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Abstract

Agricultural extension programs often train a subset of farmers and rely on social networks
for knowledge dissemination. We evaluate this approach through a two-stage experiment of
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trainee concentration at the village level; the second randomly selected participants within
villages. The program increased knowledge and self-reported adoption of the taught practices.
It also reshaped farmers’ social networks by creating new social ties primarily among co-trainees.
At first glance, the intervention appeared modestly effective, with treated farmers exhibiting
higher yields than control applicants within the same village, although this difference is not
statistically significant. However, knowledge did not diffuse, and control farmers with more
treatment friends at baseline reduced audited adoption and input use. Villages with high trainee
concentrations showed suggestive evidence of negative spillovers, consistent with reallocation
of labor and other shared inputs toward treated farmers, as formalized in a simple model in
which social ties shape access to inputs. Relative declines in the yields of control farmers in these
villages account for treatment-control differences, raising concerns both about this dissemination
strategy and estimates that fail to consider potential negative spillovers.
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1 Introduction

Given the importance of agriculture for low-income economies, the successful adoption of yield-

enhancing technologies is critical for well-being, particularly in sub-Saharan Africa, where agricul-

tural productivity and technology use are increasingly behind global trends (Aker et al. 2022; Suri

and Udry 2022; FAOSTAT 2022; Suri et al. 2024). Agricultural training could play an important role

in the diffusion of these technologies (Cole and Fernando 2012) and governments, NGOs and firms

spend considerable resources on it.

A common approach to organizing agricultural training in developing countries is to train a

select group of farmers in each community and rely on the organic spread of information through

their social networks. This strategy raises a number of related questions. First, how well does

this kind of information diffuse through social networks? Second, does treating some farmers and

not others place untreated farmers at some disadvantage, through a market externality or some

other form of crowding out? Third, does the group nature of the training alter the structure of

social networks and thus potentially disrupt or amplify the impact of the intervention? If untrained

farmers seek out training participants, the transmission of the intervention could accelerate (Comola

and Prina 2021). Indeed, recent evidence shows that social networks can form strategically around

new information sources (Derksen and Souza 2024). Conversely, if the intervention strengthens

network ties among participants, it might disadvantage non-participants. For example, when

inputs are limited, stronger ties between trained farmers could facilitate resource sharing within this

group, potentially excluding others (Banerjee et al. 2021). Importantly, direct comparisons between

trained and untrained farmers would then overstate the benefits of agricultural training by failing

to account for these or other negative externalities.

While a growing literature studies the diffusion of agricultural innovation through social net-

works, the results of existing experimental studies are mixed, suggesting that diffusion may depend

on a variety of factors, including the simplicity of the technology (Chandrasekhar et al. 2022), how

novel it is (Bridle et al. 2019), how profitable it is (Magnan et al. 2015), and the identity of the early

adopters (Beaman et al. 2021).1 Meanwhile, the potential for market and network externalities has

not, to our knowledge, yet been investigated.

In this paper, we seek to fill this gap with an experiment conducted among coffee farmers in

Rwanda. We designed a two-stage randomized controlled trial (RCT) and collected detailed social

network data both pre- and post-intervention to: (i) assess the impact of an agronomy training

program on the structure of social networks, (ii) test whether information shared during training

spreads through existing networks, and (iii) estimate spillovers (positive or negative) to untrained

farmers. We find evidence of endogenous network rewiring in response to the program, little

evidence of knowledge diffusion within social and geographic networks, and consistent signs of

negative spillovers to control farmers. These spillovers likely occurred through the reallocation

of inputs in limited supply towards trained farmers: soil inputs (fertilizers and mulch) and hired

labor. We conclude that a naive comparison of treatment and control farmers within a village would

seriously overestimate the program’s benefits.

1For recent reviews of this literature, see Suri and Udry (2022) and Suri et al. (2024).
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The program, designed and conducted by a leading international NGO, was an intensive

agronomy training offered to coffee farmers to help them improve their yields. To measure direct

and indirect impacts, the design follows the approach of Crépon et al. (2013). First, we collected

interest in the program from coffee farmers. Second, we randomly varied treatment concentration

at the village level across 27 villages: in approximately one third of the villages, 25% of farmers who

subscribed were selected for the treatment group, in another third, 50%, and in the final third, 75%.

Finally, the 1,594 farmers who signed up for the program were randomly assigned to treatment and

control groups according to the proportions assigned in each village.

The selected farmers received monthly instruction modules for the first year, followed by six

refresher modules during the second year. These modules covered topics such as nutrition, pest

and disease management, weed control, mulching, rejuvenation and pruning, shade management,

soil and water conservation, and record keeping. The farmers were organized into groups based on

geographical proximity and picked a lead farmer, whose plot was used for demonstrations of the

agricultural practices.

To guide intuition on how changes in social networks may translate into program impacts, we

first introduce a simple model in which the allocation of scarce inputs across farmers is shaped by

social connections. The model is developed for labor, but its logic extends to other inputs that are

commonly exchanged or shared among farmers, such as mulch and fertilizers. A key prediction

of the model is that if training creates tighter social clusters among treated farmers, inputs are

increasingly allocated within this group. As the village share of farmers assigned to the training

rises, this reallocation tends to reduce access to inputs for control farmers, generating negative

spillovers. Crucially, these effects arise even in the absence of learning spillovers, technology

adoption, or productivity gains.

We collected ten (including four post-treatment) rounds of surveys to measure the impacts of

the training on farmers’ knowledge and adoption of the practices as well as on their yields and

coffee sales. To measure both diffusion effects and any impact on social connections, we collected

the names of farmers to whom the head or spouse in each household talked about growing coffee,

before and after the intervention. We use these data to build complete social network maps of all

coffee-growing households in the subdistrict, covering more than 3,000 households in 29 villages.

We also collected GPS coordinates of plots and households to construct two measures of neighbors:

people farmers live close to and people who have coffee plots next to their own coffee plots.

From the household surveys, we construct an index of knowledge and an index of (self-reported)

adoption of improved agricultural practices. We also measure the use of soil inputs (mulch and

fertilizers), labor inputs, and yields. Net revenues are constructed as gross revenues from coffee

sales minus reported monetary expenditures on all inputs. From the audit data, we construct an

index of adoption of improved agricultural practices, and a measure of leaf health or nutrition.

Our analysis yields five main findings. First, the agronomy training program fostered new social

ties among treatment farmers, particularly in villages with 75% treatment farmers. Almost all these

links came from connections with co-trainees within a training group, without significantly affecting

interactions between treatment and control farmers. Of the 0.34 new friends gained by treatment
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farmers — a 28% increase over baseline — 0.32 were from the same training group. In contrast, the

networks of control farmers appear to have been largely unaffected by the program. Thus, social

networks became more tightly knit within the treatment group rather than across treatment and

control farmers under the program.

Second, within villages, treatment farmers have greater knowledge (+1.24 SD) and self-reported

adoption of practices (+0.32 SD) than control farmers, but differences in observable adoption

outcomes are small. Tree audits indicate slightly greater adoption of the new practices among

treatment farmers (+0.02 SD) and higher leaf health (+0.032 SD), with no significant differences

in input use (measured by an index of labor days, mulch use, and amount of fertilizer applied).

Yields of treatment farmers are 6.1% higher than those of control farmers, though this effect is

not statistically significant. Estimated effects on net revenues are similar in magnitude and also

insignificant. Importantly, these within-village comparisons could be either an overestimate or an

underestimate of the actual treatment effects if the program had positive or negative spillovers on

the control group. Either of those would violate the SUTVA assumption.

Third, we find no evidence of information diffusion to untrained farmers through pre-existing

networks. We exploit exogenous variation in the number of farmers’ friends who were assigned to

the treatment group (conditional on the total number of friends at baseline) to examine whether the

agronomic practices taught during training sessions diffuse to individuals with whom treatment

farmers reported discussing coffee production at baseline. Using this variation, we find no evidence

of spillovers to friends in the control group in terms of knowledge or adoption. Strikingly, we find

that control farmers connected to more treatment farmers at baseline have significantly lower input

use and lower adoption. Applying a similar strategy for geographic neighbors, we likewise find no

evidence of positive spillovers of the program for control farmers living near trained households or

cultivating adjacent coffee plots.

Fourth, we leverage the exogenous variation in village-level treatment shares created by our

experimental design to test whether the concentration of treatment farmers in a village influences

outcomes for control farmers. The results suggest large negative spillovers: control farmers’ yields

are 27% lower in villages with 75% treatment farmers than in 25% villages. The observed difference

between treatment and control farmers on yields is actually negative in villages with few (25%)

treatment farmers, and becomes more positive in villages with more treatment farmers. Due to

the small number of villages, the p-values based on randomization inference are often larger than

5%, but overall, this suggests that the apparent positive impact of the program on yields from our

within-village analysis is accounted for by lower yields among control farmers in high treatment

intensity villages, rather than by gains among treated farmers.

There is suggestive evidence that these apparent perverse effects on yields in the control group

were caused by input reallocation in villages with higher treatment concentration. For both soil

inputs and hired labor, a consistent pattern emerges: very small and insignificant differences

between treatment and control farmers in low intensity (25%) villages, while in high intensity (75%)

villages a gap appears, driven by lower input use among control farmers. While the limited number
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of villages reduces precision, the regularity of this pattern is indicative of input reallocation from

control to trained farmers as treatment intensity rises.

Further evidence supporting the labor channel comes from wage impacts. Daily wages increase

with treatment intensity, but only for control group employers; wages paid by treated farmers remain

largely unchanged. This asymmetric pattern is consistent with the program-induced tightening of

social links within the treatment group reallocating hired labor toward treated farmers, rather than

reflecting an increase in aggregate labor demand.

Finally, we examine the supply side of the labor market. Treatment farmers work more days

on other households’ coffee farms, with this effect intensifying in villages with higher treatment

densities; in villages with 75% treatment intensity, they work nearly five times as many days

as control farmers. This pattern points to reciprocal labor arrangements concentrated among

treatment farmers, potentially related to the sourcing and application of inputs such as mulch and

fertilizers. Such arrangements align closely with the mechanism formalized in the model, in which

training-induced network clustering reallocates labor and other shared inputs to treated farmers.

The fact that the training program does not increase the yields of treatment farmers but decreases

those of control farmers suggests that training some farmers but not others may have inadvertently

lowered aggregate output by increasing input misallocation. To provide suggestive evidence of

this channel, we present estimates of a coffee production function, with labor and fertilizer as the

main inputs. A fully robust estimate of the production function is beyond the scope of this paper,

but simple descriptive regressions suggest that, consistent with other estimates (Zhang et al. 2017;

Kurniawan et al. 2024), the production function has decreasing returns to fertilizer and labor, and

no differences between treatment and control farmers. Input reallocation is thus unlikely to have

increased efficiency in aggregate coffee production in this sample.

Taken together, our findings offer a cautionary tale regarding the traditional model of social

learning in agriculture. The agronomy training program shifted the allocation of scarce resources

from control to treatment farmers, perhaps due to the increased concentration of social networks

among treatment farmers. These results suggest that the canonical model, which assumes static

networks and straightforward knowledge diffusion, may not fully capture the complexities of

real-world agricultural settings. The fact that this may have been missed without a village-level

randomization also calls for caution in the evaluation of agricultural extension programs. More

broadly, we conclude that any strategy that involves helping some people and not others may

backfire when markets are imperfect and poorly integrated.

Our study makes two main contributions. First, it is among the few to document endogenous

network responses to a randomized intervention. Notable exceptions include Banerjee et al. (2021),

Heß et al. (2021), and Derksen and Souza (2024). Banerjee et al. (2021) show that access to microfi-

nance causes social networks to shrink, with reductions in informal lending and risk-sharing even

among non-borrowers. Similarly, Heß et al. (2021) document fewer social links in villages that

were randomly assigned to a community-driven development program in The Gambia, which they

attribute to the unequal distribution of program benefits. In an experiment in Malawian schools,

Derksen and Souza (2024) find that randomizing access to an information resource (Wikipedia)
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significantly reshaped social networks, with most of the new links formed between treatment

and control pairs. In contrast, our findings reveal that the agronomy training program primarily

increased social ties among treatment farmers, almost exclusively within their training groups, with

no significant increase in connections between treatment and control farmers. While Derksen and

Souza (2024) attribute the formation of new links to information-sharing, this explanation seems less

relevant in our context. Instead, the strengthening of social ties among co-trainees likely facilitated

resource sharing, while the control group was deprived of any benefits of the training program.

Second, to our knowledge, this study is the first to document (negative) market spillovers from

an agricultural training intervention. Our finding that limited access to inputs may have hindered

farmers from fully adopting the trained agronomic practices or experiencing positive spillovers

aligns with the results of Jones et al. (2022), who show that labor constraints impeded the adoption

of another productivity-enhancing technology, irrigation, in the context of Rwandan agriculture.

Related, Emerick (2018) shows that farmer-to-farmer trading frictions limit the diffusion of a new

rice seed variety in India and that some of these frictions (not all) can be attributed to the caste

system. In a different context, Crépon et al. (2013) demonstrate that job-training programs can

increase employment for participants but displace non-participants by intensifying competition in

the French labor market. Finally, Heß et al. (2021) show how the unequal distribution of benefits

from a development program can reduce economic interactions within networks (likely driven by

elite capture). Taken together, these findings and our own highlight that, in settings with imperfect

markets or unequal access to resources, development interventions can inadvertently exacerbate

inequalities or harm non-participants.

2 Background and Program Description

2.1 Context: Rural Rwanda

Coffee is Rwanda’s most important export crop, contributing about US$62 million in export earnings

per year (NISR 2019). Production is dominated by 500,000 smallholder producers (OCIR-Café 2008).

Intensifying coffee production and increasing the sector’s productivity were key targets of the

government’s strategic plan for boosting agricultural development. Rwanda has ideal growing

conditions for coffee, but agronomic practices were poor. For example, the national rate of chemical

fertilizer consumption per cultivated hectare was 4KG in 2009, below the sub-Saharan African

average of 9 to 11 KG per hectare (ROR 2009).

2.2 The Intervention: Agronomy Training Program

The context for our study is a large agronomy training program for small-scale coffee farmers,

aimed at improving the health of coffee trees and ultimately yields. TechnoServe, an international

agri-business NGO, conducted agricultural training programs in several coffee growing regions in

East Africa between 2010 and 2015. This study focuses on the agronomy program in one sub-district

in Southern Rwanda, run between February 2010 and October 2011.
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The program focused on improving tree health and productivity through a series of labor-

intensive practices. These included a balanced nutritional program using both organic and inorganic

additives, such as homemade compost and a chemical fertilizer containing nitrogen, phosphorus,

and potassium (NPK 22-12-6). It also involved integrated pest management and effective weed

control through hand weeding and mulch application, with mulching additionally serving to

maintain moisture and reduce soil erosion. No input subsidies were provided; instead, farmers

were trained to apply these practices independently, without external support. Appendix B provides

a more detailed description of the practices covered and the expected impacts as outlined by the

NGO’s agronomists.

The training sessions took place once a month for eleven months in the first year, and Tech-

noServe delivered an additional six review sessions the following year. The trainings were con-

ducted with groups of approximately thirty farmers and took place on the plot of a designated

“focal farmer”. The focal farmers were chosen partly because of the accessibility of their coffee plot

but were also meant to be respected members of the local community and have an enthusiasm for

learning.

The training itself was conducted by a Farmer Trainer (there were four in total), each of whom

supported approximately 10 of these focal farmer groups. These farmer trainers received monthly

training from an agronomist for each module, together with lesson plans and activities. They

delivered the training to each group on a plot of approximately forty trees (the focal farmer’s

demonstration plot), with all practical work done by the farmers in the training group.

The sub-district in which our study is located comprises 29 villages. Once TechnoServe decided

to train in this sub-district, they advertised the program. The farmer trainers were then assigned to

visit the villages over a week to register the interested farmers, visiting each village at least twice.

Farmers who did not have coffee farms were not allowed to register for the program and only

one person per household was allowed to register. In total, 1594 farmers registered interest in the

program. Although the program was advertised in all 29 villages in the sub-district, only farmers

from 27 of those villages registered to join the program.

3 Theory

How might a reallocation of social network connections, such as the one induced by the program

trainings, affect input markets and production? To guide intuition, we present a simple model of

employer choice that captures some of the main features of the program. This model is, admittedly,

abstract—our goal is to demonstrate how the mechanisms we propose might operate, rather than

develop a detailed model for structural estimation. Formal results are shown in Appendix A.

Consider a village with M coffee employers (indexed j) and N potential workers (indexed i) on

a given day. Within each group, a share π have received the training. Workers choose either coffee

labor, earning wage w and utility w + νij for each “job” performed, or an “outside option” with

fixed utility lnV .
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We interpret the ν term to capture the unobserved “closeness” of worker and employer, both in

terms of geographical proximity, but also social network connections. Specifically, we assume that

if both worker i and employer j have been trained together, the mean of the ν distribution shifts

upwards by ln s (s > 1), capturing the new social network links.

Assuming an exogenous, village level wage w, and that νij ∼ EV 1, it is straightforward to

show that untrained workers work for all employers with equal probability. However, trained

workers will be particularly attracted to trained employers, and will work for them with probability

ews/ (πMews+ (1− π)Mew + V ).

Let the relative attractiveness of the outside option be k = V/ (Mew) > 0. Labor supply to each

farm owned by trained (Lt) and untrained (Lc) employers is then,

Lt =
N

M

[
πs

πs+ 1− π + k
+

1− π
1 + k

]
, Lc =

N

M

[
π

πs+ 1− π + k
+

1− π
1 + k

]

Clearly as s increases, trained workers are increasingly attracted to work for trained employers.

More subtly, the share of the village trained π also affects relative labor supply to trained and control

employers. This effect is clearest for the untrained employers, who lose employees both because

the share of “neutral” untrained workers decreases, and because trained workers (some of whom

still work for control employers) are more likely to find a trained employer with whom they have a

strong connection. The effect is less unambiguous for treatment employers, but it can be shown that

if the outside option is relatively attractive, compared to the social network effect of training, then Lt
will increase with π.2 This re-allocation of labor then implies a decrease in output for control farmers

and a possible increase for treatment farmers as the share of trained coffee farmers increases.

While these results depend on a single village wage set outside the model, a natural extension

is to consider a setting in which trained and untrained farmers endogenously set different wages.

While a full comparative static analysis of this case is algebraically dense (see Appendix A), the

results are intuitive. If farmers’ production functions are concave in labor, trained farmers pay

lower wages relative to control farmers as they face a lower elasticity of labor supply from their

newly strengthened social networks. As the share of trained individuals π increases, for certain

parameter values the control farmers may further raise wages and treatment farmers lower them.3

This partially, though not fully, offsets the effect of the partial training on labor allocations and

output.

In summary, a training program that creates social links within a fraction of a community may

have real effects on labor allocation, wages and output if individuals prefer to work with others

with whom they share social network ties. The model focuses on labor, but its results might apply

to other inputs, such as compost and mulch, that are traded within networks of farmers who share

social connections. Finally, we emphasize that these effects are completely independent of any real

productivity effects of the training—which are absent in our proposed model.
2The technical condition that ensures a positive relationship is π < (1 + k) / (1 +

√
s).

Taking the model seriously, the share of workers employed outside the coffee sector is much greater than the social
network effect on employment, implying k >

√
s. Thus this condition is likely to hold for any value of π ∈ [0, 1].

3In general, model predictions are ambiguous on the effect of the share trained on wages; these results hold
unambiguously in the extreme case of a labor market segmented between treatment and control groups.
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4 Experimental Design and Data

4.1 Experimental Design

The 1594 farmers who registered for the program were randomized into a treatment and a control

group in two steps. First, we randomly varied treatment concentration at the village level: in

approximately one third of villages, 25% of farmers who signed up were assigned to treatment, in

another third, 50%, and in the final third, 75%. In the second step, the 1,594 farmers who signed up

for the program were allocated to treatment and control following the assigned proportions in each

village. 855 farmers were assigned to the treatment group to receive the agronomy training and 739

farmers were assigned to the control.4

Farmers were assigned to training groups in their village, or in the village nearest to their

location if the number of treatment farmers in their village was less than the minimum size for a

training group. In larger villages, treatment farmers were split into two or three groups for training,

based on geographical convenience. This split was not randomized. Once assigned to a training

group, farmers were expected to remain in the same group throughout the duration of the program.

Attendance rates of each training session are reported in Appendix Table A6, categorized by vil-

lage treatment concentration group. During the first year of training, farmers in the treatment group

attended an average of around 8 out of the 11 meetings (an attendance rate of about 73%). Overall,

attendance was slightly higher in villages with a greater proportion of farmers offered training: the

average attendance rate was 69% in 25% concentration villages, 72% in 50% concentration villages,

and 74% in 75% concentration villages.

4.2 Data

We designed extensive data collection activities over the course of almost three years. In total, we

collected ten rounds of survey data, in addition to a pre-program census. As we describe in detail

in Appendix C, different modules were asked in different survey waves, and in some rounds we

surveyed not just treatment and control households, but all the coffee farmers in the 29 villages of

the sub-district in which our sample is located. We collected data on these farmers to be able to

map full social networks for the coffee farmers in the RCT sample. However, because the non-RCT

sample is not a random subset of all the coffee farmers in these villages, we omit them from our

analysis of the diffusion of results.

In addition to survey data, our enumerators also audited the coffee plots. We were concerned

that asking farmers several times about their adoption patterns may result in them erroneously

reporting positive adoption simply because they were asked about it repeatedly. For the audits,

TechnoServe agronomists trained our field staff to recognize the relevant set of agronomy practices.

The field staff were then given an algorithm of which trees (they were to pick five) to inspect on

4Note that since the 1594 farmers who signed up for the training program covered only 30 villages, for power reasons,
we were only able to create three treatment concentrations, and opted not to create a 0% treatment concentration arm.
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each plot. These audits only cover tree health and observable practices and were not designed to

directly observe or measure fertilizer or labor use, so they cannot speak to these.

We use this data to construct the following indices of correlated outcomes:

1. Knowledge: this index is the simple average of fifteen standardized measures of what a

farmer knows. It includes whether the farmer knows each of the ten methods used to control

insects, pests and other diseases and how they should be used and whether the farmer knows

each of five different fertilizers that should be used for optimal tree nutrition.

2. Self-reported adoption: this index is the mean of nine standardized measures of adoption of

best agronomic practices. Since these are collected using survey questions, this index measures

self-reported as opposed to observed adoption. It includes whether the farmer adopted each of

eight methods used to control insects, pests and other diseases, and whether the farmer kept a

compost heap. We do not include the indicator of whether farmers kept record books here

because the farmer trainers checked these at every session, so they were well kept throughout

the study period. Record-keeping is also not an agronomic practice as such, and thus does not

have a counterpart in the tree audits data.

3. Adoption, audits: this index is the mean of eight standardized measures of what the farmer

adopts as per the observed tree audits. This index includes two measures of integrated pest

management (whether old and dry berries are removed, whether the bark is smoothed or

banded to control white borer), whether the tree canopy was mulched, whether the dripline

was weeded, and four measures of pruning (removal of dead branches, removal of branches

touching the ground, removal of crossing branches, removal of unwanted suckers).

4. Leaf health, audits: this index is the mean of three standardized measures of leaf health from

the tree audits. It includes: whether there are signs of the leaves yellowing, whether the leaves

are curling and whether there are signs of the leaves rusting. We changed the sign of the

variable so that any increase in the index would indicate an improvement in tree nutrition (i.e.

a decrease in the prevalence of leaf defects).

5. Inputs: this index is the mean of five standardized measures of input use. These are total

household labor days, total non-household (paid and unpaid) labor days, KGs of compost,

KGs of NPK, and the share of coffee plots on which the household applied mulch. This is

based entirely on farmer self-reports.

To measure social networks comprehensively, we collected the names of farmers to whom the

head or spouse in each household talked about growing coffee - “coffee friends” - before and after

the intervention. We use these data to build complete social network maps of all coffee-growing

households in the sub-district, covering more than 3,000 households in 29 villages. We also collected

GPS coordinates of plots and households to construct two measures of neighbors: people farmers

live close to and people who have coffee plots next to their own coffee plots. The resulting social

networks include a mix of farmers in the treatment group, control group, and those who were not

interested in participating in the program.
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4.3 Empirical Specifications

Our empirical analysis includes five main econometric specifications. First, we estimate the impact

of the agronomy training program on farmers’ social networks by applying the following OLS

model to the baseline and endline rounds of social networks data:

Friendsijt = β1Treatij × Postt + β2Controlij × Postt + β3Treatij + γj + εijt, (1)

where Friendsijt denotes the number of social connections who grow coffee (“coffee friends”)

reported by household i in village j at survey round t; Treatij is an indicator equal to one if

household i was randomly assigned to receive the agronomy training, Controlij = 1− Treatij , and

Postt is an indicator for the endline round. β1 captures the change in social connections for treatment

households by the end of the program relative to their baseline and β2 captures this corresponding

change for control households. We cluster standard errors at the household level.

We run this specification for the following outcomes: (i) total number of coffee friends, (ii)

friends within the village versus outside the village, (iii) friends by treatment status (treatment,

control, or non-sample farmers), and (iv) friends belonging to the same training group.

Next, we use within-village random assignment of households to estimate mean treatment–control

differences in outcomes within villages, using equation (2):

yijt = βTreatij + γj + δt + εijt (2)

where yijt is the outcome for household i in village j in survey round t, Treatij is a dummy variable

for whether the household was randomly assigned to the agronomy training program, γj are a set

of village fixed effects and δt are survey round fixed effects.5 Here, too, we cluster standard errors

at the household level.6

As can be seen in Appendix Table A1, we find balance between treatment and control households

across a wide variety of baseline outcomes (the p-value on the joint F-test is 0.999). Appendix Table

A7 shows that we had 3% of attrition in our sample between baseline and the final endline, with no

evidence of differential attrition by treatment status. To increase precision, we control for baseline

outcomes selected by post-double selection LASSO (Belloni et al. 2014).

Specification (2) compares treatment and control farmers within the same village. For β to

be interpreted as a treatment effect, we would need to assume SUTVA, or the lack of any impact

on control households. This would be invalid if information did indeed diffuse to the control

group (in which case the treatment effect on knowledge would be underestimated), or if there

were negative externalities on the control for some outcomes (in which case the treatment effect

would be overestimated). We examine this assumption in detail with our analysis of social diffusion

5We use all survey rounds collected after June 2011 as our endline, namely rounds 6-9 (see Appendix C for details on
the module coverage of each survey round).

6For brevity, we do not include randomization inference p-values in Tables 1 and 2 like we do for the results of
regressions on village treatment concentrations (Tables 3-7) and only report standard errors clustered at the household
level, i.e., the level of treatment in these within-village regressions.
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within villages in specification (3) and of the effects of treatment concentration at the village level in

specifications (4) and (5).

To assess whether any program impacts diffuse through existing social networks, we leverage

the exogenous variation generated by the experiment in the number of treatment friends, controlling

for the total number of RCT-sample friends (i.e. who entered the treatment lottery). We examine

two types of networks: baseline “coffee friends” and neighbors. The results presented in section 5

focus on baseline friends, but the results for diffusion through neighbors (household and plot) are

broadly consistent and reported in Appendix Table A15. We interact these network variables with

the household’s own treatment status to examine whether the effects differ between the control and

treatment groups. The specification is as follows:

yijt = αTreatij + β0NumTreatFriendsij + δ0NumFriendsij

+ β1Treatij ×NumTreatFriendsij + δ1Treatij ×NumFriendsij + γj + δt + εijt (3)

where yijt is the outcome for household i in village j in survey round t, NumTreatFriendsij is the

number of treatment friends of household i at baseline, and NumFriendsij is their total number of

baseline RCT-sample friends. As in equation (2), we cluster standard errors at the household level

and we control for baseline outcomes selected by post-double selection LASSO; Appendix Table A9

shows the results of running the regression without controls.

Finally, we examine how program impacts vary with experimentally assigned village-level

treatment concentration, using two additional specifications:

yijt = β150%Tj + β275%Tj + δt + εijt (4)

yijt = αTreatij + β150%Tj + β275%Tj + γ1Treatij × 50%Tj + γ2Treatij × 75%Tj + δt + εijt (5)

Here, we cluster standard errors at the village level, since the experimental variation is the

treatment intensity assigned at the village level.7 Given the small number of villages, we report

p-values for the exact null hypothesis, using a randomization inference algorithm that takes the

experimental design into account.8 To address any baseline imbalances across village groups

(Appendix Tables A2-A5), we include baseline covariates selected using post-double selection

LASSO in all regressions.

Throughout the paper, we estimate program impacts—both within-village treatment effects and

effects of village treatment intensities—on yields and other non-negative, right-skewed outcomes

(yields in Table 3, fertilizer quantities in Table 4, and labor days in Table 5) using Poisson pseudo–

7For brevity, we do not report these standard errors and only show randomization inference p-values in these tables.
8Randomization inference involves 1,000 permutations of the sample. First, village-level treatment intensities are

shuffled across villages, and then treatment-control status is assigned to households based on the re-assigned village
proportions. Randomization inference is then conducted using the ritest Stata command (Heß 2017).
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maximum likelihood, following Wooldridge (1999, 2010).9 For binary outcomes, indices, and

outcomes that can take negative values, such as net revenues, we instead use OLS.

5 Results

5.1 Program Impacts on Social Networks

This section examines the impact of the training on farmers’ reported social network links to other

farmers with whom they discuss coffee. We analyze the total number of “coffee friends” reported

by each farmer, both across different geographical areas (within or outside the farmer’s village) and

for friends with different treatment statuses.

Changes in the composition of these social networks can influence program spillovers in at

least two ways. First, they may affect social learning, for instance if interactions between treatment

and control farmers decline or if control farmers actively seek out treated peers. Second, social ties

can shape economic interactions more directly, such as through preferential input sharing or labor

exchange between connected farmers, as formalized in our model in Section 3.

Table 1 reports estimates from specification (1). Panel A, which reports effects on total friends,

shows that treatment households gain 0.336 friends who were also chosen for training (a 28%

increase over baseline), far more than their (insignificant) increase in friendships with control group

members. In other words, the program increases the share of the average treatment household’s

social network that is also part of the treatment group. By contrast, control group households gain

no new friends from either the treatment or control groups. Both treatment and control households

report fewer friends outside the group of farmers who signed up for the training (“non-sample

friends”).

If social networks change due to the training groups, the largest impact will be on friends from

the same village - we examine this in Panel B. Treatment households indeed gain most friends

within village (0.360), and in Panel D we see that virtually all (0.319) of this increase in within-village

treatment friends can be attributed to additional friends from the same training group. Appendix

Table A8 further reveals that the formation of these new links among treatment households is

especially pronounced in villages with a higher treatment concentration, particularly those where

75% of the sample households were assigned to treatment.

The control group also increases treatment friends within a village relative to baseline by 0.0988

friends. However, the control group gains a similar number (0.0893) of control friends within village

as well. Thus it appears that farmers who signed up for the training (both treatment and control), a

group likely more focused on coffee farming, strengthened within-village links among themselves

over time. This comes at the cost of decreasing friendships outside the village: Panel C shows that

both treatment and control households dropped outside-village links, with the strongest effects

being on contacts with non-sample households outside the village. This effect is statistically the

same between treatment and control households, and independent of the fraction of treatment

9We show robustness to estimating these outcomes using OLS in Appendix Tables A10, A18 and A19.
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households within a village (see Appendix Table A8), indicating that it is likely due to a time trend

rather than a program effect.

In sum, the social impact of the training appears to have been primarily to create new friendships

among farmers attending the same training meetings. We find no evidence that control farmers

actively formed new connections with treated individuals in order to benefit from their increased

coffee knowledge. Taken together, these findings imply that the program increased the relative

density of ties among treated farmers, even though the absolute number of links to control farmers

did not fall. In relative terms, this pattern hints that any spillovers operating through social

networks—whether via information or more direct economic interactions—may be more likely to

operate within the treatment group.

5.2 Program Impacts on Key Outcomes

Within-Village Treatment Effects and Social Diffusion through Baseline Networks. Panel A of

Table 2 reports the within-village treatment effects estimated using specification (2) for measures of

knowledge and adoption of agronomic practices, input use, yields, and net revenues. The first two

columns report significant differences between treatment and control farmers on knowledge and

self-reported adoption of the practices: treatment farmers have a 1.24 standard deviation (henceforth

SD) higher knowledge index and a 0.32 SD higher self-reported adoption index than control farmers

within their village.

The tree audits data are an important complement to the self-reports, as they allow us to test

whether the treatment group’s higher reported adoption is actually visible in practice (column 3),

and whether it translates into noticeably healthier-looking trees (column 4). Column 3 shows a

small but significant within-village treatment effect on the adoption index constructed from the tree

audits data (+0.02 SD). Column 4 of Table 2 suggests that the trees of treatment farmers are better

nourished: the audits data reveal a 0.032 SD lower index of tree disease (yellow, curling, or rusting

leaves) among treatment farmers.

Column 5 shows within-village treatment effects on the input quantities index. While treatment

farmers report using slightly more inputs (labor, mulch, and fertilizer) on their coffee plots, with an

increase of 0.034 SD, this effect is not statistically significant. Column 6 shows that yields (estimated

using a Poisson model) are approximately 6.1% higher in the treatment group compared to the

control, although this estimate is not statistically significant. Column 7 likewise shows a positive

but statistically insignificant within-village treatment effect on net revenues, corresponding to an

increase of about 6 RWF per tree (about 5% of the control mean).

Taken together, the results in Panel A of Table 2 indicate that while the treatment led to signif-

icantly higher knowledge and self-reported adoption of agronomic practices, the differences in

observable adoption outcomes are much smaller, with no significant differences in input use and a

marginally significant effect on yields.10

10Appendix Table A9, which reports the estimates of the same regressions as in Panel A but without controlling for
baseline covariates, shows that the coefficients are very similar for all outcomes, but not significant.
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Panel B reports diffusion effects through baseline social networks, estimated using specification

(3). Columns 1 and 2 present these estimates for knowledge and self-reported adoption. The

coefficient estimate in the second row of column 1 indicates that there is no diffusion of knowledge

about agronomic practices to the control group. Consistent with this finding, column 2 (self-reported

adoption) shows no spillover of actual practices to the control group, which is further corroborated

by the absence of effects on leaf health (column 4). Additional results reported in Appendix Table

A11 also support the absence of knowledge dissemination from the treatment to the control group,

using the control farmers’ assessments of whether they learned something new about each of the

trained practices from a treatment farmer.

The significantly negative coefficients in the second row of columns 3 and 5 are surprising. These

indicate that for an average farmer in the control group, having one more friend in the treatment

group decreases the tree audit outcomes index by 0.057 SD and the inputs index by 0.042 SD.11

Appendix Table A12, which disaggregates the audited adoption index by component, shows that

control farmers with more treatment friends have fewer mulched and pruned trees and less weeded

plots. Similarly, Appendix Table A13 indicates that these control farmers use less mulch (although

this result is only significant at the 10% level), apply less chemical fertilizer (NPK), and hire less

labor. Columns 6 and 7 show that additional treatment friends also lead to lower yields and net

revenues for the average farmer in the control group. In column 6, each additional treated friend

reduces yields by about 6%, while column 7 shows a corresponding decline in net revenues, and

both effects are statistically significant.

The fact that control farmers apply fewer best practices (or apply them less intensively), use

fewer inputs, and have lower yields and net revenues if they have more links to treatment farmers

at baseline suggests that the program may have had negative spillovers on control farmers. Our

later analyses show further evidence of this mechanism at the village level.

In the fourth row of Panel B, we interact the number of treatment friends with household

treatment status. At the bottom of the table, we report the p-values for the test of the average

effect of an additional treatment friend for treatment households, evaluated at the mean number of

treatment friends in the sample.

The estimates suggest that any positive diffusion through baseline networks is confined to links

within the treatment group itself. The coefficient on the interaction with treatment is positive and

statistically significant for leaf health: column 4 shows that, for the average treatment farmer, each

additional trained friend leads to a 0.034 SD increase in the leaf health index relative to the effect

for a control farmer. The linear combination test indicates that the overall effect of an additional

trained friend for treatment farmers is significantly different from zero (p=0.000).

In contrast, for audited adoption (column 3) and input use (column 5), while the positive

interaction with treatment offsets much of the negative effect of additional trained friends for

control farmers, the combined effect for treated farmers remains statistically indistinguishable from

zero (p=0.342 and p=0.285). For yields (column 6), the interaction with treatment is positive and

11Appendix Table A15, which shows similar results on neighbors of treatment farmers to Table 2, Panel B, also include
negative effects on the audits adoption index.
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statistically significant, indicating that the negative effect of exposure to treated friends observed

among control farmers does not extend to treated farmers. However, the linear combination test

shows that the overall effect of an additional trained friend for treated farmers is statistically

indistinguishable from zero (p=0.648). For net revenues (column 7), the interaction with treatment

is positive but not statistically significant, and the combined effect for treated farmers is again

statistically indistinguishable from zero (p=0.623).

The intervention may also have influenced farmers’ marketing and sales of coffee. Interactions

with trainers affiliated with the local coffee-processing wet mill, both directly and via social networks,

may have encouraged farmers to sell their output to this mill. Furthermore, conversations with

other farmers at training sessions may also have allowed attendees to identify sellers offering higher

prices for coffee, either at the wet mill or elsewhere. We test the importance of both these hypotheses

by examining the impact of the treatment on sales to the wet mill and average prices received.

The results, in Appendix Table A14, show that the training caused a 1-2 percentage point increase

in the probability of a farmer selling to the wet mill, and a further 1.5-2.6 percentage point increase

with each additional trained friend, with this social network effect highly statistically significant.

However, these increased sales did not result in higher prices for treated farmers, consistent with

statements from the wet mill management that their pricing strategy was simply to follow market

prices. Overall, this channel does not appear to have substantially affected farmers’ net revenues or

other outcomes.

In summary, Table 2 highlights two key takeaways. First, we find smaller treatment effects on

observed adoption compared to self-reported adoption in our basic within-village specification,

with no significant effects on input use or yields at conventional levels. Second, we find no evidence

of diffusion of the taught practices through baseline social networks in the control group. This

pattern is consistent either with effects that were too small to spread, or with information flows

being more likely to occur within the newly formed network of co-trainees (Table 1). Finally, the

negative network effects on inputs and audited adoption, which are present within the control

group but much weaker among treatment farmers, suggest the potential for negative spillovers

mediated by increased social network connections between trained individuals.12 We now turn to

this question.

Spillovers by Village Treatment Concentration. Panel A of Table 3 shows the aggregate effects

of treatment concentration, estimated using specification (4) while Panel B shows the interactions

of the village-level concentrations with treatment status (specification (5)). At the bottom of each

panel, we report the results of several hypothesis tests, including comparisons of coefficients for the

50% and 75% treatment concentration indicators and their interactions with treatment, as well as

tests of treatment effects within each village group. Generally, our estimates are not precise enough

to statistically distinguish between the effects of 50% and 75% treatment concentration; hence, we

highlight in the text only the p-values for cases where the null of equal impacts is rejected.

12To avoid repetition, we use “trained” and “treatment” interchangeably throughout the text. “Trained” refers to
farmers selected for the training, regardless of attendance.
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The effects reported in Panel A represent the net impacts of the program at the village level. We

find little evidence of aggregate improvements in audited adoption or yields, despite increased

knowledge and self-reported adoption of farming techniques in higher-intensity villages. The

knowledge index increases significantly with the share of the village assigned to treatment, con-

sistent with the findings in Table 2, Panel A, where treatment effects on knowledge are evident,

and the higher share of treatment households in 75% villages naturally leads to a larger effect.

Effects on self-reported adoption are positive for both 50% and 75% treatment shares, with the 75%

concentration showing a larger magnitude (p=0.191, row [1]).

We do not see a monotonic relationship between effect sizes and village treatment shares for

any of the other outcomes in Panel A. Importantly, the aggregate impacts of treating 50% or 75% of

farmers on yields and net revenues are negative and insignificant (columns 6 and 7), despite the

larger number of farmers enrolled in the training in higher-intensity villages.

Panel B decomposes these net aggregate effects by household treatment status. The top row of

columns 1 and 2 confirms the existence of “pure” treatment effects (i.e., in villages least confounded

by spillovers) on knowledge and self-reported adoption. In both columns, the coefficients on the

50% and 75% village treatment share dummies are negative and statistically insignificant, consistent

with the absence of positive spillovers to the control group on these outcomes in Table 2.

While the average within-village treatment effects reported in columns 3–7 of Table 2, Panel A

are all positive, the estimates in columns 3–7 of Panel B of Table 3 suggest that these results are

driven by negative input and yield spillover effects on the control group in villages with higher

treatment intensity. In these columns, we see a triple pattern of results that is consistent across

virtually all subsequent outcomes related to input use, tree health, and yields.

First, we find no positive treatment effects in 25% concentration villages in the top row. The

yields and net revenues estimates in columns 6 and 7 are even negative, although they do not

survive randomization inference (p=0.418 and p=0.799, respectively). Second, the exact opposite

is true in 75% treatment villages: in these areas, treatment households use significantly (p=0.019)

more inputs and have higher yields (p=0.053).13 Third, there is no significant difference between

treatment households in 75% villages and control households in 25% villages.14 Thus the positive

estimated effects in high-intensity villages seem more likely to be due to negative spillovers among

the control group, rather than (for instance) increasing returns to training among treatment farmers.

This is further supported by the estimates on the audited adoption index (column 3), leaf health

(column 4), and net revenues (column 7), which follow a similar pattern, though the relevant tests

of treatment effects in 75% villages are not significant (p=0.122 for audited adoption, p=0.177 for

leaf health, and p=0.186 for net revenues).

These results are consistent with the individual-level spillover regressions, where we found

negative (and significant) spillovers on program adoption and input use of control farmers who

had more baseline friends (or neighbors) in the treatment group. In both cases, greater exposure to

13Row [6] p-values report the test of this hypothesis.
14Row [7] p-values report the test of this hypothesis.
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treated farmers is associated with worse outcomes for control farmers, leading apparent treatment

effects to emerge mechanically in within-village comparisons.

Appendix Table A16, which disaggregates the estimates in Table 3 for the audits and leaf

health indices, shows that spillovers are most pronounced for practices that require applying soil

inputs (mulch and fertilizer) and substantial labor inputs. In particular, the treatment–control

gap differs significantly between 25% and 75% treatment villages for mulching and weeding (row

[6] p-values of 0.016 and 0.017, respectively). Measures of tree nutrition also display a consistent

directional pattern across outcomes—yellowing of leaves, curling of leaves, and leaf rust—pointing

to worse conditions for control farmers in high-intensity villages, although these differences are not

statistically significant.

Finally, we examine whether the program affected tree counts in ways that would parallel the

patterns observed for inputs, audited adoption, yields, and net revenues.15 Appendix Table A17

shows no evidence of reductions in either total or productive tree counts associated with treatment

or village-level treatment intensity. If anything, point estimates suggest slightly higher tree counts

for treatment households compared to control households in 75% villages. This pattern contrasts

with our results for yields and net revenues, and supports the interpretation that the yield effects

we document reflect changes in productivity per tree.

5.3 Inputs Reallocation

Why might higher treatment densities result in reduced input use, poorer leaf health, and lower

yields for control farmers? As formalized by our model in section 3, the results of Tables 1-3 taken

together hint at an inputs reallocation from treatment farmers to control farmers in villages with

higher concentration of trained farmers, driven by farmers’ tendency to share or source inputs

within their social networks.

To better understand the program’s effects on input use, we evaluate spillovers in soil inputs

(mulch and fertilizers) and labor separately. The results of these additional analyses are presented

in Tables 4 and 5.

Soil Inputs. Table 4 reports the results of the same specification used in Table 3, but focusing on

outcomes related to the use of soil inputs: mulch, compost and NPK. Column 1 reports results on

the index of standardized outcomes, while columns 2-6 report effects on each outcome separately.

Panel A indicates no aggregate program impacts on input use across varying village treatment

intensities. In contrast, Panel B demonstrates the exact same pattern of results consistent with

negative spillovers as in columns 3-6 of Table 3. Treatment effects are insignificant in 25% intensity

villages, yet become larger and sometimes significant in villages with 75% intensity. Again, these

results seem driven by decreased input use among control farmers in villages where many of their

peers were trained.

15Note that over our study period, changes in yields per tree could only arise through plot transactions or through
tree rejuvenation practices that temporarily render trees non-productive, since newly planted coffee trees take at least
three years to reach maturity.

18



Column 1 shows this pattern for the index of soil input use, where treatment effects in 75%

villages are statistically significant (p=0.005). The treatment-control differences in 75% villages are

also larger than in 50% villages (p=0.052 for the test of equal interactions with treatment). Breaking

this down by components of the index, we find that results are strongest in mulch application

(column 2) and the quantities of compost and NPK used (columns 4 and 6) in villages with higher

treatment concentrations, particularly in the 75% group. For mulch, measured only at the extensive

margin, we observe negative coefficients for the 50% and 75% treatment intensity indicators,

alongside positive coefficients for their interactions with treatment (p=0.061 for the 75% interaction).

The treatment effect is statistically significant in 75% villages (p=0.015). This finding aligns with the

audit index components results in Appendix Table A16, which show significantly more mulching

under tree canopies in the treatment group compared to the control in 75% villages.

Columns 3-6 focus on compost and fertilizers. Columns 3 and 5 present the results of OLS

regressions on extensive margin outcomes of fertilizer use. Columns 4 and 6 report the results of

Poisson regressions on the total quantities of compost and NPK applied, respectively. For compost,

there is no evidence of differential effects by village group on the extensive margin (column 3).

However, column 4 reveals a pattern similar to that for mulch, with increasing gaps in intensive

margin compost use between treatment and control groups as the treatment share rises, and the

treatment effect becomes statistically significant in 75% villages (p=0.050).

Columns 5 and 6 examine NPK use. Similarly to compost, we find no evidence of differential

effects for NPK at the extensive margin (column 5). However, column 6 shows a large treatment-

control gap in total kilograms of NPK applied in villages with 75% treatment concentration. Here,

the treatment effect in 75% villages is close to significant at conventional levels (p=0.058).

Labor Use. The next input we examine is labor. Many of the trained practices are labor-intensive,

and since farmers grow coffee alongside other food crops, the demands on household members’

time can quickly accumulate. Over two-thirds of the households in our RCT sample hired labor

to assist with at least some coffee-related tasks during the study period. Evidence from Jones

et al. (2022) shows that labor constraints significantly restrict the adoption of irrigation in Rwanda,

highlighting labor market frictions as another potential source of negative spillovers on the control

group in villages with higher treatment intensities. To examine whether labor is being crowded out

in these villages, we run Poisson regressions on total labor days, first pooling across all tasks (column

1) and then separately for the most labor-intensive activities in our data - mulching, fertilizing,

weeding, and harvesting - and all other tasks. Additionally, we distinguish between household and

non-household labor, the latter encompassing both paid and unpaid, hired labor.16

The results are presented in Table 5. Panel A shows variation in the effects of 50% and 75% village

shares across tasks and labor types. None of these estimates are significant under randomization

inference. Once again, negative spillovers appear in Panel B, most prominently with the total

days of non-household labor (column 2), showing the same pattern of results found in yields, leaf

health, and soil inputs. There is essentially no treatment effect in 25% intensity villages, yet in 75%

16Most non-household labor was compensated through wages or piece-rate payments; however, households also
engaged unpaid labor for certain tasks, often providing non-monetary remuneration such as meals. In our endline survey
rounds, 24.8% of non-household labor days in our RCT sample involved unpaid labor.
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villages, trained farmers hire more labor than control farmers (though this is marginally significant

at p=0.122). And again, this result seems driven by a negative effect on the control group. The

opposite effect is observable for household labor (column 1), which control households appear to

use more as the treatment intensity of the village increases.

Examining total days separately by task shows that the 75% concentration effects on hired

labor seem to be driven by mulching (column 4), fertilizing (column 6) and harvesting (column 10),

although the effects on mulching and fertilizing are not significant. The effects on weeding labor

are more mixed; here the impact on non-household hired labor use is largest in 25% concentration

villages, though still positive in the 75% group. We find clear evidence of treatment-control gaps in

the number of hired labor days for harvesting, the most labor-intensive task, in higher-intensity

villages, with a highly significant and large effect in 75% villages.

Since harvesting labor has a nearly one-to-one relationship with harvested quantities, it is not

surprising that the yield results observed in Table 3, column 6, reappear in our analysis of harvest

labor. Within 25% concentration villages, treatment households use (insignificantly) less labor

than controls. However, in 75% concentration villages, treatment households employ significantly

more labor (p=0.007). This effect is driven by fewer workers hired by control households (p=0.047).

In contrast, the effects on household labor are much smaller and even reversed in 75% villages

(albeit insignificant), suggesting that the program effects operate through labor market transactions

between households, rather than simply reducing labor demand.

Figure 1 illustrates the differences in the use of non-household and household labor between

treatment and control groups in 75% villages, where the labor market effects are strongest. We

observe that treatment farms employ more non-household labor than control farms (Panel B) but

show either the opposite trend or no difference in household labor, with the exception of mulching

(Panel A). The key takeaway is that, in higher-intensity villages, some non-household labor is

reallocated toward treatment farms, consistent with the model’s prediction that the intervention

reshapes within-village labor networks. These differences are partially compensated by offsetting

changes in household labor, limiting the effects on the total amount of labor used.

Wages. A natural test of the input crowd-out hypothesis is to examine whether changes in the

allocation of inputs caused differences in their prices across treatment groups. We investigate this

in the next table, focusing on wages paid to hired labor, as price data for soil inputs are unavailable.

Compost and mulch are primarily home-produced or collected by farmers, while NPK was initially

provided free by the government.17

Table 6 presents the results of five OLS regressions on daily wage rates at the household-task

level. In column 1, we stack observations for all tasks for which at least one household reported

hiring external labor at a daily rate, trimming the top 1% to remove implausibly high values. In

columns 2–4, the outcome is household-level daily wages paid per survey round for the four most

17During our study, however, the government phased out its direct provision of NPK due to logistical challenges,
transitioning to a system where coffee washing stations facilitated input provision. Under this new system, NPK was no
longer free and was typically offered on credit, leading to a sharp decline in its use between 2011 and 2012 (from 298
reported users in our RCT sample in 2011 to 126 users in 2012).
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labor-intensive tasks examined in Table 5. Column 1 includes controls for round and task fixed

effects, while columns 2–4 control for round fixed effects.

The broad takeaway from this table is that the daily wage rates are higher in villages with 50%

and 75% treatment concentration compared to 25% villages. Weeding, the task for which households

hire the most external labor (column 4), and the stacked regression estimates (column 1) provide the

most compelling evidence of higher daily wages in villages with greater treatment concentration.

Column 1 shows that daily wage rates are, on average, 22.19 RWF higher in 50% villages and

32.48 RWF higher in 75% villages compared to 25% villages. These correspond to a 3.4% and 4.9%

increase relative to the mean daily rate in 25% villages, respectively. The 75% village effect is robust

to randomization inference (p=0.034). Column 4 shows that daily wage rates for weeding are,

on average, 19.41 RWF higher in 50% villages and 40.71 RWF higher in 75% villages (p=0.028),

corresponding to a 3% and 6% increase relative to the mean in 25% villages. The effects of treatment

intensities on daily wage rates for mulching (column 2), fertilizing (column 3), and harvesting

(column 5) are less conclusive, although most coefficient estimates are positive, except for the 50%

intensity effect for harvesting.

Panel B of Table 6 reveals a consistent pattern of heterogeneity in wage effects. Treated farmers

pay similar, perhaps slightly higher, wages in 25% trained villages, but as the share of trained

farmers increases the wage paid by control group farmers increases as well, with significant and

substantial effects in several tasks in 75% trained villages. In contrast, there is no significant increase

in wages paid by trained employers as the share trained grows. The Treatment X 75% interaction

coefficient is negative for all tasks, and significant overall and for harvesting.

These wage patterns corroborate the idea that the program re-allocated hired labor towards

trained farmers through social networks. Together with the results in Tables 4 and 5, they support

the interpretation that the negative spillovers shown in Table 3 stem from input crowd-out in the

control group in villages with higher treatment concentration. Although wages in these village are

likely determined by a wide range of factors outside the scope of this paper—tradition, dynamic

contracts, asymmetric information, etc.—perhaps explaining the limited statistical significance for

some results, the consistent direction of effects across multiple outcomes—soil inputs, labor days,

and wages—reinforces our confidence in this interpretation.

Labor Supply. Finally, we examine the supply side of the labor market using data on the number

of days household members worked outside their own household. Table 7 presents village-level

regression results for three outcomes: total days worked (column 1), days worked on other farmers’

coffee plots (column 2), and days spent on non-coffee labor (column 3).

Panel A indicates that households in higher-intensity villages spend more time working outside

their own households overall. This increase seems to be driven by non-coffee labor, as the estimates

for coffee labor in column 2 are negative, while those for other types of labor in column 3 are

positive. Breaking these results down by treatment status in Panel B reveals intriguing patterns in

coffee labor: treatment farmers are more likely to work on other farmers’ coffee plots in 25% villages

(though this effect is not statistically significant), and this tendency becomes stronger with higher

treatment intensity (column 2, Panel B, p=0.156). In contrast, the control group spends considerably
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less time working on other farmers’ coffee plots (p=0.113) in higher-intensity villages, which likely

explains the overall negative effects in Panel A.

These findings suggest that trained farmers may be more inclined to hire one another over

members of the control group.18 This pattern could arise from program-induced changes in social

networks (Table 1), particularly in 75% villages, where new connections between co-trainees are

most prevalent (Appendix Table A8). The sharing of resources among treatment farmers may also

contribute to this dynamic, which aligns with our finding of spillovers in input use (Table 4). For

example, farmers might engage in reciprocal labor arrangements or assist one another with tasks

such as sourcing inputs (e.g., mulch or compost) or performing labor-intensive activities. Although

our labor supply data do not allow us to disaggregate the effects by specific tasks to further isolate

these mechanisms, these results suggest that resource constraints might interact with social network

effects to shape program outcomes.

Household Income. Finally, we investigate whether the negative spillovers on control farm-

ers documented above were offset by increases in income earned outside farmers’ own plots—

particularly if treatment farmers worked more on one another’s fields in high-intensity villages.

Appendix Table A21 examines this by disaggregating total household income into coffee income

earned off one’s own plot, other agricultural income, and non-agricultural income.

In column (1), treatment households in higher-intensity villages report slightly higher (though

insignificant) income from work on other farmers’ coffee plots, consistent with the increases in

off-farm coffee labor days documented in Table 7.19 By contrast, columns (2) and (3) show no

indication that control households compensated for reduced yields by increasing income from other

agricultural or non-agricultural activities. Effects are small, imprecise, and lack a systematic pattern

across village groups. Overall, although these estimates are noisy, they suggest that the spillovers

we document for inputs, labor, and yields are not offset by clear income responses in other activities.

6 Agricultural Production Function Estimation

The effects of village-level treatment concentrations in Tables 3-5 suggest a reallocation of inputs

from control to treatment farmers in villages with higher treatment concentration. The impact of

these transfers on aggregate output and efficiency is a priori ambiguous. If the treatment causes

an increase in productivity among the treatment farmers, then such a reallocation would increase

efficiency by assigning more inputs to the farmers who can use them most productively. Similarly,

if the coffee production function has locally increasing returns to inputs, then concentrating those

inputs in a selected group would also increase aggregate output. Conversely, if production functions

18Appendix Table A20 presents within-village regressions of household labor supply (using the same three outcomes
as in Table 7) on baseline networks. Consistent with the village-level results, labor supply outside the household is
higher among treated farmers with more baseline treatment friends, particularly when both the worker and their network
contacts are treated.

19Because the income module relies on short recall windows and records relatively few paid labor transactions,
these estimates should not be interpreted as a direct measure of the informal labor exchanges that may accompany
program-induced links among trainees.
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are concave in inputs and training has no productivity effect, then concentrating more inputs among

the treatment may increase misallocation.

To understand which scenario is most likely, we estimate the parameters of the coffee cherry

production function. Since we have few priors about its functional form, we approximate the

production function using a flexible polynomial in the number of trees and four key inputs: labor,

fertilizer, compost and mulch.20 Farmers’ productivity may also be a function of their household

characteristics, so we augment the production function with measures of household head education,

gender and the number of baseline coffee trees (which may proxy for tree age). Since we are also

agnostic about the ways in which training might have altered farmers’ production functions, we

allow its parameters to have two possible values: one for the control and pre-training treatment

farmers, and another for the post-training farmers.

The estimation of this production function is complicated because the assumptions underlying

many structural approaches to productivity estimation are unlikely to be satisfied. As Shenoy

(2021) shows, when producers are subject to binding constraints on input use, the single-index

assumption upon which control-function approaches to production function estimation rely is no

longer satisfied. For Rwandan coffee farmers, who are subject to both financing constraints and

limited availability of fertilizer, production functions assuming unlimited access to inputs are likely

mis-specified. Furthermore, there is insufficient correlation in input use across seasons to employ a

dynamic panel approach in which past input use would serve as an instrument for future input

choices. We therefore estimate the production function via OLS.

Due to their flexibility the treatment/control production functions contain 80 coefficients each, so

the formal expression of the production function is long and uninformative. In brief, the specification

includes the main and squared effects of all household characteristics and coffee farm characteristics

listed above all, plus all two-way interactions among them, plus all three-way interactions involving

one household variable and two farm inputs. Rather than reporting all coefficients, we instead

graph the marginal effect of the main inputs (labor, fertilizer and compost), holding constant all

other variables at their respective sample means for the trained and untrained farmers.

Results of the production function estimation are displayed in Figure 2, with sub-figure 2a

showing the association between NPK and output, sub-figure 2b showing the association between

labor and output, and sub-figure 2c showing the association between compost use and output. In all

three cases, we cannot reject that the relationship is linear, and the only case in which the production

function appears even possibly convex is for the untrained farmers’ labor use. Concavity in the

effects of NPK is consistent with the findings of agronomic experiments on the effects of fertilizer on

coffee yields (Zhang et al. 2017; Kurniawan et al. 2024). The compost relationship exhibits a similar

pattern of diminishing returns, with no evidence of systematically higher productivity among

treated farmers at any level of compost use. Across all inputs, the magnitude of predicted output is

very similar between trained and untrained groups, suggesting that treatment had little effect on

overall productivity, consistent with the lack of evidence of significant adoption of new practices.

20Since we lack information on the exact quantities of mulch used, we include an indicator for whether the farmers
uses any mulch at all.
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Taken together, the evidence from the coffee cherry production function does not support the

hypothesis that the reallocation of inputs across farmers increased aggregate productivity. Rather,

given the declining returns, it seems that it may have exacerbated misallocation.

7 Conclusions

This paper evaluates a common strategy to diffuse agricultural innovation and knowledge: a

“cascade” model where some farmers get trained first, with the hope that the innovation will diffuse

among their social contacts. Our results suggest that, at least in our context in Rwanda, this strategy

is not particularly effective.

First, the hypothesized mechanism for information diffusion is undermined by the finding that

the program increased social links only between co-trainees in the treatment group. While this

does not imply that treatment farmers ceased interacting with the control group entirely, it is likely

that they focused their “chats over coffee” — discussions about farming practices — with the other

farmers with whom they attended the trainings. Second, although knowledge of best agronomic

practices increased among treatment farmers, we find no evidence that treatment farmers shared

their new knowledge with control households they were socially connected to or lived close to.

Third, the consistent evidence that control households experienced negative spillovers when they

were socially connected to more treatment households, as well as in high treatment concentration

areas, suggests that much of the 6% higher yields of treatment farmers compared to the control

group that we observe at endline is the result of these negative spillovers, rather than a net gain for

the treatment farmers.

One possible interpretation of these results is that the treatment group did not experience

sufficiently high returns to the taught practices to induce them to encourage control farmers in their

information networks to adopt these techniques (Magnan et al. 2015). Indeed, the small effect we

find from the tree audits on treatment farmers’ own adoption suggests that they probably did not

undertake enough of these new practices to see a meaningful difference.

Another possibility is that information provision alone was not sufficient to unleash the yield-

boosting potential of these agronomic practices. The negative spillovers we find on control farmers

appear to stem from input crowd-out in a context of limited supply, as seen in lower soil input

use, reduced reliance on hired labor, and rising wages. These supply constraints may have also

inhibited the treatment group farmers from taking full advantage of the techniques taught in the

trainings. This finding complements those of Jones et al. (2022), who show that labor market failures

constrained the adoption of irrigation in another part of rural Rwanda.

More broadly, there is now growing evidence that the low productivity observed in much of

African agriculture is not the result of any one single constraint; rather, different combinations

of constraints seem to bind for different farmers (Suri and Udry 2022). Existing studies set in

Kenya have shown that intervention packages targeting multiple constraints (e.g. by combining

training with financial support, input supply, and marketing assistance) can be effective at increasing

adoption of new crops (Ashraf et al. 2009) or fertilizer and improved practices, ultimately increasing
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yields and net revenues (Deutschmann et al. 2019). Promising avenues for future research include

asking how these multiple constraints interact with information frictions and the complexities of

social learning.

What is clear is that training only a subset of farmers can reshape social connections within

villages in ways that reallocate scarce labor and other inputs, even in the absence of learning or

productivity gains. Furthermore, those distortions may give the misleading impression that the

program is effective. This evidence suggests that this widely practiced strategy likely needs to be

re-evaluated.

25



References

Aker, J., Bergquist, L. F., Jayne, T., and Magruder, J. R. (2022). Agricultural Technology in Africa.
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Figure 1: Mean labor days by task and treatment status, in 75% villages.

Panel A.

Panel B.

Notes: This figure shows the mean number of total labor days used by treatment and control groups in 75% treatment concentration
villages, disaggregated by task and type of labor (household versus non-household, where the latter = unpaid + paid). We compute
these means from the estimates in Table 5.
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Figure 2: Coffee Cherry Production Function

(a) Relationship between Coffee Cherry Output and NPK Use

(b) Relationship between Coffee Cherry Output and Labor Use

(c) Relationship between Coffee Cherry Output and Compost Use

Figures plot predicted coffee cherry output as a function of input quantities, based on the production function estimated
in Section 6. The relationship between output and each input quantity is plotted from 0 to the 99th percentile of that
input intensity in the data, with other input quantities set to their mean values.
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Table 1: Program Impacts on Social Networks.

(1) (2) (3) (4)
Trained
Friends

Control
Friends

Non-sample
Friends All Friends

Panel A: Friends in All Villages

Treat × Post 0.336 0.030 -0.164 0.201
[0.057] [0.052] [0.051] [0.119]

Control × Post 0.034 0.022 -0.150 -0.095
[0.064] [0.060] [0.047] [0.112]

T-C p. value 0.000 0.897 0.831 0.005
Baseline mean 1.196 1.004 1.567 3.766
Observations 3156 3156 3156 3156

Panel B: Friends in Own Village

Treat × Post 0.360 0.0870 -0.00119 0.446
[0.0516] [0.0466] [0.0394] [0.104]

Control × Post 0.0988 0.0893 0.0392 0.227
[0.0542] [0.0563] [0.0428] [0.110]

T-C p. value 0.000 0.970 0.408 0.025
Baseline mean 1.196 1.004 1.567 3.766
Observations 3156 3156 3156 3156

Panel C: Friends Outside Own Village

Treat × Post -0.0238 -0.0572 -0.163 -0.244
[0.0191] [0.0155] [0.0268] [0.0408]

Control × Post -0.0650 -0.0677 -0.189 -0.322
[0.0216] [0.0127] [0.0284] [0.0370]

T-C p. value 0.209 0.488 0.570 0.214
Baseline mean 1.196 1.004 1.567 3.766
Observations 3156 3156 3156 3156

Panel D: Friends in Same Training Group

Treat × Post 0.319
[0.0629]

Baseline mean 0.412
Observations 1678

Notes: Standard errors clustered by household in brackets. For brevity, we do not report randomization-
inference p-values in this table, unlike regressions using village-level treatment concentrations (Tables
3–7). All specifications control for village fixed effects and for whether the household was selected for
training (Treatment/Control status). All columns use household-level data from the baseline and round
9 social network surveys. (see Appendix C). The outcome variable in column (1) is the count of a house-
hold’s friends selected for training. The outcome variable in column (2) is the count of friends who applied
for training but were not selected. The outcome variable in column (3) is the count of friends who did not
apply for training. The outcome variable in column (4) is the sum of (1)+(2)+(3).
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Table 2: Within-Village Treatment Effects and Diffusion through Baseline Social Networks.

Knowledge
index

Self-
reported
adoption

index

Adoption
index,
audits

Leaf health
index,
audits

Input
quantities

index
(labor +

fertilizers)

Yield
(kg/tree)

Net
revenues

(RWF/tree)

(1) (2) (3) (4) (5) (6) (7)

Panel A

Treatment 1.243 0.321 0.020 0.032 0.034 0.059 6.021
[0.060] [0.036] [0.010] [0.010] [0.023] [0.038] [5.098]

Control mean -0.000 0.000 -0.000 0.000 0.001 0.590 127.063
Observations 4622 4622 47618 47618 6157 6152 6157

Panel B

Treatment 1.279 0.331 0.039 -0.071 -0.115 0.094 9.080
[0.092] [0.051] [0.015] [0.016] [0.043] [0.062] [7.997]

Number of treatment friends -0.023 -0.006 -0.057 0.003 -0.042 -0.066 -8.752
[0.029] [0.024] [0.007] [0.007] [0.019] [0.028] [3.819]

Number of sample friends 0.007 0.021 0.034 -0.018 0.019 0.074 9.200
[0.017] [0.014] [0.005] [0.005] [0.013] [0.017] [2.521]

Treatment X num. treatment friends 0.035 -0.004 0.029 0.034 0.060 0.054 7.167
[0.059] [0.035] [0.009] [0.009] [0.033] [0.036] [4.655]

Treatment X num. sample friends -0.031 -0.002 -0.021 0.012 0.019 -0.041 -4.918
[0.042] [0.025] [0.007] [0.007] [0.020] [0.025] [3.253]

Control mean -0.000 0.000 -0.000 0.000 0.001 0.590 127.063
Mean T friends 1.596 1.596 1.596 1.596 1.596 1.596 1.596
Mean tot. friends 2.925 2.925 2.925 2.925 2.925 2.925 2.925
p: Num. T friends + T X num. T friends = 0 0.708 0.787 0.342 0.000 0.285 0.648 0.623
Unit of observation HH-round HH-round Tree-round Tree-round HH-round HH-round HH-round
Survey rounds 6, 8, 9 6, 8, 9 6, 8, 9 6, 8, 9 6, 7, 8, 9 6, 7, 8, 9 6, 7, 8, 9
Observations 4622 4622 47618 47618 6157 6152 6157

Notes: Standard errors clustered by household are in brackets. For brevity, we do not report randomization-inference
p-values in this table, unlike regressions using village-level treatment concentrations (Tables 3–7). All specifications
control for village and round fixed effects. All columns use data from endline rounds, i.e. rounds 6 through 9 (see
Appendix C). For columns (1)-(4), we use data from rounds 6, 8 and 9 only, as we did not collect best practices data in
round 7. In column (1), we use self-reported knowledge data. In column (2), we use self-reported adoption data. In
column (3)-(4), we use tree-level audit data. Column (5) represents the average of five variables, each standardized using
the Control group mean and standard deviation: total household labor days, total non-household labor days, the share of
coffee plots where the household applied mulch, kilograms of compost, and kilograms of NPK. In columns (1)-(5), for
ease of interpretation, we also normalize each index by its Control group mean and SD. In column (6), we apply a Poisson
regression to the outcome. Column (7) reports the results of an OLS regression on net revenues per tree, calculated using
self-reported coffee revenues from sales to the local washing station and private buyers net of reported expenditures
on hired labor and on purchased inputs (fertilizer, pesticides, and mulch when applicable). All regressions control for
baseline covariates selected via post-double selection LASSO.
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Table 3: Impacts of Village Treatment Concentration.

Knowledge
index

Self-
reported
adoption

index

Adoption
index,
audits

Leaf health
index,
audits

Input index
(labor +
mulch +

fertilizers)

Yield
(kg/tree)

Net
revenues

(RWF/tree)

(1) (2) (3) (4) (5) (6) (7)

Panel A

50% T in village 0.194 0.038 0.005 0.059 -0.016 -0.101 -19.769
(0.410) (0.715) (0.950) (0.167) (0.867) (0.496) (0.307)

75% T in village 0.696 0.166 -0.046 -0.016 -0.008 -0.051 -11.577
(0.000) (0.102) (0.501) (0.744) (0.946) (0.730) (0.550)

Sample mean, 25% villages 0.056 0.037 0.018 -0.002 0.027 0.649 143.583
[1] p-value: 50%=75% 0.012 0.191 0.465 0.060 0.923 0.727 0.664
Observations 4622 4622 47618 47618 6157 6152 6156

Panel B

Treatment 1.139 0.286 -0.082 -0.050 -0.022 -0.078 -3.725
(0.000) (0.000) (0.173) (0.424) (0.771) (0.418) (0.799)

50% T in village -0.081 -0.038 -0.017 0.021 -0.026 -0.146 -23.033
(0.743) (0.733) (0.823) (0.697) (0.813) (0.332) (0.236)

75% T in village -0.109 -0.053 -0.138 -0.087 -0.141 -0.213 -24.480
(0.690) (0.687) (0.087) (0.165) (0.200) (0.156) (0.243)

Treatment X 50% T in village -0.007 0.013 0.083 0.101 0.031 0.117 8.382
(0.976) (0.897) (0.286) (0.197) (0.755) (0.337) (0.617)

Treatment X 75% T in village 0.314 0.102 0.176 0.127 0.191 0.251 19.596
(0.188) (0.384) (0.042) (0.134) (0.071) (0.044) (0.272)

Control mean, 25% villages 0.056 0.037 0.037 0.004 0.020 0.662 145.148
[2] p-value: 50% T= 75% T 0.911 0.897 0.143 0.092 0.299 0.669 0.956
[3] p-value: Treat x 50% T = Treat x 75% T 0.131 0.368 0.225 0.745 0.073 0.256 0.510
[4] p: Treatment + Treatment x 50% T=0 0.000 0.000 0.992 0.270 0.894 0.616 0.620
[5] p: Treatment + 50% T + Treatment x 50% T=0 0.000 0.006 0.822 0.152 0.842 0.485 0.377
[6] p: Treatment + Treatment x 75% T=0 0.000 0.000 0.122 0.177 0.019 0.053 0.186
[7] p: Treatment + 75% T + Treatment x 75% T=0 0.000 0.000 0.551 0.841 0.787 0.770 0.666
Unit of observation HH-round HH-round Tree-round Tree-round HH-round HH-round HH-round
Survey rounds 6, 8, 9 6, 8, 9 6, 8, 9 6, 8, 9 6, 7, 8, 9 6, 7, 8, 9 6, 7, 8, 9
Observations 4622 4622 47618 47618 6157 6152 6156

Notes: Standard errors are clustered at the village level. For brevity, we do not report these and only show randomization
inference p-values in parentheses. Each panel concludes with randomization inference p-values for various linear
restriction tests. All specifications control for round fixed effects. All columns use data from endline rounds, i.e. rounds
6 through 9 (see Appendix C). For columns (1)-(4), we use data from rounds 6, 8 and 9 only as we did not collect best
practices data in round 7. In column (1), we use self-reported knowledge data. In column (2), we use self-reported
adoption data. In column (3)-(4), we use tree-level audit data. Column (5) represents the average of five variables, each
standardized using the Control group mean and standard deviation: total household labor days, total non-household
labor days, the share of coffee plots where the household applied mulch, kilograms of compost, and kilograms of NPK.
In columns (1)-(5), for ease of interpretation, we also normalize each index by its Control group mean and SD. In column
(6), we apply a Poisson regression to the outcome. Column (7) reports the results of an OLS regression on net revenues
per tree, calculated using self-reported coffee revenues from sales to the local washing station and private buyers net of
reported expenditures on hired labor and on purchased inputs (fertilizer, pesticides, and mulch when applicable). All
regressions control for baseline covariates selected via post-double selection LASSO.
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Table 4: Impacts of Village Treatment Concentration on Soil Inputs Use.

Soil inputs
index

Used
mulch

Used
compost

Compost
(Bas-

kets/tree)
Used NPK

NPK
(KG/tree)

(1) (2) (3) (4) (5) (6)

Panel A

50% T in village -0.001 -0.034 0.046 -0.060 -0.006 0.156
(0.985) (0.699) (0.134) (0.696) (0.773) (0.486)

75% T in village -0.038 -0.048 0.004 0.045 -0.011 0.049
(0.663) (0.561) (0.905) (0.796) (0.531) (0.827)

Sample mean, 25% villages 0.033 0.543 0.502 56.891 0.073 0.950
[1] p-value: 50%=75% 0.650 0.851 0.147 0.486 0.743 0.609
Observations 6157 6149 6157 6157 6157 6157

Panel B

Treatment 0.017 -0.006 0.019 -0.156 0.016 0.332
(0.805) (0.843) (0.524) (0.442) (0.276) (0.397)

50% T in village -0.017 -0.048 0.051 -0.101 -0.006 0.156
(0.841) (0.560) (0.139) (0.597) (0.725) (0.597)

75% T in village -0.188 -0.109 -0.009 -0.270 -0.019 -0.425
(0.059) (0.177) (0.815) (0.195) (0.356) (0.251)

Treatment X 50% T in village 0.023 0.030 -0.020 0.154 -0.006 -0.139
(0.817) (0.477) (0.610) (0.576) (0.758) (0.779)

Treatment X 75% T in village 0.188 0.085 0.005 0.510 0.000 0.375
(0.058) (0.061) (0.901) (0.061) (0.991) (0.484)

Control mean, 25% villages 0.033 0.543 0.502 57.234 0.069 0.856
[2] p-value: 50% T= 75% T 0.084 0.440 0.127 0.379 0.497 0.127
[3] p-value: Treat x 50% T = Treat x 75% T 0.052 0.184 0.523 0.130 0.727 0.271
[4] p: Treatment + Treatment x 50% T=0 0.481 0.329 0.949 0.988 0.346 0.478
[5] p: Treatment + 50% T + Treatment x 50% T=0 0.816 0.792 0.136 0.544 0.850 0.213
[6] p: Treatment + Treatment x 75% T=0 0.005 0.015 0.436 0.050 0.260 0.058
[7] p: Treatment + 75% T + Treatment x 75% T=0 0.845 0.710 0.657 0.628 0.858 0.269
Observations 6157 6149 6157 6157 6157 6157

Notes: Standard errors clustered by village are in brackets. For brevity, we do not report these but show randomization
inference p-values in parentheses. Each panel concludes with randomization inference p-values for various linear
restriction tests. All specifications control for round fixed effects and use data from endline rounds, i.e. rounds 6 through
9 (see Appendix C). Columns 1, 2, 3, and 5 show the results of OLS regressions. Columns 4 and 6 show the results of
Poisson regressions where the outcome is the amount of compost and NPK applied, respectively, by the household on
their coffee farm. All regressions control for baseline covariates selected via post-double selection LASSO.
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Table 5: Impacts of Village Treatment Concentration on Labor Days.

Total labor days Mulching Fertilizing Weeding Harvesting All other tasks

HH non-HH HH non-HH HH non-HH HH non-HH HH non-HH HH non-HH
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A

50% T in village 0.007 -0.080 -0.073 -0.206 0.052 -0.072 0.072 0.123 -0.072 -0.187 -0.015 -0.162
(0.929) (0.681) (0.499) (0.557) (0.702) (0.920) (0.429) (0.336) (0.491) (0.645) (0.906) (0.535)

75% T in village 0.025 0.043 -0.051 0.217 0.014 0.520 0.124 0.097 -0.037 -0.080 0.040 0.115
(0.751) (0.825) (0.658) (0.595) (0.923) (0.276) (0.130) (0.449) (0.710) (0.837) (0.732) (0.663)

Sample mean, 25% villages 34.620 4.082 3.842 0.339 6.324 0.381 7.192 1.198 9.466 1.545 7.795 0.619
[1] p-value: 50%=75% 0.795 0.495 0.843 0.222 0.756 0.100 0.595 0.806 0.741 0.744 0.650 0.231
Observations 6157 6157 6157 6157 6157 6157 6157 6157 6157 6157 6157 6157

Panel B

Treatment -0.090 0.085 -0.100 -0.127 0.174 -0.000 -0.076 0.582 -0.173 -0.412 -0.232 0.190
(0.222) (0.772) (0.396) (0.826) (0.169) (0.999) (0.438) (0.067) (0.044) (0.222) (0.005) (0.593)

50% T in village -0.020 0.006 -0.103 -0.140 0.141 -0.044 0.067 0.375 -0.147 -0.193 -0.080 -0.020
(0.821) (0.977) (0.410) (0.766) (0.345) (0.924) (0.466) (0.052) (0.165) (0.657) (0.526) (0.949)

75% T in village 0.083 -0.269 -0.022 -0.106 0.222 0.130 0.193 0.056 -0.030 -0.848 0.031 0.093
(0.403) (0.367) (0.880) (0.863) (0.206) (0.867) (0.078) (0.830) (0.807) (0.047) (0.792) (0.799)

Treatment X 50% T in village 0.098 -0.217 0.108 -0.078 -0.252 -0.057 0.047 -0.717 0.239 0.227 0.251 -0.374
(0.264) (0.564) (0.478) (0.916) (0.132) (0.946) (0.672) (0.061) (0.027) (0.613) (0.012) (0.440)

Treatment X 75% T in village -0.021 0.342 0.026 0.499 -0.392 0.496 -0.046 -0.284 0.104 1.243 0.167 -0.085
(0.830) (0.457) (0.872) (0.579) (0.035) (0.634) (0.730) (0.488) (0.365) (0.012) (0.110) (0.878)

Control mean, 25% villages 34.926 3.895 3.886 0.349 5.891 0.367 7.204 0.980 9.787 1.630 8.157 0.569
[2] p-value: 50% T= 75% T 0.281 0.360 0.578 0.950 0.633 0.753 0.253 0.235 0.324 0.146 0.394 0.795
[3] p-value: Treat x 50% T = Treat x 75% T 0.180 0.127 0.578 0.449 0.411 0.511 0.428 0.210 0.176 0.010 0.381 0.572
[4] p: Treatment + Treatment x 50% T=0 0.885 0.551 0.923 0.695 0.449 0.920 0.717 0.510 0.271 0.432 0.744 0.563
[5] p: Treatment + 50% T + Treatment x 50% T=0 0.896 0.569 0.414 0.444 0.674 0.862 0.706 0.191 0.455 0.360 0.603 0.517
[6] p: Treatment + Treatment x 75% T=0 0.104 0.122 0.496 0.504 0.097 0.396 0.173 0.255 0.381 0.007 0.379 0.771
[7] p: Treatment + 75% T + Treatment x 75% T=0 0.745 0.457 0.427 0.556 0.980 0.228 0.440 0.029 0.362 0.964 0.783 0.489
Observations 6157 6157 6157 6157 6157 6157 6157 6157 6157 6157 6157 6157

Notes: Standard errors clustered by village. For brevity, we do not report those and only show randomization inference p-values in parentheses. Each
panel concludes with randomization inference p-values for various linear restriction tests. All specifications control for round fixed effects and use data
from endline rounds, i.e. rounds 6 through 9 (see Appendix C). All columns show the results of Poisson regressions and control for baseline covariates
selected via post-double selection LASSO.
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Table 6: Impacts of Village Treatment Concentration on Wages.

All stacked Mulching Fertilizing Weeding Harvesting
(1) (2) (3) (4) (5)

Panel A

50% T in village 22.191 23.218 27.969 19.410 -20.684
(0.177) (0.426) (0.108) (0.335) (0.368)

75% T in village 32.480 26.678 25.031 40.713 16.551
(0.034) (0.367) (0.174) (0.028) (0.496)

Sample mean, 25% villages 656.337 680.680 693.041 647.184 643.251
p-value: 50%=75% 0.621 0.914 0.892 0.275 0.098
Observations 2459 267 544 665 409

Panel B

Treatment 16.075 35.175 -8.557 25.187 -9.304
(0.087) (0.110) (0.527) (0.031) (0.534)

50% T in village 31.605 28.931 34.315 35.753 -25.523
(0.047) (0.349) (0.068) (0.062) (0.271)

75% T in village 46.045 16.548 33.594 42.994 66.419
(0.006) (0.623) (0.084) (0.028) (0.002)

Treatment X 50% T in village -23.909 -30.507 -9.147 -39.032 12.262
(0.000) (0.015) (0.052) (0.000) (0.922)

Treatment X 75% T in village -26.331 -12.167 -5.589 -16.161 -52.004
(0.004) (0.944) (0.232) (0.978) (0.000)

Control mean, 25% villages 652.791 670.876 697.248 639.908 647.719
[2] p-value: 50% T= 75% T 0.462 0.668 0.977 0.699 0.000
[3] p-value: Treat x 50% T = Treat x 75% T 0.958 0.167 0.569 0.944 0.000
[4] p: Treatment + Treatment x 50% T=0 0.438 0.854 0.232 0.313 0.922
[5] p: Treatment + 50% T + Treatment x 50% T=0 0.196 0.370 0.437 0.326 0.504
[6] p: Treatment + Treatment x 75% T=0 0.634 0.535 0.323 0.925 0.000
[7] p: Treatment + 75% T + Treatment x 75% T=0 0.101 0.340 0.355 0.109 0.832
Observations 2459 267 544 665 409

Notes: Standard errors clustered by village. For brevity, we do not report those and only show randomization inference
p-values in parentheses. The table concludes with randomization inference p-values for the linear restriction test of equal
effects of the 50% and 75% village treatment intensities. Here, the randomization inference permutations are applied
to the restricted set of 1,041 households out of 1,594 in our sample who report hiring any external labor to work on
their coffee farm in exchange for daily wages. All columns use data from endline rounds, i.e. rounds 6 through 9 (see
Appendix C) and report the results of OLS regressions. Piece rate payments are excluded from the sample. In column (1),
all household-task-level average daily wage values are included except the top 1%, to remove implausibly high values. In
columns 2-5, the outcome is household-level average daily wages paid per survey round per task. Column 1 controls for
round and task fixed effects. Columns 2-5 control for round fixed effects. All regressions control for baseline covariates
selected via post-double selection LASSO.
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Table 7: Impacts of Village Treatment Concentration on Labor Supply.

Total labor
days

outside of
HH

Labor days,
coffee

Labor days,
other

(1) (2) (3)

Panel A

50% T in village 0.156 -0.611 0.175
(0.143) (0.212) (0.115)

75% T in village 0.203 -0.382 0.218
(0.056) (0.461) (0.045)

Sample mean, 25% villages 3.855 0.135 3.721
[1] p-value: 50%=75% 0.671 0.604 0.706
Observations 4710 4710 4710

Panel B

Treatment 0.010 0.219 0.001
(0.950) (0.828) (0.997)

50% T in village 0.092 -1.001 0.114
(0.505) (0.159) (0.410)

75% T in village 0.110 -1.650 0.137
(0.531) (0.113) (0.431)

Treatment X 50% T in village 0.119 0.546 0.118
(0.575) (0.681) (0.581)

Treatment X 75% T in village 0.116 1.329 0.108
(0.621) (0.406) (0.645)

Control mean, 25% villages 3.839 0.125 3.713
[2] p-value: 50% T= 75% T 0.922 0.502 0.886
[3] p-value: Treat x 50% T = Treat x 75% T 0.989 0.555 0.965
[4] p: Treatment + Treatment x 50% T=0 0.306 0.309 0.355
[5] p: Treatment + 50% T + Treatment x 50% T=0 0.111 0.697 0.099
[6] p: Treatment + Treatment x 75% T=0 0.393 0.156 0.468
[7] p: Treatment + 75% T + Treatment x 75% T=0 0.053 0.871 0.050
Observations 4710 4710 4710

Notes: Standard errors clustered by village. For brevity, we do not report those and only show
randomization inference p-values in parentheses. All specifications control for round fixed effects.
Each panel concludes with randomization inference p-values for various linear restriction tests. All
regressions use data from rounds 6, 7, and 8 (we did not collect this module in the final endline survey,
round 9). All columns show the results of Poisson regressions and control for baseline covariates
selected via post-double selection LASSO.
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APPENDIX

A Theory Appendix

In this section we present formal derivations of the statements in the model narrative in Section 3.

Claim 1: Increased social network ties draw labor to trained employers and away from untrained

employers. Differentiating Lt and Lc with respect to the strength of social ties induced by the

training, s, yields,

∂Lt
∂s

= π
1− π + k

(πs+ 1− π + k)2
> 0

∂Lc
∂s

=
−π2

(πs+ 1− π + k)2
< 0

Claim 2: Increasing the share of trained coffee farmers draws labor to trained employers and away

from untrained employers. Differentiating Lt and Lc with respect to the share of trained workers,

π, yields

∂Lc
∂π

= −π (s− 1) (2 (1 + k) + π (s− 1))

(1 + k) (1 + k + π (s− 1))2
< 0

since s > 1 and all other terms in the numerator are positive.

∂Lt
∂π

=
s(1 + k)

(1 + k + π(s− 1))2
− 1

1 + k

Straightforward algebraic manipulation reveals that

∂Lt
∂π

> 0⇐⇒ π <
1 + k

1 +
√
s

Model with endogenous wage setting.

Consider an augmented version of the baseline model in which farmers of types j ∈ {t, c}, produce

coffee with identical production functions Yj = C (Lj), with C (·) concave and increasing.

In this setting, farmers are differentiated by their social network ties, and thus able to set wages in

a monopsonistically competitive fashion. Assuming symmetry within groups of trained/untrained

employers and workers, a farmer of type j posts a wage wj and faces a labor supply function Lj(wj).

net revenues are Πj(wj) = C (Lj)− wjLj(wj) with profit maximizing wages of

wj =
C ′(Lj)

1 + 1
εj

where εj is the elasticity of labor supply faced by farmers of type j. Firms facing less elastic labor

supply, for example due to increased social network connections, set wages lower.
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Claim 3: Trained employers pay lower wages than untrained employers Let Pij denote the proba-

bility that a worker of type i ∈ {κ, τ} chooses any firm of type j. Labor supply to firm j can then be

written as,

Lj =
1

Mj
(Lτj + Lκj)

=
N

Mj
(πPτj + (1− π)Pκj)

where Mt = πM, Mc = (1− π)M . Individual worker’s choice probabilities are,

Pκt =
Mπewt

Dκ
, Pκc =

M(1− π)ewc

Dκ
,

Pτt =
Mπsewt

Dτ
, Pτc =

M(1− π)ewc

Dτ
,

where

Dκ = Mπewt +M(1− π)ewc + V,

Dτ = Mπsewt +M(1− π)ewc + V

The logit functional form implies that the derivatives of the choice probabilities relative to wages

are simply
∂Pij
∂wk

= Pij (δjk − Pik)

where δjk = 1 if j = k, 0 otherwise. The own-wage elasticity of labor supply is then,

εj =
dLj
dwj

wj
Lj

= wj
∑

i∈{κ,τ}

Lij
Lj

(1− Pij)

For simplicity, suppose that π = 1/2: half of coffee applicants are trained. The choice probabilities

above imply that, offered the same wage, trained workers will be more likely to work for trained

employers, Pτt > Pτc, while untrained workers will be evenly divided, Pκt = Pκc. Thus Lτt/Lt >

Lτc/Lc and 1− Pτt < 1− Pτc. Plugging these inequalities into the formula for elasticity yields

εt < εc ⇒ wt < wc

Our final result links wages with the share of trained workers. Unfortunately the full model does

not generate insights into the relationship between π and wt, wc. The sign of the comparative static

is ambiguous, and highly non-linear in wages, trained share, and the value of the outside option.

Therefore, we consider an extreme case which does yield a clear result: a segmented market in which

trained farmers only hire trained workers, and vice-versa. This scenario can be considered the limit

case as s→∞ and social networks among trainees become arbitarily strong.

Claim 4: In a labor market segmented between trained and untrained individuals, as the share of

trained farmers increases, trained employers lower wages, while untrained employers raise wages.
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In this simplified model, workers choice probabilities are

Pt =
sewt

Mπsewt + V
, Pc =

ewt

M (1− π) ewt + V

From the first order condition of a trained employer,

F (wt, π) = C ′(Lt(wt, π))−
[
wt +

Mπsewt + V

V

]
.

The equilibrium wage satisfies F (wt, π) = 0. By the implicit function theorem,

dwt
dπ

= − Fπ
Fwt

where

Fwt = C ′′(Lt)
∂Lt
∂wt
−
(

1 +
Mπsewt

V

)
.

Since C ′′ < 0 and ∂Lt/∂wt > 0, both terms are negative and thus Fwt < 0. Similarly, for the numerator,

Fπ = C ′′(Lt)
∂Lt
∂π
− Msewt

V
.

Because
∂Lt
∂π

=
NV sewt

(Mπsewt + V )2
> 0 and C ′′ < 0,

both terms are negative and Fπ < 0. Thus dwt/dπ < 0, and the exact same derivation, using Pc instead

of Pt shows that dwc/dπ > 0.

B TechnoServe’s Agronomy Best Practices

The agronomy training program covered the following eight basic modules:

• Rejuvenation and pruning to produce new and productive wood. A multi-stem un-capped

system was promoted.
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• Nutrition: a balanced nutritional program based on organic and inorganic additives, with

the exact requirements determined by soil analysis. In the sub-district where our program

evaluated took place, this included a combination of homemade compost and NPK (nitrogen,

phosphorus, and potassium) as the main recommended chemical fertilizer. The specific type of

NPK recommended for coffee in the area was 22-12-6.

• Integrated pest management: multiple techniques to manage pests and diseases, such as correct

nutrition, tree management, biological control, traps etc. Selective pesticides used as a last resort,

but safe use of pesticides promoted.

43



• Weed control: management of weeds through mulching, hand weeding and/or cover crops.

• Mulching: techniques to conserve moisture, add organic matter, and control soil erosion.
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• Soil and water conservation: use of a number of techniques such as mulching, terracing and

water traps to control soil erosion and maintain soil fertility. Encourage the management of

water resources through conservation zones.

• Shade: use of the correct level (20-40%) of shade to reduce tree stress, conserve moisture, increase

organic matter and increase biodiversity.
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• Record keeping: maintenance of records of inputs, outputs, profit and loss in a record book.

The schedule of the modules covered in the training was as follows:

• February 2010: Record Keeping

• March 2010: Integrated Pest Management (IPM)

• April 2010: Coffee Nutrition

• May 2010: Coffee Harvesting

• June 2010: Weed control

• July 2010: Mulching

• August 2010: Pruning and Rejuvenation

• September 2010: Safe use of pesticides

• October 2010: Composting

• November 2010: Erosion control

• December 2010: Coffee Shade Management

• January 2011 to October 2011: Review
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C Data Details

B1. Survey Data

From December 2009 to October 2012, we conducted ten rounds of surveys. These surveys mostly

focused on the 1,594 farmers who were part of the experiment: the RCT-sample farmers. However,

given the social networks focus of the study, we wanted to map the full social networks of the RCT-

sample farmers. Therefore, alongside the baseline in December 2009, we also conducted a full census

of the 5,198 farming households in all 29 villages of the the sub-district, including many who had not

signed up for the study. Out of these, we focused on the 57% who had grown or harvested coffee in the

year prior to the census, given the training program was targeted to coffee alone and it takes five years

for coffee trees to grow once they have been planted. This meant that there were an additional 1,327

coffee farmers in the sub-district who did not register for the agronomy training program. Throughout,

we refer to these farmers as the non-RCT-sample farmers, implying they grow coffee and live in the

same subdistrict as the RCT-sample farmers but are neither treatment nor control farmers for the

agronomy program.

The data collection was split into modules that covered different aspects of the household’s

behavior. The modules covered household demographics, detailed plot level data for coffee as well

as all other crops (including harvests, sales, labor and other inputs), coffee plot performance, coffee

farming activities and practices, a consumption module, household finance and social networks for

the household head and the spouse. In the social networks module, we asked both the household head

and spouse who their friends were (with no limit on the number that could be listed). In addition, we

asked which of these friends grew coffee and which they spoke to about coffee. Throughout the paper,

we define friends as being “coffee friends”, the friends that respondents in the sample report talking

to about coffee.

Not every round of data collection covered the same modules and not every module in a given

round covered all farmers. We collected fewer rounds of data for the farmers in the non-RCT-sample.

Appendix D5 and D6 show a schedule of which modules were collected in which rounds, separately

for the farmers in the RCT-sample and for those in the non-RCT-sample, as well as the timing of each

survey wave. The first nine rounds of surveys took place every 2-3 months over the course of the

program (recall that the training was run monthly between February 2010 and October 2011), and the

tenth and final round took place in September-October 2012.

B2. Audit Data

One of our adoption measures was constructed from plot and tree inspections data, collected using

plot and tree audits. Field staff visited each coffee plot of all the coffee farmers in the sub-district and

inspected five trees, looking for signs of adoption of the agronomic practices covered in the training.

The enumerators were given specific instructions on how to pick the five trees on each plot. They

were instructed to start at the corner of the coffee plot closest to the farmer’s house and walk in the

direction of the opposite corner. They were then to inspect the second tree into the field, walk to the

middle of the field and inspect the tree in the middle. Starting from the middle, the field staff was to

walk towards the other two corners of the field and inspect the second tree in each direction. The field
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staff was then to walk back to the middle of the field and continue on the original path and inspect the

second to last tree in the field. For each tree, the field staff would also note the GPS coordinates of

each tree. Different variables were collected at different levels (the household level, the plot level and

the tree level):

• Household level: We collected data on two practices that were also observed by the field staff, in

particular

1. whether the household kept record books

2. whether the household has a compost heap

• Plot level: we collected data on three practices at the plot level, in particular

1. whether the farmer had used any methods to control for soil erosion (such as using stabiliz-

ing grasses, water traps, etc.)

2. whether there were any shade tress on the plot

3. whether the farmer had grown other crops among the coffee

• Tree level: the audit data covered twelve different practices for each of the five trees per plot that

were inspected. The practices were:

1. whether the tree had any antestia (an insect)

2. how many leaves were yellowing

3. how many leaves were curling

4. use of mulch

5. evidence of weeding

6. evidence of rejuvenation

7. evidence of pruning

8. evidence of integrated pest management

9. whether the tree had any berry borers (an insect)

10. evidence of damage from white borers

11. evidence of scales or mealy bugs or mould

12. signs of leaf rust

B3. Weigh Scale Data

Starting in March 2011, we distributed weigh scales to all the farmers in the RCT-sample for them

to keep accurate counts of their coffee harvests. The bulk of the coffee harvest arrives in May and

June. Starting in March 2011 and through June 2012, every month we distributed a yield calendar

to the farmers in the RCT-sample for them to record daily harvests for that month. An example of

a yield calendar is shown in Appendix D7. The farmers were given instructions on how to use the

weigh scale and how to record their coffee harvests on the calendars. At the end of every month, we

collected up the calendars and distributed new ones for the following month.
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B4. RCT-Sample Modules

The timing of the ten survey rounds of surveys was as follows:

1. Baseline: December 2009 to January 2010

2. Round 1: April 2010 to May 2010

3. Round 2: July 2010

4. Round 3: September 2010 to October 2010

5. Round 4: November 2010

6. Round 5: January 2011 to February 2011

7. Round 6: June 2011 to July 2011

8. Round 7: October 2011

9. Round 8: January 2012 to February 2012

10. Round 9: September 2012 to October 2012
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SECTION 1 2 3 4 5 6 7 8 9 10

Cover Page X X X X X X X X X X

Consent X X X X X X X X X X

HH Roster X X X X X X X X X

Plot Roster X X X X X X X X

Household-Level Sections

HH Member Demographic Characteristics X

HH Characteristics X X X

HH Characteristics (Extended) X

Group Memberships X X

Crop Inventory X X X X X

Plot Questionnaire

Long Season X X X

Short Season X X X

Other X X X X

Labor Activities

Long Season X X X

Short Season X X X

Crop Harvests and Sales

Long Season X X X

Short Season X X X

Coffee Activites

Coffee Plot Details X X X

General Household Coffee

A. Coffee Plot Performance/Future X

B. Training X

C. Cooperative Membership X

D. Coffee Farming Activities/Practices X

Coffee Delivery X

Coffee Module

Labor Activities for Coffee X X X X X X X X X X

Coffee Harvests X X X X X X X X X

Coffee Sales X X X X X X X X X X

Coffee Inputs X X X X X X X X X

Best Practices Schedule/Training Attendance X X X

Consumption Module X X X

Household Finance

Decisionmaking - Use of Money X X X

Bank Holdings/Savings/Debts/Credits X X X

Remittances X

Bank Account Location X

Gifts X X

Non-Agricultural Income and Credit X X X X X X X

Social Networks X X X X X

Best Practices Module: Audits

Coffee Plot Measurements and ID X X X X

Best Practices Sheet X X X X

Tree and Plot Inspection X X X X

Feedback on Training/Improvement of Knowledge of BP X

Barriers to Adoption of Best Practices X
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B5. Non-RCT-Sample Modules

SECTION 2 3 6 7 9 10

Cover Page X X X X X X

Consent X X X X X X

HH Roster X X X

Plot Roster X X X

Household-Level Sections

HH Demographics (Basic) X

HH Characteristics (Extended) X

Group Memberships X

Coffee Activites

General Household Coffee

A. Coffee Plot Performance/Future X

B. Training X

C. Coffee Farming Activities/Practices X

Coffee Module

Labor Activities for Coffee X X X X

Coffee Harvests X X X X

Coffee Sales X X X X X

Coffee Inputs X X X X

Best Practices Schedule/Training Attendance X X

Consumption Module

Household Finance

Decisionmaking - Use of Money

Bank Holdings/Savings/Debts/Credits

Remittances

Bank Account Location X

Gifts

Non-Agricultural Income and Credit

Social Networks X X X X

Best Practices Module: Audits

Coffee Plot Measurements and ID X X X X

Best Practices Sheet X X X X

Tree and Plot Inspection X X X X

Feedback on Training/Improvement of Knowledge of BP X

Barriers to Adoption of Best Practices X
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B6. Yield Calendars

HHID:   VILLAGE:             NAME:   

LOCATION:   

HOW MANY KILOGRAMS DID YOU HARVEST TODAY? 
  

 

 

 
  

  
   

  
  

 

 

 
  

  
   

  

  
   

  

  
   

  

  
   

  
 

  MAY (05) DAY 

Write here the coffee 

harvest that you have just 
weighed 

Write here the coffee harvest that you are going to 

sell and indicate the type of coffee (cherries, wet or 
dry parch)  

1 1-MAY-2012 TUESDAY   Kg  Kg 

2 2-MAY-2012 WEDNESDAY   Kg  Kg 

3 3-MAY-2012 THURSDAY   Kg  Kg 

4 4-MAY-2012 FRIDAY   Kg  Kg 

5 5-MAY-2012 SATURDAY   Kg  Kg 

6 6-MAY-2012 SUNDAY   Kg  Kg 

7 7-MAY-2012 MONDAY    Kg  Kg 

8 8-MAY-2012 TUESDAY   Kg  Kg 

9 9-MAY-2012 WEDNESDAY   Kg  Kg 

10 10-MAY-2012 THURSDAY   Kg  Kg 

11 11-MAY-2012 FRIDAY   Kg  Kg 

12 12-MAY-2012 SATURDAY   Kg  Kg 

13 13-MAY-2012 SUNDAY   Kg  Kg 

14 14-MAY-2012 MONDAY    Kg  Kg 

15 15-MAY-2012 TUESDAY   Kg  Kg 

16 16-MAY-2012 WEDNESDAY   Kg  Kg 

17 17-MAY-2012 THURSDAY   Kg  Kg 

18 18-MAY-2012 FRIDAY   Kg  Kg 

19 19-MAY-2012 SATURDAY   Kg  Kg 

20 20-MAY-2012 SUNDAY   Kg  Kg 

21 21-MAY-2012 MONDAY    Kg  Kg 

22 22-MAY-2012 TUESDAY   Kg  Kg 

23 23-MAY-2012 WEDNESDAY   Kg  Kg 

24 24-MAY-2012 THURSDAY   Kg  Kg 

25 25-MAY-2012 FRIDAY   Kg  Kg 

26 26-MAY-2012 SATURDAY   Kg  Kg 

27 27-MAY-2012 SUNDAY   Kg  Kg 

28 28-MAY-2012 MONDAY    Kg  Kg 

29 29-MAY-2012 TUESDAY   Kg  Kg 

30 30-MAY-2012 WEDNESDAY   Kg  Kg 

31 31-MAY-2012 THURSDAY   Kg  Kg 

 

1. Hang the scale to a fix and stable place ; 

2. Hang the bag (with the cherries in it) to the scale ; 

3. Read the number on the scale. 
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D Additional Tables and Figures

Table A1: Balance Checks: Treatment vs. Control Households.

Control Mean Treatment Coeff. Std Error P-value

Head, Years of Schooling 3.615 -.061 .146 .678

Female Headed Household .32 .025 .013 .075

Household Size 5.035 -.037 .141 .794

Average Schooling of Household 3.211 .103 .09 .264

Yield, total KGs per tree .783 .017 .04 .682

Total Trees 240.385 1.294 11.616 .912

Fraction Unproductive Trees .305 -.012 .014 .398

Cut Stems .102 -.009 .014 .546

Book Keeping Done .028 -.007 .007 .356

Removed Dead Branches .771 -.043 .018 .023

Removed Suckers .913 -.018 .011 .131

Removed Weeds .992 -.005 .004 .256

Applied Compost .716 .017 .024 .485

Applied NPK .178 0 .015 .997

Applied Lime .019 .01 .01 .336

Applied Pesticides .767 -.022 .019 .264

Applied Mulch .878 -.022 .016 .179

p-value of joint F-test .9998

Notes: All specifications control for village fixed effects. Robust standard errors.
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Table A2: Inter-village Balance Checks: Treatment Concentration Groups.

25% Mean 50% coeff. 50% S.E. p-val 75% coeff. 75% S.E. p-val p:50%=75%

Head, Years of Schooling 3.75 -.229 .239 .348 -.35 .211 .109 .62
Female Headed Household .35 -.041 .031 .195 -.018 .03 .567 .511
Household Size 5.01 .01 .196 .96 .002 .15 .991 .959
Average Schooling of Household 3.36 -.226 .2 .27 -.045 .233 .848 .319
Yield, total KGs per tree .83 -.031 .065 .643 -.129 .07 .077 .253
Total Trees 228.29 3.304 31.212 .917 53.676 40.582 .197 .282
Fraction Unproductive Trees .27 .037 .036 .322 .077 .021 .001 .264
Cut Stems .09 .015 .023 .518 .021 .025 .405 .776
Book Keeping Done .03 0 .007 .996 -.005 .006 .451 .424
Removed Dead Branches .77 -.036 .028 .199 -.026 .036 .466 .806
Removed Suckers .92 -.03 .028 .294 -.019 .022 .392 .689
Removed Weeds .99 -.001 .008 .902 .002 .007 .739 .674
Applied Compost .76 -.085 .034 .018 -.008 .031 .805 .075
Applied NPK .19 -.056 .057 .342 .029 .055 .601 .164
Applied Lime .02 .004 .015 .811 .004 .011 .742 .996
Applied Pesticides .77 -.05 .052 .341 .017 .056 .759 .276
Applied Mulch .89 -.059 .033 .088 -.013 .026 .628 .142

p-value of joint F-test .2522 .0556

Notes: Standard errors are clustered by village. This table compares mean outcomes across different village
groups without distinguishing between treatment and control status.

Table A3: Intra-village Balance Checks: Treatment vs. Control within 25% villages.

Control Mean Treatment Coeff. Std Error P-value

Head, Years of Schooling 3.875 -.466 .268 .126
Female Headed Household .344 .034 .027 .256
Household Size 4.993 .079 .33 .819
Average Schooling of Household 3.333 .109 .237 .659
Yield, total KGs per tree .808 .082 .142 .581
Total Trees 217.404 42.206 20.726 .081
Fraction Unproductive Trees .268 .005 .04 .896
Cut Stems .092 -.021 .018 .295
Book Keeping Done .035 -.035 .007 .001
Removed Dead Branches .784 -.049 .043 .291
Removed Suckers .929 -.031 .026 .273
Removed Weeds .989 0 .014 .976
Applied Compost .738 .089 .039 .058
Applied NPK .202 -.029 .035 .445
Applied Lime .014 .027 .026 .335
Applied Pesticides .773 .002 .056 .966
Applied Mulch .89 .018 .03 .561

p-value of joint F-test .0049

Notes: Standard errors are clustered by village.
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Table A4: Intra-village Balance Checks: Treatment vs. Control within 50% villages.

Control Mean Treatment Coeff. Std Error P-value

Head, Years of Schooling 3.556 -.061 .236 .803
Female Headed Household .31 .002 .018 .908
Household Size 4.98 .085 .204 .686
Average Schooling of Household 3.086 .097 .129 .471
Yield, total KGs per tree .796 .005 .054 .922
Total Trees 235.002 -6.819 10.615 .537
Fraction Unproductive Trees .313 -.015 .017 .395
Cut Stems .112 -.02 .025 .437
Book Keeping Done .03 -.007 .011 .549
Removed Dead Branches .756 -.042 .024 .113
Removed Suckers .894 -.006 .02 .757
Removed Weeds .99 -.003 .006 .595
Applied Compost .67 .011 .043 .808
Applied NPK .147 -.015 .021 .502
Applied Lime .013 .023 .012 .093
Applied Pesticides .726 -.006 .024 .817
Applied Mulch .852 -.032 .024 .21

p-value of joint F-test .6889

Notes: Standard errors are clustered by village.
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Table A5: Intra-village Balance Checks: Treatment vs. Control within 75% villages.

Control Mean Treatment Coeff. Std Error P-value

Head, Years of Schooling 3.251 .205 .173 .269
Female Headed Household .296 .052 .019 .023
Household Size 5.224 -.279 .247 .291
Average Schooling of Household 3.235 .107 .164 .531
Yield, total KGs per tree .71 -.012 .047 .801
Total Trees 293.822 -15.845 26.538 .567
Fraction Unproductive Trees .359 -.018 .024 .475
Cut Stems .099 .012 .024 .625
Book Keeping Done .013 .011 .011 .319
Removed Dead Branches .776 -.042 .036 .269
Removed Suckers .921 -.025 .013 .092
Removed Weeds 1 -.011 .006 .101
Applied Compost .77 -.023 .031 .493
Applied NPK .197 .035 .017 .076
Applied Lime .039 -.02 .016 .261
Applied Pesticides .836 -.06 .024 .038
Applied Mulch .908 -.034 .028 .26

p-value of joint F-test .0042

Notes: Standard errors are clustered by village.

Table A6: Attendance Rates, by Training Session and Village Treatment Concentration.

Mean attendance rate

25% T 50% T 75% T

Integrated Pest Management .694 .743 .761
Nutrition .663 .744 .737
Harvesting .724 .727 .759
Weeding .663 .659 .723
Mulching .694 .705 .741
Pruning and Rejuvenation .612 .702 .737
Pesticide use .694 .708 .715
Composting .643 .685 .699
Erosion Control .724 .679 .717
Shade .653 .672 .686
Nutrition Review .704 .774 .768
Harvesting Review .735 .725 .701
Sustainability .704 .748 .765
Composting Review .765 .754 .772
Pruning and Rejuvenation Review .735 .741 .761

Notes: Session-specific average attendance rates for each village treatment concentration group. In total
there were 38 training groups attended by the treatment group (from 27 villages). All sessions were taught
on (one of) the coffee plot(s) of the training group’s assigned focal farmer by a TechnoServe farmer trainer.
Sessions are listed in chronological order.
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Table A7: Attrition Rates by Treatment Status.

Control Treatment Difference

Mean Mean Coeff.
[s.d.] [s.d.] [s.e.]

Survey round (1) (2) (3)

6 0.034 0.034 0.003
[0.181] [0.181] [0.009]

7 0.041 0.036 –0.005
[0.197] [0.187] [0.011]

8 0.035 0.034 0.000
[0.184] [0.181] [0.010]

9 0.034 0.034 0.003
[0.181] [0.181] [0.009]

Notes: Column 1 presents the attrition rate for Control households
by endline survey round, Column 2 for Treatment households.
Column 3 reports the coefficient from a regression of attrition on a
treatment dummy, but also includes village fixed effects. Standard
errors clustered at the village level in brackets.

Table A8: Program Impacts on Social Networks by Village Treatment Concentration.

(1) (2) (3)
Treatment friends, Same village Different village

same village friends friends

Treatment 0.0644 0.205∗ -0.0366
[0.0727] [0.100] [0.0685]

Treatment × post 0.121 0.222 -0.221∗

[0.117] [0.239] [0.108]

Control × post 0.0255 0.246 -0.352∗∗∗

[0.0579] [0.144] [0.0574]

50% T × Treatment × post 0.228 0.163 -0.0827
[0.146] [0.295] [0.118]

75% T × Treatment × post 0.300∗∗ 0.316 0.0113
[0.142] [0.291] [0.111]

50% T × Control × post 0.142 0.0797 0.0583
[0.105] [0.261] [0.0670]

75% T × Control × post 0.0714 -0.249 0.0307
[0.167] [0.266] [0.0690]

25% T village mean 0.651 3.399 0.857
p-value: Treatment x 50% T X post = Treatment x 75% T X post 0.577 0.544 0.164
p-value: Control x 50% T X post = Control x 75% T X post 0.697 0.280 0.671
Observations 3156 3156 3156

Notes: Standard errors clustered by household in brackets. For brevity, we do not report randomization-inference
p-values in this table, unlike regressions using village-level treatment concentrations. All specifications control for
village fixed effects and use household-level data from the baseline and round 9 social network surveys (see Appendix
C). Column (1) is the number of a household’s friends residing in their village who were selected for training (Table 1,
Panel B, column 1). Column (2) is the total count of friends from their village (Table 1, Panel B, column 4). Column 3 is
the total number of friends residing outside their village (Table 1, Panel C, column 4).
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Table A9: Within-village Treatment Effects and Diffusion through Baseline Social Networks, without controls.

Knowledge
index

Self-
reported
adoption

index

Adoption
index,
audits

Leaf health
index,
audits

Input
quantities

index
(labor +

fertilizers)

Yield
(kg/tree)

Net
revenues

(RWF/tree)

(1) (2) (3) (4) (5) (6) (7)

Panel A

Treatment 1.239 0.329 0.019 0.043 0.052 0.056 7.185
[0.075] [0.041] [0.030] [0.028] [0.039] [0.046] [6.465]

Control mean -0.000 0.000 -0.000 0.000 0.001 0.590 127.063
Observations 4622 4622 47618 47618 6157 6152 6157

Panel B

Treatment 1.259 0.342 0.031 -0.053 -0.140 0.105 12.799
[0.114] [0.060] [0.044] [0.040] [0.064] [0.072] [9.996]

Number of treatment friends -0.013 0.002 -0.058 0.000 -0.048 -0.062 -7.089
[0.033] [0.025] [0.021] [0.019] [0.033] [0.033] [4.901]

Number of sample friends 0.024 0.044 0.041 -0.013 0.077 0.053 5.955
[0.018] [0.015] [0.013] [0.012] [0.021] [0.019] [2.988]

Treatment X num. treatment friends 0.018 -0.018 0.026 0.042 0.030 0.068 7.673
[0.069] [0.040] [0.028] [0.026] [0.056] [0.042] [6.083]

Treatment X num. sample friends -0.017 0.004 -0.017 0.005 0.048 -0.053 -6.031
[0.049] [0.030] [0.020] [0.017] [0.033] [0.029] [4.146]

Control mean -0.000 0.000 -0.000 0.000 0.001 0.590 127.063
Mean T friends 1.596 1.596 1.596 1.596 1.596 1.596 1.596
Mean tot. friends 2.925 2.925 2.925 2.925 2.925 2.925 2.925
p: Num. T friends + T X num. T friends = 0 0.873 0.621 0.606 0.033 0.990 0.340 0.467
Unit of observation HH-round HH-round Tree-round Tree-round HH-round HH-round HH-round
Observations 4622 4622 47618 47618 6157 6152 6157

Notes: Standard errors clustered by household are in brackets. For brevity, we do not report randomization-inference
p-values in this table, unlike regressions using village-level treatment concentrations. All specifications control for
village and round fixed effects and use data from endline rounds, i.e. rounds 6 through 9 (see Appendix C). For columns
(1)-(4), we use data from rounds 6, 8 and 9 only as we did not collect best practices data in round 7. In column (1), we
use self-reported knowledge data. In column (2), we use self-reported adoption data. In column (3)-(4), we use tree-level
audit data. Column (5) represents the average of five variables, each standardized using the Control group mean and
standard deviation: total household labor days, total non-household labor days, the share of coffee plots where the
household applied mulch, kilograms of compost, and kilograms of NPK. In columns (1)-(5), for ease of interpretation,
we also normalize each index by its Control group mean and SD. In column (6), we apply a Poisson regression to the
outcome.
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Table A10: Within-Village Treatment Effects and Diffusion Through Baseline Networks: OLS Yield Regression.

Yield
(kg/tree)

(1)

Panel A

Treatment 0.031
[0.021]

Control mean 0.590
Observations 6152

Panel B

Treatment 0.057
[0.034]

Number of treatment friends -0.040
[0.015]

Number of sample friends 0.042
[0.010]

Treatment X num. treatment friends 0.040
[0.019]

Treatment X num. sample friends -0.031
[0.013]

Control mean 0.590
Mean T friends 1.596
Mean tot. friends 2.925
p: Num. T friends + T X num. T friends = 0 0.296
Observations 6152

Notes: Standard errors clustered by household. For brevity, we do not
report randomization-inference p-values in this table, unlike regressions
using village-level treatment concentrations. All specifications are run
with OLS on data from endline rounds 6-9, and control for round fixed
effects, village fixed effects, and baseline covariates selected via post-
double selection LASSO.

Table A11: Learning Spillovers on Control Farmers.

Learned something new about [practice] from a Treatment farmer

Weeding
Fertilizing
(manure)

Fertilizing
(NPK)

Mulching
Integrated
Pest Man-
agement

Removal of
dead

branches

Removal of
unwanted

suckers

Removal of
branches
touching

the ground

Opening of
Centers

Removal of
old/dry
berries

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Num. treatment friends 0.000 -0.021 -0.014 0.014 -0.003 -0.017 0.013 -0.020 0.002 0.003
[0.011] [0.016] [0.016] [0.011] [0.014] [0.016] [0.013] [0.016] [0.012] [0.011]

Num. sample friends 0.003 0.011 0.008 -0.008 0.004 0.007 -0.008 0.009 -0.005 -0.004
[0.006] [0.010] [0.010] [0.006] [0.009] [0.010] [0.008] [0.010] [0.007] [0.007]

Outcome mean 0.052 0.143 0.140 0.104 0.092 0.099 0.092 0.108 0.088 0.078
R-squared 0.040 0.030 0.060 0.050 0.040 0.040 0.050 0.050 0.040 0.030
Observations 694 694 694 694 694 694 694 694 694 693

Notes: Standard errors clustered by household in brackets. For brevity, we do not report randomization-inference
p-values in this table, unlike regressions using village-level treatment concentrations. All specifications control for
village fixed effects. Control group only. The outcome is constructed from a module collected in the final endline
survey (round 9) asking farmers to reflect on how much they have learned about each practice since baseline.
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Table A12: Within-village Treatment Effects and Social Diffusion:
Audits Adoption and Leaf Health Index Components.

Tree canopy
has mulch

Dripline is
weeded

Removed
dead

branches

Removed
branches
touching

the ground

Opened
centers

Removed
unwanted

suckers

Removed
old and dry

berries

Tree bark is
smoothed

Few signs
of leaf rust

Few curled
leaves

Few yellow
leaves

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Panel A

Treatment 0.035 0.030 0.002 -0.004 -0.004 0.001 -0.018 0.001 0.017 0.003 0.007
[0.005] [0.005] [0.005] [0.003] [0.005] [0.005] [0.005] [0.002] [0.004] [0.004] [0.004]

Control mean 0.549 0.583 0.330 0.911 0.434 0.437 0.408 0.041 0.273 0.194 0.152
Observations 47598 47453 47617 47616 47616 47617 47618 47613 47595 47603 47593

Panel B

Treatment 0.034 0.050 -0.004 0.012 -0.005 -0.012 -0.015 -0.003 -0.012 -0.033 -0.016
[0.008] [0.008] [0.007] [0.004] [0.008] [0.008] [0.008] [0.003] [0.007] [0.006] [0.006]

Number of treatment friends -0.022 -0.013 -0.010 0.004 -0.014 -0.030 -0.004 -0.013 0.002 0.001 0.002
[0.004] [0.004] [0.003] [0.002] [0.004] [0.004] [0.004] [0.002] [0.003] [0.003] [0.003]

Number of sample friends 0.016 0.015 0.004 0.000 0.006 0.016 0.001 0.004 -0.009 -0.005 -0.003
[0.002] [0.002] [0.002] [0.001] [0.002] [0.002] [0.002] [0.001] [0.002] [0.002] [0.002]

Treatment X num. treatment friends 0.020 0.020 0.001 -0.001 0.005 0.007 0.004 -0.000 0.018 0.000 0.011
[0.004] [0.005] [0.004] [0.003] [0.005] [0.005] [0.005] [0.002] [0.004] [0.004] [0.003]

Treatment X num. sample friends -0.011 -0.017 0.001 -0.005 -0.002 -0.000 -0.003 0.002 -0.001 0.011 0.001
[0.003] [0.003] [0.003] [0.002] [0.003] [0.003] [0.003] [0.001] [0.003] [0.003] [0.002]

Control mean 0.564 0.592 0.333 0.908 0.429 0.434 0.400 0.041 0.283 0.193 0.153
Mean T friends 1.596 1.596 1.596 1.596 1.596 1.596 1.596 1.596 1.596 1.596 1.596
Mean tot. friends 2.925 2.925 2.925 2.925 2.925 2.925 2.925 2.925 2.925 2.925 2.925
p: Num. T friends + T X num. T friends = 0 0.059 0.000 0.133 0.452 0.243 0.001 0.670 0.000 0.000 0.606 0.000
Observations 47598 47453 47617 47616 47616 47617 47618 47613 47595 47603 47593

Notes: Standard errors clustered by household in brackets. For brevity, we do not report randomization-inference
p-values in this table, unlike regressions using village-level treatment concentrations. All specifications control for
village and round fixed effects. All columns use data from endline rounds 6, 8, 9 at the household-plot-tree-round
level. Columns 1-8 constitute the components of the Audits Adoption index in column 3 of Table 2. Columns 9-11
are the components of the Leaf Health index in column 4 of Table 2. All regressions control for baseline covariates
selected via post-double selection LASSO.

Table A13: Within-village Treatment Effects and Social Diffusion: Inputs Index Components.

Used
mulch

Compost
(Baskets)

NPK (KG)
Total HH

labor days

Total
non-HH

labor days
(1) (2) (3) (4) (5)

Panel A

Treatment 0.035 0.053 0.434 -0.061 -0.007
[0.012] [0.050] [0.104] [0.031] [0.098]

Control mean 0.502 55.195 0.921 36.438 3.915
Observations 6149 6157 6157 6157 6157

Panel B

Treatment 0.043 0.164 -0.057 -0.066 -0.004
[0.018] [0.085] [0.158] [0.046] [0.141]

Number of treatment friends -0.016 -0.071 -0.244 -0.022 -0.240
[0.009] [0.053] [0.083] [0.026] [0.090]

Number of sample friends 0.011 0.061 0.097 0.013 0.202
[0.005] [0.032] [0.052] [0.013] [0.058]

Treatment X num. treatment friends 0.006 0.067 0.178 0.058 0.322
[0.011] [0.065] [0.126] [0.030] [0.135]

Treatment X num. sample friends -0.006 -0.052 0.027 -0.030 -0.178
[0.008] [0.045] [0.086] [0.018] [0.080]

Control mean 0.510 59.592 1.110 35.757 4.307
Mean T friends 1.596 1.596 1.596 1.596 1.596
Mean tot. friends 2.925 2.925 2.925 2.925 2.925
p: Num. T friends + T X num. T friends = 0 0.623 0.689 0.771 0.031 0.074
Observations 6149 6157 6157 6157 6157

Notes: Standard errors clustered by household in brackets. For brevity, we do not report randomization-inference
p-values in this table, unlike regressions using village-level treatment concentrations. All specifications control for
village and round fixed effects. All columns use data from endline rounds 6, 8, 9 at the household-plot-tree-round
level. Each column is a component of the Inputs index in column 5 of Table 2. All regressions control for baseline
covariates selected via post-double selection LASSO. Columns 2-5 show the results of Poisson regressions.
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Table A14: Within-village treatment effects and social diffusion:
Share of farmers selling to the local wet mill and prices received.

Sold to
Nyarubaka

wet mill

Price per
KG sold to

wet mill
(1) (2)

Panel A

Treatment 0.014 -1.756
[0.009] [2.928]

Control mean 0.158 261.770
Observations 6157 694

Panel B

Treatment 0.023 -0.833
[0.013] [3.898]

Number of treatment friends 0.026 1.052
[0.007] [2.255]

Number of sample friends -0.004 -0.607
[0.004] [1.533]

Treatment X num. treatment friends -0.010 -0.397
[0.009] [2.798]

Treatment X num. sample friends 0.002 -0.034
[0.006] [1.887]

Control mean 0.173 260.706
Mean T friends 1.596 1.596
Mean tot. friends 2.925 2.925
p: Num. T friends + Treatment X num. T friends = 0 0.010 0.698
Observations 6157 694

Notes: Standard errors clustered by household in brackets. For brevity, we do not report randomization-
inference p-values in this table, unlike regressions using village-level treatment concentrations. All spec-
ifications are OLS regressions and control for village and round fixed effects. All columns use data from
endline rounds 6-9 at the household-round level. All regressions control for baseline covariates selected via
post-double selection LASSO.
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Table A15: Diffusion via Geographic Neighbors.

Knowledge
index

Self-
reported
adoption

index

Adoption
index,
audits

Leaf health
index,
audits

Input
quantities

index
(labor +
mulch +

fertilizers)

Yield
(kg/tree)

Net
revenues

(RWF/tree)

(1) (2) (3) (4) (5) (6) (7)

Panel A: Household neighbors

Treatment 1.338 0.312 0.039 -0.047 0.058 0.050 0.247
[0.098] [0.056] [0.015] [0.015] [0.034] [0.063] [7.934]

Number of treatment HH neighbors -0.002 0.017 -0.050 -0.012 0.000 -0.044 -3.199
[0.031] [0.029] [0.007] [0.008] [0.021] [0.030] [3.358]

Number of sample HH neighbors -0.024 -0.013 0.019 -0.004 -0.004 0.024 0.457
[0.019] [0.015] [0.005] [0.005] [0.012] [0.017] [2.005]

Treatment X number of treatment HH neighbors 0.078 0.021 0.054 0.020 0.034 0.056 3.586
[0.056] [0.038] [0.009] [0.010] [0.028] [0.040] [4.571]

Treatment X number of sample HH neighbors -0.067 -0.007 -0.035 0.014 -0.026 -0.028 -0.053
[0.038] [0.024] [0.006] [0.006] [0.016] [0.026] [2.852]

Control mean -0.004 -0.002 0.000 0.000 0.001 0.593 127.804
Mean T neighbors 1.528 1.528 1.528 1.528 1.528 1.528 1.528
Mean tot. neighbors 2.906 2.906 2.906 2.906 2.906 2.906 2.906
p: Num. T neighbors + T X num. T neighbors = 0 0.126 0.284 0.002 0.088 0.130 0.360 0.680
Unit of observation HH-round HH-round Tree-round Tree-round HH-round HH-round HH-round
Survey rounds 6, 8, 9 6, 8, 9 6, 8, 9 6, 8, 9 6, 7, 8, 9 6, 7, 8, 9 6, 7, 8, 9
Observations 4562 4562 47038 47038 6078 6073 6078

Panel B: Plot neighbors

Treatment 1.303 0.277 -0.020 -0.045 -0.033 0.032 4.571
[0.089] [0.052] [0.015] [0.015] [0.035] [0.057] [7.458]

Number of treatment plot neighbors -0.003 0.035 -0.012 0.001 -0.005 -0.026 -0.866
[0.020] [0.016] [0.004] [0.004] [0.012] [0.018] [2.051]

Number of sample plot neighbors -0.008 -0.025 0.002 -0.005 0.004 0.012 -0.213
[0.012] [0.010] [0.003] [0.003] [0.007] [0.011] [1.361]

Treatment X number of treatment plot neighbors 0.011 -0.014 0.022 -0.012 0.019 0.048 3.199
[0.033] [0.021] [0.005] [0.005] [0.020] [0.024] [2.633]

Treatment X number of sample plot neighbors -0.014 0.015 -0.007 0.016 -0.000 -0.022 -1.490
[0.021] [0.014] [0.003] [0.003] [0.012] [0.014] [1.581]

Control mean -0.001 0.001 -0.001 -0.001 0.002 0.592 127.553
Mean T neighbors 3.591 3.591 3.591 3.591 3.591 3.591 3.591
Mean tot. neighbors 6.415 6.415 6.415 6.415 6.415 6.415 6.415
p: Num. T neighbors + T X num. T neighbors = 0 0.735 0.839 0.000 0.006 0.361 0.049 0.203
Unit of observation HH-round HH-round Tree-round Tree-round HH-round HH-round HH-round
Survey rounds 6, 8, 9 6, 8, 9 6, 8, 9 6, 8, 9 6, 7, 8, 9 6, 7, 8, 9 6, 7, 8, 9
Observations 4589 4589 47298 47298 6114 6109 6114

Notes: Standard errors clustered by household are in brackets. For brevity, we do not report randomization-inference
p-values in this table, unlike regressions using village-level treatment concentrations. All specifications control for
village and round fixed effects. All columns use data from endline rounds, i.e. rounds 6 through 9 (see Appendix C).
For columns (1)-(4), we use data from rounds 6, 8 and 9 only as we did not collect best practices data in round 7.
In column (1), we use self-reported knowledge data. In column (2), we use self-reported adoption data. In column
(3)-(4), we use tree-level audit data. Column (5) represents the average of five variables, each standardized using the
Control group mean and standard deviation: total household labor days, total non-household labor days, the share
of coffee plots where the household applied mulch, kilograms of compost, and kilograms of NPK. In columns (1)-(5),
for ease of interpretation, we also normalize each index by its Control group mean and SD. In column (6), we apply a
Poisson regression to the outcome. All regressions control for baseline covariates selected via post-double selection
LASSO.
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Table A16: Impacts of Village Treatment Concentration on Audits Adoption
and Leaf Health Index Components.

Tree canopy
has mulch

Dripline is
completely

weeded

Signs that
tree was re-
juvenated
in past 6-7

years

Dead
branches

have been
removed

Branches
touching

the ground
have been
removed

Centers
opened

(crossing
branches
removed)

Unwanted
Suckers

removed

Old and
dry berries

are
removed

Berry borer
traps used

Bark is
smoothed
or banded
to control

white borer

Few signs
of

yellowing
on leaves

Few signs
of curling
on leaves

Few signs
of leaf rust

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Panel A

50% T in village -0.055 -0.005 -0.002 0.044 -0.016 0.032 0.011 0.017 -0.001 -0.007 0.002 0.008 0.028
(0.526) (0.916) (0.865) (0.050) (0.545) (0.263) (0.660) (0.500) (0.908) (0.613) (0.889) (0.696) (0.567)

75% T in village -0.017 -0.018 -0.007 0.020 -0.011 -0.018 -0.011 -0.001 -0.004 -0.014 -0.017 -0.015 0.008
(0.845) (0.708) (0.629) (0.394) (0.715) (0.543) (0.670) (0.979) (0.691) (0.336) (0.283) (0.494) (0.897)

Sample mean, 25% villages 0.602 0.607 0.851 0.311 0.918 0.425 0.437 0.397 0.022 0.049 0.165 0.197 0.268
[1] p-value: 50%=75% 0.650 0.786 0.711 0.272 0.877 0.056 0.375 0.463 0.770 0.613 0.186 0.252 0.691
Observations 47598 47453 47603 47617 47616 47616 47617 47618 31853 47613 47593 47603 47595

Panel B

Treated HH -0.032 -0.018 -0.015 -0.011 -0.003 -0.016 -0.021 -0.032 -0.014 -0.000 -0.026 -0.011 -0.010
(0.306) (0.520) (0.457) (0.673) (0.790) (0.558) (0.388) (0.172) (0.105) (1.000) (0.159) (0.586) (0.684)

50% T in village -0.079 -0.015 -0.005 0.042 -0.013 0.025 0.016 0.017 -0.014 -0.008 -0.011 0.005 0.012
(0.344) (0.751) (0.768) (0.090) (0.635) (0.406) (0.561) (0.538) (0.157) (0.605) (0.508) (0.820) (0.822)

75% T in village -0.083 -0.070 -0.001 0.004 -0.010 -0.024 -0.048 -0.003 -0.012 -0.022 -0.037 -0.032 -0.013
(0.372) (0.153) (0.956) (0.875) (0.756) (0.505) (0.123) (0.930) (0.262) (0.213) (0.070) (0.227) (0.807)

Treatment X 50% T in village 0.064 0.029 0.013 0.010 -0.005 0.022 -0.002 0.015 0.032 0.003 0.041 0.013 0.038
(0.104) (0.432) (0.610) (0.788) (0.778) (0.541) (0.961) (0.610) (0.004) (0.871) (0.086) (0.642) (0.171)

Treatment X 75% T in village 0.108 0.082 0.002 0.028 0.000 0.018 0.063 0.024 0.020 0.011 0.044 0.030 0.035
(0.010) (0.034) (0.960) (0.448) (0.982) (0.618) (0.077) (0.485) (0.099) (0.550) (0.095) (0.299) (0.287)

Control mean, 25% villages 0.602 0.607 0.851 0.311 0.918 0.425 0.437 0.397 0.022 0.049 0.165 0.197 0.268
[2] p-value: 50% T= 75% T 0.969 0.268 0.859 0.230 0.908 0.169 0.035 0.515 0.890 0.413 0.247 0.164 0.621
[3] p-value: Treat x 50% T = Treat x 75% T 0.263 0.118 0.640 0.598 0.753 0.926 0.049 0.785 0.286 0.605 0.901 0.476 0.897
[4] p: Treatment + Treatment x 50% T=0 0.186 0.571 0.879 0.941 0.451 0.769 0.260 0.361 0.010 0.812 0.313 0.953 0.110
[5] p: Treatment + 50% T + Treatment x 50% T=0 0.602 0.960 0.676 0.111 0.426 0.329 0.782 0.991 0.637 0.698 0.845 0.802 0.381
[6] p: Treatment + Treatment x 75% T=0 0.016 0.017 0.488 0.514 0.814 0.926 0.102 0.707 0.428 0.355 0.319 0.367 0.244
[7] p: Treatment + 75% T + Treatment x 75% T=0 0.936 0.898 0.373 0.390 0.667 0.506 0.845 0.679 0.540 0.477 0.266 0.554 0.838
Observations 47598 47453 47603 47617 47616 47616 47617 47618 31853 47613 47593 47603 47595

Notes: Standard errors clustered by village. For brevity, we do not report those and only show randomization inference
in parentheses. Each panel concludes with randomization inference p-values for various linear restriction tests. All
specifications control for round fixed effects and use data from endline rounds 6, 8, 9 at the household-plot-tree-round
level. Columns 1-8 constitute the components of the Audits Adoption index in column 3 of Table 3. Columns 9-11 are the
components of the Leaf Health index in column 4 of Table 3. All regressions control for baseline covariates selected via
post-double selection LASSO.
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Table A17: Impacts of Village Treatment Concentration on Number of Trees.

Number of trees:
Total Productive

(1) (2)

Panel A

50% T in village 0.068 -0.016
(0.424) (0.629)

75% T in village 0.148 -0.008
(0.077) (0.801)

Sample mean, 25% villages 202.670 182.249
[1] p-value: 50%=75% 0.318 0.788
Observations 6157 6145

Panel B

Treatment 0.029 0.010
(0.768) (0.854)

50% T in village 0.145 -0.023
(0.120) (0.590)

75% T in village 0.084 -0.037
(0.458) (0.493)

Treatment X 50% T in village -0.173 0.011
(0.203) (0.892)

Treatment X 75% T in village 0.068 0.033
(0.609) (0.674)

Control mean, 25% villages 194.232 167.498
[2] p-value: 50% T= 75% T 0.599 0.793
[3] p-value: Treat x 50% T = Treat x 75% T 0.025 0.757
[4] p: Treatment + Treatment x 50% T=0 0.042 0.664
[5] p: Treatment + 50% T + Treatment x 50% T=0 0.998 0.972
[6] p: Treatment + Treatment x 75% T=0 0.243 0.415
[7] p: Treatment + 75% T + Treatment x 75% T=0 0.048 0.878
Observations 6157 6145

Notes: Standard errors clustered by village. For brevity, we do not report those
and instead only show randomization inference p-values in parentheses below
the coefficients. Both specifications are Poisson regressions using data from
endline rounds 6-9, and control for round fixed effects and baseline covariates
selected via post-double selection LASSO.
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Table A18: Impacts of Village Treatment Concentration: Yields and Input Quantities (OLS)

Yield
(kg/tree)

Compost
(Baskets) NPK (KG)

(1) (2) (3)

Panel A

50% T in village -0.240 -2.985 0.205
(0.446) (0.725) (0.445)

75% T in village -0.120 2.683 -0.059
(0.718) (0.771) (0.835)

Sample mean, 25% villages 2.967 56.891 0.950
[1] p-value: 50%=75% 0.706 0.488 0.298
Observations 6154 6157 6157

Panel B

Treatment -0.321 -7.958 0.223
(0.222) (0.461) (0.601)

50% T in village -0.373 -5.033 0.218
(0.263) (0.639) (0.506)

75% T in village -0.497 -14.589 -0.548
(0.172) (0.218) (0.188)

Treatment X 50% T in village 0.425 8.014 -0.136
(0.198) (0.615) (0.818)

Treatment X 75% T in village 0.714 28.210 0.501
(0.047) (0.077) (0.390)

Control mean, 25% villages 3.053 57.234 0.856
[2] p-value: 50% T= 75% T 0.743 0.387 0.082
[3] p-value: Treat x 50% T = Treat x 75% T 0.412 0.151 0.216
[4] p: Treatment + Treatment x 50% T=0 0.618 0.999 0.782
[5] p: Treatment + 50% T + Treatment x 50% T=0 0.438 0.603 0.379
[6] p: Treatment + Treatment x 75% T=0 0.125 0.066 0.080
[7] p: Treatment + 75% T + Treatment x 75% T=0 0.777 0.574 0.576
Observations 6154 6157 6157

Notes: Standard errors clustered by village. For brevity, we do not report those and instead only show randomization
inference p-values in parentheses below the coefficients. All specifications are run with OLS on data from endline
rounds 6-9, and control for round fixed effects and baseline covariates selected via post-double selection LASSO.
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Table A19: Impacts of Village Treatment Concentration: Labor Days (OLS)

Total labor days Mulching Fertilizing Weeding Harvesting All other tasks

HH non-HH HH non-HH HH non-HH HH non-HH HH non-HH HH non-HH
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A

50% T in village 0.423 -0.198 -0.266 -0.063 0.433 -0.033 0.602 0.152 -0.579 -0.274 -0.097 -0.055
(0.856) (0.759) (0.511) (0.596) (0.623) (0.911) (0.376) (0.360) (0.549) (0.615) (0.923) (0.723)

75% T in village 0.899 0.116 -0.199 0.082 0.107 0.269 0.960 0.071 -0.253 -0.164 0.304 0.073
(0.728) (0.883) (0.649) (0.535) (0.910) (0.215) (0.125) (0.699) (0.789) (0.739) (0.740) (0.641)

Sample mean, 25% villages 34.620 4.082 3.842 0.339 6.324 0.381 7.192 1.198 9.466 1.545 7.795 0.619
[1] p-value: 50%=75% 0.846 0.671 0.866 0.194 0.686 0.099 0.623 0.585 0.729 0.808 0.666 0.391
Observations 6157 6157 6157 6157 6157 6157 6157 6157 6157 6157 6157 6157

Panel B

Treatment -3.126 0.311 -0.372 -0.042 1.107 -0.011 -0.677 0.765 -1.616 -0.559 -1.766 0.171
(0.230) (0.792) (0.390) (0.810) (0.185) (0.959) (0.363) (0.038) (0.038) (0.176) (0.010) (0.441)

50% T in village -0.273 0.186 -0.351 -0.046 0.996 -0.026 0.568 0.459 -1.206 -0.289 -0.606 0.033
(0.910) (0.835) (0.441) (0.771) (0.288) (0.896) (0.427) (0.050) (0.220) (0.597) (0.540) (0.872)

75% T in village 4.209 -1.223 0.006 -0.035 1.805 0.037 1.845 -0.070 0.087 -1.068 0.396 0.093
(0.209) (0.312) (0.992) (0.871) (0.100) (0.867) (0.037) (0.816) (0.928) (0.073) (0.697) (0.689)

Treatment X 50% T in village 2.931 -0.924 0.355 -0.015 -1.674 -0.010 0.399 -0.991 2.052 0.304 1.888 -0.262
(0.350) (0.551) (0.513) (0.945) (0.136) (0.972) (0.665) (0.031) (0.032) (0.589) (0.017) (0.415)

Treatment X 75% T in village -2.322 1.571 -0.025 0.183 -2.988 0.315 -0.727 -0.320 0.619 1.571 1.049 -0.140
(0.515) (0.386) (0.965) (0.536) (0.019) (0.515) (0.482) (0.523) (0.547) (0.007) (0.206) (0.695)

Control mean, 25% villages 34.926 3.895 3.886 0.349 5.891 0.367 7.204 0.980 9.787 1.630 8.157 0.569
[2] p-value: 50% T= 75% T 0.167 0.256 0.518 0.949 0.439 0.781 0.151 0.125 0.234 0.213 0.317 0.815
[3] p-value: Treat x 50% T = Treat x 75% T 0.086 0.103 0.493 0.438 0.232 0.494 0.230 0.134 0.119 0.014 0.285 0.712
[4] p: Treatment + Treatment x 50% T=0 0.911 0.488 0.958 0.739 0.388 0.919 0.649 0.387 0.436 0.421 0.800 0.634
[5] p: Treatment + 50% T + Treatment x 50% T=0 0.879 0.651 0.389 0.489 0.644 0.810 0.721 0.314 0.434 0.328 0.602 0.765
[6] p: Treatment + Treatment x 75% T=0 0.033 0.107 0.347 0.428 0.031 0.282 0.051 0.195 0.169 0.017 0.216 0.885
[7] p: Treatment + 75% T + Treatment x 75% T=0 0.652 0.423 0.386 0.462 0.941 0.181 0.551 0.064 0.346 0.915 0.735 0.478
Observations 6157 6157 6157 6157 6157 6157 6157 6157 6157 6157 6157 6157

Notes: Standard errors clustered by village. For brevity, we do not report those and instead only show randomization
inference p-values in parentheses below the coefficients. All specifications use data from endline rounds 6-9, and
control for round fixed effects and baseline covariates selected via post-double selection LASSO.
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Table A20: Within-village Treatment Effects and Social Diffusion on Labor Supply outside of the Household.

Total labor
days outside

of HH

Labor days,
coffee

Labor days,
other

(1) (2) (3)

Panel A

Treatment 0.097 0.680 0.084
[0.086] [0.437] [0.086]

Control mean 4.098 0.072 4.026
Observations 4710 4710 4710

Panel B

Treatment 0.038 1.648 -0.010
[0.143] [0.707] [0.136]

Number of treatment friends 0.026 0.111 0.024
[0.070] [0.229] [0.072]

Number of sample friends -0.051 0.243 -0.067
[0.045] [0.137] [0.044]

Treatment X num. treatment friends 0.052 0.274 0.046
[0.083] [0.290] [0.086]

Treatment X num. sample friends -0.011 -0.359 0.005
[0.059] [0.184] [0.059]

Control mean 4.098 0.072 4.026
Mean T friends 1.596 1.596 1.596
Mean tot. friends 2.925 2.925 2.925
p: Num. T friends + T X num. T friends = 0 0.228 0.099 0.294
Unit of observation HH-round HH-round HH-round
Survey rounds 6, 7, 8 6, 7, 8 6, 7, 8
Observations 4710 4710 4710

Notes: Standard errors clustered by household in brackets. For brevity, we do not report randomization-inference
p-values in this table, unlike regressions using village-level treatment concentrations. All specifications control for
village and round fixed effects. All columns use data from endline rounds 6, 7, and 8 at the household-round level.
All columns show the results of Poisson regressions. Columns (1) and (3) control for baseline covariates selected via
post-double-selection LASSO. For column (2), Poisson models with PDS-LASSO–selected controls do not converge
given the distribution of the outcome, and we therefore report estimates without baseline covariates for this column.
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Table A21: Impacts of Village Treatment Concentration on Household Income
(coffee, non-coffee agriculture, and non-agriculture).

HH income,
coffee

HH income,
agricultural
non-coffee

HH income,
non-

agricultural
(1) (2) (3)

Panel A

50% T in village -0.534 0.002 0.207
(0.431) (0.991) (0.480)

75% T in village 0.020 0.272 0.335
(0.975) (0.212) (0.208)

Sample mean, 25% villages 75.558 1156.824 2845.861
[1] p-value: 50%=75% 0.356 0.204 0.622
Observations 4710 4710 4710

Panel B

Treatment 0.480 -0.145 -0.031
(0.729) (0.612) (0.905)

50% T in village -1.012 -0.048 0.102
(0.256) (0.856) (0.763)

75% T in village -1.220 0.375 -0.280
(0.329) (0.230) (0.415)

Treatment X 50% T in village 0.532 0.174 0.218
(0.744) (0.645) (0.595)

Treatment X 75% T in village 1.132 -0.043 0.779
(0.549) (0.917) (0.078)

Control mean, 25% villages 65.181 1196.627 2868.928
[2] p-value: 50% T= 75% T 0.873 0.170 0.298
[3] p-value: Treat x 50% T = Treat x 75% T 0.704 0.534 0.169
[4] p: Treatment + Treatment x 50% T=0 0.282 0.905 0.499
[5] p: Treatment + 50% T + Treatment x 50% T=0 0.999 0.936 0.355
[6] p: Treatment + Treatment x 75% T=0 0.197 0.481 0.022
[7] p: Treatment + 75% T + Treatment x 75% T=0 0.609 0.445 0.078
Observations 4710 4710 4710

Notes: Standard errors clustered by village. For brevity, we do not report those and only show randomization
inference p-values in parentheses. Each panel concludes with randomization inference p-values for various linear
restriction tests. All specifications control for round fixed effects and use data from endline rounds 6-8 (see Appendix
B). All columns show the results of Poisson regressions and control for baseline covariates selected via post-double
selection LASSO.
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