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S1 Proof of Theorem 1: Finite Sample Guarantees for
DR

Fix any j € [M]. Recall the definitions of the parameter ATE. ; and corresponding doubly-
robust estimate @%R from Egs. (5) and (11), respectively. The error AATE?]B =

@Pﬁ — ATE.; can be re-expressed as
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where (a) follows after defining ']I‘(1 DR) & (@VIJ-’DR) — 91%) ) and ']I‘Z(S-’DR) £ —(HAZ(S’DR) - QZ(S) )
for every (i,7) € [N] x [M]. Then, we have
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where (a) follows from Eq. (12), and (b) follows from Egs. (1) to (3). A similar derivation
for a = 0 implies that
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Consider any a € {0,1} and any ¢ € (0,1). We claim that, with probability at least 1 — 64,
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where recall that m(cls) = max (c&;, Vi 065). We provide a proof of this claim at the end

of this section. Applying triangle inequality in Eq. (S.1) and using Eq. (S.5) with a union



bound, we obtain that
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with probability at least 1 — 12§. The claim in Eq. (18) follows by re-parameterizing 9.
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Proof of bound Eq. (S.5). Recall the partitioning of the units [IN] into Ry and R4
from Assumption 4. Now, to enable the application of concentration bounds, we split the
summation over i € [N] in the left hand side of Eq. (S.5) into two parts—one over i € Ry
and the other over ¢ € R;—such that the noise terms are independent of the estimates of
0©, 0, P in each of these parts as in Eqgs. (14) and (15).

Fix a = 1 and note that | ,cn TEE’DR)] < | Yiere ’]T%’DR)| + [ Yier, TEE’DR)L Fix any
s € {0,1}. Then, Eq. (S.3) and triangle inequality imply
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Applying the Cauchy-Schwarz inequality to bound the first term yields that
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To bound the second term in Eq. (S.6), note that n;; is subGaussian(1/y/¢;) (see
Example 2.5.8 in Vershynin (2018)) as well as zero-mean and independent across all i € [N]
due to Assumption 2(a). By Assumption 4, {(p; ;, Hz(’lj))}ieRs A {n;;}ier,. The subGaussian
concentration result in Corollary S1 yields
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with probability at least 1 — §.




To bound the third term in Eq. (S.6), note that 52(,1].) is subGaussian(a), zero-mean, and in-
dependent across all i € [N] due to Assumption 2. By Assumption 4, {p; ; }ier, 1L {553)}1'67%5-
The subGaussian concentration result in Corollary S1 yields
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with probability at least 1 — 9.

To bound the fourth term in Eq. (S.6), note that 5( )n,j is subExponential(a//(;)
because of Lemma S6 as well as zero-mean and independent across all ¢ € [N] due to
Assumption 2. By Assumption 4, {p;;}ier, 1L {(1:j,€ el ))}Zggg The subExponential con-

centration result in Corollary S2 yields that
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with probability at least 1 — 0. Putting together Egs. (S.6) to (S.10), we conclude that,

< 11y @ P2, (S.10)

with probability at least 1 — 36,
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Then, noting that 1/p;; < 1/ for every i € [N] and j € [M] from Assumption 3, and
consequently that |B.; @ P.j|ly < |B|12/) for any matrix B and every j € [M], we obtain

the following bound, with probability at least 1 — 30,
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where (a) follows from Eq. (16) and because | P2 < VN and |1]12 = v/N. Then, the




claim in Eq. (S.5) follows for a = 1 by using Eq. (S.12) and applying a union bound over

s € {0,1}. The proof of Eq. (S.5) for a = 0 follows similarly.

S2 Proof of Theorem 2: Asymptotic Normality for

DR

For every (i,j) € [N] x [M], recall the definitions of ']I‘ (LDR) and TE%’DR) from Eq. (S.3) and

Eq. (S.4), respectively. Then, define
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Then, AATE?]B in Eq. (S.1) can be expressed as
ANTEDF = & 3 (X7 4 x5 1 ZPR).
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We obtain the following convergence results.

Lemma S1 (Convergence of X?R). Fiz any j € [M]. Suppose Assumptions 1 to 4 and

conditions (C1) to (C3) in Theorem 2 hold. Then,
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Lemma S2 (Convergence of Z?R). Fiz any j € [M]. Suppose Assumptions 1 and 2 hold

and condition (C3) in Theorem 2 hold. Then,
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Now, the result in Theorem 2 follows from Slutsky’s theorem.

S2.1 Proof of Lemma S1

Fix any j € [M]. Consider any a € {0,1}. We claim that

X“P < O( VNE(OW)E(P) ) + 0,(1). (S.15)
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We provide a proof of this claim at the end of this section. Then, using Eq. (S.15) and the

fact that @; > ¢ > 0 as per condition (C3), we obtain the following,
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where (a) follows from (C2), and (b) follows because 0,(1) 4+ 0,(1) = 0,(1).

Proof of Eq. (S.15) Recall the partitioning of the units [N] into Ry and R; from
Assumption 4. Now, to enable the application of concentration bounds, we split the
summation over ¢ € [N] in the left hand side of Eq. (S.15) into two parts—one over i € Ry
and the other over ¢ € Ri—such that the noise terms are independent of the estimates of
0©®, 0W P in each of these parts as in Eqs. (14) and (15).

Fix a = 1. Then, Egs. (S.3) and (S.13) imply that
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Now, note that |3 ;¢ X%’DR” < | Yier, X lDR)| + | Yier, X&’DR)L Fix any s € {0, 1}.

Then, triangle inequality implies that
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To control the first term in Eq. (S.16), we use the Cauchy-Schwarz inequality and Assump-
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tion 3 as in supplementary appendix S1 (see Egs. (S.7), (S.11), and (S.12)).
To control the second term in Eq. (S.16), we condition on {(@],51(1]))}1673 Then,
Assumption 4 (i.e., Eq. (14)) provides that {(ﬁ”,@(?)}lem A {nij}tier,. As a result,
~ . , ~ 2, \271/2
ZieRS@g’lj) - 91%))771-J /Dij is subGaussmn({EieRs (91(71]-)—91(’1]-)) / (pm) } / \/E) because 7;
is subGaussian(1/y//1) (see Example 2.5.8 in Vershynin (2018)) as well as zero-mean and

independent across all i € [N] due to Assumption 2(a). Then, we have
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where (a) follows as the first moment of subGaussian(o) is O(c), (b) follows from Assump-
tion 3 and Eq. (16), and (c) follows from (C1).

To control the third term in Eq. (S.16), we condition on {p; ;}ier,. Then, Assumption 4
(i.e., Eq. (15)) provides that {p; ;}ier, 1L {5%)},;6733. As a result, ZieRsel(}j) (ﬁm —pi,j)/ﬁi,j is
subGaussian(E[ZieRS (ﬁi,j _pi7j)2 / (@-,02} 1/2> because 5571]) is subGaussian(), zero-mean,

and independent across all i € [N] due to Assumption 2. Then, we have
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where (a) follows as the first moment of subGaussian(o) is O(o), (b) follows from Assump-



tion 3 and Eq. (16), and (c) follows from (C1).
To control the fourth term in Eq. (S.16), we condition on {p; ;}ier,. Then, Assumption 4
(i.e., Eq. (15)) provides that {p;;}ier, AL {(mﬁj,sg,lj))}iens. As a result, Y. 52(’1].)77@]- (ﬁz}j —
. . . . 20 211/2 .
pihj)/pid’pi,j is SubEXponentlal(a{ZieRs (pm - pm) /(pi’jpid‘) } /\/E_l) because eg}j)m,j is
subExponential(@/+v/¢;) due to Lemma S6 as well as zero-mean and independent across all

i € [N] due to Assumption 2. Then, we have

Z 51(,1]')771‘,3' (ﬁi,j _pi,j>

IER DiiDij

~ 2
pz’j_pij>

R ] (@) co (
J JiERS =
Vv N i€Rs PijPij

ok

£(P) 2 o,(1), (S.19)

where (a) follows as the first moment of subExponential(c) is O(o), (b) follows from
Assumption 3 and Eq. (16), and (c) follows from (C1).

Putting together Eqs. (S.16) to (S.19) using Lemma S9, we have
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Then, the claim in Eq. (S.15) follows for @ = 1 by using | > ¢ X (LDR)| < | Y ieRo X%’DR)] +

| Yier, X 1 DR) | The proof of Eq. (S.15) for a = 0 follows similarly.

S2.2 Proof of Lemma S2

To prove this result, we invoke Lyapunov central limit theorem (CLT).

Lemma S3 (Lyapunov CLT, see Theorem 27.3 of Billingsley (2017)). Consider a sequence
Ty, T, of mean-zero independent random variables such that the moments E[|x;|**] are

finite for some w > 0. Moreover, assume that the Lyapunov’s condition is satisfied, i.e.,
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as N — oo. Then,
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as N — 0.
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Fix any j € [M]. We apply Lyapunov CLT in Lemma S3 on the sequence Z;, Z3;',

where ZP} is as defined in Eq. (S.14). Note that this sequence is zero-mean from Assump-
tion 2(a) and Assumption 2(b), and independent from Assumption 2(b). First, we show in

supplementary appendix S2.2.1 that
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for each ¢ € [N]. Next, we show in supplementary appendix S2.2.2 that Lyapunov’s
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condition Eq. (S.20) holds for the sequence Z7;,Zy ', -+ with w = 1. Finally, applying

Lemma S3 and using the definition of 7; from Eq. (22) yields Lemma S2.
S2.2.1 Proof of Eq. (S.21)

Fix any i € [N] and consider Var(Zp}*). We have
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with Eq. (S.21) following from Egs. (S.22) to (S.25).



To establish Eq. (S.23), notice that Assumption 2(a) and (b) imply s )1 n;; and

E[sglj)] = E[n; ;] = 0 so that ]E[sl(}j)(l +1i.j/pi;)] = 0. Then,
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where (a) follows because E[n?;] = Var(n; ;) = p; ;(1 — p; ;) from Eq. (3), and ]E{(ggj))ﬂ =
Var(sgj)) = (02(71]-))2 from condition (C3). A similar argument establishes Eq. (S.24). Eq. (S.25)

follows from,
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where (a) follows because (e} J), Elj)) Al n; ; from Assumption 2(b) and (b) follows because

E[UZQJ] = Var(m,j) = pi,j(l - pi,j)-

S2.2.2 Proof of Lyapunov’s condition with w =1
We have
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where (a) follows by putting together Egs. (S.21) and (22), (b) follows because @; > ¢; > 0
as per condition (C3), (¢) follows because the absolute third moments of subExponential
random variables are bounded, after noting that ZEJR is a subExponential random variable.
Then, condition Eq. (S.20) holds for w = 1 as the right hand side of Eq. (S.26) goes to zero

as N — oo.

S2.3 Proof of Proposition 2: Consistent variance estimation

Fix any j € [M] and recall the definitions of 7 and 7 from Eqs. (22) and (25), respectively.

The error Aj = &7 — o5 can be expressed as
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where (a) follows from Egs. (1) to (3). A similar derivation for a = 0 implies that
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Consider any a € {0,1}. We claim that

T(O)

(S.28)

ZT

i€[N]

We provide a proof of this claim at the end of this section. Then, applying triangle inequality

in Eq. (S.27), we obtain the following
Aj < o0p(1) + 0p(1) = op(1),

where (a) follows because 0,(1) 4 0,(1) = 0,(1).

S2.3.0.1 Proof of bound Eq. (S.28). This proof follows a very similar road map to
that used for establishing the inequality in Eq. (S.15). Recall the partitioning of the units
[N] into Ry and R; from Assumption 4. Now, to enable the application of concentration
bounds, we split the summation over i € [N] in the left hand side of Eq. (S.28) into
two parts—one over ¢ € Ry and the other over ¢ € R;—such that the noise terms are
independent of the estimates of ©(®), (1) P in each of these parts as in Eqs. (14) and (15).
Fix a = 1. Now, note that | 3¢y ’]I‘Z(lj)| < Yiery Tg}j)|—|—| SieRr, ’]I‘( )| Fix any s € {0,1}.
Then, triangle inequality implies that
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To bound the first term in Eq. (S.29), we have
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where (a) follows as a; ; € {0,1}, (b) follows from Assumption 3, (c) follows from Eq. (16),
(d) follows from (C1), and (e) follows because 0,(1)o,(1) = 0,(1).

1,3

To control second term in Eq. (S.29), we condition on {(ﬁm-, 5(1)>}i€735. Then, Eq. (24)

provides that {(ﬁiﬁj, 52(1]))}1673 A {551])}2673 As a result, ziengﬁ}}pm (51(1]) - Hl(lj)) / (ﬁi,jf
is SubGaussian(E[ZieRs (pi,j)Q(@(}j) _ 0&))2 / (ﬁi,j)zl]lﬂ) because 51(71]) is subGaussian (o),

zero-mean and independent across all i € [N] due to Assumption 2. Then, we have
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where (a) follows as the first moment of subGaussian(o) is O(o), (b) follows from Assump-
tions 1 and 3, (¢) follows from Eq. (16), and (d) follows from (C1).

To control third term in Eq. (S.29), we condition on {(ﬁm, éflj))}zggs Then, Eq. (24)
provides that {(ﬁi,j, gl(lj))}len o {(ny, 52(1]))}1673 As a result, ZieRssgvlj)m,j (9;(1]) —
QE,IJ-))/(ﬁi,j)Q is subEXponential(E[ZieRs (92(1} - 91(’1)-))2/(]5@-4)4}1/2/\/@) because gg}j)m,j is
subExponential(a/+/7;) due to Lemma S6 as well as zero-mean and independent across all
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i € [N] due to Assumption 2. Then, we have
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where (a) follows as the first moment of subExponential(o) is O(¢) (Zhang and Wei, 2022,
Corollary 3), (b) follows from Assumption 3, (c¢) follows from Eq. (16), and (d) follows from
(C1).

To control fourth term in Eq. (S.29), we condition on {p; j }ier,. Then, Eq. (24) provides
that {p;;}ier. 1L {(ni,j>5z('1j))}i€7?,s As a result, Zzg&( (1 ) 77”/(]7”) is subWeibullys
(52[216735 1/(@7]-)4}1/2/\/_) because ( ) 1;,; is subWeibully/3(a%/+/¢;) due to Lemma S7
as well as zero-mean and independent across all i € [N] due to Assumption 2. Then, we
have
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where (a) follows as the first moment of subWeibully/3(0) is O(0) (Zhang and Wei, 2022,

Corollary 3) and (b) follows from Assumption 3.
To control fifth term in Eq. (S5.29), we have
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where (a) follows from the triangle inequality. To control the first term in Eq. (S.34),

we condition on {p; ; }ier,. Then, Eq. (24) provides that {p; ; }ier, 1L {52(-?}1-6735. Further,
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2
IEZ[(@O]))2 — (nylj))ﬂ = 0 due to (C3) and Assumption 2. As a result, > ;cx. [(55?) —
2 N2, L 2 \471/2

(ai(’lj)) ]p@j/(pi,j) is subEXponentlal(az[ZieRs (pm) /(pw) } ) because (55?)2 — (ai(’lj))2

is subExponential(5?) and independent across all i € [N] due to Lemma S6. Then, we have
(1))? MW\,

17 L)

N

N 2

i) 1 (@) co? < Di,; )2(6) co? (1)
Dijtiers | < — E = | <= =0,(1),
NA\&E N\ ()]~ RN

(S.35)

where (a) follows as the first moment of subExponential(o) is O(o) and (b) follows from
Assumption 3. To bound the second term in Eq. (S.34), applying the Cauchy-Schwarz
inequality yields that

(Uz‘(,lj))zpi,j B (Uz‘(,lj))2>‘ _ 1
(ﬁm’)Q P Y

1
N

%

1€Rs

5 (@) ((bs) = (7)) ‘

2
i€Rs (pi,j) Dij

(@) 2

<=2 ("513‘))2

Pij — Dij

2
Niew. (Big) pig
() 252
< = R
S e leZR: Pij — Dij

INS

= %5(?) ©o,(1),  (S.36)

—2

e

where (a) follows by using (Pz‘,j)Q - (ﬁm)z = (Pij +Dig)(pij —DPij) < 2lpij —Diyl, (b) follows

from Assumptions 1 and 3, and because the variance of a subGaussian random variable

is upper bounded by the square of its subGaussian norm, (¢) follows by the relationship

between ¢; and ¢, norms of a vector, (d) follows from Eq. (16), and (e) follows from (C1).
Putting together Egs. (S.29) to (S.36) using Lemma S9,

> T

1€Rs

1
N = 0,(1).

Then, the claim in Eq. (S.28) follows for a = 1 by using | ¥,y Tflj)] < | Yiere Tflj)] +

| Yier, ’]I‘Z(lj)| The proof of Eq. (S.28) for a = 0 follows similarly.
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S3 Simulations

This section reports simulation results on the performance of the DR estimator of Eq. (11)

and the OI and IPW estimators of Egs. (9) and (10), respectively.

Data Generating Process (DGP). We now briefly describe the DGP for our simulations;
supplementary appendix S3.1 provides details. All simulations set N = M. To generate,
P, © and ©W, we use the latent factor model given in Eq. (S.47). To introduce
unobserved confounding, we set the unit-specific latent factors to be the same across P,
00 and OW ie., U=U® = UM, The entries of U and the measurement-specific latent
factors, V,V(© V() are each sampled independently from a uniform distribution, with
hyperparameter r, equal to the dimension of U and V, and hyperparameter ry equal to
the dimension of U® and V@ for a = 0, 1. Further, the entries of the noise matrices £
and £ are sampled independently from a normal distribution, and the entries of W are

sampled independently as in Eq. (4). Then, yf';)

, @; j, and y; ; are determined from Eqgs. (1)
to (3), respectively. The simulation generates P, ©®) and ©™) once. Given the fixed values
of P, ©© and ©W, the simulation generates 2500 realizations of (Y, A)—that is, only
the noise matrices £, EMW W are resampled for each of the 2500 realizations. For each
simulation realization, we apply the Cross-Fitted-SVD algorithm with hyper-parameters

as in Proposition 4 and A = A = 0.05 to obtain 13, (:)(0), and C:)(l), and compute ATE. ; from

Eq. (5), and A/T\E_S-I, @TW and A/ﬁ)_]?jR from Egs. (9) to (11).

Results. Figure 5 reports simulation results for N = 1000, with r, = 3, ry = 3 in Panel
(a), and r, = 5, 19 = 3 in Panel (b). Figure 2 in Section 3 reports simulation results
for r, = 3, 7p = 5. In each case, the figure shows a histogram of the distribution of
@PJR — ATE. ; across 2500 simulation instances for a fixed j, along with the best fitting
Gaussian distribution (green curve). The histogram counts are normalized so that the

area under the histogram integrates to one. Figure 5 plots the Gaussian distribution in
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Figure 5: Empirical illustration of the asymptotic performance of DR as in Theorem 2.
The histogram corresponds to the errors of 2500 independent instances of DR estimates,
the green curve represents the (best) fitted Gaussian distribution, and the black curve
represents the Gaussian approximation from Theorem 2. The dashed green, blue, and red
lines represent the biases of DR, OI, and IPW estimators.

the result of Theorem 2 (black curve). The dashed blue, red and green lines in Figures 2
and 5 indicate the values of the means of the OI, IPW, and DR error, respectively, across
simulation instances. For reference, we place a black solid line at zero. The DR estimator
has minimal bias and a close-to-Gaussian distribution. The biases of OI and IPW are
non-negligible. In supplementary appendix S3.1, we compare the biases and the standard
deviations of OI, IPW, and DR across many j.

Panels (a), (b), and (c¢) of Figure 6 report coverage rates over the 2500 simulations for
XT\E],]?]-R—Centered nominal 95% confidence intervals with N = 500, N = 1000, and N = 1500,
respectively, all with M = N and r, = ry = 3. For every j € [M], panels (a), (b) and (c)
show ¢;, the percentage of times [A/TTE_]?J-R + 1.966;/v/N| covers ATE.; (in blue), and c;,
the percentage of times [Kﬁ)?fi + 1.960;/v/N] covers ATE.; (in green). Panel (d) shows
the means and standard deviations of {¢;} ey and {c;} e for different values of N.
Confidence intervals based on the large-sample approximation results of Section 4 exhibit
small size distortion even for fairly small values of N.

In Figure 7, we compare the absolute biases and the standard deviations of OI, IPW,
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Figure 6: Panels (a), (b), and (c) report coverage rates for nominal 95% confidence intervals
constructed using the estimated variance from Eq. (25) (in blue) and the true variance from
Eq. (22) (in green) for N € {500, 1000, 1500} and M = N. Panel (d) shows the means and
standard deviations of coverage rates across outcomes for different values of V.

and DR across the first 50 values of j for N = 1000, with r, = 3, 7y = 3 in Panel (a),
r, =3, 79 = 5 in Panel (b), and r, = 5, rp = 3 in Panel (¢). For each j, the estimate of
the biases of OI, IPW, and DR is the average of @81 — ATE. ;, mllfw — ATE.; and
A/ﬁ,]?jR — ATE. ; across the ) simulation instances. Likewise, the estimate of the standard
deviation of OI, IPW, and DR is the standard deviation of A?F\ESI—ATE.J, AEF\E,I’EW—ATE.J
and @%R — ATE. ; across the () simulation instances. The DR estimator consistently
outperforms the OI and IPW estimators in reducing both absolute biases and standard

deviations.
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S3.1 Details for the data generating process

The inputs of the data generating process (DGP) are: the probability bound \; two positive

constants ¢(® and ¢M); and the standard deviations O'i(’aj) for every i € [N],j € [M],a € {0,1}.

The DGP is:

generate a proxy for the common

b

rg and r = max{r,, 7y}

1. For positive integers r,,

shared

shared & RN>T “guch that, for all i € [N] and j € [r], uS

unit-level latent factors U

Z?j
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is independently sampled from a Uniform(v/A, /I — \) distribution, with A € (0, 1).

2. Generate proxies for the measurement-level latent factors V, V() V() ¢ RM*" such

that, for all ¢ € [M] and j € [r], vm-,v(o) ! are independently sampled from a

ij o Vij
Uniform(v/\, /I — \) distribution.
3. Generate the treatment assignment probability matrix P
P o iUshared VT
T INIX[rp] M X[rp]
P

4. For a € {0,1}, run SVD on Ushared/(@)T " o

SVD(UsharedV(a)T) _ (U(a)’ Z(a)7 W(a)).

Then, generate the mean potential outcome matrices ©(® and ©W:

@(a) . C(a)sum(z(a)) (a)

()7
=, UNixaViniixpral

where Sum(X(®) denotes the sum of all entries of %(%).

5. Generate the noise matrices £(®) and E™M, such that, for alli € [N],j € [M],a € {0,1},

esgf}) is independently sampled from a A/(0, (ai(flj)

(a)

)?) distribution. Then, determine y;';

from Eq. (2).

6. Generate the noise matrix W, such that, for all i € [N],j € [M], 1, ; is independently
sampled as per Eq. (4). Then, determine a;; and y;; from Eq. (3) and Eq. (1),

respectively.

In our simulations, we set A = 0.05, ¢(® =1 and ¢V = 2. In practice, instead of choosing

a)

; as ex-ante inputs, we make them equal to the standard deviation of all

the values of ai(

the entries in ©@ for every i and j, separately for a € {0, 1}.
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S4 Supporting Concentration and Convergence Re-
sults

This section presents known results on subGaussian, subExponential, and subWeibull
random variables (defined below), along with few basic results on convergence of random
variables.

We use subGaussian (o) to represent a subGaussian random variable, where o is a bound
on the subGaussian norm; and subExponential(o) to represent a subExponential random
variable, where ¢ is a bound on the subExponential norm. Recall the definitions of the

norms from Section 1 of the main article.

Lemma S4 (subGaussian concentration: Theorem 2.6.3 of Vershynin (2018)). Let x € R”
be a random vector whose entries are independent, zero-mean, subGaussian(o) random

variables. Then, for any b € R™ and t > 0,

P{’bTm‘ > t} < 26Xp< —ct” )

a?[1bl13

The following corollary expresses the bound in Lemma S4 in a convenient form.

Corollary S1 (subGaussian concentration). Let x € R™ be a random vector whose entries
are independent, zero-mean, subGaussian(o) random variables. Then, for any b € R™ and

any ¢ € (0,1), with probability at least 1 — 0,

b x| < oty - [B]]2:
Proof. The proof follows from Lemma S4 by choosing § £ 2 exp(—ct?/o?||b||2). O

Lemma S5 (subExponential concentration: Theorem 2.8.2 of Vershynin (2018)). Let

x € R"™ be a random vector whose entries are independent, zero-mean, subEzponential(o)
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random variables. Then, for any b € R™ and t > 0,

2 t
Pl [T >t}<2 — cmi ( , ) .
{‘ R eXp( TR

The following corollary expresses the bound in Lemma S5 in a convenient form.

Corollary S2 (subExponential concentration). Let x € R"™ be a random vector whose
entries are independent, zero-mean, subExponential(o) random variables. Then, for any

b€ R" and any ¢ € (0,1), with probability at least 1 — 0,
b | < amcts) - |[b]]2,

where recall that m(cls) = max (055, \/c&;).

Proof. Choosing t = tyo||b||2 in Lemma S5, we have

b
P{‘bTx‘ > toaHbHQ} < 2exp ( — ctpmin (to, ]=|b||||2 )) < 2exp ( — ctpmin (to, 1)),

where the second inequality follows from min{tg,c} > min{ty,1} for any ¢ > 1 and

16]|2 > ||b]|os- Then, the proof follows by choosing § £ 2 exp ( — ctomin (to, 1)) which fixes

to = max{/cls, cls} = m(cls).

]

Lemma S6 (Product of subGaussians is subExponential: Lemma. 2.7.7 of Vershynin
(2018)). Let x1 and x5 be subGaussian(oq) and subGaussian(oy) random variables, respec-

tively. Then, x1xy is subExponential(cios) random variable.
Next, we provide the definition of a subWeibull random variable.

Definition S1 (subWeibull random variable: Definition 1 of Zhang and Wei (2022)). For
p >0, a random variable x is subWeibull with index p if it has a bounded subWeibull norm
defined as follows:

|||y, £ inf{t > 0: E[exp(|z|/t")] < 2}.
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We use subWeibull, (o) to represent a subWeibull random variable with index p, where
o is a bound on the subWeibull norm. Note that subGaussian and subExponential random

variables are subWeibull random variable with indices 2 and 1, respectively.

Lemma S7 (Product of subWeibulls is subWeibull: Proposition 2 of Zhang and Wei (2022)).
For i € [d], let x; be a subWeibull,,(0;) random variable. Then, ;cigx; is subWeibull,(o)

random variable where

1
o =1lcqo; and p= (Z 1/,01-) .
i€[d]

Next set of lemmas provide useful intermediate results on stochastic convergence.

Lemma S8. Let X,, and X,, be sequences of random variables. Let 6, be a deterministic
sequence such that 0 < 6, <1 and §,, — 0. Suppose X,, = 0,(1) and P(|X,| <|X,|) > 1—0,.

Then, X, = 0,(1).
Proof. We need to show that for any € > 0 and ¢ > 0, there exist finite 7, such that
P(|X,| >0) <e

for all n > m. Fix any € > 0. As ¢, converges to zero, there exists a finite ng such that
o < €/2, for all n > ng. As X, is converges to zero in probability, there exists finite ny,
such that P(|X,,| > §) < ¢/2 for all n > n;. Now, the event {|X,| > ¢} belongs to the

union of {|X,| > |X,|} and {|X,,| > §}. As a result, we obtain
P(|X,] > 0) <P(|X,| > |Xu]) + P(|X,] > 0) <6, + P(|X,] > 9) <,
for n > m = max{ng,n1}. Therefore, X, = 0,(1). O

Lemma S9. Let X,, and X,, be sequences of random variables. Suppose ]E[\Xn| ‘Yn} = 0,(1).

Then, X, = 0,(1).

23



Proof. Fix any 0 > 0. Markov’s inequality implies

P(1X] 2 [, ) < 5E[IX.|

Xn] — 0,(1).

The law of total probability and the boundedness of conditional probabilities yield
IP’(|Xn| > 5) _ E[P(|Xn! > 5‘)(”)} 0.

O

Lemma S10. Let X,, and X,, be sequences of random variables. Suppose X, = O,(1)
and IP’(|Y”| > | X, + f(e)) < € for some positive function f and every e € (0,1). Then,

X, = 0,(1).
Proof. We need to show that for any € > 0, there exist finite & > 0 and @ > 0, such that
P(|X,| >9) <e¢

for all n > m. Fix any € > 0. Because X, is bounded in probability, there exist finite ¢ and ny,
such that P(|X,,| > §) < ¢/2 for all n > ng. Further, we have P(|Yn| > |Xn|—|—f(€/2)> < €/2.
Now, the event {|X,| > § + f(€/2)} belongs to the union of {|X,| > |X,| + f(¢/2)} and

{IX,| > ¢}. As a result, we obtain
P([ Xl > 6+ f(e/2)) < P([Xn| > | Xl + f(e/2)) + P(|X0] > ) < e

for all n > ng. In other words, P(|X,| > &) < € for all n > n, where 6 = § + f(e/2) > 0 and

7 = ng. Therefore, X,, = 0,(1). O
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S5 Proofs of Corollaries 1 and 2

S5.1 Proof of Corollary 1: Gains of DR over OI and IPW

Fix any j € [M] and any § € (0,1). First, consider IPW. Take any « € [0,1/2]. From
Eq. (20), with probability at least 1 — ¢,

%;a’wag(ﬁ) + f1(6),

N[ATEY — ATE, | < 29;“ N°E(P) + fi())NT12 <

where
1(5) 2 2 \/065/120 P st 2o0m(cls2)
= = max g4/C s
1 3 7 §/12 7

for m(c) and /. as defined in Section 1 of the main article. Then, if 8(]3) =0, (N“"),

Lemma S10 implies
ATESY — ATE. ;| = 0,(N ).
Next, consider DR. From Eq. (17), with probability at least 1 — 0,

ATESR - ATE ;| < ~£(8)&(P) + fa(6)N

> N

where

f2(6) = ;(@ (@) +20\/m 2om( c€5/12 >

Suppose E(ﬁ) =0, (N*a) and 5(@) =0, (N*fj). Consider two cases. First, suppose
a+ [ < 0.5. Then, with probability at least 1 — 9,

2

N+H{ATEDR — ATE | < i]\fa+ﬁg((:))g(1—°>) + fa(§) NI

IN

SNHE (B)e (P) + f1(0).
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Lemma S10 implies )A/TTEB»R - ATEA,]-’ = O,(N~(@*8)). Next, suppose a + 3 > 0.5. With

probability at least 1 — 0,

N1Z|ATEDR — ATE, ;| < §N1/25(@)5(13) + f2(6) < SN°PE(B)E(P) + fa(6).

P )

Lemma S10 implies ’ﬁ\EPjR — ATE,j| = O,(N-172).

S5.2  Proof of Corollary 2: Consistency for DR

Fix any j € [M]. Then, choose § = 1/N in Eq. (18) and note that every term in the right
hand side of Eq. (18) is 0,(1) under the conditions on 5(@) and E(ﬁ) Then, Eq. (21)

follows from Lemma SS.

S6 Proof of Proposition 1 (19): Finite Sample Guar-

antees for OI

Fix any j € [M]. Recall the definitions of the parameter ATE. ; and corresponding outcome
imputation estimate A/T\E%I from Egs. (5) and (9), respectively. The error AATE?].I =

XT\ES-I — ATE. ; can be re-expressed as

AATES =+ 3 (09-08 ) T (0 -0 = T (09 -0)— (09 -02) )

1E€[N] 1E€[N] 1E€[N]
Using the triangle inequality, we have
1 ~ 1 ~
oI (1) (1) (0) (0)
AATES| < | 5 (0 - 60)| + | & (89 - 69)| (8.37)
i€[N] i€[N]
Consider any a € {0,1}. We claim that
1 N
n(a) (a) a
N z[j] (01— 69)| < £(6). (S.38)
ie[N

The proof is complete by putting together Eqgs. (S.37) and (S.38).
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Proof of Eq. (S.38) Fix any a € {0,1}. Using the Cauchy-Schwarz inequality, we have

1

1 1 1 A (1 1 1 a
7| 2 (0= 0)| < el - 6 < 518% - oVl
i€[N

S7 Proof of Proposition 1 (20): Finite Sample Guar-

antees for IPW

Fix any j € [M]. Recall the definitions of the parameter ATE. ; and corresponding inverse

probability weighting estimate @Ifw from Egs. (5) and (10), respectively. The error

AATE.IEW = XT\E?W — ATE. ; can be re-expressed as

1 Yijij  Yii(1—a;;) 1 1) _ )
AATEEY = — % ( . )— > (9 —W)
? N em N P L=Di N iem ! !

1 (y'Ljaz] (1)) <yzj(1 — aij) (0))>
il _ 6)1 J) — (2 91 ;
N Z]:\f ( Dij ! 1= pi; !

(@) 1

@ 1 5 ( (1,IPW) +TOIPW)>7 (S.39)
N, €[N

where (a) follows after defining TE};IPW) £ Y50 /Dij — 9;1]-) and TE%’IPW) = €§3) —y;;(1—

a;;)/(1 —p; ;). Then, we have

TLIPW) _ yz‘,Ajaz‘,j _ 91%)

“ Di,j
€)) (1)
@ (91-’]- + gi,j ) (pz',j + ni,j) B 8(1)
Dij "
) (Pij + Mij 1) (Dij + M,
:%( JA“ J_1)+()< J J)
pz,j pl]
== ( - 1) 42l Z’ip” + Za g (S.40)
Dij Dij Dij Pi.j

where (a) follows from Egs. (1) to (3). A similar derivation for a = 0 implies that

TOIPW) _ g0 _ Yig (1~ 0i)
7 1 —pi;
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0@(2)0 —Pij — (1 _ﬁi,j)) _ 91(3)(—7]7;,3') B (0)(1 —p”) B 51(3')(—77@9')

1—pij 1 —pij 1 —Dij 1 —Di;
(0) ~ (0) (0) _ £
- 0 (pzj pz,]) n 02] zg _ (1 pz]) I 1]771]
1 - ﬁi,j 1- pm 11— pi,j 1 —pw

Consider any a € {0,1} and § € (0,1). We claim that, with probability at least 1 — 60,

2 ~ 2/l 20/ cls  2am(cls)
T <10 e € O |yt 2V ZTMULS) g gy
lez[;v] A 19 ( ) )\\/ﬁ_N” | MWN o MWON (5.41)

where recall that m(cls) = max (c&;, \/c&;). We provide a proof of this claim at the end of

this section. Applying triangle inequality in Eq. (S.39) and using Eq. (S.41) with a union

bound, we obtain that

2 ~ 2/ 4G/ 4T
AATETY| < 20,0 £(P) + s g ot 2oVl | damlcls)
’ A MWO0N MWN MWON

with probability at least 1 — 126. The claim in Eq. (20) follows by re-parameterizing 6.

Proof of Eq. (S.41). This proof follows a very similar road map to that used for
establishing the inequality in Eq. (S.5). Recall the partitioning of the units [N] into Ry
and R, from Assumption 4. Now, to enable the application of concentration bounds, we
split the summation over ¢ € [IV] in the left hand side of Eq. (S.41) into two parts—one
over ¢ € Ry and the other over i € R;—such that the noise terms are independent of the
estimates of ©©, ©M_ P in each of these parts as in Eqs. (14) and (15).

Fix a = 1 and note that | Y ;c(n T (LIPW)) < ]ZleRo 1 TPW) | Yier, T 1 TPW)|  Fix any
s € {0,1}. Then, Eq. (S.40) and triangle inequality imply that

(1) e

0 (p; =P (1) 1,
ST <) S A S <pf ) Y= 0 | S0 Sl s (g )
i€ERs iERs Di.j iERs p” ier,  Pij ier, Dij

Next, note that the decomposition in Eq. (S.42) is identical to the one in Eq. (S.6),
except for the fact when compared to Eq. (S.6), the first two terms in Eq. (S.42) have a

factor of 0571]-) instead of (0(1) o) ) As a result, mimicking steps used to derive Eq. (S.11),

i,J
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we obtain the following bound, with probability at least 1 — 30,

1 1 D (C&;)
- T(lePW)‘ < oW, JP_p Vel o \/ )
NEZR: by _ANH 1.2 l12+ I ﬁNH Nia+ A TN 1112

(a) Ve ovels om(cl

< OV sl P— Pl 72OV st 22 +5 (cts)

A\/ A\/ MWN | MWIN
5 Ve ls  om(cls)
< <10 |amax (P O™ ax 42 S.43
= 10w (P) + v (R T

where (a) follows because O™ ;5 < VN[OW | max, |Pliz < VN and |1]12 = V'N, and (b)
follows from Eq. (16). Then, the claim in Eq. (S.41) follows for a = 1 by using Eq. (S.43)
and applying a union bound over s € {0,1}. The proof of Eq. (S.41) for a = 0 follows

similarly.

S8 Proof of Proposition 3 and TW algorithm of Bai and
Ng (2021)

In Section S8.1, we prove Proposition 3, i.e., we show that the estimates of P, ©© and M)
generated by Cross-Fitted-MC satisfy Assumption 4. Next, we detail the TW algorithm in

Section S8.2.

S8.1 Proof of Proposition 3: Guarantees for Cross-Fitted-MC
Consider any matrix completion algorithm MC. We show that

Pr, 0 1wy (S.44)
and

Pr 1L Wy, B\, (S.45)
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for every Z € P and a € {0, 1}, where P is the block partition of [IN] x [M] into four blocks
from Assumption 5. Then, Egs. (14) and (15) in Assumption 4 follow from Eqs. (S.44)
and (S.45), respectively.

Consider ©© M and P as in Egs. (30) to (32). Fix any a € {0,1}. From Eq. (29),
note that Pr depends only on A®1~7 and (:)(Ia) depends on Y(@°*@1-T In other words, the
randomness in (ﬁ’z, é(;)) stems from the randomness in (A_I, Yf’})")bs) which in turn stems
from the randomness in (W_I,E(_az)). Then, Eq. (S.44) follows from Eq. (27). Likewise,
the randomness in ]31 stems from the randomness in A_7 which in turn stems from the

randomness in W_z. Then, Eq. (S.45) follows from Eq. (28).

To prove Eq. (24), we show that
Pr, 0 1wy, B, (S.46)

for every Z € P and a € {0,1}. As mentioned above, the randomness in (f’z,(:)(;))

stems from the randomness in (A_I, Yf?’0b5> which in turn stems from the randomness in

(W_I,E(_GI)) Then, Eq. (S.46) follows from Eq. (33).

S8.2 The TW algorithm of Bai and Ng (2021).

Bai and Ng (2021) propose TW to impute missing values in matrices with a set of rows and a
set of columns without missing entries. More concretely, for any matrix S € {RU{ 7} }V>*M
let Rops € [IV] and Cops C [M] denote the set of all rows and all columns, respectively, with
all entries observed. Then, all missing entries of S belong to the block Z = Riss X Cuniss,
where Ruiss = [N] \ Robs and Cpiss = [M] \ Cops-

Given a rank hyper-parameter r € [min{|Rops|, |Cobs|}], TW, produces an estimate of T

as follows:
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1. Run SVD separately on St £ Sy e and S99 £ S s Len,
SyD(Sally — (pltal) ¢ RNXTx wi(tal) ¢ REwxTN 1 (tall) @ RICabsl xT)
and
SYD(SVide)) — (7(wide) @ RiRowslxTar 33(wide) @ RFaTar 17 (wide) @ RM>Tar)

where 7y 2 min{N, [Cops|} and 7p; = min{|Rqps|, M}. The columns of Ut and
UWide) are the left singular vectors of St and Sde) respectively, and the columns
of V) and V("ide) are the right singular vectors of St and S™4®)  respectively.
The diagonal entries of (1) and $(Vid®) are the singular values of St and S(wide)
respectively, and the off-diagonal entries are zeros. This step of TW requires the
existence of the fully observed blocks St and S™ide) i e Rops and Cops cannot be

empty.

2. Let V(I ¢ RICobsx" he the sub-matrix of V1) that keeps the columns corresponding
to the r largest singular values only. Let V(¥ide) ¢ RiCobsl*r e the sub-matrix of
v (Wide) that keeps the columns corresponding to the r largest singular values only and
the rows corresponding to the indices in Cgyp,s only. Obtain a rotation matrix R € R™"

as follows:

R A {/(tal) T {r(wide) (f/(wide)Tf/(wide)) -1 _

That is, R is obtained by regressing V(tal) on Y (wide) T egsence, R aligns the right

tal) and S(ide) ysing the entries that are common between

singular vectors of S¢
these two matrices, i.e., the entries corresponding to indices Rops X Cops. The formal

guarantees of the TW algorithm remains unchanged if one alternatively regresses Y/ (wide)

on V(tan), or uses the left singular vectors of St and S™19®) for alignment.

= (tall

3. Let =" € R™*" he the sub-matrix of Dt that keeps the columns corresponding
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—(wide

to the r largest singular values only. Let VM9 ¢ RM* b the sub-matrix of V(vide)

that keeps the columns corresponding to the r largest singular values only. Return

T2U (tau)i(tau) RV(Wide)T as an estimate for 7.

S9 Theoretical guarantees for Cross-Fitted-SVD

To establish theoretical guarantees for Cross-Fitted-SVD, we adopt three assumptions
from Bai and Ng (2021). The first assumption imposes a low-rank structure on the matrices

P, 00 and ©W, namely that their entries are given by an inner product of latent factors.

Assumption S1 (Linear latent factor model on the confounders). There exist constants

Tps To0, To, € [MIn{N, M}| and a collection of latent factors
UcRM" vV eRM U@ ecRV "% gnd V@ e RM*"  for o c {0,1},
such that the unobserved confounders (), 0 P) satisfy the following factorization.:
P=UV"T and W =y@yv@T for oec{0,1}. (S.47)

Assumption S1 decomposes each of the unobserved confounders (P, O, and ©©)
into low-dimensional unit-dependent latent factors (U, U, and U")) and measurement-
dependent latent factors (V, V) and V). In particular, every unit i € [N] is associated
with three low-dimensional factors: (i) U; € R, (ii) U” € R and (iii) Ul e R
Similarly, every measurement j € [M] is associated with three factors: (i) V; € R, (ii)
Vj(o) € R, and (ii7) Vj(l) € R™ . Low-rank assumptions are widespread in the matrix
completion literature.

The second assumption requires that the factors that determine P, O © (1 — P), and

O © P explain a sufficiently large amount of the variation in the data. This assumption

is made on the factors of 0 © (1 — P) and O ® P instead of ©) and O™ as the TW

32



algorithm is applied on YO = Y © (1 — A) and Y(OPU = Y © A instead of Y0P and
Yy (Mebs (see steps 4 and 5 of Cross-Fitted-SVD). To determine the factors of ) © (1 — P)

and O © P, let
U £ [1N7 _U] c RNX(Tp-H) and V A [1M7 V] c RMX(rp—l—l),

where 15 € RY and 1, € R are vectors of all 1’s. Then,

00e1-P) =027 and eWep=07"Y"" (S.48)

where T 2 T+ UO ¢ RN 700 (rp+1) VO 27,0 ¢ RMxroq(rp+1) 7Y 2 U sxU0 ¢
RN>To1™e - and v Ay Ly € RM*rai™»  with the operator * denoting the Khatri-Rao
product (see Section 1). We provide details of the derivation of these factors in the
supplementary appendix (Section S9.1.3). The ranks r,, rg,, and 7y, can be consistently
estimated using the full matrices A, YOl and Y(Dfull “and the methods in Bai and Ng

(2002) and Bai (2003). Hence, they are treated as known.
Assumption S2 (Strong factors). There ezists a positive constant ¢ such that
[Ullooo <, [IVIzoo S e [UD2e <€, and V9o < ¢ for ae{0,1}.
Further, the matrices defined below exist and are positive definite:
UTU R Vanve ' 79w Ty

R L VD A L S T G

Assumption S2, a classic assumption in the literature on latent factor models, ensures
that the factor structure is strong. Specifically, it ensures that each eigenvector of P,
0 ® (1 — P), and O @ P carries sufficiently large signal.

The third assumption requires a strong factor structure on the sub-matrices of P,
00 ® (1 - P), and O ® P corresponding to every block Z in the block partition 7 from

Assumption 5. Further, it also requires that the size Z grows linearly in N and M.
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Assumption S3 (Strong block factors). Consider the block partition P = {R, x Cy, : s,k €

{0,1}} from Assumption 5. For every s € {0,1}, let U,y € RIRsxm UES)) € RIRslxroy (rpt1)

1
s

and UE ; e RIRsIxre17 pe the sub-matrices of U, U(O), and U(l), respectively, that keeps the

rows corresponding to the indices in R,. For every k € {0,1}, let Vi) € RICkIxTp VEZ)) €
RICkIxToo (o t1) - gnd VE,?) e RI%xroims be the sub-matrices of V, V(O), and V(l), respectively,
that keeps the rows corresponding to the indices in Cy. Then, for every s,k € {0,1}, the

matrices defined below exist and are positive definite:

UT U VT \V U(Q)TU(Q) V(Q)TV(Q)
- UyUs VW Uy U Vi Vi
A R A T A TRy i e forac 0k

Further, for every s,k € {0,1}, |Rs| = Q(N) and |Cy| = Q(M).

The subsequent assumption introduces additional conditions on the noise variables in

Bai and Ng (2021) than those specified in Assumptions 2 and 5.

Assumption S4 (Weak dependence in noise across measurements and independence in

noise across units).

(a) Xjcp ‘E[Uz‘,jni,j’] < ¢ for every i € [N] and j € [M],

(b) e ‘E[?ﬁ??ﬁ?] < ¢ for every i € [N], j € [M], and a € {0,1}, where él(f}) =

0; i + 553’)]%’7]‘ + e(a)m,j, and

i?j
(c) The elements of {(Ez(a),I/VZ) : i € [N]} are mutually independent (across i) for

a € {0,1}.

Assumption S4(a) and Assumption S4(b) requires the noise variables to exhibit only
weak dependency across measurements. Still, these assumptions allow the existence of pairs
of perfectly correlated outcomes (e.g., j,j’ € [M] such that a; ; = a; ;). Assumption S4(c)
requires the noise (£, W) to be jointly independent across units, for every a € {0,1}. We

are now ready to prove the guarantees on the estimates produced by Cross-Fitted-SVD.
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S9.1 Proof of Proposition 4: Guarantees for Cross-Fitted-SVD

To prove this result, we first derive a corollary of Lemma A.1 in Bai and Ng (2021) for a
generic matrix of interest T, such that S = (T + H) ® F, and apply it to P, 0 © (1 — P),

and O ® P. We impose the following restrictions on 7', H, and F.

Assumption S5 (Strong linear latent factors). There exist a constant rp € [min{N, M }]

and a collection of latent factors
UeRVYT gnd V e RM¥T
such that,
(a) T satisfies the factorization: T = UV,
(b) U200 < ¢ and |V |g00 < ¢ for some positive constant ¢, and
(¢) The matrices defined below exist and are positive definite:
0o ks

A —— and - lim —re

Assumption S6 (Zero-mean, weakly dependent, and subExponential noise). The noise

matriz H is such that,

(a) {h;; i €[N],je[M]} are zero-mean subExponential with the subEzponential norm

bounded by a constant 7,

(b) X e ‘E[hiajhm/] < ¢ for every i € [N] and j € [M], and

(c) The elements of {H;.:i € [N]} are mutually independent (across i).

Assumption S7 (Strong block factors). Consider the latent factors U e RN*'"" and
V e RM*T from Assumption S5. Let Rops C [N] and Cons C [M] denote the set of rows
and columns of S, respectively, with all entries observed, and Ruyiss = [N] \ Rops and

Crniss = [M] \ Cops. Let Uobs e RlIRowslxrr g gmiss ¢ RRmissIxr pe the sub-matrices of
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U that keeps the rows corresponding to the indices in Rons and Ruiss, respectively. Let
Vobs ¢ RlCobslxrr gpq ymiss ¢ RCmisIxrr pe the sub-matrices of V that keeps the rows
corresponding to the indices in Cops and Criss, Tespectively. Then, the matrices defined below

exist and are positive definite:

) ﬁobs—l— U‘obs ) fjmiss—l— [j'miss . ‘N/obs—l— Vobs ) ‘N/miss—l— Vmiss
lim ———, lim ————, lim ——, and lim ——————. (S.49)
N—oo |R0bs ’ M—o0 ‘Rmiss ’ N—oo ‘Cobs ’ M—o0 ’Cmiss |

Further, the mask matrix F' is such that
|Robs| = QUN),  [Rumiss| = QN),  [Cobs| = QUM), and |Cpiss| = QUM). (S.50)

The next result characterizes the entry-wise error in recovering the missing entries of a
matrix where all entries in one block are deterministically missing (see the discussion in
Section 5.1 of the main article) using the TW algorithm (summarized in Section S8.2). Its
proof, essentially established as a corollary of Bai and Ng (2021, Lemma A.1), is provided

in Section S9.2.

Corollary S3. Consider a matriz of interest T', a noise matriz H, and a mask matriz F
such that that Assumptions S5 to S7 hold. Let S € {RU{?}}*M be the observed matriz
as in Eq. (6). Let Rops C [N] and Cops € [M] denote the set of rows and columns of S,
respectively, with all entries observed. Let T = Riniss X Ciniss Where Ruiss = [N] \ Robs and

A

Cuiss = [M] \ Cops. Then, TW,,. produces an estimate T of Tt such that

~ 1 1
Ty = Trlhna = O ==+ —= ).
|7z — Tx| p( ~ M)

as N, M — oo.

Given this corollary, we now complete the proof of Proposition 4. Consider the partition
P from Assumption 5 and fix any Z € P. Recall that Cross-Fitted-SVD applies TW on
P17 L yOfllg1-T and YOl 1-7 and note that the mask matrix 17 satisfies the

requirement in Assumption S7, i.e., Eq. (S.50) under Assumption S3.
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S9.1.1 Estimating P.

Consider estimating P using Cross-Fitted-SVD. To apply Corollary S3, we use Assump-
tions S1 and S2 to note that P satisfies Assumption S5 with rank parameter r,. Then, we use
Eq. (4), Assumption 2, and Assumption S4 to note that W satisfies Assumption S6. Finally,
we use Assumption S3 to note that Assumption S7 holds. Step 2 of Cross-Fitted-SVD
can be rewritten as P = Proj;\(ﬁ> and P = Cross-Fitted-MC(TW,,, A, P) where r; = 7.

Then,

1B; — Prloe © [Pr — Prlee 20, (= + L
T Z|lmax X T Z|lmax — p\/N \/M’

where (a) follows from Assumption 1, the choice of A, and the definition of Proj;(-), and

(b) follows from Corollary S3. Applying a union bound over all Z € P, we have

o\ (@) 1
s@)sW—PmM:@( )7 (551)

1
VN VA

where (a) follows from the definition of (1,2) operator norm.

S9.1.2 Estimating ©® and 60,

For every a € {0, 1}, we show that

~ 1 1
(6@ =0, <\/N + \/M) (S.52)

We focus on a = 1 noting that the proof for a = 0 is analogous. We split the proof in two
cases: (i) (W — W) ® Pluyay < [0W @ (P = P)lmax and (ii) [(6V = OW) @ Plupay >
[0W © (P = P)[max-

In the first case, we have

-~ (@) ~ ~ (b) ~
/\||@(1)_®(1)Hmax < “ (6(1)_@(1))®P”max§ "@(1)®<P_P) ”maxS ||@(1)HmaXHP_P"maXa

(.53)
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where (a) follows from Assumption 3 and (b) follows from the definition of |©™ | .. Then,

~ (a) 1 max c ) max 1 1
£(6) 2 160 -60], 2 ks ppy, 0 1o (o L),

where (a) follows from the definition of (1,2) operator norm, (b) follows from Eq. (S.53),
and (c) follows from Eq. (S.51). Then, Eq. (S.52) follows as 1/ and |O™M . are assumed

to be bounded.

In the second case, using Egs. (2) and (3) to expand Yl we have
yit—eWopreWow+EYVoP+EYoW.

Next, we utilize two claims proven in Sections S9.1.3 and S9.1.4 respectively: 1) © P

satisfies Assumption S5 with rank parameter rg,r, and
sW2eWow+EVoP+EY oW,

satisfies Assumption S6. Finally, Assumption S3 implies that Assumption S7 holds.
Now, note that step 5 of Cross-Fitted-SVD can be rewritten as 0w = @(1) @ P and

ol = Cross-Fitted-MC(TW,,, Y Wl P) where r3 = r9,7p. Then, from Corollary S3,

—=(1) 1) 1 1
O, — 057 ® Prlmax = Opl ——=+ ——.
10— 0 © Prlun = O, 1+ 12

Applying a union bound over all Z € P and noting that e =6 ® P, we have

. ~ 1 1

OO P —0W O Pluux = Op| —= + — |. S.54

| oo = O 2 + 7 (8:54)

The left hand side of Eq. (S.54) can be written as,
[6W & P —0W @ Plyax = [0 0 P—0W 0 P+0Y 0 P —0W & Py

(@ -~ ~
> (60 = 0W) © Pliax — 10D @ (P = P) fnax
® _ ~
2 MO = 0 — [0 s P = Pl (5.55)

where (a) follows from triangle inequality as | (@(1) — @(1)) ® Plmax > |00 ® (]3 — P) | max
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and (b) follows from the choice of A and the definition of [©™ |yay. Then,

R (a) b
g(@(l)) < ”@(1) _ @(1)”max <

—
=

o)

= @(1) max ||
(1) oP— oM ® P"max + ”5\”"]3_13”“1aX

—
2]
~

>/|\ — >l =

( L >+“@m”ma"o< 1,1 )
VN VM A "\VN VM)’
where (a) follows from the definition of Ly 2 norm, (b) follows from Eq. (S.55), and (c)
follows from Eqs. (S.51) and (S.54). Then, Eq. (S.52) follows as 1/X and [©W)] ., are

assumed to be bounded.

S9.1.3 Proof that 0 © (1 — P) and 60" ® P satisfy Assumption S5.

First, we show that T\ € R¥*7o0(ro+D) and 7' € R¥*7o0(ro+D) are factors of 0© @ (1 — P),
and T € RV and VW € R¥*"o1 are factors of ©V) @ P as claimed in Eq. (S.48). We
have

oVor—( ¥ vtV e L uvl) = ¥ ¥ (vPeu;) (v,.f,”@vj,.)T

iE[Tgl] je["'p} iE[T(?l] jG[T’p]

T

9D (U =vO)(vve) gy,

where (a) follows from the definition of Khatri-Rao product (see Section 1 of the main
article) and (b) follows from the definitions of T and V'"). The proof for 0© & (1 — P)

follows similarly. Then, Assumption S5(a) holds from Eq. (S.48). Next, we note that

) ®)
T 300 = U U D0 © maXJ > ufy D0 (i) < Ulaec UM 20 <

J€[rp] J '€lro, ]
where (a) follows from the definition of Khatri-Rao product (see Section 1 of the main
article), and (b) follows from Assumption S2. Then, @) © P satisfies Assumption S5(b)
by using similar arguments on V. Further, 0© @ (1 — P) satisfies Assumption S5(b)
by noting that U], and |V ]z, are bounded whenever Ul and |V |z, are bounded,

respectively. Finally, Assumption S5(c) holds from Assumption S2.
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S9.1.4 Proof that V) satisfies Assumption S6

Recall that eV £ W oW + EW © P+ EM @ W. Then, Assumption S6(a) holds

as 3(1»)

;7 is zero-mean from Assumption 2 and Eq. (3), and ég}j) is subExponential because

55’1]-)771-7]4 is a subExponential random variable Lemma S6, every subGaussian random variable
is subExponential random variable, and sum of subExponential random variables is a
subExponential random variable. Finally, Assumption S6(b) and Assumption S6(b) hold

from Assumption S4(b) and Assumption S4(c), respectively.

S9.2 Proof of Corollary S3

Corollary S3 is a direct application of Bai and Ng (2021, Lemma A.1), specialized to our
setting. Notably, Bai and Ng (2021) make three assumptions numbered A, B, and C in
their paper to establish the corresponding result. It remains to establish that the conditions
assumed in Corollary S3 imply the necessary conditions used in the proof of Bai and Ng
(2021, Lemma A.1). First, note that certain assumptions in Bai and Ng (2021) are not
actually used in their proof of Lemma A.1 (or in the proof of other results used in that proof),
namely, the distinct eigenvalue condition in Assumption A(a)(iii), the asymptotic normality
conditions in Assumption A(c) and the asymptotic normality conditions in Assumption C.
Next, Eq. (S.50) in Assumption S7 implies Assumption B and Eq. (S.49) in Assumption S7
is equivalent to the remaining conditions in Assumption C.

It remains to show how Assumptions S5 and S6 imply the remainder of conditions in
Bai and Ng (2021, Assumptions A). For completeness, these conditions are collected in the

following assumption.

Assumption S8. The noise matriz H is such that,

<c

)

(a) maxjen 5 Syequ | Siep Ellighiy]
(b) max;e ’E[hi,jhi’,j]’ < ¢, and maX;e|N] Lie|n) Ciir < €,
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(¢) w1 Tiwen) Cigrelm] ‘E[hmhi/,j/] <¢, and

(d) max; jreu ﬁEH 2 ie[N] (hi,jhi,j’ - E[hivjhivj’]) ’4]'

Assumption S8 is a restatement of the subset of conditions from Bai and Ng (2021,
Assumption A) necessary in Bai and Ng (2021, proof of Lemma A.1) and it essentially
requires weak dependence in the noise across measurements and across units. In particular,
Assumption S8(a), (b), (c¢), and (d) correspond to Assumption A(b)(ii), (iii), (iv), (v),
respectively, of Bai and Ng (2021). For the other conditions in Bai and Ng (2021, Assumption
A), note that Assumption S5 above is equivalent to their Assumption A(a)(i) and (ii) of Bai
and Ng (2021) when the factors are non-random as in this work. Similarly, Assumption S6(a)
above is analogous to Assumption A(b)(i) of Bai and Ng (2021). Assumption A(b)(vi) of
Bai and Ng (2021) is implied by their other Assumptions for non-random factors as stated
in Bai (2003).

To establish Corollary S3, it remains to establish that Assumption S8 holds, which is

done in Section S9.2.1 below.

S9.2.1 Assumption S8 holds

First, Assumption S8(a) holds as follows,

(a)

< maX— Z Z ‘E h”h”

jeM] N i€[N] j €[M)]

1

max — Y

]E[M} N j'e[M]

1
< max — c=c,
JG[M] %}

> Elhijhiy)]

1E€[N]

where (a) follows from triangle inequality and (b) follows from Assumption S6(b). Next,
from Assumption S6(a) and Assumption S6(c), we have
0 if i # 4’
max ’]E[h”hZ J]’ =

JE[M]
max;ep [E[R2,)| < e ifi=i
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Then, Assumption S8(b) holds as max;c[y) max; e > ie[N] ‘E[hidhi/’j]’ < ¢. Next, Assump-
tion S8(c) holds as follows,

(b)

NM Z Z ‘ h"Jh’Z] NM Z Z ‘E 2 1] NM Z Z c=¢,

i,i'€[N] 7,5 €[M] i€[N] j,5'€[M] 1€[N] jE[M]

where (a) follows from Assumption S6(c) and (b) follows from Assumption S6(b). Next,

let i i = hijhij — Elhi;h; i) and fix any j, 5’ € [M]. Then, Assumption S8(d) holds as

follows,
N2 [( Z %JJ) } NQ K Z %1”)( Z %'273'73")( Z 72333)( Z 71413)}
1€[N] i1 €[N] i e[N] i3E€[N] 14€[N]
(@ 1
= A2 ZE{’%]J} N2 Z E[%JJ’% JJ] <c
N i€[N] N i#i €[N

where (a) follows from linearity of expectation and Assumption S6(c) after by noting that
E[v; ;] = 0 for all 4, 5,7 € [N] x [M] x [M] and (b) follows because 7, ;  has bounded

moments due to Assumption S6(a).

S10 Doubly-robust estimation in panel data with

lagged effects

This section describes how the doubly-robust framework of this article can be generalized to
a panel data setting with lagged treatment effects. We highlight that, as is the convention
in a panel data setting, ¢ denotes the column (time) index and 7" denotes the total number

of columns (time periods).
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S10.1 Setup

As described in Section 4.4, potential outcomes are generated as follows: for all i € [N],t €

[T], and a € {0,1},

yia ) = oy + 0 el (.56)

where yﬁ‘yi’t_l) is the potential outcome for unit ¢ at time ¢ given treatment a € {0,1} and

lagged outcome ¥, ;1. This model combines unobserved confounding and lagged treatment
effects, where the lagged effect is carried over via the auto-regressive term, a(a)yi7t_1, with
a(® being the auto-regressive parameter for treatment a € {0,1}. The treatment possibly
starts at ¢ = 1, and y; ¢ is assumed to not be affected by any future exposure to the treatment.
Treatment assignments are continually assumed to be generated via Eq. (3). As in Eq. (1),

realized outcomes, v, +, depend on potential outcomes and treatment assignments,

Yir = Y"1 = agy) + yi "V agy, (S.57)

for all i € [N] and t € [T].

S10.2 Target causal estimand

The lagged effects in Eq. (S.56) imply that the treatment effects need to be defined for
sequences of treatments. For concreteness, consider the effect at time T for an always-treat
policy, i.e., a;; = 1, versus never-treat, i.e., a;; = 0, for ¢ € [N] and j € [T]. Let yz[li}p be the
potential outcome for unit ¢ at time 7" under always-treat and yl[oi]p be the potential outcome
for unit ¢ at time 7" under never-treat. We aim to estimate the difference in the expected

potential outcomes under these two treatment policies averaged over all units,

ATE.r £ py — i,
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where
Whe G T E
Hor = 37 sz
N €[N]

with the expectation taken over the distribution of {egi)}iem“em, conditioned on the
initial outcomes {y;0}icn). We make the following assumption about the noise in potential

outcomes.

Assumption S9 (Zero-mean noise conditioned on the initial outcomes). {55? i€ [N|,te
[T1,a € {0,1}} are mean zero conditioned on {y;o}ic[n]-

Assumption S9 holds whenever Assumption 2(a) holds conditioned on the initial outcomes

{wi0}iciv). Another sufficient condition for Assumption S9 is that (egg), gg}t))

are independent
in time. Given this, the time dependence in the expected potential outcome E[yz[a%] is

captured as follows: for a € {0,1}

Elyls] = (o) g0+ 3 ()09, (S.58)
s=0

Eq. (S.58) forms the basis of our doubly-robust estimator of ATE. .

We chose the contrast between always-treat and never-treat for concreteness. However,
the framework and the results in this section can be generalized in a straightforward manner
to contrast any two pre-specified sequences of treatments, where the treatment can also be
chosen stochastically with pre-specified probabilities. For the remainder of this section, we

condition on the initial outcomes {yi,o}iem but omit it from our notation for brevity.

S10.3 Doubly-robust estimator

The DR estimator of ATE. 7 combines the estimates of (a(®, a®), (©® ©W) and P. First,
we obtain the estimates (@(”), @")). These estimates can be computed using the likelihood
approach of Bai (2024) whenever there exists some units such that they all have treatment

a for some consecutive time points, for a € {0, 1}.
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Next, we define the residual matrices Y (0% and Y():ebs Let Y(©-0bs ¢ [R U { 7} }V*T
be a matrix with (i, ¢)-th entry equal to y;+ — &(O)yiyt,l if a;; = 0, and equal to 7 otherwise.
Analogously, let Y()obs ¢ fR U {?}}V*T be a matrix with (i,¢)-th entry equal to y;; —
&(1)yi7t_1 if a;; = 1, and equal to 7 otherwise. Then, similar to Eq. (8), the application of
matrix completion yields the following estimates:

~

0 = Mo(Y@obs) 1) = Mo(YP%) and P =MC(A). (S.59)

Then, the DR estimate is defined as follows:

TR, & 400 - 920 whore 530 = 5 [l 5 @i,
€[N] s=0
(S.60)
where
5P 289+ (s = @0y = B Tk,
Pir—s
and

pILDR] & A1)

a
. al SiT—s
iT—s iT—s T (%,Tfs —

)le s— 1_61T 5>

Pir—s

The estimator is parameterized by an integer J, which denotes the contiguous number of
time periods preceding time 7" that are used to estimate the expectations at time 7" (see the
summation in Eq. (S.58)). Notably, using preceding .J terms instead of 7'— 1 terms allows us
to adapt cross-fitting for the setting with lagged treatment effects. Let us briefly elaborate:
suppose (a®, a(V) are estimated from entries of Y in [N] x [L] for some L < T'—.J. Consider
the column partitions Co = {L+1,...,T—J}and C, = {T'—J+1,...,T} of times [T\ [L].
Suppose Egs. (27) and (28) in Assumption 5 hold for Z = R x C; and Z = R4 x C; for some
row partitions Ry and R of units [N]. Then, applying Cross-Fitted-MC on the residual

matrices Y (@b and Y (:0bs with row partitions (Ro, R1) and column partitions (Cy,C;)
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ensures that Assumption 4 holds for every column in C; with row partitions (R, R1).

S10.4 Non-asymptotic guarantees

Recall the notation for £ ((:)) and £ (15) from Eq. (16) and define
g@2 Y &@") where £@9)2|a —al). (S.61)
ac{0,1}
Our analysis makes two additional assumptions to state a non-asymptotic error bound
Assumption S10 (Bounded auto-regressive parameters and estimates). The auto-regressive

parameters and their estimates are such that |o\¥| < @ and |a@| < @, for all a € {0, 1},

where @ € [0,1).

Assumption S10 requires the regression parameters to be bounded by a fixed constant
less than 1. This condition is standard for auto-regressive models, as it implies stability of
the outcome process in Eq. (S.56). The analogous condition on the estimated parameters

can be ensured by truncating the estimates to [0, @.

Assumption S11 (Bounded observed outcomes, mean potential outcomes, and estimated
mean potential outcomes). The observed outcomes, the mean potential outcomes, and
the estimates of the mean potential outcomes are such that |y;.| < C4, |(9@(?] < Oy, and
|§Z(i)| < (s, foralli € [N], j € [M], and a € {0,1}, where Cy, Cy, and Cs are universal

constants.

Assumption S11 requires the observed outcomes, the mean potential outcomes, and the
estimates of the mean potential outcomes to be bounded to simplify our proof. With a more
delicate analysis, Assumption S11 can be relaxed to require the average observed outcomes
over i € [N], the average mean potential outcomes over i € [N], and the average estimated

mean potential outcomes over i € [N] to be bounded.
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Theorem A.1 (Finite Sample Guarantees for DR with lagged effects). Consider the panel
data model with lagged effects defined via FEqs. (S.56) and (S.57). Suppose Assumptions 1
to 8, S10, and S11 hold and Assumption j holds fort € {T — J+1,...,T} for some integer

J € [T]. Fiz o € (0,1). Then, with probability at least 1 — 6, we have

ATT DR EH"J]?/%/J a’ . 71 1
[ATEDE, - ATE 7| < — 2 4 © 1_a+5(a)(Ta +1) L (8.62)

for Err]?}:‘; as defined in Eq. (18) in Theorem 1 and a universal constant C'.

The proof of Theorem A.1 is given in Section S10.5. For brevity, the finite sample
guarantees above use £ (C:)) and & (ﬁ’) as defined in Eq. (16), but the proof can be easily
modified to replace the max;c;) appearing in the definition of | - |12 in Eq. (16) with
maX;e{T—J+1,- T}

Next, we remark that Theorem A.1 is a strict generalization of Theorem 1. To this end,
note that when a!® = 0 for all @ € {0, 1}, the model considered in Theorem A.1 simplifies
to the model considered in Theorem 1. For this setting, the assumptions in Theorem 1
imply that the assumptions in Theorem A.1 hold with J = 1. First, Assumption S10 holds
with @ = 0 when ! = 0 for all a € {0,1}. Second, the proof of Theorem A.1 can be easily
modified to drop the requirement of Assumption S11 when J = 1 and @ = 0. Substituting
@ =0, E(@) =0 (i.e., the auto-regressive parameters are known to be 0), and J = 1 in

Eq. (S.62) recovers the guarantee stated in Theorem 1.

Doubly-robust behavior of ATEPTPfJ. When @ # 0 and bounded away from one, Eq. (S.62)

bounds the absolute error of the DR estimator by the rate of

£(8) (5 (P) + lojg\;[‘]> + \/% +a’ +£@).

Then, if the conditions of Theorem A.1 are satisfied for some J such that C'log N > J >
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log N/(2log(1/@)), the error rate of the DR estimator is bounded by

£(0)(£(P) + BN ) + < +e(@)

which decays a parametric rate of O,(N~%%) as long as

£(0)2(P) = 0,( ). €(6) = 0y ) md €@ =0,( )

Note that Proposition 4 still implies that Cross-Fitted-SVD achieves & (}3) =

O,(N7%% + T795) under suitable conditions. To estimate the auto-regressive parameter
o for a € {0,1}, Bai (2024, Section 5) shows that whenever there exist K units such
that they all have treatment a for L consecutive time points, a full information maximum
likelihood estimator provides |a(® — &@| = O,((KL)™*®). Next, establishing a matrix
completion guarantee for the mean potential outcomes by residualizing as in Eq. (S.59)
can be reduced to deriving a matrix completion guarantee for an approximately low-rank
matrix. To this end, Agarwal and Singh (2024, Theorem 5) suggests that, up to logarithmic
factors, an error rate of N7%% 4+ 7795 4 £(a) is plausible for 8((:)) for our setting. A
complete derivation of error guarantees for £(a) and & ((:)) in the dynamic model is an

interesting venue for future work.

S10.5 Proof of Theorem A.1: Finite Sample Guarantees for DR
with lagged effects
The error AATED] = ﬁ?ﬁ, — ATE. 7 can be re-expressed as
AATEDS = (A = A5r) = (el — %) = (A7 = ulh) = (a7 = ul%). (S.63)
We claim that, with probability at least 1 — 9,

MW _ |oW|T a1
~[L,DR] _  [1] ] la™ ~(1) ( oy, 1= oY 1 >
Het “-»T’ =¢ [ 1—|a®)| Fe@(Tar 5o la@)] * (1 —JatM])?
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9 . . 1 /v/<lsjazn | ~ 2om(cls
(1) (1) — /(12J)
+lg(@ )5(P)+W< £OW) + 25\ [cls 020 + NG )

N
(S.64)

Lo el e K S(a(o))<TaT_1 P Al A >
1 — o] L= [a®] (1= ]a®])?

2 ~ ~ 1 \/055/(111) ~ 2am(cls/1ag
+——_|£©Me(P) + ( (0 + 27, /el +/(>).
1o (6™)e(P) ~ A (O©) + 20/ cls/a2.) T

(S.65)
Then, the claim in Eq. (S.62) follows by applying triangle inequality in Eq. (S.63) and
using Assumption S10. We prove the bound (S.64) in Section S10.5.1, and also provide an

expression for C'. The proof of Eq. (S.65) follows similarly.

S10.5.1 Proof of Eq. (S.64)

We start by decomposing umT as follows:

1
wr=5| X (@ yzo+Z S | =10 + U v,
i€[N] i€[N]
where
male male W
P]PJ :NZ Ze s UJ :NZ ZQZT s (866)
s=0 1€[N] s=J 1€[N]
and
1
Nz‘e[N] ’

Next, we decompose ,u[TD Vin Eq. (S5.60) as u[lTDJR] Tf,l) + VO, where

. 1 /=t .
T 2 ~ S @My 3 ﬂlTDi, and VWU £ (gt Z Yi,0- (S.68)

s=0 1€[N] ze[N]
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Finally, we define

_ 1 J—-1 N Ay T7—s
2 LY (0) Y [95,1%_5 t+ (gir—s — aVysry — 03 )T ] . (869
s=0 i€[N] Pir—s

which is similar to TSI) except that @) is replaced by o). The proof proceeds by bounding

each term in the following fundamental decomposition:

~[1,DR 1 g (1 1 (1 1 1
atot =l = (VO v Oy (1) -1y (TP - 1) — v, (S.70)

With Cp £ max;e(n] |¥io| and Cpr 2 Cs+ (20 + 03)/5\, we claim that the bounds

) a0

W(l) _ V(l)‘ < CyTE(@Mya !, |Uf]1)| < Oy I Ja®] (S.71)
and
-~ ~ Cy (1 — oM} 1
T(l) o T(l) < ~(y ([ 2L B RS A I — 72
hold deterministically (conditioned on @), and that the bound
5(1) _ m()| < oW (p
C&;/(lgj) ~ 25771(6&; 1
VD (&) 4 257 fel /020 $.73
_|_( T ( )+ 20 cts/12) + VO Nl ( )

holds with probability at least 1 — §/2. The claim in Eq. (S.64) follows by applying triangle
inequality in Eq. (S.70) and using the above bounds.
It remains to establish the intermediate claims Egs. (S.71) to (S.73). Throughout the

rest of the proof, we repeatedly use the inequality below that holds for all s € [T7:

(a)
< S‘(@(l) — a®)

as—l

@) - (W’

@"m — a(l))< Z (@(1))s—l(a(1))l—1)

le[s]

where (a) follows from Assumption S10 and (b) follows from Eq. (S.61).
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Proof of Eq. (S.71) First, from Eq. (S.66), we have

1 T—-1

U1 =57 L) 3 oz

1€[N]

a7 — a7

s@ |
2o, a0

(a) -1
<y Z ’CY
s=J

where (a) follows from Assumption S11 and (b) follows from the sum of geometric series.

Next, from Egs. (S.67) and (S.68), we have

< CoTE(@Myal 1,

0= = (@7 = 07 5 ] 2

i€[N]

where (a) follows from the definition of Cjy and Eq. (S.74).

Proof of Eq. (S.72) From Egs. (S.68) and (S.69), and the triangle inequality, we have

1 J—1 R N air—s
‘Tfil) - TSI)) =5 Z Z (a(l))s (@OT)—S + (yi,Tfs —a )sz s—1 = ezT s) - )
N. . ’ pzT s
i€[N] s=0
a/l S
_( ) (01(172 s (yi,T—s_a( )%T s— 1_02T s)pz; s)‘
1 J—1 R a; 5
= v (a(l))S(Q(l) — gt ))sz P A=
i€[N] s=0 PiT—s
O s s Q;,7—s
(@0 = @)« (B + (s~ AV - ) 2
pzT s
(@ 1 =1 C R
<3 X X | FHalrE@Y) + Conse@)ar!
i€[N] s=0
Cy (1 =[]’ ) 1
_ 1) 1 J - -
- %A = Ja®] OPRE e )

where (a) follows from Eq. (S.61), Assumptions 3 and S11, and because max;¢| A[l DR}‘

<

Cpr from Assumptions 3, S10, and S11, and (b) follows from the sum of geometric and

arithmetico-geometric sequences.
Proof of Eq. (S.73) We start by defining

éllTDlz = 9217)1 s + (yi,Tfs - CY(l)yi,Tfsfl - é\z(,l’l)jf

) Qi T—s
PiT—s
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Then, from Egs. (S.66) and (S.69), we have

J—-1 J—-1

~@1 1 s 1 ~11.DR 1 (@) s 1 ~11.DR 1

Ty T = | X0y 3 O — 6| < X 1la®P 5| 3 @ - 67 ),
s=0 i€[N] s=0 i€[N]

where (a) follows from triangle inequality. From Egs. (3) and (S.56), we have

GLLDR] _ (1)

~1 1 1 1) \PiT—s T MiT—s
i, T—s iT—s — 01(,7)175 + (92(,7)*73 + 52(',7)’73 - 9\5772,5)—

i — Y
PiT—s nrs

Then, the term él}fi] — Hngs is analogous to the display Eq. (S.2) in the proof of Theorem 1.

Following similar algebra as in Section S1, we first obtain

51[1%1)_};} _ 91(1T_S _ @,1%—5 - ‘9@(}:’5)(@',%5 - pi,T*S) _ (92(,17)’—5 _Aez(,lil)“—s)ni,Tfs n 55}%:51%,%8
’ ’ Dir—s DiT—s DiT—s
51(,121)“—5771',Tfs
pir—s

Now, note that Assumption 4 holds for j =T — s for all s € {0,...,J — 1}. Hence, for any
such s and for any § € (0,1), mimicking the derivation of Eq. (S.5) from Section S1, we
obtain, with probability at least 1 — §/(2J),

3 5 2yt - 2, /cl
oy < 2e(em)e(p) + 2L g e,

N

AN

i€[N]
25771(655/(12”)
MWON

Finally, multiplying both sides of Eq. (S.75) by (oY), summing it over s € {0,...,.J — 1},

(S.75)

and using a union bound argument yields that the bound in Eq. (S.73) holds with probability

at least 1 — §/2.
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S11 Doubly-robust estimation in panel data with stag-

gered adoption

This section shows how to extend the doubly-robust framework of this article to a setting
with panel data and staggered adoption. Recall (from Section S10) that for panel data, t
denotes the column (time) index and T" denotes the total number of columns (time periods).
In a staggered adoption setting, for every unit ¢ € [IV], there exists a time point t; € [T]]
such that a;;, = 0 for t <t;, and a;; = 1 for ¢t > ¢;. This defines the observed treatment
assignment matrix A. As mentioned in Section 5.3 of the main article and illustrated in the

example below, a staggered treatment assignment leads to a heavy time-series dependence

in {ni,t}tE[T]~

Example S1 (Single adoption time). Consider a panel data setting where all units remain
in the control group until time Ty. At time Ty + 1, each unit i € [N] receives treatment with
probability p;, and remains in treatment until time T. With probability 1 — p;, each unit

i € [N] stays in the control group until time T. In other words, for each unit i € [N]|
pit =0 forall t<Ty and piy=p; forall Ty<t<T.
Further, for units remaining in control,
nig =0 forall t<Ty and ny=—p; forall To<t<T,
and for units receiving treatment,
it =0 forall t<Ty and ny=1—p;, forall Top<t<T.

The strong time-series dependence in 7;, above implies that Assumption S3 or Assump-
tion S4(a) do not hold, which in turn implies that the guarantees for Cross-Fitted-SVD,

as in Proposition 4, may not hold. To see this, first note that to ensure Assumption 5, the
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set of column partitions {Cy, C;} must be equal to {[Tp], [T] \ [Tb]} due to the dependence
in the noise W. Now, for Assumption S3 to hold, we need |Cx| = Q(T") for every k € {0,1}.
However, for Assumption S4(a) to hold, we need T'— Ty to be a constant with respect to T as,

for any ¢ € [T]\ [To] and i € [N], Xper ’E[ni,tni,t']

= (T — Ty)c; where ¢; € {p?, (1 — p;)?}.
Moreover, in Example S1, t; = Tj for all treated units. This allows the choice of
{[T0], [T\ [To]} as the set of column partitions {Cyp,C; } in Assumption 5. More generally, if
treatment adoption times {t;};c;n] differ across units, then it may not be feasible to obtain
a partition of [T] into {Co,C;} such that Assumption 5 holds.
In this section, we propose an alternative approach to the Cross-Fitted-SVD algorithm

such that Assumption 4 still holds for a suitable staggered adoption model.

Assumption S12 (Staggered adoption and common unit factors). We consider a panel
data setting with staggered adoption where

1. all units remain under control till time Ty, i.e., for every unit i € [N], there exists a

time point t; > Ty such that a;y =0 fort <t;, and a;; =1 fort > t;, and

2. the unit-dependent latent factors corresponding to P, ©© and ©W) are the same, i.e.,
U=U9=0UW e RN*". In other words, for everyi € [N] andt € [T], pis = g(U;, Vi),
92(2) = (U;, Vt(o)>, and 91(’? = (U, Vt(l)) for some known function g : R" x R" — R, with

(-,-) denoting the inner product.

For Example S1, the function g corresponds to the inner product, the unit-dependent
latent factors are 1-dimensional (i.e., r = 1) with U; = p; for every ¢ € [N], and the
time-dependent latent factors for the assignment probability are such that V;, = 0 for every
t € [Ty] and V; = 1 for every t € [T] \ [Tp]. Consequently, Example S1 is consistent with
Assumption S12 if U = p; for every a € {0,1} and i € [N]. Next, we provide a more

flexible version of Example S1 that allows different adoption times for different units.
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Example S2 (Different adoption times). Consider a panel data setting where all units
remain in the control group until time Ty. At every time t € [T\ [Tv], each unit i € [N]
receives treatment with probability p;, and remains in treatment until time T". Therefore,
fort € [T\ [To] and i € [N], a;; = 1 if the adoption time point t; € {Tp +1,--- ,t}, which

)t’—l

occurs with probability Yycp_ry—1(1 — ps pi. In other words, for each uniti € [N],

pir=0 forall t<Ty and p;=1—(1 —p)T forall Ty<t<T.

For Example S2, the unit-dependent latent factors are 1-dimensional (i.e., r = 1)
with U; = p; for every i € [IN], and the time-dependent latent factors for the assignment
probability are such that V; = 0 for every ¢ € [To] and V; =t — Ty for every t € [T\ [To].
Further the function g is such that g(U;, V;) = 1 — (1 — U;)"*. Consequently, Example S2 is
consistent with Assumption S12 if U = p; for every a € {0,1} and i € [N].

We now describe Cross-Fitted-Regression, an algorithm that generates estimates of
(0, 0 P) for the staggered adoption model in Assumption S12 such that Assumption 4

holds.
1. The inputs are (i) A € RV*T (ii) Y(@obs ¢ fRU{?}IV*T for a € {0,1}, (44i) the
rank 7 of the unit-dependent latent factors, (iv) the time period Tj until which all

units remain under control, (v) the time period ¢ € [T\ [Tp] for which we want to

estimate the average treatment effect, and (vi) the function g.

2. Let Y(Opre ¢ RNXT0 1o the sub-matrix of Y (0P that keeps the first Tj) columns only.

Run SVD on Y(©pre j e

SVD(Y©Prey — (7 € RV*" S e R, V e RIToI*T),

3. Let R® and R™ be the set of units receiving control and treatment at time ¢,
respectively. In other words, for every a € {0,1}, R®@ = {i € [N] : a;; = a}.

Next, randomly partition R(® into two nearly equal parts Réa) and Rﬁ“). For every
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s € {0,1}, define R, = R® URWM.

4. For every s € {0,1}, regress {a;;}ier, on {U;}icr, using g to obtain V;_,. For every

)

s €{0,1} and i € Ry, return p;; = g([A]i, s)-

5. For every a € {0,1} and s € {0, 1}, regress {y@t}ieng@ on {ﬁi}ieRg“) to obtain V).
For every a € {0,1}, s € {0,1}, and i € R, return 51(‘? = V@’
In summary, Cross-Fitted-Regression estimates the shared unit-dependent latent factors
using the observed outcomes for all units until time period Ty. Then, for every s € {0,1},
the time-dependent latent factors XA/S, XA/S(O), and 17;(1) are estimated using the treatment
assignments and the observed outcomes for units in Rq_;.

To establish guarantees for Cross-Fitted-Regression, we adopt the subsequent as-

sumption on the noise variables.

Assumption S13 (Independence across units and with respect to pre-adoption noise).
(a) {(771-7,5,55?) i € [N]} are mutually independent (across i) given {egg)}iewwem] for

every t € [T\ [To] and a € {0,1}.

(b) LY icivisermy) AL (s 659 Yiein) for every t € [T]\ [T] and a € {0,1}.

Assumption S13(a) requires the noise (E@, W) corresponding to a time period t € T'\ [Tp]
to be jointly independent across units given the noise E®) corresponding to time periods [Tj],
for every a € {0,1}. Assumption S13(b) is satisfied if, for instance, the noise variables follow
a moving average model of order ¢t — Ty — 1. The following result, proven in Section S11.1,
establishes that the estimates generated by Cross-Fitted-Regression satisfy Assumption 4.
Deriving error bounds, i.e., S(ﬁ) and S(C:)), for the estimates generated by Cross-Fitted-

Regression for the staggered adoption model is an interesting direction for future research.

Proposition S1 (Guarantees for Cross-Fitted-Regression). Consider the staggered

adoption model in Assumption S12 and suppose Assumption S13 holds. Fiz anyt € [T\ [Ty],
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and (5(0),5(1),]3” icin1 be the estimates returned by Cross-Fitted-Regression. Then,
2t 2t ) [ } g

Assumption 4 holds.

S11.1 Proof of Proposition S1: Guarantees for Cross-Fitted-

Regression

Fix any s € {0,1}. Then, Assumption S13(a) and Assumption S13(b) imply that

0 a a
(e ieviem) U (i 689 Yicm, . AL {65 i (S.76)

for every partition (Ro, R1) of the units [N].

Cross-Fitted-Regression estimates {p;:}ier, using {ﬁi}ieRs and V., where V, is
estimated using {ﬁi}ienl_s and {a;;}ier, .. Therefore, the randomness in {p;;};cr, stems
from the randomness in Y (P and {a;;}icr,_. which in turn stems from the randomness
in {5§g)}ie[N}yte[To] and {7;+}ier, .. Then, Eq. (15) follows from Eq. (S.76).

Next, fix any a € {0,1}. Then, Cross-Fitted-Regression estimates {#(*};cx. using
{U;}ier. and V@ where V@) is estimated using {ﬁ@}zengaj and {yi’t}ienﬁ)s' Therefore, the
randomness in {#®};cx. stems from the randomness in Y (©»re and Wisk, R, which in

turn stems from the randomness in {51(-2)}1-6[]\7]7%[%} and {55?} Then, Eq. (14) follows

. (a) -
1€ERT

from Eq. (S.76).
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