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for each element in a set of response types. Three empirical applications demonstrate the utility of 
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multiple fallbacks. The second examines two causal channels for the impact of post-secondary 
financial aid on degree completion. The third estimates effects of additional births (an ordered 
treatment) on mothers’ earnings.
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Instrumental variables (IV) research designs exploit natural experiments or intentional ran-

dom assignment as a source of variation in treatment variables of all kinds. Many of the most

compelling instruments leverage random assignment. For instance, many IV studies of charter

schools (surveyed in Chabrier et al. (2016)) use conditionally-random admissions lotteries as

instruments for charter-school enrollment. Under plausible assumptions, IV estimates using

randomized charter offers to instrument a charter enrollment dummy identify causal effects of

charter attendance in the population induced to enroll by random assignment. Other lottery

designs derive instruments for Medicaid (analyzed in Finkelstein et al. (2012)) and the draft

lottery that determined eligibility for Vietnam-Era conscription (analyzed in Angrist (1990)).

In clinical trials with partial compliance, random assignment to treatment, also called intention-

to-treat, can be used to instrument treatment received, identifying effects on trial participants

who comply with the trial protocol (Angrist and Hull, 2023).

Random assignment alone does not guarantee instrument validity. Angrist and Imbens

(1995) and Andresen and Huber (2021) note that quotidian implementation details such as

recoding an ordered treatment as Bernoulli may cause an exclusion restriction failure, thereby

muddling IV estimates. Rose and Shem-Tov (2024) likewise highlight this point, arguing that

the Medicaid treatment in Finkelstein et al. (2012) can be seen as years of exposure rather

than as a dummy treatment indicating any Medicaid enrollment. Relying on an additive linear

model for identification, Abdulkadiroglu et al. (2017) and other charter lottery studies similarly

code charter treatment exposure as years enrolled. Angrist and Evans (1998), by contrast, uses

dummies indicating multiple second births and samesex sibships to instrument a dummy indi-

cating the presence of a third child. Exclusion fails here if these instruments shift childbearing

at parities higher than three.

Exclusion failures can arise when a single instrument affects outcomes through multiple

channels. For example, Angrist and Chen (2011) uses randomly assigned Vietnam-Era draft

eligibility as an instrument for schooling. This identification strategy is motivated by the GI

Bill, a major source of post-secondary aid for Vietnam veterans and a possible explanation of

earnings gaps by veteran status. But draft-eligibility also increases the likelihood of military

service, arguably the dominant channel through which draft eligibility affects earnings and other

long-run outcomes. Angrist and Chen (2011) allows for this using additive constant-effects

models with two treatments, identified by multiple instruments. In the charter school research

domain, Abdulkadiroglu et al. (2017) uses parametric models to distinguish causal effects of

different sorts of charter schools. However, two-stage least squares (2SLS) estimators with

two additive treatments may fail to identify average causal effects in a world of heterogeneous

potential outcomes (a point made in Behagel et al. (2013) and Kirkeboen et al. (2016)).

The interpretation of IV estimates is also complicated by heterogeneous counterfactuals.

Abdulkadiroglu et al. (2017) notes, for instance, that a given charter school offer may pull

applicants from other charters, possibly differing in type or quality, as well as increasing the

odds of any-charter enrollment. Similarly, in a re-analysis of data from a randomized evaluation

of the Head Start preschool program, Kline and Walters (2016) uses the random assignment of

Head Start seats and a structural model to distinguish causal effects of Head Start for children

drawn into the program from home care and from competing preschools. Potential outcomes
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in these scenarios are determined by multinomial treatments any one of which may be changed

by the instrument at hand.

Some multinomial treatment variables are meant to explain causal effects. For example,

Angrist et al. (2022) analyzes data from a randomized trial that offered generous financial

aid to college-bound high school seniors in the treatment group. This intervention boosted

BA completion rates sharply. Angrist et al. (2022) argues that the resulting degree gains

are caused exclusively by early four-year engagement as measured by college credits earned in

freshman year. But other channels such as a reduction in the burden of growing college debt

may matter as much or more than early engagement. Revisiting this application, we show how a

single experiment can be used to distinguish the early engagement and loan reduction channels

generating causal effects.

This paper develops identification and estimation strategies for a broad class of such prob-

lems. Specifically, we state assumptions and establish identification results for potential out-

comes models that use a single instrument to identify a class of average causal effects in settings

with ordered and multinomial treatments. We also extend the weighting strategy introduced

in Abadie (2003) to identify a causal conditional expectation function that characterizes mean

potential outcomes conditional on potential Bernoulli treatments. Our extensions identify av-

erage causal effects in settings beyond those with Bernoulli treatments, while delineating the

assumptions needed to deliver identification in these contexts.

Our analysis contributes to a large literature on IV identification focused on beyond-Bernoulli

treatments. We share with Heckman et al. (2006), Lee and Salanié (2018), Pinto (2021), Dutz

et al. (2021), Goff (2024), and Nibbering and Oosterveen (Forthcoming) (among others) use

of restrictions on choice behavior to identify causal parameters. Mogstad and Torgovitsky

(2024) surveys alternative IV paradigms for analysis of models with heterogeneous potential out-

comes. Our analysis also complements Torgovitsky (2015), D’Haultfœuille and Février (2015),

and Chernozhukov et al. (2024) which likewise study identification using discrete instruments,

though using assumptions unrelated to ours. In extensions of Imai et al. (2010), Frölich and

Huber (2017), Kwon and Roth (2025), and Athey et al. (2025) explore the identifying power of

IV-inspired restrictions on potential treatments like monotonicity in causal mediation analysis.

The identification strategies developed here are closely related to the principal stratifica-

tion approach to causal inference pioneered in Frangakis and Rubin (2002). Principal strata

are conditioning sets defined by latent response types; conditional on these (and possisbly on

covariates), treatment is independent of potential outcomes. The next section starts with a

restatement of this foundational result. Heckman and Pinto (2018) extends the principal strata

idea to IV models with unordered treatments and discusses identification under various restric-

tions on latent response types. Unlike Heckman and Pinto (2018), we introduce limited homo-

geneity restrictions on potential outcomes to facilitate identification of average causal effects for

individual response types. This leads to looser, easily-verified alternatives to the restrictions on

response types considered in earlier work.

We also build on Navjeevan et al. (2023), which gives high-level necessary and sufficient con-

ditions for identification of causal parameters in a general class of potential outcomes models.

We apply and extend lessons from Navjeevan et al. (2023) by introducing new causal parame-
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ters and novel, widely-applicable identifying restrictions. Our results leverage unique features

of models powered by a single Bernoulli instrument to obtain transparent, verifiable (in the

context of a particular model) necessary and sufficient conditions for identification. Finally,

we derive simple weighted least squares estimands for parameters identified by our extensions

of Abadie (2003), as well as straightforward IV estimands. Our results are unique in their

derivation of a minimum mean-squared error approximation to underlying, possibly nonlinear,

causal models for beyond-Bernoulli treatments. An appendix collects asymptotic results for

estimators constructed as the sample analog of the estimands developed here. The utility of

our theoretical results is demonstrated in empirical applications revisiting questions addressed

in Kline and Walters (2016), Angrist et al. (2022), and Angrist and Evans (1998).

1 Econometric Framework

We begin by describing the causal models of interest. The data consist of an outcome Y ∈ R, a

discrete treatment T ∈ T ≡ {t1, . . . , td}, a Bernoulli instrument Z ∈ Z ≡ {0, 1}, and covariates

X ∈ X. Since d may exceed two, treatments can be ordered or multinomial. Observed outcomes

Y =
∑
t∈T

Y ∗(t)1{T = t}

are determined by a vector of potential outcomes Y ∗ ≡ (Y ∗(t1), . . . , Y
∗(td)) ∈ Rd. The realized

treatment determines which potential outcome we see. Observed treatments T = T ∗(0)(1 −
Z) + T ∗(1)Z are determined by a pair of potential treatments, T ∗ ≡ (T ∗(0), T ∗(1)) ∈ T × T.

Response type for each individual is defined by the pair of potential treatments.

The following assumption encapsulates this setup.

Assumption 1.1. (i) Y ∗ ≡ (Y ∗(t1), . . . , Y
∗(td)) ∈ Rd, Z ∈ Z ≡ {0, 1}, X ∈ X, and T ∗ =

(T ∗(0), T ∗(1)) with T ∗(z) ∈ T ≡ {t1, . . . , td} for z ∈ {0, 1}; (ii) T = T ∗(0)(1 − Z) + T ∗(1)Z

and Y =
∑

t∈T Y ∗(t)1{T = t}; (iii) (Y ∗, T ∗) is independent of Z conditional on X; (iv)

E[|Y ∗(t)|] < ∞ for all t ∈ T and P (Z = 1|X) ∈ (0, 1) with probability one.

Assumption 1.1(iii) says that instrumental variable Z is as good as randomly assigned in the

sense of being independent of response types and potential outcomes (conditional on covariates).

This assumption implies an exclusion restriction since, for a given treatment value, potential

outcomes are presumed to be unrelated to the value of Z. Assumption 1.1(iv) also ensures that

Z varies conditional on covariates and that average potential outcomes are well-defined.

Given Assumption 1.1, average causal effects are identified by restrictions on the manner in

which an instrument affects treatment. Imbens and Angrist (1994) monotonicity, for example,

says that Z can move a Bernoulli treatment in one direction only. Monotonicity is extended

here to a wide class of restrictions suitable for ordered and multinomial treatments. These

restrictions limit the set of possible response types. Specifically, T ∗ is presumed to belong to a

known set M, of which a subset are induced by an instrument to change treatment status. In

formalizing this, we use the notation t∗ = (t∗(0), t∗(1)) to denote possible values of T ∗ ∈ M.

Assumption 1.2. (i) P (T ∗ ∈ M) = 1 for a set of response types, M ⊆ T × T; (ii) Subset

S ≡ {t∗ ∈ M : t∗(1) ̸= t∗(0)} of M, is non-empty and P (T ∗ ∈ S) > 0.
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Assumption 1.2(ii) says that an assignment model characterized by M includes a non-empty

subset of potential response types, denoted S, induced by the instrument to switch from one

treatment to another. Our results identify average causal effects for switchers, that is, for

response types in S.

The Imbens and Angrist (1994) setup without covariates illustrates this framework. In this

case, T ∈ {0, 1} and monotonicity restricts T ∗ to satisfy T ∗(1) ≥ T ∗(0) with probability one.

In our notation, monotonicity is equivalent to setting M = {t∗ : t∗(1) ≥ t∗(0)}. The subset

of switchers, S, contains a single type (compliers), so S = {(0, 1)}. Under monotonicity and

Assumptions 1.1 and 1.2, a Wald-IV estimand identifies a local average treatment effect (LATE):

E[Y |Z = 1]− E[Y |Z = 0]

E[T |Z = 1]− E[T |Z = 0]
= E[Y ∗(1)− Y ∗(0)|T ∗(1) > T ∗(0)] ≡ τw.

The causal effect here is for a single switcher type, the set of compliers, while the set of allowable

response types includes compliers plus always-takers (with T ∗(1) = T ∗(0) = 1) and never-takers

(with T ∗(1) = T ∗(0) = 0). The fact that causal effects are identified only for a subset of

potential response types, those induced to change treatment status by changing Z, is key to the

development that follows.

As a stepping stone to more general results, note that τw is the slope in a causal conditional

expectation function (CCEF) that describes the expectation of potential outcomes conditional

on potential assignments. This is a consequence of Assumption 1.1(iii) (independence of Z and

(Y ∗, T ∗) conditional on X), Assumption 1.1(iv) (P (Z = 1|X) ∈ (0, 1)) implying compliers are

treated with probability strictly between zero and one, and Assumption 1.2(ii) (P (T ∗ ∈ S) > 0)

requiring that the probability of compliance be positive. The CCEF for basic LATE is:

E[Y |T, T ∗(1) > T ∗(0)] = E[Y ∗(T )|T, T ∗(1) > T ∗(0)]

= E[Y ∗(0)|T ∗(1) > T ∗(0)] + τw × T.

Because T disappears from the conditional expectation function for potential outcomes, the

CCEF is generated by a notional randomized trial in which T is randomly assigned in the

population of compliers. The CCEF is causal since it generates comparisons of mean potential

outcomes for a fixed reference population, in this case, the population of compliers.

Heckman and Pinto (2018) note that this insight extends to a general potential-outcomes

model with more elaborate treatment variables. Specifically, for an ordered or multinomial

treatment, the conditional expectation of outcomes given treatment, response types, and co-

variates identifies average causal effects of treatment on outcome Y for treatment values and

response types compatible with Assumption 1.2. In the terminology introduced in Frangakis

and Rubin (2002), response types define principal strata. The following proposition expresses

this result in our notation.1

Proposition 1.1 (CCEF Properties). If Assumptions 1.1, 1.2 hold, then for any t∗ ∈ M with

P (T ∗ = t∗|X) > 0 and t ∈ {T ∗(0), T ∗(1)} the CCEF, E[Y |T, T ∗ = t∗, X], satisfies:

E[Y |T = t, T ∗ = t∗, X] = E[Y ∗(t)|T ∗ = t∗, X].

1Appendix A.1 proves the theoretical results stated in Sections 1 and 2.
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Therefore, for any t∗ ∈ M such that P (T ∗ = t∗|X) > 0, the CCEF generates response-type-

specific average treatment effects as follows:

E[Y ∗(T ∗(1))− Y ∗(T ∗(0))|T ∗ = t∗, X] (1)

= E[Y |T = T ∗(1), T ∗ = t∗, X]− E[Y |T = T ∗(0), T ∗ = t∗, X].

The causal contrasts in (1) are useful only for response types that switch from one treatment

to another in response to the instrument—otherwise T ∗(0) equals T ∗(1) and (1) is zero. Propo-

sition 1.1 implies that, for switchers, conditional-on-T ∗ comparisons of mean outcomes between

groups with T ∗(1) = t and T ∗(0) = t′ equal average causal effects of changing treatment from

t′ to t. We therefore seek to identify the CCEF and type-specific average causal effects:

τ(T ∗) ≡ E(E[Y ∗(T ∗(1))− Y ∗(T ∗(0))|T ∗, X]|T ∗), (2)

for T ∗ ∈ S. For instance, with an ordered treatment in {0, 1, 2} that satisfies monotonicity (a

scenario considered in Angrist and Imbens (1995)), τ(T ∗) takes up to three values according to

whether T ∗ equals (0, 1), (0, 2), or (1, 2).

The basic LATE scenario illustrates a key feature of the CCEF that we aim to exploit.

Suppose again that T ∈ {0, 1}, we can ignore covariates, and potential response types satisfy

monotonicity. In this case, τ(T ∗) equals τw, an average causal effect for the single response

type (compliers). At the same time, τw is also the slope coefficient in a regression of Y on T

for compliers. That is, τw equals β1 in the regression

(β0, β1) ≡ argmin
b0,b1

E[(E[Y |T, T ∗(1) > T ∗(0)]− b0 − b1T )
2|T ∗(1) > T ∗(0)] (3)

= argmin
b0,b1

E[(Y − b0 − b1T )
21{T ∗(1) > T ∗(0)}].

Moreover, while individual compliers are not identified (because one of T ∗(1), T ∗(0) is coun-

terfactual), Abadie (2003) shows that (3) is equivalent to a feasible weighted-least squares

minimand. Specifically, the objective in (3) satisfies

E[(Y − b0 − b1T )
21{T ∗(1) > T ∗(0)}] = E[(Y − b0 − b1T )

2κ(T,Z)],

where

κ(T,Z) = 1− T (1− Z)

P (Z = 0)
− (1− T )Z

P (Z = 1)
. (4)

Without covariates, the regression function obtained by κ-weighting is the basic LATE CCEF.

With covariates, the Abadie (2003) κ-weighted minimand generates a best linear approximation

to the CCEF.

The next section extends IV and κ-weighting identification strategies to accommodate or-

dered and multinomial treatments of the sort allowed by Assumption 1.1. Importantly, in this

more general setting, the set of switchers may contain more than one type. The generalization

of the LATE Theorem established here therefore identifies causal contrasts τ(T ∗) averaged over

possible types T ∗ in S. This parameter, which we call switcher LATE (SLATE), is defined by:

τ(S) ≡ E[τ(T ∗)|T ∗ ∈ S].
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SLATE generalizes an estimand defined in Kline and Walters (2016) for a trinomial treatment

variable. We revisit this connection in Sections 2.2 and 3.

For basic (Bernoulli treatment) LATE with no covariates, τ(S) coincides with the effect on

compliers obtained using (3). Beyond this scenario, however, κ-weighted construction of the

CCEF potentially delivers more than SLATE, distinguishing average causal effects for distinct

switcher types. This leads us to derive conditions under which the CCEF is identified. The

solution here is characterized by a model, denoted F (T,X;β), that depends on parameter

vector, β. These parameters are defined by:

β ≡ argmin
b

E[(E[Y |T, T ∗, X]− F (T,X; b))2|T ∗ ∈ S]

= argmin
b

E[(Y − F (T,X; b))21{T ∗ ∈ S}],

which we show are identified by a feasible weighted least squares problem. This minimization

problem is shown to provide a foundation for identification of the response-type-specific average

causal effects defined in (2).

2 Identification of Causal Parameters

This section begins by establishing necessary and sufficient conditions for identification of

SLATE. These conditions are then extended to derive a weighted least squares minimand that

identifies the CCEF. The latter identification problem is more demanding and therefore requires

stronger assumptions than the former.

2.1 SLATE

SLATE averages type-specific causal contrasts, τ(T ∗), over the subset of switchers S ⊆ M

defined in Assumption 1.2. The following lemma shows that identification of the probability of

being a switcher is key to identification of SLATE.

Lemma 2.1. Suppose Assumptions 1.1 and 1.2 are satisfied. Then,

E[τ(T ∗)1{T ∗ ∈ S}] = E(E[Y |Z = 1, X]− E[Y |Z = 0, X])

and therefore

τ(S) =
E(E[Y |Z = 1, X]− E[Y |Z = 0, X])

P (T ∗ ∈ S)
.

This result raises the question of when P (T ∗ ∈ S) is identified so that the lemma can

be used to construct τ(S). The answer is surprisingly simple and determined by whether a

particular set of linear equations is consistent, that is, has a solution, or inconsistent, meaning

no solution exists. This can be shown by supplementing Corollary 4.3 in Navjeevan et al. (2023)

and Assumptions 1.1 and 1.2 with two regularity conditions.2 In stating these conditions, PAB

and PA|B denote the joint and conditional distributions of any two random variables (A,B),

while PA ≪ PB means that PA is absolutely continuous with respect to PB.
3

2Heckman and Pinto (2018) gives sufficient conditions for identification of P (T ∗ ∈ S).
3A distribution PA is absolutely continuous with respect to a distribution PB if any set C that has zero

probability under PB also has zero probability under PA – i.e. PB(C) = 0 implies PA(C) = 0.
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Theorem 2.1 (Identification of P (T ∗ ∈ S)). Suppose Assumptions 1.1, 1.2 hold. Assume also

that: (i) For some ε > 0, with probability one, ε ≤ P (Z = 1|X) ≤ 1− ε and P (T ∗ = t∗|X) ≥ ε

for all t∗ ∈ M; (ii) PY ∗|T ∗X ≪ {PY |X}d ≪ PY ∗|T ∗X and P̃ ≡ PY ∗|XPT ∗ZX satisfies P̃ ≪
PY ∗T ∗ZX with dP̃ /dPY ∗T ∗ZX bounded. Then P (T ∗ ∈ S) is identified if and only if there are

functions ν0 and ν1 of T that satisfy:

ν0(T
∗(0)) + ν1(T

∗(1)) = 1{T ∗ ∈ S}, (5)

with probability one.

The regularity conditions imposed by Theorem 2.1 require the instrument-assignment propensity

score, P (Z = 1|X), to be bounded away from zero and one, and the probability of response

types allowed for by M to be bounded away from zero. The theorem also imposes absolute

continuity requirements that restrict the joint support of the vector of potential outcomes in a

manner that seems uncontroversial.4

Theorem 2.1 gives conditions under which restrictions on M are necessary and sufficient to

identify P (T ∗ ∈ S). The most important of these is equation (5). Importantly, because T ∗ ∈ M

under Assumption 1.2, solutions to (5) depend on the restrictions embodied in M but not on

the distribution of the data. We call (5) ISP as a reminder that this is equivalent to an identified

switcher probability. ISP is formalized as:

Assumption ISP There are functions ν0 and ν1 of T satisfying

ν0(T
∗(0)) + ν1(T

∗(1)) = 1{T ∗ ∈ S}, (6)

with probability one over T ∗ ∈ M.

Unsurprisingly, ISP is satisfied in the basic LATE scenario featured in Imbens and Angrist

(1994). Recall that M in this case allows for three response types, T ∗ = (T ∗(0), T ∗(1)) equal

to (0, 0), (1, 1), or (0, 1). Setting ν0(t) = −t and ν1(t) = t for t ∈ {0, 1}, we have:

ν0(T
∗(0)) + ν1(T

∗(1)) = T ∗(1)− T ∗(0),

which equals 1{T ∗(1) > T ∗(0)} = 1{T ∗ ∈ S}, as required by ISP. More generally, ISP generates

a system of |M| linear equations that may or may not have a solution.

Given Assumptions 1.1 and 1.2, ISP is sufficient for a Wald-type estimand to identify τ(S),

as shown in the following result.

Theorem 2.2 (ISP Identifies SLATE). Suppose Assumptions 1.1, 1.2, and ISP hold, and, for

some ε > 0, ε ≤ P (Z = 1|X) ≤ 1− ε with probability one. Let

Z̃ ≡ Z − P (Z = 1|X)

P (Z = 0|X)P (Z = 1|X)
(7)

4These require, for instance, the support of Y ∗ conditional on T ∗ to be unrelated to T ∗ and are used to show
the necessity part of the statement (i.e., that identification of P (T ∗ ∈ S) implies that a solution to (5) exists).
Theorem 2.2 below shows that the existence of a solution to (5) is sufficient for identification of P (T ∗ ∈ S)
without absolute continuity conditions.
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and, for functions ν0 and ν1 satisfying ISP, let V ≡ ν1(T )Z − ν0(T )(1− Z). Then:

P (T ∗ ∈ S) = E(E[V |Z = 1, X]− E[V |Z = 0, X]) = E[Z̃V ]

τ(S) =
E(E[Y |Z = 1, X]− E[Y |Z = 0, X])

E(E[V |Z = 1, X]− E[V |Z = 0, X])
=

E[Z̃Y ]

E[Z̃V ]
. (8)

This theorem identifies SLATE as an IV estimand in which treatment variable V is determined

by functions ν0 and ν1 satisfying ISP. The first representation in (8) marginalizes over covariates

in the manner discussed by Frölich (2007) for basic LATE. The second is derived using inverse

propensity-score weighting (IPW), as suggested by Tan (2006).5

When does ISP fail? Consider a simplified ordered treatment model with T ∈ {0, 1, 2},
no covariates, and monotonicity. The set of response types T ∗ = (T ∗(0), T ∗(1)) allowed by

M then consists of three types of stayers, {(0, 0), (1, 1), (2, 2)}, and three types of switchers,

{(0, 1), (0, 2), (1, 2)} = S. In this case, ISP does not hold because no functions ν0 and ν1 satisfy

restriction (6). To see why, note first that evaluation of restriction (6) at staying response type

(T ∗(0), T ∗(1)) = (1, 1) yields

ν0(1) + ν1(1) = 0. (9)

Similarly, evaluating (6) at switching response types T ∗ ∈ {(0, 1), (0, 2), (1, 2)} gives

ν0(0) + ν1(1) = 1 for T ∗ = (0, 1) (10)

ν0(0) + ν1(2) = 1 for T ∗ = (0, 2) (11)

ν0(1) + ν1(2) = 1 for T ∗ = (1, 2). (12)

Equations (9)-(12) have no solution (in ν0, ν1) because (10) and (11) imply ν1(1) = ν1(2), which

together with (12) yields ν0(1) + ν1(1) = 1. This in turn contradicts (9). Since ISP does not

hold, SLATE is unidentified without further restrictions on M.6

The identifying power of ISP is highlighted by a model adding Rose and Shem-Tov (2024)

extensive margin compliance only (EMCO) assumption to our simple ordered-treatment story.

EMCO says that an instrument induces shifts only from no treatment to positive treatment.

With three treatment levels, EMCO allows three types of stayers, {(0, 0), (1, 1), (2, 2)}, but only
two types of switchers, {(0, 1), (0, 2)} = S. Because EMCO rules out switcher type T ∗ = (1, 2),

we can drop (12). Evaluating (6) for stayers, ISP requires ν0 and ν1 satisfy

ν0(t) + ν1(t) = 0 for all t ∈ {0, 1, 2}. (13)

The system of equations consisting of (10), (11), and (13) is solved by ν1(t) = 1{t > 0} and

ν0(t) = −ν1(t). Hence, ISP holds and SLATE is identified. Specifically, since V ≡ ν1(T )Z −
5An IPW estimand for the conditional reduced form in the second line of (8) is

E

[
Y Z

P (Z = 1|X)
− Y (1 − Z)

1 − P (Z = 1|X)

]
= E[Z̃Y ].

The equality above is obtained by bringing the elements of this expression over a common denominator. A
parallel operation yields the denominator in the characterization of τ(S).

6Weighted average LATEs computed over overlapping groups of switchers may be identified without ISP, as
shown in Angrist and Imbens (1995). Angrist et al. (2024) extends that approach to cover dynamic treatment
effects in randomized trials with time-varying compliance.
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ν0(T )(1− Z) equals V = 1{T > 0}, Theorem 2.2 implies:

τ(S) =
E[Y |Z = 1]− E[Y |Z = 0]

E[1{T > 0}|Z = 1]− E[1{T > 0}|Z = 0]
, (14)

a result obtained (following a different path) in Rose and Shem-Tov (2024).7

ISP is also satisfied by a latent-index ordered choice model like ordered probit. To see this,

suppose ε is continuously distributed on the real line, and that treatment status is governed by:

T ∗(z) =


0 if zπ + ε ≤ c1

1 if c1 < zπ + ε ≤ c2

2 if c2 < zπ + ε,

(15)

where ε is independent of Z and π > 0. This model imposes restrictions on T ∗ that go beyond

monotonicity. Suppose initially that π ≥ c2 − c1. In this scenario, T ∗(0) = 1 (i.e., c1 < ε ≤ c2)

implies T ∗(1) = 2, because then π+ε > c2. Hence, while there are up to three types of switchers,

{(0, 1), (0, 2), (1, 2)}, this restriction leaves only two types of stayers, {(0, 0), (2, 2)}.
Evaluating the ISP restrictions in (6) at these five possible response types yields:

ν0(0) + ν1(1) = 1 for T ∗ = (0, 1)

ν0(0) + ν1(2) = 1 for T ∗ = (0, 2)

ν0(1) + ν1(2) = 1 for T ∗ = (1, 2)

ν0(0) + ν1(0) = 0 for T ∗ = (0, 0)

ν0(2) + ν1(2) = 0 for T ∗ = (2, 2).

These equations are solved by ν0(t) = −1{t = 2} and ν1(t) = 1{t > 0}. Therefore, ISP holds,

and Theorem 2.2 implies SLATE equals:

τ(S) =
E[Y |Z = 1]− E[Y |Z = 0]

E[1{T > 0}|Z = 1]− E[1{T = 2}|Z = 0]
. (16)

What happens if π < c2 − c1? ISP is satisfied even so. To see this, note first that, in this

case, T ∗(0) = 0 (i.e., ε ≤ c1) implies T ∗(1) < 2, because then π + ε < c2. So, when π < c2 − c1,

there are no switchers with T ∗ = (0, 2). That leaves three stayer types, {(0, 0), (1, 1), (2, 2)},
and two switcher types, {(0, 1), (1, 2)}. Evaluating the ISP restrictions at these five response

types yields:

ν0(0) + ν1(1) = 1 for T ∗ = (0, 1)

ν0(1) + ν1(2) = 1 for T ∗ = (1, 2)

ν0(0) + ν1(0) = 0 for T ∗ = (0, 0)

ν0(1) + ν1(1) = 0 for T ∗ = (1, 1)

ν0(2) + ν1(2) = 0 for T ∗ = (2, 2).

These equations are solved by ν1(t) = t and ν0(t) = −t, again implying ISP holds and SLATE

7Rose and Shem-Tov (2024) also derives κ-weights that identify expectations of functions of observables for
switchers under EMCO. As we discuss in the next section, these weights are important, but not sufficient, for
identifying the CCEF.
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is identified. Applying Theorem 2.2 in this scenario yields:

τ(S) =
E[Y |Z = 1]− E[Y |Z = 0]

E[T |Z = 1]− E[T |Z = 0]
, (17)

and hence SLATE equals the Wald-IV estimand in which we instrument for T . Thus, the con-

struction and interpretation of SLATE turns on first-stage parameter values. Yet, the ordered

assignment model delivers an average causal effect either way. Appendix A.2 shows that this

conclusion holds for latent-index ordered-assignment models with more than three treatments,

gives general formulas for ν0 and ν1, characterizes the set of switchers in these models, and gives

restrictions under which SLATE can be constructed by instrumenting for T .

SLATE by κ-Weighting

A restriction on allowable assignment types beyond ISP leads to new κ-weighted least squares

estimands for both SLATE and the CCEF. This in/out/stay (IOS) assumption uses the following

taxonomy of response types. For each possible treatment, t, define:

in(t) ≡ {t∗ ∈ M : t∗(1) ̸= t∗(0) and t∗(1) = t}

out(t) ≡ {t∗ ∈ M : t∗(1) ̸= t∗(0) and t∗(0) = t}

stay(t) ≡ {t∗ ∈ M : t∗(0) = t∗(1) = t}.

This taxonomy divides response types that may select treatment level t into: (i) Switchers who

select t when Z = 1, that is, they switch in to t when the instrument is turned on; (ii) Switchers

who select t when Z = 0, that is, they switch out of t when the instrument is turned on; and (iii)

Stayers who select t regardless of Z. In the basic LATE setup, for instance, stay(0) contains

never-takers, stay(1) contains always-takers, out(0) and in(1) contain compliers, while in(0)

and out(1) are empty.

Using this notation, IOS is stated as:

Assumption IOS. For all t ∈ T, at least one of in(t), out(t), and stay(t) is empty.

IOS says that there is no treatment level that is selected by some switchers when Z = 1, selected

by other switchers when Z = 0, and at which some stayers stay regardless of Z. In the context

of a particular model, IOS is more easily checked than ISP since, for the former, no system

of equations need be solved. Rather, for each treatment level, t, IOS is verified by examining

response types in M that can choose t.

Under IOS, both a Wald-type estimand and κ-weighting identify SLATE. The probability

of T ∗ belonging to any set of types in(t) or out(t) is also identified under IOS. These results

build on a partition of the set of possible treatment levels into four groups:

Ti ≡ {t ∈ T : in(t) ̸= ∅ and out(t) = ∅}

To ≡ {t ∈ T : in(t) = ∅ and out(t) ̸= ∅}

Tio ≡ {t ∈ T : in(t) ̸= ∅ and out(t) ̸= ∅}

Ts ≡ {t ∈ T : in(t) = ∅ and out(t) = ∅}.

The set Ti consists of treatments that response types may switch into, but not out of, when
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Z = 1. Set To consists of treatments that response types may switch out of, but not into, when

Z = 0. Switchers can switch in or out of treatments in Tio, while treatments in Ts are never

selected by switchers. In the basic LATE scenario, for example, T = {0, 1} and monotonicity

implies Ti = {1}, To = {0}, and both Tio and Ts are empty.

We first use the partition of T into these four subsets to derive generalized κ-type weights

under IOS, denoted κ⋆. Specifically, for Z̃ as defined in (7), define

κ⋆(T,Z,X) ≡ Z̃(1{T ∈ Ti}P (Z = 1|X)− 1{T ∈ To}P (Z = 0|X)) + 1{T ∈ Tio}. (18)

IOS enables SLATE identification via κ⋆-weighting. This is formalized by the following theorem:

Theorem 2.3 (κ⋆ for SLATE). Suppose Assumptions 1.1, 1.2, and IOS hold.

(i) Then, ISP holds with ν0(T ) = −1{T ∈ Ti} and ν1(T ) = 1{T ∈ Ti ∪ Tio}. Therefore,

τ(S) equals IV estimand (8) with V = 1{T ∈ Ti}+ 1{T ∈ Tio}Z. Moreover,

P (T ∗ ∈ S) = E[κ⋆(T,Z,X)].

(ii) Let h0(X) ≡ 1/P (Z = 0|X) and h1(X) ≡ 1/[P (Z = 0|X)P (Z = 1|X)]. Also, suppose

that E[Y 2] < ∞ and, for some ε > 0, ε ≤ P (Z = 1|X) ≤ 1−ε with probability one. Then,

τ(S) = β1 defined by

(β0, β1) ≡ arg min
(b0,b1)

E

[(
Y − b0

h0(X)

E[h0(X)|T ∗ ∈ S]
− b1

V h1(X)

E[h1(X)|T ∗ ∈ S]

)2

κ⋆(T,Z,X)

]
.

The first part of Theorem 2.3 says that IOS implies ISP. As we illustrate below, however,

some models satisfy ISP only. Theorem 2.3(i) also says that the Wald-IV representation for

SLATE obtained in Theorem 2.2 simplifies to IV with Bernoulli treatment V = 1{T ∈ Ti} +
1{T ∈ Tio}Z. The second part of the theorem says that SLATE equals a κ⋆-weighted least

squares estimand. In particular, without covariates, Theorem 2.3(ii) implies SLATE is the

slope of a κ⋆-weighted regression of Y on a constant and V . With covariates, SLATE can be

obtained using a weighting scheme involving assignment propensity scores and the conditional

variance of assignment. This result appears to be new even in the Bernoulli treatment case with

monotonicity and covariates studied by Abadie (2003).8

To illustrate Theorem 2.3, we return to T ∈ {0, 1, 2} without covariates and the ordered

latent-index model for T ∗ given by (15). This setup satisfies ISP. Here, in(1) and out(1) are

non-empty. But when π < c2 − c1, stay(1) is also non-empty since c1 < ε < c2 − π generates

response type T ∗ = (1, 1). Therefore, IOS fails even though ISP holds. If π ≥ c2 − c1, however,

stay(1) is empty. Since in(0) and out(2) are also empty, IOS holds. Moreover, Ti = {2} and

Tio = {1}, so V = 1{T ∈ Ti} + 1{T ∈ Tio}Z equals 1{T = 2} + 1{T = 1, Z = 1}. Theorem

2.3(i) then implies

τ(S) =
E[Y |Z = 1]− E[Y |Z = 0]

E[1{T > 0}|Z = 1]− E[1{T = 2}|Z = 0]
,

8In a basic LATE scenario with covariates required for identification, Abadie (2003) minimizes E[(Y − b0 −
b1T −X ′b2)2κ(T,Z,X)] or some other parametric model for the CCEF allowing for covariate effects on potential
outcomes. The minimand in Theorem 2.3(ii) requires no such specification, requiring only a model for the
assignment propensity score.
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the result obtained in (16) using ISP and Theorem 2.2.

Now, replace the latent-index model for T ∗ with EMCO. As we have noted, EMCO allows

five response types, three stayers ({(0, 0), (1, 1), (2, 2)}) and two switchers ({(0, 1), (0, 2)}). IOS

holds here because in(0), out(1), and out(2) are empty. Moreover, since Ti = {1, 2} while Tio

is empty, V = 1{T ∈ Ti}+ 1{T ∈ Tio}Z equals 1{T > 0}. Theorem 2.1(i) therefore implies:

τ(S) =
E[Y |Z = 1]− E[Y |Z = 1]

E[1{T > 0}|Z = 1]− E[1{T > 0}|Z = 0]
,

the result obtained in (14) using ISP and Theorem 2.2.

SLATE is an easily computed summary causal effect that is likely to be useful in many

applications. For example, Kline and Walters (2016) interprets a conventional Wald estimand

as SLATE in a scenario with a trinomial unordered treatment. The treatment variable in this

case is defined by preschool sector, either Head Start, competing (non-Head Start) preschools,

or home care. The Kline and Walters (2016) version of SLATE averages effects of movements

into Head Start from the other two sectors. We reconsider this application in Section 2.2 and

Section 3. As it turns out, the key identifying assumption here implies IOS.

In applications with ordered treatments, SLATE is likely to be most useful under monotonic-

ity. To see this, consider a modified basic LATE scenario with no always-takers while allowing

defiance. IOS fails here because stay(0), in(0), out(0) are non-empty. ISP holds, however, with

ν0(t) = ν1(t) = t. SLATE therefore equals:

τ(S) =
E[Y |Z = 1]− E[Y |Z = 1]

E[T |Z = 1] + E[T |Z = 0]

= pcE[Y ∗(1)− Y ∗(0)|T ∗(1) > T ∗(0)] + (1− pc)E[Y ∗(0)− Y ∗(1)|T ∗(1) < T ∗(0)],

where pc ≡ P (T ∗(1) > T ∗(0)|T ∗ ∈ S). Suppose now that the causal effect of treatment is a

constant, τ . The usual Wald-IV estimand identifies τ . However, τ(S) differs from τ because

SLATE averages Y (T ∗(1))− Y (T ∗(0)) for compliers, for whom T ∗(1) = 1 and T ∗(0) = 0, with

the corresponding effects for defiers, for whom T ∗(1) = 0 and T ∗(0) = 1. Under constant effects,

the first effect is τ while the second is −τ ; SLATE weights these by pc and 1− pc, respectively.
9

SLATE does not distinguish causal effects for different types of switchers, but IOS identifies

features of the distribution of switcher types. Specifically, under IOS, the probability T ∗ belongs

to in(t) and the probability T ∗ belongs to out(t) are identified for all t ∈ T consistent with M.

The following lemma formalizes this result.

Lemma 2.2 (Probabilities of in(t) and out(t)). If Assumptions 1.1, 1.2, and IOS hold, then

P (T ∗ ∈ in(t) |X) = E[1{T = t}|Z = 1, X]− E[1{T = t}|Z = 0, X] for all t ∈ Ti,

P (T ∗ ∈ out(t) |X) = E[1{T = t}|Z = 0, X]− E[1{T = t}|Z = 1, X] for all t ∈ To,

9The de Chaisemartin (2017) compliers-defiers condition, requiring that there be a subpopulation of compliers,
CF , of the same size and with the same average treatment effect as defiers, yields τ(S) = P (CV |T ∗ ∈ S)E[Y ∗(1)−
Y ∗(0)|CV ], where CV is the complement of CF in the set of compliers. This follows from the reduced form
here equaling P (CV )E[Y ∗(1) − Y ∗(0)|CV ]. This result also holds when there are more compliers than defiers
conditional on the difference in potential outcomes.

12



and, for all t ∈ Tio,

P (T ∗ ∈ in(t) |X) = E[1{T = t}|Z = 1, X]

and P (T ∗ ∈ out(t) |X) = E[1{T = t}|Z = 0, X].

Moreover, defining Z̃ ≡ (Z − P (Z = 1|X))/(P (Z = 1|X)P (Z = 0|X)), we obtain

P (T ∗ ∈ in(t)) = E[1{T = t}Z̃] for all t ∈ Ti,

P (T ∗ ∈ out(t)) = −E[1{T = t}Z̃] for all t ∈ To,

and, for all t ∈ Tio,

P (T ∗ ∈ in(t)) = E[1{T = t}ZZ̃]

and P (T ∗ ∈ out(t)) = −E[1{T = t}(1− Z)Z̃].

This lemma links the distribution of switcher types to first-stage relationships for the set of

treatment indicators of the form 1{T = t}. For some models, this result also identifies the

probability distribution of switcher types, T ∗. This is illustrated in the context of Head Start

at the end of the next section.

2.2 CCEF Identification

When are the underlying average causal effects defined by (2) identified? This question is

answered by studying identification of the CCEF. Beyond basic LATE as in Imbens and Angrist

(1994), resolution of this more challenging identification problem typically requires stronger

assumptions than does identification of SLATE.

The CCEF is assumed to be modeled or approximated by a function F (T,X;β) of parameter

vector, β. The parameters we seek are defined by fitting F to the CCEF for switchers:

β ≡ argmin
b

E[(E[Y |T, T ∗, X]− F (T,X; b))2|T ∗ ∈ S]

= argmin
b

E[(Y − F (T,X; b))21{T ∗ ∈ S}].

Proposition 1.1 implies that if F is correctly specified (i.e., matches the CCEF), then covariate-

specific average causal effects for a given switcher type T ∗ are given by:

E[Y ∗(T ∗(1))− Y ∗(T ∗(0))|T ∗, X] = F (T ∗(1), X;β)− F (T ∗(0), X;β). (19)

When F differs from the CCEF, F (T,X;β) is a minimum mean-squared error (MMSE) approx-

imation to it.

We start by assuming that the CCEF is a function of T and X only, omitting T ∗. This is

formalized by the following representation in observables (RIO) assumption:

Assumption RIO. There is a function C(T,X) satisfying

P (E[Y |T, T ∗, X] = C(T,X)|T ∗ ∈ S) = 1

In a basic LATE scenario without covariates, RIO is ensured since monotonicity allows only
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one type of switcher. In particular, the LATE CCEF can be written:

E[Y |T, T ∗ = (0, 1)] = C(T ) = β0 + β1T,

where β1 equals LATE and β0 = E[Y ∗(0)|T ∗ = (0, 1)].

Applications with non-Bernoulli treatments often generate multiple switcher types, in which

case, RIO is more demanding. The following corollary to Proposition 1.1 characterizes the

restrictions RIO imposes on the CCEF.

Corollary 2.1 (Interpreting RIO). Suppose Assumptions 1.1, 1.2 hold, and that P (T ∗ =

t∗|X) > 0 for all t∗ ∈ S with probability one. Then, RIO is satisfied if and only if

E[Y ∗(t)|T ∗ = t∗, X] = E[Y ∗(t)|T ∗ ∈ in(t)∪ out(t), X], (20)

for all t∗ ∈ in(t)∪ out(t).

RIO limits heterogeneity by requiring mean potential outcomes at treatment level t be the same

for all switcher types that can choose t. This homogeneity facilitates CCEF identification since

it implies that, conditional on a treatment level, the CCEF does not depend on unobserved

switcher type T ∗. For treatment values chosen by only one type of switcher, (20) imposes no

restriction. Returning to T ∈ {0, 1, 2} under EMCO, for instance, the instrument moves some

switchers from 0 to 1 and some from 0 to 2. Corollary 2.1 requires the mean of Y ∗(0) be the

same for these two types, while leaving the means of Y ∗(1) and Y ∗(2) for switchers unrestricted.

Although strong, RIO has antecedents in the literature on IV identification (see, for example,

Mountjoy (2022), Angrist and Fernandez-Val (2013)).

The following result shows that IOS is central to identification of a RIO-compliant CCEF.

Theorem 2.4 (The CCEF and IOS). Suppose Assumption 1.1, 1.2, and RIO hold, and: (i) For

some ε > 0, with probability one, ε ≤ P (Z = 1|X) ≤ 1−ε, P (T ∗ = t∗|X) ≥ ε for all t∗ ∈ M, and

Var{Y ∗(t)|X} ≥ ε; (ii) Y ∗(t) is bounded for all t ∈ T; (iii) PY ∗|T ∗X ≪ {PY |X}d ≪ PY ∗|T ∗X and

P̃ ≡ PY ∗(t1)|X . . . PY ∗(td)|XPT ∗ZX satisfies P̃ ≪ PY ∗T ∗ZX with dP̃ /dPY ∗T ∗ZX bounded. Then

the CCEF is identified if and only if IOS holds.

Remarkably, IOS is both necessary and sufficient for CCEF identification under the conditions

of Theorem 2.4.

IOS is also sufficient for identification of β as the solution to a feasible κ⋆-weighted least

squares minimand. This is formalized by:

Theorem 2.5 (κ⋆ for the CCEF). Suppose Assumptions 1.1, 1.2, and IOS hold, and that, for

some ε > 0, ε ≤ P (Z = 1|X) ≤ 1− ε with probability one. Then:

(i) For any g satisfying E[|g(Y, T,X)|] < ∞,

E[g(Y, T,X)κ⋆(T,Z,X)] = E[g(Y, T,X)1{T ∗ ∈ S}]. (21)

(ii) Suppose that in addition to the conditions for part (i), RIO holds and g(Y, T,X) = (Y −
F (T,X; b))2 satisfies E[|g(Y, T,X)|] < ∞ for all b. Then, the CCEF, denoted C(T,X),
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equals or is approximated by F (T,X;β), where

β ≡ argmin
b

E[(C(T,X)− F (T,X; b))2|T ∗ ∈ S] (22)

= argmin
b

E[(Y − F (T,X; b))2κ⋆(T,Z,X)]

and the solution to (22) is assumed to be unique.

(iii) If Ts = ∅, then:

κ⋆(T,Z,X) = 1− V (1− Z)

P (Z = 0|X)
− (1− V )Z

P (Z = 1|X)

for V = 1{T ∈ Ti}+ 1{T ∈ Tio}Z.

Part (i) of Theorem 2.5 says that κ⋆-weighting delivers identification of the expectation of any

function of (Y, T,X) for switchers. This result holds without RIO and enables identification

of, for instance, the weights used to construct SLATE in Theorem 2.3(ii).10 Theorem 2.5(ii)

uses κ⋆-weights and RIO to identify the CCEF, or to obtain an MMSE approximation to it.

For a saturated linear CCEF specifications without covariates, the first order conditions for

the minimization problem in the theorem imply uniqueness of β as long as the probabilities in

Lemma 2.2 are nonzero.

The third part of Theorem 2.5 says that in models in which every treatment value t ∈ T is

selected by some switcher, so Ts = ∅, the κ⋆-weights used in (22) are of the form derived by

Abadie (2003) for basic LATE. Here, however, a conventional treatment dummy is replaced by

auxiliary treatment variable V that depends on (non-Bernoulli) T and, possibly, instrument Z.

From SLATE to the CCEF with an Unordered Treatment

Head Start is a large and long-running federally-funded program providing free preschool to

disadvantaged children. An investigation of Head Start enrollment effects on test scores inspired

by Kline and Walters (2016) illustrates identification of causal effects using Theorems 2.3 and

2.5. The instrument here is a randomized offer of Head Start placement in a sample of three-

and four-year-old Head Start applicants participating in the Head Start Impact Study (HSIS).

The outcome is a composite test score constructed from achievement tests taken after random

assignment.

Randomized offers of Head Start seats increase the probability of Head Start enrollment in

the year after random assignment by around 68 percentage points. This is also an estimate of the

overall probability of switching. Importantly, Head Start switchers (defined as children placed

in Head Start as a consequence of these offers) are drawn from two groups: applicants enrolled

in competing non-Head Start preschools and applicants in home care (meaning no preschool).

This leads to a scenario with a trinomial unordered treatment variable that we represent by T ∈
{h, c, n}, where h denotes Head Start attendance, c denotes competing preschool attendance,

and n denotes home care. All HSIS children fall into one of these three groups.

Kline and Walters (2016) and Feller et al. (2016) assume Head Start offers leave the choice

between c and n unchanged since both options are available to everyone regardless of random

10To do this, set g(Y, T,X) equal to h0(X) and h1(X).
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assignment. In our notation, this can be written as:

T ∗(1) ̸= T ∗(0) ⇒ T ∗(1) = h. (23)

This EMCO-like restriction leaves two types of switchers, T ∗ = (n, h) and T ∗ = (c, h). These

switchers generate two corresponding Head Start effects, E[Y ∗(h) − Y ∗(c)|T ∗ = (c, h)] for

switchers out of competing preschools and E[Y ∗(h) − Y ∗(n)|T ∗ = (n, h)] for switchers out of

home care. Response types also include stayers at all three levels (a few applicants not offered

Head Start manage to find their way to a Head Start program anyway). Restriction (23) is

sufficient for IOS since out(h), in(c), and in(n) are empty.

Ignoring covariates and applying Theorem 2.3(i), SLATE equals

τ(S) =
E[Y |Z = 1]− E[Y |Z = 0]

E[V |Z = 1]− E[V |Z = 0]
,

where

V = 1{T ∈ Ti}+ 1{T ∈ Tio}Z

= 1{T = h},

since Tio is empty. In this case, therefore, τ(S) is a conventional Wald-IV estimand instrument-

ing 1{T = h}. As noted in Kline and Walters (2016) and Feller et al. (2016), this IV estimand

is a weighted average of E[Y ∗(h) − Y ∗(n)|T ∗ = (n, h)] and E[Y ∗(h) − Y ∗(c)|T ∗ = (c, h)]. The

weights are given by the share of each switcher type among switchers.

Our framework disentangles switcher-specific average causal effects by adding RIO to (23).

Since t = h is the only treatment level selected by both types of switchers, Corollary 2.1 implies

that RIO is equivalent to the restriction

E[Y ∗(h)|T ∗ = (c, h)] = E[Y ∗(h)|T ∗ = (n, h)]. (24)

This says that average outcomes in the Head Start treatment are the same for both switcher

types, while allowing unrestricted counterfactuals. In the same spirit, Kline and Walters (2016)

restricts the relationship between selection bias and covariates.

Given (24), RIO holds and the CCEF is therefore a function of T only:

F (T ;β) = 1{T = h}βh + 1{T = c}βc + 1{T = n}βn.

Since IOS is satisfied, Theorem 2.5(ii) implies β ≡ (βh, βc, βn) can be obtained as

β = argmin
b

E[(Y − F (T ; b))2κ⋆(T,Z)]. (25)

Moreover, because V = 1{T = h}, Theorem 2.5(iii) implies that κ⋆-weights simplify to

κ⋆(T,Z) = 1− 1{T = h}(1− Z)

P (Z = 0)
− 1{T ̸= h}Z

P (Z = 1)
.

These match Abadie (2003) κ-weights for Bernoulli treatment 1{T = h}.
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The CCEF identified by (25) generates causal effects for the two switcher types:

E[Y ∗(h)− Y ∗(c)|T ∗ = (c, h)] = βh − βc

E[Y ∗(h)− Y ∗(n)|T ∗ = (n, h)] = βh − βn.

RIO notwithstanding, this parameterization allows causal effects of Head Start to differ for

switchers into Head Start from home and switchers into Head Start from competing preschools.

This feature of our setup holds more generally because RIO leaves potential outcomes seen for

only one switcher type unrestricted. In the Head Start study, switcher types are distinguished

by the (unique) nature of their no-Head Start counterfactuals.

An IV interpretation of κ⋆-weighting illuminates the identifying information that drives

these results. Setting p = P (Z = 1), the first order conditions for the κ⋆-weighted least squares

problem in (25) can be written:

0 = E[(Z − p)1{T = t}(Y − βt)]

= E[(Z − p)1{T = t}Y ]− βtE[(Z − p)1{T = t}],

implying

βt =
E[(Z − p)1{T = t}Y ]

E[(Z − p)1{T = t}]
, (26)

for each t ∈ {h, c, n}. Equation (26) casts each βt as an instrumental variable estimand with

outcome 1{T = t}Y and treatment 1{T = t}, instrumented by Z.

Given IOS, Lemma 2.2 ensures that the first stages in this context (the denominators of

(26) at each t, divided by the variance of Z) identify the probability switchers select treatment

level t for any t ∈ Ti ∪To ∪Tio. Applying the lemma to Head Start,

E[1{T = h}|Z = 1]− E[1{T = h}|Z = 0] = P (T ∗ ∈ in(h)) = P (T ∗ ∈ S),

where the second equality follows from the fact that all switchers switch in to h. Similarly,

E[1{T = c}|Z = 1]− E[1{T = c}|Z = 0] = −P (T ∗ ∈ out(c)) = −P (T ∗ = (c, h)),

and likewise for T ∗ = (n, h). In this application, each of the relevant identified switcher sets

includes only one type; the share of each type is therefore identified. Note also that both switcher

types must occur with positive probability for the full set of βt to be identified. Among the

68% of children in the Head Start study who are switchers, we show below that a little over

one-third of these come from competing preschools.

2.3 Relaxing RIO

In requiring (20), RIO rules out some types of selection bias. RIO can be partly relaxed,

however, by allowing the CCEF to be a function of the instrument as well as of T and X.

We dub this more flexible CCEF restriction ARIO, a mnemonic for “augmented” RIO. This

condition is formalized by:

Assumption ARIO There is a function Ca(T,Z,X) satisfying

P (E[Y |T, T ∗, X] = Ca(T,Z,X)|T ∗ ∈ S) = 1.
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Although the CCEF defined in Proposition 1.1 does not condition on Z, we show below that

interactions between T and Z contain information regarding T ∗ for specifications of M such

that Tio is non-empty. This information is useful because it allows CCEF dependence on T ∗.

The following corollary to Proposition 1.1 characterizes the more limited homogeneity im-

posed by ARIO.

Corollary 2.2 (Interpreting ARIO). Suppose Assumptions 1.1 and 1.2 hold, and that P (T ∗ =

t∗|X) > 0 for all t∗ ∈ S with probability one. Then:

(i) ARIO is satisfied if and only if:

E[Y ∗(t)|T ∗ = t∗, X] = E[Y ∗(t)|T ∗ ∈ in(t), X] for all t∗ ∈ in(t) (27)

E[Y ∗(t)|T ∗ = t∗, X] = E[Y ∗(t)|T ∗ ∈ out(t), X] for all t∗ ∈ out(t) .

(ii) If ARIO holds, covariate-specific causal effects for any t∗ = (t∗(0), t∗(1)) ∈ S equal

E[Y ∗(T ∗(1))− Y ∗(T ∗(0))|T ∗ = t∗, X] = Ca(t
∗(1), 1, X)− Ca(t

∗(0), 0, X). (28)

Moreover, ARIO implies there are functions C1(T,X) and C2(T,Z,X) such that

P (Ca(T,Z,X) = C1(T,X)1{T ∈ Ti ∪To}+ C2(T,Z,X)1{T ∈ Tio}|T ∗ ∈ S) = 1.

The first part of the corollary shows that ARIO differs from RIO when there are treatment

levels t such that some switcher types are observed at T = t when the instrument is switched

on and some switcher types are observed at T = t when the instrument is switched off. RIO

restricts mean potential outcomes at this level to be the same across these switcher types while

ARIO does not. In other words, ARIO drops restrictions across switcher types for treatment

values in Tio. Suppose, for instance, T ∈ {0, 1, 2} under monotonicity but not EMCO, ignoring

covariates. Then in(1) = {(0, 1)}, out(1) = {(1, 2)}, and Tio = {1}. By Corollary 2.1, RIO

requires

E[Y ∗(1)|T ∗ = (0, 1)] = E[Y ∗(1)|T ∗ = (1, 2)], (29)

because the union of in(1) and out(1) equals {(0, 1), (1, 2)}. ARIO, by contrast, relaxes this

restriction. Because out(0) = {(0, 1), (0, 2)} and in(2) = {(0, 2), (1, 2)} while in(0) and out(2)

are empty, Corollary 2.2 implies ARIO here requires only

E[Y ∗(0)|T ∗ = (0, 2)] = E[Y ∗(0)|T ∗ = (0, 1)]

E[Y ∗(2)|T ∗ = (0, 2)] = E[Y ∗(2)|T ∗ = (1, 2)],

as does RIO.

The second part of Corollary 2.2 explains how the CCEF can be used to derive switcher-

type specific average causal effects under ARIO. This part of the corollary also shows that under

ARIO, the CCEF for switchers depends on the instrument only at values of the treatment in

Tio. We therefore focus on CCEF specifications satisfying

Fa(T,Z,X;β) = F1(T,X;β)1{T ∈ Ti ∪To}+ F2(T,Z,X;β)1{T ∈ Tio}, (30)

for functions F1 and F2.
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Instrument-treatment interactions distinguish between switcher types that select treatment

levels t ∈ Tio. Returning to the scenario where T ∈ {0, 1, 2} under monotonicity without

EMCO, treatment level T = 1 is chosen by two types of switchers, T ∗ = (0, 1) and T ∗ = (1, 2).

Conditional on T ∗ being a switcher, the interaction term 1{T = 1}(1 − Z) indicates type

T ∗ = (1, 2) since this type of switcher has treatment level 1 when the instrument is switched

off. Likewise, the interaction term 1{T = 1}Z indicates a switcher of type T ∗ = (0, 1) since this

type of switcher has treatment level 1 when the instrument is switched on.

CCEF specifications satisfying (30) are identified as follows.

Theorem 2.6 (Z-augmented Identification). Assume 1.1, 1.2, and IOS hold, that Fa satisfies

(30), and that for some ε > 0, ε ≤ P (Z = 1|X) ≤ 1− ε with probability one. Then,

E[(Y − Fa(T,Z,X; b))2κ⋆(T,Z,X)] = E[(Y − Fa(T,Z,X; b))21{T ∗ ∈ S}] (31)

provided E[(Y −Fa(T,Z,X; b))2] < ∞ for all b. Moreover, given ARIO, the CCEF equals or is

approximated by Fa(T,Z,X;β), where β is the (assumed to be unique) solution to

β ≡ argmin
b

E[(Ca(T,Z,X)− Fa(T,Z,X; b))2|T ∗ ∈ S] (32)

= argmin
b

E[(Y − Fa(T,Z,X; b))2κ⋆(T,Z,X)].

Absent covariates, ARIO and Corollary 2.2(ii) ensure that the CCEF takes the form of a linear

model saturated in T with a full set of T,Z interactions for treatment levels in Tio. Theorem

2.6 delivers identification of the coefficients in such a specification, and hence of the CCEF, by

κ⋆-weighted least squares. With covariates, Fa is not guaranteed to match the CCEF unless

covariates are discrete and Fa is fully saturated in X, including X interactions with T and TZ.

When Fa does not match the CCEF, Theorem 2.6 provides an MMSE approximation in the

class of functions to which Fa(T,Z,X; b) belongs.

2.4 IV and κ⋆ Estimands for the CCEF

Under ARIO, the CCEF can be constructed from a set of IV estimands. This result, which uses

Theorem 2.6 and the first-order conditions for κ⋆-weighted minimization to generalize (26), is

formalized below.

Theorem 2.7 (CCEF IV). Suppose Assumptions 1.1, 1.2, and IOS hold, and that, for some

ε > 0, ε ≤ P (Z = 1|X) ≤ 1 − ε with probability one. Assume also that P (T ∗ = t∗|X) > 0 for

all t∗ ∈ S with probability one and let Z̃ be as defined in (7).

(i) Suppose ARIO holds. Then, for any t∗ ∈ S and t ∈ {t∗(0), t∗(1)},

E[Y ∗(t)|T ∗ = t∗, X] =
E[Z̃ × 1{T = t}Y |X]

E[Z̃ × 1{T = t}|X]
if t ∈ Ti ∪To

E[Y ∗(t)|T ∗ = t∗, X] =
E[Z̃ × 1{T = t}ZY |X]

E[Z̃ × 1{T = t}Z|X]
if t ∈ Tio, t∗ ∈ in(t)

E[Y ∗(t)|T ∗ = t∗, X] =
E[Z̃ × 1{T = t}(1− Z)Y |X]

E[Z̃ × 1{T = t}(1− Z)|X]
if t ∈ Tio, t∗ ∈ out(t)
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(ii) Replace ARIO with the following unconditional analog:

E[Y ∗(t)|T ∗ = t∗] = E[Y ∗(t)|T ∗ ∈ in(t)] for all t∗ ∈ in(t) (33)

E[Y ∗(t)|T ∗ = t∗] = E[Y ∗(t)|T ∗ ∈ out(t)] for all t∗ ∈ out(t) .

Then, for any t∗ ∈ S and t ∈ {t∗(0), t∗(1)},

E[Y ∗(t)|T ∗ = t∗] =
E[Z̃ × 1{T = t}Y ]

E[Z̃ × 1{T = t}]
if t ∈ Ti ∪To

E[Y ∗(t)|T ∗ = t∗] =
E[Z̃ × 1{T = t}ZY ]

E[Z̃ × 1{T = t}Z]
if t ∈ Tio, t∗ ∈ in(t)

E[Y ∗(t)|T ∗ = t∗] =
E[Z̃ × 1{T = t}(1− Z)Y ]

E[Z̃ × 1{T = t}(1− Z)]
if t ∈ Tio, t∗ ∈ out(t)

Part (i) of Theorem 2.7 shows how the CCEF can be constructed from IV estimands that

condition on X. The first of these estimands, identifying the CCEF at levels t ∈ Ti ∪To for all

switchers that select t, uses Z̃ to instrument 1{T = t} in an estimating equation with dependent

variable 1{T = t}Y . The second, identifying the CCEF at levels t ∈ Tio for response types t
∗ ∈

in(t), instruments 1{T = t}Z in an estimating equation with dependent variable 1{T = t}ZY .

The third, identifying the CCEF at levels t ∈ Tio for response types t∗ ∈ out(t), instruments

1{T = t}(1− Z) in an estimating equation with dependent variable 1{T = t}(1− Z)Y .

The second part of the theorem lays the foundation for IV identification of unconditional

(on covariates) average treatment effects of the form

τ(t∗) = E[Y ∗(T ∗(1))− Y ∗(T ∗(0))|T ∗ = t∗].

These effects (introduced in equation (2)) depend on the marginalized (overX) CCEF, evaluated

at a particular value T ∗ = t∗:

E[Y ∗(t)|T ∗ = t∗] = E(E[Y ∗(t)|T ∗ = t∗, X]︸ ︷︷ ︸
CCEF

|T ∗ = t∗).

This marginalization weights the CCEF at each value of X by the distribution of X for a

particular switcher type, t∗. However, Theorems 2.5 and 2.6 identify the distribution of X

for the set of all switchers rather than for specific switcher types. This problem is solved by

replacing ARIO with (33) in Theorem 2.7(ii).

Back to κ⋆

Many causal investigations feature an exploration of variations in impact with covariates. IV

estimators based on Theorem 2.7(ii), however, leave the role of covariates in the CCEF un-

specified (instrument Z̃ is uncorrelated with X by construction). Moreover, neither conditional

nor unconditional IV estimands in Theorem 2.7 lend themselves to imposition of parametric

restrictions on the CCEF or to nonlinear models for the CCEF like probit or logit.

The κ⋆-weighted least squares estimand in Theorem 2.6 facilitates identification and estima-

tion of CCEF models and approximations that incorporate covariates. In addition to generating

interactions that may be of substantive interest, covariates in Fa can boost the precision of
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CCEF estimates, much as covariates in an OLS estimator boost precision by reducing residual

variance. Moreover, as noted in Abadie (2003), estimands of this form readily accommodate

nonlinear models for the CCEF.

In practice, κ⋆-weighted least squares is complicated by the fact that κ⋆ can be negative,

making the minimand non-convex. Theorem 2.7(i) motivates a computationally attractive so-

lution to this problem. Define

Ỹt =
Z̃ × 1{T = t}Y

E[Z̃ × 1{T = t}|X]
(34)

Ỹt,0 =
Z̃ × 1{T = t}(1− Z)Y

E[Z̃ × 1{T = t}(1− Z)|X]

Ỹt,1 =
Z̃ × 1{T = t}ZY

E[Z̃ × 1{T = t}Z|X]

and positive weights

ωt(X) = P (Z = 1|X)(P (T = t|Z = 1, X)− P (T = t|Z = 0, X))+ if t ∈ Ti (35)

ωt(X) = P (Z = 0|X)(P (T = t|Z = 0, X)− P (T = t|Z = 1, X))+ if t ∈ To

ωt,z(X) = P (T = t, Z = z|X) if t ∈ Tio,

where a+ ≡ max(0, a) for any a. The following theorem shows that β solves an ω-weighted

least squares problem whenever Fa satisfies Fa(T,Z,X; b) = F1(T,X; b)1{T ∈ Ti ∪ To} +

F2(T,Z,X; b)1{T ∈ Tio} for some F1 and F2.

Theorem 2.8. Suppose the conditions of Theorems 2.6 and 2.7(i) are satisfied. Then,

β = argmin
b

E

[ ∑
t∈Ti∪To

(Ỹt − F1(t,X; b))2ωt(X) (36)

+
∑

t∈Tio,z∈{0,1}

(Ỹt,z − F2(t, z,X; b))2ωt,z(X)

]

for parameter vector β defined in Theorem 2.6.

This result, which combines key relationships in our framework, is most easily seen when Tio

and Ts are empty, so T = Ti ∪To. Note first that Corollary 2.2 and Theorem 2.6 then imply

β ≡ argmin
b

E
[
(C1(T,X)− F1(T,X; b))2|T ∗ ∈ S

]
(37)

= argmin
b

E

[∑
t∈T

(C1(t,X)− F1(t,X; b))2E[1{T = t}κ⋆(t, Z,X)|X]

]
.

Using the κ⋆ representation from Theorem 2.5(iii) to evaluate E[1{T = t}κ⋆(T,Z,X)|X], we

have that:

E[1{T = t}κ⋆(T,Z,X)|X]

=

{
P (Z = 1|X)[P (T = t|Z = 1, X)− P (T = t|Z = 0, X)] if t ∈ Ti

P (Z = 0|X)[P (T = t|Z = 0, X)− P (T = t|Z = 1, X)] if t ∈ To

(38)
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Since the two quantities on the right-hand side of (38) are positive by Lemma 2.2, this establishes

E[1{T = t}κ⋆(T,Z,X)|X] = ωt(X). Using this to substitute for E[1{T = t}κ⋆(T,Z,X)|X] in

(37) gives

β = argmin
b

E

[∑
t∈T

(C1(t,X)− F1(t,X; b))2ωt(X)

]
(39)

= argmin
b

E

[∑
t∈T

(Ỹt − F1(t,X; b))2ωt(X)

]
, (40)

where the final equality follows from the fact that Theorem 2.7(i) implies E[Ỹt|X] = C1(t,X).

The argument for the case where Tio is not empty is similar, using ωt,z(X) = E[1{T = t, Z =

z}κ⋆(T,Z,X)|X] for any t ∈ Tio to simplify the term involving F2(T,Z,X; b)1{T ∈ Tio}.
Theorem 2.8 offers a novel solution to the problem of negative weights in an estimand for

the full CCEF. This strategy can be compared with that in Abadie et al. (2002), which re-

places κ-weights with theoretically non-negative E[κ(T,Z,X)|T,X, Y ] in a basic LATE setting.

Nonparametric estimates of E[κ(T,Z,X)|T,X, Y ] can be sensitive to the choice of smooth-

ing parameters when Y is continuous. Theorem 2.8, by contrast, requires only estimates of

the distribution of (Z, T ) given X. Since Z and T are discrete, this estimation is relatively

straightforward when X is also discrete.

CCEF Identification Under Ordered Selection

The added flexibility afforded by ARIO is evident in a scenario with T ∈ {0, 1, 2}, no covariates,

and ordered selection model (15). This model satisfies ISP for all π, so SLATE is identified.

Moreover, when π ≥ c1 − c0 IOS also holds.

In combination, ARIO and IOS identify the CCEF. Assuming π ≥ c1− c0 so IOS holds, and

that ε has large support, this model has two stayer types, T ∗ ∈ {(0, 0), (2, 2)}, and up to three

switcher types, T ∗ ∈ {(0, 1), (0, 2), (1, 2)}. By Corollary 2.2(i), ARIO then requires

E[Y ∗(0)|T ∗ = (0, 1)] = E[Y ∗(0)|T ∗ = (0, 2)] (from (27) at t = 0)

E[Y ∗(2)|T ∗ = (0, 2)] = E[Y ∗(2)|T ∗ = (1, 2)] (from (27) at t = 2).

Since treatment level t = 1 is in Tio, RIO adds an additional restriction to these two:

E[Y ∗(1)|T ∗ = (0, 1)] = E[Y ∗(1)|T ∗ = (1, 2)] (from (20) at t = 1).

Under ARIO, Corollary 2.2(ii) implies that the CCEF can be written

Fa(T,Z;β) = 1{T = 0}β0 + 1{T = 2}β2︸ ︷︷ ︸
F1(T ;β)1{T∈Ti∪To}

+1{T = 1}(β1 + Zβ11)︸ ︷︷ ︸
F2(T,Z;β)1{T∈Tio}

, (41)

since Ti ∪To = {0, 2} and Tio = {1}. This specification generates three causal effects:

E[Y ∗(2)− Y ∗(0)|T ∗ = (0, 2)] = Fa(2, 1;β)− Fa(0, 0;β) = β2 − β0 (42)

E[Y ∗(2)− Y ∗(1)|T ∗ = (1, 2)] = Fa(2, 1;β)− Fa(1, 0;β) = β2 − β1

E[Y ∗(1)− Y ∗(0)|T ∗ = (0, 1)] = Fa(1, 1;β)− Fa(0, 0;β) = (β1 + β11)− β0.
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Note that effects for switchers from 0 to 1 and from 1 to 2 need not sum to the effect for

switchers from 0 to 2.

Theorem 2.7 shows how to compute β using IV. Since To = {0} and switcher types T ∗ =

(0, 1) and T ∗ = (0, 2) can both select treatment level 0, we have:

E[Y ∗(0)|T ∗ = (0, 1)] = E[Y ∗(0)|T ∗ = (0, 2)] =
E[(Z − p)1{T = 0}Y ]

E[(Z − p)1{T = 0}]
= β0,

where p = P (Z = 1). Similarly, since Ti = {2} and switcher types T ∗ = (0, 2) and T ∗ = (1, 2)

can both select treatment level 2, we also have:

E[Y ∗(2)|T ∗ = (0, 2)] = E[Y ∗(2)|T ∗ = (1, 2)] =
E[(Z − p)1{T = 2}Y ]

E[(Z − p)1{T = 2}]
= β2.

Finally, Tio = {1} with switcher type T ∗ = (0, 1) belonging to in(1), and switcher type

T ∗ = (1, 2) belonging to out(1). Theorem 2.7 therefore implies

E[Y ∗(1)|T ∗ = (1, 2)] =
E[(Z − p)1{T = 1}(1− Z)Y ]

E[(Z − p)1{T = 1}(1− Z)]
= β1

E[Y ∗(1)|T ∗ = (0, 1)] =
E[(Z − p)1{T = 1}ZY ]

E[(Z − p)1{T = 1}Z]
= β1 + β11.

These IV estimands are easily rearranged to generate the causal effects of interest.

Theorems 2.6 and 2.8 allow us to identify and estimate the CCEF and associated causal

effects by κ⋆-weighting. Since Ti = {2} and Tio = {1}, V as written in Theorem 2.5(iii) equals

V = 1{T = 2}+ 1{T = 1}Z. The relevant κ⋆-weights therefore simplify to

κ⋆(T,Z) = 1− V (1− Z)

P (Z = 0)
− (1− V )Z

P (Z = 1)
(43)

= 1− 1{T = 2}(1− Z)

P (Z = 0)
− 1{T = 0}Z

P (Z = 1)
.

Using these weights, Theorem 2.6 identifies β as the solution to

β = argmin
b

E[(Y − Fa(T,Z; b))2κ⋆(T,Z)],

where Fa is as defined in (41). Theorem 2.8 provides a computationally attractive implementa-

tion of this minimand.

3 Applications

Three empirical applications illustrate our theoretical results. The first revisits the Head Start

study discussed in Section 2.2. We compute both IV and κ⋆-weighted estimates of Head Start

effects for two switcher types. The second analyzes data from the Angrist et al. (2022) post-

secondary aid randomized trial. The effect of financial aid on degree completion is modeled as

mediated by a pair of underlying treatments. The third application examines effects of child-

bearing, an ordered treatment, on mothers’ weeks worked. As in Angrist and Evans (1998),

childbearing effects are identified using dummies for multiple second births and samesex sibships

to instrument the number of children in households with at least two children. The family-size
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application features treatment levels in Tio, so CCEF specifications that depend on Z are fruit-

ful. The applications discussion in the text skips most estimation issues; Appendix A.3 details

estimation procedures and establishes consistency and asymptotic normality of estimators based

on the identification results in Section 2.

3.1 Multinomial Head Start Effects

Section 2.2 shows that SLATE for Head Start can be estimated using a dummy indicating

randomly assigned offers of a place in Head Start (Z) to instrument a dummy for Head Start

enrollment (1{T = h}). This IV estimand is a weighted average of E[Y ∗(h)−Y ∗(n)|T ∗ = (n, h)]

and E[Y ∗(h) − Y ∗(c)|T ∗ = (c, h)]. These are Head Start achievement effects for two switcher

types: children drawn into Head Start from home and children drawn into Head Start from

competing preschools.

Our HSIS estimation sample includes 3,571 Head Start applicants aged 3 and 4 at the time of

application. The outcome variable is a composite test score derived from tests taken in the first

year following random assignment. Test scores are standardized to be mean zero and standard

deviation one in the random assignment control group, separately by application cohort and

age. The HSIS design was such that interested families applied to one of 383 Head Start centers

and were either offered a seat there or turned away. The probability applicants were offered a

place in Head Start varies by center, but estimates that control for center dummies are similar

to those reported here.11

Conventional 2SLS estimates of the effects of Head Start enrollment using random assign-

ment to instrument a dummy for Head Start enrollment appear in the first two columns of

Table 1. These show that randomly assigned offers of a Head Start seat boosted Head Start

enrollment by 68 percentage points. The 2SLS estimate generated by this first stage suggests

Head Start enrollment yielded an achievement gain of 0.25 standard deviations; this replicates

results from a comparable specification reported in Kline and Walters (2016) Table VIII. As in

Kline and Walters (2016), these estimates control for dummies indicating applicant sex, race,

Spanish language use, teen mother, mother’s marital status, presence of both parents in the

home, family size, special education status, income quartile dummies, and a cubic function of

baseline scores.

In the context of our HSIS analysis, SLATE and 2SLS estimators differ in two ways: (i)

SLATE instrument Z̃ is centered using a nonlinear model for E[Z|X] (our applications specifies

probit), while 2SLS uses a linear model to control for covariates; (ii) SLATE marginalizes

covariate-specific reduced-form and first-stage estimates in the numerator and denominator of

(8) using inverse propensity score weighting, while 2SLS implicitly averages covariate-specific

LATEs, weighting these by the conditional variance of first-stage fitted values. In other words,

the 2SLS weighting function estimates (or approximates) the variance of E[D|Z,X] given X

(Angrist and Imbens, 1995).

Estimates of the overall switching probability and of SLATE, reported in columns 3 and 4 of

11Applicants are coded as enrolling in Head Start if they enrolled any time between assignment and test-taking.
Competing preschool enrollment is determined from parent and provider interviews. Kline and Walters (2016)
details the analysis sample further.
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Panel A in Table 1, are virtually indistinguishable from the 2SLS estimates reported in the first

two columns. The similarity here reflects the fact that E[D|Z,X] and the assignment propensity

score, E[Z|X], vary little with X. This scenario makes the 2SLS conditional-variance weighting

scheme over covariate-specific causal effects inconsequential.12 κ∗-based estimates of SLATE,

computed using Theorem 2.3 and reported in Panel B of Table 1, also equal the corresponding

2SLS estimates up to reported precision.

The restrictions on Head Start response types described in Section 2.2 satisfy IOS. Given

RIO, these restrictions imply a CCEF with three values, generating distinct causal effects for

two types of switchers conditional on X. In particular, assuming average Head Start outcomes

conditional on X are the same for the two switcher types, the CCEF is a function of T and X

only. This CCEF is identified by the IV estimands in Theorem 2.7(i). Provided the uncondi-

tional version of RIO given in (24) holds, the marginalized-over-covariates CCEF is identified

by the IV estimands in Theorem 2.7(ii).

Marginalized CCEF estimates computed from the sample analog of the IV estimands in

Theorem 2.7(ii), reported in Panel A of Table 1, indicate children in Head Start have the highest

achievement levels, with average test scores of 0.24 standard deviations. This is followed by the

average achievement of children in competing preschools at 0.094, with children in home care

scoring well below the scores of children enrolled in either type of preschool. These estimates

appear (along with standard errors) in column 5 of Table 1. As can be seen in column 7 of

the table, roughly 24% of Head Start applicants are switchers drawn from competing preschool

programs, while 44% are switchers drawn from home care. These quantities amount to 35%

and 65% of all switchers, respectively.

Estimated causal effects of Head Start enrollment differ markedly across switcher types.

The estimates in column 8 of Panel A in Table 1 indicate Head Start boosts achievement by

roughly 0.14 for children drawn from competing programs, while gains for children switching

in to Head Start from home care are estimated to be over twice as large at 0.31. Estimated

Head Start effects for both switcher types are significantly different from zero; these estimates

are also significantly different from each other. While qualitatively similar to the estimates of

switcher-specific effects reported in Kline and Walters (2016), our estimates of these parameters

are much more precise. The Kline and Walters (2016) control function estimates of the effect

of Head Start for children drawn from competing programs aren’t significantly different from

zero, while we obtain an estimate of roughly 0.14 with a standard error around 0.054 for this

group.13

IV estimates of SLATE and the CCEF are compatible in the sense that SLATE is a type-

share weighted average of CCEF-implied causal effects for all response types. Appendix Lemma

A.5 establishes this equivalence for SLATE and CCEF parameters, for the corresponding IV

estimands, and for IV estimates of SLATE and the CCEF (assuming these are constructed

using the same estimated propensity score). Consistent with this, the SLATE estimate of 0.25

122SLS weights can be written V (E[D|Z,X]|X), where V (·|X) denotes conditional variance. When the first
stage is additive in X and Z, this is proportional to V (Z|X). Blandhol et al. (2022) highlights the fact that convex
2SLS weighting requires either saturated covariate control or a correct model for the assignment propensity score.

13Standard errors for estimates of E[Y ∗(h)−Y ∗(c)|T ∗ = (c, h)] in Kline and Walters (2016) Table VIII, labeled
“subLATEs”, range from 0.15−0.47. Feller et al. (2016) distinguishes switcher-specific effects using a parametric
Bayesian framework, focusing on an outcome different from that examined here and in Kline and Walters (2016).
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in column 4 of Table 1 equals .238 × .136 + .443 × .312 divided by an overall probability of

switching estimated at 0.68.

Estimates generated by minimizing the sample analog of the κ⋆-weighted least squares mini-

mand in Theorem 2.8 are similar to the corresponding IV estimates (using a CCEF specification

with additive control for covariates). In particular, κ⋆-based estimates of the CCEF and the

corresponding causal effects by switcher type, reported in Panel B of Table 1, show the same

order of achievement levels and much larger Head Start gains for children drawn from home

care than for children drawn from competing preschool programs.14 The κ⋆-based treatment

effect estimated for switchers from competing preschools exceeds the corresponding IV estimate,

though only by about one standard error. Estimates of the CCEF in Panel B are more precise

than those in Panel A, though standard errors for the two pairs of estimated treatment effects

are close.

The κ⋆-weighted estimand in Theorem 2.8 facilitates estimation of CCEF models allowing

for interactions between switcher type and covariates. These estimates can then be transformed

into causal effects using formula (19) under RIO or (28) under ARIO. In the context of Head

Start, for instance, we’d like to know whether differences in impact across covariate groups

are similar for both switcher types and whether differences in impact by type are similar across

covariates. Such interactions are easily explored through restrictions on a CCEF approximation,

F (T,X;β), identified by κ⋆-weighting. This can be more straightforward than an IV strategy

that estimates points in the support of C(T,X) one at a time. In our application, κ⋆-weighting

also yields a precision gain for estimates of the CCEF. This likely reflects the fact that the

weighting estimator models CCEF dependence on covariates while the IV estimator does not.

Many evaluations of education interventions report differences in impact by sex.15 CCEF

estimates allowing differences in Head Start impact by sex suggest Head Start produces larger

achievement gains for girls than for boys. These estimates appear in Panel A of Figure 1, which

graphs estimated treatment effects separately by sex within switcher types. Sex differences

in impact are around .16 for both types, though only the difference in impact for switchers

from home care clears 10% significance. Differences in impact by whether English is the main

language at home, graphed in Panel B of the figure, are more mixed. Gains for switchers

from home care are largest for English-speakers (a marginally significant gap of around 0.21).

But estimates for switchers from competing programs are similar for the two language groups.

Finally, differences in impact by switcher type are similar in three out of four demographic

groups. Statistical tests of whether differences in impact by switcher type differ by sex and

language fail to reject the null.

14To compute the weights and dependent variables used in Theorem 2.8, propensity score E[Z|X] is estimated
by probit and P (T |Z,X) is estimated using multinomial probit. Probabilities P (T,Z|X) and P (T |X) used to
construct the terms in (34) are obtained by manipulating these estimates. Both probit specifications are additive
in explanatory variables. Standard errors and the p-value in Panel B come from a cluster bootstrap procedure
(clustering on center) detailed in Appendix A.3.

15For instance, Angrist and Lavy (2009) finds high school girls respond more than boys to financial incentives,
while Gray-Lobe et al. (2023) reports larger long-term preschool effects for boys.
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3.2 Multiple Mediators of Financial Aid Effects

Does post-secondary financial aid boost degree completion or simply transfer resources to stu-

dents who would earn degrees anyway? This question motivated a large randomized trial that

allocated full grant funding to public college and university students in Nebraska. In the trial, aid

awards came from the Susan Thompson Buffett Foundation (STBF) Buffett Scholars program.

Buffett Scholarships fund roughly 11% of Nebraska public university and college enrollment.

A key outcome in this research, results of which are reported in Angrist et al. (2022), is BA

completion.

Among STBF aid applicants who indicated a desire to attend four-year programs, STBF

awards boosted BA completion in the treatment group by around eight percentage points. Since

awards were randomly assigned (with groups or strata), this overall impact is easily estimated.

It’s harder to identify the mechanisms explaining why grant aid matters. On one hand, STBF

awards might help aid recipients who’ve enrolled in a four-year degree programs stay on track,

perhaps by reducing the need to work while in school. Grant aid also reduces student loans,

thereby reducing worries related to increasing indebtedness while in school. Alternatively, or

in addition, grant aid might encourage or allow Buffett scholars who would otherwise attend

two-year schools or remain unenrolled to embark on a four-year program. Angrist et al. (2022)

refers to this channel for aid effects as early engagement.

The early-engagement hypothesis is assessed here using a model that allows for two treatment

variables that might mediate BA completion. The first treatment mediator indicates students

who borrowed little in their first-year financial aid package (STBF awards are roughly constant

across years for students in good academic standing). The second indicates Buffett applicants

strongly engaged with a four-year degree program in the first year after random assignment.

STBF awards affect both channels, reducing loans and boosting early engagement. We’d like to

know whether aid awards boost BA completion when loans are reduced without changing early

four-year engagement, or whether increased early engagement is necessary for loan reduction

to have an impact.16

For the purposes of this investigation, loan reduction is coded as a dummy variable, denoted

by D, indicating students who borrowed 1000$ or less as part of their first-year financial aid

package. Roughly 46% of controls borrowed less than 1000$ in the first year after random

assignment. STBF awards boosted this low-loan rate by roughly 25 percentage points. Early

four-year engagement is coded as a dummy variable, denoted by S, indicating students who

completed at least 24 credits at a four-year school (the STBF definition of a full course load) in

the year after random assignment. STBF awards boosted this by roughly 10 percentage points,

with a control-group base of 60%.17

This setting can be described by treatment vector T = (D,S) ∈ {0, 1} × {0, 1}. Response

types T ∗(z) = (D∗(z), S∗(z)) are indexed against Bernoulli instrument Z indicating randomly

assigned STBF awards. We distinguish D and S effects by restricting T ∗. Specifically, we

16Angrist et al. (2022) explores an alternative version of the early engagement hypothesis, without allowing
for direct loan effects.

17Our analysis is limited to applicants who listed a four-year school as their first choice on the STBF aid appli-
cation. In this sample, mean first-year loan amounts are $1366 and $4282 for treatment and control applicants,
respectively.
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consider the identifying power ofD-dominance, a restriction discussed in Navjeevan et al. (2023).

In this context, D-dominance says that:

1. Awards weakly reduce student loans;

2. Awards weakly increase early engagement;

3. Awards increase early engagement only if they reduce student loans.

D-dominance therefore consists of monotonicity restrictions for each underlying treatment while

also requiring awards to reduce loans if they are to boost early engagement. In other words,

awards without financial consequences do not change behavior. This restriction is supported

by the timing of STBF awards, which are announced before students commit to program type

or course load.18 In the notation of Assumption 1.2, D-dominance means:

M ≡ {T ∗ : D∗(1) ≥ D∗(0), S∗(1) ≥ S∗(0), and D∗(1) = D∗(0) ⇒ S∗(1) = S∗(0)}.

Under D-dominance, IOS is satisfied. This can be seen by recoding the multinomial (D,S)

treatment into a scalar treatment variable, T , as follows:

T = 0 if (D,S) = (0, 0)

T = 1 if (D,S) = (1, 0)

T = 2 if (D,S) = (0, 1)

T = 3 if (D,S) = (1, 1).

D-dominance allows 3 types of switchers, T ∗ ∈ {(0, 1), (2, 3), (0, 3)} and four types of stayers,

one for each value of T . IOS is satisfied because the sets in(0), out(1), in(2), out(3) are empty.

Because IOS holds, Theorem 2.3(i) identifies SLATE by instrumenting V = 1{T ∈ Ti} +

1{T ∈ Tio}Z with Z̃. Moreover, since Tio is empty, auxiliary treatment variable V simplifies

to

V = 1{T ∈ Ti} = D.

The second equality here is a consequence of the fact that Ti contains treatment values T = 1

and T = 3, and these are observed if and only if D = 1. In this application, SLATE is a weighted

average of causal effects for the three switcher types observed under D-dominance. Specifically,

SLATE averages effects of loan reduction without early engagement, effects of loan reduction for

students who engage early regardless of award status, and an effect of combined loan reduction

and early engagement. With covariates, SLATE averages over the covariate distribution as well

as over these three switcher types.

As can be seen in Panel A of Table 2, the estimated (linear) first stage effect of Buffett awards

on treatment variable D, computed with saturated controls for randomization strata, is around

0.25. The corresponding 2SLS estimate, reported in column 3 of Table 2, is roughly 0.33.19

As noted in our discussion of 2SLS for Head Start, with saturated controls for discrete strata

18Nibbering and Oosterveen (Forthcoming) uses a version of this assumption to bound the effect of going from
(0, 0) to (1, 1) for all compliers.

19STBF awards were offered at different rates conditional on application year and the school applicants iden-
tified as the one they aspire to attend. These variables define randomization strata.
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(or when the assignment propensity score is additive), a conventional 2SLS estimate averages

strata-specific conditional IV estimands using a conditional-variance weighting scheme.

Estimates of switching probabilities and SLATE, reported in columns 4-5 of Panel A in

Table 2 are similar to the corresponding linear first stage and 2SLS estimates. These estimates

are computed as described in Appendix A.3. Briefly, estimated SLATE is the sample analog

of semiparametric IV estimand (8), with E[Z|X] estimated by probit. Estimated P (T ∗ ∈ S) is

the denominator of this IV estimate. Standard errors for these estimates are computed using

a generalized method of moments (GMM) procedure that accounts for sampling error in the

estimated E[Z|X]; see Appendix A.3 for details. In principle, 2SLS estimates differ from the

sample analog of (8) by virtue of the weights used to marginalize over X. In practice, the award

propensity score is close to one-half across strata. This and the fact that V = D likely explains

the similarity of 2SLS and SLATE estimates in Table 2.

Results with baseline covariates added to the set of randomization strata controls appear in

Panel B of Table 2 (the additional controls are dummies for the baseline characteristics listed

in the table note). Covariates here are additive, meaning conditioning vector X in this case

does not amount to a saturated parameterization. The addition of numerous baseline controls

leaves both 2SLS and SLATE estimates virtually unchanged. This likely reflects the fact that,

conditional on randomization strata, the instrument is independent of baseline covariates.

SLATE for effects of STBF financial aid is arguably harder to interpret than SLATE for

Head Start. This reflects the fact that SLATE in the aid application averages the effects of two

distinct treatments (D and S), while SLATE for Head Start averages effects of a common Head

Start treatment relative to two possible counterfactuals. But because IOS identifies the CCEF,

we can potentially distinguish switcher-specific effects. This distinction turns in part on RIO,

which in this case says that:

E[Y ∗(0)|T ∗ = (0, 1)] = E[Y ∗(0)|T ∗ = (0, 3)]

E[Y ∗(3)|T ∗ = (2, 3)] = E[Y ∗(3)|T ∗ = (0, 3)].

As with Head Start, these restrictions equate potential outcome means at shared levels for

switcher types that access these levels. For instance, RIO requires average Y ∗(0) to be the

same for switcher types T ∗ = (0, 1) and T ∗ = (0, 3) since both switch out of 0. At the same

time, RIO allows causal effects to differ for all three switcher types.20

The distribution of T , reported in column 2 of Table 3, shows that most STBF applicants

either had reduced loans or engaged early with a four-year degree program. For many, however,

only one or the other of these mediators is switched on, and roughly 12% neither reduced

loans nor engaged early. CCEF estimates for each of the four treatments, computed using

the IV estimands defined in Theorem 2.7, appear in column 3 of the table. Early engagement

is associated with a high probability of four-year degree completion regardless of borrowing

behavior. But students who borrow heavily without engaging (for whom (D,S) = (0, 0)) are

20The two RIO restrictions can be benchmarked against the range of CCEF specifications possible in this
context. Three switcher types with two potential outcome levels identified for each yields six distinct potential
outcome means when unrestricted. The most restrictive homogeneity assumption equates all of these for a total
of five restrictions and treatment effects constant at zero. Non-zero constant effects imposes two restrictions on
a particular linear combination of CCEF levels.
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substantially more likely to earn a BA than are students who borrow little without engaging

((D,S) = (1, 0)). Without covariates, the estimated rate of degree completion in the latter

group is negative, though small and imprecise. The addition of baseline covariates moves this

parameter estimate to a positive 0.023 while also increasing precision.

The distribution of switcher types indicates that roughly 10% of STBF applicants are in-

duced by awards to both reduce loans and engage early. Estimated switching probabilities

appear in column 5 of Table 3. Switchers induced to borrow less while engaging in a BA

program whether or not they receive STBF awards are more prevalent, amounting to roughly

17% of the applicant population. But loan reduction without engagement is rare: the esti-

mated prevalence of switcher types reducing loans without engagement is −0.025. It should be

noted, however, that the fact that the estimate here is negative may signal problems with either

D-dominance or with the independence restriction invoked in Assumption 1.1(iii).

Differences in CCEF levels for each switcher type give switcher-specific causal effects. Causal

effects of STBF awards, reported in column 6 of Table 3, are broadly consistent with the early-

engagement hypothesis. Estimates for switcher type T ∗ = (0, 3) imply that STBF applicants

induced by awards both to borrow less and to engage early saw their odds of degree completion

increase by a little over 60 percentage points—relative to 0.22 when both channels are switched

off. Induced loan reduction alone, however, did little for switcher type T ∗ = (2, 3), the group

of applicants who engage early with or without the benefit of an STBF award. These estimates

are reasonably tight zeros, with standard errors of 0.036. As in Table 2, the addition of baseline

covariates matters little for the estimates CCEF.

While the estimates for switcher types T ∗ = (0, 3) and T ∗ = (2, 3) are precisely estimated

and offer a sharp contrast, results for switcher type T ∗ = (0, 1) are muddier. Estimates for this

group, which reduces borrowing without engaging early, are negative though not significantly

different from zero. The imprecision of these estimates reflects the paucity of switcher switcher

type T ∗ = (0, 1). It seems noteworthy that control for covariates moderately boosts the precision

of the IV estimate of the T ∗ = (0, 1) effect, though the estimate remains imprecise.

3.3 Ordered Models for Childbearing Effects

Do falling fertility rates explain rising female labor force participation in the twentieth century?

Births are strongly negatively correlated with mothers’ work and earnings, but these correla-

tions might reflect selection bias. Specifically, mothers in larger families may be predisposed to

work less regardless of family size. Angrist and Evans (1998) tackles selection bias with two in-

strumental variables. The twins instrument indicates mothers who experienced multiple second

births, while a samesex instrument indicates same-sex sibships at births one and two. Twin

births increase family size sharply for the 1% of mothers who have twins, while samesex sibship

pairs, which occur in roughly half of the population having two children, motivate further child-

bearing among parents who seek a diversified sibling-sex portfolio. Assuming twins and samesex

instruments satisfy Assumption 1.1, they arguably identify causal effects of childbearing.

Angrist and Evans (1998) codes treatment as a dummy variable indicating mothers with

more than two children in a sample of mothers having at least two. Among women with more

than two children, however, fertility instruments can shift the distribution of family size at
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parities above two. Evidence on this point includes Angrist et al. (2010), which shows that

the event of a multiple second birth moves some Israeli mothers from three to more than three

children as well as from two to more than two. Similarly, samesex sibships at births one and

two prompt some mothers to have more than three children in pursuit of a mixed-sex sibship.

As first shown in Angrist and Imbens (1995), instrument-induced changes in the distribution of

treatment can make IV estimates based on a Bernoulli treatment variable misleading.

These considerations lead us to consider identification strategies for effects of an ordered

treatment, namely the number of children rather than a dummy for more than two. In this

case, treatment T ∈ T ≡ {2, . . . , 5}, where T = 5 for women with five or more children (a

rare event in the Angrist and Evans (1998) samples). For both twins and samesex instruments,

potential treatment is assumed to satisfy monotonicity, that is,

T ∗(1) ≥ T ∗(0).

This restriction allows six possible switcher types:

S = {(2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}.

An ordered probit model of treatment assignment reduces the number of latent response

types, thereby identifying SLATE and, possibly, the CCEF. To this end, treatment status is

assumed here to follow (15) with π > 0 and a normal error, extended to five levels of treatment.21

Ordered probit first-stage estimates for twins and samesex instruments appear in Table 4.

Estimates in even-numbered columns are from models that include as covariates mother’s age,

age at first birth, ages of first two children, and indicators for male first and second births,

Black, Hispanic, and other race. With or without covariates, both instruments are estimated

to induce large, precisely-estimated increases in family size. The first-stage coefficient for twins

exceeds that for samesex by almost an order of magnitude.

The first-stage estimates in Table 4 rule out twins-induced switchers from two to five. This

follows from the fact that type T ∗ = (2, 5) requires cutoffs such that ε ≤ c3 and π + ε > c5.

This event has positive probability in the ordered probit model if and only if π > c5− c3, which

doesn’t hold for the estimates in columns 1-2. This leaves five switcher types for twins. On the

other hand, since the estimated samesex π is less than than any consecutive difference in cutoffs,

samesex sibships induce at most one additional child. This leaves up to three samesex switcher

types, (2, 3), (3, 4), and (4, 5). Lemma A.4 generalizes these observations, characterizing the

set of switcher types for any latent-index ordered choice model where the latent variable has

sufficiently large support.

As noted in Section 2.1, an ordered probit assignment scheme satisfies ISP. SLATE for both

instruments is therefore identified and given by the IV estimand in Theorem 2.2. Formulas

for auxiliary treatment variable V for each instrument follow from the first-stage estimates in

Table 4 and from Lemma A.4 in Appendix A.2. The estimated π for twins exceeds the largest

21This specification is in the spirit of Kline and Walters (2016), which uses a multinomial probit first stage in
a model identified by a control function.
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difference in consecutive ordered probit cutoffs. Lemma therefore A.4(ii) implies:

V = 1{T ∈ Ti}+ 1{T ∈ Tio}Z

= 1{T = 5}+ 1{2 < T < 5}Z

for twins. At the same time, since the estimated samesex π is smaller than the minimum

difference in consecutive ordered probit cutoffs, Lemma A.4(iii) says that samesex SLATE is

identified by instrumenting V = T .22

Conventional 2SLS estimates of the effect of number of children on mothers’ weeks worked,

reported in the first two columns of Table 5, range from around −3.2 when estimated using

twins and to roughly −4.4 when estimated using samesex. This difference in magnitudes mirrors

that reported in Angrist and Evans (1998) and discussed in Angrist and Fernandez-Val (2013).

Outside of a linear constant-effects world, however, it’s unclear whether 2SLS can be seen as

estimating weighted average marginal effects of the effects of additional childbearing. SLATE,

by contrast, averages causal effects over switcher types. For twins, these types consist of a

mix of switchers induced to have 1-2 additional children while samesex switchers increment

childbearing by one child only.

As it turns out, the estimated SLATE for samesex switchers, reported in column 6 of Table

5, is indistinguishable from the corresponding 2SLS estimate. Since V = T for samesex, the only

difference between samesex SLATE and 2SLS is in the weighting scheme used to marginalize

over covariates. But samesex is essentially orthogonal to covariates, so the covariate weighting

scheme here is inconsequential. In contrast with samesex, twins auxiliary treatment variable

V differs from T . Estimated twins SLATE is smaller in magnitude than the corresponding

2SLS estimate. This is explained by the fact that the overall probability of switching for twins,

reported in the first row of column 5 in Table 5, exceeds the corresponding twins first stage.23

Even so, the difference here is only about one standard error using the standard error associated

with either estimate.

The first stage estimates in Table 4 imply that the set of possible switcher types for twins

satisfies IOS. This is a consequence of the fact that π exceeds the largest consecutive difference

in cutoffs, so there are no stayers at treatment levels other than endpoints 2 and 5. At the

same time, since π is positive, no one is switched into 2 or out of 5. The upshot is that the

CCEF for twins switchers is identified under ARIO by either IV as in Theorem 2.7 or using κ⋆

as in Theorem 2.8. ARIO supersedes RIO in this context because Tio contains treatment levels

3 and 4. For these treatment levels, we obtain a pair of CCEF values according to whether

switchers are of a type that has T ∗ ∈ in(t) or of a type that has T ∗ ∈ out(t).

Since two twins switcher types taking values in Tio, ARIO is the relevant homogeneity

22Since π is smaller than any consecutive difference in cutoffs, there are stayers at all treatment levels and
samesex sibships induce one additional child among switchers. Therefore, T ∗(1) − T ∗(0) = 0 for stayers and
T ∗(1) − T ∗(0) = 1 for switchers, which implies ν1(T ) = −ν0(T ) = T satisfy the condition for ISP given in (6).
This in turn means V = ν1(T )Z − ν0(T )(1 − Z) = T in the IV estimand for SLATE.

23Conventional first-stage estimates can be written as a weighted average of the effect of the instrument on
treatment for each switcher type, weighted by the probability of this type. Since switchers types are mutually
exclusive and all types are induced to increase childbearing by at least 1 child, this average should exceed the
estimated overall probability of switching. In this case, however, ordered probit (which we use to determine the
set of switchers S and therefore the formula for V ) generates something higher, a sign the ordered probit model
may be misspecified.
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restriction for identification of the twins CCEF. With five switcher types accessing two levels

each, the twins CCEF has 10 point of support. ARIO imposes four pairwise restrictions on

these:

E[Y ∗(2)|T ∗ = (2, 3)] = E[Y ∗(2)|T ∗ = (2, 4)]

E[Y ∗(3)|T ∗ = (3, 4)] = E[Y ∗(3)|T ∗ = (3, 5)]

E[Y ∗(4)|T ∗ = (2, 4)] = E[Y ∗(4)|T ∗ = (3, 4)]

E[Y ∗(5)|T ∗ = (3, 5)] = E[Y ∗(5)|T ∗ = (4, 5)].

Although switcher types T ∗ = (2, 3) and T ∗ = (3, 4) both access T = 3, one type belongs to

in(3) and one type belongs to out(3). ARIO therefore leaves the difference in CCEF values for

this pair unrestricted. Likewise, ARIO imposes no equality restriction on the pair T ∗ = (2, 3)

and T ∗ = (3, 5) and the pair T ∗ = (2, 4) and T ∗ = (4, 5).

Estimates of the CCEF for twins instruments, reported in columns 3-4 of Table 6, show

monotonically declining weeks worked as a function of family size for both switcher types. It’s

noteworthy that alternative estimates of the CCEF are similar at treatment levels common

to types in Tio. For T = 3, for instance, the difference between E[Y ∗(3)|T ∗ ∈ in(3)] and

E[Y ∗(3)|T ∗ ∈ out(3)] is less than a week, while the gap between E[Y ∗(4)|T ∗ ∈ in(4)] and

E[Y ∗(4)|T ∗ ∈ out(4)] is even smaller. As can be seen in column 5 in the table, neither difference

is significantly different from zero in a 5% test.

Table 7 summarizes the implications of Table 6 for individual treatment effects by switcher

type. Estimated treatment effects are largest in magnitude for the two types induced to have

two additional children by twinning, T ∗ = (2, 4) and T ∗ = (3, 5). These estimates, equality of

which is tested in column 4, average −3.1 per child. Estimates for one-child switchers range

from around −2 for T ∗ = (3, 4) to −3.8 for T ∗ = (2, 3) and average −3. A test of equality

for these types, reported in column 4, is also consistent with constant effects. A test of equal

per-child effects for all five switcher types clearly rejects the null hypothesis of full homogeneity.

This is driven by the difference between −1.96 for T ∗ = (3, 4) and the per-child estimate of −3.3

for T ∗ = (2, 4). This difference aside, however, the estimates in Table 7 align around per-child

effects of about −3.

4 Summary and Directions for Further Work

The theoretical framework developed here uses a single instrumental variable to identify aver-

age causal effects in diverse applications involving multifaceted treatments. Our identification

results are founded in part on the concept of instrument-induced switchers, an extension of the

ideas behind Angrist et al. (1996) compliers and Frangakis and Rubin (2002) principal strata.

Switcher treatment status changes in response to instrument assignment. This includes changes

in multinomial, multiple, and ordered treatments.

Our framework leverages restrictions on the distribution of switcher types to identify a

single average causal effect for all switchers, a parameter we’ve dubbed SLATE. We also use

a combination of restrictions on switcher types and average potential outcomes to identify a

general CCEF. The CCEF characterizes average potential outcomes and average causal effects
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for specific switcher types conditional on covariates. SLATE and CCEF parameters are shown

to be identified both by IV estimands and by a weighting scheme that generalizes Abadie (2003)

κ-weights for multiple treatments.

The utility of these results is demonstrated in three applications. Building on Kline and

Walters (2016), we first consider average causal effects of Head Start preschool attendance on

test scores in a setting with multinomial preschool treatments. As in Kline and Walters (2016),

the estimates reported here suggest Head Start generates substantially larger achievement gains

for children drawn into Head Start from home care than for children drawn into Head Start

from competing programs. At the same time, our estimates of Head Start effects for children

who switch into Head Start from competing programs are notably more precise than those

reported in Kline and Walters (2016). Estimates of CCEF specifications allowing for covariate

interactions are easily computed using κ⋆-weighting to estimate parsimonious approximations

to a higher-dimensional CCEF. These show larger gains from Head Start for switchers from

home care than for switchers from competing programs across covariate groups. Moreover,

consistently across switcher types, girls benefit more from Head Start than do boys.

Our second application allows for two distinct pathways through which post-secondary grant

aid boosts BA completion. The resulting estimates suggest early engagement with four-year

college programs is the primary channel by which financial aid boosts degree completion; loan

reduction alone does not seem to matter. The third application identifies and estimates the

CCEF for effects of childbearing, an ordered treatment, on mothers’ labor supply. Estimates of

the CCEF for effects of childbearing on weeks worked show roughly constant and approximately

linear reductions in labor supply of around three weeks per child, across switcher types.

In future work, we plan to extend the framework developed here to exploit multiple in-

struments in models with multinomial and ordered treatments. Much work also remains to be

done regarding estimation and specification testing in these settings. In addition to questions

of efficiency, the homogeneity restrictions (RIO and ARIO) and restrictions on switcher types

like D-dominance seem likely to lead to new tests of key identifying assumptions. These tests

should be useful in a wide range of IV applications.
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Table 1: Estimates of Head Start Effects on Test Scores

2SLS SLATE Causal Effects

Treatment First Stage Estimate P (T ∗ ∈ S) Estimate CCEF Switcher Types P (T ∗ = t∗) Estimate
(1) (2) (3) (4) (5) (6) (7) (8)

Panel A. IV-based estimates

Head Start 0.679 0.250 0.680 0.250 0.230
(0.018) (0.030) (0.018) (0.030) (0.033)

Competing preschools 0.094 (c, h) 0.238 0.136
(0.057) (0.015) (0.054)

Home care -0.081 (n, h) 0.443 0.312
(0.048) (0.020) (0.039)

p-value for impact difference by switcher type 0.012

Panel B. κ⋆-based estimates

Head Start 0.680 0.250 0.238
(0.018) (0.030) (0.024)

Competing preschools 0.043 (c, h) 0.238 0.194
(0.051) (0.015) (0.054)

Home care -0.042 (n, h) 0.443 0.280
(0.034) (0.020) (0.036)

p-value for impact difference by switcher type 0.166

Notes: This table reports 2SLS, SLATE, and CCEF estimates characterizing the effect of Head Start enrollment on test scores in the first
year following random assignment. Parameters are identified by random assignment of Head Start offers. Treatment variable T ∈ {n, c, h}
denotes no preschool enrollment (n), other center enrollment (c), or Head Start (h). Column 1 reports conventional first stage estimates,
with the corresponding 2SLS estimates instrumenting 1{T = h} shown in column 2. SLATE averages effects for the two switcher types
(T ∗) listed in column 6. SLATE (column 4) and the overall switching probability (column 3) in Panel A are estimated using Theorem 2.2
and setting V = 1{T = h}, as described in Appendix A.3. SLATE (column 4) and the overall switching probability (column 3) in Panel
B are estimated using Theorem 2.3. The CCEF (column 5) in Panel A is estimated by IV using Theorem 2.7, as described in Appendix
A.3. The CCEF (column 5) in Panel B is estimated by κ⋆-weighting using Theorem 2.8, as described in Appendix A.3. Column 6 lists
possible switcher types and column 7 shows the estimated probability of switcher types; these are computed using Lemma 2.2 as described
in Appendix A.3. Column 8 reports estimated causal effects on test scores for each type, computed from the CCEF estimates in column
5. The p-value in Panel B is computed using the cluster bootstrap (clustering on center) as described in Appendix A.3. All models control
for applicant sex, race, Spanish language use, teen mother, mother’s marital status, presence of both parents in the home, family size,
special education status, income quartile dummies, and a cubic function of baseline scores. The propensity score is estimated using probit.
P (T = t|Z,X) is estimated using multinomial probit. Standard errors in columns 1-2 (reported in parentheses) cluster on center. Standard
errors in columns 3-5 and 7-8 (Panel A) are computed as described in Appendix A.3, also clustering on center. Standard errors in columns
5 and 8 in Panel B are computed using a cluster bootstrap (1,000 simulations) detailed in Appendix A.3. N = 3, 571.
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Figure 1: Estimates of Head Start Effects on Test Scores by Sex and Primary Language
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Notes: This figure graphs estimated causal effects of Head Start on test scores by switcher type and sex (in Panel

A) and by switcher type and language spoken at home (in Panel B). Causal effects are computed from a CCEF

estimated by κ⋆–weighting using Theorem 2.8, as described in Appendix A.3. P-values are for tests of differences in

impact by demographic group within switcher types. Confidence intervals and p-values are computed using a cluster

bootstrap (clustering on center), as discussed in Appendix A.3. The propensity score is estimated using probit;

P (T = t|Z,X) is estimated using multinomial probit. All models control for applicant sex, language spoken at home,

race, teen mother status, mother’s marital status, presence of both parents, family size, special education status,

income quartile dummies, and a cubic function of baseline scores. N = 3,571.
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Table 2: Estimates of Financial Aid Effects on BAs Pooling Switchers

2SLS (instrumenting D) SLATE (V = D)

Instrument Switcher Types First Stage Estimate P (T ∗ ∈ S) Estimate

(1) (2) (3) (4) (5)

Panel A. Randomization strata controls

Aid award (0,1), (2,3), (0,3) 0.245 0.329 0.246 0.325

(0.012) (0.050) (0.012) (0.049)

Panel B. Baseline covariates + randomization strata controls

0.245 0.346 0.246 0.342

(0.011) (0.047) (0.011) (0.047)

Notes: This table reports 2SLS and SLATE estimates for the effects of financial aid on BA completion.

Parameters are identified by the random assignment of STBF aid awards. Treatment T ∈ {0, 1, 2, 3}
recodes the pair of Bernoulli treatments (D,S) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} into four levels, where D

indicates reduced loans and S indicates early engagement. 2SLS estimates use aid offers to instrument

D. SLATE averages effects for the three switcher types (T ∗) listed in column 1. SLATE (column 5) and

overall switching probability (column 4) are estimated using Theorem 2.2, as described in Appendix A.3,

setting V = D. Baseline covariates include dummies for Pell eligibility, white race, above-median high

school GPA, above-median ACT, community college alternate, Omaha resident, and first-generation

college student. The propensity score is estimated using probit. 2SLS standard errors, reported in

parentheses, are robust. Standard errors in columns 4-5 are computed as described in Appendix A.3.

N = 6, 845.
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Table 3: Estimates of the CCEF for Aid Effects on BA Completion

Causal Effects

Treatment Level (D,S) P (T = t) CCEF Switcher Type P (T ∗ = t∗) IV Estimates
(1) (2) (3) (4) (5) (6)

Panel A. Randomization strata controls

0 (0, 0) 0.124 0.223 (0, 3) 0.103 0.626
(0.049) (0.012) (0.053)

1 (1, 0) 0.238 -0.005 (0, 1) -0.025 -0.228
(0.276) (0.010) (0.281)

2 (0, 1) 0.304 0.790 (2, 3) 0.168 0.059
(0.030) (0.011) (0.036)

3 (1, 1) 0.334 0.849
(0.020)

Panel B. Baseline covariates + randomization strata controls

0 (0, 0) 0.124 0.222 (0, 3) 0.107 0.630
(0.048) (0.011) (0.052)

1 (1, 0) 0.238 0.023 (0, 1) -0.028 -0.200
(0.238) (0.010) (0.244)

2 (0, 1) 0.304 0.787 (2, 3) 0.167 0.065
(0.030) (0.011) (0.036)

3 (1, 1) 0.334 0.852
(0.020)

Notes: This table reports the estimated CCEF and corresponding treatment effects for effects of reduced loans
(D) and early engagement (S) on BA completion. Parameters are identified by the random assignment of STBF
aid awards. Column 2 gives sample proportions at each treatment level. Column 3 shows the CCEF, estimated by
IV using Theorem 2.7, as described in Appendix A.3. Column 4 lists possible switcher types under D-dominance
and column 5 shows the estimated probability of switcher types; these are computed as described in Appendix A.3.
Column 6 reports estimated causal effects on BA completion for each type, computed from the CCEF estimates
in column 3. Baseline covariates are as for Table 2. The propensity score is estimated using probit. Standard
errors for the estimates in columns 3, 5, and 6 are computed as described in Appendix A.3. N = 6, 845.
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Table 4: Ordered Probit First-Stage Estimates for Twins & Samesex Instruments

Twins Samesex

Parameter (1) (2) (3) (4)

π 1.084 1.315 0.147 0.170
(0.0114) (0.0150) (0.0047) (0.0049)

Marginal Effects 0.870 0.901 0.089 0.087
(0.0106) (0.0119) (0.0029) (0.0025)

c3 0.314 -0.308 0.379 -0.210
(0.0025) (0.0251) (0.0035) (0.0252)

c4 1.324 0.886 1.385 0.976
(0.0035) (0.0252) (0.0044) (0.0253)

c5 2.009 1.708 2.068 1.795
(0.0055) (0.0255) (0.0061) (0.0257)

c4 − c3 1.010 1.193 1.005 1.185

c5 − c3 1.695 2.015 1.689 2.004

c5 − c4 0.685 0.822 0.684 0.819

max ct+1 − ct 1.010 1.193 1.005 1.185

min ct+1 − ct 0.685 0.822 0.684 0.819

Covariates No Yes No Yes

Notes: This table reports estimates of the ordered choice model detailed
in Lemma A.4, assuming ε is normally distributed. The dependent vari-
able is the number of children (T ) for mothers of two or more. The second
row of the table reports average marginal effects of each instrument on
E[T |Z,X]. Data are from the Angrist and Evans (1998) 1980 Census
sample of 254,652 married mothers. Treatment T ∈ {2, 3, 4, 5} is the
number of children censored at 5. Controls are age, age at first birth, age
of first two children (in quarters), and indicators for boy 1st, boy 2nd,
black, hispanic, and other race. Robust standard errors are reported in
parenthesis.

Table 5: Estimates of Childbearing Effects Pooling Switchers Using Twins & Samesex Instruments

2SLS SLATE

Instrument Switcher Types First Stage Estimate V P (T ∗ ∈ S) Estimate
(1) (2) (3) (4) (5) (6)

Twins (2, 3), (2, 4), (3, 4), 0.824 -3.22 1{T = 5} 0.976 -2.71
(3, 5), (4, 5) (0.0116) (0.535) +1{2 < T < 5}Z (0.0005) (0.455)

Samesex (2, 3), (3, 4), (4, 5) 0.083 -4.36 T − 2 0.083 -4.36
(0.0026) (1.007) (0.0026) (1.008)

Notes: This table reports 2SLS and SLATE estimates of effects of childbearing on weeks worked. Parameters are identified
using twins and samesex instruments. Treatment T ∈ {2, 3, 4, 5} is the number of children censored at 5. 2SLS estimates
use twin and samesex dummies to instrument T . SLATE averages effects for the three switcher types listed in column 1;
switcher types follow from Lemma A.4(iv) and the ordered probit estimates in Table 4. Formulas for V in Column 4 follow
from Lemma A.4(ii) for twins and A.4(iii) for samesex. SLATE (column 5) and overall switching probabilities (column 4)
are estimated using Theorem 2.2, as described in Appendix A.3. Covariates and sample are as for Table 4. The propensity
score is estimated using probit. 2SLS standard errors, reported in parentheses, are robust. The probability of switching and
SLATE standard errors are computed as described in Appendix A.3. N = 254, 652.
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Table 6: The CCEF for Childbearing Effects on Weeks Worked

CCEF

Treatment Level Switcher Types P (T = t) in(t) out(t) col 2− col 3
(1) (2) (3) (4) (5)

2 (2, 3), (2, 4) 0.619 ∅ 21.1 −
(0.06)

3 (2, 3), (3, 4), (3, 5) 0.285 17.3 16.4 0.918
(0.52) (0.08) (0.5240)

4 (2, 4), (3, 4), (4, 5) 0.072 14.4 14.0 0.438
(1.00) (0.15) (1.0115)

5 (3, 5), (4, 5) 0.023 10.6 ∅ −
(2.86)

Notes: This table reports the estimated CCEF for effects of childbearing on weeks worked.
Parameters are identified using the twins instrument. Treatment T ∈ {2, 3, 4, 5} is the number
of children censored at 5. Column 1 reports switcher types getting into or out of t. Column
2 gives sample proportions at each treatment level. Columns 3 and 4 report CCEF estimates
for switchers in the sets in(t) and out(t); these sets are obtained from Lemma A.4 and the
ordered probit estimates in Table 4. CCEF is estimated by IV using Theorem 2.7, as described in
Appendix A.3. Column 5 computes and tests CCEF differences for levels common to in(t) and
out(t). The propensity score is estimated using probit. Covariates and sample are as for Table 4.
Standard errors for the estimates in columns 3, 4, and 5 are computed as described in Appendix
A.3. N = 254, 652.

Table 7: CCEF-Derived Estimates of Effects of Childbearing on Weeks Worked

Average Effects

Switcher Type Causal Effect Per-child Effect Switchers Included Average Equality Test
(1) (2) (3) (4)

(2, 3) -3.75 same as (1) (2, 3), (3, 4), (4, 5) -3.03 0.296
(0.521) (1.020) df=2

(3, 4) -1.96 same as (1) (2, 4), (3, 5) -3.10 0.782
(1.004) (0.756) df=1

(4, 5) -3.39 same as (1) all switchers -3.06 0.000
(1.004) (0.911) df=4

(2, 4) -6.63 -3.31
(1.002) (0.501)

(3, 5) -5.79 -2.89
(2.861) (1.431)

Notes: This table reports estimates of causal effects of childbearing on weeks worked. Parameters are identified using
the twins instrument. Treatment T ∈ {2, 3, 4, 5} is the number of children censored at 5. Switcher types follow from
Lemma A.4(iv) and the ordered probit estimates in Table 4. Column 1 reports causal effects estimates based on the
CCEF estimates in Table 6. Column 2 reports per-child effects. Column 3 reports, respectively, average incremental
effect for switcher types (2, 3), (3, 4), and (4, 5), average of per-child effects for two-child switchers, and average of
per-child effects for all switchers; corresponding standard errors are in parentheses. Column 4 reports the p-value for
the test that the underlying effects in the corresponding row in column 3 are all equal. Covariates and sample are as
for Table 4. The propensity score is estimated using probit. Standard errors are computed as described in Appendix
A.3. N = 254, 652.
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A Appendix

Identification and estimation results are proved in separate appendices.

A.1 Proofs for Section 1 and 2

A.1.1 Proof of Proposition 1.1

Using that Y =
∑

t∈T Y ∗(t)1{T = t} and T = T ∗(0)(1− Z) + T ∗(1)Z, we can obtain that

E[Y 1{T = t}1{T ∗ = t∗}|X] = E[Y ∗(t)1{t∗(Z) = t}1{T ∗ = t∗}|X] (44)

= E[Y ∗(t)1{T ∗ = t∗}|X]P (t∗(Z) = t|X),

for any t ∈ {t∗(0), t∗(1)}, where the second equality follows from the law of iterated expectations

and Lemma A.1 in Navjeevan et al. (2023). Furthermore, by the same arguments we also have

E[1{T ∗ = t∗}1{T = t}|X] = E[1{T ∗ = t∗}|X]P (t∗(Z) = t|X). (45)

Therefore, the theorem follows from dividing (44) by (45) and employing that P (t∗(Z) = t|X) >

0 for any t ∈ {t∗(0), t∗(1)} due to 0 < P (Z = 1|X) < 1.

A.1.2 Proof of Lemma 2.1

First note that since P (T ∗ ∈ M) = 1 by Assumption 1.2(i), for any z ∈ {0, 1} it follows

E[Y |Z = z,X] =
∑
t∗∈M

E[Y 1{T ∗ = t∗}|Z = z,X] (46)

=
∑
t∗∈M

E[Y ∗(t∗(z))1{T ∗ = t∗}|Z = z,X] =
∑
t∗∈M

E[Y ∗(t∗(z))1{T ∗ = t∗}|X]

where the second equality follows from Assumption 1.1(ii) and the third from (Y ∗, T ∗) being

independent of Z conditionally on X. Therefore, since t∗(1) = t∗(0) for any t∗ ∈ M \ S, result
(46) and the law of iterated expectations yield

E[E[Y |Z = 1, X]− E[Y |Z = 0, X]] =
∑
t∗∈S

E[(Y ∗(t∗(1))− Y ∗(t∗(0)))1{T ∗ = t∗}] (47)

= E[τ(T ∗)1{T ∗ ∈ S}],

which establishes the first claim of the lemma. The second claim is immediate by dividing both

sides of (47) by P (T ∗ ∈ S), which is positive by Assumption 1.2(ii).

A.1.3 Proof of Theorem 2.1

First define the function ℓ(T ∗) ≡ 1{T ∗ ∈ S} and observe that by definition we have

P (T ∗ ∈ S) = E[ℓ(T ∗)]. (48)

Corollary 4.3 in Navjeevan et al. (2023) provides necessary and sufficient conditions for the

identification of moments with the structure in (48). In order to apply said Corollary, let

UM denote the uniform distribution on M and set µ ≡ {PY |X}dUMPZPX . By lemma A.1,
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PY ∗T ∗ZX ≪ µ and therefore Assumption 1.1 implies that Assumptions 2.1 and 2.2 of Navjeevan

et al. (2023) are satisfied with Q = Q = L1(µ). Moreover, since Lemma A.1 further establishes

that µ ≪ PY ∗T ∗ZX , we may set Q̄ = PY ∗T ∗ZX . Condition (ii) of the Theorem therefore implies

that Q̄it ≪ Q̄ with dQ̄it/dQ̄ bounded as required by Corollary 4.3 in Navjeevan et al. (2023).

Moreover, by definition of µ, we have

dPZ|X

dµZ|X
=

dPZ|X

dPZ
≥ ε

because P (Z = z|X) ≥ ε for some ε > 0 and all z ∈ {0, 1} by assumption. Finally, we note

that since ℓ is bounded, condition (i) of the Theorem implies all the remaining requirements

of Corollary 4.3(b) in Navjeevan et al. (2023) are satisfied. Therefore, Corollary 4.3(b) in

Navjeevan et al. (2023) implies that P (T ∗ ∈ S) is identified if and only if there exists a function

f of (T,Z,X) satisfying E[f(T,Z,X)|] < ∞ and

µ(
∑
t∈T

EµZ|X [f(t, Z,X)1{T ∗(Z) = t)] = ℓ(T ∗)) = 1 (49)

where EµZ|X denotes an expectation taken with respect to the conditional distribution of Z

given X under µ. Next, note that P (Z = 1) ∈ (0, 1), µZ|X = PZ , and µT ∗X = PT ∗X by

definition of µ imply that requirement (49) is equivalent to

PT ∗X(
∑
t∈T

∑
z∈{0,1}

f(t, z,X)1{T ∗(z) = t} = ℓ(T ∗)) = 1 (50)

holding for some function f of (T,Z,X). Moreover, since PT ∗PX ≪ PT ∗X due to P (T ∗ =

t∗|X) ≥ ε > 0 for all t∗ ∈ M, condition (50) is itself equivalent to

PT ∗PX(
∑
t∈T

∑
z∈{0,1}

f(t, z,X)1{T ∗(z) = t} = ℓ(T ∗)) = 1. (51)

Next, note that for any (t, z) ∈ T × {0, 1}, we obtain from T ∗ being independent of Z condi-

tionally on X and P (Z = z|X) ≥ ε for some ε > 0 that

P (T = t,Z = z|X) = P (T ∗(z) = t|X)P (Z = z|X) ≍ P (T ∗(z) = t|X) (52)

=
∑

t∗∈M:t∗(z)=t

P (T ∗ = t∗|X) ≍ #{t∗ ∈ M : t∗(z) = t} ≍ P (T ∗(z) = t),

where the fourth result follows from P (T ∗ = t∗|X) ≥ ε for all t∗ ∈ M, and the final result from

P (T ∗(z) = t) = 0 if and only if t∗(z) ̸= t for all t∗ ∈ M due to P (T ∗ = t∗|X) ≥ ε. Moreover, by

the law of iterated expectations and result (52) we also obtain

P (T = t, Z = z) = E[P (T = t, Z = z|X)] ≍ P (T ∗(z) = t) ≍ P (T = t, Z = z|X). (53)

In particular, note that P (T = t, Z = z) ≍ P (T ∗(z) = t) for all (t, z) ∈ T× {0, 1} implies that

condition (51), and hence identification of (48), is equivalent to

PT ∗PX(
∑

z∈{0,1}

∑
t:P (T=t,Z=z)>0

f(t, z,X)1{T ∗(z) = t} = ℓ(T ∗)) = 1. (54)

To conclude, note that if (5) holds, then (54), and hence identification of P (T ∗ ∈ S), holds
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due to T ∗ ∈ M with probability one by Assumption 1.2 and P (T = t, Z = z) ≍ P (T ∗(z) = t)

for all (t, z) ∈ T × {0, 1}. For the converse, suppose that (54) holds for some f satisfying

E[|f(T,Z,X)|] < ∞. Then note that for any set E ⊆ X, Bayes Rule and result (54) imply for

any (t, z) ∈ T× {0, 1} satisfying P (T = t, Z = z) > 0 that

P (X ∈ E) =
P (X ∈ E|T = t, Z = z)P (T = t, Z = z)

P (T = t, Z = z|X ∈ E)
≍ P (X ∈ E|T = t, Z = z). (55)

In particular, result (55) implies that E[|f(t, z,X)|] ≲ E[|f(T,Z,X)|] for any (t, z) satisying

P (T = t, Z = z) > 0. Since E[|f(T,Z,X)|] < ∞ we may therefore define

ν(t, z) =

{
E[|f(t, z,X)|] if P (T = t, Z = z) > 0

0 if P (T = t, Z = z) = 0
.

Finally, note that condition (54) implies that with PT ∗ probability one we have that

ℓ(T ∗) =
∑

z∈{0,1}

∑
t:P (T=t,Z=z)>0

ν(t, z)1{T ∗(z) = t} =
∑

z∈{0,1}

∑
t∈T

ν(t, z)1{T ∗(z) = t} (56)

where the final equality follows from P (T = t, Z = z) ≍ P (T ∗(z) = t) by (53). Since P (T ∗ =

t∗|X) ≥ ε for all t∗ ∈ M, result (56) implies that (5) holds with ν0(t) = ν(t, 0) and ν1(t) = ν(t, 1),

and therefore that the identification of P (T ∗ ∈ S) implies (5).

A.1.4 Proof of Theorem 2.2

To establish the result, we first use the law of iterated expectations to show that

E[E[ν0(T )|Z = 0, X] + E[ν1(T )|Z = 1, X]] (57)

= E[ν0(T )
(1− Z)

P (Z = 0|X)
+ ν1(T )

Z

P (Z = 1|X)
]

=
∑
t∈T

E[ν0(t)
1{T = t, Z = 0}
P (Z = 0|X)

+ ν1(t)
1{T = t, Z = 1}
P (Z = 1|X)

].

Moreover, using the fact that response types T ∗ are independent of Z conditional on X yields∑
t∈T

E[ν0(t)
1{T = t, Z = 0}
P (Z = 0|X)

+ ν1(t)
1{T = t, Z = 1}
P (Z = 1|X)

] (58)

=
∑
t∈T

E[ν0(t)P (T ∗(0) = t|X)
P (Z = 0|X)

P (Z = 0|X)
+ ν1(t)P (T ∗(1) = t|X)

P (Z = 1|X)

P (Z = 1|X)
]

=
∑
t∈T

E[ν0(t)1{T ∗(0) = t}+ ν1(t)1{T ∗(1) = t}].

Since T ∗ ∈ M with probability one, ISP implies that the last display in (58) equals P (T ∗ ∈ S).

The first claim of the Theorem follows from (57), (58), and V ≡ ν1(T )Z − ν0(T )(1 − Z). For

the second claim note that for any W with E[|W |] < ∞ we have

E[WZ̃] = E[
WZ

P (Z = 1|X)
− W (1− Z)

P (Z = 0|X)
] = E[E[Y |Z = 1, X]− E[Y |Z = 0, X]].

Therefore, the second claim of the Theorem follows from Lemma 2.1 and P (T ∗ ∈ S) =

E(E[V |Z = 1, X]− E[V |Z = 0, X]), as shown in the first part of the result.
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A.1.5 Proof of Theorem 2.3

To establish part (i) note that for ν0(T ) = −1{T ∈ Ti} and ν1(T ) = 1{T ∈ Ti ∪Tio},∑
t∈T

ν0(t)1{t∗(0) = t}+ ν1(t)1{t∗(1) = t}

=
∑
t∈T

(−1{t ∈ Ti}1{t∗(0) = t}+ 1{t ∈ Ti ∪Tio}1{t∗(1) = t}) = 1{t∗ ∈ S},

where the second equality follows by noting that if t∗ ∈ M \ S then t∗(0) = t∗(1) /∈ Tio by

definition of Tio and IOS, while if t∗ ∈ S then 1{t∗(1) = t} = 1 for some t ∈ Ti ∪ Tio and

1{t∗(0) = t} = 0 for all t ∈ Ti. Hence, IOS implies ISP as claimed. Moreover, we have

κ⋆(T,Z,X) = Z̃V − Z̃(1{T ∈ Ti}+ 1{T ∈ To}+ 1{T ∈ Tio})P (Z = 0|X) (59)

= Z̃V − (Z − P (Z = 1|X))

P (Z = 1|X)
1{T ∈ Ts}

by definition of κ⋆, V , and direct calculation. Since we have 1{T ∗ ∈ stay(t) for some t ∈ Ts} =

1{T ∈ Ts} by definition of Ts and T ∗ is independent of Z conditional on X by Assumption

1.1(iii), result (59) and Theorem 2.2 imply E[κ⋆(T,Z,X)] = E[Z̃V ] = P (T ∗ ∈ S), and therefore

part (i) of the theorem follows.

In order to establish part (ii) of the Theorem, note that Theorem A.1 implies that

(β0, β1) ≡ arg min
(b0,b1)

E[(Y − b0
h0(X)

E[h0(X)|T ∗ ∈ S]
− b1

V h1(X)

E[h1(X)|T ∗ ∈ S]
)2κ⋆(T,Z,X)]

= E[(Y − b0
h0(X)

E[h0(X)|T ∗ ∈ S]
− b1

V h1(X)

E[h1(X)|T ∗ ∈ S]
)21{T ∗ ∈ S}].

Next, note that 1{T ∗(Z) ∈ Ti, T
∗ ∈ S} = 1{T ∗(1) ∈ Ti, T

∗ ∈ S}Z by definition of Ti.

Therefore, using that V = 1{T ∈ Ti}+ 1{T ∈ Tio, Z = 1} we are able to conclude that

V 1{T ∗ ∈ S} = 1{T ∗(1) ∈ Ti ∪Tio}Z1{T ∗ ∈ S} = Z1{T ∗ ∈ S}. (60)

Therefore, result (60) and Z being independent of T ∗ conditional on X yields that

E[V h0(X)h1(X)1{T ∗ ∈ S}] = E[
1{T ∗ ∈ S}

P 2(Z = 0|X)
]. (61)

Combining result (61) with the law of iterated expectations then enables us to conclude

E[V h0(X)h1(X)1{T ∗ ∈ S}]/E[h1(X)|T ∗ ∈ S]E[h0(X)|T ∗ ∈ S])

E[h20(X)1{T ∗ ∈ S}]/(E[h0(X)|T ∗ ∈ S])2
=

E[h0(X)|T ∗ ∈ S]

E[h1(X)|T ∗ ∈ S]
(62)

Thus, the Frisch-Waugh-Lovell theorem yields that β1 is the minimizer to the problem

β1 = argmin
b1

E[(Y − b1(
V h1(X)

E[h1(X)|T ∗ ∈ S]
− h0(X)

E[h1(X)|T ∗ ∈ S]
))21{T ∗ ∈ S}] (63)

= argmin
b1

E[(Y − b1
E[h1(X)|T ∗ ∈ S]

(V h1(X)− h0(X)))21{T ∗ ∈ S}].

Next observe that result (60), Z being independent of (Y ∗, T ∗) conditional on X, the definitions
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of h0 and h1, and the law of iterated expectations imply

E[Y (V h1(X)− h0(X))1{T ∗ ∈ S}] (64)

= E[(Y Z + Y (1− Z))(Zh1(X)− h0(Z))1{T ∗ ∈ S}]

= E[(Y ∗(T ∗(1))Z(h1(X)− h0(X))− Y ∗(T ∗(0))(1− Z)h0(X))1{T ∗ ∈ S}]

= E[(Y ∗(T ∗(1))− Y ∗(T ∗(0)))1{T ∗ ∈ S}].

Moreover, again using result (60) and the law of iterated expectations further implies

E[(V h1(X)− h0(X))21{T ∗ ∈ S}] (65)

= E[(Zh21(X)− Zh1(X)h0(Z) + h20(X))1{T ∗ ∈ S}] = E[h1(X)1{T ∗ ∈ S}].

Therefore, by combining results (63), (64), and (65) we are able to conclude that

β1 =
E[Y (V h1(X)− h0(X))1{T ∗ ∈ S}]/E[h1(X)|T ∗ ∈ S]

E[(V h1(X)− h0(X))21{T ∗ ∈ S}]/(E[h1(X)|T ∗ ∈ S])2
(66)

=
E[(Y ∗(T ∗(1))− Y ∗(T ∗(0)))1{T ∗ ∈ S}]E[h1(X)|T ∗ ∈ S]

E[h1(X)1{T ∗ ∈ S}]
= τ(S),

which establishes the second claim of the Theorem.

A.1.6 Proof of Lemma 2.2

The claim for t ∈ Ti ∪To follows from Lemma A.2 and the law of iterated expectations. The

claim for t ∈ Tio follows by noting that if t ∈ Tio, then 1{Z = 1}1{T = t} = 1{Z = 1}1{T ∗ ∈
in(t)} and 1{Z = 0}1{T = t} = 1{T ∗ ∈ out(t)}. Therefore, we have

E[1{T = t}|Z = 1, X] = E[1{T ∗ ∈ in(t)}|Z = 1, X] = P (T∗ ∈ in(t) |X)

E[1{T = t}|Z = 0, X] = E[1{T ∗ ∈ out(t)}|Z = 0, X] = P (T∗ ∈ out(t) |X)

because T ∗ is independent of Z conditional on X by Assumption 1.1(iii). Marginalization over

the distribution of X proceeds as in the end of the proof of Theorem 2.2.

A.1.7 Proof of Corollary 2.1

For any t∗ ∈ S and t ∈ {t∗(0), t∗(1)} we have P (T = t, T ∗ = t∗|X) > 0 by Assumption 1.1(iv)

and P (T ∗ = t∗|X) > 0 for all t∗ ∈ S. Therefore, Proposition 1.1 and RIO imply

E[Y ∗(t)|T ∗ = t∗, X] = C(t,X) (67)

for any t∗ ∈ S and t ∈ {t∗(0), t∗(1)}. In particular, (67) implies E[Y ∗(t)|T ∗ = t∗, X] is constant

in t∗ ∈ in(t)∪ out(t) and therefore that RIO implies (20) holds.

Conversely, if condition (20) is satisfied, then we may set C(t,X) to equal

C(t,X) ≡ E[Y ∗(t)|T ∗ ∈ in(t)∪ out(t), X], (68)

where we have used that the right-hand side of (68) depends only on (t,X). Property (20) and
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Proposition 1.1 then imply RIO holds.

A.1.8 Proof of Theorem 2.4

We first show that if the CCEF is identified, then IOS holds. We establish this direction by

showing that, if the CCEF is identified, then at every t ∈ T one of the sets stay(t), in(t), and

out(t) is empty. To this end, note that if t ∈ Ts, then by definition in(t) and out(t) are empty.

We therefore focus on t /∈ Ts. At any such t either in(t) or out(t) is non-empty, and therefore

there exists a t∗ ∈ S such that t ∈ {t∗(0), t∗(1)}. Hence, because RIO holds and the CCEF is

identified, the law of iterated expectations implies∑
t∗∈S

E[(Y − C(t,X))1{T = t}1{T ∗ = t∗}] = 0. (69)

Next, note that T = T ∗(0)(1−Z) + T ∗(1)Z and (Y ∗, T ∗) ⊥⊥ Z|X by Assumption 1.1(iii) imply

that ∑
t∗∈S

E[(Y − C(t,X))1{T = t}1{T ∗ = t∗}] (70)

=
∑
t∗∈S

E[(Y ∗(t)− C(t,X))1{T ∗ = t∗}1{t∗(Z) = t}]

= E[(Y ∗(t)− C(t,X)){
∑
t∗∈S

1{T ∗ = t∗}P (t∗(Z) = t|X)}].

Moreover, because the probability P (t∗(Z) = t|X) is identified to equal either P (Z = 0|X) (if

t∗ ∈ out(t)) or P (Z = 1|X) (if t∗ ∈ in(t)) it follows that the function

ℓt(T
∗, X) ≡

∑
t∗∈S

1{T ∗ = t∗}P (t∗(Z) = t|X) (71)

is identified. Hence, so is the function (Y ∗(t)−C(t,X))ℓt(T
∗, X) because C(T,X) is identified

by hypothesis. Also note that results (69) and (70) then imply that

E[(Y ∗(t)− C(t,X))ℓt(T
∗, X)] (72)

is identified.

Corollary 4.4 in Navjeevan et al. (2023) provides necessary and sufficient conditions for

identification of moments with the structure E[ρ(Y ∗(t))ℓ(T ∗, X)] to be identified when ρ and

ℓ are identified. The arguments in Corollary 4.4 in Navjeevan et al. (2023), however, apply

verbatim when ρ is allowed to depend on X as well, which maps into (72). To verify that

the conditions of the corollary are satisfied, let UM be a uniform distribution on M and set

µ ≡ {PY |X}dUMPZX . By Lemma A.1, PY ∗T ∗ZX ≪ µ and, therefore Assumption 1.1 implies

that Assumptions 2.1 and 2.2 of Navjeevan et al. (2023) are satisfied with Q = Q = L1(µ).

Lemma A.1 further implies that µ ≪ PY ∗T ∗ZX , and we may therefore set Q̄ = PY ∗T ∗ZX in

Corollary 4.4 of Navjeevan et al. (2023). Condition (iii) of the theorem therefore verifies the

requirements that Q̄io ≪ Q̄ and dQ̄io/dQ̄ be bounded, while condition (i) of the theorem implies

Q̄(T ∗ = t∗) > 0 for all t∗ ∈ M. Since (Y ∗(t) − C(t,X)) is bounded by condition (ii) of the

theorem, ℓt is bounded by construction, and Var{Y ∗(t) − C(t,X)|X} ≥ ε by condition (ii) of

46



the theorem, it follows that all the requirements of Corollary 4.4 in Navjeevan et al. (2023) are

satisfied. Therefore, we may apply said corollary to conclude that identification of (72) implies

that there is a function f of (Z,X) satisfying E[|f(Z,X)|] < ∞ and

P (EZ|X [f(Z,X)1{T ∗(Z) = t}] = ℓt(T
∗, X)) = 1, (73)

where EZ|X denotes an expectation taken with respect to the distribution of Z given X.

Next, note that (73) holding with probability one under PT ∗X , the definition of ℓt in (71),

and P (T ∗ = t∗|X) > 0 for all t∗ ∈ M imply that (73) requires that

f(1, X)P (Z = 1|X) = P (Z = 1|X) if in(t) ̸= ∅ (74)

f(0, X)P (Z = 0|X) = P (Z = 0|X) if out(t) ̸= ∅

f(0, X)P (Z = 0|X) + f(1, X)P (Z = 1|X) = 0 if stay(t) ̸= ∅

almost surely in X. However, since P (Z = z|X) ≥ ε for any z ∈ {0, 1}, there exists no solution

to (74) whenever in(t), out(t), and stay(t) are simultaneously non-empty. Hence, identification

of the CCEF implies that one of in(t), out(t), and stay(t) is empty and therefore that IOS

holds.

To conclude, it remains to show that if IOS holds, then the CCEF is identified. To this

end, note that since P (T ∗ = t∗|X) > 0 for any t∗ ∈ M, Assumption 1.1(iv) implies that

P (T = t, T ∗ = t|X) > 0 for any t ∈ {t∗(0), t∗(1)} and t∗ ∈ M. It is also helpful to note that for

any t∗ ∈ S and t ∈ {t∗(0), t∗(1)}, RIO and Corollary 2.1 imply that

E[Y |T = t, T ∗ = t∗, X] = E[Y |T = t, T ∗ ∈ in(t)∪ out(t), X]. (75)

We establish identification of the CCEF by considering the cases t ∈ Ts, t ∈ Tio, t ∈ Ti,

and t ∈ To separetely. For any t ∈ Ts, the only t∗ ∈ M that selects t is the stayer t∗ =

(t∗(0), t∗(1)) = (t, t). Therefore, 1{T = t} = 1{T ∗ = (t, t)}, which implies

E[Y 1{T = t}|X]

E[1{T = t}|X]
=

E[Y 1{T = t, T ∗ = (t, t)}|X]

E[1{T = t, T ∗ = (t, t)}|X]
= E[Y |T = t, T ∗ = (t, t), X]. (76)

Similarly, for any t ∈ Tio, IOS implies stay(t) = ∅. Therefore, 1{T = t} = 1{T ∗ ∈
in(t)∪ out(t)} and result (75) allows us to conclude that

E[Y 1{T = t}|X]

E[1{T = t}|X]
=

E[Y 1{T = t, T ∗ ∈ in(t)∪ out(t)}|X]

E[1{T = t, T ∗ ∈ in(t)∪ out(t)}|X]
(77)

= E[Y |T = t, T ∗ ∈ in(t)∪ out(t), X] = E[Y |T = t, T ∗ = t∗, X]

for any t∗ ∈ in(t)∪ out(t). Next, note that for any t ∈ Ti, Lemma A.2, the law of iterated

expectations, Corollary 2.1, and out(t) = ∅ imply for any t∗ ∈ in(t) that

E[Y 1{T = t}Z̃|X]

E[1{T = t}Z̃|X]
=

E[Y ∗(t)1{T ∗ ∈ in(t)}|X]

P (T ∗ ∈ in(t) |X)
(78)

= E[Y ∗(t)|T ∗ = t∗, X] = E[Y |T = t, T ∗ = t∗, X],

where the final equality follows from Proposition 1.1. Moreover, since out(t) = ∅ we have
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1{T = t, Z = 0} = 1{T ∗ ∈ stay(t), Z = 0} and hence Assumption 1.1(iii) yields

E[Y 1{T = t, Z = 0}|X]

E[1{T = t, Z = 0}|X]
=

E[Y ∗(t)1{T ∗ ∈ stay(t), Z = 0}|X]

E[1{T ∗ ∈ stay(t), Z = 0}|X]
(79)

= E[Y ∗(t)|T ∗ ∈ stay(t), X] = E[Y |T = t, T ∗ = (t, t)],

where the final equality follows from Proposition 1.1 and stay(t) = {(t, t)}. The identification

of the CCEF at any t ∈ To follows by applying the same arguments but replacing Z̃ with −Z̃

in (78) and Z = 0 with Z = 1 in (79). Hence, IOS implies identification of the CCEF and the

theorem follows.

A.1.9 Proof of Theorem 2.5

Parts (i) and (ii) of the Theorem follow from Theorem A.1. To establish part (iii) of the

Theorem, first note that by definition of Z̃ we have that

Z̃(1{T ∈ Tio, Z = 1}P (Z = 1|X)− 1{T ∈ Tio, Z = 0}P (Z = 0|X))

= 1{T ∈ Tio, Z = 1}+ 1{T ∈ Tio, Z = 0} = 1{T ∈ Tio}. (80)

Also note that T = Ti ∪ To + Tio because Ts is empty by hypothesis. Therefore, since

V ≡ 1{T ∈ Ti}+ 1{T ∈ Tio, Z = 1} it follows that 1− V = 1{T ∈ To}+ 1{T ∈ Tio, Z = 0}.
Hence, the definition of κ⋆ and result (80) yield that

κ⋆(T,Z,X) = V Z̃P (Z = 1|X)− (1− V )Z̃P (Z = 0|X). (81)

Part (iii) of the theorem then follows from (81) and the definition of Z̃.

A.1.10 Proof of Corollary 2.2

For the first claim, note that P (T = t, T ∗ = t∗|X) > 0 for any t∗ ∈ S and t ∈ {t∗(0), t∗(1)} by

Assumption 1.1(iv) and P (T ∗ = t∗|X) > 0 for all t∗ ∈ S. We first show that condition (27)

implies ARIO. To this end, note that Proposition 1.1 and 1{T = t, T ∗ = t∗, T ∗ ∈ S} equaling

zero whenever t∗ /∈ in(t)∪ out(t) imply

E[Y |T,T ∗, X]1{T ∗ ∈ S} (82)

=
∑

t∈Ti∪To∪Tio

∑
t∗∈in(t)∪ out(t)

E[Y ∗(t)|T ∗ = t∗, X]1{T = t, T ∗ = t∗}

with probability one, and where we used in(t) = ∅ and out(t) = ∅ for all t ∈ Ts. Therefore, if

condition (27) holds, then result (82) implies that with probability one

E[Y |T, T ∗, X]1{T ∗ ∈ S} =
∑

t∈Ti∪Tio

E[Y ∗(t)|T ∗ ∈ in(t), X]1{T = t, T ∗ ∈ in(t)}

+
∑

t∈To∪Tio

E[Y ∗(t)|T ∗ ∈ out(t), X]1{T = t, T ∗ ∈ out(t)}.
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Hence, using that 1{T = t, T ∗ ∈ in(t)} = 1{T = t, Z = 1, T ∗ ∈ S} and similarly 1{T = t, T ∗ ∈
out(t)} = 1{T = t, Z = 0, T ∗ ∈ S} allows us to conclude that

E[Y |T, T ∗, X]1{T ∗ ∈ S} =
∑

t∈Ti∪Tio

E[Y ∗(t)|T ∗ ∈ in(t), X]1{T = t, Z = 1}1{T ∗ ∈ S}

+
∑

t∈To∪Tio

E[Y ∗(t)|T ∗ ∈ out(t), X]1{T = t, Z = 0}1{T ∗ ∈ S},

which implies ARIO holds. For the converse, suppose (27) holds and note that for any t ∈
Ti ∪Tio and t∗ ∈ in(t) we have that 1{T = t, T ∗ = t∗} implies Z = 1. Hence,

E[Y |T = t, T ∗ = t∗,X]1{T = t, T ∗ = t∗} (83)

= E[Y ∗(t)|T ∗ = t∗, X]1{T = t, T ∗ = t∗, Z = 1} = Ca(t, 1, X).

Since (83) holds for any t∗ ∈ in(t), we can conclude that the first display in (27) holds. Similarly,

since 1{T = t, T ∗ = t∗} implies Z = 0 for any t∗ ∈ out(t) we have

E[Y |T = t,T ∗ = t∗, X]1{T = t, T ∗ = t∗} (84)

= E[Y ∗(t)|T ∗ = t∗, X]1{T = t, T ∗ = t∗, Z = 0} = Ca(t, 0, X).

for any t∗ ∈ out(t). Hence, it follows that the second display in (27) holds and therefore that

ARIO implies (27).

For the second claim of the corollary, note that (83) holding for any t ∈ Ti ∪ Tio and

t∗ ∈ in(t) and (84) holding for any t ∈ To ∪Tio and t∗ ∈ out(t) imply that

E[Y ∗(T ∗(1))− Y ∗(T ∗(0))|T ∗ = t∗, X] = Ca(t
∗(1), 1, X)− Ca(t

∗(0), 0, X) (85)

for any t∗ = (t∗(0), t∗(1)) ∈ S. Finally, note that T ∈ Ti and T ∗ ∈ S imply Z = 1 because

out(t) = ∅ for all t ∈ Ti. Similarly, T ∈ To and T ∗ ∈ S imply Z = 0 because in(t) = ∅ for all

t ∈ To. Therefore, we can conclude that

Ca(T,Z,X)1{T ∈ Ti ∪To}1{T ∗ ∈ S}

= (Ca(T, 1, X)1{T ∈ Ti}+ Ca(T, 0, X)1{T ∈ To})1{T ∗ ∈ S},

which establishes the final claim of the corollary.

A.1.11 Proof of Theorem 2.6

The result follows by setting g(Y, T, Z,X) = (Y − Fa(T,Z,X; b))2 in Theorem A.1 and noting

that h = g in the notation of that theorem due to (30).

A.1.12 Proof of Theorem 2.7

We first derive some results that are helpful for establishing both parts (i) and (ii). Note that

for any t ∈ Ti we have from Lemma A.2 and the law of iterated expectations that

E[f(Y ∗(t))1{T ∗ ∈ in(t)}|X] = E[f(Y )1{T = t}Z̃|X]. (86)
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Similarly, for any t ∈ To, Lemma A.2 and the law of iterated expectations imply that

E[f(Y ∗(t))1{T ∗ ∈ out(t)}|X] = −E[f(Y )1{T = t}Z̃|X].

Finally, Assumption 1.1(iii), and 1{T = t, Z = 1} = 1{Z = 1, T ∗ ∈ in(t)} and 1{T = t, Z =

0} = 1{Z = 1, T ∗ ∈ out(t)} for any t ∈ Tio imply for any function f that

E[f(Y ∗(t))1{T ∗ ∈ in(t)}|X] = E[f(Y )
1{T = t, Z = 1}
P (Z = 1|X)

|X] (87)

E[f(Y ∗(t))1{T ∗ ∈ out(t)}|X] = E[f(Y )
1{T = t, Z = 0}
P (Z = 0|X)

|X]

for any t ∈ Tio. Also note Z(Z − P (Z = 1|X)) = Z(1− P (Z = 1|X)) implies that

E[f(Y )
1{T = t, Z = 1}
P (Z = 1|X)

|X] = E[f(Y )1{T = t}ZZ̃|X]. (88)

Similarly, since (1− Z)(Z − P (Z = 1|X)) = (1− Z)(−P (Z = 1|X)) we have that

E[f(Y )
1{T = t, Z = 0}
P (Z = 0|X)

|X] = −E[f(Y )1{T = t}(1− Z)Z̃|X]. (89)

We can now establish part (i) of the Theorem. To this end note that P (T ∗ ∈ in(t) |X) > 0

for any t ∈ Ti and P (T ∗ ∈ out(t) |X) > 0 for any t ∈ To because P (T ∗ = t∗|X) > 0 for any

t∗ ∈ S by assumption. Therefore, evaluating results (86) and (87) at f(Y ) = Y and f(Y ) = 1

we are able to conclude that

E[Z̃ × 1{T = t}Y |X]

E[Z̃ × 1{T = t}|X]
=

{
E[Y ∗(t)|T ∗ ∈ in(t), X] if t ∈ Ti

E[Y ∗(t)|T ∗ ∈ out(t), X] if t ∈ To

Similarly, evaluating results (87), (88), and (89) at f(Y ) = Y and f(Y ) = 1 implies that

E[Y ∗(t)|T ∗ ∈ in(t), X] =
E[Z̃ × 1{T = t}ZY |X]

E[Z̃ × 1{T = t}Z|X]
(90)

E[Y ∗(t)|T ∗ ∈ out(t), X] =
E[Z̃ × 1{T = t}(1− Z)Y |X]

E[Z̃ × 1{T = t}(1− Z)|X]

for any t ∈ Tio. The first part of the theorem then follows from ARIO, (88) and (90).

For the second part of the theorem, we take expectations (over X) of results (86) and (87)

evaluated at both f(Y ) = Y and f(Y ) = 1 to obtain that

E[Z̃ × 1{T = t}Y ]

E[Z̃ × 1{T = t}]
=

{
E[Y ∗(t)|T ∗ ∈ in(t)] if t ∈ Ti

E[Y ∗(t)|T ∗ ∈ out(t)] if t ∈ To

. (91)

Similarly, evaluating results (87), (88), and (89) at f(Y ) = Y and f(Y ) = 1 implies that

E[Y ∗(t)|T ∗ ∈ in(t)] =
E[Z̃ × 1{T = t}ZY ]

E[Z̃ × 1{T = t}Z]
(92)

E[Y ∗(t)|T ∗ ∈ out(t)] =
E[Z̃ × 1{T = t}(1− Z)Y ]

E[Z̃ × 1{T = t}(1− Z)]
.

The second part of the theorem therefore follows from (92) and condition (33).
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A.1.13 Proof of Theorem 2.8

Given a CCEF specification Fa satisfying (30), Corollary 2.2(ii) and Theorem A.1 taken together

imply

β = argmin
b

E[(Ca(T,Z,X)− Fa(T,Z,X; b))21{T ∗ ∈ S}] (93)

= argmin
b

E[(Ca(T,Z,X)− Fa(T,Z,X; b))2κ⋆(T,Z,X)] .

Using the fact that κ⋆(t, Z,X) = 0 for any t ∈ Ts and the law of iterated expectations yields

E[(Ca(T,Z,X)− Fa(T,Z,X; b))2κ⋆(T,Z,X)] (94)

=
∑

t∈T\Ts

∑
z∈{0,1}

E[(Ca(t, z,X)− Fa(t, z,X; b))21{T = t, Z = z}κ⋆(t, z,X)]

=
∑

t∈T\Ts

∑
z∈{0,1}

E[(Ca(t, z,X)− Fa(t, z,X; b))2P (T = t, Z = z|X)κ⋆(t, z,X)] .

Note also that for any t ∈ Ti we have that 1{T ∗(1) = t} = 1{T ∗ ∈ stay(t)∪ in(t)} and

1{T ∗(0) = t} = 1{T ∗ ∈ stay(t)}. Therefore, Assumption 1.1(iii) implies

P (T = t|Z = 1,X)− P (T = t|Z = 0, X) (95)

= P (T ∗(1) = t|X)− P (T ∗(0) = t|X) = P (T ∗ ∈ in(t) |X) > 0 .

Likewise, for any treatment level t ∈ To,

P (T = t|Z = 0, X)− P (T = t|Z = 1, X) = P (T ∗ ∈ out(t) |X) > 0 . (96)

The facts that Ca(T,Z,X) = C1(T,X)1{T ∈ Ti ∪To}+ C2(T,Z,X)1{T ∈ Tio} by Corollary

2.2(ii) and that Fa satisfies (30) imply that, for any t ∈ Ti ∪To,∑
z∈{0,1}

E[(Ca(t,z,X)− Fa(t, z,X; b))2P (T = t, Z = z|X)κ⋆(t, z,X)] (97)

= E[(C1(t,X)− F1(t,X; b))2
∑

z∈{0,1}

P (T = t, Z = z|X)κ⋆(t, z,X)]

= E[(C1(t,X)− F1(t,X; b))2ωt(X)] ,

where the final equality follows from (95) and (96), the definition of κ⋆, and direct calculation.

Similarly, since κ⋆(t, z,X) = 1 when t ∈ Tio, we have that for any t ∈ Tio∑
z∈{0,1}

E[(Ca(t, z,X)− Fa(t, z,X; b))2P (T = t, Z = z|X)] (98)

=
∑

z∈{0,1}

E[(C2(t, z,X)− F2(t, z,X; b))2ωt,z(X)] .
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Hence, combining (93), (94), (97), and (98), and using T \Ts = Ti ∪To ∪Tio, yields

β = argmin
b

{
E[

∑
t∈Ti∪To

(C1(t,X)− F1(t,X; b))2ωt(X)] (99)

+ E[
∑
t∈Tio

∑
z∈{0,1}

(C2(t, z,X)− F2(t, z,X; b))2ωt,z(X)]
}
.

Finally, note that Corollary 2.2, the definition of Ỹt, and Theorem 2.7(i) imply that

C1(t,X) = E[Y ∗(t)|T ∗ = t∗, X] = E[Ỹt|X] for any t ∈ Ti, t∗ ∈ in(t) (100)

C1(t,X) = E[Y ∗(t)|T ∗ = t∗, X] = E[Ỹt|X] for any t ∈ To, t∗ ∈ out(t) .

Similarly, Corollary 2.2, the definition of Ỹt,z, and Theorem 2.7(i) together imply

C2(t, 0, X) = E[Y ∗(t)|T ∗ = t∗, X] = E[Ỹt,0|X] for any t ∈ Tio, t∗ ∈ out(t) (101)

C2(t, 1, X) = E[Y ∗(t)|T ∗ = t∗, X] = E[Ỹt,1|X] for any t ∈ Tio, t∗ ∈ in(t) .

The corollary then follows from (99), (100), and (101).

A.1.14 Supporting Results

Lemma A.1. Suppose Assumptions 1.1, 1.2 hold, PY ∗|T ∗X ≪ {PY |X}d ≪ PY ∗|T ∗X , and that

for some ε > 0, with probability one, we have P (T ∗ = t∗|X) ≥ ε for all t∗ ∈ M and ε ≤ P (Z =

1|X) ≤ 1− ε. Letting UM be the uniform distribution on M and setting µ ≡ {PY |X}dUMPZPX ,

it then follows that PY ∗T ∗ZX ≪ µ ≪ PY ∗T ∗ZX .

Proof. First note that because (Y ∗, T ∗) is independent of Z conditinally on X by Assumption

1.1(iii) and T ∗ ∈ M with probability one by Assumption 1.2 we obtain that

PY ∗T ∗ZX = PY ∗|T ∗ZXPT ∗|ZXPZX ≪ PY ∗|T ∗XUMPZX ≪ µ, (102)

where the final result follows from the definition of µ, PZX ≪ PZPX , and PY ∗|T ∗X ≪ {PY |X}d

by hypothesis. Next, note that P (Z = z|X) ≥ ε for some ε > 0 and all z ∈ {0, 1} implies that

PZPX ≪ PZX . Therefore, since {PY |X}d ≪ PY ∗|T ∗X by assumption and P (T ∗ = t∗|X) ≥ ε for

all t∗ ∈ M we also obtain that

µ ≡ {PY |X}dUMPZPX ≪ PY ∗|T ∗XPT ∗|XPZX = PY ∗T ∗ZX , (103)

where the final result follows from (Y ∗, T ∗) being independent of Z conditionally on X by

Assumption 1.1(iii). The lemma therefore follows from (102) and (103).

Theorem A.1. Suppose Assumptions 1.1, 1.2, and IOS hold, and that, for some ε > 0, ε ≤
P (Z = 1|X) ≤ 1− ε with probability one. For any function g of (Y, T, Z,X) define

h(Y, t, z,X) =


g(Y, t, 1, X) for any t ∈ Ti and z ∈ {0, 1}
g(Y, t, 0, X) for any t ∈ To and z ∈ {0, 1}
g(Y, t, z,X) otherwise

. (104)
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If h satisfies E[|h(Y, T, Z,X)|] < ∞, then it follows that

E[h(Y, T, Z,X)κ⋆(T,Z,X)] = E[g(Y, T, Z,X)1{T ∗ ∈ S}]. (105)

Proof. First, note the definition of κ⋆ in (18) and P (Z = z|X) ≥ ε > 0 for z ∈ {0, 1}
by hypothesis, imply that κ⋆ ∈ L∞(P ). Hence, it follows that κ⋆h ∈ L1(P ) because h ∈
L1(P ) by hypothesis. Next, observe that Lemma A.2(i), the law of iterated expectations, and

h(Y ∗(t), t, 1, X) = h(Y ∗(t), t, 0, X) when t ∈ Ti yield∑
t∈Ti

E[h(Y, T, Z,X)1{T = t}Z̃P (Z = 1|X)] (106)

=
∑
t∈Ti

E[h(Y ∗(t), t, Z,X)1{T ∗ ∈ in(t)}P (Z = 1|X)]

=
∑
t∈Ti

E[h(Y, T, Z,X)1{T ∗ ∈ in(t)}1{T = t}],

where the second equality follows from Lemma A.2(ii). Moreover, by similar arguments∑
t∈To

E[h(Y, T, Z,X)1{T = t}(−Z̃)P (Z = 0|X)] (107)

=
∑
t∈To

E[h(Y ∗(t), t, Z,X)1{T ∗ ∈ out(t)}P (Z = 0|X)]

=
∑
t∈To

E[h(Y, T, Z,X)1{T ∗ ∈ out(t)}1{T = t}],

where the first and second equalities again rely on Lemmas A.2(i) and A.2(ii). On the other

hand, by IOS, any t ∈ Tio satisfies stay(t) = ∅, and hence

1{T = t}1{Z = 0} = 1{T = t}1{T ∗ ∈ out(t)} (108)

1{T = t}1{Z = 1} = 1{T = t}1{T ∗ ∈ in(t)}

for any t ∈ Tio. Therefore, we can conclude from result (108) and Z ∈ {0, 1} that∑
t∈Tio

E[h(Y, T, Z,X)1{T = t}] (109)

=
∑
t∈Tio

E[h(Y, T, Z,X)1{T = t}(1{Z = 0}+ 1{Z = 1})]

=
∑
t∈Tio

E[h(Y, T, Z,X)1{T = t}1{T ∗ ∈ out(t) ∪ in(t)}].

Next, note that for any t ∈ Ti and t∗ ∈ S, 1{T ∗ = t∗}1{T = t} = 1 implies that T ∗ ∈ in(t)

due to out(t) = ∅ when t ∈ Ti. Therefore, using that in(t) ⊆ S, we obtain∑
t∈Ti

E[h(Y, T, Z,X)1{T ∗ ∈ in(t)}1{T = t}] (110)

=
∑
t∈Ti

∑
t∗∈S

E[h(Y, T, Z,X)1{T ∗ ∈ in(t)}1{T ∗ = t∗}1{T = t}]

=
∑
t∈Ti

∑
t∗∈S

E[h(Y, T, Z,X)1{T ∗ = t∗}1{T = t}].
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Similarly, since for any t ∈ To and t∗ ∈ S it follows that 1{T ∗ = t∗}1{T = t} = 1 implies

T ∗ ∈ out(t) , we can conclude from the set inclusion out(t) ⊆ S that∑
t∈To

E[h(Y, T, Z,X)1{T ∗ ∈ out(t)}1{T = t}] (111)

=
∑
t∈To

∑
t∗∈S

E[h(Y, T, Z,X)1{T ∗ = t∗}1{T = t}].

Furthermore, because 1{T = t∗}1{T = t} = 1 implies T ∗ ∈ in(t) ∪ out(t) for any t ∈ Tio and

t∗ ∈ S, it also follows from the set inclusion in(t) ∪ out(t) ⊆ S that∑
t∈Tio

E[h(Y, T, Z,X)1{T = t}1{T ∗ ∈ out(t) ∪ in(t)}] (112)

=
∑
t∈Tio

∑
t∗∈S

E[h(Y, T, Z,X)1{T ∗ = t∗}1{T = t}].

To conclude, note 1{T = t}1{T ∗ = t∗} = 0 for any t∗ ∈ S and t ∈ Ts. Since Ts, Ti, To,

and Tio form a partition of T, we can combine the definition of κ⋆ in (18) with results (106),

(107), (109), (111), and (112) together with Lemma A.3 to obtain that

E[h(Y, T, Z,X)κ⋆(T,Z,X)] =
∑
t∈T

∑
t∗∈S

E[h(Y, T, Z,X)1{T ∗ = t∗}1{T = t}] (113)

=
∑
t∗∈S

E[g(Y, T, Z,X)1{T ∗ = t∗}],

which verifies the claim of the theorem.

Lemma A.2. If Assumptions 1.1(i)-(iii) hold, then: (i) The following equalities hold:

E[1{T = t}Z̃|Y ∗, T ∗, X] = 1{T ∗ ∈ in(t)} for all t ∈ Ti

−E[1{T = t}Z̃|Y ∗, T ∗, X] = 1{T ∗ ∈ out(t)} for all t ∈ To;

and (ii) For any function h of (Y, T, Z,X) satisfying h(Y, t, 0, X) = h(Y, t, 1, X) for any t ∈
Ti ∪To and E[|h(Y, T, Z,X)|] < ∞ it follows that∑

t∈Ti

E[1{T ∗ ∈ in(t)}(1{T = t}h(Y, T, Z,X)− P (Z = 1|X)h(Y ∗(t), t, Z,X)] = 0

∑
t∈To

E[1{T ∗ ∈ out(t)}(1{T = t}h(Y, T, Z,X)− P (Z = 0|X)h(Y ∗(t), t, Z,X)] = 0.

Proof. To establish (i), first note Z̃ ∈ L1(P ) by the law of iterated expectations. Letting EZ|X

denote expectations with respect to the conditional distribution of Z given X, it then follows

from Corollary A.1 in Navjeevan et al. (2023) that for any t ∈ Ti

E[1{T = t}Z̃|Y ∗, T ∗, X] = EZ|X [
Z − P (Z = 1|X)

P (Z = 1|X)P (Z = 0|X)
1{T ∗(Z) = t}] (114)

= 1{T ∗(1) = t} − 1{T ∗(0) = t} = 1{T ∗ ∈ in(t)},

where the first equality holds by definition of Z̃, and the final equality follows from out(t) = ∅
for any t ∈ Ti. Moreover, again relying on Corollary A.1 in Navjeevan et al. (2023) and the
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definition of Z̃ yields, for any t ∈ To, that

−E[1{T = t}Z̃|Y ∗, T ∗, X] = EZ|X [
P (Z = 1|X)− Z

P (Z = 1|X)P (Z = 0|X)
1{T ∗(Z) = t}] (115)

= 1{T ∗(0) = t} − 1{T ∗(1) = t} = 1{T ∗ ∈ out(t)},

where in the final equality we used that in(t) = ∅ for any t ∈ To. Therefore, part (i) of the

lemma follows from results (114) and (115).

In order to establish part (ii) of the lemma, first note that for any t ∈ T we have

1{T = t}1{T ∗ ∈ in(t)} = 1{Z = 1}1{T ∗ ∈ in(t)} (116)

1{T = t}1{T ∗ ∈ out(t)} = 1{Z = 0}1{T ∗ ∈ out(t)}

by definition of the sets in(t) and out(t). Hence, by employing (116) we can conclude∑
t∈Ti

E[h(Y, T, Z,X)1{T = t}1{T ∗ ∈ in(t)}] (117)

=
∑
t∈Ti

E[h(Y ∗(t), t, 1, X)1{T ∗ ∈ in(t)}1{Z = 1}]

=
∑
t∈Ti

E[h(Y ∗(t), t, Z,X)1{T ∗ ∈ in(t)}P (Z = 1|X)],

where the second equality follows from the law of iterated expectations, (Y ∗, T ∗) being indepen-

dent of Z conditionally on X by Assumption 1.1(iii), and h(Y ∗(t), t, 1, X) = h(Y ∗(t), t, 0, X)

for any t ∈ Ti by hypothesis. Similarly, we also have∑
t∈To

E[h(Y, T, Z,X)1{T = t}1{T ∗ ∈ out(t)}] (118)

=
∑
t∈To

E[h(Y ∗(t), t, 0, X)1{T ∗ ∈ out(t)}1{Z = 0}]

=
∑
t∈To

E[h(Y ∗(t), t, Z,X)1{T ∗ ∈ out(t)}P (Z = 0|X)]

and therefore part (ii) of the lemma follows from results (117) and (118).

Lemma A.3. Let Assumptions 1.1, 1.2 hold. For any function g of (Y, T, Z,X) set

h(Y, t, z,X) =


g(Y, t, 1, X) for any t ∈ Ti and z ∈ {0, 1}
g(Y, t, 0, X) for any t ∈ To and z ∈ {0, 1}
g(Y, t, z,X) otherwise

.

Then, it follows that g and h satisfy the following equality with probability one∑
t∗∈S

h(Y, T, Z,X)1{T ∗ = t∗} =
∑
t∗∈S

g(Y, T, Z,X)1{T ∗ = t∗}.

Proof. First note that Ts,Tio,Ti, and To form a partition of the set of possible treatments T.
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Therefore, by definition of h we can conclude that∑
t∗∈S

g(Y, T, Z,X)1{T ∈ Tio ∪Ts, T
∗ = t∗}

=
∑
t∗∈S

h(Y, T, Z,X)1{T ∈ Tio ∪Ts, T
∗ = t∗}. (119)

Moreover, note that if t ∈ Ti, then out(t) = ∅, which implies 1{T ∈ Ti, T
∗ = t∗} = 1{T ∈

Ti, T
∗ = t∗, Z = 1} for any t∗ ∈ S. Hence, we can conclude that∑

t∗∈S
g(Y, T, Z,X)1{T ∈ Ti, T

∗ = t∗} (120)

=
∑
t∗∈S

g(Y, T, Z,X)1{T ∈ Ti, T
∗ = t∗, Z = 1}

=
∑
t∗∈S

h(Y, T, Z,X)1{T ∈ Ti, T
∗ = t∗},

where the final equality holds by definition of h. By similar arguments we also obtain∑
t∗∈S

g(Y, T, Z,X)1{T ∈ To, T
∗ = t∗} =

∑
t∗∈S

h(Y, T, Z,X)1{T ∈ To, T
∗ = t∗}, (121)

and therefore the lemma follows form (119), (120), (121), and Ts,Tio,Ti, and To forming a

partition of T.

A.2 Ordered Choice, ISP, and IOS

This appendix shows that latent-index ordered choice models generalizing (15) necessarily sat-

isfy ISP and that these models satisfy IOS under additional, easily-verified restrictions. The

auxiliary treatment variable V is defined here as in Theorem 2.2, while ε denotes an arbitrary

scalar random variable. Although the lemma below holds regardless, when combined with

ISP or IOS in pursuit of causal effects, ε is assumed to be independent of Z so that T ∗(z) is

independent of Z.

Lemma A.4. Assume discrete ordered treatment T ∈ T = {Jl, . . . , Ju} and that treatment

status is determined according to

T ∗(z) =


Jl if zπ + ε ≤ cJl+1

Jl + 1 if cJl+1 < zπ + ε ≤ cJl+2

...

Ju if cJu < zπ + ε

with π > 0 and cJl+1 < cJl+2 < . . . < cJu. Also set cJl = −∞ and cJu+1 = +∞ and define the

set A ≡ {Jl ≤ t ≤ Ju : P (ct < ε ≤ ct+1 − π) > 0}. Given this choice model:

(i) ISP holds with functions ν0 and ν1 given by ν1(t) = |{s ∈ A : s < t}| and

ν0(t) =

{
1− ν1(t) if t /∈ A
−ν1(t) if t ∈ A

. (122)

(ii) If ct+1−ct ≤ π for all Jl+1 ≤ t ≤ Ju−1, then IOS holds. If in addition ε is continuously
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distributed with support including the interval [(cJl+1 ∧ (cJl+2 − π))− δ, cJu + δ] for some

δ > 0, then IOS holds if and only if ct+1 − ct ≤ π for all Jl + 1 ≤ t ≤ Ju − 1, in which

case

V = 1{T ∈ Ti}+ 1{T ∈ Tio}Z = 1{T = Ju}+ 1{Jl < T < Ju}Z.

(iii) If Assumption 1.1 holds, π ≤ ct+1 − ct for all Jl + 1 ≤ t ≤ Ju − 1 and the conditional

distribution of ε given X is continuous with support including [(cJl+1−π)− δ, cJu + δ] for

some δ > 0 (with probability one over X), then

τ(S) =
E(E[Y |Z = 1, X]− E[Y |Z = 0, X])

E(E[T |Z = 1, X]− E[T |Z = 0, X])
.

(iv) If ε is continuously distributed with support including the interval [(cJl+1 ∧ (cJl+2 − π))−
δ, (cJu−1 ∨ (cJu − π)) + δ] for some δ > 0, then

S = {(t, t′) ∈ T×T : ct′ − ct+1 < π < ct′+1 − ct}

and P (T ∗ = t∗) > 0 for all t∗ ∈ S.

Proof. First, note that for any Jl ≤ t ≤ Ju it follows that (T ∗(0), T ∗(1)) = (t, t) if and only if

ct < ε and ε ≤ ct+1 − π. Therefore, the ordered model is such that stay(t) ̸= ∅ if and only if

P (ct < ε ≤ ct+1 − π) > 0. Hence, by definition of A it follows that

A = {t ∈ T : stay(t) ̸= ∅}. (123)

Also observe that any switching type T ∗ ∈ S with T ∗ = (T ∗(0), T ∗(1)), corresponds to an ε

satisfying ε ≤ cT ∗(0)+1 and ε+ π > cT ∗(1) implying π > cT ∗(1) − cT ∗(0)+1. Since cJl+1 < cJl+2 <

. . . < cJu , the definition of A implies that for any switcher T ∗ ∈ S we have

{s ∈ A : T ∗(0) < s < T ∗(1)} = ∅. (124)

To verify ISP here, consider T ∗ /∈ S. Any such T ∗ satisfies (T ∗(0), T ∗(1)) = (t, t) for some

t ∈ A by result (123). Therefore, the definition of ν0 in (122) implies

ν0(T
∗(0)) + ν1(T

∗(1)) = 0 for any T ∗ /∈ S. (125)

Next, consider any T ∗ ∈ S, which implies T ∗(0) < T ∗(1). If T ∗(0) /∈ A, then (124) and

the definition of ν1 imply ν1(T
∗(0)) = ν1(T

∗(1)). Since ν0(T
∗(0)) = 1 − ν1(T

∗(0)) because

T ∗(0) /∈ A, it follows that ν0(T
∗(0)) + ν1(T

∗(1)) = 1. On the other hand, if T ∗(0) ∈ A, then

ν1(T
∗(1)) = ν1(T

∗(0)) + 1 by (124) and the definition of ν1. Since ν0(T
∗(0)) = −ν1(T

∗(0))

because T ∗(0) ∈ A, we have ν0(T
∗(0)) + ν1(T

∗(1)) = 1 and

ν0(T
∗(0)) + ν1(T

∗(1)) = 1 for any T ∗ ∈ S, (126)

Together, results (125) and (126) verify ISP holds and hence part (i) follows.

To establish part (ii), note that π > 0 implies in(Jl) = ∅ and out(Ju) = ∅. Therefore, IOS

holds if and only if for every Jl < t < Ju at least one of in(t), out(t), or stay(t) is empty.

However, ct+1 − ct ≤ π for all Jl + 1 ≤ t ≤ Ju − 1 implies P (ct < ε ≤ ct+1 − π) = 0 for all

Jl +1 ≤ t ≤ Ju − 1. Therefore, result (123) implies stay(t) = ∅ for all Jl +1 ≤ t ≤ Ju − 1, and
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therefore IOS holds.

Now, suppose ε is continuously distributed and its support includes [(cJl+1 ∧ (cJl+2 − π))−
δ, cJu +δ] for some δ > 0. For any Jl+1 ≤ t ≤ Ju−1, then note that a T ∗ ∈ out(t) corresponds

to an ε satisfying ct < ε ≤ ct+1 and ε > ct+1 − π. Hence, since

P (ct ∨ (ct+1 − π) < ε ≤ ct+1) > 0 (127)

for all Jl+1 ≤ t ≤ Ju−1 due to our assumption on the support of ε, we obtain that out(t) ̸= ∅
for all Jl + 1 ≤ t ≤ Ju − 1. Similarly, since any T ∗ ∈ in(t) corresponds to an ε satisfying

ct < ε+ π ≤ ct+1 and ε ≤ ct, and our assumptions on ε imply

P (ct − π < ε ≤ ct ∧ (ct+1 − π)) > 0 (128)

for any Jl+1 ≤ t ≤ Ju−1, it follows that in(t) ̸= ∅ for any Jl+1 ≤ t ≤ Ju−1. Therefore, IOS

holds if and only if stay(t) = ∅ for all Jl+1 ≤ t ≤ Ju−1. By result (123) and our assumptions

on ε, this condition is equivalent to ct+1 − ct ≤ π for all Jl + 1 ≤ t ≤ Ju − 1, and therefore the

lemma follows.

For part (iii), note that the fact that ε is continuously distributed with support including

[(cJl+1 − π) − δ, cJu + δ] for some δ > 0 implies that A = {Jl, . . . , Ju}. By part (i), therefore,

ν1(t) = t−Jl and ν0(t) = −t+Jl. Note, however, that ν̃1(t) = −ν̃0(t) = t also satisfy ISP. Part

(iii) then follows from Theorem 2.2.

Finally, to establish part (iv) of the lemma, consider type t∗ = (t, t′) ∈ T × T with t ̸= t′.

This types has ε satisfying ct < ε ≤ ct+1 and ct′ < π+ε ≤ ct′+1. Under the support condition in

the statement of part (iv), max{ct, ct′−π} < min{ct′+1−π, ct+1} if, and only if, P (T ∗ = t∗) > 0.

Given cJl+1 < · · · < cJu , max{ct, ct′ − π} < min{ct′+1 − π, ct+1} if, and only if, ct < ct′+1 − π

and ct′ − π < ct+1.

A.3 Estimation and Inference

Section 3 discusses estimates of SLATE and the CCEF constructed using the IV estimands in

Theorems 2.2 and 2.7, respectively, as well as the CCEF weighted least squares estimand in

Theorem 2.8. These are two-step estimates in which the first step is to estimate a (possibly

parametric) estimate of the conditional distribution of (T,Z) (or Z alone) given X. Although

the causal estimands of interest here are novel, the properties of the estimators they generate

follow from standard results on the distribution of generalized method of moments (GMM)

estimators. These properties are discussed below.

SLATE Estimators Using Theorem 2.2

Theorem 2.2 identifies SLATE as a marginalized Wald-IV estimand and as an IPW based

estimand. These formulas coincide with those for basic LATE, though modified here by replacing

the usual treatment with V as defined in Theorem 2.2.

In our empirical applications, we estimate SLATE using the IPW estimand of SLATE:

τ(S) =
E[Z̃Y ]

E[Z̃V ]
.
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To construct Z̃, we assume P (Z = 1|X) is unknown and estimated using a parametric model

like probit or logit. These models are written Pα(Z = 1|X) to denote their dependence on

a parameter vector, α. Estimates of this parameter vector, denoted, α̂, may be obtained by

maximum likelihood, non-linear least squares, or covariate balancing as described in Imai and

Ratkovic (2014).

Defining

Ri(α̂) ≡
Zi − Pα̂(Z = 1|Xi)

Pα̂(Z = 1|Xi)(1− Pα̂(Z = 1|Xi))
,

Z̃ is estimated by

Z̃i(α̂) ≡ Ri(α̂)−
1

N

N∑
j=1

Rj(α̂). (129)

When the sample mean of Ri(α̂) is zero, Z̃i(α̂) equals Ri(α̂). This happens if α̂ is estimated by

covariate balancing with a constant included in the covariate vector, but not necessarily when

estimated by maximum likelihood. Forcing Z̃i(α̂) to have a sample mean of zero generates

second-step estimators that are invariant to additive shifts in Y or V .24

Setting Vi ≡ ν1(Ti)Zi − ν0(Ti)(1 − Zi) generates second-step estimators of SLATE and the

probability of switching that can be written:

τ̂(S) ≡
∑N

i=1 Z̃i(α̂)Yi∑N
i=1 Z̃i(α̂)Vi

and P̂ (T ∗ ∈ S) ≡ 1

N

N∑
i=1

Z̃i(α̂)Vi. (130)

The asymptotic properties of these estimators follow from the fact that they have a GMM

representation. Specifically, τ̂(S) is the value of b1 that solves

1

N

N∑
i=1

(
Y − b0 − b1Vi

(Y − b0 − b1Vi)Ri(α̂)

)
= 0. (131)

When α̂ has a GMM representation, the asymptotic distribution of τ̂(S) accounting for propen-

sity score estimation follows from adding the relevant moment conditions to (131). Similarly,

the value of b1 that solves

1

N

N∑
i=1

(
Ri(α̂)− b0

Vi(Ri(α̂)− b0)− b1

)
= 0, (132)

is a GMM estimator of P̂ (T ∗ ∈ S). The GMM representation makes inference on P (T ∗ ∈
S) and τ(S) straightforward (we use Stata’s gmm command). The GMM framework easily

accommodates clustered data, as in our Head Start application.

24S loczyński et al. (2025) discusses normalization of weighting estimators in the context of basic LATE.
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CCEF IV Estimators Using Theorem 2.7(ii)

Under the assumptions of Theorem 2.7(ii), the CCEF depends only on the treatment level and

whether T ∗ ∈ in(t) or T ∗ ∈ out(t). Denote these values of the CCEF by

γt ≡ E[Y ∗(t)|T ∗ = t∗] if t ∈ Ti ∪To

γt,o ≡ E[Y ∗(t)|T ∗ = t∗] if t ∈ Tio, t∗ ∈ out(t)

γt,i ≡ E[Y ∗(t)|T ∗ = t∗] if t ∈ Tio, t∗ ∈ in(t) .

Theorem 2.7(ii) shows that these parameters are identified by the IV estimands:

γt =
E[Z̃ × 1{T = t}Y ]

E[Z̃ × 1{T = t}]
for any t ∈ Ti ∪To (133)

γt,o =
E[Z̃ × 1{T = t}(1− Z)Y ]

E[Z̃ × 1{T = t}(1− Z)]
for any t ∈ Tio

γt,i =
E[Z̃ × 1{T = t}ZY ]

E[Z̃ × 1{T = t}Z]
for any t ∈ Tio.

As with SLATE, the CCEF is estimated using sample analogs of the corresponding IV

estimands with Z̃i(α̂) (as defined in (129)) as instrument. These CCEF estimators are:

γ̂t =

∑N
i=1 Z̃i(α̂)1{Ti = t}Yi∑N
i=1 Z̃i(α̂)1{Ti = t}

for any t ∈ Ti ∪To

γ̂t,o =

∑N
i=1 Z̃i(α̂)1{Ti = t}(1− Zi)Yi∑N
i=1 Z̃i(α̂)1{Ti = t}(1− Zi)

for any t ∈ Tio

γ̂t,i =

∑N
i=1 Z̃i(α̂)1{Ti = t}ZiYi∑N
i=1 Z̃i(α̂)1{Ti = t}Zi

for any t ∈ Tio.

Similarly, P (T ∗ ∈ in(t)) and P (T ∗ ∈ out(t)) in Lemma 2.2 are consistently estimated by the

corresponding sample analogs of these parameters:

P̂ (T ∗ ∈ in(t)) =

{
1
N

∑N
i=1 1{Ti = t}Z̃i(α̂) if t ∈ Ti

1
N

∑N
i=1 1{Ti = t}ZiZ̃i(α̂) if t ∈ Tio

(134)

and

P̂ (T ∗ ∈ out(t)) =

{
− 1

N

∑N
i=1 1{Ti = t}Z̃i(α̂) if t ∈ To

− 1
N

∑N
i=1 1{Ti = t}(1− Zi)Z̃i(α̂) if t ∈ Tio.

(135)

Limiting distributions again follow from the GMM representation of IV estimation. This in-

cludes inference for causal effects, since these are linear combinations of CCEF levels.

CCEF and and SLATE are compatible in the sense that SLATE can be obtained as a

weighted average of the elements of the CCEF. The next lemma shows this holds both for

parameters, estimands, and for the IV estimators detailed in this appendix.

Lemma A.5. SLATE and CCEF parameters and estimators are related as follows.
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(i) Suppose Assumptions 1.1 and 1.2 hold. Then SLATE and the CCEF satisfy:

τ(S) =
∑

t∈Ti∪Tio

E[Y ∗(t)|T ∗ ∈ in(t)]× P (T ∗ ∈ in(t))

P (T ∗ ∈ S)

−
∑

t∈To∪Tio

E[Y ∗(t)|T ∗ ∈ out(t)]× P (T ∗ ∈ out(t))

P (T ∗ ∈ S)
. (136)

(ii) Suppose Assumptions 1.1, 1.2 hold, and E[V Z̃] ̸= 0. Then (136) holds replacing SLATE

by the corresponding estimand in Theorem 2.2, replacing the CCEF by the corresponding

estimand in Theorem 2.7(ii), and replacing switcher probabilities by the corresponding

estimands in Lemma 2.2. In terms of estimands, we have:

E[Y Z̃]

E[V Z̃]
=
∑
t∈Ti

E[Z̃1{T = t}Y ]

E[V Z̃]
+
∑
t∈Tio

E[Z̃1{T = t}ZY ]

E[V Z̃]

+
∑
t∈To

E[Z̃1{T = t}Y ]

E[V Z̃]
+
∑
t∈Tio

E[Z̃1{T = t}(1− Z)Y ]

E[V Z̃]
. (137)

(iii) Suppose
∑N

i=1 ViZ̃i(α̂) ̸= 0 and
∑N

i=1 YiZ̃i(α̂)1{Ti ∈ Ts} = 0 (for example, when Ts = ∅).
Then (137) holds for estimators in the form of sample analogs:∑N

i=1 YiZ̃i(α̂)∑N
i=1 ViZ̃i(α̂)

=
∑
t∈Ti

∑N
i=1 Z̃i(α̂)1{Ti = t}Yi∑N

i=1 ViZ̃i(α̂)
+
∑
t∈Tio

∑N
i=1 Z̃i(α̂)1{Ti = t}ZiYi∑N

i=1 ViZ̃i(α̂)

+
∑
t∈To

∑N
i=1 Z̃i(α̂)1{Ti = t}Yi∑N

i=1 ViZ̃i(α̂)
+
∑
t∈Tio

∑N
i=1 Z̃i(α̂)1{Ti = t}(1− Zi)Yi∑N

i=1 ViZ̃i(α̂)
. (138)

Part (i) of this lemma aligns CCEF and SLATE parameters. Part (ii) shows the equality holds

for estimands as well as parameters. This result requires neither ISP or IOS, and thus holds

under weaker conditions than the results that justify the estimands. Part (iii) says that our IV

estimators of SLATE and the CCEF are similarly compatible under minimal assumptions. This

result requires only a non-zero first stage for treatment V and that
∑N

i=1 YiZ̃i(α̂)1{Ti ∈ Ts} = 0.

The latter condition assuredly holds whenever Ts is empty.

Some specifications of M facilitate identification of the distribution of response types T ∗.

In this case, Lemma A.5(iii) implies that the SLATE estimator equals a weighted average of

switcher-specific effects. In the Head Start application, for instance, Ti = {h}, To = {n, c},
and Tio and Ts are empty. Since out(c) = {(c, h)} and out(n) = {(n, h)}, we have

P (T ∗ = (c, h)) = P (T ∗ ∈ out(c)) P (T ∗ = (n, h)) = P (T ∗ ∈ out(n)). (139)

By Lemma 2.2 the probability of each of these switcher type is identified. Using (135), set

P̂ (T ∗ = (c, h)) = − 1

N

N∑
i=1

Z̃i(α̂)1{Ti = c} P̂ (T ∗ = (n, h)) = − 1

N

N∑
i=1

Z̃i(α̂)1{Ti = n}

61



and note that

P̂ (T ∗ ∈ in(h)) =
1

N

N∑
i=1

Z̃i(α̂)1{Ti = h}

=
1

N

N∑
i=1

Z̃i(α̂)(1− 1{Ti = c} − 1{Ti = n})

= P̂ (T ∗ = (n, h)) + P̂ (T ∗ = (c, h)),

because the mean of Z̃i(α̂) is zero by construction. Lemma A.5(iii) therefore implies∑N
i=1 YiZ̃i(α̂)∑N
i=1 ViZ̃i(α̂)

=

∑N
i=1 Z̃i(α̂)1{Ti = h}Yi∑N

i=1 ViZ̃i(α̂)
+
∑

t∈{c,n}

∑N
i=1 Z̃i(α̂)1{Ti = t}Yi∑N

i=1 ViZ̃i(α̂)

= γ̂h
P̂ (T ∗ ∈ in(h))

P̂ (T ∗ ∈ S)
− (γ̂c

P̂ (T ∗ ∈ out(c))

P̂ (T ∗ ∈ S)
+ γ̂n

P̂ (T ∗ ∈ out(n))

P̂ (T ∗ ∈ S)
)

= (γ̂c − γ̂n)
P̂ (T ∗ = (n, c))

P̂ (T ∗ ∈ S)
+ (γ̂c − γ̂h)

P̂ (T ∗ = (c, h))

P̂ (T ∗ ∈ S)
.

This explains why estimated SLATE for Head Start in Section 3.1 equals a weighted average of

the corresponding CCEF estimates.

Proof of Lemma A.5. In order to establish part (i), we first equivalently express SLATE as

τ(S) =
1

P (T ∗ ∈ S)
×
∑
t∗∈S

E[(Y ∗(t∗(1))− Y ∗(t∗(0)))1{T ∗ = t∗}]. (140)

Since for any response type t∗ ∈ S we must have t∗(1) ∈ Ti ∪Tio, it therefore follows that∑
t∗∈S

E[Y ∗(t∗(1))1{T ∗ = t∗}] =
∑
t∗∈S

∑
t∈Ti∪Tio

E[Y ∗(t)1{T ∗ = t∗}1{t∗(1) = t}]

=
∑

t∈Ti∪Tio

E[Y ∗(t)(
∑
t∗∈S

1{T ∗ = t∗}1{t∗(1) = t})] =
∑

t∈Ti∪Tio

E[Y ∗(t)1{T ∗ ∈ in(t)}], (141)

where the final equality follows by definition of in(t). By similar arguments we have that∑
t∗∈S

E[Y ∗(t∗(0))1{T ∗ = t∗}] =
∑

t∈To∪Tio

E[Y ∗(t)1{T ∗ ∈ out(t)}] (142)

and therefore the second claim of the lemma follows from results (140)-(142).

To establish part (ii) just note that Ti, To, Tio and Ts being a partition of T imply∑
t∈Ti∪To

E[Z̃1{T = t}Y ] +
∑
t∈Tio

(E[Z̃1{T = t}ZY ] + E[Z̃1{T = t}(1− Z)Y ]) (143)

= E[Z̃Y ]−
∑
t∈Ts

E[Z̃1{T = t}Y ]

= E[Z̃Y ]−
∑
t∈Ts

E[Z̃1{T ∗ ∈ stay(t)}Y ∗(t)]

= E[Z̃Y ],

where the second equality follows from 1{T = t} = 1{T ∗ ∈ stay(t)}, and the third from

E[Z̃|X] = 0 and Z̃ being independent of (T ∗, Y ∗) conditionally on X by Assumption 1.1(iii).
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Part (ii) of the lemma therefore follows from (143) and E[V Z̃] ̸= 0.

Finally, to establish part (iii) we follow the same manipulations as in (143) to obtain

N∑
i=1

(
∑

t∈Ti∪To

Z̃i(α̂)1{Ti = t}Yi +
∑
t∈Tio

(Z̃i(α̂)1{Ti = t}ZiYi + Z̃i(α̂)1{Ti = t}(1− Zi)Yi))

=
N∑
i=1

Z̃i(α̂)Yi −
N∑
i=1

∑
t∈Ts

Z̃i(α̂)Yi1{Ti = t} =
N∑
i=1

Z̃i(α̂)Yi, (144)

where the final equality follows from
∑N

i=1 YiZ̃i(α̂)1{Ti ∈ Ts} = 0. The third claim of the

lemma therefore follows form (144) and
∑N

i=1 Z̃i(α̂)Vi ̸= 0.

Properties of CCEF Estimates Based on Theorem 2.8

Theorem 2.8 identifies the CCEF as the solution to a population weighted least squares problem.

Distribution theory for estimators based on this result is more involved than for SLATE and

CCEF estimates using IV.

Note first that weights and outcomes in the least squares problem here depend on the joint

conditional probability P (T = t, Z = z|X) rather than the instrument-assignment propensity

score. As with the propensity score, this conditional probability is estimated using a parametric

model Pα(T = t, Z = z|X) that depends on parameter vector α. As before, let α̂ denote the

corresponding first-step estimator.

First-step estimator α̂ is used to construct plug-in estimators Ỹt(α̂) for Ỹt, ωt(X; α̂) for

ωt(X) (for all t ∈ Ti ∪ To), Ỹt,z(α̂) for Ỹt,z, and ωt,z(X; α̂) for ωt,z(X) (for all t ∈ Tio and

z ∈ {0, 1}). Specifically, factoring Pα̂(T = t, Z = z|X), we set

Ỹt(α̂) ≡
(Z − Pα̂(Z = 1|X))1{T = t}Y

Pα̂(Z = 1, T = t|X)− Pα̂(Z = 1|X)Pα̂(T = t|X)

Ỹt,0(α̂) ≡
1{T = t}(1− Z)Y

Pα̂(T = t, Z = 0|X)

Ỹt,1(α̂) ≡
1{T = t}ZY

Pα̂(T = t, Z = 1|X)

and

ωt(X; α̂) = Pα̂(Z = 1|X)(Pα̂(T = t|Z = 1, X)− Pα̂(T = t|Z = 0, X))+ if t ∈ Ti

ωt(X; α̂) = Pα̂(Z = 0|X)(Pα̂(T = t|Z = 0, X)− Pα̂(T = t|Z = 1, X))+ if t ∈ To

ωt,z(X; α̂) = Pα̂(T = t, Z = z|X) if t ∈ Tio.

In this case, CCEF estimator β̂ minimizes objective function Qn over parameter space B,
where

QN (b) ≡ 1

N

N∑
i=1

( ∑
t∈Ti∪To

(Ỹt,i(α̂)− F1(t,Xi; b))
2ωt(Xi; α̂)

+
∑

t∈Tio,z∈{0,1}

(Ỹt,z,i(α̂)− F2(t, z,Xi; b))
2ωt,z(Xi; α̂)

)
.
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Under conditions stated below, β̂ is consistent for the β that minimizes Q over B, where

Q(b) ≡ E
[ ∑
t∈Ti∪To

(Ỹt(α)− F1(t,X; b))2ωt(X;α)

+
∑

t∈Tio,z∈{0,1}

(Ỹt,z(α)− F2(t, z,X; b))2ωt,z(X;α)
]
.

When the model for the conditional probability P (T = t, Z = z|X) is correctly specified, Ỹt(α),

Ỹt,z(α), ωt(X;α), and ωt,z(X;α) equal Ỹt, Ỹt,z, ωt(X), and ωt,z(X), respectively. In this case,

minimizer β of Q minimizes the objective function given by (36).

The asymptotic properties of first-step estimator α̂ are derived under standard conditions

for GMM estimators. Specifically, let W ≡ (Y, T, Z,X) denote the vector of observed variables,

and suppose the first-step estimator α̂ is chosen to solve

1

N

N∑
i=1

mα(Wi, α̂) = 0, (145)

with probability approaching one, where mα(W, α̂) is of the same dimension as α̂. For any

matrix Ω, also let ∥Ω∥o denote the square root of the largest eigenvalue of Ω′Ω (i.e., the largest

singular value of Ω). Estimator α̂ is then assumed to satisfy:

Assumption A.1. (i) α̂
p→ α; (ii) E[mα(W,α)] = 0 and E[∥mα(W,α)∥2] < ∞; (iii) With prob-

ability approaching one (145) holds; (iv) There is a neighborhood Nα of α such that mα(w, a) is

differentiable in a ∈ Nα and E[supa∈Nα
∥∇amα(W,a)∥o] < ∞; (v) The matrix E[∇amα(W,α)]

is invertible.

Assumption A.1(i) requires α̂ to be consistent for α. Assumptions A.1(ii)-(v) are standard

regularity conditions that guarantee asymptotic normality of α̂.

Consistency of β̂ follows from Assumption A.1(i) and the following two assumptions:

Assumption A.2. (i) β is the unique minimizer of Q in B; (ii) B is compact; (iii) F1(t,X; ·)
is continuous and E[supb∈B F 2

1 (t,X; b)] < ∞ for all t ∈ Ti∪To; (iv) F2(t, z,X; ·) is continuous
and E[supb∈B F 2

1 (t, z,X; b)] < ∞ for all t ∈ Tio, z ∈ {0, 1}.

Assumption A.3. (i) There is a neighborhood Nα of α and M < ∞ with ωt(X; a) and Ỹt(a)

continuous in a ∈ Nα, E[supa∈Nα
Ỹ 2
t (a)] < ∞, P (supa∈Nα

|ωt(X; a)| ≤ M) = 1 for all t ∈
Ti∪To; (ii) ωt,z(X; a) and Ỹt,z(a) are continuous in a ∈ Nα and satisfy E[supa∈Nα

Ỹ 2
t,z(a)] < ∞

and P (supa∈Nα
|ωt,z(X; a)| ≤ M) for all t ∈ Tio, z ∈ {0, 1}.

Assumption A.3 requires the weights ωt(X;α) (for t ∈ Ti ∪ To) and ωt,z(X;α) (for t ∈ Tio)

to be bounded. This condition is sure to be satisfied in first-step specifications for which

Pα(T = t, Z = z|X) belongs to [0, 1].

Assumptions yielding asymptotic normality of β̂ use the notation

mβ(W, b, a) ≡
∑

t∈Ti∪To

(Ỹt(a)− F1(t,X; b))ωt(X; a)∇bF1(t,X; b)

+
∑

t∈Tio,z∈{0,1}

(Ỹt,z(a)− F2(t, z,X; b))ωt,z(X; a)∇bF2(t, z,X; b),
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so that E[mβ(W, b, α)] equals the derivative of Q at b. We then require:

Assumption A.4. (i) There is a neighborhood Nβ of β with Nβ ⊂ B; (ii) F1(t,X; b) is

differentiable in b ∈ Nβ, E[∥∇bF1(t,X;β)∥2] < ∞ for all t ∈ Ti ∪ To; (iii) F2(t, z,X; b)

is differentiable in b ∈ Nβ, E[∥∇bF2(t, z,X;β)∥2] < ∞ for all t ∈ Tio, z ∈ {0, 1}; (iv)

mβ(W, b, a) is differentiable in b ∈ Nβ for all a ∈ Nα, E[supb∈Nβ ,a∈Na
∥∇bmβ(W, b, a)∥o] < ∞;

(v) E[∥mβ(W,β, α)∥2] < ∞ and E[∇bmβ(W,β, α)] are invertible.

Assumption A.5. (i) supb∈Nβ
∥mβ(W, b, a1)−mβ(W, b, a2)∥ ≤ D(W )∥a1−a2∥ for all a1, a2 ∈

Nα and D with E[D2(W )] < ∞; (ii) Ỹt(a) is differentiable in a ∈ Nα for all t ∈ Ti ∪ To

and E[supa∈Nα
∥∇bF1(t,X;β)(∇aỸt(a))

′∥o] < ∞; (iii) Ỹt,z(a) is differentiable in a ∈ Nα for all

t ∈ Tio, z ∈ {0, 1}, and E[supa∈Nα
∥∇bF2(t, z,X;β)(∇aỸt,z(a))

′∥o] < ∞.

Assumption A.4 imposes standard conditions under which β̂ is asymptotically normal when α is

known. Assumption A.5 allows us to account for the impact of estimated α̂ on the asymptotic

distribution of β̂. Assumption A.5 requires Ỹt(α) and Ỹt,z(α) to be differentiable, but does not

impose differentiability on weights ωt(X;α) and ωt,z(X;α).

The contribution of α̂ to the influence function of β̂ depends on

Gy ≡
∑

t∈Ti∪To

ωt(X;α)∇bF1(t,X;β)(∇aỸt(α))
′

+
∑

t∈Tio,z∈{0,1}

ωt,z(X;α)∇bF2(t, z,X;β)(∇aỸt,z(α))
′

and

Gω ≡ E
[ ∑
t∈Ti∪To

(Ỹt(α)− F1(t,X;β))∇bF1(t,X;β)(∇aωt(X;α))′

+
∑

t∈Tio,z∈{0,1}

(Ỹt,z(α)− F2(t, z,X;β))∇bF2(t, z,X;β)(∇aωt,z(X;α))′
]
.

Define matrices Mα ≡ E[∇amα(W,α)] and Mβ ≡ E[∇bmβ(W,β, α)]. The next result uses

this notation to establish the asymptotic normality of β̂.

Theorem A.2. Assume A.1, A.2, A.3 , A.4, A.5 hold and let {Wi}Ni=1 be an i.i.d. sequence of

random variables.

(i) Suppose that E[Ỹt(α)|X] = F1(t,X;β) for all t ∈ Ti∪To and E[Ỹt,z(α)|X] = F2(t, z,X;β)

for all t ∈ Tio and z ∈ {0, 1}. Then,

√
N{β̂ − β} d→ N(0,Var{M−1

β (mβ(W,β, α) +GyM
−1
α mα(W,α))}).

(ii) Suppose that E[mβ(W,β, a)] is continuously differentiable in a ∈ Nα. Then,

√
N{β̂ − β} d→ N(0,Var{M−1

β (mβ(W,β, α) + (Gy +Gω)M
−1
α mα(W,α))}).

Part (i) of Theorem A.2 derives the asymptotic distribution of β̂ assuming F matches the

conditional mean of Ỹt(α) (for t ∈ Ti ∪ To) and of Ỹt,z(α) (for t ∈ Tio). When the first step

is correctly specified, these implies F matches the CCEF. In this case, the fact that weights
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are estimated does not change the asymptotic variance of β̂ – i.e.,weighting by ωt(X; α̂) is

asymptotically equivalent to weighting by ωt(X;α).

Part (ii) of Theorem A.2 derives the asymptotic distribution of β̂ assuming without requiring

the CCEFmodel be correctly specified. In this case, estimation error in the weights can affect the

asymptotic variance of β̂. To characterize this impact, Theorem A.2(ii) assumes E[mβ(W,β, a)]

is differentiable in a, which requires the weights themselves to be differentiable. The latter

condition requires that, for some ε > 0,

Pα(T = t|Z = 1, X)− Pα(T = t|Z = 0, X) ≥ ε if t ∈ Ti (146)

Pα(T = t|Z = 0, X)− Pα(T = t|Z = 1, X) ≥ ε if t ∈ To.

If this condition fails, β̂ remains
√
N -consistent but its asymptotic distribution may not be

Gaussian (Fang and Santos, 2019).

Standard errors and confidence intervals for the estimates based on Theorem 2.8 in Table 1

use a bootstrap. We assume the CCEF model is correctly specified, so the asymptotic distribu-

tion of β̂ is the same using either estimated or population weights. We therefore fix weights at

the value estimated in the full sample across bootstrap replications. The quantities Ỹt, Ỹt,z, and

parameter estimates α̂, β̂ are recomputed in each bootstrap sample. When the CCEF model is

potentially misspecified, weights should also be re-estimated in each draw. In this case, con-

dition (146) must be imposed. The consistency of both bootstrap procedures follows from the

asymptotic equivalence of our estimator and GMM estimators and the consistency of the boot-

strap for the latter (Hall and Horowitz, 1996; Hahn, 1996; Andrews, 2002); see also Gonçalves

et al. (2023) for recent results on bootstrap consistency for two-step extremum estimators.

Given estimates β̂(b) for bootstrap replications b = 1, . . . , B, standard errors are computed

as the square-root of B−1
∑B

b=1(β̂
(b)
j − β̂j)

2. Confidence intervals at a 1− α level are computed

as [β̂j − q(1−α)/2, β̂j − qα/2], where qτ is the τ -th quantile of the distribution of (β̂
(b)
j − β̂j)

B
b=1.

Finally, p-values are computed using the bootstrap distribution of the t-statistic centered at β̂j .

Proof of Theorem A.2. Lemmas A.6 and A.7 used here are proved at the end of this section.

By Lemma A.6, β̂
p→ β. Moreover, Assumption A.1 and standard arguments (e.g., Theorem

3.4 in Newey and McFadden (1994)) imply

√
N{α̂− α} = − 1√

N

N∑
i=1

M−1
α mα(Wi, α) + oP (1), (147)

where recall that Mα ≡ E[∇amα(W,α)]. Next, note that the consistency of β̂, Assumption

A.4(i), and Qn being differentiable by Assumptions A.4(ii)(iii) imply β̂ satisfies

1

N

N∑
i=1

mβ(Wi, β̂, α̂) = 0. (148)
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Consistency of α̂ (by Assumption A.1(i)) and β̂, and Lemma A.7 then imply that

1√
N

N∑
i=1

mβ(Wi, β̂, α̂) (149)

=
1√
N

N∑
i=1

mβ(Wi, β, α) +
√
NE[(mβ(W, β̂, α̂)−mβ(W,β, α))] + oP (1).

In particular, combining results (148) and (149) and rearranging terms yields that

√
NE[(mβ(W,β, α̂)−mβ(W, β̂, α̂))] (150)

=
1√
N

N∑
i=1

mβ(Wi, β, α) +
√
NE[(mβ(W,β, α̂)−mβ(W,β, α))] + oP (1).

Next, note that E[∥mβ(W,β, α)∥2] < ∞ by Assumption A.4(v) and hence result (147) and

Assumption A.1(ii) and Assumption A.5(i) together imply that the right hand side of (150)

is OP (N
−1/2). Therefore, the consistency of (β̂, α̂), the mean value theorem, Assumptions

A.4(iv)(v), and result (150) allow us to conclude that

√
N{β̂ − β} = − 1√

N

N∑
i=1

M−1
β (mβ(Wi, β, α) +E[(mβ(W,β, α̂)−mβ(W,β, α))]) + oP (1) (151)

where recall that Mβ ≡ E[∇bmβ(W,β, α)].

To establish the first part of the theorem, note that E[Ỹt(α)|X] = F1(t,X;β), E[Ỹt,z(α)|X] =

F2(t, z,X;β), Assumptions A.3 and A.5(ii)(iii), and result (147) imply

√
NE[(mβ(W,β, α̂)−mβ(W,β, α))] = GyM

−1
α

1√
N

N∑
i=1

mα(Wi, α) + oP (1). (152)

Hence, part (i) of the theorem follows from (151), (152), E[mβ(W,β, α)] = 0 by β minimizing Q

and Assumption A.4(ii), E[mα(W,α)] = 0 by Assumption A.1(i), and the central limit theorem.

If instead the conditions of part (ii) of the theorem hold, then

√
NE[(mβ(W,β, α̂)−mβ(W,β, α))] = (Gy +Gω)M

−1
α

1√
N

N∑
i=1

mα(Wi, α) + oP (1) (153)

by result (147) and the delta method (see, e.g., Theorem 3.9.4 in van der Vaart and Wellner

(1996)). Part (ii) of the theorem follows from (151), (153), and the central limit theorem.

Lemma A.6. If Assumptions A.1(i), A.2, A.3 hold, and {Wi}Ni=1 is i.i.d., then β̂
p→ β.

Proof. We first define a finite sample criterion function Q̃n(b, a) to be given by

Q̃N (b, a) ≡ 1

N

N∑
i=1

( ∑
t∈Ti∪To

(Ỹt,i(a)− F1(t,Xi; b))
2ωt(Xi; a)

+
∑

t∈Tio,z∈{0,1}

(Ỹt,z,i(a)− F2(t, z,Xi; b))
2ωt,z(Xi; a)

)
, (154)
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and note that QN (b) = Q̃N (b, α̂). Similarly, we define the population analog to be

Q̃(b, a) ≡ E
[ ∑
t∈Ti∪To

(Ỹt(a)− F1(t,X; b))2ωt(X; a)

+
∑

t∈Tio,z∈{0,1}

(Ỹt,z(a)− F2(t, z,X; b))2ωt,z(X; a)
)
, (155)

noting that Q(b) = Q̃(b, α). Assumptions A.2(ii)-(iv) and A.3(i)(ii) together with Lemma 2.4

in Newey and McFadden (1994) then allow us to conclude

sup
(b,a)∈B×Nα

|Q̃N (b, a)− Q̃(b, a)| = oP (1) (156)

and that Q̃(b, a) is continuous on B × Nα for some neighborhood Nα of α. Moreover, by

Assumption A.1(i), α̂ ∈ Nα with probability approaching one, and therefore

sup
b∈B

|QN (b)−Q(b)| ≤ sup
b∈B

|Q̃N (b, α̂)− Q̃(b, α̂)|+ sup
b∈B

|Q̃(b, α̂)−Q(b, α)| = oP (1), (157)

where the final result follows from (156), Q̃ being continuous on B×Nα, and continuous functions

being uniformly continuous on compact sets. The consistency of β̂ then follows from result

(157), Q̃ being continuous on B × Nα implying Q is continuous on B, Assumptions A.2(i)(ii),

and Theorem 2.1 in Newey and McFadden (1994).

Lemma A.7. If Assumption A.4(ii)-(iv) and A.5(i) are satisfied, then it follows that the class

of functions F ≡ {mβ(W,a, b) : (a, b) ∈ Nα ×Nβ} is Donsker.

Proof. By the mean value theorem (see, e.g., Proposition 7.3.2 in Luenberger (1969)), it follows

that for any a ∈ Nα and b1, b2 ∈ Nβ we have the bound

∥mβ(W, b1, a)−mβ(W, b2, a)∥ ≤ sup
(b,a)∈Nβ×Nα

∥∇bmβ(W, b, a)∥o × ∥b1 − b2∥. (158)

Since E[sup(b,a)∈Nβ×Na
∥∇bmβ(W, b, a)∥o] < ∞ by Assumption A.4(iv), result (158) together

with Assumption A.5(i) imply there is a B(W ) satisfying E[B2(W )] < ∞ and

∥mβ(W, b1, a1)−mβ(W, b2, a2)∥ ≤ B(W ){∥a1 − a2∥+ ∥b1 − b2∥}

for all b1, b2 ∈ Nβ and a1, a2 ∈ Nα. The lemma then follows from Theorems 2.5.6 and 2.7.11 in

van der Vaart and Wellner (1996).
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