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S1 Proof of Theorem 1: Finite Sample Guarantees for

DR

Fix any j ∈ [M ]. Recall the definitions of the parameter ATE·,j and corresponding doubly-

robust estimate ÂTE DR
·,j from Eqs. (5) and (11), respectively. The error ∆ATEDR

·,j =

ÂTE DR
·,j − ATE·,j can be re-expressed as

∆ATEDR
·,j = 1

N

∑
i∈[N ]

(
θ̂

(1,DR)
i,j − θ̂

(0,DR)
i,j

)
− 1

N

∑
i∈[N ]

(
θ

(1)
i,j − θ

(0)
i,j

)



= 1
N

∑
i∈[N ]

((
θ̂

(1,DR)
i,j − θ

(1)
i,j

)
−
(
θ̂

(0,DR)
i,j − θ

(0)
i,j

))

(a)= 1
N

∑
i∈[N ]

(
T(1,DR)
i,j + T(0,DR)

i,j

)
, (S.1)

where (a) follows after defining T(1,DR)
i,j ≜

(
θ̂

(1,DR)
i,j − θ

(1)
i,j

)
and T(0,DR)

i,j ≜ −
(
θ̂

(0,DR)
i,j − θ

(0)
i,j

)
for every (i, j) ∈ [N ] × [M ]. Then, we have

T(1,DR)
i,j = θ̂

(1,DR)
i,j − θ

(1)
i,j

(a)= θ̂
(1)
i,j +

(
yi,j − θ̂

(1)
i,j

)ai,j
p̂i,j

− θ
(1)
i,j

(b)= θ̂
(1)
i,j +

(
θ

(1)
i,j + ε

(1)
i,j − θ̂

(1)
i,j

)pi,j + ηi,j
p̂i,j

− θ
(1)
i,j (S.2)

= (θ̂(1)
i,j − θ

(1)
i,j )

(
1 − pi,j + ηi,j

p̂i,j

)
+ ε

(1)
i,j

(
pi,j + ηi,j

p̂i,j

)

=
(θ̂(1)
i,j − θ

(1)
i,j )(p̂i,j − pi,j)

p̂i,j
−

(θ̂(1)
i,j − θ

(1)
i,j )ηi,j

p̂i,j
+

ε
(1)
i,j pi,j

p̂i,j
+

ε
(1)
i,j ηi,j

p̂i,j
, (S.3)

where (a) follows from Eq. (12), and (b) follows from Eqs. (1) to (3). A similar derivation

for a = 0 implies that

T(0,DR)
i,j = −

(θ̂(0)
i,j − θ

(0)
i,j )(1 − p̂i,j−(1 − pi,j))

1 − p̂i,j
+

(θ̂(0)
i,j − θ

(0)
i,j )(−ηi,j)

1 − p̂i,j
−

ε
(0)
i,j (1 − pi,j)

1 − p̂i,j

−
ε

(0)
i,j (−ηi,j)
1 − p̂i,j

=
(θ̂(0)
i,j − θ

(0)
i,j )(p̂i,j − pi,j)

1 − p̂i,j
−

(θ̂(0)
i,j − θ

(0)
i,j )ηi,j

1 − p̂i,j
−

ε
(0)
i,j (1 − pi,j)

1 − p̂i,j
+

ε
(0)
i,j ηi,j

1 − p̂i,j
. (S.4)

Consider any a ∈ {0, 1} and any δ ∈ (0, 1). We claim that, with probability at least 1 − 6δ,

1
N

∣∣∣∣ ∑
i∈[N ]

T(a,DR)
i,j

∣∣∣∣ ≤ 2
λ̄

E
(
Θ̂(a)

)
E
(
P̂
)

+ 2
√

cℓδ

λ̄
√

ℓ1N
E
(
Θ̂(a)

)
+ 2σ

√
cℓδ

λ̄
√

N
+ 2σm(cℓδ)

λ̄
√

ℓ1N
, (S.5)

where recall that m(cℓδ) = max
(
cℓδ,

√
cℓδ
)
. We provide a proof of this claim at the end

of this section. Applying triangle inequality in Eq. (S.1) and using Eq. (S.5) with a union

2



bound, we obtain that

∣∣∣∆ATEDR
·,j

∣∣∣ ≤ 2
λ̄

E
(
Θ̂
)
E
(
P̂
)

+ 2
√

cℓδ

λ̄
√

ℓ1N
E
(
Θ̂
)

+ 4σ
√

cℓδ

λ̄
√

N
+ 4σm(cℓδ)

λ̄
√

ℓ1N
,

with probability at least 1 − 12δ. The claim in Eq. (18) follows by re-parameterizing δ.

Proof of bound Eq. (S.5). Recall the partitioning of the units [N ] into R0 and R1

from Assumption 4. Now, to enable the application of concentration bounds, we split the

summation over i ∈ [N ] in the left hand side of Eq. (S.5) into two parts—one over i ∈ R0

and the other over i ∈ R1—such that the noise terms are independent of the estimates of

Θ(0), Θ(1), P in each of these parts as in Eqs. (14) and (15).

Fix a = 1 and note that |∑i∈[N ] T
(1,DR)
i,j | ≤ |∑i∈R0 T

(1,DR)
i,j | + |∑i∈R1 T

(1,DR)
i,j |. Fix any

s ∈ {0, 1}. Then, Eq. (S.3) and triangle inequality imply

∣∣∣∣ ∑
i∈Rs

T(1,DR)
i,j

∣∣∣∣ ≤
∣∣∣∣ ∑
i∈Rs

(
θ̂

(1)
i,j −θ

(1)
i,j

)(
p̂i,j−pi,j

)
p̂i,j

∣∣∣∣+∣∣∣∣ ∑
i∈Rs

(
θ̂

(1)
i,j −θ

(1)
i,j

)
ηi,j

p̂i,j

∣∣∣∣
+
∣∣∣∣ ∑
i∈Rs

ε
(1)
i,j pi,j

p̂i,j

∣∣∣∣+∣∣∣∣ ∑
i∈Rs

ε
(1)
i,j ηi,j

p̂i,j

∣∣∣∣. (S.6)

Applying the Cauchy-Schwarz inequality to bound the first term yields that

∣∣∣∣∣ ∑
i∈Rs

(
θ̂

(1)
i,j −θ

(1)
i,j

)(
p̂i,j−pi,j

)
p̂i,j

∣∣∣∣∣ ≤

√√√√√∑
i∈Rs

(
θ̂

(1)
i,j −θ

(1)
i,j

p̂i,j

)2 ∑
i∈Rs

(
p̂i,j − pi,j

)2

≤
∥∥∥(Θ̂(1)

·,j −Θ(1)
·,j

)
⃝/ P̂·,j

∥∥∥
2

∥∥∥P̂·,j−P·,j

∥∥∥
2
. (S.7)

To bound the second term in Eq. (S.6), note that ηi,j is subGaussian(1/
√

ℓ1) (see

Example 2.5.8 in Vershynin (2018)) as well as zero-mean and independent across all i ∈ [N ]

due to Assumption 2(a). By Assumption 4, {(p̂i,j, θ̂
(1)
i,j )}i∈Rs ⊥⊥ {ηi,j}i∈Rs . The subGaussian

concentration result in Corollary S1 yields

∣∣∣∣∣ ∑
i∈Rs

(
θ̂

(1)
i,j −θ

(1)
i,j

)
ηi,j

p̂i,j

∣∣∣∣∣≤
√

cℓδ√
ℓ1

√√√√√∑
i∈Rs

(
θ̂

(1)
i,j −θ

(1)
i,j

p̂i,j

)2

≤
√

cℓδ√
ℓ1

∥∥∥(Θ̂(1)
·,j −Θ(1)

·,j

)
⃝/ P̂·,j

∥∥∥
2
, (S.8)

with probability at least 1 − δ.
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To bound the third term in Eq. (S.6), note that ε
(1)
i,j is subGaussian(σ), zero-mean, and in-

dependent across all i ∈ [N ] due to Assumption 2. By Assumption 4, {p̂i,j}i∈Rs ⊥⊥ {ε
(1)
i,j }i∈Rs .

The subGaussian concentration result in Corollary S1 yields

∣∣∣∣ ∑
i∈Rs

ε
(1)
i,j pi,j

p̂i,j

∣∣∣∣ ≤ σ
√

cℓδ

√√√√∑
i∈Rs

(
pi,j
p̂i,j

)2
≤ σ

√
cℓδ
∥∥∥P·,j ⃝/ P̂·,j

∥∥∥
2
, (S.9)

with probability at least 1 − δ.

To bound the fourth term in Eq. (S.6), note that ε
(1)
i,j ηi,j is subExponential(σ/

√
ℓ1)

because of Lemma S6 as well as zero-mean and independent across all i ∈ [N ] due to

Assumption 2. By Assumption 4, {p̂i,j}i∈Rs ⊥⊥ {(ηi,j, ε
(1)
i,j )}i∈Rs . The subExponential con-

centration result in Corollary S2 yields that

∣∣∣∣ ∑
i∈Rs

ε
(1)
i,j ηi,j

p̂i,j

∣∣∣∣ ≤ σm(cℓδ)√
ℓ1

∥1N ⃝/ P̂·,j∥2, (S.10)

with probability at least 1 − δ. Putting together Eqs. (S.6) to (S.10), we conclude that,

with probability at least 1 − 3δ,

1
N

∣∣∣∣ ∑
i∈Rs

T(1,DR)
i,j

∣∣∣∣ ≤ 1
N

∥∥∥(Θ̂(1)
·,j −Θ(1)

·,j

)
⃝/ P̂·,j

∥∥∥
2

∥∥∥P̂·,j−P·,j

∥∥∥
2

+
√

cℓδ√
ℓ1N

∥∥∥(Θ̂(1)
·,j −Θ(1)

·,j

)
⃝/ P̂·,j

∥∥∥
2

+ σ
√

cℓδ
N

∥∥∥P·,j ⃝/ P̂·,j

∥∥∥
2

+ σm(cℓδ)√
ℓ1N

∥∥∥1N ⃝/ P̂·,j

∥∥∥
2
.

Then, noting that 1/p̂i,j ≤ 1/λ̄ for every i ∈ [N ] and j ∈ [M ] from Assumption 3, and

consequently that ∥B·,j ⃝/ P̂·,j∥2 ≤ ||B||1,2/λ̄ for any matrix B and every j ∈ [M ], we obtain

the following bound, with probability at least 1 − 3δ,

1
N

∣∣∣∣ ∑
i∈Rs

T(1,DR)
i,j

∣∣∣∣ ≤ 1
λ̄N

||Θ̂(1)−Θ(1)||1,2||P̂ −P ||1,2 +
√

cℓδ

λ̄
√

ℓ1N
||Θ̂(1)−Θ(1)||1,2

+ σ
√

cℓδ

λ̄N
||P ||1,2 + σm(cℓδ)

λ̄
√

ℓ1N
||1||1,2 (S.11)

(a)
≤ 1

λ̄
E
(
Θ̂(1)

)
E
(
P̂
)

+
√

cℓδ

λ̄
√

ℓ1N
E
(
Θ̂(1)

)
+ σ

√
cℓδ

λ̄
√

N
+ σm(cℓδ)

λ̄
√

ℓ1N
, (S.12)

where (a) follows from Eq. (16) and because ||P ||1,2 ≤
√

N and ||1||1,2 =
√

N . Then, the
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claim in Eq. (S.5) follows for a = 1 by using Eq. (S.12) and applying a union bound over

s ∈ {0, 1}. The proof of Eq. (S.5) for a = 0 follows similarly.

S2 Proof of Theorem 2: Asymptotic Normality for

DR

For every (i, j) ∈ [N ] × [M ], recall the definitions of T(1,DR)
i,j and T(0,DR)

i,j from Eq. (S.3) and

Eq. (S.4), respectively. Then, define

X(1,DR)
i,j ≜ T(1,DR)

i,j − ε
(1)
i,j −

ε
(1)
i,j ηi,j

pi,j
(S.13)

X(0,DR)
i,j ≜ T(0,DR)

i,j + ε
(0)
i,j −

ε
(0)
i,j ηi,j

1 − pi,j
,

and

ZDR
i,j ≜ ε

(1)
i,j +

ε
(1)
i,j ηi,j

pi,j
− ε

(0)
i,j +

ε
(0)
i,j ηi,j

1 − pi,j
. (S.14)

Then, ∆ATEDR
·,j in Eq. (S.1) can be expressed as

∆ATEDR
·,j = 1

N

∑
i∈[N ]

(
X(1,DR)
i,j + X(0,DR)

i,j + ZDR
i,j

)
.

We obtain the following convergence results.

Lemma S1 (Convergence of XDR
j ). Fix any j ∈ [M ]. Suppose Assumptions 1 to 4 and

conditions (C1) to (C3) in Theorem 2 hold. Then,

1
σj

√
N

∑
i∈[N ]

(
X(1,DR)
i,j + X(0,DR)

i,j

)
= op(1).

Lemma S2 (Convergence of ZDR
j ). Fix any j ∈ [M ]. Suppose Assumptions 1 and 2 hold

and condition (C3) in Theorem 2 hold. Then,

1
σj

√
N

∑
i∈[N ]

ZDR
i,j

d−→ N (0, 1).

5



Now, the result in Theorem 2 follows from Slutsky’s theorem.

S2.1 Proof of Lemma S1

Fix any j ∈ [M ]. Consider any a ∈ {0, 1}. We claim that

1√
N

∑
i∈[N ]

X(a,DR)
i,j ≤ O

(√
NE

(
Θ̂(a)

)
E
(
P̂
))

+ op(1). (S.15)

We provide a proof of this claim at the end of this section. Then, using Eq. (S.15) and the

fact that σj ≥ c > 0 as per condition (C3), we obtain the following,

1
σj

√
N

∑
i∈[N ]

(
X(1,DR)
i,j +X(0,DR)

i,j

)
≤ 1

c

(
O
(√

NE
(
Θ̂
)
E
(
P̂
))

+ op(1)
)

(a)= 1
c

(√
Nop(N−1/2) + op(1)

)
(b)= op(1),

where (a) follows from (C2), and (b) follows because op(1) + op(1) = op(1).

Proof of Eq. (S.15) Recall the partitioning of the units [N ] into R0 and R1 from

Assumption 4. Now, to enable the application of concentration bounds, we split the

summation over i ∈ [N ] in the left hand side of Eq. (S.15) into two parts—one over i ∈ R0

and the other over i ∈ R1—such that the noise terms are independent of the estimates of

Θ(0), Θ(1), P in each of these parts as in Eqs. (14) and (15).

Fix a = 1. Then, Eqs. (S.3) and (S.13) imply that

X(1,DR)
i,j =

(
θ̂

(1)
i,j −θ

(1)
i,j

)(
p̂i,j−pi,j

)
p̂i,j

−

(
θ̂

(1)
i,j −θ

(1)
i,j

)
ηi,j

p̂i,j
+

ε
(1)
i,j pi,j

p̂i,j
+

ε
(1)
i,j ηi,j

p̂i,j
− ε

(1)
i,j −

ε
(1)
i,j ηi,j

pi,j

=

(
θ̂

(1)
i,j −θ

(1)
i,j

)(
p̂i,j−pi,j

)
p̂i,j

−

(
θ̂

(1)
i,j −θ

(1)
i,j

)
ηi,j

p̂i,j
−

ε
(1)
i,j

(
p̂i,j−pi,j

)
p̂i,j

−
ε

(1)
i,j ηi,j

(
p̂i,j−pi,j

)
p̂i,jpi,j

.

Now, note that |∑i∈[N ] X
(1,DR)
i,j | ≤ |∑i∈R0 X

(1,DR)
i,j | + |∑i∈R1 X

(1,DR)
i,j |. Fix any s ∈ {0, 1}.

Then, triangle inequality implies that

1√
N

∣∣∣∣ ∑
i∈Rs

X(1,DR)
i,j

∣∣∣∣ ≤ 1√
N

∣∣∣∣ ∑
i∈Rs

(
θ̂

(1)
i,j −θ

(1)
i,j

)(
p̂i,j−pi,j

)
p̂i,j

∣∣∣∣+ 1√
N

∣∣∣∣ ∑
i∈Rs

(
θ̂

(1)
i,j −θ

(1)
i,j

)
ηi,j

p̂i,j

∣∣∣∣
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+ 1√
N

∣∣∣∣ ∑
i∈Rs

ε
(1)
i,j

(
p̂i,j−pi,j

)
p̂i,j

∣∣∣∣+ 1√
N

∣∣∣∣ ∑
i∈Rs

ε
(1)
i,j ηi,j

(
p̂i,j−pi,j

)
p̂i,jpi,j

∣∣∣∣. (S.16)

To control the first term in Eq. (S.16), we use the Cauchy-Schwarz inequality and Assump-

tion 3 as in supplementary appendix S1 (see Eqs. (S.7), (S.11), and (S.12)).

To control the second term in Eq. (S.16), we condition on {(p̂i,j, θ̂
(1)
i,j )}i∈Rs . Then,

Assumption 4 (i.e., Eq. (14)) provides that {(p̂i,j, θ̂
(1)
i,j )}i∈Rs ⊥⊥ {ηi,j}i∈Rs . As a result,∑

i∈Rs

(
θ̂

(1)
i,j − θ

(1)
i,j

)
ηi,j/p̂i,j is subGaussian

([∑
i∈Rs

(
θ̂

(1)
i,j −θ

(1)
i,j

)2
/
(
p̂i,j
)2]1/2

/
√

ℓ1
)

because ηi,j

is subGaussian(1/
√

ℓ1) (see Example 2.5.8 in Vershynin (2018)) as well as zero-mean and

independent across all i ∈ [N ] due to Assumption 2(a). Then, we have

1√
N
E
[∣∣∣∣∣ ∑
i∈Rs

(
θ̂

(1)
i,j −θ

(1)
i,j

)
ηi,j

p̂i,j

∣∣∣∣∣
∣∣∣∣{(p̂i,j, θ̂

(1)
i,j )}i∈Rs

]
(a)
≤ c√

N

√√√√√∑
i∈Rs

(
θ̂

(1)
i,j −θ

(1)
i,j

p̂i,j

)2

≤ c√
N

∥∥∥(Θ̂(1)
·,j −Θ(1)

·,j

)
⃝/ P̂·,j

∥∥∥
2

(b)
≤ c

λ̄
E
(
Θ̂(1)

)
≤ c

λ̄
E
(
Θ̂
) (c)= op(1), (S.17)

where (a) follows as the first moment of subGaussian(σ) is O(σ), (b) follows from Assump-

tion 3 and Eq. (16), and (c) follows from (C1).

To control the third term in Eq. (S.16), we condition on {p̂i,j}i∈Rs . Then, Assumption 4

(i.e., Eq. (15)) provides that {p̂i,j}i∈Rs ⊥⊥ {ε
(1)
i,j }i∈Rs . As a result, ∑i∈Rs

ε
(1)
i,j

(
p̂i,j−pi,j

)
/p̂i,j is

subGaussian
(
σ
[∑

i∈Rs

(
p̂i,j−pi,j

)2
/
(
p̂i,j
)2]1/2)

because ε
(1)
i,j is subGaussian(σ), zero-mean,

and independent across all i ∈ [N ] due to Assumption 2. Then, we have

1√
N
E
[∣∣∣∣∣ ∑

i∈Rs

ε
(1)
i,j

(
p̂i,j−pi,j

)
p̂i,j

∣∣∣∣∣
∣∣∣∣{p̂i,j}i∈Rs

]
(a)
≤ cσ√

N

√√√√√∑
i∈Rs

(
p̂i,j−pi,j

p̂i,j

)2

≤ cσ√
N

∥∥∥(P̂·,j−P·,j
)

⃝/ P̂·,j

∥∥∥
2

(b)
≤ cσ

λ̄
E
(
P̂
) (c)= op(1), (S.18)

where (a) follows as the first moment of subGaussian(σ) is O(σ), (b) follows from Assump-
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tion 3 and Eq. (16), and (c) follows from (C1).

To control the fourth term in Eq. (S.16), we condition on {p̂i,j}i∈Rs . Then, Assumption 4

(i.e., Eq. (15)) provides that {p̂i,j}i∈Rs ⊥⊥ {(ηi,j, ε
(1)
i,j )}i∈Rs . As a result, ∑i∈Rs

ε
(1)
i,j ηi,j

(
p̂i,j −

pi,j
)
/p̂i,jpi,j is subExponential

(
σ
[∑

i∈Rs

(
p̂i,j − pi,j

)2
/
(
p̂i,jpi,j

)2]1/2
/
√

ℓ1
)

because ε
(1)
i,j ηi,j is

subExponential(σ/
√

ℓ1) due to Lemma S6 as well as zero-mean and independent across all

i ∈ [N ] due to Assumption 2. Then, we have

1√
N
E
[∣∣∣∣∣ ∑

i∈Rs

ε
(1)
i,j ηi,j

(
p̂i,j−pi,j

)
p̂i,jpi,j

∣∣∣∣∣
∣∣∣∣{p̂i,j}i∈Rs

]
(a)
≤ cσ√

N

√√√√√∑
i∈Rs

(
p̂i,j−pi,j
p̂i,jpi,j

)2

≤ cσ√
N

∥∥∥(P̂·,j−P·,j
)

⃝/

(
P̂·,j ⊙ P·,j

)∥∥∥
2

(b)
≤ cσ

λ̄λ
E
(
P̂
) (c)= op(1), (S.19)

where (a) follows as the first moment of subExponential(σ) is O(σ), (b) follows from

Assumption 3 and Eq. (16), and (c) follows from (C1).

Putting together Eqs. (S.16) to (S.19) using Lemma S9, we have

1√
N

∣∣∣∣ ∑
i∈Rs

X(1,DR)
i,j

∣∣∣∣ ≤ O
(√

NE
(
Θ̂(1)

)
E
(
P̂
))

+ op(1).

Then, the claim in Eq. (S.15) follows for a = 1 by using |∑i∈[N ] X
(1,DR)
i,j | ≤ |∑i∈R0 X(1,DR)

i,j | +

|∑i∈R1 X
(1,DR)
i,j |. The proof of Eq. (S.15) for a = 0 follows similarly.

S2.2 Proof of Lemma S2

To prove this result, we invoke Lyapunov central limit theorem (CLT).

Lemma S3 (Lyapunov CLT, see Theorem 27.3 of Billingsley (2017)). Consider a sequence

x1, x2, · · · of mean-zero independent random variables such that the moments E[|xi|2+ω] are

finite for some ω > 0. Moreover, assume that the Lyapunov’s condition is satisfied, i.e.,

N∑
i=1

E[|xi|2+ω]
/( N∑

i=1
E[x2

i ]
) 2+ω

2
−→ 0, (S.20)
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as N → ∞. Then,

N∑
i=1

xi

/( N∑
i=1

E[x2
i ]
) 1

2 d−→ N (0, 1),

as N → ∞.

Fix any j ∈ [M ]. We apply Lyapunov CLT in Lemma S3 on the sequence ZDR
1,j ,ZDR

2,j , · · ·

where ZDR
i,j is as defined in Eq. (S.14). Note that this sequence is zero-mean from Assump-

tion 2(a) and Assumption 2(b), and independent from Assumption 2(b). First, we show in

supplementary appendix S2.2.1 that

Var(ZDR
i,j ) =

(σ(1)
i,j )2

pi,j
+

(σ(0)
i,j )2

1 − pi,j
, (S.21)

for each i ∈ [N ]. Next, we show in supplementary appendix S2.2.2 that Lyapunov’s

condition Eq. (S.20) holds for the sequence ZDR
1,j ,ZDR

2,j , · · · with ω = 1. Finally, applying

Lemma S3 and using the definition of σj from Eq. (22) yields Lemma S2.

S2.2.1 Proof of Eq. (S.21)

Fix any i ∈ [N ] and consider Var(ZDR
i,j ). We have

Var
(
ZDR
i,j

)
=Var

(
ε

(1)
i,j

(
1 + ηi,j

pi,j

)
− ε

(0)
i,j

(
1 − ηi,j

1 − pi,j

))
. (S.22)

We claim the following:

Var
(

ε
(1)
i,j

(
1 + ηi,j

pi,j

))
=

(σ(1)
i,j )2

pi,j
, (S.23)

Var
(

ε
(0)
i,j

(
1 − ηi,j

1 − pi,j

))
=

(σ(0)
i,j )2

1 − pi,j
, (S.24)

and

Cov
(

ε
(1)
i,j

(
1 + ηi,j

pi,j

)
, ε

(0)
i,j

(
1 − ηi,j

1 − pi,j

))
= 0, (S.25)

with Eq. (S.21) following from Eqs. (S.22) to (S.25).

9



To establish Eq. (S.23), notice that Assumption 2(a) and (b) imply ε
(1)
i,j ⊥⊥ ηi,j and

E[ε(1)
i,j ] = E[ηi,j] = 0 so that E[ε(1)

i,j (1 + ηi,j/pi,j)] = 0. Then,

Var
(

ε
(1)
i,j

(
1 + ηi,j

pi,j

))
= E

[(
ε

(1)
i,j

(
1 + ηi,j

pi,j

))2
]

= E
[(

ε
(1)
i,j

)2
]
E
[(

1 + ηi,j
pi,j

)2
]

= E
[(

ε
(1)
i,j

)2
][

1 + E
[

η2
i,j

p2
i,j

]]
(a)= (σ(1)

i,j )2
[
1 + pi,j(1 − pi,j)

p2
i,j

]

=
(σ(1)

i,j )2

pi,j
,

where (a) follows because E[η2
i,j] = Var(ηi,j) = pi,j(1 − pi,j) from Eq. (3), and E

[
(ε(1)
i,j )2

]
=

Var(ε(1)
i,j ) = (σ(1)

i,j )2 from condition (C3). A similar argument establishes Eq. (S.24). Eq. (S.25)

follows from,

Cov
(

ε
(1)
i,j

(
1 + ηi,j

pi,j

)
, ε

(0)
i,j

(
1 − ηi,j

1 − pi,j

))
= E

[
ε

(1)
i,j

(
1 + ηi,j

pi,j

)
ε

(0)
i,j

(
1 − ηi,j

1 − pi,j

)]
(a)= E

[(
1 + ηi,j

pi,j

)(
1 − ηi,j

1 − pi,j

)]
E[ε(1)

i,j ε
(0)
i,j ]

=
(

1 − E
[

η2
i,j

pi,j
(
1 − pi,j

)])E[ε(1)
i,j ε

(0)
i,j ]

(b)= 0 · E[ε(1)
i,j ε

(0)
i,j ] = 0,

where (a) follows because (ε(0)
i,j , ε

(1)
i,j ) ⊥⊥ ηi,j from Assumption 2(b) and (b) follows because

E[η2
i,j] = Var(ηi,j) = pi,j(1 − pi,j).

S2.2.2 Proof of Lyapunov’s condition with ω = 1

We have ∑
i∈[N ] E

[
|ZDR

i,j |3
]

(∑
i∈[N ] Var(ZDR

i,j )
)3/2 = 1

N3/2

∑
i∈[N ] E

[
|ZDR

i,j |3
]

(
1
N

∑
i∈[N ] Var(ZDR

i,j )
)3/2

(a)= 1
N3/2

∑
i∈[N ] E

[
|ZDR

i,j |3
]

(
σj
)3/2

(b)
≤ 1

N3/2

∑
i∈[N ] E

[
|ZDR

i,j |3
]

c
3/2
1

(c)
≤ 1

N1/2
c2

c
3/2
1

, (S.26)
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where (a) follows by putting together Eqs. (S.21) and (22), (b) follows because σj ≥ c1 > 0

as per condition (C3), (c) follows because the absolute third moments of subExponential

random variables are bounded, after noting that ZDR
i,j is a subExponential random variable.

Then, condition Eq. (S.20) holds for ω = 1 as the right hand side of Eq. (S.26) goes to zero

as N → ∞.

S2.3 Proof of Proposition 2: Consistent variance estimation

Fix any j ∈ [M ] and recall the definitions of σ2
j and σ̂2

j from Eqs. (22) and (25), respectively.

The error ∆j = σ̂2
j − σ2

j can be expressed as

∆j = 1
N

∑
i∈[N ]

((
θ̂

(1)
i,j − yi,j

)2
ai,j(

p̂i,j
)2 +

(
θ̂

(0)
i,j − yi,j

)2
(1 − ai,j)(

1 − p̂i,j
)2

)
−
(

(σ(1)
i,j )2

pi,j
+

(σ(0)
i,j )2

1 − pi,j

)

= 1
N

∑
i∈[N ]

((
θ̂

(1)
i,j − yi,j

)2
ai,j(

p̂i,j
)2 −

(σ(1)
i,j )2

pi,j

)
+
((

θ̂
(0)
i,j − yi,j

)2
(1 − ai,j)(

1 − p̂i,j
)2 −

(σ(0)
i,j )2

1 − pi,j

)

(a)= 1
N

∑
i∈[N ]

(
T(1)
i,j + T(0)

i,j

)
, (S.27)

where (a) follows after defining

T(1)
i,j ≜

(
θ̂

(1)
i,j − yi,j

)2
ai,j(

p̂i,j
)2 −

(σ(1)
i,j )2

pi,j
and T(0)

i,j ≜

(
θ̂

(0)
i,j − yi,j

)2
(1 − ai,j)(

1 − p̂i,j
)2 −

(σ(0)
i,j )2

1 − pi,j
.

for every (i, j) ∈ [N ] × [M ]. Then, we have

T(1)
i,j

(a)=

(
θ̂

(1)
i,j − θ

(1)
i,j − ε

(1)
i,j

)2(
pi,j + ηi,j

)
(
p̂i,j
)2 −

(σ(1)
i,j )2

pi,j

=

(
θ̂

(1)
i,j −θ

(1)
i,j

)2
ai,j(

p̂i,j
)2 −−

2ε
(1)
i,j pi,j

(
θ̂

(1)
i,j −θ

(1)
i,j

)
(
p̂i,j
)2 −

2ε
(1)
i,j ηi,j

(
θ̂

(1)
i,j −θ

(1)
i,j

)
(
p̂i,j
)2

+

(
ε

(1)
i,j

)2
pi,j(

p̂i,j
)2 +

(
ε

(1)
i,j

)2
ηi,j(

p̂i,j
)2 −

(σ(1)
i,j )2

pi,j
,
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where (a) follows from Eqs. (1) to (3). A similar derivation for a = 0 implies that

T(0)
i,j =

(
θ̂

(0)
i,j − θ

(0)
i,j − ε

(0)
i,j

)2
(1 − pi,j − ηi,j)(

1 − p̂i,j
)2 −

(σ(0)
i,j )2

1 − pi,j

=

(
θ̂

(0)
i,j −θ

(0)
i,j

)2(
1 − ai,j

)
(
1 − p̂i,j

)2 −
2ε

(0)
i,j

(
1 − pi,j

)(
θ̂

(0)
i,j −θ

(0)
i,j

)
(
1 − p̂i,j

)2 +
2ε

(0)
i,j ηi,j

(
θ̂

(0)
i,j −θ

(0)
i,j

)
(
1 − p̂i,j

)2

+

(
ε

(0)
i,j

)2(
1 − pi,j

)
(
1 − p̂i,j

)2 −

(
ε

(0)
i,j

)2
ηi,j(

1 − p̂i,j
)2 −

(σ(0)
i,j )2

1 − pi,j
.

Consider any a ∈ {0, 1}. We claim that

1
N

∣∣∣∣ ∑
i∈[N ]

T(a)
i,j

∣∣∣∣ = op(1). (S.28)

We provide a proof of this claim at the end of this section. Then, applying triangle inequality

in Eq. (S.27), we obtain the following

∆j ≤ op(1) + op(1) (a)= op(1),

where (a) follows because op(1) + op(1) = op(1).

S2.3.0.1 Proof of bound Eq. (S.28). This proof follows a very similar road map to

that used for establishing the inequality in Eq. (S.15). Recall the partitioning of the units

[N ] into R0 and R1 from Assumption 4. Now, to enable the application of concentration

bounds, we split the summation over i ∈ [N ] in the left hand side of Eq. (S.28) into

two parts—one over i ∈ R0 and the other over i ∈ R1—such that the noise terms are

independent of the estimates of Θ(0), Θ(1), P in each of these parts as in Eqs. (14) and (15).

Fix a = 1. Now, note that |∑i∈[N ] T
(1)
i,j | ≤ |∑i∈R0 T

(1)
i,j |+ |∑i∈R1 T

(1)
i,j |. Fix any s ∈ {0, 1}.

Then, triangle inequality implies that

1
N

∣∣∣∣ ∑
i∈Rs

T(1)
i,j

∣∣∣∣ ≤ 1
N

∣∣∣∣ ∑
i∈Rs

(
θ̂

(1)
i,j −θ

(1)
i,j

)2
ai,j(

p̂i,j
)2

∣∣∣∣+ 1
N

∣∣∣∣ ∑
i∈Rs

2ε
(1)
i,j pi,j

(
θ̂

(1)
i,j −θ

(1)
i,j

)
(
p̂i,j
)2

∣∣∣∣
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+ 1
N

∣∣∣∣ ∑
i∈Rs

2ε
(1)
i,j ηi,j

(
θ̂

(1)
i,j −θ

(1)
i,j

)
(
p̂i,j
)2

∣∣∣∣+ 1
N

∣∣∣∣ ∑
i∈Rs

(
ε

(1)
i,j

)2
ηi,j(

p̂i,j
)2

∣∣∣∣+ 1
N

∣∣∣∣ ∑
i∈Rs

(
ε

(1)
i,j

)2
pi,j(

p̂i,j
)2 −

(σ(1)
i,j )2

pi,j

∣∣∣∣.
(S.29)

To bound the first term in Eq. (S.29), we have

1
N

∣∣∣∣ ∑
i∈Rs

(
θ̂

(1)
i,j −θ

(1)
i,j

)2
ai,j(

p̂i,j
)2

∣∣∣∣ (a)
≤ 1

N

∣∣∣∣ ∑
i∈Rs

(
θ̂

(1)
i,j −θ

(1)
i,j

)2

(
p̂i,j
)2

∣∣∣∣
(b)
≤ 1

λ̄2N

∥∥∥Θ̂(1)
·,j −Θ(1)

·,j

∥∥∥2

2

(c)= 1
λ̄2

[
E
(
Θ̂(1)

)]2
≤ 1

λ̄2

[
E
(
Θ̂
)]2 (d)= op(1)op(1) (e)= op(1), (S.30)

where (a) follows as ai,j ∈ {0, 1}, (b) follows from Assumption 3, (c) follows from Eq. (16),

(d) follows from (C1), and (e) follows because op(1)op(1) = op(1).

To control second term in Eq. (S.29), we condition on {
(
p̂i,j, θ̂

(1)
i,j

)
}i∈Rs . Then, Eq. (24)

provides that {
(
p̂i,j, θ̂

(1)
i,j

)
}i∈Rs ⊥⊥ {ε

(1)
i,j }i∈Rs . As a result, ∑i∈Rs

ε
(1)
i,j pi,j

(
θ̂

(1)
i,j − θ

(1)
i,j

)
/
(
p̂i,j
)2

is subGaussian
(
σ
[∑

i∈Rs

(
pi,j
)2(

θ̂
(1)
i,j − θ

(1)
i,j

)2
/
(
p̂i,j
)4]1/2)

because ε
(1)
i,j is subGaussian(σ),

zero-mean and independent across all i ∈ [N ] due to Assumption 2. Then, we have

1
N
E
[∣∣∣∣∣ ∑
i∈Rs

2ε
(1)
i,j pi,j

(
θ̂

(1)
i,j −θ

(1)
i,j

)
(
p̂i,j
)2

∣∣∣∣∣
∣∣∣∣{(p̂i,j, θ̂

(1)
i,j )}i∈Rs

]

(a)
≤ cσ

N

√√√√√√∑
i∈Rs

(
pi,j
(
θ̂

(1)
i,j −θ

(1)
i,j

)
(
p̂i,j
)2

)2

(b)
≤ cσ

λ̄2N

∥∥∥Θ̂(1)
·,j −Θ(1)

·,j

∥∥∥
2

(c)= cσ

λ̄2

E
(
Θ̂(1)

)
√

N
≤ cσ

λ̄2

E
(
Θ̂
)

√
N

(d)= op(1), (S.31)

where (a) follows as the first moment of subGaussian(σ) is O(σ), (b) follows from Assump-

tions 1 and 3, (c) follows from Eq. (16), and (d) follows from (C1).

To control third term in Eq. (S.29), we condition on {
(
p̂i,j, θ̂

(1)
i,j

)
}i∈Rs . Then, Eq. (24)

provides that {
(
p̂i,j, θ̂

(1)
i,j

)
}i∈Rs ⊥⊥ {(ηi,j, ε

(1)
i,j )}i∈Rs . As a result, ∑

i∈Rs
ε

(1)
i,j ηi,j

(
θ̂

(1)
i,j −

θ
(1)
i,j

)
/
(
p̂i,j
)2

is subExponential
(
σ
[∑

i∈Rs

(
θ̂

(1)
i,j − θ

(1)
i,j

)2
/
(
p̂i,j
)4]1/2

/
√

ℓ1
)

because ε
(1)
i,j ηi,j is

subExponential(σ/
√

ℓ1) due to Lemma S6 as well as zero-mean and independent across all

13



i ∈ [N ] due to Assumption 2. Then, we have

1
N
E
[∣∣∣∣∣ ∑
i∈Rs

2ε
(1)
i,j ηi,j

(
θ̂

(1)
i,j −θ

(1)
i,j

)
(
p̂i,j
)2

∣∣∣∣∣
∣∣∣∣{(p̂i,j, θ̂

(1)
i,j )}i∈Rs

]

(a)
≤ cσ

N

√√√√√∑
i∈Rs

(
θ̂

(1)
i,j −θ

(1)
i,j(

p̂i,j
)2

)2

(b)
≤ cσ

λ̄2N

∥∥∥Θ̂(1)
·,j −Θ(1)

·,j

∥∥∥
2

(c)= cσ

λ̄2

E
(
Θ̂(1)

)
√

N
≤ cσ

λ̄2

E
(
Θ̂
)

√
N

(d)= op(1), (S.32)

where (a) follows as the first moment of subExponential(σ) is O(σ) (Zhang and Wei, 2022,

Corollary 3), (b) follows from Assumption 3, (c) follows from Eq. (16), and (d) follows from

(C1).

To control fourth term in Eq. (S.29), we condition on {p̂i,j}i∈Rs . Then, Eq. (24) provides

that {p̂i,j}i∈Rs ⊥⊥ {(ηi,j, ε
(1)
i,j )}i∈Rs . As a result, ∑i∈Rs

(
ε

(1)
i,j

)2
ηi,j/

(
p̂i,j
)2

is subWeibull2/3(
σ2
[∑

i∈Rs
1/
(
p̂i,j
)4]1/2

/
√

ℓ1
)

because (ε(1)
i,j )2ηi,j is subWeibull2/3(σ2/

√
ℓ1) due to Lemma S7

as well as zero-mean and independent across all i ∈ [N ] due to Assumption 2. Then, we

have

1
N
E
[∣∣∣∣∣ ∑

i∈Rs

(
ε

(1)
i,j

)2
ηi,j(

p̂i,j
)2

∣∣∣∣∣
∣∣∣∣{p̂i,j}i∈Rs

]
(a)
≤ cσ2

N

√√√√√∑
i∈Rs

1(
p̂i,j
)4

(b)
≤ cσ2

λ̄2
√

N
= op(1), (S.33)

where (a) follows as the first moment of subWeibull2/3(σ) is O(σ) (Zhang and Wei, 2022,

Corollary 3) and (b) follows from Assumption 3.

To control fifth term in Eq. (S.29), we have

∣∣∣∣∣ ∑
i∈Rs

((
ε

(1)
i,j

)2
pi,j(

p̂i,j
)2 −

(σ(1)
i,j )2

pi,j

)∣∣∣∣∣ =
∣∣∣∣∣ ∑
i∈Rs

((
ε

(1)
i,j

)2
pi,j(

p̂i,j
)2 −

(
σ

(1)
i,j

)2
pi,j(

p̂i,j
)2 +

(
σ

(1)
i,j

)2
pi,j(

p̂i,j
)2 −

(σ(1)
i,j )2

pi,j

)∣∣∣∣∣
(a)
≤
∣∣∣∣∣ ∑
i∈Rs

([(
ε

(1)
i,j

)2
−
(
σ

(1)
i,j

)2]
pi,j(

p̂i,j
)2

)∣∣∣∣∣+
∣∣∣∣∣ ∑
i∈Rs

((
σ

(1)
i,j

)2
pi,j(

p̂i,j
)2 −

(σ(1)
i,j )2

pi,j

)∣∣∣∣∣,
(S.34)

where (a) follows from the triangle inequality. To control the first term in Eq. (S.34),

we condition on {p̂i,j}i∈Rs . Then, Eq. (24) provides that {p̂i,j}i∈Rs ⊥⊥ {ε
(1)
i,j }i∈Rs . Further,

14



E[(ε(1)
i,j )2 − (σ(1)

i,j )2] = 0 due to (C3) and Assumption 2. As a result, ∑i∈Rs

[(
ε

(1)
i,j

)2
−(

σ
(1)
i,j

)2]
pi,j/

(
p̂i,j
)2

is subExponential
(
σ2
[∑

i∈Rs

(
pi,j
)2

/
(
p̂i,j
)4]1/2)

because (ε(1)
i,j )2 − (σ(1)

i,j )2

is subExponential(σ2) and independent across all i ∈ [N ] due to Lemma S6. Then, we have

1
N
E
[∣∣∣∣∣ ∑

i∈Rs

[(
ε

(1)
i,j

)2
−
(
σ

(1)
i,j

)2]
pi,j(

p̂i,j
)2

∣∣∣∣∣
∣∣∣∣{p̂i,j}i∈Rs

]
(a)
≤ cσ2

N

√√√√√∑
i∈Rs

(
pi,j(
p̂i,j
)2

)2 (b)
≤ cσ2

λ̄2
√

N
=op(1),

(S.35)

where (a) follows as the first moment of subExponential(σ) is O(σ) and (b) follows from

Assumption 3. To bound the second term in Eq. (S.34), applying the Cauchy-Schwarz

inequality yields that

1
N

∣∣∣∣∣ ∑
i∈Rs

((
σ

(1)
i,j

)2
pi,j(

p̂i,j
)2 −

(σ(1)
i,j )2

pi,j

)∣∣∣∣∣ = 1
N

∣∣∣∣∣ ∑
i∈Rs

(
σ

(1)
i,j

)2((
pi,j
)2

−
(
p̂i,j
)2)

(
p̂i,j
)2

pi,j

∣∣∣∣∣
(a)
≤ 2

N

∑
i∈Rs

(
σ

(1)
i,j

)2∣∣∣pi,j − p̂i,j
∣∣∣(

p̂i,j
)2

pi,j

(b)
≤ 2σ2

λλ̄2N

∑
i∈Rs

∣∣∣pi,j − p̂i,j
∣∣∣

(c)
≤ 2σ2

λλ̄2
√

N

∥∥∥P·,j−P̂·,j

∥∥∥
2

(d)= 2σ2

λλ̄2
E
(
P̂
) (e)= op(1), (S.36)

where (a) follows by using
(
pi,j
)2

−
(
p̂i,j
)2

= (pi,j + p̂i,j)(pi,j − p̂i,j) ≤ 2|pi,j − p̂i,j|, (b) follows

from Assumptions 1 and 3, and because the variance of a subGaussian random variable

is upper bounded by the square of its subGaussian norm, (c) follows by the relationship

between ℓ1 and ℓ2 norms of a vector, (d) follows from Eq. (16), and (e) follows from (C1).

Putting together Eqs. (S.29) to (S.36) using Lemma S9,

1
N

∣∣∣∣ ∑
i∈Rs

T(1)
i,j

∣∣∣∣ = op(1).

Then, the claim in Eq. (S.28) follows for a = 1 by using |∑i∈[N ] T
(1)
i,j | ≤ |∑i∈R0 T

(1)
i,j | +

|∑i∈R1 T
(1)
i,j |. The proof of Eq. (S.28) for a = 0 follows similarly.
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S3 Simulations

This section reports simulation results on the performance of the DR estimator of Eq. (11)

and the OI and IPW estimators of Eqs. (9) and (10), respectively.

Data Generating Process (DGP). We now briefly describe the DGP for our simulations;

supplementary appendix S3.1 provides details. All simulations set N = M . To generate,

P , Θ(0), and Θ(1), we use the latent factor model given in Eq. (S.47). To introduce

unobserved confounding, we set the unit-specific latent factors to be the same across P ,

Θ(0), and Θ(1), i.e., U = U (0) = U (1). The entries of U and the measurement-specific latent

factors, V, V (0), V (1) are each sampled independently from a uniform distribution, with

hyperparameter rp equal to the dimension of U and V , and hyperparameter rθ equal to

the dimension of U (a) and V (a) for a = 0, 1. Further, the entries of the noise matrices E(0)

and E(1) are sampled independently from a normal distribution, and the entries of W are

sampled independently as in Eq. (4). Then, y
(a)
i,j , ai,j, and yi,j are determined from Eqs. (1)

to (3), respectively. The simulation generates P , Θ(0), and Θ(1) once. Given the fixed values

of P , Θ(0), and Θ(1), the simulation generates 2500 realizations of (Y, A)—that is, only

the noise matrices E(0), E(1), W are resampled for each of the 2500 realizations. For each

simulation realization, we apply the Cross-Fitted-SVD algorithm with hyper-parameters

as in Proposition 4 and λ̄ = λ = 0.05 to obtain P̂ , Θ̂(0), and Θ̂(1), and compute ATE·,j from

Eq. (5), and ÂTE OI
·,j , ÂTE IPW

·,j and ÂTE DR
·,j from Eqs. (9) to (11).

Results. Figure 5 reports simulation results for N = 1000, with rp = 3, rθ = 3 in Panel

(a), and rp = 5, rθ = 3 in Panel (b). Figure 2 in Section 3 reports simulation results

for rp = 3, rθ = 5. In each case, the figure shows a histogram of the distribution of

ÂTE DR
·,j − ATE·,j across 2500 simulation instances for a fixed j, along with the best fitting

Gaussian distribution (green curve). The histogram counts are normalized so that the

area under the histogram integrates to one. Figure 5 plots the Gaussian distribution in
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(a) rp = 3, rθ = 3 (b) rp = 5, rθ = 3

Figure 5: Empirical illustration of the asymptotic performance of DR as in Theorem 2.
The histogram corresponds to the errors of 2500 independent instances of DR estimates,
the green curve represents the (best) fitted Gaussian distribution, and the black curve
represents the Gaussian approximation from Theorem 2. The dashed green, blue, and red
lines represent the biases of DR, OI, and IPW estimators.

the result of Theorem 2 (black curve). The dashed blue, red and green lines in Figures 2

and 5 indicate the values of the means of the OI, IPW, and DR error, respectively, across

simulation instances. For reference, we place a black solid line at zero. The DR estimator

has minimal bias and a close-to-Gaussian distribution. The biases of OI and IPW are

non-negligible. In supplementary appendix S3.1, we compare the biases and the standard

deviations of OI, IPW, and DR across many j.

Panels (a), (b), and (c) of Figure 6 report coverage rates over the 2500 simulations for

ÂTE DR
·,j -centered nominal 95% confidence intervals with N = 500, N = 1000, and N = 1500,

respectively, all with M = N and rp = rθ = 3. For every j ∈ [M ], panels (a), (b) and (c)

show ĉj, the percentage of times [ÂTE DR
·,j ± 1.96σ̂j/

√
N ] covers ATE·,j (in blue), and cj,

the percentage of times [ÂTE DR
·,j ± 1.96σj/

√
N ] covers ATE·,j (in green). Panel (d) shows

the means and standard deviations of {ĉj}j∈[M ] and {cj}j∈[M ] for different values of N .

Confidence intervals based on the large-sample approximation results of Section 4 exhibit

small size distortion even for fairly small values of N .

In Figure 7, we compare the absolute biases and the standard deviations of OI, IPW,
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(a) N = 500 (b) N = 1000

(c) N = 1500 (d) Average coverage across outcomes

Figure 6: Panels (a), (b), and (c) report coverage rates for nominal 95% confidence intervals
constructed using the estimated variance from Eq. (25) (in blue) and the true variance from
Eq. (22) (in green) for N ∈ {500, 1000, 1500} and M = N . Panel (d) shows the means and
standard deviations of coverage rates across outcomes for different values of N .

and DR across the first 50 values of j for N = 1000, with rp = 3, rθ = 3 in Panel (a),

rp = 3, rθ = 5 in Panel (b), and rp = 5, rθ = 3 in Panel (c). For each j, the estimate of

the biases of OI, IPW, and DR is the average of ÂTE OI
·,j − ATE·,j, ÂTE IPW

·,j − ATE·,j and

ÂTE DR
·,j − ATE·,j across the Q simulation instances. Likewise, the estimate of the standard

deviation of OI, IPW, and DR is the standard deviation of ÂTE OI
·,j −ATE·,j , ÂTE IPW

·,j −ATE·,j

and ÂTE DR
·,j − ATE·,j across the Q simulation instances. The DR estimator consistently

outperforms the OI and IPW estimators in reducing both absolute biases and standard

deviations.
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(a) rp = 3, rθ = 3

(b) rp = 3, rθ = 5

(c) rp = 5, rθ = 3

Figure 7: Empirical illustration of the biases and the standard deviations of DR, OI, and
IPW estimators for different j, and for different rp and rθ.

S3.1 Details for the data generating process

The inputs of the data generating process (DGP) are: the probability bound λ; two positive

constants c(0) and c(1); and the standard deviations σ
(a)
i,j for every i ∈ [N ], j ∈ [M ], a ∈ {0, 1}.

The DGP is:

1. For positive integers rp, rθ and r = max{rp, rθ}, generate a proxy for the common

unit-level latent factors U shared ∈ RN×r, such that, for all i ∈ [N ] and j ∈ [r], ushared
i,j
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is independently sampled from a Uniform(
√

λ,
√

1 − λ) distribution, with λ ∈ (0, 1).

2. Generate proxies for the measurement-level latent factors V, V (0), V (1) ∈ RM×r, such

that, for all i ∈ [M ] and j ∈ [r], vi,j, v
(0)
i,j , v

(1)
i,j are independently sampled from a

Uniform(
√

λ,
√

1 − λ) distribution.

3. Generate the treatment assignment probability matrix P

P = 1
rp

U shared
[N ]×[rp]V

⊤
[M ]×[rp].

4. For a ∈ {0, 1}, run SVD on U sharedV (a)⊤, i.e.,

SVD(U sharedV (a)⊤) = (U (a), Σ(a), W (a)).

Then, generate the mean potential outcome matrices Θ(0) and Θ(1):

Θ(a) = c(a)Sum(Σ(a))
rθ

U
(a)
[N ]×[rθ]W

(a)⊤
[M ]×[rθ],

where Sum(Σ(a)) denotes the sum of all entries of Σ(a).

5. Generate the noise matrices E(0) and E(1), such that, for all i ∈ [N ], j ∈ [M ], a ∈ {0, 1},

ε
(a)
i,j is independently sampled from a N (0, (σ(a)

i,j )2) distribution. Then, determine y
(a)
i,j

from Eq. (2).

6. Generate the noise matrix W , such that, for all i ∈ [N ], j ∈ [M ], ηi,j is independently

sampled as per Eq. (4). Then, determine ai,j and yi,j from Eq. (3) and Eq. (1),

respectively.

In our simulations, we set λ = 0.05, c(0) = 1 and c(1) = 2. In practice, instead of choosing

the values of σ
(a)
i,j as ex-ante inputs, we make them equal to the standard deviation of all

the entries in Θ(a) for every i and j, separately for a ∈ {0, 1}.
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S4 Supporting Concentration and Convergence Re-

sults

This section presents known results on subGaussian, subExponential, and subWeibull

random variables (defined below), along with few basic results on convergence of random

variables.

We use subGaussian(σ) to represent a subGaussian random variable, where σ is a bound

on the subGaussian norm; and subExponential(σ) to represent a subExponential random

variable, where σ is a bound on the subExponential norm. Recall the definitions of the

norms from Section 1 of the main article.

Lemma S4 (subGaussian concentration: Theorem 2.6.3 of Vershynin (2018)). Let x ∈ Rn

be a random vector whose entries are independent, zero-mean, subGaussian(σ) random

variables. Then, for any b ∈ Rn and t ≥ 0,

P
{∣∣∣b⊤x

∣∣∣ ≥ t
}

≤ 2 exp
( −ct2

σ2∥b∥2
2

)
.

The following corollary expresses the bound in Lemma S4 in a convenient form.

Corollary S1 (subGaussian concentration). Let x ∈ Rn be a random vector whose entries

are independent, zero-mean, subGaussian(σ) random variables. Then, for any b ∈ Rn and

any δ ∈ (0, 1), with probability at least 1 − δ,

∣∣∣b⊤x
∣∣∣ ≤ σ

√
cℓδ · ∥b∥2.

Proof. The proof follows from Lemma S4 by choosing δ ≜ 2 exp(−ct2/σ2∥b∥2
2).

Lemma S5 (subExponential concentration: Theorem 2.8.2 of Vershynin (2018)). Let

x ∈ Rn be a random vector whose entries are independent, zero-mean, subExponential(σ)
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random variables. Then, for any b ∈ Rn and t ≥ 0,

P
{∣∣∣b⊤x

∣∣∣ ≥ t
}

≤ 2 exp
(

− c min
(

t2

σ2∥b∥2
2
,

t

σ∥b∥∞

))
.

The following corollary expresses the bound in Lemma S5 in a convenient form.

Corollary S2 (subExponential concentration). Let x ∈ Rn be a random vector whose

entries are independent, zero-mean, subExponential(σ) random variables. Then, for any

b ∈ Rn and any δ ∈ (0, 1), with probability at least 1 − δ,

∣∣∣b⊤x
∣∣∣ ≤ σm(cℓδ) · ∥b∥2,

where recall that m(cℓδ) = max
(
cℓδ,

√
cℓδ
)
.

Proof. Choosing t = t0σ∥b∥2 in Lemma S5, we have

P
{∣∣∣b⊤x

∣∣∣ ≥ t0σ∥b∥2

}
≤ 2 exp

(
− ct0 min

(
t0,

∥b∥2

∥b∥∞

))
≤ 2 exp

(
− ct0 min

(
t0, 1

))
,

where the second inequality follows from min{t0, c} ≥ min{t0, 1} for any c ≥ 1 and

∥b∥2 ≥ ∥b∥∞. Then, the proof follows by choosing δ ≜ 2 exp
(

− ct0 min
(
t0, 1

))
which fixes

t0 = max{
√

cℓδ, cℓδ} = m(cℓδ).

Lemma S6 (Product of subGaussians is subExponential: Lemma. 2.7.7 of Vershynin

(2018)). Let x1 and x2 be subGaussian(σ1) and subGaussian(σ2) random variables, respec-

tively. Then, x1x2 is subExponential(σ1σ2) random variable.

Next, we provide the definition of a subWeibull random variable.

Definition S1 (subWeibull random variable: Definition 1 of Zhang and Wei (2022)). For

ρ > 0, a random variable x is subWeibull with index ρ if it has a bounded subWeibull norm

defined as follows:

∥x∥ψρ ≜ inf{t > 0 : E[exp(|x|ρ/tρ)] ≤ 2}.
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We use subWeibullρ(σ) to represent a subWeibull random variable with index ρ, where

σ is a bound on the subWeibull norm. Note that subGaussian and subExponential random

variables are subWeibull random variable with indices 2 and 1, respectively.

Lemma S7 (Product of subWeibulls is subWeibull: Proposition 2 of Zhang and Wei (2022)).

For i ∈ [d], let xi be a subWeibullρi
(σi) random variable. Then, Πi∈[d]xi is subWeibullρ(σ)

random variable where

σ = Πi∈[d]σi and ρ =
 ∑
i∈[d]

1/ρi

−1

.

Next set of lemmas provide useful intermediate results on stochastic convergence.

Lemma S8. Let Xn and Xn be sequences of random variables. Let δn be a deterministic

sequence such that 0 ≤ δn ≤ 1 and δn → 0. Suppose Xn = op(1) and P(|Xn| ≤ |Xn|) ≥ 1−δn.

Then, Xn = op(1).

Proof. We need to show that for any ϵ > 0 and δ > 0, there exist finite n, such that

P(|Xn| > δ) < ϵ

for all n ≥ n. Fix any ϵ > 0. As δn converges to zero, there exists a finite n0 such that

δn < ϵ/2, for all n ≥ n0. As Xn is converges to zero in probability, there exists finite n1,

such that P(|Xn| > δ) < ϵ/2 for all n ≥ n1. Now, the event {|Xn| > δ} belongs to the

union of {|Xn| > |Xn|} and {|Xn| > δ}. As a result, we obtain

P(|Xn| > δ) ≤ P(|Xn| > |Xn|) + P(|Xn| > δ) ≤ δn + P(|Xn| > δ) < ϵ,

for n ≥ n = max{n0, n1}. Therefore, Xn = op(1).

Lemma S9. Let Xn and Xn be sequences of random variables. Suppose E
[
|Xn|

∣∣∣Xn

]
= op(1).

Then, Xn = op(1).
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Proof. Fix any δ > 0. Markov’s inequality implies

P
(

|Xn| ≥ δ
∣∣∣∣Xn

)
≤ 1

δ
E
[
|Xn|

∣∣∣∣Xn

]
= op(1).

The law of total probability and the boundedness of conditional probabilities yield

P
(

|Xn| ≥ δ
)

= E
[
P
(

|Xn| ≥ δ

∣∣∣∣Xn

)]
−→ 0.

Lemma S10. Let Xn and Xn be sequences of random variables. Suppose Xn = Op(1)

and P
(
|Xn| ≥ |Xn| + f(ϵ)

)
< ϵ for some positive function f and every ϵ ∈ (0, 1). Then,

Xn = Op(1).

Proof. We need to show that for any ϵ > 0, there exist finite δ > 0 and n > 0, such that

P(|Xn| > δ) < ϵ

for all n ≥ n. Fix any ϵ > 0. Because Xn is bounded in probability, there exist finite δ and n0,

such that P(|Xn| > δ) < ϵ/2 for all n ≥ n0. Further, we have P
(
|Xn| ≥ |Xn|+f(ϵ/2)

)
< ϵ/2.

Now, the event {|Xn| > δ + f(ϵ/2)} belongs to the union of {|Xn| > |Xn| + f(ϵ/2)} and

{|Xn| > δ}. As a result, we obtain

P
(
|Xn| > δ + f(ϵ/2)

)
≤ P

(
|Xn| > |Xn| + f(ϵ/2)

)
+ P

(
|Xn| > δ

)
< ϵ.

for all n ≥ n0. In other words, P(|Xn| > δ) < ϵ for all n ≥ n, where δ = δ + f(ϵ/2) > 0 and

n = n0. Therefore, Xn = Op(1).
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S5 Proofs of Corollaries 1 and 2

S5.1 Proof of Corollary 1: Gains of DR over OI and IPW

Fix any j ∈ [M ] and any δ ∈ (0, 1). First, consider IPW. Take any α ∈ [0, 1/2]. From

Eq. (20), with probability at least 1 − δ,

Nα
∣∣∣ÂTE IPW

·,j − ATE·,j

∣∣∣ ≤ 2θmax

λ̄
NαE

(
P̂
)

+ f1(δ)Nα−1/2 ≤ 2θmax

λ̄
NαE

(
P̂
)

+ f1(δ),

where

f1(δ) ≜ 2
λ̄

(√
cℓδ/12
√

ℓ1
θmax + 2σ

√
cℓδ/12 + 2σm(cℓδ/12)√

ℓ1

)
,

for m(c) and ℓc as defined in Section 1 of the main article. Then, if E
(
P̂
)

= Op

(
N−α

)
,

Lemma S10 implies

∣∣∣ÂTE IPW
·,j − ATE·,j

∣∣∣ = Op

(
N−α

)
.

Next, consider DR. From Eq. (17), with probability at least 1 − δ,

∣∣∣ÂTE DR
·,j − ATE·,j

∣∣∣ ≤ 2
λ̄

E
(
Θ̂
)
E
(
P̂
)

+ f2(δ)N−1/2,

where

f2(δ) ≜ 2
λ̄

(√
cℓδ/12
√

ℓ1
E
(
Θ̂
)

+ 2σ
√

cℓδ/12 + 2σm(cℓδ/12)√
ℓ1

)
.

Suppose E
(
P̂
)

= Op

(
N−α

)
and E

(
Θ̂
)

= Op

(
N−β

)
. Consider two cases. First, suppose

α + β ≤ 0.5. Then, with probability at least 1 − δ,

Nα+β
∣∣∣ÂTE DR

·,j − ATE·,j

∣∣∣ ≤ 2
λ̄

Nα+βE
(
Θ̂
)
E
(
P̂
)

+ f2(δ)Nα+β−1/2

≤ 2
λ̄

Nα+βE
(
Θ̂
)
E
(
P̂
)

+ f2(δ).
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Lemma S10 implies
∣∣∣ÂTE DR

·,j − ATE·,j

∣∣∣ = Op(N−(α+β)). Next, suppose α + β > 0.5. With

probability at least 1 − δ,

N1/2
∣∣∣ÂTE DR

·,j − ATE·,j

∣∣∣ ≤ 2
λ̄

N1/2E
(
Θ̂
)
E
(
P̂
)

+ f2(δ) ≤ 2
λ̄

Nα+βE
(
Θ̂
)
E
(
P̂
)

+ f2(δ).

Lemma S10 implies
∣∣∣ÂTE DR

·,j − ATE·,j

∣∣∣ = Op(N−1/2).

S5.2 Proof of Corollary 2: Consistency for DR

Fix any j ∈ [M ]. Then, choose δ = 1/N in Eq. (18) and note that every term in the right

hand side of Eq. (18) is op(1) under the conditions on E
(
Θ̂
)

and E
(
P̂
)
. Then, Eq. (21)

follows from Lemma S8.

S6 Proof of Proposition 1 (19): Finite Sample Guar-

antees for OI

Fix any j ∈ [M ]. Recall the definitions of the parameter ATE·,j and corresponding outcome

imputation estimate ÂTE OI
·,j from Eqs. (5) and (9), respectively. The error ∆ATEOI

·,j =

ÂTE OI
·,j − ATE·,j can be re-expressed as

∆ATEOI
·,j = 1

N

∑
i∈[N ]

(
θ̂

(1)
i,j −θ̂

(0)
i,j

)
− 1

N

∑
i∈[N ]

(
θ

(1)
i,j −θ

(0)
i,j

)
= 1

N

∑
i∈[N ]

((
θ̂

(1)
i,j −θ

(1)
i,j

)
−
(
θ̂

(0)
i,j −θ

(0)
i,j

))
.

Using the triangle inequality, we have

∣∣∣∆ATEOI
·,j

∣∣∣ ≤ 1
N

∣∣∣∣ ∑
i∈[N ]

(
θ̂

(1)
i,j − θ

(1)
i,j

)∣∣∣∣+ 1
N

∣∣∣∣ ∑
i∈[N ]

(
θ̂

(0)
i,j − θ

(0)
i,j

)∣∣∣∣. (S.37)

Consider any a ∈ {0, 1}. We claim that

1
N

∣∣∣∣ ∑
i∈[N ]

(
θ̂

(a)
i,j − θ

(a)
i,j

)∣∣∣∣ ≤ E
(
Θ̂(a)

)
. (S.38)

The proof is complete by putting together Eqs. (S.37) and (S.38).
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Proof of Eq. (S.38) Fix any a ∈ {0, 1}. Using the Cauchy-Schwarz inequality, we have

1
N

∣∣∣∣ ∑
i∈[N ]

(
θ̂

(1)
i,j − θ

(1)
i,j

)∣∣∣∣ ≤ 1
N

∥1N∥2∥Θ̂(1)
·,j − Θ(1)

·,j ∥2 ≤ 1√
N

||Θ̂(1) − Θ(1)||1,2.

S7 Proof of Proposition 1 (20): Finite Sample Guar-

antees for IPW

Fix any j ∈ [M ]. Recall the definitions of the parameter ATE·,j and corresponding inverse

probability weighting estimate ÂTE IPW
·,j from Eqs. (5) and (10), respectively. The error

∆ATEIPW
·,j = ÂTE IPW

·,j − ATE·,j can be re-expressed as

∆ATEIPW
·,j = 1

N

∑
i∈[N ]

(
yi,jai,j

p̂i,j
− yi,j(1 − ai,j)

1 − p̂i,j

)
− 1

N

∑
i∈[N ]

(
θ

(1)
i,j − θ

(0)
i,j

)

= 1
N

∑
i∈[N ]

((
yi,jai,j

p̂i,j
− θ

(1)
i,j

)
−
(

yi,j(1 − ai,j)
1 − p̂i,j

− θ
(0)
i,j

))

(a)= 1
N

∑
i∈[N ]

(
T(1,IPW)
i,j + T(0,IPW)

i,j

)
, (S.39)

where (a) follows after defining T(1,IPW)
i,j ≜ yi,jai,j/p̂i,j − θ

(1)
i,j and T(0,IPW)

i,j ≜ θ
(0)
i,j − yi,j(1 −

ai,j)/(1 − p̂i,j). Then, we have

T(1,IPW)
i,j = yi,jai,j

p̂i,j
− θ

(1)
i,j

(a)=

(
θ

(1)
i,j + ε

(1)
i,j

)(
pi,j + ηi,j

)
p̂i,j

− θ
(1)
i,j

= θ
(1)
i,j

(
pi,j + ηi,j

p̂i,j
− 1

)
+ ε

(1)
i,j

(
pi,j + ηi,j

p̂i,j

)

=
θ

(1)
i,j

(
pi,j − p̂i,j

)
p̂i,j

+
θ

(1)
i,j ηi,j

p̂i,j
+

ε
(1)
i,j pi,j

p̂i,j
+

ε
(1)
i,j ηi,j

p̂i,j
, (S.40)

where (a) follows from Eqs. (1) to (3). A similar derivation for a = 0 implies that

T(0,IPW)
i,j = θ

(0)
i,j − yi,j(1 − ai,j)

1 − p̂i,j

27



= −
θ

(0)
i,j

(
1 − pi,j −

(
1 − p̂i,j

))
1 − p̂i,j

−
θ

(0)
i,j (−ηi,j)
1 − p̂i,j

−
ε

(0)
i,j

(
1 − pi,j

)
1 − p̂i,j

−
ε

(0)
i,j (−ηi,j)
1 − p̂i,j

=
θ

(0)
i,j

(
pi,j − p̂i,j

)
1 − p̂i,j

+
θ

(0)
i,j ηi,j

1 − p̂i,j
−

ε
(0)
i,j

(
1 − pi,j

)
1 − p̂i,j

+
ε

(0)
i,j ηi,j

1 − p̂i,j
.

Consider any a ∈ {0, 1} and δ ∈ (0, 1). We claim that, with probability at least 1 − 6δ,

1
N

∣∣∣∣ ∑
i∈[N ]

T(a,IPW)
i,j

∣∣∣∣ ≤ 2
λ̄

||Θ(a)||max E
(
P̂
)
+ 2

√
cℓδ

λ̄
√

ℓ1N
||Θ(a)||max+ 2σ

√
cℓδ

λ̄
√

N
+ 2σm(cℓδ)

λ̄
√

ℓ1N
. (S.41)

where recall that m(cℓδ) = max
(
cℓδ,

√
cℓδ
)
. We provide a proof of this claim at the end of

this section. Applying triangle inequality in Eq. (S.39) and using Eq. (S.41) with a union

bound, we obtain that

∣∣∣∆ATEIPW
·,j

∣∣∣ ≤ 2
λ̄

θmax E
(
P̂
)

+ 2
√

cℓδ

λ̄
√

ℓ1N
θmax + 4σ

√
cℓδ

λ̄
√

N
+ 4σm(cℓδ)

λ̄
√

ℓ1N
,

with probability at least 1 − 12δ. The claim in Eq. (20) follows by re-parameterizing δ.

Proof of Eq. (S.41). This proof follows a very similar road map to that used for

establishing the inequality in Eq. (S.5). Recall the partitioning of the units [N ] into R0

and R1 from Assumption 4. Now, to enable the application of concentration bounds, we

split the summation over i ∈ [N ] in the left hand side of Eq. (S.41) into two parts—one

over i ∈ R0 and the other over i ∈ R1—such that the noise terms are independent of the

estimates of Θ(0), Θ(1), P in each of these parts as in Eqs. (14) and (15).

Fix a = 1 and note that |∑i∈[N ] T
(1,IPW)
i,j | ≤ |∑i∈R0 T

(1,IPW)
i,j | + |∑i∈R1 T

(1,IPW)
i,j |. Fix any

s ∈ {0, 1}. Then, Eq. (S.40) and triangle inequality imply that

∣∣∣∣ ∑
i∈Rs

T(1,IPW)
i,j

∣∣∣∣≤ ∣∣∣∣ ∑
i∈Rs

θ
(1)
i,j

(
pi,j−p̂i,j

)
p̂i,j

∣∣∣∣+∣∣∣∣ ∑
i∈Rs

θ
(1)
i,j ηi,j

p̂i,j

∣∣∣∣+ ∣∣∣∣ ∑
i∈Rs

ε
(1)
i,j pi,j

p̂i,j

∣∣∣∣+∣∣∣∣ ∑
i∈Rs

ε
(1)
i,j ηi,j

p̂i,j

∣∣∣∣. (S.42)

Next, note that the decomposition in Eq. (S.42) is identical to the one in Eq. (S.6),

except for the fact when compared to Eq. (S.6), the first two terms in Eq. (S.42) have a

factor of θ
(1)
i,j instead of

(
θ̂

(1)
i,j −θ

(1)
i,j

)
. As a result, mimicking steps used to derive Eq. (S.11),
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we obtain the following bound, with probability at least 1 − 3δ,

1
N

∣∣∣∣ ∑
i∈Rs

T(1,IPW)
i,j

∣∣∣∣≤ 1
λ̄N

||Θ(1)||1,2||P̂ −P ||1,2+
√

cℓδ

λ̄
√

ℓ1N
||Θ(1)||1,2+ σ

√
cℓδ

λ̄N
||P ||1,2+ σm(cℓδ)

λ̄
√

ℓ1N
||1||1,2

(a)
≤ 1

λ̄
√

N
||Θ(1)||max||P̂ −P ||1,2+

√
cℓδ

λ̄
√

ℓ1N
||Θ(1)||max+ σ

√
cℓδ

λ̄
√

N
+ σm(cℓδ)

λ̄
√

ℓ1N
(b)
≤ 1

λ̄
||Θ(1)||max E

(
P̂
)

+
√

cℓδ

λ̄
√

ℓ1N
||Θ(1)||max + σ

√
cℓδ

λ̄
√

N
+ σm(cℓδ)

λ̄
√

ℓ1N
, (S.43)

where (a) follows because ||Θ(1)||1,2 ≤
√

N ||Θ(1)||max, ||P ||1,2 ≤
√

N and ||1||1,2 =
√

N , and (b)

follows from Eq. (16). Then, the claim in Eq. (S.41) follows for a = 1 by using Eq. (S.43)

and applying a union bound over s ∈ {0, 1}. The proof of Eq. (S.41) for a = 0 follows

similarly.

S8 Proof of Proposition 3 and TW algorithm of Bai and

Ng (2021)

In Section S8.1, we prove Proposition 3, i.e., we show that the estimates of P , Θ(0), and Θ(1)

generated by Cross-Fitted-MC satisfy Assumption 4. Next, we detail the TW algorithm in

Section S8.2.

S8.1 Proof of Proposition 3: Guarantees for Cross-Fitted-MC

Consider any matrix completion algorithm MC. We show that

P̂I , Θ̂(a)
I ⊥⊥ WI (S.44)

and

P̂I ⊥⊥ WI , E
(a)
I , (S.45)
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for every I ∈ P and a ∈ {0, 1}, where P is the block partition of [N ] × [M ] into four blocks

from Assumption 5. Then, Eqs. (14) and (15) in Assumption 4 follow from Eqs. (S.44)

and (S.45), respectively.

Consider Θ̂(0), Θ̂(1), and P̂ as in Eqs. (30) to (32). Fix any a ∈ {0, 1}. From Eq. (29),

note that P̂I depends only on A⊗1−I and Θ̂(a)
I depends on Y (a),obs⊗1−I . In other words, the

randomness in
(
P̂I , Θ̂(a)

I

)
stems from the randomness in

(
A−I , Y

(a),obs
−I

)
which in turn stems

from the randomness in
(
W−I , E

(a)
−I

)
. Then, Eq. (S.44) follows from Eq. (27). Likewise,

the randomness in P̂I stems from the randomness in A−I which in turn stems from the

randomness in W−I . Then, Eq. (S.45) follows from Eq. (28).

To prove Eq. (24), we show that

P̂I , Θ̂(a)
I ⊥⊥ WI , E

(a)
I , (S.46)

for every I ∈ P and a ∈ {0, 1}. As mentioned above, the randomness in
(
P̂I , Θ̂(a)

I

)
stems from the randomness in

(
A−I , Y

(a),obs
−I

)
which in turn stems from the randomness in(

W−I , E
(a)
−I

)
. Then, Eq. (S.46) follows from Eq. (33).

S8.2 The TW algorithm of Bai and Ng (2021).

Bai and Ng (2021) propose TW to impute missing values in matrices with a set of rows and a

set of columns without missing entries. More concretely, for any matrix S ∈ {R∪ { ?}}N×M ,

let Robs ⊆ [N ] and Cobs ⊆ [M ] denote the set of all rows and all columns, respectively, with

all entries observed. Then, all missing entries of S belong to the block I = Rmiss × Cmiss,

where Rmiss ≜ [N ] \ Robs and Cmiss ≜ [M ] \ Cobs.

Given a rank hyper-parameter r ∈ [min{|Robs|, |Cobs|}], TWr produces an estimate of T

as follows:

30



1. Run SVD separately on S(tall) ≜ S[N ]×Cobs and S(wide) ≜ SRobs×[M ], i.e.,

SVD(S(tall)) = (U (tall) ∈ RN×rN , Σ(tall) ∈ RrN ×rN , V (tall) ∈ R|Cobs|×rN )

and

SVD(S(wide)) = (U (wide) ∈ R|Robs|×rM , Σ(wide) ∈ RrM ×rM , V (wide) ∈ RM×rM )

where rN ≜ min{N, |Cobs|} and rM ≜ min{|Robs|, M}. The columns of U (tall) and

U (wide) are the left singular vectors of S(tall) and S(wide), respectively, and the columns

of V (tall) and V (wide) are the right singular vectors of S(tall) and S(wide), respectively.

The diagonal entries of Σ(tall) and Σ(wide) are the singular values of S(tall) and S(wide),

respectively, and the off-diagonal entries are zeros. This step of TW requires the

existence of the fully observed blocks S(tall) and S(wide), i.e., Robs and Cobs cannot be

empty.

2. Let Ṽ (tall) ∈ R|Cobs|×r be the sub-matrix of V (tall) that keeps the columns corresponding

to the r largest singular values only. Let Ṽ (wide) ∈ R|Cobs|×r be the sub-matrix of

V (wide) that keeps the columns corresponding to the r largest singular values only and

the rows corresponding to the indices in Cobs only. Obtain a rotation matrix R ∈ Rr×r

as follows:

R ≜ Ṽ (tall)⊤Ṽ (wide)
(
Ṽ (wide)⊤Ṽ (wide)

)−1
.

That is, R is obtained by regressing Ṽ (tall) on Ṽ (wide). In essence, R aligns the right

singular vectors of S(tall) and S(wide) using the entries that are common between

these two matrices, i.e., the entries corresponding to indices Robs × Cobs. The formal

guarantees of the TW algorithm remains unchanged if one alternatively regresses Ṽ (wide)

on Ṽ (tall), or uses the left singular vectors of S(tall) and S(wide) for alignment.

3. Let Σ(tall) ∈ RrN ×r be the sub-matrix of Σ(tall) that keeps the columns corresponding
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to the r largest singular values only. Let V
(wide) ∈ RM×r be the sub-matrix of V (wide)

that keeps the columns corresponding to the r largest singular values only. Return

T̂ ≜ U (tall)Σ(tall)
RV

(wide)⊤ as an estimate for T .

S9 Theoretical guarantees for Cross-Fitted-SVD

To establish theoretical guarantees for Cross-Fitted-SVD, we adopt three assumptions

from Bai and Ng (2021). The first assumption imposes a low-rank structure on the matrices

P , Θ(0), and Θ(1), namely that their entries are given by an inner product of latent factors.

Assumption S1 (Linear latent factor model on the confounders). There exist constants

rp, rθ0 , rθ1 ∈ [min{N, M}] and a collection of latent factors

U ∈ RN×rp , V ∈ RM×rp , U (a) ∈ RN×rθa , and V (a) ∈ RM×rθa for a ∈ {0, 1},

such that the unobserved confounders (Θ(0), Θ(1), P ) satisfy the following factorization:

P = UV ⊤ and Θ(a) = U (a)V (a)⊤ for a ∈ {0, 1}. (S.47)

Assumption S1 decomposes each of the unobserved confounders (P , Θ(0), and Θ(0))

into low-dimensional unit-dependent latent factors (U , U (0), and U (1)) and measurement-

dependent latent factors (V , V (0), and V (1)). In particular, every unit i ∈ [N ] is associated

with three low-dimensional factors: (i) Ui ∈ Rrp , (ii) U
(0)
i ∈ Rrθ0 , and (iii) U

(1)
i ∈ Rrθ1 .

Similarly, every measurement j ∈ [M ] is associated with three factors: (i) Vj ∈ Rrp , (ii)

V
(0)
j ∈ Rrθ0 , and (iii) V

(1)
j ∈ Rrθ1 . Low-rank assumptions are widespread in the matrix

completion literature.

The second assumption requires that the factors that determine P , Θ(0) ⊙ (1 − P ), and

Θ(1) ⊙ P explain a sufficiently large amount of the variation in the data. This assumption

is made on the factors of Θ(0) ⊙ (1 − P ) and Θ(1) ⊙ P instead of Θ(0) and Θ(1) as the TW
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algorithm is applied on Y (0),full = Y ⊙ (1 − A) and Y (1),full = Y ⊙ A, instead of Y (0),obs and

Y (1),obs (see steps 4 and 5 of Cross-Fitted-SVD). To determine the factors of Θ(0) ⊙ (1−P )

and Θ(1) ⊙ P , let

U ≜ [1N , −U ] ∈ RN×(rp+1) and V ≜ [1M , V ] ∈ RM×(rp+1),

where 1N ∈ RN and 1M ∈ RM are vectors of all 1’s. Then,

Θ(0) ⊙ (1 − P ) = U
(0)

V
(0)⊤ and Θ(1) ⊙ P = U

(1)
V

(1)⊤
, (S.48)

where U
(0)

≜ U ∗ U (0) ∈ RN×rθ0 (rp+1), V
(0)

≜ V ∗ V (0) ∈ RM×rθ0 (rp+1), U
(1)

≜ U ∗ U (1) ∈

RN×rθ1rp , and V
(1)

≜ V ∗ V (1) ∈ RM×rθ1rp , with the operator ∗ denoting the Khatri-Rao

product (see Section 1). We provide details of the derivation of these factors in the

supplementary appendix (Section S9.1.3). The ranks rp, rθ0 , and rθ1 can be consistently

estimated using the full matrices A, Y (0),full, and Y (1),full, and the methods in Bai and Ng

(2002) and Bai (2003). Hence, they are treated as known.

Assumption S2 (Strong factors). There exists a positive constant c such that

∥U∥2,∞ ≤ c, ∥V ∥2,∞ ≤ c, ∥U (a)∥2,∞ ≤ c, and ∥V (a)∥2,∞ ≤ c for a ∈ {0, 1}.

Further, the matrices defined below exist and are positive definite:

lim
N→∞

U⊤U

N
, lim

M→∞

V ⊤V

M
, lim

N→∞

U
(a)⊤

U
(a)

N
, and lim

M→∞

V
(a)⊤

V
(a)

M
for a ∈ {0, 1}.

Assumption S2, a classic assumption in the literature on latent factor models, ensures

that the factor structure is strong. Specifically, it ensures that each eigenvector of P ,

Θ(0) ⊙ (1 − P ), and Θ(1) ⊙ P carries sufficiently large signal.

The third assumption requires a strong factor structure on the sub-matrices of P ,

Θ(0) ⊙ (1 − P ), and Θ(1) ⊙ P corresponding to every block I in the block partition P from

Assumption 5. Further, it also requires that the size I grows linearly in N and M .
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Assumption S3 (Strong block factors). Consider the block partition P ≜ {Rs × Ck : s, k ∈

{0, 1}} from Assumption 5. For every s ∈ {0, 1}, let U(s) ∈ R|Rs|×rp, U
(0)
(s) ∈ R|Rs|×rθ0 (rp+1),

and U
(1)
(s) ∈ R|Rs|×rθ1rp be the sub-matrices of U , U

(0), and U
(1), respectively, that keeps the

rows corresponding to the indices in Rs. For every k ∈ {0, 1}, let V(k) ∈ R|Ck|×rp, V
(0)
(k) ∈

R|Ck|×rθ0 (rp+1), and V
(1)
(k) ∈ R|Ck|×rθ1rp be the sub-matrices of V , V

(0), and V
(1), respectively,

that keeps the rows corresponding to the indices in Ck. Then, for every s, k ∈ {0, 1}, the

matrices defined below exist and are positive definite:

lim
N→∞

U⊤
(s)U(s)

|Rs|
, lim

M→∞

V ⊤
(k)V(k)

|Ck|
, lim

N→∞

U
(a)⊤
(s) U

(a)
(s)

|Rs|
, and lim

M→∞

V
(a)⊤
(k) V

(a)
(k)

|Ck|
for a ∈ {0, 1}.

Further, for every s, k ∈ {0, 1}, |Rs| = Ω(N) and |Ck| = Ω(M).

The subsequent assumption introduces additional conditions on the noise variables in

Bai and Ng (2021) than those specified in Assumptions 2 and 5.

Assumption S4 (Weak dependence in noise across measurements and independence in

noise across units). .

(a) ∑j′∈[M ]

∣∣∣E[ηi,jηi,j′ ]
∣∣∣ ≤ c for every i ∈ [N ] and j ∈ [M ],

(b) ∑j′∈[M ]

∣∣∣E[ε(a)
i,j ε

(a)
i,j′ ]
∣∣∣ ≤ c for every i ∈ [N ], j ∈ [M ], and a ∈ {0, 1}, where ε

(a)
i,j ≜

θi,jηi,j + ε
(a)
i,j pi,j + ε

(a)
i,j ηi,j, and

(c) The elements of {(E(a)
i,· , Wi,·) : i ∈ [N ]} are mutually independent (across i) for

a ∈ {0, 1}.

Assumption S4(a) and Assumption S4(b) requires the noise variables to exhibit only

weak dependency across measurements. Still, these assumptions allow the existence of pairs

of perfectly correlated outcomes (e.g., j, j′ ∈ [M ] such that ai,j = ai,j′). Assumption S4(c)

requires the noise (E(a), W ) to be jointly independent across units, for every a ∈ {0, 1}. We

are now ready to prove the guarantees on the estimates produced by Cross-Fitted-SVD.
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S9.1 Proof of Proposition 4: Guarantees for Cross-Fitted-SVD

To prove this result, we first derive a corollary of Lemma A.1 in Bai and Ng (2021) for a

generic matrix of interest T , such that S = (T + H) ⊗ F , and apply it to P , Θ(0) ⊙ (1 − P ),

and Θ(1) ⊙ P . We impose the following restrictions on T , H, and F .

Assumption S5 (Strong linear latent factors). There exist a constant rT ∈ [min{N, M}]

and a collection of latent factors

Ũ ∈ RN×rT and Ṽ ∈ RM×rT ,

such that,

(a) T satisfies the factorization: T = Ũ Ṽ ⊤,

(b) ||Ũ ||2,∞ ≤ c and ||Ṽ ||2,∞ ≤ c for some positive constant c, and

(c) The matrices defined below exist and are positive definite:

lim
N→∞

Ũ⊤Ũ

N
and lim

M→∞

Ṽ ⊤Ṽ

M
.

Assumption S6 (Zero-mean, weakly dependent, and subExponential noise). The noise

matrix H is such that,

(a) {hi,j : i ∈ [N ], j ∈ [M ]} are zero-mean subExponential with the subExponential norm

bounded by a constant σ,

(b) ∑j′∈[M ]

∣∣∣E[hi,jhi,j′ ]
∣∣∣ ≤ c for every i ∈ [N ] and j ∈ [M ], and

(c) The elements of {Hi,· : i ∈ [N ]} are mutually independent (across i).

Assumption S7 (Strong block factors). Consider the latent factors Ũ ∈ RN×rT and

Ṽ ∈ RM×rT from Assumption S5. Let Robs ⊆ [N ] and Cobs ⊆ [M ] denote the set of rows

and columns of S, respectively, with all entries observed, and Rmiss ≜ [N ] \ Robs and

Cmiss ≜ [M ] \ Cobs. Let Ũobs ∈ R|Robs|×rT and Ũmiss ∈ R|Rmiss|×rT be the sub-matrices of
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Ũ that keeps the rows corresponding to the indices in Robs and Rmiss, respectively. Let

Ṽ obs ∈ R|Cobs|×rT and Ṽ miss ∈ R|Cmiss|×rT be the sub-matrices of Ṽ that keeps the rows

corresponding to the indices in Cobs and Cmiss, respectively. Then, the matrices defined below

exist and are positive definite:

lim
N→∞

Ũobs⊤Ũobs

|Robs|
, lim
M→∞

Ũmiss⊤Ũmiss

|Rmiss|
, lim
N→∞

Ṽ obs⊤Ṽ obs

|Cobs|
, and lim

M→∞

Ṽ miss⊤Ṽ miss

|Cmiss|
. (S.49)

Further, the mask matrix F is such that

|Robs| = Ω(N), |Rmiss| = Ω(N), |Cobs| = Ω(M), and |Cmiss| = Ω(M). (S.50)

The next result characterizes the entry-wise error in recovering the missing entries of a

matrix where all entries in one block are deterministically missing (see the discussion in

Section 5.1 of the main article) using the TW algorithm (summarized in Section S8.2). Its

proof, essentially established as a corollary of Bai and Ng (2021, Lemma A.1), is provided

in Section S9.2.

Corollary S3. Consider a matrix of interest T , a noise matrix H, and a mask matrix F

such that that Assumptions S5 to S7 hold. Let S ∈ {R ∪ { ?}}N×M be the observed matrix

as in Eq. (6). Let Robs ⊆ [N ] and Cobs ⊆ [M ] denote the set of rows and columns of S,

respectively, with all entries observed. Let I = Rmiss × Cmiss where Rmiss ≜ [N ] \ Robs and

Cmiss ≜ [M ] \ Cobs. Then, TWrT
produces an estimate T̂I of TI such that

||T̂I − TI ||max = Op

(
1√
N

+ 1√
M

)
,

as N, M → ∞.

Given this corollary, we now complete the proof of Proposition 4. Consider the partition

P from Assumption 5 and fix any I ∈ P. Recall that Cross-Fitted-SVD applies TW on

P ⊗ 1−I , Y (0),full ⊗ 1−I , and Y (1),full ⊗ 1−I , and note that the mask matrix 1−I satisfies the

requirement in Assumption S7, i.e., Eq. (S.50) under Assumption S3.
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S9.1.1 Estimating P .

Consider estimating P using Cross-Fitted-SVD. To apply Corollary S3, we use Assump-

tions S1 and S2 to note that P satisfies Assumption S5 with rank parameter rp. Then, we use

Eq. (4), Assumption 2, and Assumption S4 to note that W satisfies Assumption S6. Finally,

we use Assumption S3 to note that Assumption S7 holds. Step 2 of Cross-Fitted-SVD

can be rewritten as P̂ = Projλ̄
(
P
)

and P = Cross-Fitted-MC(TWr1 , A, P) where r1 = rp.

Then,

||P̂I − PI ||max
(a)
≤ ||P I − PI ||max

(b)= Op

(
1√
N

+ 1√
M

)
,

where (a) follows from Assumption 1, the choice of λ̄, and the definition of Projλ̄(·), and

(b) follows from Corollary S3. Applying a union bound over all I ∈ P , we have

E
(
P̂
) (a)

≤ ||P̂ − P ||max = Op

(
1√
N

+ 1√
M

)
, (S.51)

where (a) follows from the definition of (1, 2) operator norm.

S9.1.2 Estimating Θ(0) and Θ(1).

For every a ∈ {0, 1}, we show that

E
(
Θ̂(a)

)
= Op

(
1√
N

+ 1√
M

)
. (S.52)

We focus on a = 1 noting that the proof for a = 0 is analogous. We split the proof in two

cases: (i) ||
(
Θ̂(1) − Θ(1)

)
⊙ P̂ ||max ≤ ||Θ(1) ⊙

(
P̂ − P

)
||max and (ii) ||

(
Θ̂(1) − Θ(1)

)
⊙ P̂ ||max ≥

||Θ(1) ⊙
(
P̂ − P

)
||max.

In the first case, we have

λ̄||Θ̂(1)−Θ(1)||max
(a)
≤ ||

(
Θ̂(1)−Θ(1)

)
⊙P̂ ||max ≤||Θ(1)⊙

(
P̂ −P

)
||max

(b)
≤ ||Θ(1)||max||P̂ −P ||max,

(S.53)
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where (a) follows from Assumption 3 and (b) follows from the definition of ||Θ(1)||max. Then,

E
(
Θ̂(1)

) (a)
≤ ||Θ̂(1)−Θ(1)||max

(b)
≤ ||Θ(1)||max

λ̄
||P̂ −P ||max

(c)= ||Θ(1)||max

λ̄
Op

(
1√
N

+ 1√
M

)
,

where (a) follows from the definition of (1, 2) operator norm, (b) follows from Eq. (S.53),

and (c) follows from Eq. (S.51). Then, Eq. (S.52) follows as 1/λ̄ and ||Θ(1)||max are assumed

to be bounded.

In the second case, using Eqs. (2) and (3) to expand Y (1),full, we have

Y (1),full = Θ(1) ⊙ P + Θ(1) ⊙ W + E(1) ⊙ P + E(1) ⊙ W.

Next, we utilize two claims proven in Sections S9.1.3 and S9.1.4 respectively: Θ(1) ⊙ P

satisfies Assumption S5 with rank parameter rθ1rp and

ε(1) ≜ Θ(1) ⊙ W + E(1) ⊙ P + E(1) ⊙ W,

satisfies Assumption S6. Finally, Assumption S3 implies that Assumption S7 holds.

Now, note that step 5 of Cross-Fitted-SVD can be rewritten as Θ̂(1) = Θ(1)
⃝/ P̂ and

Θ(1) = Cross-Fitted-MC(TWr3 , Y (1),full, P) where r3 = rθ1rp. Then, from Corollary S3,

||Θ(1)
I − Θ(1)

I ⊙ PI ||max = Op

(
1√
N

+ 1√
M

)
.

Applying a union bound over all I ∈ P and noting that Θ(1) = Θ̂(1) ⊙ P̂ , we have

||Θ̂(1) ⊙ P̂ − Θ(1) ⊙ P ||max = Op

(
1√
N

+ 1√
M

)
. (S.54)

The left hand side of Eq. (S.54) can be written as,

||Θ̂(1) ⊙ P̂ − Θ(1) ⊙ P ||max = ||Θ̂(1) ⊙ P̂ − Θ(1) ⊙ P̂ + Θ(1) ⊙ P̂ − Θ(1) ⊙ P ||max

(a)
≥ ||

(
Θ̂(1) − Θ(1)

)
⊙ P̂ ||max − ||Θ(1) ⊙

(
P̂ − P

)
||max

(b)
≥ λ̄||Θ̂(1) − Θ(1)||max − ||Θ(1)||max||P̂ − P ||max, (S.55)

where (a) follows from triangle inequality as ||
(
Θ̂(1) − Θ(1)

)
⊙ P̂ ||max ≥ ||Θ(1) ⊙

(
P̂ − P

)
||max
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and (b) follows from the choice of λ̄ and the definition of ||Θ(1)||max. Then,

E
(
Θ̂(1)

) (a)
≤ ||Θ̂(1) − Θ(1)||max

(b)
≤ 1

λ̄
||Θ̂(1) ⊙ P̂ − Θ(1) ⊙ P ||max + ||Θ(1)||max

λ̄
||P̂ −P ||max

(c)= 1
λ̄

Op

(
1√
N

+ 1√
M

)
+ ||Θ(1)||max

λ̄
Op

(
1√
N

+ 1√
M

)
,

where (a) follows from the definition of L1,2 norm, (b) follows from Eq. (S.55), and (c)

follows from Eqs. (S.51) and (S.54). Then, Eq. (S.52) follows as 1/λ̄ and ||Θ(1)||max are

assumed to be bounded.

S9.1.3 Proof that Θ(0) ⊙ (1 − P ) and Θ(1) ⊙ P satisfy Assumption S5.

First, we show that U
(0) ∈ RN×rθ0 (rp+1) and V

(0) ∈ RN×rθ0 (rp+1) are factors of Θ(0) ⊙ (1−P ),

and U
(1) ∈ RN×rθ1rp and V

(1) ∈ RN×rθ1 are factors of Θ(1) ⊙ P as claimed in Eq. (S.48). We

have

Θ(1)⊙P =
( ∑
i∈[rθ1 ]

U
(1)
i,· V

(1)⊤

i,·

)
⊙
( ∑
j∈[rp]

Uj,·V
⊤
j,·

)
=

∑
i∈[rθ1 ]

∑
j∈[rp]

(
U

(1)
i,· ⊙Uj,·

)(
V

(1)
i,· ⊙Vj,·

)⊤

(a)=
(
U ∗ U (1)

)(
V ∗ V (1)

)⊤ (b)= U
(1)

V
(1)⊤

,

where (a) follows from the definition of Khatri-Rao product (see Section 1 of the main

article) and (b) follows from the definitions of U
(1) and V

(1). The proof for Θ(0) ⊙ (1 − P )

follows similarly. Then, Assumption S5(a) holds from Eq. (S.48). Next, we note that

||U (1)||2,∞ = ||U ∗ U (1)||2,∞
(a)= max

i∈[N ]

√√√√ ∑
j∈[rp]

u2
i,j

∑
j′∈[rθ1 ]

(u(1)
i,j′)2 ≤ ||U ||2,∞||U (1)||2,∞

(b)
≤ c,

where (a) follows from the definition of Khatri-Rao product (see Section 1 of the main

article), and (b) follows from Assumption S2. Then, Θ(1) ⊙ P satisfies Assumption S5(b)

by using similar arguments on V
(1). Further, Θ(0) ⊙ (1 − P ) satisfies Assumption S5(b)

by noting that ||U ||2,∞ and ||V ||2,∞ are bounded whenever ||U ||2,∞ and ||V ||2,∞ are bounded,

respectively. Finally, Assumption S5(c) holds from Assumption S2.
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S9.1.4 Proof that ε(1) satisfies Assumption S6

Recall that ε(1) ≜ Θ(1) ⊙ W + E(1) ⊙ P + E(1) ⊙ W . Then, Assumption S6(a) holds

as ε
(1)
i,j is zero-mean from Assumption 2 and Eq. (3), and ε

(1)
i,j is subExponential because

ε
(1)
i,j ηi,j is a subExponential random variable Lemma S6, every subGaussian random variable

is subExponential random variable, and sum of subExponential random variables is a

subExponential random variable. Finally, Assumption S6(b) and Assumption S6(b) hold

from Assumption S4(b) and Assumption S4(c), respectively.

S9.2 Proof of Corollary S3

Corollary S3 is a direct application of Bai and Ng (2021, Lemma A.1), specialized to our

setting. Notably, Bai and Ng (2021) make three assumptions numbered A, B, and C in

their paper to establish the corresponding result. It remains to establish that the conditions

assumed in Corollary S3 imply the necessary conditions used in the proof of Bai and Ng

(2021, Lemma A.1). First, note that certain assumptions in Bai and Ng (2021) are not

actually used in their proof of Lemma A.1 (or in the proof of other results used in that proof),

namely, the distinct eigenvalue condition in Assumption A(a)(iii), the asymptotic normality

conditions in Assumption A(c) and the asymptotic normality conditions in Assumption C.

Next, Eq. (S.50) in Assumption S7 implies Assumption B and Eq. (S.49) in Assumption S7

is equivalent to the remaining conditions in Assumption C.

It remains to show how Assumptions S5 and S6 imply the remainder of conditions in

Bai and Ng (2021, Assumptions A). For completeness, these conditions are collected in the

following assumption.

Assumption S8. The noise matrix H is such that,

(a) maxj∈[M ]
1
N

∑
j′∈[M ]

∣∣∣∑i∈[N ] E[hi,jhi,j′ ]
∣∣∣ ≤ c,

(b) maxj∈[M ]

∣∣∣E[hi,jhi′,j]
∣∣∣ ≤ ci,i′ and maxi∈[N ]

∑
i′∈[N ] ci,i′ ≤ c,
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(c) 1
NM

∑
i,i′∈[N ]

∑
j,j′∈[M ]

∣∣∣E[hi,jhi′,j′ ]
∣∣∣ ≤ c, and

(d) maxj,j′∈[M ]
1
N2E

[∣∣∣∑i∈[N ]

(
hi,jhi,j′ − E[hi,jhi,j′ ]

)∣∣∣4].
Assumption S8 is a restatement of the subset of conditions from Bai and Ng (2021,

Assumption A) necessary in Bai and Ng (2021, proof of Lemma A.1) and it essentially

requires weak dependence in the noise across measurements and across units. In particular,

Assumption S8(a), (b), (c), and (d) correspond to Assumption A(b)(ii), (iii), (iv), (v),

respectively, of Bai and Ng (2021). For the other conditions in Bai and Ng (2021, Assumption

A), note that Assumption S5 above is equivalent to their Assumption A(a)(i) and (ii) of Bai

and Ng (2021) when the factors are non-random as in this work. Similarly, Assumption S6(a)

above is analogous to Assumption A(b)(i) of Bai and Ng (2021). Assumption A(b)(vi) of

Bai and Ng (2021) is implied by their other Assumptions for non-random factors as stated

in Bai (2003).

To establish Corollary S3, it remains to establish that Assumption S8 holds, which is

done in Section S9.2.1 below.

S9.2.1 Assumption S8 holds

First, Assumption S8(a) holds as follows,

max
j∈[M ]

1
N

∑
j′∈[M ]

∣∣∣∣ ∑
i∈[N ]

E
[
hi,jhi,j′

]∣∣∣∣ (a)
≤ max

j∈[M ]

1
N

∑
i∈[N ]

∑
j′∈[M ]

∣∣∣∣E[hi,jhi,j′

]∣∣∣∣ (b)
≤ max

j∈[M ]

1
N

∑
i∈[N ]

c = c,

where (a) follows from triangle inequality and (b) follows from Assumption S6(b). Next,

from Assumption S6(a) and Assumption S6(c), we have

max
j∈[M ]

∣∣∣E[hi,jhi′,j]
∣∣∣ =


0 if i ̸= i′

maxj∈[M ]

∣∣∣E[h2
i,j]
∣∣∣ ≤ c if i = i′
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Then, Assumption S8(b) holds as maxi∈[N ] maxj∈[M ]
∑
i′∈[N ]

∣∣∣E[hi,jhi′,j ]
∣∣∣ ≤ c. Next, Assump-

tion S8(c) holds as follows,

1
NM

∑
i,i′∈[N ]

∑
j,j′∈[M ]

∣∣∣E[hi,jhi′,j′ ]
∣∣∣ (a)= 1

NM

∑
i∈[N ]

∑
j,j′∈[M ]

∣∣∣E[hi,jhi,j′ ]
∣∣∣ (b)

≤ 1
NM

∑
i∈[N ]

∑
j∈[M ]

c = c,

where (a) follows from Assumption S6(c) and (b) follows from Assumption S6(b). Next,

let γi,j,j′ ≜ hi,jhi,j′ − E[hi,jhi,j′ ] and fix any j, j′ ∈ [M ]. Then, Assumption S8(d) holds as

follows,

1
N2E

[( ∑
i∈[N ]

γi,j,j′

)4]
= 1

N2E
[( ∑

i1∈[N ]
γi1,j,j′

)( ∑
i2∈[N ]

γi2,j,j′

)( ∑
i3∈[N ]

γi3,j,j′

)( ∑
i4∈[N ]

γi4,j,j′

)]
(a)= 1

N2

∑
i∈[N ]

E
[
γ4
i,j,j′

]
+ 3

N2

∑
i ̸=i′∈[N ]

E
[
γ2
i,j,j′γ2

i′,j,j′

]
≤ c,

where (a) follows from linearity of expectation and Assumption S6(c) after by noting that

E[γi,j,j′ ] = 0 for all i, j, j′ ∈ [N ] × [M ] × [M ] and (b) follows because γi,j,j′ has bounded

moments due to Assumption S6(a).

S10 Doubly-robust estimation in panel data with

lagged effects

This section describes how the doubly-robust framework of this article can be generalized to

a panel data setting with lagged treatment effects. We highlight that, as is the convention

in a panel data setting, t denotes the column (time) index and T denotes the total number

of columns (time periods).
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S10.1 Setup

As described in Section 4.4, potential outcomes are generated as follows: for all i ∈ [N ], t ∈

[T ], and a ∈ {0, 1},

y
(a|yi,t−1)
i,t = α(a)yi,t−1 + θ

(a)
i,t + ε

(a)
i,t , (S.56)

where y
(a|yi,t−1)
i,t is the potential outcome for unit i at time t given treatment a ∈ {0, 1} and

lagged outcome yi,t−1. This model combines unobserved confounding and lagged treatment

effects, where the lagged effect is carried over via the auto-regressive term, α(a)yi,t−1, with

α(a) being the auto-regressive parameter for treatment a ∈ {0, 1}. The treatment possibly

starts at t = 1, and yi,0 is assumed to not be affected by any future exposure to the treatment.

Treatment assignments are continually assumed to be generated via Eq. (3). As in Eq. (1),

realized outcomes, yi,t, depend on potential outcomes and treatment assignments,

yi,t = y
(0|yi,t−1)
i,t (1 − ai,t) + y

(1|yi,t−1)
i,t ai,t, (S.57)

for all i ∈ [N ] and t ∈ [T ].

S10.2 Target causal estimand

The lagged effects in Eq. (S.56) imply that the treatment effects need to be defined for

sequences of treatments. For concreteness, consider the effect at time T for an always-treat

policy, i.e., ai,t = 1, versus never-treat, i.e., ai,t = 0, for i ∈ [N ] and j ∈ [T ]. Let y
[1]
i,T be the

potential outcome for unit i at time T under always-treat and y
[0]
i,T be the potential outcome

for unit i at time T under never-treat. We aim to estimate the difference in the expected

potential outcomes under these two treatment policies averaged over all units,

ATE·,T ≜ µ
[1]
·,T − µ

[0]
·,T ,
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where

µ
[a]
·,T ≜

1
N

∑
i∈[N ]

E[y[a]
i,T ],

with the expectation taken over the distribution of {ε
(a)
i,t }i∈[N ],t∈[T ], conditioned on the

initial outcomes {yi,0}i∈[N ]. We make the following assumption about the noise in potential

outcomes.

Assumption S9 (Zero-mean noise conditioned on the initial outcomes). {ε
(a)
i,t : i ∈ [N ], t ∈

[T ], a ∈ {0, 1}} are mean zero conditioned on {yi,0}i∈[N ].

Assumption S9 holds whenever Assumption 2(a) holds conditioned on the initial outcomes

{yi,0}i∈[N ]. Another sufficient condition for Assumption S9 is that (ε(0)
i,t , ε

(1)
i,t ) are independent

in time. Given this, the time dependence in the expected potential outcome E[y[a]
i,T ] is

captured as follows: for a ∈ {0, 1}

E[y[a]
i,T ] = (α(a))Tyi,0 +

T−1∑
s=0

(α(a))sθ(a)
i,T−s. (S.58)

Eq. (S.58) forms the basis of our doubly-robust estimator of ATE·,T .

We chose the contrast between always-treat and never-treat for concreteness. However,

the framework and the results in this section can be generalized in a straightforward manner

to contrast any two pre-specified sequences of treatments, where the treatment can also be

chosen stochastically with pre-specified probabilities. For the remainder of this section, we

condition on the initial outcomes {yi,0}i∈[N ] but omit it from our notation for brevity.

S10.3 Doubly-robust estimator

The DR estimator of ATE·,T combines the estimates of (α(0), α(1)), (Θ(0), Θ(1)), and P . First,

we obtain the estimates (α̂(0), α̂(1)). These estimates can be computed using the likelihood

approach of Bai (2024) whenever there exists some units such that they all have treatment

a for some consecutive time points, for a ∈ {0, 1}.
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Next, we define the residual matrices Ỹ (0),obs and Ỹ (1),obs. Let Ỹ (0),obs ∈ {R ∪ { ?}}N×T

be a matrix with (i, t)-th entry equal to yi,t − α̂(0)yi,t−1 if ai,t = 0, and equal to ? otherwise.

Analogously, let Ỹ (1),obs ∈ {R ∪ { ?}}N×T be a matrix with (i, t)-th entry equal to yi,t −

α̂(1)yi,t−1 if ai,t = 1, and equal to ? otherwise. Then, similar to Eq. (8), the application of

matrix completion yields the following estimates:

Θ̂(0) = MC(Ỹ (0),obs), Θ̂(1) = MC(Ỹ (1),obs), and P̂ = MC(A). (S.59)

Then, the DR estimate is defined as follows:

ÂTE DR
·,T,J ≜ µ̂

[1,DR]
·,T,J − µ̂

[0,DR]
·,T,J where µ̂

[a,DR]
·,T,J = 1

N

∑
i∈[N ]

[
(α̂(a))Tyi,0 +

J−1∑
s=0

(α̂(a))sθ̂[a,DR]
i,T−s

]
,

(S.60)

where

θ̂
[0,DR]
i,T−s ≜ θ̂

(0)
i,T−s +

(
yi,T−s − α̂(0)yi,T−s−1 − θ̂

(0)
i,T−s

)1 − ai,T−s

1 − p̂i,T−s
,

and

θ̂
[1,DR]
i,T−s ≜ θ̂

(1)
i,T−s +

(
yi,T−s − α̂(1)yi,T−s−1 − θ̂

(1)
i,T−s

)ai,T−s

p̂i,T−s

The estimator is parameterized by an integer J , which denotes the contiguous number of

time periods preceding time T that are used to estimate the expectations at time T (see the

summation in Eq. (S.58)). Notably, using preceding J terms instead of T −1 terms allows us

to adapt cross-fitting for the setting with lagged treatment effects. Let us briefly elaborate:

suppose (α̂(0), α̂(1)) are estimated from entries of Y in [N ]× [L] for some L < T −J . Consider

the column partitions C0 = {L+1, . . . , T −J} and C1 = {T −J +1, . . . , T} of times [T ]\ [L].

Suppose Eqs. (27) and (28) in Assumption 5 hold for I = R0 × C1 and I = R1 × C1 for some

row partitions R0 and R1 of units [N ]. Then, applying Cross-Fitted-MC on the residual

matrices Ỹ (0),obs and Ỹ (1),obs with row partitions (R0, R1) and column partitions (C0, C1)
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ensures that Assumption 4 holds for every column in C1 with row partitions (R0, R1).

S10.4 Non-asymptotic guarantees

Recall the notation for E
(
Θ̂
)

and E
(
P̂
)

from Eq. (16) and define

E(α̂) ≜
∑

a∈{0,1}
E(α̂(a)) where E(α̂(a)) ≜ |α̂(a) − α(a)|. (S.61)

Our analysis makes two additional assumptions to state a non-asymptotic error bound

for ÂTE DR
·,T,J − ATE·,T .

Assumption S10 (Bounded auto-regressive parameters and estimates). The auto-regressive

parameters and their estimates are such that |α(a)| ≤ α and |α̂(a)| ≤ α, for all a ∈ {0, 1},

where α ∈ [0, 1).

Assumption S10 requires the regression parameters to be bounded by a fixed constant

less than 1. This condition is standard for auto-regressive models, as it implies stability of

the outcome process in Eq. (S.56). The analogous condition on the estimated parameters

can be ensured by truncating the estimates to [0, α].

Assumption S11 (Bounded observed outcomes, mean potential outcomes, and estimated

mean potential outcomes). The observed outcomes, the mean potential outcomes, and

the estimates of the mean potential outcomes are such that |yi,t| ≤ C1, |θ(a)
i,t | ≤ C2, and

|θ̂(a)
i,t | ≤ C3, for all i ∈ [N ], j ∈ [M ], and a ∈ {0, 1}, where C1, C2, and C3 are universal

constants.

Assumption S11 requires the observed outcomes, the mean potential outcomes, and the

estimates of the mean potential outcomes to be bounded to simplify our proof. With a more

delicate analysis, Assumption S11 can be relaxed to require the average observed outcomes

over i ∈ [N ], the average mean potential outcomes over i ∈ [N ], and the average estimated

mean potential outcomes over i ∈ [N ] to be bounded.
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Theorem A.1 (Finite Sample Guarantees for DR with lagged effects). Consider the panel

data model with lagged effects defined via Eqs. (S.56) and (S.57). Suppose Assumptions 1

to 3, S10, and S11 hold and Assumption 4 holds for t ∈ {T − J + 1, . . . , T} for some integer

J ∈ [T ]. Fix δ ∈ (0, 1). Then, with probability at least 1 − δ, we have

∣∣∣ÂTE DR
·,T,J − ATE·,T

∣∣∣ ≤
ErrDR

N,δ/J

1 − α
+ C

[
αJ

1 − α
+ E(α̂)

(
TαT−1 + 1

1 − α

)]
, (S.62)

for ErrDR
N,δ as defined in Eq. (18) in Theorem 1 and a universal constant C.

The proof of Theorem A.1 is given in Section S10.5. For brevity, the finite sample

guarantees above use E
(
Θ̂
)

and E
(
P̂
)

as defined in Eq. (16), but the proof can be easily

modified to replace the maxj∈[T ] appearing in the definition of || · ||1,2 in Eq. (16) with

maxj∈{T−J+1,··· ,T}.

Next, we remark that Theorem A.1 is a strict generalization of Theorem 1. To this end,

note that when α(a) = 0 for all a ∈ {0, 1}, the model considered in Theorem A.1 simplifies

to the model considered in Theorem 1. For this setting, the assumptions in Theorem 1

imply that the assumptions in Theorem A.1 hold with J = 1. First, Assumption S10 holds

with α = 0 when α(a) = 0 for all a ∈ {0, 1}. Second, the proof of Theorem A.1 can be easily

modified to drop the requirement of Assumption S11 when J = 1 and α = 0. Substituting

α = 0, E(α̂) = 0 (i.e., the auto-regressive parameters are known to be 0), and J = 1 in

Eq. (S.62) recovers the guarantee stated in Theorem 1.

Doubly-robust behavior of ÂTE DR
·,T,J . When α ̸= 0 and bounded away from one, Eq. (S.62)

bounds the absolute error of the DR estimator by the rate of

E
(
Θ̂
)(

E
(
P̂
)

+
√

log J

N

)
+ 1√

N
+ αJ + E(α̂).

Then, if the conditions of Theorem A.1 are satisfied for some J such that C log N ≥ J ≥
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log N/(2 log(1/α)), the error rate of the DR estimator is bounded by

E
(
Θ̂
)(

E
(
P̂
)

+
√

log log N

N

)
+ 1√

N
+ E(α̂),

which decays a parametric rate of Op(N−0.5) as long as

E
(
Θ̂
)
E
(
P̂
)

= Op

( 1√
N

)
, E

(
Θ̂
)

= Op

( 1√
log log N

)
, and E(α̂) = Op

( 1√
N

)
.

Note that Proposition 4 still implies that Cross-Fitted-SVD achieves E
(
P̂
)

=

Op(N−0.5 + T −0.5) under suitable conditions. To estimate the auto-regressive parameter

α(a) for a ∈ {0, 1}, Bai (2024, Section 5) shows that whenever there exist K units such

that they all have treatment a for L consecutive time points, a full information maximum

likelihood estimator provides |α(a) − α̂(a)| = Op((KL)−0.5). Next, establishing a matrix

completion guarantee for the mean potential outcomes by residualizing as in Eq. (S.59)

can be reduced to deriving a matrix completion guarantee for an approximately low-rank

matrix. To this end, Agarwal and Singh (2024, Theorem 5) suggests that, up to logarithmic

factors, an error rate of N−0.5 + T −0.5 + E(α̂) is plausible for E
(
Θ̂
)

for our setting. A

complete derivation of error guarantees for E(α̂) and E
(
Θ̂
)

in the dynamic model is an

interesting venue for future work.

S10.5 Proof of Theorem A.1: Finite Sample Guarantees for DR

with lagged effects

The error ∆ATEDR
·,T = ÂTE DR

·,T,J − ATE·,T can be re-expressed as

∆ATEDR
·,T =

(
µ̂

[1,DR]
·,T,J − µ̂

[0,DR]
·,T,J

)
−
(
µ

[1]
·,T − µ

[0]
·,T

)
=
(
µ̂

[1,DR]
·,T,J − µ

[1]
·,T

)
−
(
µ̂

[0,DR]
·,T,J − µ

[0]
·,T

)
. (S.63)

We claim that, with probability at least 1 − δ,

∣∣∣µ̂[1,DR]
·,T,J − µ

[1]
·,T

∣∣∣ ≤ C

[
|α(1)|J − |α(1)|T

1 − |α(1)|
+ E(α̂(1))

(
TαT−1 + 1 − |α(1)|J

1 − |α(1)|
+ 1

(1 − |α(1)|)2

)]
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+ 2
(1 − |α(1)|)λ̄

[
E(Θ̂(1))E

(
P̂
)

+ 1√
N

(√cℓδ/(12J)
√

ℓ1
E(Θ̂(1)) + 2σ

√
cℓδ/(12J) + 2σm(cℓδ/(12J)√

ℓ1

)]
,

(S.64)

and

∣∣∣µ̂[0,DR]
·,T,J − µ

[0]
·,T

∣∣∣ ≤ C

[
|α(0)|J − |α(0)|T

1 − |α(0)|
+ E(α̂(0))

(
TαT−1 + 1 − |α(0)|J

1 − |α(0)|
+ 1

(1 − |α(0)|)2

)]

+ 2
(1 − |α(0)|)λ̄

[
E(Θ̂(0))E

(
P̂
)

+ 1√
N

(√cℓδ/(12J)
√

ℓ1
E(Θ̂(0)) + 2σ

√
cℓδ/(12J) + 2σm(cℓδ/(12J)√

ℓ1

)]
.

(S.65)

Then, the claim in Eq. (S.62) follows by applying triangle inequality in Eq. (S.63) and

using Assumption S10. We prove the bound (S.64) in Section S10.5.1, and also provide an

expression for C. The proof of Eq. (S.65) follows similarly.

S10.5.1 Proof of Eq. (S.64)

We start by decomposing µ
[1]
·,T as follows:

µ
[1]
·,T = 1

N

 ∑
i∈[N ]

(α(1))Tyi,0 +
T−1∑
s=0

(α(1))s
∑
i∈[N ]

θ
(1)
i,T−s

 = T(1)
J + U(1)

J + V(1),

where

T(1)
J ≜

1
N

J−1∑
s=0

(α(1))s
∑
i∈[N ]

θ
(1)
i,T−s, U(1)

J ≜
1
N

T−1∑
s=J

(α(1))s
∑
i∈[N ]

θ
(1)
i,T−s, (S.66)

and

V(1) ≜ (α(1))T 1
N

∑
i∈[N ]

yi,0. (S.67)

Next, we decompose µ̂
[1,DR]
·,T,J in Eq. (S.60) as µ̂

[1,DR]
·,T,J = T̂(1)

J + V̂(1), where

T̂(1)
J ≜

1
N

J−1∑
s=0

(α̂(1))s
∑
i∈[N ]

θ̂
[1,DR]
i,T−s , and V̂(1) ≜ (α̂(1))T 1

N

∑
i∈[N ]

yi,0. (S.68)
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Finally, we define

T̃(1)
J ≜

1
N

J−1∑
s=0

(α(1))s
∑
i∈[N ]

[
θ̂

(1)
i,T−s +

(
yi,T−s − α(1)yi,T−s−1 − θ̂

(1)
i,T−s

)ai,T−s

p̂i,T−s

]
, (S.69)

which is similar to T̂(1)
J except that α̂(1) is replaced by α(1). The proof proceeds by bounding

each term in the following fundamental decomposition:

µ̂
[1,DR]
·,T,J − µ

[1]
·,T = (V̂(1) − V(1)) + (T̃(1)

J − T(1)
J ) + (T̂(1)

J − T̃(1)
J ) − U(1)

J . (S.70)

With C0 ≜ maxi∈[N ] |yi,0| and CDR ≜ C3 + (2C1 + C3)/λ̄, we claim that the bounds

∣∣∣V̂(1) − V(1)
∣∣∣ ≤ C0TE(α̂(1))αT−1, |U(1)

J | ≤ C2
|α(1)|J − |α(1)|T

1 − |α(1)|
, (S.71)

and

|T̂(1)
J − T̃(1)

J | ≤ E(α̂(1))
(

C1

λ

(1 − |α(1)|J)
1 − |α(1)|

+ CDR
1

(1 − |α(1)|)2

)
, (S.72)

hold deterministically (conditioned on α̂(1)), and that the bound

|T̃(1)
J − T(1)

J | ≤ 2
(1 − |α(1)|)λ̄

[
E(Θ̂(1))E

(
P̂
)

+
(√cℓδ/(12J)

√
ℓ1

E(Θ̂(1)) + 2σ
√

cℓδ/(12J) + 2σm(cℓδ/(12J)√
ℓ1

) 1√
N

]
, (S.73)

holds with probability at least 1 − δ/2. The claim in Eq. (S.64) follows by applying triangle

inequality in Eq. (S.70) and using the above bounds.

It remains to establish the intermediate claims Eqs. (S.71) to (S.73). Throughout the

rest of the proof, we repeatedly use the inequality below that holds for all s ∈ [T ]:

∣∣∣∣(α̂(1))s − (α(1))s
∣∣∣∣ =

∣∣∣∣(α̂(1) − α(1))
( ∑
l∈[s]

(α̂(1))s−l(α(1))l−1
)∣∣∣∣ (a)

≤ s
∣∣∣(α̂(1) − α(1))

∣∣∣αs−1

(b)= sE(α̂(1))αs−1, (S.74)

where (a) follows from Assumption S10 and (b) follows from Eq. (S.61).
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Proof of Eq. (S.71) First, from Eq. (S.66), we have

|U(1)
J | =

∣∣∣∣ 1
N

T−1∑
s=J

(α(1))s
∑
i∈[N ]

θ
(1)
i,T−s

∣∣∣∣ (a)
≤ C2

T−1∑
s=J

∣∣∣α(1)
∣∣∣s (b)= C2

|α(1)|J − |α(1)|T

1 − |α(1)|
,

where (a) follows from Assumption S11 and (b) follows from the sum of geometric series.

Next, from Eqs. (S.67) and (S.68), we have

∣∣∣V̂(1) − V(1)
∣∣∣ =

∣∣∣∣((α̂(1))T − (α(1))T
) 1

N

∑
i∈[N ]

yi,0

∣∣∣∣ (a)
≤ C0TE(α̂(1))αT−1,

where (a) follows from the definition of C0 and Eq. (S.74).

Proof of Eq. (S.72) From Eqs. (S.68) and (S.69), and the triangle inequality, we have

∣∣∣T̂(1)
J − T̃(1)

J

∣∣∣ ≤ 1
N

∑
i∈[N ]

J−1∑
s=0

∣∣∣∣∣(α̂(1))s
(

θ̂
(1)
i,T−s +

(
yi,T−s − α̂(1)yi,T−s−1 − θ̂

(1)
i,T−s

)ai,T−s

p̂i,T−s

)

− (α(1))s
(

θ̂
(1)
i,T−s +

(
yi,T−s − α(1)yi,T−s−1 − θ̂

(1)
i,T−s

)ai,T−s

p̂i,T−s

) ∣∣∣∣∣
= 1

N

∑
i∈[N ]

J−1∑
s=0

∣∣∣∣∣(α(1))s(α(1) − α̂(1))yi,T−s−1
ai,T−s

p̂i,T−s

+
(

(α̂(1))s − (α(1))s
)

·
(

θ̂
(1)
i,T−s +

(
yi,T−s − α̂(1)yi,T−s−1 − θ̂

(1)
i,T−s

)ai,T−s

p̂i,T−s

)∣∣∣∣∣
(a)
≤ 1

N

∑
i∈[N ]

J−1∑
s=0

∣∣∣∣C1

λ
|α(1)|sE(α̂(1)) + CDRsE(α̂(1))αs−1

∣∣∣∣
= E(α̂(1))

(
C1

λ

(1 − |α(1)|J)
1 − |α(1)|

+ CDR
1

(1 − |α(1)|)2

)
,

where (a) follows from Eq. (S.61), Assumptions 3 and S11, and because maxi∈[N ],t∈[T ]

∣∣∣θ̂[1,DR]
i,t

∣∣∣ ≤

CDR from Assumptions 3, S10, and S11, and (b) follows from the sum of geometric and

arithmetico-geometric sequences.

Proof of Eq. (S.73) We start by defining

θ̃
[1,DR]
i,T−s ≜ θ̂

(1)
i,T−s +

(
yi,T−s − α(1)yi,T−s−1 − θ̂

(1)
i,T−s

)ai,T−s

p̂i,T−s
.
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Then, from Eqs. (S.66) and (S.69), we have

|T̃(1)
J − T(1)

J | =
∣∣∣∣∣
J−1∑
s=0

(α(1))s 1
N

∑
i∈[N ]

(θ̃[1,DR]
i,T−s − θ

(1)
i,T−s)

∣∣∣∣∣ (a)
≤

J−1∑
s=0

|α(1)|s 1
N

∣∣∣∣ ∑
i∈[N ]

(θ̃[1,DR]
i,T−s − θ

(1)
i,T−s)

∣∣∣∣,
where (a) follows from triangle inequality. From Eqs. (3) and (S.56), we have

θ̃
[1,DR]
i,T−s − θ

(1)
i,T−s = θ̂

(1)
i,T−s + (θ(1)

i,T−s + ε
(1)
i,T−s − θ̂

(1)
i,T−s)

pi,T−s + ηi,T−s

p̂i,T−s
− θ

(1)
i,T−s.

Then, the term θ̃
[1,DR]
i,T−s −θ

(1)
i,T−s is analogous to the display Eq. (S.2) in the proof of Theorem 1.

Following similar algebra as in Section S1, we first obtain

θ̃
[1,DR]
i,T−s − θ

(1)
i,T−s =

(θ̂(1)
i,T−s − θ

(1)
i,T−s)(p̂i,T−s − pi,T−s)

p̂i,T−s
−

(θ̂(1)
i,T−s − θ

(1)
i,T−s)ηi,T−s

p̂i,T−s
+

ε
(1)
i,T−spi,T−s

p̂i,T−s

+
ε

(1)
i,T−sηi,T−s

p̂i,T−s
.

Now, note that Assumption 4 holds for j = T − s for all s ∈ {0, . . . , J − 1}. Hence, for any

such s and for any δ ∈ (0, 1), mimicking the derivation of Eq. (S.5) from Section S1, we

obtain, with probability at least 1 − δ/(2J),

1
N

∣∣∣∣ ∑
i∈[N ]

(θ̃[1,DR]
i,T−s − θ

(1)
i,T−s)

∣∣∣∣ ≤ 2
λ̄

E
(
Θ̂(1)

)
E
(
P̂
)

+
2
√

cℓδ/(12J)

λ̄
√

ℓ1N
E
(
Θ̂(1)

)
+

2σ
√

cℓδ/(12J)

λ̄
√

N
+

2σm(cℓδ/(12J))
λ̄

√
ℓ1N

. (S.75)

Finally, multiplying both sides of Eq. (S.75) by (α(1))s, summing it over s ∈ {0, . . . , J − 1},

and using a union bound argument yields that the bound in Eq. (S.73) holds with probability

at least 1 − δ/2.
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S11 Doubly-robust estimation in panel data with stag-

gered adoption

This section shows how to extend the doubly-robust framework of this article to a setting

with panel data and staggered adoption. Recall (from Section S10) that for panel data, t

denotes the column (time) index and T denotes the total number of columns (time periods).

In a staggered adoption setting, for every unit i ∈ [N ], there exists a time point ti ∈ [T ]

such that ai,t = 0 for t ≤ ti, and ai,t = 1 for t > ti. This defines the observed treatment

assignment matrix A. As mentioned in Section 5.3 of the main article and illustrated in the

example below, a staggered treatment assignment leads to a heavy time-series dependence

in {ηi,t}t∈[T ].

Example S1 (Single adoption time). Consider a panel data setting where all units remain

in the control group until time T0. At time T0 + 1, each unit i ∈ [N ] receives treatment with

probability pi, and remains in treatment until time T . With probability 1 − pi, each unit

i ∈ [N ] stays in the control group until time T . In other words, for each unit i ∈ [N ]

pi,t = 0 for all t ≤ T0 and pi,t = pi for all T0 < t ≤ T.

Further, for units remaining in control,

ηi,t = 0 for all t ≤ T0 and ηi,t = −pi for all T0 < t ≤ T,

and for units receiving treatment,

ηi,t = 0 for all t ≤ T0 and ηi,t = 1 − pi for all T0 < t ≤ T.

The strong time-series dependence in ηi,t above implies that Assumption S3 or Assump-

tion S4(a) do not hold, which in turn implies that the guarantees for Cross-Fitted-SVD,

as in Proposition 4, may not hold. To see this, first note that to ensure Assumption 5, the
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set of column partitions {C0, C1} must be equal to {[T0], [T ] \ [T0]} due to the dependence

in the noise W . Now, for Assumption S3 to hold, we need |Ck| = Ω(T ) for every k ∈ {0, 1}.

However, for Assumption S4(a) to hold, we need T −T0 to be a constant with respect to T as,

for any t ∈ [T ] \ [T0] and i ∈ [N ], ∑t′∈[T ]

∣∣∣E[ηi,tηi,t′ ]
∣∣∣ = (T − T0)ci where ci ∈ {p2

i , (1 − pi)2}.

Moreover, in Example S1, ti = T0 for all treated units. This allows the choice of

{[T0], [T ] \ [T0]} as the set of column partitions {C0, C1} in Assumption 5. More generally, if

treatment adoption times {ti}i∈[N ] differ across units, then it may not be feasible to obtain

a partition of [T ] into {C0, C1} such that Assumption 5 holds.

In this section, we propose an alternative approach to the Cross-Fitted-SVD algorithm

such that Assumption 4 still holds for a suitable staggered adoption model.

Assumption S12 (Staggered adoption and common unit factors). We consider a panel

data setting with staggered adoption where

1. all units remain under control till time T0, i.e., for every unit i ∈ [N ], there exists a

time point ti ≥ T0 such that ai,t = 0 for t ≤ ti, and ai,t = 1 for t > ti, and

2. the unit-dependent latent factors corresponding to P , Θ(0), and Θ(1) are the same, i.e.,

U = U (0) = U (1) ∈ RN×r. In other words, for every i ∈ [N ] and t ∈ [T ], pi,t = g(Ui, Vt),

θ
(0)
i,t = ⟨Ui, V

(0)
t ⟩, and θ

(1)
i,t = ⟨Ui, V

(1)
t ⟩ for some known function g : Rr ×Rr → R, with

⟨·, ·⟩ denoting the inner product.

For Example S1, the function g corresponds to the inner product, the unit-dependent

latent factors are 1-dimensional (i.e., r = 1) with Ui = pi for every i ∈ [N ], and the

time-dependent latent factors for the assignment probability are such that Vt = 0 for every

t ∈ [T0] and Vt = 1 for every t ∈ [T ] \ [T0]. Consequently, Example S1 is consistent with

Assumption S12 if U
(a)
i = pi for every a ∈ {0, 1} and i ∈ [N ]. Next, we provide a more

flexible version of Example S1 that allows different adoption times for different units.
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Example S2 (Different adoption times). Consider a panel data setting where all units

remain in the control group until time T0. At every time t ∈ [T ] \ [T0], each unit i ∈ [N ]

receives treatment with probability pi, and remains in treatment until time T . Therefore,

for t ∈ [T ] \ [T0] and i ∈ [N ], ai,t = 1 if the adoption time point ti ∈ {T0 + 1, · · · , t}, which

occurs with probability ∑t′∈[t−T0−1](1 − pi)t
′−1pi. In other words, for each unit i ∈ [N ],

pi,t = 0 for all t ≤ T0 and pi,t = 1 − (1 − pi)t−T0 for all T0 < t ≤ T.

For Example S2, the unit-dependent latent factors are 1-dimensional (i.e., r = 1)

with Ui = pi for every i ∈ [N ], and the time-dependent latent factors for the assignment

probability are such that Vt = 0 for every t ∈ [T0] and Vt = t − T0 for every t ∈ [T ] \ [T0].

Further the function g is such that g(Ui, Vt) = 1 − (1 − Ui)Vt . Consequently, Example S2 is

consistent with Assumption S12 if U
(a)
i = pi for every a ∈ {0, 1} and i ∈ [N ].

We now describe Cross-Fitted-Regression, an algorithm that generates estimates of

(Θ(0), Θ(1), P ) for the staggered adoption model in Assumption S12 such that Assumption 4

holds.

1. The inputs are (i) A ∈ RN×T , (ii) Y (a),obs ∈ {R ∪ { ?}}N×T for a ∈ {0, 1}, (iii) the

rank r of the unit-dependent latent factors, (iv) the time period T0 until which all

units remain under control, (v) the time period t ∈ [T ] \ [T0] for which we want to

estimate the average treatment effect, and (vi) the function g.

2. Let Y (0),pre ∈ RN×T0 be the sub-matrix of Y (0),obs that keeps the first T0 columns only.

Run SVD on Y (0),pre, i.e.,

SVD(Y (0),pre) = (Û ∈ RN×r, Σ̂ ∈ Rr×r, V̂ ∈ R|T0|×r).

3. Let R(0) and R(1) be the set of units receiving control and treatment at time t,

respectively. In other words, for every a ∈ {0, 1}, R(a) ≜ {i ∈ [N ] : ai,t = a}.

Next, randomly partition R(a) into two nearly equal parts R(a)
0 and R(a)

1 . For every
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s ∈ {0, 1}, define Rs = R(0)
s ∪ R(1)

s .

4. For every s ∈ {0, 1}, regress {ai,t}i∈Rs on {Ûi}i∈Rs using g to obtain V̂1−s. For every

s ∈ {0, 1} and i ∈ Rs, return p̂i,t = g(Ûi, V̂s).

5. For every a ∈ {0, 1} and s ∈ {0, 1}, regress {yi,t}i∈R(a)
s

on {Ûi}i∈R(a)
s

to obtain V̂
(a)

1−s.

For every a ∈ {0, 1}, s ∈ {0, 1}, and i ∈ Rs, return θ̂
(a)
i,t = ÛiV̂

(a)⊤
s .

In summary, Cross-Fitted-Regression estimates the shared unit-dependent latent factors

using the observed outcomes for all units until time period T0. Then, for every s ∈ {0, 1},

the time-dependent latent factors V̂s, V̂ (0)
s , and V̂ (1)

s are estimated using the treatment

assignments and the observed outcomes for units in R1−s.

To establish guarantees for Cross-Fitted-Regression, we adopt the subsequent as-

sumption on the noise variables.

Assumption S13 (Independence across units and with respect to pre-adoption noise). .

(a) {(ηi,t, ε
(a)
i,t ) : i ∈ [N ]} are mutually independent (across i) given {ε

(0)
i,t }i∈[N ],t∈[T0] for

every t ∈ [T ] \ [T0] and a ∈ {0, 1}.

(b) {ε
(0)
i,t }i∈[N ],t∈[T0] ⊥⊥ {ηi,t, ε

(a)
i,t }i∈[N ] for every t ∈ [T ] \ [T0] and a ∈ {0, 1}.

Assumption S13(a) requires the noise (E(a), W ) corresponding to a time period t ∈ T \[T0]

to be jointly independent across units given the noise E(0) corresponding to time periods [T0],

for every a ∈ {0, 1}. Assumption S13(b) is satisfied if, for instance, the noise variables follow

a moving average model of order t − T0 − 1. The following result, proven in Section S11.1,

establishes that the estimates generated by Cross-Fitted-Regression satisfy Assumption 4.

Deriving error bounds, i.e., E
(
P̂
)

and E
(
Θ̂
)
, for the estimates generated by Cross-Fitted-

Regression for the staggered adoption model is an interesting direction for future research.

Proposition S1 (Guarantees for Cross-Fitted-Regression). Consider the staggered

adoption model in Assumption S12 and suppose Assumption S13 holds. Fix any t ∈ [T ]\ [T0],
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and {θ̂
(0)
i,t , θ̂

(1)
i,t , p̂i,t}i∈[N ] be the estimates returned by Cross-Fitted-Regression. Then,

Assumption 4 holds.

S11.1 Proof of Proposition S1: Guarantees for Cross-Fitted-

Regression

Fix any s ∈ {0, 1}. Then, Assumption S13(a) and Assumption S13(b) imply that

{ε
(0)
i,t }i∈[N ],t∈[T0] ∪ {ηi,t, ε

(a)
i,t }i∈R1−s

⊥⊥ {ηi,t, ε
(a)
i,t }i∈Rs

, (S.76)

for every partition (R0, R1) of the units [N ].

Cross-Fitted-Regression estimates {p̂i,t}i∈Rs using {Ûi}i∈Rs and V̂s, where V̂s is

estimated using {Ûi}i∈R1−s and {ai,t}i∈R1−s . Therefore, the randomness in {p̂i,t}i∈Rs stems

from the randomness in Y (0),pre and {ai,t}i∈R1−s which in turn stems from the randomness

in {ε
(0)
i,t }i∈[N ],t∈[T0] and {ηi,t}i∈R1−s . Then, Eq. (15) follows from Eq. (S.76).

Next, fix any a ∈ {0, 1}. Then, Cross-Fitted-Regression estimates {θ̂(a)}i∈Rs using

{Ûi}i∈Rs and V̂ (a)
s , where V̂ (a)

s is estimated using {Ûi}i∈R(a)
1−s

and {yi,t}i∈R(a)
1−s

. Therefore, the

randomness in {θ̂(a)}i∈Rs stems from the randomness in Y (0),pre and {yi,t}i∈R(a)
1−s

which in

turn stems from the randomness in {ε
(0)
i,t }i∈[N ],t∈[T0] and {ε

(a)
i,t }

i∈R(a)
1−s

. Then, Eq. (14) follows

from Eq. (S.76).
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