140)-(142).

To establish part (ii) just note that T;, T,, Ti, and Ts being a partition of T imply

> EBZUT =tY]+ Y (E[Z{T =t}ZY] + E[ZHT = t}(1 - Z)Y)) (143)
o _ET;Y > E[ZUT =t}Y]
= E[ZY] - t;:s E[Z1{T* € stay(t)}Y*(t)]
o teTs

where the second equality follows from 1{T" = t} = 1{T™ € stay(t)}, and the third from
E[Z|X] = 0 and Z being independent of (T*,Y*) conditionally on X by Assumption 1.1(iii).
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Part (ii) of the lemma therefore follows from (143) and E[V Z] # 0.

Finally, to establish part (iii) we follow the same manipulations as in (143) to obtain

Z Y Z(&UT =t} + > (Zi(@)HTi = t}Z,Y; + Zi(6) YT, = t}(1 — Z)Y7))

=1 teTiUT, teTio

N
ZZ@ ZZZ VWYil{T; =t} = ZZ (144)
i=1 1=1teTs

where the final equality follows from sz\; 1 Y;-Zi(d)l{Ti € Ts} = 0. The third claim of the
lemma therefore follows form (144) and Zf\i L Zi(&)Vi #0. m

Properties of CCEF Estimates Based on Theorem 2.8

Theorem 2.8 identifies the CCEF as the solution to a population weighted least squares problem.
Distribution theory for estimators based on this result is more involved than for SLATE and
CCEF estimates using IV.

Note first that weights and outcomes in the least squares problem here depend on the joint
conditional probability P(T = t,Z = z|X) rather than the instrument-assignment propensity
score. As with the propensity score, this conditional probability is estimated using a parametric
model P, (T = t,Z = z|X) that depends on parameter vector . As before, let & denote the
corresponding first-step estimator.

First-step estimator & is used to construct plug-in estimators Y;(&) for Y;, wy(X;a) for
wi(X) (for all t € T3 UT,), ﬁ,z(d) for f@z, and wy ,(X; &) for wy ,(X) (for all t € Ty, and
z € {0,1}). Specifically, factoring Ps(T =t,Z = z|X), we set

_ (Z — Po(Z = 11X))1{T = t}Y

Yia) = Pi(Z =1,T =t|X) — Pa(Z = 1|X)P4(T = t|X)
oo UT=t(1-2)Y

tol@) = Pi(T =t,Z =0|X)
%,4(a) YT =t}2Y

' Py(T =t,7=1|X)
and
X;8)=Py(Z=1X)(Pa(T=tZ2=1,X)-Ps(T=tZ=0,X))+ ifteT;
wi(X;8) = Pa(Z =0|X)(Pa(T =t|Z=0,X) - Pa(T=tZ=1,X))+ ifte T,
X;a4)=Py(T=t,7Z=zX) if t € Tio.

In this case, CCEF estimator B minimizes objective function @), over parameter space B,

where

N
%Z< > (Viila) — Filt, Xi;b))’wi(Xi; &)

=1 t€T1 UTo

+ Z (Y;fzz( ) FQ(t z wa)) wt,z(Xi;d)>~
teTi,,2€{0,1}
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Under conditions stated below, B is consistent for the § that minimizes () over B, where

QW) =E| Y. (Tila) - Fi(t, X:b) i (X:0)
teTiUT,

+ 0 (V@) = Ba(t, 2, X30) wra (X a)]
teTi,,2€{0,1}
When the model for the conditional probability P(T = t, Z = z|X) is correctly specified, Y;(a),
ﬁ7z(a), w(X;a), and wy ,(X;a) equal Y, }th,z, wi(X), and wy »(X), respectively. In this case,
minimizer 8 of ) minimizes the objective function given by (36).
The asymptotic properties of first-step estimator & are derived under standard conditions
for GMM estimators. Specifically, let W = (Y, T, Z, X') denote the vector of observed variables,

and suppose the first-step estimator & is chosen to solve

N
1 .
N ZmQ(Wi, &) =0, (145)
i=1
with probability approaching one, where mq,(W, &) is of the same dimension as &. For any
matrix Q, also let |||, denote the square root of the largest eigenvalue of Q'Q (i.e., the largest

singular value of ). Estimator & is then assumed to satisfy:

Assumption A.1. (i) & 5 a; (ii) E[mao(W,a)] = 0 and E[||ma(W, a)||?] < co; (iii) With prob-
ability approaching one (145) holds; (iv) There is a neighborhood N of a such that mq(w,a) is
differentiable in a € No, and E[sup,ep., [|[Vama (W, a)|lo] < co; (v) The matriz E[V amaq(W, a)]

1s tnvertible.

Assumption A.1(i) requires & to be consistent for . Assumptions A.1(ii)-(v) are standard
regularity conditions that guarantee asymptotic normality of &.

Consistency of 3 follows from Assumption A.1(i) and the following two assumptions:

Assumption A.2. (i) 8 is the unique minimizer of Q in B; (ii) B is compact; (iii) Fy(t, X;-)
is continuous and Elsupyeg F2(t, X;b)] < 0o for allt € T;UT,; (i) Fa(t, z, X;-) is continuous
and Elsupyep FE(t, 2, X;b)] < oo for all t € Ty,, 2 € {0,1}.

Assumption A.3. (i) There is a neighborhood Ny, of o and M < 0o with wi(X;a) and Yi(a)
continuous in a € No, E[sup,cn, Y(a)] < oo, P(sup,ep, lwi(Xsa)| < M) =1 for all t €
T3 UTo; (i) wi.(X;a) and Y .(a) are continuous in a € Ny and satisfy E[supgen., fﬁfz(a)] < 0o
and P(sup,ep, |we,-(X;a)| < M) for allt € Tso, z € {0,1}.

Assumption A.3 requires the weights w(X; ) (for t € T3 UT,) and wy ,(X;«) (for t € Ti,)
to be bounded. This condition is sure to be satisfied in first-step specifications for which
P, (T =t,Z = z|X) belongs to [0, 1].

Assumptions yielding asymptotic normality of B use the notation

mg(W,b,a) = Y (Yi(a) = Fi(t, X;b))wi(X;a) V) (t, X;b)
teT;UT,

+ Z (Y/;f,z(a) _FQ(t727X;b))wt,z(X;a)vaQ(taz7X;b)7
teTi0,2€{0,1}
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so that E[mg(W,b, o)] equals the derivative of @ at b. We then require:

Assumption A.4. (i) There is a neighborhood N of B with Ng C B; (ii) Fi(t,X;b) is
differentiable in b € Ng, E[|VyFi(t,X;8)|?] < oo for all t € T; U To; (iii) Fa(t, 2, X;b)
is differentiable in b € Ng, E[|VyFa(t,z,X;B)|?] < oo for all t € Tio, z € {0,1}; (iv)
mg(W,b,a) is differentiable in b € N for all a € Na, E[supyen, aen;, [Verng(W, b, a)llo] < oo;
(v) E[|lmsg(W, B,a)||?] < oo and E[Vymg(W, 8, )] are invertible.

Assumption A.5. (i) supycpy, [|ms(W,b,a1) —mg(W,b,az)|| < D(W)|[ar —azl| for all a1, a2 €
No and D with E[D*(W)] < oo; (ii) Yi(a) is differentiable in a € N, for all t € T3y U'T,
and E[sup,ep, || VoF1 (t, X; 8)(VaYi(a))|lo] < o0; (idi) Y .(a) is differentiable in a € Ny, for all
t € Tio, 2 € {0,1}, and E[sup,en;, || VoFa(t, 2, X; 8)(VaYi2 (@) o] < oo.

Assumption A.4 imposes standard conditions under which [3’ is asymptotically normal when « is
known. Assumption A.5 allows us to account for the impact of estimated & on the asymptotic
distribution of 3. Assumption A.5 requires Y;(a) and Y;.(a) to be differentiable, but does not
impose differentiability on weights wi(X;a) and w; ,(X; o).

The contribution of & to the influence function of 3 depends on

Gy = Z wi (X O‘)valu’X;/B)(v“Yt(a))/
teT:UT,

+ D wi(X;0)VeFa(t 2, X B)(VaYi(a))
tETio,ZE{O,l}

and

G, = E[teTZUT (Vi(@) — Fi(t, X: B))VoFi(t, X; B)(Vawe(X; )

Y (@) = Balt 2 X3 B)ViBa(t 2, X3 B)(Vawnz (X5 )|
t€Ti,,2€{0,1}

Define matrices My = E[Voma(W, «)] and Mg = E[Vymg(W, B, a)]. The next result uses

this notation to establish the asymptotic normality of B

Theorem A.2. Assume A.1, A.2, A.5, A.J, A.5 hold and let {W;}¥ be an i.i.d. sequence of

random variables.

(i) Suppose that E[Y;(a)|X] = Fi(t, X; B) for allt € T;UT, and E[Y; .(a)|X] = Fy(t,z, X; B)
for allt € T, and z € {0,1}. Then,

VN{B = B} % N(0, Var{M5" (mp(W, B, ) + Gy My "ma(W, a))}).
(ii) Suppose that E[mg(W, 3,a)] is continuously differentiable in a € N. Then,
VN{B — B} 5 N(0, Var{ M5 (ms(W, 8, 0) + (Gy + Gu) My 'ma(W, ))}).

Part (i) of Theorem A.2 derives the asymptotic distribution of B assuming F matches the
conditional mean of 17}(04) (for t € Ty UT,) and of fft,z(a) (for t € Ti,). When the first step
is correctly specified, these implies F' matches the CCEF. In this case, the fact that weights
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are estimated does not change the asymptotic variance of B — i.e.,weighting by wi(X;a&) is
asymptotically equivalent to weighting by w;(X; a).

Part (ii) of Theorem A.2 derives the asymptotic distribution of /3’ assuming without requiring
the CCEF model be correctly specified. In this case, estimation error in the weights can affect the
asymptotic variance of . To characterize this impact, Theorem A.2(ii) assumes E[mg(W, 5, a)]
is differentiable in a, which requires the weights themselves to be differentiable. The latter

condition requires that, for some ¢ > 0,

PoT=1Z=1,X)-Po(T=11Z=0,X)>c ifteT; (146)
Po(T=tZ=0,X)—Py(T=tZ=1,X)>c  ifteT,.

If this condition fails, B remains \/N-consistent but its asymptotic distribution may not be
Gaussian (Fang and Santos, 2019).

Standard errors and confidence intervals for the estimates based on Theorem 2.8 in Table 1
use a bootstrap. We assume the CCEF model is correctly specified, so the asymptotic distribu-
tion of /3 is the same using either estimated or population weights. We therefore fix weights at
the value estimated in the full sample across bootstrap replications. The quantities Y;, f/},Z, and
parameter estimates &, B are recomputed in each bootstrap sample. When the CCEF model is
potentially misspecified, weights should also be re-estimated in each draw. In this case, con-
dition (146) must be imposed. The consistency of both bootstrap procedures follows from the
asymptotic equivalence of our estimator and GMM estimators and the consistency of the boot-
strap for the latter (Hall and Horowitz, 1996; Hahn, 1996; Andrews, 2002); see also Gongalves
et al. (2023) for recent results on bootstrap consistency for two-step extremum estimators.

Given estimates B ®) for bootstrap replications b = 1,..., B, standard errors are computed
as the square-root of B~! Zle(ﬁj(.b) — Bj)Q. Confidence intervals at a 1 — « level are computed
as [BJ — Q(1-a)/2> Bj — Qa/2); where g, is the 7-th quantile of the distribution of (BJ(.b) - Bj)bB:I'
Finally, p-values are computed using the bootstrap distribution of the t-statistic centered at 3;.
Proof of Theorem A.2. Lemmas A.6 and A.7 used here are proved at the end of this section.
By Lemma A.G, B 2, B. Moreover, Assumption A.1 and standard arguments (e.g., Theorem
3.4 in Newey and McFadden (1994)) imply

\F{a—a}_—fZM "ma(Ws, @) + op(1), (147)
=1

where recall that M, = E[V,mq(W,a)]. Next, note that the consistency of B, Assumption
AA(i), and Q, being differentiable by Assumptions A .4(ii)(iii) imply 3 satisfies

— Z mp(Wi, B, & (148)
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Consistency of & (by Assumption A.1(i)) and 3, and Lemma A.7 then imply that
1 & .
N " mp(Wi, B, G 149
/& 2 (Wi 5.4) (149)

N
== > ma (Wi ) + VN Elms(W. . ) = ms(W. . )] + o (1),
=1

In particular, combining results (148) and (149) and rearranging terms yields that

VNE[(ms(W, 8,a) — mg(W, B,&))] (150)
N
= = > ma(Wi B.0) + V(W 5.6) = ms(IV. B.0)] + op(1).
=1

Next, note that E[|[mg(W,8,a)|*] < oo by Assumption A.4(v) and hence result (147) and
Assumption A.1(ii) and Assumption A.5(i) together imply that the right hand side of (150)
is Op(N~1/2). Therefore, the consistency of (B,ol), the mean value theorem, Assumptions
AA(iv)(v), and result (150) allow us to conclude that

N
VN{B-p} = —jNZMﬁ—%mﬁ(Wi,ﬁ,a) + E[(mg(W, 8, &) —mg(W, 8,a))]) +op(1) (151)
=1

where recall that Mg = E[Vymg(W, 3, a)].
To establish the first part of the theorem, note that E[Y;(a)|X] = Fi(t, X; 8), B[Y;..(a)|X] =
Fy(t,z, X; B), Assumptions A.3 and A.5(ii)(iii), and result (147) imply

N
Y% A = _1—1 m, e o)
NE[(mﬁ(I/Va ﬁ, Oé) - mB(VVa B,O&))] - GyMa \/N Zzl Oé(Wl’ ) + P(l) (152)

Hence, part (i) of the theorem follows from (151), (152), E[mg(W, 8, «)] = 0 by  minimizing Q
and Assumption A.4(ii), E[mq (W, «)] = 0 by Assumption A.1(i), and the central limit theorem.
If instead the conditions of part (ii) of the theorem hold, then

N
N 11
VNE[(mg(W, B,&) —mg(W, 8,))] = (Gy + Gu) M, 1\/7]V ZmQ(Wi, a)+op(l)  (153)
i=1
by result (147) and the delta method (see, e.g., Theorem 3.9.4 in van der Vaart and Wellner
(1996)). Part (ii) of the theorem follows from (151), (153), and the central limit theorem. m
Lemma A.6. If Assumptions A.1(i), A.2, A.3 hold, and {W;}}\, is i.i.d., then B35 B
Proof. We first define a finite sample criterion function Q,, (b,a) to be given by

On(b,a) = % > (tETZUT (Via(a) = Fi(t, X3 b)) %we(Xi; a)

Y (Fila) - Balt 2 Xisb)2wn(Xisa)), (154)
t€Ti,,2€{0,1}
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and note that Qx(b) = Qn (b, &). Similarly, we define the population analog to be

Q) =E| Y (Yila) = Fi(t, X3b)%wi(X;a)
teT;UT,

+ Y (z,z(a)—Fg(t,z,x;b))%t,z(x;a)), (155)
tETio,ZE{O,l}

noting that Q(b) = Q(b, ). Assumptions A.2(ii)-(iv) and A.3(i)(ii) together with Lemma 2.4
in Newey and McFadden (1994) then allow us to conclude

sup  [Qn(b,a) — Qb a)| = op(1) (156)
(b,a)EBX N,

and that Q(b, a) is continuous on B x N, for some neighborhood N, of a. Moreover, by
Assumption A.1(i), & € N, with probability approaching one, and therefore

sup [Qn (0) — Q)| < sup|Q (b, &) — Q(b,&)| +sup|Q(b, &) — Q(b, )| = op(1),  (157)
beB beB beB

where the final result follows from (156), Q being continuous on Bx N, and continuous functions
being uniformly continuous on compact sets. The consistency of 3 then follows from result
(157), Q being continuous on B x N, implying Q is continuous on B, Assumptions A.2(i)(ii),
and Theorem 2.1 in Newey and McFadden (1994). m

Lemma A.7. If Assumption A.J(ii)-(iv) and A.5(i) are satisfied, then it follows that the class
of functions F = {mg(W, a,b) : (a,b) € No x N3} is Donsker.

Proof. By the mean value theorem (see, e.g., Proposition 7.3.2 in Luenberger (1969)), it follows
that for any a € N, and b1, by € Ng we have the bound

[mp(W, b1, a) =mg(W,bz,a)|| < sup [[Vympg(W, b, a)lo X [|b1 — bal| (158)
(b,a)ENBXNa

Since E[sup(, q)enyxn;, [Vorms(W,b,a)llo] < oo by Assumption A.4(iv), result (158) together
with Assumption A.5(i) imply there is a B(W) satisfying E[B?(W)] < oo and
[lmp(W, b1, a1) — mg(W, bz, az)|| < BIW){[la1 — az|| + [[br — bal|}

for all by,by € /\/'g and a1, a2 € N,. The lemma then follows from Theorems 2.5.6 and 2.7.11 in
van der Vaart and Wellner (1996). m
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