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1 Introduction

This article presents a novel framework for the estimation of average treatment effects

in modern data-rich environments in the presence of unobserved confounding. We define

modern data-rich environments as those featuring many outcome measurements across a wide

range of units. Our interest in data-rich environments stems from the emergence of digital

platforms (e.g., internet retailers, social media companies, and ride-sharing companies),

electronic medical records systems, IoT devices, and other real-time digitized data systems,

which gather economic and social behavior data with unprecedented scope and granularity.

Take the example of an internet retailer. The platform collects not only information on

purchases of many customers across many products or product categories, but also on glance

views, impressions, conversions, engagement metrics, navigation paths, shipping choices,

payment methods, returns, reviews, and more. While some variables, such as geo-location

and type of device or browser, can be safely treated as pre-determined relative to the

platform’s treatments (advertisements, discounts, web-page design, etc.), most are outcomes

affected by the treatments, latent customer preferences, and unobserved product features.

We leverage the availability of many outcome measures in modern data-rich environments

to estimate average treatment effects in the presence of unobserved confounding. The

core identification concept is that if each element of a high-dimensional outcome vector

is influenced by a common low-dimensional vector of unobserved confounders, it becomes

possible to remove the influence of the confounders and identify treatment effects.

Two primary approaches to the estimation of treatment effects are outcome-based and

assignment-based methods. Consider again the example of an internet-retail platform

where customers interact with various product categories. For each consumer-category

pair, the platform makes decisions to either offer a discount or not, and records whether

the consumer purchased a product in the category. Outcome-based methods operate by
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imputing the missing potential outcomes for each consumer-product category pair. This

process involves predicting whether a consumer, who received a discount, would have made

the purchase without the discount (i.e., the potential outcome without discount), and

conversely, if a consumer who did not receive the discount would have purchased the product

had they received the discount (i.e., the potential outcome with discount). In contrast,

assignment-based methods estimate the probabilities of consumers receiving discounts in

each product category and adjust for missing potential outcomes by weighting observed

outcomes inversely to the probability of missingness.

A substantial body of literature has explored outcome-based methods, particularly in

settings where all confounding factors are measured (see, e.g., Cochran, 1968; Rosenbaum

and Rubin, 1983; Angrist, 1998; Abadie and Imbens, 2006, among many others). Imputing

potential outcomes in the presence of unobserved confounders poses a more complex

challenge. In this context, a commonly adopted framework is the synthetic control method

and its variants (see, e.g., Abadie and Gardeazabal, 2003; Abadie et al., 2010; Cattaneo

et al., 2021; Arkhangelsky et al., 2021). An alternative but related approach to outcome

imputation under unobserved confounding is the latent factor framework (Bai and Ng, 2002;

Bai, 2009; Xiong and Pelger, 2023), wherein each element of the large-dimensional outcome

vector is influenced by the same low-dimensional vector of unobserved confounders. Matrix

completion methods (see, e.g., Chatterjee, 2015; Athey et al., 2021; Bai and Ng, 2021;

Dwivedi et al., 2022a; Agarwal et al., 2023a) which have found widespread applications in

recommendation systems and panel data models, are closely related to latent factor models.

Similarly, existing assignment-based procedures to estimate average treatment effects rely on

the assumption of no unmeasured confounding (see, e.g., Robins et al., 2000; Hirano et al.,

2003; Wooldridge, 2007), common trends restrictions (Abadie, 2005), or the availability of

an instrumental variable (Abadie, 2003; Sloczynski et al., 2024).

In this article, we propose a doubly-robust estimator (see Robins et al., 1994; Bang and
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Robins, 2005; Chernozhukov et al., 2018) of average treatment effects in the presence of

unobserved confounding. This estimator leverages information on both the outcome process

and the treatment assignment mechanism under a latent factor framework. It combines

outcome imputation and inverse probability weighting with a new cross-fitting approach

for matrix completion. We show that the proposed doubly-robust estimator has better

finite-sample guarantees than alternative outcome-based and assignment-based estimators.

Furthermore, the doubly-robust estimator is approximately Gaussian, asymptotically un-

biased, and converges at a parametric rate, under provably valid error rates for matrix

completion, irrespective of other properties of the matrix completion algorithm used.

Our article is related to Feng (2021), which also exploits latent structure in both treatment

assignment and outcome processes to derive a doubly-robust estimator for average treatment

effects in the presence of unobserved confounding. Relative to Feng (2021), our approach

does not rely on a large block of outcomes that load on the latent confounders but remain

unaffected by treatment. Moreover, we derive general finite-sample error bounds and a

Gaussian approximation for the doubly robust estimator, introduce a meta cross-fitting

algorithm that satisfies the required conditions, and establish primitive assumptions that

accommodate broad forms of nonstationarity in the outcome process. Another closely

related work is Choi et al. (2024), which derives inferential guarantees for matrix completion

under dependent observation patterns and heterogeneous treatment probabilities. The paper

establishes asymptotic normality for an estimator that combines nuclear-norm penalization

with eigenvector estimation, under an approximate low-rank factor model for outcomes and

a rank-one structure for the propensity matrix. Our results allow for a broader class of

matrix-completion algorithms and do not impose a rank-one restriction on the propensity

matrix.

Arkhangelsky and Imbens (2022) study doubly-robust identification with longitudinal

data under the assumption that conditioning of a function of the treatment assignments over
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time (e.g., the fraction of times an individual is exposed to treatment) is enough to remove

confounding. Athey et al. (2021), Bai and Ng (2021), Dwivedi et al. (2022a), Agarwal et al.

(2023a), Xiong and Pelger (2023), and Choi and Yuan (2024) develop matrix-completion

estimators for imputing potential outcomes. Among these, only Dwivedi et al. (2022a)

allows for randomized treatment assignment; the remaining papers require large sub-blocks

of units exposed to the same treatment, as in staggered-adoption designs. These approaches

impose a low-rank structure on the outcome process but do not model analogous latent

structure in the assignment mechanism. Our article fills this gap and shows that leveraging

structure in the assignment process can yield substantial gains.

Terminology and notation. For any real number b ∈ R, ⌊b⌋ is the greatest integer less

than or equal to b. For any positive integer b, [b] denotes the set of integers from 1 to

b, i.e., [b] ≜ {1, · · · , b}. We use c to denote any generic universal constant, whose value

may change between instances. For any c > 0, m(c) = max{c,
√

c} and ℓc = log(2/c). For

any two deterministic sequences an and bn where bn is positive, an = O(bn) means that

there exist a finite c > 0 and a finite n0 > 0 such that |an| ≤ c bn for all n ≥ n0. Similarly,

an = o(bn) means that for every c > 0, there exists a finite n0 > 0 such that |an| < c bn for

all n ≥ n0. Further, an = Ω(bn) means that there exist a finite c > 0 and a finite n0 > 0

such that |an| ≥ c bn for all n ≥ n0. For a sequence of random variables, xn = Op(1) means

that the sequence |xn| is stochastically bounded, i.e., for every ε > 0, there exists a finite

δ > 0 and a finite n0 > 0 such that P
(
|xn| > δ

)
< ε for all n ≥ n0. Similarly, xn = op(1)

means that the sequence |xn| converges to zero in probability, i.e., for every ε > 0 and δ > 0,

there exists a finite n0 > 0 such that P
(
|xn| > δ

)
< ε for all n ≥ n0. For sequences of

random variables xn and bn, xn = Op(bn) means xn = xnbn where the sequence xn = Op(1).

Likewise, xn = op(bn) means xn = xnbn where the sequence xn = op(1).

A mean-zero random variable x is subGaussian if there exists some b > 0 such that

E[exp(sx)] ≤ exp(b2s2/2) for all s ∈ R. Then, the subGaussian norm of x is given by
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∥x∥ψ2 = inf{t > 0 : E[exp(x2/t2)] ≤ 2}. A mean-zero random variable x is subExponential

if there exist some b1, b2 > 0 such that E[exp(sx)] ≤ exp(b2
1s

2/2) for all −1/b2 < s < 1/b2.

Then, the subExponential norm of x is given by ∥x∥ψ1 = inf{t > 0 : E[exp(|x|/t)] ≤ 2}.

Uniform(a, b) denotes the uniform distribution over the interval [a, b] for a, b ∈ R such that

a < b. N (µ, σ2) denotes the Gaussian distribution with mean µ and variance σ2.

For a vector u ∈ Rn, we denote its tth coordinate by ut and its 2-norm ∥u∥2. For a matrix

U ∈ Rn1×n2 , we denote the element in ith row and jth column by ui,j , the ith row by Ui,·, the

jth column by U·,j, the largest eigenvalue by λmax(U), and the smallest by λmin(U). Given

a set of indices R ⊆ [n1] and C ⊆ [n2], UI ∈ R|R|×|C| is a sub-matrix of U corresponding to

the entries in I ≜ R × C, and U−I = {ui,j : (i, j) ∈ {[n1] × [n2]} \ I}. Further, we denote

the Frobenius norm by ||U ||F ≜
(∑

i∈[n1],j∈[n2] u2
i,j

)1/2
, the (1, 2) operator norm by ||U ||1,2 ≜

maxj∈[n2]
(∑

i∈[n1] u2
i,j

)1/2
, the (2, ∞) operator norm by ∥U∥2,∞ ≜ maxi∈[n1]

(∑
j∈[n2] u2

i,j

)1/2
,

and the maximum norm by ||U ||max ≜ maxi∈[n1],j∈[n2] |ui,j|. Given two matrices U, V ∈ Rn1×n2 ,

the operators ⊙ and ⃝/ denote element-wise multiplication and division, respectively, i.e.,

ti,j = ui,j · vi,j when T = U ⊙ V , and ti,j = ui,j/vi,j when T = U ⃝/ V . When V is a binary

matrix, i.e., V ∈ {0, 1}n1×n2 , the operator ⊗ is defined such that ti,j = ui,j if vi,j = 1 and

ti,j = ? if vi,j = 0 for T = U ⊗ V . Given two matrices U ∈ Rn1×n2 and V ∈ Rn1×n3 , the

operator ∗ denotes the (transposed column-wise) Khatri-Rao product of U and V , i.e.,

T = U ∗ V ∈ Rn1×n2n3 such that ti,j = ui,j−n2j̄ · vi,1+j̄ where j̄ = ⌊(j − 1)/n2⌋. For random

objects U and V , U ⊥⊥ V means that U is independent of V .

2 Setup

Consider a setting with N units and M measurements per unit. For each unit-measurement

pair i ∈ [N ] and j ∈ [M ], we observe a treatment assignment ai,j ∈ {0, 1} and the value of

the outcome yi,j ∈ R. Although our results can be easily generalized to multi-ary treatments,
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for the ease of exposition, we focus on binary treatments.

We operate within the Neyman-Rubin potential outcomes framework and denote the

potential outcome for unit i ∈ [N ] and measurement j ∈ [M ] under treatment a ∈ {0, 1} by

y
(a)
i,j ∈ R. A no-spillover assumption is implicit in the notation, i.e., the potential outcome

y
(a)
i,j does not depend on the treatment assignment for any other unit-measurement pair. In

the context of online retail data, the assumption of no spillovers across measurements is

justified if the cross-elasticity of demand across product categories, j, is low. Our framework

allows for the possibility that the same treatment affects multiple outcomes (e.g., ai,j = ai,j′

with probability one, for some j and j′ in [M ]). Realized outcomes, yi,j , depend on potential

outcomes and treatment assignments,

yi,j = y
(0)
i,j (1 − ai,j) + y

(1)
i,j ai,j, (1)

for all i ∈ [N ] and j ∈ [M ]. Section 4.4 and the supplementary appendix extend the

framework proposed in this article to a panel data setting with lagged treatment effects.

2.1 Sources of stochastic variation

In the setup of this article, each unit i ∈ [N ] is characterized by a set of unknown parameters,

{(θ(0)
i,j , θ

(1)
i,j , pi,j) ∈ R2×[0, 1]}j∈[M ], which we treat as fixed. Potential outcomes and treatment

assignments are generated as follows: for all i ∈ [N ], j ∈ [M ], and a ∈ {0, 1},

y
(a)
i,j = θ

(a)
i,j + ε

(a)
i,j (2)

and

ai,j = pi,j + ηi,j, (3)
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where ε
(a)
i,j and ηi,j are mean-zero random variables, and

ηi,j =


−pi,j with probability 1 − pi,j

1 − pi,j with probability pi,j.

(4)

It follows that θ
(a)
i,j is the mean of the potential outcome y

(a)
i,j , and pi,j is the unknown

assignment probability or latent propensity score. Let Θ(0) ≜ {θ
(0)
i,j }i∈[N ],j∈[M ], Θ(1) ≜

{θ
(1)
i,j }i∈[N ],j∈[M ], and P ≜ {pi,j}i∈[N ],j∈[M ] collect mean potential outcomes and assignment

probabilities. For the rest of the article, we condition on Θ(0), Θ(1), and P , implying that

E(0) ≜ {ε
(0)
i,j }i∈[N ],j∈[M ], E(1) ≜ {ε

(1)
i,j }i∈[N ],j∈[M ], and W ≜ {ηi,j}i∈[N ],j∈[M ] capture all sources

of randomness in potential outcomes and treatment assignments.

Our setup allows Θ(0), Θ(1) to be arbitrarily associated with P , inducing unobserved con-

founding. The assumptions in Section 4 imply that Θ(0), Θ(1), and P include all confounding

factors, and require (ε(0)
i,j , ε

(1)
i,j ) ⊥⊥ ηi,j for every i ∈ [N ] and j ∈ [M ].

2.2 Target causal estimand

For any given measurement j ∈ [M ], we aim to estimate the effect of the treatment averaged

over all units,

ATE·,j ≜ µ
(1)
·,j − µ

(0)
·,j where µ

(a)
·,j ≜

1
N

∑
i∈[N ]

θ
(a)
i,j . (5)

ATE·,j is akin to the conditional average treatment effect of Abadie and Imbens (2006), but

based on the latent means, θ
(a)
i,j , in Eq. (2) rather than on conditional means that depend on

observed covariates only. It is straightforward to adapt the methods in this article to the

estimation of alternative parameters, like the average treatment effect across measurements

for each unit i, or the estimation of treatment effects over a subset of the units, S ⊂ [N ].
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3 Estimation

In this section, we propose a procedure that uses the treatment assignment matrix A and

the observed outcomes matrix Y to estimate ATE·,j, where

Y ≜ {yi,j}i∈[N ],j∈[M ] and A ≜ {ai,j}i∈[N ],j∈[M ].

The estimator proposed in this section leverages matrix completion as a key subroutine.

We start the section with a brief overview of matrix completion methods.

3.1 Matrix completion: A primer

Consider a matrix of parameters T ∈ RN×M . While T is unobserved, we observe S ∈

{R ∪ { ?}}N×M where ? denotes a missing value. The relationship between S and T is:

S = (T + H) ⊗ F. (6)

Here, H ∈ RN×M is a noise matrix, and F ∈ {0, 1}N×M is a masking matrix with ones for

the recorded entries of S and zeros for the missing entries.

A matrix completion algorithm, denoted by MC, takes the S as its input, and returns an

estimate of T , which we denote by T̂ or MC(S). In other words, MC produces an estimate of

a matrix from noisy observations of a subset of all the elements of the matrix.

The matrix completion literature is rich with algorithms MC that provide error guarantees,

namely bounds on ∥MC(S) − T∥ for a suitably chosen norm/metric ∥·∥, under a variety of

assumptions on the triplet (T, H, F ). Typical assumptions are (i) T is low-rank, (ii) the

entries of H are independent, mean-zero and sub-Gaussian random variables, and (iii) the

entries of F are independent Bernoulli random variables. Though matrix completion is

commonly associated with the imputation of missing values, a typically underappreciated

aspect is that it also denoises the observed matrix. Even when each entry of S is observed,

MC(S) subtracts the effects of H from S, i.e., it performs matrix denoising. Nguyen et al.
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(a) A (b) Y (c) Y (0),obs (d) Y (1),obs

Figure 1: Schematic of the treatment assignment matrix A, the observed outcomes matrix
Y (where green and blue fills indicate observations under a = 1 and a = 0, respectively),
and the observed component of the potential outcomes matrices, i.e., Y (0),obs and Y (1),obs

(where ? indicates a missing value). All matrices are N × M where N is the number of
customers and M is the number of products.

(2019) provide a survey of various matrix completion algorithms.

3.2 Key building blocks

We now define and express matrices that are related to the quantities of interest Θ(0), Θ(1),

and P in a form similar to Eq. (6). See Figure 1 for a visual representation of these matrices.

• Outcomes: Let Y (0),obs = Y ⊗ (1 − A) ∈ {R ∪ { ?}}N×M be a matrix with (i, j)-th

entry equal to yi,j if ai,j = 0, and equal to ? otherwise. Here, 1 is the N × M matrix

with all entries equal to one. Analogously, let Y (1),obs = Y ⊗ A ∈ {R ∪ { ?}}N×M be a

matrix with (i, j)-th entry equal to yi,j if ai,j = 1, and equal to ? otherwise. In other

words, Y (0),obs and Y (1),obs capture the observed components of {y
(0)
i,j }i∈[N ],j∈[M ] and

{y
(1)
i,j }i∈[N ],j∈[M ], respectively, with missing entries denoted by ?. Then, we can write

Y (0),obs = (Θ(0) + E(0)) ⊗ (1 − A) and Y (1),obs = (Θ(1) + E(1)) ⊗ A. (7)

• Treatments: From Eq. (3), we can write

A = (P + W ).
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Building on the earlier discussion, the application of matrix completion yields estimates:

Θ̂(0) = MC(Y (0),obs), Θ̂(1) = MC(Y (1),obs), and P̂ = MC(A), (8)

where the algorithm MC may vary for Θ̂(0), Θ̂(1), and P̂ . Because all entries of A are observed,

MC(A) denoises A but does not need to impute missing entries. From Eq. (7) and Eq. (8), it

follows that Θ̂(0) and Θ̂(1) depend on A and Y , whereas P̂ depends only on A.

In this section, we deliberately leave the matrix completion algorithm MC as a “black-box”.

In Section 4, we establish finite-sample and asymptotic guarantees for our proposed estimator,

contingent on specific properties for MC. In Section 5, we propose a novel end-to-end matrix

completion algorithm that satisfies these properties.

Given matrix completion estimates of (Θ̂(0), Θ̂(1), P̂ ), we formulate two preliminary

estimators for ATE·,j: (i) an outcome imputation estimator, which uses Θ̂(0) and Θ̂(1) only,

and (ii) an inverse probability weighting estimator, which uses P̂ only. Then, we combine

these to obtain a doubly-robust estimator of ATE·,j.

Outcome imputation (OI) estimator. Let θ̂
(a)
i,j denote the (i, j)-th entry of Θ̂(a) for

i ∈ [N ], j ∈ [M ], and a ∈ {0, 1}. The OI estimator for ATE·,j is defined as follows:

ÂTE OI
·,j ≜ µ̂

(1,OI)
·,j − µ̂

(0,OI)
·,j , (9)

where

µ̂
(a,OI)
·,j ≜

1
N

∑
i∈[N ]

θ̂
(a)
i,j for a ∈ {0, 1}.

That is, the OI estimator is obtained by taking the difference of the average value of the

j-th column of the estimates Θ̂(0) and Θ̂(1). The quality of OI depends on how well Θ̂(0)

and Θ̂(1) approximate the mean potential outcome matrices Θ(0) and Θ(1), respectively.

Inverse probability weighting (IPW) estimator. Let p̂i,j denote the (i, j)-th entry of
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P̂ for i ∈ [N ] and j ∈ [M ]. The IPW estimate for ATE·,j is defined as follows:

ÂTE IPW
·,j ≜ µ̂

(1,IPW)
·,j − µ̂

(0,IPW)
·,j , (10)

where

µ̂
(0,IPW)
·,j ≜

1
N

∑
i∈[N ]

yi,j
(
1 − ai,j

)
1 − p̂i,j

and µ̂
(1,IPW)
·,j ≜

1
N

∑
i∈[N ]

yi,jai,j
p̂i,j

.

That is, the IPW estimator is obtained by taking the difference of the average value of the

j-th column of the matrices Y (0),obs and Y (1),obs, replacing unobserved entries with zeros, and

weighting each outcome by the inverse of the estimated assignment probability to account

for confounding. The quality of the IPW estimate depends on how well P̂ approximates the

probability matrix P .

The matrix completion-based OI and IPW estimators in Eq. (9) and Eq. (10) have the

same form as the classical OI and IPW estimators, which are derived for settings where

all confounders are observed (e.g., Imbens and Rubin, 2015). In contrast to the classical

setting, our framework is one with unmeasured confounding.

3.3 Doubly-robust (DR) estimator

The DR estimator of ATE·,j combines the estimates Θ̂(0), Θ̂(1), and P̂ from Eq. (8). It is

defined as follows:

ÂTE DR
·,j ≜ µ̂

(1,DR)
·,j − µ̂

(0,DR)
·,j , (11)

where

µ̂
(0,DR)
·,j ≜

1
N

∑
i∈[N ]

θ̂
(0,DR)
i,j with θ̂

(0,DR)
i,j ≜ θ̂

(0)
i,j +

(
yi,j − θ̂

(0)
i,j

)1 − ai,j
1 − p̂i,j

,
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Figure 2: Simulation evidence of the convergence of the error of the doubly-robust (DR)
estimator to a mean-zero Gaussian distribution. The histogram represents ÂTE DR

·,j − ATE·,j ,
the green curve represents the (best) fitted Gaussian distribution, and the black curve
represents the Gaussian approximation from Theorem 2 in Section 4. Histogram counts are
normalized so that the area under the histogram integrates to one. Unlike DR, the outcome
imputation (OI) and inverse probability weighting (IPW) estimators have non-trivial biases,
as evidenced by the means of the distributions in dashed green, blue, and red, respectively.
Section S3 in the supplementary appendix reports complete simulation results.

and

µ̂
(1,DR)
·,j ≜

1
N

∑
i∈[N ]

θ̂
(1,DR)
i,j with θ̂

(1,DR)
i,j ≜ θ̂

(1)
i,j +

(
yi,j − θ̂

(1)
i,j

)ai,j
p̂i,j

. (12)

In Section 4, we prove that ÂTE DR
·,j consistently estimates ATE·,j as long as either (Θ̂(0), Θ̂(1))

is consistent for (Θ(0), Θ(1)) or P̂ is consistent for P , i.e., it is doubly-robust. Furthermore,

we show that the DR estimator provides superior finite-sample guarantees to the OI and

IPW estimators, and that it satisfies a central limit theorem at a parametric rate under weak

conditions on the convergence rate of the matrix completion routine. Using simulated data,

Figure 2 demonstrates the improved performance of DR, relative to OI and IPW. Despite

substantial biases observed in both OI and IPW estimates, the error of the DR estimate

closely follows a mean-zero Gaussian distribution. We provide a detailed description of the

simulation setup in supplementary appendix Section S3.
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4 Main Results

This section presents the formal results of the article. Section 4.1 details assumptions,

Section 4.2 discusses finite-sample guarantees, and Section 4.3 presents a central limit

theorem for ÂTE DR
·,j .

4.1 Assumptions

Requirements on data generating process. We make two assumptions on how the

data is generated. First, we impose a positivity condition on the assignment probabilities.

Assumption 1 (Positivity on true assignment probabilities). The unknown assignment

probability matrix P is such that

λ ≤ pi,j ≤ 1 − λ, (13)

for all i ∈ [N ] and j ∈ [M ], where 0 < λ ≤ 1/2.

Assumption 1 requires that the propensity score for each unit-outcome pair is bounded

away from 0 and 1, implying that any unit-item pair can be assigned either of the two

treatments. An analogous assumption is pervasive in causal inference models with no-

unmeasured confounding. For simplicity of exposition and to avoid notational clutter,

Assumption 1 requires Eq. (13) for all outcomes, j ∈ [M ]. In practical applications, however,

ATE·,j may be estimated for a select group of those outcomes. In that case, the positivity

assumption applies only for the selected subset of outcomes for which ATE·,j is estimated.

Next, we formalize the requirements on the noise variables.

Assumption 2 (Zero-mean, independent, and subGaussian noise). Fix any j ∈ [M ]. Then,

(a) {(ε(0)
i,j , ε

(1)
i,j , ηi,j) : i ∈ [N ]} are mean zero and independent (across i);
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(b) for every i ∈ [N ] and j ∈ [M ], (ε(0)
i,j , ε

(1)
i,j ) ⊥⊥ ηi,j; moreover, the distribution of (ε(0)

i,j , ε
(1)
i,j )

depends on (Θ(0), Θ(1), P ) only through (θ(0)
i,j , θ

(1)
i,j ), and the distribution of ηi,j depends

on (Θ(0), Θ(1), P ) only through pi,j; and

(c) ε
(a)
i,j has subGaussian norm bounded by a constant σ for every i ∈ [N ] and a ∈ {0, 1}.

Assumption 2(a) defines (Θ(0), Θ(1), P ) as matrices collecting the means of the potential

outcomes and treatment assignments in Eqs. (2) and (3). Further, for every measurement,

it imposes independence across units in the noise variables. Assumption 2(b) imposes

independence between the noise in the potential outcomes and noise in treatment assignment,

and implies that for each particular unit i and measurement j, confounding emerges only

from the interplay between (θ(0)
i,j , θ

(1)
i,j ) and pi,j . Finally, Assumption 2(c) is mild and useful to

derive finite-sample guarantees. For the central limit theorem in Section 4.3, subGaussianity

could be dispensed with by restricting the moments of ε
(a)
i,j . Assumption 2 does not restrict

the dependence between ε
(0)
i,j and ε

(1)
i,j . Neither Assumption 2 restricts the dependence of ηi,j

across outcomes. In particular, Assumption 2 allows for the existence of pairs of outcomes

(j, j′) such that E[η2
i,j] = E[η2

i,j′ ] = E[ηi,jηi,j′ ], in which case ai,j = ai,j′ with probability one.

Requirements on matrix completion estimators. First, we assume the estimate P̂ is

consistent with Assumption 1.

Assumption 3 (Positivity on estimated assignment probabilities). The estimated probability

matrix P̂ is such that

λ̄ ≤ p̂i,j ≤ 1 − λ̄,

for all i ∈ [N ] and j ∈ [M ], where 0 < λ̄ ≤ λ.

Assumption 3 holds when the entries of P̂ are truncated to the range [λ̄, 1−λ̄], provided λ̄

is not greater than λ. Second, our theoretical analysis requires independence between certain

elements of the estimates (P̂ , Θ̂(0), Θ̂(1)) from Eq. (8), and the noise matrices (W, E(0), E(1)).
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We formally state this independence condition as an assumption below.

Assumption 4 (Independence between estimates and noise). Fix any j ∈ [M ]. There

exists a non-empty partition (R0, R1) of the units [N ] such that

{(
p̂i,j, θ̂

(a)
i,j

)}
i∈Rs

⊥⊥
{
ηi,j
}
i∈Rs

(14)

and

{
p̂i,j
}
i∈Rs

⊥⊥
{(

ηi,j, ε
(a)
i,j

)}
i∈Rs

, (15)

for every a ∈ {0, 1} and s ∈ {0, 1}.

Eq. (14) requires that within each of the two partitions of the units, estimated mean

potential outcomes and estimated assignment probabilities are jointly independent of the

error in assignment probabilities, for every measurement. Similarly, Eq. (15) requires

that within each of the two partitions of the units, estimated assignment probabilities are

independent jointly of the noise in assignment probabilities and potential outcomes, for

every measurement. Conditions like Eq. (14) and Eq. (15) are familiar in the doubly-robust

estimation literature. Chernozhukov et al. (2018) employ a cross-fitting device to enforce an

assumption similar to Assumption 4 in a context with no unmeasured confounders. Section 5

provides a novel cross-fitting procedure for matrix estimation under which Assumption 4

holds for any MC algorithm (under additional assumptions on the noise variables).

Matrix completion error rates. The formal guarantees in this section depend on the

normalized (1, 2)-norms of the errors in estimating the unknown parameters (Θ(0), Θ(1), P ).

We use the following notation for these errors:

E
(
P̂
)
≜

||P̂ −P ||1,2√
N

and E
(
Θ̂
)
≜
∑

a∈{0,1}
E
(
Θ̂(a)

)
, with E

(
Θ̂(a)

)
≜

||Θ̂(a)−Θ(a)||1,2√
N

. (16)

A variety of matrix completion algorithms deliver E
(
P̂
)

= Op(min{N, M}−α) and E
(
Θ̂
)

=

Op(min{N, M}−β), where 0 < α, β ≤ 1/2. For simplicity, the conditions in this section
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track dependence on N only. We say that the normalized errors E
(
P̂
)

and E
(
Θ̂
)

achieve

the parametric rate when they have the same rate as Op(N−1/2). Section 5 explicitly

characterizes how the rates of convergence E
(
P̂
)

and E
(
Θ̂
)

depend on N and M for a

particular matrix completion algorithm based on Bai and Ng (2021).

4.2 Non-asymptotic guarantees

The first main result of this section provides a non-asymptotic error bound for ÂTE DR
·,j −

ATE·,j in terms of the errors E
(
P̂
)

and E
(
Θ̂
)

defined in Eq. (16).

Theorem 1 (Finite Sample Guarantees for DR). Suppose Assumptions 1 to 4 hold.

Fix δ ∈ (0, 1) and j ∈ [M ]. Then, with probability at least 1 − δ, we have

∣∣∣ÂTE DR
·,j − ATE·,j

∣∣∣ ≤ ErrDR
N,δ, (17)

where

ErrDR
N,δ≜

2
λ̄

[
E
(
Θ̂
)
E
(
P̂
)

+
(√cℓδ/12

√
ℓ1

E
(
Θ̂
)

+ 2σ
√

cℓδ/12 + 2σm(cℓδ/12)√
ℓ1

) 1√
N

]
, (18)

for m(c) and ℓc as defined in Section 1.

The proof of Theorem 1 is given in supplementary appendix S1. Eqs. (17) and (18)

bound the absolute error of the DR estimator by the rate of E
(
Θ̂
)
(E
(
P̂
)

+ N−0.5) + N−0.5.

When E
(
P̂
)

is lower bounded at the parametric rate of N−0.5, ErrDR
N,δ has the same rate as

E
(
P̂
)
E
(
Θ̂
)

+ N−0.5.

Doubly-robust behavior of ÂTE DR
·,j . The error rate of E

(
P̂
)
E
(
Θ̂
)

+ N−0.5 immediately

reveals that the DR estimate is doubly-robust with respect to the error in estimating

the mean potential outcomes (Θ(0), Θ(1)) and the assignment probabilities P . First, the

error ErrDR
N,δ decays at a parametric rate of Op(N−0.5) as long as the product of error rates,

E
(
P̂
)
E
(
Θ̂
)
, decays as Op(N−0.5). As a result, ÂTE DR

·,j can exhibit a parametric error

rate even when neither the mean potential outcomes nor the assignment probabilities are
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estimated at a parametric rate. Second, ErrDR
N,δ decays to zero as long as either of E

(
P̂
)

or

E
(
Θ̂
)

decays to zero, provided both errors are Op(1).

We next compare the performance of DR estimator with the OI and IPW estimators from

Eqs. (9) and (10), respectively. Towards this goal, we characterize the ATE·,j estimation

error of ÂTE OI
·,j in terms of E

(
Θ̂
)

and of ÂTE IPW
·,j in terms of E

(
P̂
)
.

Proposition 1 (Finite Sample Guarantees for OI and IPW). Fix any j ∈ [M ]. For

OI, we have

∣∣∣ÂTE OI
·,j − ATE·,j

∣∣∣ ≤ ErrOI
N ≜ E

(
Θ̂
)
. (19)

For IPW, suppose Assumptions 1 to 4 hold. Define θmax ≜
∑
a∈{0,1} ||Θ(a)||max, and fix any

δ ∈ (0, 1). Then, with probability at least 1 − δ, we have

∣∣∣ÂTE IPW
·,j − ATE·,j

∣∣∣ ≤ ErrIPW
N,δ , (20)

where

ErrIPW
N,δ ≜

2
λ̄

[
θmax E

(
P̂
)

+
(√cℓδ/12

√
ℓ1

θmax + 2σ
√

cℓδ/12 + 2σm(cℓδ/12)√
ℓ1

) 1√
N

]
,

for m(c) and ℓc as defined in Section 1.

The proofs of Eq. (19) and Eq. (20) are given in the supplementary appendix (Sections S6

and S7). Proposition 1 implies that in an asymptotic sequence with bounded θmax, OI

and IPW attain the parametric rate Op(N−0.5) provided E
(
Θ̂
)

and E
(
P̂
)

are Op(N−0.5),

respectively. The next corollary, proven in the supplementary appendix (Section S5),

compares these error rates with those obtained for the DR estimator in Theorem 1.

Corollary 1 (Gains of DR over OI and IPW). Suppose Assumptions 1 to 4 hold. Fix any

j ∈ [M ]. Consider an asymptotic sequence such that θmax is bounded. If E
(
P̂
)

= Op(N−α)

and E
(
Θ̂
)

= Op(N−β) for 0 ≤ α ≤ 0.5 and 0 ≤ β ≤ 0.5, then

∣∣∣ÂTE OI
·,j − ATE·,j

∣∣∣ = Op(N−β),
∣∣∣ÂTE IPW

·,j − ATE·,j

∣∣∣ = Op(N−α),
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and

∣∣∣ÂTE DR
·,j − ATE·,j

∣∣∣ = Op(N− min{α+β,0.5}).

Corollary 1 shows that the DR estimate’s error decay rate is consistently superior to

that of the OI and IPW estimates across a variety of regimes for α, β. Specifically, the error

ErrDR
N,δ scales strictly faster than both ErrOI

N and ErrIPW
N,δ if the estimation errors of Θ̂(0), Θ̂(1),

and P̂ converge slower than at the parametric rate Op(N−1/2). When the estimation errors

of Θ̂(0), Θ̂(1), and P̂ all decay at a parametric rate, OI, IPW, and DR estimation errors

decay also at a parametric rate.

4.3 Asymptotic guarantees

The next result, proven in the supplementary appendix (Section S5) as a corollary of

Theorem 1, provides conditions on E
(
P̂
)

and E
(
Θ̂
)

for consistency of ÂTE DR
·,j .

Corollary 2 (Consistency for DR). Suppose Assumptions 1 to 4 hold. As N → ∞, if

either (i) E
(
P̂
)

= op(1), E
(
Θ̂
)

= Op(1), or (ii) E
(
Θ̂
)

= op(1), E
(
P̂
)

= Op(1), it holds that

ÂTE DR
·,j − ATE·,j

p−→ 0, (21)

for all j ∈ [M ].

Corollary 2 states that ÂTE DR
·,j is a consistent estimator for ATE·,j as long as either the

mean potential outcomes or the assignment probabilities are estimated consistently.

The next theorem, proven in supplementary appendix S2, establishes a Gaussian ap-

proximation for ÂTE DR
·,j under mild conditions on error rates E

(
P̂
)

and E
(
Θ̂
)
.

Theorem 2 (Asymptotic Normality for DR). Suppose Assumptions 1 to 4 and the

following conditions hold,

(C1) E
(
P̂
)

= op(1) and E
(
Θ̂
)

= op(1).
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(C2) E
(
P̂
)
E
(
Θ̂
)

= op
(
N−1/2

)
.

(C3) For every i ∈ [N ] and j ∈ [M ], let σ
(0)
i,j and σ

(1)
i,j be the standard deviations of ε

(0)
i,j and

ε
(1)
i,j , respectively. The sequence

σ2
j ≜

1
N

∑
i∈[N ]

(σ(1)
i,j )2

pi,j
+ 1

N

∑
i∈[N ]

(σ(0)
i,j )2

1 − pi,j
, (22)

is bounded away from zero as N increases.

Then, for all j ∈ [M ],

√
N
(
ÂTE DR

·,j − ATE·,j
)
/σj

d−→ N
(
0, 1

)
, (23)

as N → ∞.

Theorem 2 describes two simple requirements on the estimated matrices P̂ and

(Θ̂(0), Θ̂(1)), under which ÂTE DR
·,j exhibits an asymptotic Gaussian distribution centered at

ATE·,j . Condition (C1) requires that the estimation errors of P̂ and (Θ̂(0), Θ̂(1)) converge to

zero in probability. Condition (C2) requires that the product of errors decays sufficiently

fast, at a rate op
(
N−1/2

)
, ensuring that the bias of the normalized estimator in Eq. (23)

converges to zero. Condition (C2) is similar to conditions in the literature on doubly-robust

estimation of average treatment effects under observed confounding (e.g., Assumption 5.1

in Chernozhukov et al., 2018). Specifically, Chernozhukov et al. (2018) assume that the

product of propensity estimation error and outcome regression error decays faster than

N−1/2.

Black-box asymptotic normality. Theorem 2 applies to any matrix completion algorithm

MC, provided conditions (C1) and (C2) hold. This level of generality is useful because the

product of E
(
P̂
)

and E
(
Θ̂
)

is op
(
N−1/2

)
for a wide range of MC algorithms, under mild

assumptions on (Θ(0), Θ(1), P ). In contrast, achieving such black-box asymptotic normality

for OI or IPW estimates is challenging. Their biases are tied to the individual error rates,
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E
(
Θ̂
)

and E
(
P̂
)
, which are typically lower-bounded at the parametric rate of N−0.5.

The next result, proven in supplementary appendix S2.3, provides a consistent estimator

for the asymptotic variance σ2
j from Theorem 2.

Proposition 2 (Consistent variance estimation). Suppose Assumptions 1 to 3 and

condition (C1) in Theorem 2 holds. Suppose the partition (R0, R1) of the units [N ] from

Assumption 4 is such that

{
(
p̂i,j, θ̂

(a)
i,j

)
}i∈Rs ⊥⊥ {(ηi,j, ε

(a)
i,j )}i∈Rs , (24)

for every j ∈ [M ], a ∈ {0, 1} and s ∈ {0, 1}. Then, for all j ∈ [M ], σ̂2
j − σ2

j

p−→ 0, where

σ̂2
j ≜

1
N

∑
i∈[N ]

(
yi,j − θ̂

(1)
i,j

)2
ai,j(

p̂i,j
)2 + 1

N

∑
i∈[N ]

(
yi,j − θ̂

(0)
i,j

)2
(1 − ai,j)(

1 − p̂i,j
)2 . (25)

4.4 Application to panel data with lagged treatment effects

Sections 4.2 and 4.3 considered a model where the outcome yi,j for unit i ∈ [N ] and

measurement j ∈ [M ] depends on treatment assignment only for unit i and measurement j,

i.e., ai,j. The supplementary appendix (Section S10) discusses how to extend the results

of this section to a setting of panel data with lagged treatment effects. In a panel data

setting, the M measurements correspond to T time periods, and t denotes the time index.

Then, the supplementary appendix considers an auto-regressive setting, where the potential

outcomes at time t depend on the treatment assignment at time t and the realized outcome

at time t − 1, i.e., for all i ∈ [N ], t ∈ [T ], and a ∈ {0, 1},

y
(a|yi,t−1)
i,t = α(a)yi,t−1 + θ

(a)
i,t + ε

(a)
i,t ,

and observed outcomes satisfy

yi,t = y
(0|yi,t−1)
i,t (1 − ai,t) + y

(1|yi,t−1)
i,t ai,t.
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The presence of lagged treatment effects in this model makes it crucial to define causal

estimands for entire sequences of treatments. The supplementary appendix describes how

the proposed doubly-robust estimation can be extended to treatment sequences and derives

a generalization of Theorem 1.

5 Matrix Completion with Cross-Fitting

In this section, we introduce a novel algorithm designed to construct estimates (Θ̂(0), Θ̂(1), P̂ )

that adhere to Assumption 4 and satisfy conditions (C1) and (C2) in Theorem 2. We first

explain why traditional matrix completion algorithms fail to deliver the properties required by

Assumption 4. We then present Cross-Fitted-MC, a meta-algorithm that takes any matrix

completion algorithm and uses it to construct (Θ̂(0), Θ̂(1), P̂ ) that satisfy Assumption 4, and

the stronger independence condition in Proposition 2. Finally, we describe Cross-Fitted-

SVD, an end-to-end algorithm obtained by combining Cross-Fitted-MC with the singular

value decomposition (SVD)-based algorithm of Bai and Ng (2021), and establish that it also

satisfies conditions (C1) and (C2) in Theorem 2.

Traditional matrix completion. Estimates (Θ̂(0), Θ̂(1), P̂ ) obtained from existing matrix

completion algorithms need not satisfy Assumption 4. In particular, using the entire

assignment matrix A to estimate each element of P typically results in a violation of{
p̂i,j
}
i∈Rs

⊥⊥
{
ηi,j
}
i∈Rs

in Assumption 4, as each entry of P̂ is allowed to depend on the

entire noise matrix W . For example, in spectral methods (e.g., Nguyen et al., 2019), P̂ is a

function of the SVD of the entire matrix A, and

p̂i,j ⊥̸⊥ ai′,j′ , (26)

for all (i, j), (i′, j′) ∈ [N ] × [M ] in general, which implies
{
p̂i,j
}
i∈Rs

⊥̸⊥
{
ηi,j
}
i∈Rs

, for every

Rs ⊂ [N ]. Similarly, in matching methods such as nearest neighbors (Li et al., 2019), P̂
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is a function of the matches/neighbors estimated from the entire matrix A. Dependence

structures such as p̂i,j ⊥̸⊥ ai,j for any i, j ∈ [N ] × [M ]—which is weaker than Eq. (26)—are

enough to violate the
{
p̂i,j
}
i∈Rs

⊥⊥
{
ηi,j
}
i∈Rs

requirement in Assumption 4. Likewise, the

requirement
{
θ̂

(a)
i,j

}
i∈Rs

⊥⊥
{
ηi,j
}
i∈Rs

in Assumption 4 can be violated, because Θ̂(0) and

Θ̂(1) depend respectively on Y (0),obs and Y (1),obs, which themselves depend on A.

5.1 Cross-Fitted-MC: A meta-cross-fitting algorithm for matrix

completion

We now introduce Cross-Fitted-MC, a cross-fitting procedure that modifies any MC al-

gorithm to produce (Θ̂(0), Θ̂(1), P̂ ) that satisfy Assumption 4. We employ the following

assumption on the noise variables.

Assumption 5 (Block independence between noise). Let (R0, R1) denote the partition of

the units [N ] from Assumption 4. There exists a partition (C0, C1) of the measurements [M ],

such that for each block I ∈ P ≜ {Rs × Ck : s, k ∈ {0, 1}},

WI ⊥⊥ W−I , E
(a)
−I (27)

and

W−I ⊥⊥ WI , E
(a)
I . (28)

for every a ∈ {0, 1}.

For a given block I, Eq. (27) requires the noise in the treatment assignments corre-

sponding to I to be independent jointly of the noise in the treatment assignments and the

potential outcomes corresponding to the remaining three blocks. Likewise, Eq. (28) requires

the noise in the treatment assignments corresponding to the remaining three blocks to be

independent jointly of the noise in the treatment assignments and the potential outcomes
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corresponding to I. Assumption 5 leaves unrestricted the dependence of the noise variables

across outcomes that belong to the same block.

For notational simplicity, Assumption 5 imposes independence conditions across blocks of

outcomes in a partition of [M ] into two blocks only. It is important to note, however, that the

results in this section hold under more general dependence patterns. In particular, at the cost

of additional notational complexity, it is straightforward to extend the result in this section

to partitions of outcomes (C0, C1, . . . , Cm) such that for each k ∈ {0, 1, . . . , m}, s ∈ {0, 1} and

a ∈ {0, 1}, there exists k′ ∈ {0, 1, . . . , m}\{k} with {ηi,j}(i,j)∈Rs×Ck
⊥⊥ {ηi,j, ε

(a)
i,j }(i,j)∈R1−s×Ck′

and {ηi,j}(i,j)∈R1−s×Ck′ ⊥⊥ {ηi,j, ε
(a)
i,j }(i,j)∈Rs×Ck

. This allows for rather general patterns of

dependence across outcomes while preserving independence across specific sets of outcomes

(e.g., certain product categories in the retail example of Section 1).

Recall the setup from Section 3.1: Given an observation matrix S ∈ {R ∪ { ?}}N×M , a

matrix completion algorithm MC produces an estimate T̂ = MC(S) ∈ RN×M of a matrix of

interest T , where S and T are related via Eq. (6). With this background, we now describe

the Cross-Fitted-MC meta-algorithm.

1. The inputs are (i) a matrix completion algorithm MC, (ii) an observation matrix

S ∈ {R∪ { ?}}N×M , and (iii) a block partition P of the set [N ] × [M ] into four blocks

as in Assumption 5.

2. For each block I ∈ P, construct T̂I by applying MC on S ⊗ 1−I where 1−I ∈ RN×M

denotes a masking matrix with (i, j)-th entry equal to 0 if (i, j) ∈ I and 1 otherwise,

and the operator ⊗ is as defined in Section 1. In other words,

T̂I = T I where T = MC(S ⊗ 1−I). (29)

3. Return T̂ ∈ RN×M obtained by collecting together {T̂I}I∈P , with each entry in its

original position.
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We represent this meta-algorithm succinctly as below:

T̂ = Cross-Fitted-MC(MC, S, P).

In summary, Cross-Fitted-MC produces an estimate T̂ such that for each block I ∈ P , the

sub-matrix T̂I is constructed only using the entries of S corresponding to the remaining three

blocks of P. Figure 3(a) provides a schematic of the block partition P for R0 = [⌊N/2⌋]

and C0 = [⌊M/2⌋]. See Figure 3(b) for a visualization of S ⊗ 1−I . The following result,

proven in the supplementary appendix (Section S8.1), establishes (Θ̂(0), Θ̂(1), P̂ ) generated

by Cross-Fitted-MC satisfy Assumption 4.

Proposition 3 (Guarantees for Cross-Fitted-MC). Suppose Assumptions 2 and 5 hold.

Let MC be any matrix completion algorithm and P be the block partition of the set [N ] × [M ]

into four blocks from Assumption 5. Let

Θ̂(0) = Cross-Fitted-MC(MC, Y (0),obs, P), (30)

Θ̂(1) = Cross-Fitted-MC(MC, Y (1),obs, P), (31)

P̂ = Cross-Fitted-MC(MC, A, P), (32)

where Y (0),obs and Y (1),obs are defined in Eq. (7). Then, Assumption 4 holds for all j ∈ [M ].

Further, suppose

WI , E
(a)
I ⊥⊥ W−I , E

(a)
−I , (33)

for every block I ∈ P and a ∈ {0, 1}. Then, Eq. (24) holds too.

A host of MC algorithms are designed to de-noise and impute missing entries of matrices

under random patterns of missingness; the most common missingness pattern studied is

where each entry has the same probability of being missing, independent of everything

else. In contrast, Cross-Fitted-MC generates patterns where all entries in one block are

deterministically missing, as in Figure 3(b). A recent strand of research on the interplay
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(a) S (b) S ⊗ 1−Bottom Right

Figure 3: Panel (a): A matrix S partitioned into four blocks when R0 = [N/2] and
C0 = [M/2] in Assumption 5, i.e., P = {Top Left, Top Right, Bottom Left, Bottom Right}.
Panel (b): The matrix S ⊗ 1−Bottom Right obtained from the matrix S by masking the entries
corresponding to the Bottom Right block with ?.

between matrix completion methods and causal inference models—specifically, within the

synthetic controls framework—has contributed matrix completion algorithms that allow

for block missingness (see, e.g., Athey et al., 2021; Agarwal et al., 2021; Bai and Ng, 2021;

Agarwal et al., 2023b; Arkhangelsky et al., 2021; Agarwal et al., 2023a; Dwivedi et al.,

2022a,b). However, it is a challenge to apply known theoretical guarantees for these methods

to the setting in this article because of: (i) the use of cross-fitting—which creates blocks

where all observations are missing—and (ii) outside of the completely-missing blocks, there

can still be missing observations with heterogeneous probabilities of missingness. In the next

section, we show how to modify an MC algorithm designed for block missingness patterns

so that it can be applied to our setting with cross-fitting and heterogeneous probabilities

of missingness outside the folds. For concreteness, we work with the Tall-Wide matrix

completion algorithm of Bai and Ng (2021).
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5.2 The Cross-Fitted-SVD algorithm

Cross-Fitted-SVD is an end-to-end MC algorithm obtained by instantiating the Cross-

Fitted-MC meta-algorithm with the Tall-Wide algorithm of Bai and Ng (2021), which we

denote as TW. For completeness, we detail the TW algorithm in Section S8.2.

5.2.1 Cross-Fitted-SVD algorithm.

1. The inputs are (i) A ∈ RN×M , (ii) Y (a),obs ∈ {R ∪ { ?}}N×M for a ∈ {0, 1}, (iii) a

block partition P of the set [N ] × [M ] into four blocks as in Assumption 5, and (iv)

hyper-parameters r1, r2, r3, and λ̄ such that r1, r2, r3 ∈ [min{N, M}] and 0 < λ̄ ≤ 1/2.

2. Return P̂ = Projλ̄
(
Cross-Fitted-MC(TWr1 , A, P)

)
where Projλ̄(·) projects each entry

of its input to the interval [λ̄, 1 − λ̄].

3. Define Y (0),full as equal to Y (0),obs, but with all missing entries in Y (0),obs set to zero.

Define Y (1),full analogously with respect to Y (1),obs.

4. Return Θ̂(0) = Cross-Fitted-MC(TWr2 , Y (0),full, P) ⃝/ (1 − P̂ ).

5. Return Θ̂(1) = Cross-Fitted-MC(TWr3 , Y (1),full, P) ⃝/ P̂ .

We provide intuition on the key steps of the Cross-Fitted-SVD algorithm next.

Computing P̂ . The estimate P̂ comes from applying Cross-Fitted-MC with TW on A

and truncating the entries of the resulting matrix to the range [λ̄, 1 − λ̄], in accordance

with Assumption 3. The TW sub-routine is directly applicable to A, because for any block

I = Rs × Ck ∈ P the masked matrix A ⊗ 1−I has [N ] \ Rs fully observed rows and [M ] \ Ck

fully observed columns. See Figure 4(a) for a visualization of A ⊗ 1−I .

Computing Θ̂(0) and Θ̂(1). The estimates Θ̂(0) and Θ̂(1) are constructed by applying

Cross-Fitted-MC with TW on Y (0),full and Y (1),full, which do not have missing entries. TW

is not directly applicable on Y (0),obs and Y (1),obs, as both matrices may not have any rows
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(a) A ⊗ 1−Bottom Right (b) Y (0),obs ⊗ 1−Bottom Right (c) Y (1),obs ⊗ 1−Bottom Right

Figure 4: Panels (a), (b), and (c) illustrate the matrices A ⊗ 1−I , Y (0),obs ⊗ 1−I , and
Y (1),obs ⊗ 1−I obtained from A, Y (0),obs and Y (1),obs, respectively, for the block partition
P in Figure 3(a) and the block I = Bottom Right. Unlike Panels (b) and (c), Panel (a)
contains fully observed rows and columns. To enable the application of TW for Panels (b)
and (c), we replace missing entries in blocks Top Left, Top Right, and Bottom Left with
zeros.

and columns that are fully observed. See Figure 4(b) and Figure 4(c) for visualizations of

Y (0),obs ⊗ 1−I and Y (1),obs ⊗ 1−I , respectively. However, notice that, due to Assumption 2(a)

and Assumption 2(b),

E[Y (0),full] = E[Y ⊙ (1 − A)] = Θ(0) ⊙ (1 − P ),

and

E[Y (1),full] = E[Y ⊙ A] = Θ(1) ⊙ P.

As a result, MC(Y (0),full) and MC(Y (1),full) provide estimates of Θ(0) ⊙ (1 − P ) and Θ(1) ⊙ P ,

respectively—recall the discussion in Section 3.1. To construct Θ̂(0) and Θ̂(1), we divide the

entries of MC(Y (0),full) and MC(Y (1),full) by the entries of (1− P̂ ) and P̂ , respectively, to adjust

for heterogeneous probabilities of missingness (see, e.g., Jin et al., 2021; Bhattacharya and

Chatterjee, 2022; Xiong and Pelger, 2023, for related procedures). This inverse probability

of treatment weighting adjustment to estimate Θ̂(0) and Θ̂(1) is distinct and in addition to

the augmented IPW procedure that generates ÂTE DR
·,j from estimates Θ̂(0), Θ̂(1) and P̂ .
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5.2.2 Theoretical guarantees for Cross-Fitted-SVD

The following result, proven in supplementary appendix (Section S9.1), provides theoretical

guarantees for Cross-Fitted-SVD.

Proposition 4 (Guarantees for Cross-Fitted-SVD). Suppose Assumptions 1 and 2 and

Assumptions S1 to S4 in supplementary appendix (Section S9) hold. Consider an asymptotic

sequence such that θmax is bounded as both N and M increase. Let P̂ , Θ̂(0), and Θ̂(1) be the

estimates returned by Cross-Fitted-SVD with the block partition P from Assumption 5,

r1 = rp, r2 = rθ0(rp + 1), r3 = rθ1rp, and any λ̄ such that 0 < λ̄ ≤ λ with λ denoting the

constant from Assumption 1. Then, as N, M → ∞,

E
(
P̂
)

= Op

(
1√
N

+ 1√
M

)
and E

(
Θ̂
)

= Op

(
1√
N

+ 1√
M

)
.

Proposition 4 implies that the conditions (C1) and (C2) in Theorem 2 hold whenever

N1/2/M = o(1). Then, the DR estimator from Eq. (11) constructed using Cross-Fitted-

SVD estimates Θ̂(0), Θ̂(1), and P̂ exhibits an asymptotic Gaussian distribution centered at

the target causal estimand. Further, Proposition 4 implies that the estimation errors E
(
P̂
)

and E
(
Θ̂
)

achieve the parametric rate whenever N/M = O(1).

5.3 Application to panel data with staggered adoption

Section 5.1 considered a setting with block independence between noise (formalized in

Assumption 5). The supplementary appendix (Section S11) discusses how to extend the

proposed doubly-robust framework to a setting of panel data with staggered adoption, where

this assumption may not hold. Recall (from Section 4.4) that in the panel data setting

M measurements correspond to T time periods, and t denotes the time index. Then, the

supplementary appendix considers a setting where a unit remains under control for some

period of time, after which it deterministically remains under treatment. In other words,
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for every unit i ∈ [N ], there exists a time point ti ∈ [T ] such that ai,t = 0 for t ≤ ti, and

ai,t = 1 for t > ti. Such a treatment assignment pattern leads to a heavy dependence in the

noise {ηi,t}t∈[T ] for every unit i ∈ [N ]. The supplementary appendix describes an alternative

approach to the Cross-Fitted-SVD algorithm and shows that Assumption 4 still holds for

a suitable staggered adoption model.

6 Conclusion

This article contributes to a rapidly growing literature on causal factor models and treatment

effect estimation in non-linear panel data models, where the availability of multiple outcomes

offers a way to overcome the challenge of non-additive unobserved confounding. We show it

is possible to control for the confounding effects of a set of latent variables when this set

is low-dimensional relative to the number of observed treatments and outcomes. Future

research could extend our methods to alternative treatment assignment mechanisms and

develop primitive conditions for matrix completion approaches beyond the one used in

Section 5.2. Especially promising directions include methods that accommodate weak factor

structures (Armstrong et al., 2025) and those that require only a fixed number of outcomes

(Lei and Ross, 2024).
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