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Abstract

In an era of data abundance, statistical evidence is increasingly critical for busi-
ness and policy decisions. Yet, organizations lack empirical tools to assess the
value of evidence-based decision making (EBDM), optimize statistical precision,
and balance the costs of evidence-gathering strategies against their benefits. To
tackle these challenges, this article introduces an empirical framework to estimate
the value of EBDM and evaluate the return on investment in statistical precision
and project ideation. The framework leverages parametric and nonparametric
empirical Bayes methods to account for parameter heterogeneity and measure
how statistical precision changes the value of evidence. The value extracted from
statistical evidence depends critically on how organizations translate evidence
into policy decisions. Commonly used decision rules based on statistical signifi-
cance can leave substantial value unrealized and, in some cases, generate negative
expected value.
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1. Introduction

Many organizations use randomized experiments and observational studies to improve their
decision making. For example, Gupta et al. (2019) write “Together [Airbnb, Amazon, Book-
ing.com, Facebook, Google, LinkedIn, Lyft, Microsoft, Netflix, Twitter, Uber, Yandex, and
Stanford University| have tested more than one hundred thousand experiment treatments
last year.” The fact that so many organizations conduct such a large number of experiments
suggests that these organizations believe that data evidence provides significant value in
guiding business and policy decisions. However, we are unaware of empirical tools that orga-
nizations can use to assess the actual value of their EBDM practices. In the absence of such
tools, it is difficult to determine whether too much experimentation is being conducted or
too little, whether experiments are too large or too small, and whether the right experiments
are being undertaken. Part of the challenge in evaluating the value of EBDM lies in the need
to describe the role of evidence in the business and policy decision-making process. In other
words, estimating the value of EBDM requires assumptions about what organizations will do
with and without various amounts of evidence, which they can choose to generate at some
cost.

In this article, we propose an empirical Bayes estimator for the value of EBDM. We study
the problem of a decision maker choosing whether to adopt a particular policy intervention.
We use the term “agent” to refer to the decision maker, and “policy,” “intervention,” and
“treatment” interchangeably to refer to the policy intervention under scrutiny. The agent
can implement the intervention based on prior information or gather additional informa-
tion at some cost—for example, by running an experimental or observational evaluation of
the intervention’s effect. At the stage where the agent decides whether to implement the
intervention, they aim to maximize utility based on the available information. We derive
expressions for the value of additional information and demonstrate how to estimate this
value using metadata on estimates of the effects of business and policy interventions, along
with their standard errors.

Our framework allows decision makers to assess in a principled way the value of experi-



mental and non-experimental studies, and how design choices affect that value. Currently,
many organizations decide on the precision of their studies based on power calculations.
These do not take into account the costs and benefits of EBDM and instead rely on statisti-
cal conventions (for example, requiring 80% power for tests at the 5% level). Additionally,
our framework enables decision makers to ex ante assess whether an experiment is worth con-
ducting based on its cost and expected benefits (with benefits increasing with the decision

maker’s initial uncertainty about the intervention’s effect).

Related literature.—This article builds on foundational work by Blackwell (1951) and Howard
(1966) on the value of information. It extends that framework to the applied domain of
EBDM, combining costs, precision, and empirical Bayes estimation into a flexible tool for
real-world decisions and counterfactual analysis. The resulting methods are particularly
suited to data-rich environments, where organizations must balance the benefits of additional
information against the costs of generating it.

The empirical setting is also closely related to that of meta-analytic studies (Hedges
and Olkin, 1985; Higgins et al., 2019) in that it leverages information from many individual
studies. However, unlike meta-analysis, the goal of this article is not to assess the effectiveness
of a set of policies but to quantify the value brought by empirical evidence in guiding better
policy decisions.

A key component of the EBDM estimand is the expected value of the positive part of
the predicted policy payoff, that is, the expectation of the maximum of the predicted policy
payoff and zero. A related but distinct object is considered in Semenova (2023) in the
context of estimating the size of a latent population whose outcomes are observed regardless
of treatment exposure. The estimand in Semenova (2023) targets the distribution of an
expectation given observed covariates, and does so in a single study setting. In contrast, our
estimand pertains to the distribution of predicted policy payoffs across many studies.

This article also contributes to the growing literature on empirical Bayes methods (see
Morris, 1983; Efron, 2010, for foundational work on empirical Bayes). Empirical Bayes and

related shrinkage techniques play a central role in applied economics, informing research



on teacher and school value-added (Chetty et al., 2014; Angrist et al., 2017), neighborhood
effects (Chetty and Hendren, 2018), income dynamics (Gu and Koenker, 2017), and racial
discrimination (Kline et al., 2024), among other topics. As empirical Bayes methods gain
traction in applied economics, a parallel methodological literature has emerged in economet-
rics (Koenker and Mizera, 2014; Abadie and Kasy, 2019; Fessler and Kasy, 2019; Armstrong
et al., 2022; Kwon, 2023; Koenker and Gu, 2024; Chen, 2024). Walters (2024) provides a
comprehensive account of empirical Bayes methods and their applications in economics. This
article applies both parametric and nonparametric empirical Bayes techniques to estimate
the distribution of policy payoffs in settings where the data contain information about the

effects of many policies.

2. The value of EBDM

The notation X ~ (,0?) indicates that the random variable X has mean 6 and variance
02. When X follows a Gaussian distribution with mean 6 and variance o2, it is denoted
as X ~ N(0,0%). fx(-) represents a probability density function of the random variable
X, while fxpw(-|w) denotes a conditional probability density function of X given W' = w.
Fx () denotes the cumulative distribution function of X, and Fxw (- | w) is the cumulative
distribution function of X given W = w. The functions ¢(-) and ®(-) refer to the probability

density function and cumulative distribution function of the standard Gaussian distribution,

respectively.

2.1. Setup

Consider the problem of a risk-neutral decision maker tasked with choosing whether to adopt
a particular policy for a population of units. The ex ante unknown per-unit payoff of the
policy, 7, follows a distribution with known probability density function f.(-) and mean
@ = E[r]. In an organization where teams generate new ideas for policies or interventions,
f-(-) can be thought of as the distribution of the quality of those ideas. For retrospective
estimation tasks, we take this distribution as fixed. However, organizations can shift it, for

example, by prioritizing high-risk projects with substantial upside, protecting agents from



failure, or allocating resources to exploratory projects.
In the absence of additional information, the agent launches the policy if the expected
payoff from launching is positive,

w—cp >0,

where ¢y, is the cost of launching per-unit. The expected value of this decision is max{u —
CL, 0}
Now, suppose the agent has the option to obtain additional information about the policy

payoff at some cost. Specifically, the agent can acquire a signal, 7, distributed as
?|7—7 0% ~ N(Ta 02)7 (1)

at a cost of cg + ¢(0?), where cp = 0, ¢(-) = 0, and ¢/(-) < 0. This setup captures the infor-
mation obtained from studies estimating policy effects using experimental or observational
data. The constant cg reflects the fixed cost of conducting a data-driven policy evaluation,
while the function ¢(-) captures the cost of precision, which partly depends on the study’s
sample size. The restriction on the derivative /() indicates that obtaining more precise
information is weakly more expensive. The assumption of Gaussianity for the distribution of
7|7,0% is motivated by the approximate Gaussian nature of the large-sample distributions
of many commonly used estimators of treatment effects.
After observing the signal 7, the expected payoff of the policy is

r

E[r7 = 1] = | ufop(ult)du

r

~0((t = /o) fr(u)du

r

({1 — w)fo) f-(udu

If a signal is observed, the agent launches the policy if
E[7|7] —cL > 0.

For any set A, let I4(x) be the function that takes value one if z € A, and value zero

otherwise. The expected payoff with EBDM for a fixed value of the variance of the signal



V(e*)=E [](0700)(E[T|?] —cp) (T — CL)]
E Loy (E[7|7] = co)(El7|7] = c1)]
E

|max {E[7|T] — cr,0}] .

Define V' (o0) as the expected payoff with no information beyond the distribution of 7,
that is,

V(0) = max{pu — cr, 0}.
Because max{z, 0} is a convex function of z, Jensen’s inequality implies,
V(0?) = max{yu — cz,0} = V(o).

The value of evidence (VoE) is the difference in expected payoffs V(02) and V (c0), which is

nonnegative, minus the cost of acquiring the information, which is generally positive:
VoE(c?) = V(%) — V() — (cr + ¢(c?)).

A second version of VoE, which we term VoID (for Value of Information under Default
adoption) is obtained when, in the absence of additional information about the effect of the

intervention, the intervention is always deployed and so V' (o0) = pu — ¢
VoID(0?) = V(0?) — (u —c1) — (cp + c(0?)).

VoID(0?) is motivated by settings with ex-ante (pre-evaluation) ambiguity on the distribution

of 7, and agents who have a bias for action in the presence of such ambiguity.

2.2. A motivating example

A common instance of the setting described above is one where the decision maker obtains
experimental evidence on the effect of the policy. Consider an experiment with N units:
1 =1,...,N. The experimenter assigns /N; units at random to treatment and the remaining

Ny = N — Nj to control. If unit ¢ is treated, an outcome is drawn
Yi(1) ~ (61, 07).
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If unit ¢ is untreated, the outcome is drawn

Y;(0) ~ (6o, 0%).

Let W; be an indicator of treatment for unit i. We observe Y; = Y;(1)W; + Y;(0)(1 — W,).

The average effect of the treatment is

7'201—60.

A simple estimator of 7 is the difference in mean outcomes between treated and nontreated,

1 ¥ 1
Fe s YWY —
Nli; Ny -

N

DA -wyy.

Then, for large Ny and Nj, equation (1) holds approximately, with

2
2 07

g =

Ny

2
%

Ny

When a fraction p = N;/N of units are assigned to treatment, and assuming that the only

variable cost of the experiment comes from recruiting subjects at a cost x per subject, the

total cost of the experiment is

k [0}
CF+—2 — +
g

p

where cp is the fixed cost of the experiment.

i
1-p)’

Neyman’s allocation rule, p/(1 — p) = 01/0¢, minimizes the variance o2 for a fixed total

number of experimental subjects, N. When this rule is applied to allocate subjects between

a treatment and a control group, the cost of the experiment becomes

Crt+ K

(0'1 + 0'0)2

In some settings, researchers favor treatment effect parameters free of units of measure-

ment, such as lift 7 = (6; — 0y)/0y. Let

1§:WY 1
N =TT,

N

(L=,

?:
1
No i=1

7

N(1

— W)Y,



Then, for large Ny and Ny, equation (1) holds with

1 (o? od
2 1 290
o2 = — [ 2L L (1+7)220 ).

For values of the lift parameter close to zero, as is common in many online experimentation

1 2 2
02%—2 ﬁ—l-& .

In this case, Neyman allocation yields,

settings, we can approximate

(0'1 + 0'0)2

cp+ R—mg——
0202

2.3. A Gaussian distribution for 7

This section derives a simple closed-form expression for V(¢?) under the assumption that

the distribution of 7 is Gaussian,

7~ N(u,7?). (2)

While equation (1) is supported by the Central Limit Theorem in studies with large samples,
equation (2) imposes two important restrictions. First, 7 is a Gaussian random variable.
Second, implicit in the notation is the assumption that the distribution of 7 is independent
of 0. The first is a strong parametric restriction. The Gaussian approximation for 7 could
be valid in some settings but questionable in others. The second restriction could be violated,
for example, if researchers adapt the power of individual studies to take into account prior
information about the effect on the treatment. We dispose of these two restrictions later in
the article. We adopt them in this section, however, to obtain closed-form formulas for the
value of EBDM in a simple setting.

If equations (1) and (2) hold, the marginal distribution of 7 is 7 ~ N(u,v* + 02). The

posterior for 7 is given by

- N (u/72+?/02 1 )

TI7 12+ /o 172 + 1/0?



The expected payoft with EBDM is
2 /7 + 7)o
V(J)zE[max{m—q,O .
Let

/Y +7/0?
1/42 +1/0?

Recall that the marginal distribution of 7 is Gaussian with mean p and variance v2 + o2, As

— Cy,.

a result,
4
ZwN(u—cL,m). (3)
Now, V(0?) is the the first moment of the Gaussian distribution in (3) censored from below
at zero,

,}/2

The derivatives of V(0?) with respect to o2, 42, and u are

V(o?) = (u—cp)® (4)

oV (0?) 72

oo2 2(7 + 02)3/2 (WW)

oV (c?) v+ 20

v 2(72 + o2 3/2¢< 2/A/7? +02>

and

o < VIV 02)
Higher precision of the signal 7|7 increases the expected payoff from EBDM. In addition,
the value of experimentation increases when an organization increases the variance of the

distribution of true effects—that is, the variance of idea quality. The derivative of V with

respect to p implies

oVoE @ [ —cr N
alu 72/ /7,}/2 > (0,00) L b L),

and

oVolD @ W —cr B
ou Y2/ + o?
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VoE peaks at p = ¢, and decreases monotonically with |u — ¢p|. When |u — ¢ is large,
a simple rule that selects policies based solely on the sign of yu — ¢ gets most decisions
right, leaving little room for additional evidence to add value. VolD, the value of EBDM
when policies are adopted by default in the absence of additional information, decreases
monotonically with p. VolID is particularly large when the distribution of 7 is concentrated on
negative values, as additional information winnows out many ineffective or counterproductive
policies.
Notice that
lim V(0?) = max{u — cr,0} = V(0)

0250

and

lim V(0?) = (jn— c1)® (“ ;) + 0 (“ ;) .

020

As 02 — o0, we lose any additional information about the value of 7 beyond its distribution,
and V(0?) converges to V(o). As 02 — 0, the information gathering process reveals the
value of 7. In this case, V(0?) converges to F[max{r — cz,0}], the mean of the distribution
of 7 — ¢, censored at zero.

So far, we have treated o2 as a constant. We now allow o2 to have a non-degenerate

distribution, independent of 7. In this case, the average payoff of EBDM is

V= E[maX{E[ﬂ?, o] - CL,O}]
= E[E[maX{E[ThA', o] — cL,0}|a]]

— . w—cr ’YQ w—cr ’
7 [(“ " (wm) f e <7/W>] o

with the expectation taken over the distribution of o2.

2.4. A Gaussian mixture distribution for 7

In Section 4 we use a Gaussian mixture distribution to evaluate the effects of misspecification
of the distribution of 7 on EBDM value estimates. Suppose 7 follows a mixture of k& Gaussian

distributions with parameters (u1,47), ..., (i, 7:), and mixture probabilities py, ..., py. Let

10



7T = 7 + ¢, where ¢ is independent Gaussian noise with variance o?. Conditional on 7 ~

N(p5,7;), we have

_ /v +7/0”
Elr|7, 7 ~ N(uj,v})] = =2
J 1/7]2—1—1/02

As a result,

Elr|7] = ), Elrl7.7 ~ N(pj, 7)) Pr(r ~ N3, 77)I7)

<.
= L=
I

(uy/ﬁ + ?/02> 1 T —
=1

¢ p;
5 5 j
j MG+ ) e \ (2402

_ : (6)

i 1 T — 1
Z ¢ — |pj
im1A/7] o \4/7 +o?

The simulations in Section 4 use the Gaussian mixture model to capture deviations from

normality in the distribution of 7.

3. Empirical Bayes estimation

In this section, we analyze a setting with n realizations from the distribution of (7, 0,7,7),
where only the estimates 7 and ¢ are observed. We use the observations on 7 and & to
estimate p and % using an Empirical Bayes strategy. (7,0) represent point estimates and
their corresponding standard errors for a set of policy evaluations in the dataset. We examine

both the homoskedastic case, where o2

is constant, and the heteroskedastic case, where
var(o?) > 0. Throughout our analysis, we approximate the per-unit launch cost as ¢y ~ 0.
Alternatively, we can interpret 7 as representing the net benefits of the treatment after
accounting for the launch cost.

We employ a database of thousands of online experiments run by Upworthy to illus-
trate the applicability of our methods. Upworthy is a U.S. online news and media publisher
that built a large following in the 2010s by pairing positive, uplifting stories with opti-

mized headline-and-image packages designed to drive clicks and shares. Upworthy pioneered

large-scale A/B testing of these packages, routinely randomizing visitors across alternative
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headlines and images for the same article preview and using click-through performance to
guide editorial and distribution choices.

The Upworthy Research Archive records thousands of randomized experiments run by
Upworthy between January 24, 2013 and April 30, 2015. We restrict our analysis to the
Upworthy Exploratory Dataset, which contains outcomes for 4,873 online experiments. Each
experiment compared alternative headline-and-image packages for the same article preview.
We analyze outcomes for the first two packages deployed in each experiment, labeling the
first as the control arm and the second as the treatment arm. For each package, the archive
reports impressions and clicks. We remove from the sample all experiments with fewer than
100 impressions in one of the experimental arms, which yields a sample of n = 4,857 online
experiments. We then compute each experimental arm’s click rate per thousand impressions
and define T as the treatment—control difference in those rates. We also compute the standard
error of 7.

Figure 1 shows the distribution of 7. The average value of 7 is —0.7621 (clicks per
thousand impressions), with range [—54.17,,45.13]. The standard errors have mean 2.9727
and range [0.2202,,7.942]. For the remainder of this section, we use the Upworthy data
to illustrate empirical Bayes estimation of the value of EBDM. Sections 5 through 7 delve
deeper into the EBDM value estimates for the Upworthy dataset.

3.1. Parametric empirical Bayes

In this section, we adopt a Gaussian specification for the distribution of 7. Because T is
unbiased, we can estimate u, the mean of the distribution of 7, as the mean of 7 across eval-
uations. To estimate 72, the variance of the distribution of 7, we deconvolute the distribution

of T as follows. By the Total Law of Variance,
var(7T) = E[var(7|7)] + var(E[7|T]).
Unbiasedness of 7 conditional on 7 implies

7? = var(T)

12



Figure 1: Distribution of estimated treatment effects in the Upworthy data
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= var(E[7|7])

= var(T) — E[var(7|1)].

As a result, we define 42 as the difference between the variance 7 across experiments in the
data minus the mean of the squares of the standard errors. This estimator is not guaranteed
to be non-negative (see Morris, 1983, for a discussion and alternative estimators). In the

Upworthy dataset, 32 = 36.4608 — 10.2437 = 26.2171.

3.1.1. Homoskedastic case

For the homoskedastic case, we estimate o2 as the average of the squares of the standard
deviations of 7 across studies. In the Upworthy data, this estimate is 10.4919. Plugging in
this value in (4) along with estimates of y and 2, we obtain V/(10.2437) = 1.3691, with the

value of information measured in clicks per thousand impressions.
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3.1.2. Heteroskedastic case

We now relax the assumption that o2 is constant. It can be shown (see appendix) that
V(c?) is convex. Then, by Jensen’s inequality, V(E[c?]) < E[V(0?)]. This result implies
that the assumption of homoskedasticity may lead to underestimation of the average payoft
when o2 is not constant. Under heteroskedasticity, we evaluate the expression in (5) plugging
in study-specific estimates of o?. Relative to the calculations in the previous section, now
the value of experimentation is computed for each value of 02 and then integrated over the
distribution of 0. An estimator of V based on a set of policy estimates can be calculated
in two steps: (i) use the square of the standard error of 7 to approximate o2, and estimate
the value of each study separately, and (7i) take the average over all studies in the sample.

For the Upworthy data, this procedure yields V = 1.4057.

3.2. Nonparametric empirical Bayes

We next relax the parametric restriction 7 ~ N(u,v?) of Section 3.1 and consider a non-

parametric distribution for 7.

3.2.1. NPMLE under precision independence

Suppose T | 0 ~ G, where G,, is an unspecified distribution, and
71 (r,0) ~ N(7,0%).

Under a precision-independence assumption (namely, that 7 is independent of o) we have
7| o ~ G, = G, so the distribution of 7 does not depend on o. It follows that for any s > 0,
the conditional distribution of 7/0 given o = s coincides with the distribution of 7/s.
Given n studies with observed pairs {(7;,0;)}/~,, we estimate the mixing distribution
G using nonparametric empirical Bayes methods. A nonparametric maximum likelihood

estimator (NPMLE) of G solves the problem

~

Igggiznilogfeﬁ(ﬁ;w) dG(w), (7)

where G denotes a class of discrete distributions supported on a fixed grid uq, ..., u,,, with
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probabilities g1, . . ., g, (see appendix for details). Modern implementations of NPMLE (e.g.,
Koenker and Gu, 2017) solve (7) efficiently and come with theoretical guarantees (Jiang,
2020; Soloff et al., 2025). The solution is computed over a grid us,...,u,, representing
support points of G, with corresponding probabilities, g1, ..., gm.

Moreover, as shown in the appendix, the posterior mean satisfies

we dG(w)
Elr|T = z, f ( ) o) (8)

from which we derive a sample analog of F [7’|T =2z,0= s] as

$ wo (22145,
2 =0

For the Upworthy dataset, we approximate o1, ..., oy using the reported standard errors,

)

Ms

estimate G via the algorithm of Koenker and Mizera (2014) as implemented in Koenker and

Gu (2017), and obtain V = 0.7621.

3.2.2.  Relaxing the precision independence assumption

We relax the precision-independence assumption by partitioning the range of 54, ..., d, into
five intervals and performing the NPEB calculations from the previous section within each
interval. We refer to this approach as binning. Applied to the Upworthy data, binning yields
V = 0.9285.

As an alternative, we use the CLOSE-NPMLE framework of Chen (2024), which models
the conditional distribution of the estimates given their standard errors as a flexibly param-
eterized location—scale family and estimates the mixing distribution nonparametrically via

NPMLE. For the Upworthy data, CLOSE-NPMLE yields V = 0.9560.
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Table 1: Simulation results

empirical Bayes

distribution of = true value parametric nonparametric
G . expected payoff  0.3970 0.3962 0.3963

AUSSIAL € 95% interval [0.3450,0.4475]  [0.3443,0.4483]
- tupe d expected payoff 03230 0.3939 0.3232

e 959 interval [0.3121,0.4757]  [0.2645,0.3819]

4. Simulations

We consider two data generating processes (DGP). In DGP1, the parameters 7 have a
standard Gaussian distribution 7 ~ N(0,1), so the parametric empirical Bayes model of
Section 2.3 applies. In DGP2, the parameters 7 follow the mixture distribution as in Section
2.4. In particular, in DGP2,

N(-=5,1/2) with prob. 0.01,
T~ < N(0,1/2)  with prob. 0.98,
N(5,1/2)  with prob. 0.01.

DGP1 and DGP2 both produce a distribution of 7 with mean zero and variance one. We
generate 7 as T = 7 + ou, where u is independent standard Gaussian and o = 0.1. To
calculate the expected payoff of EBDM, we consider the case of ¢;, = 0.

We run 1000 simulations for DGP1 and DGP2 with n = 500. Equation (4) with u = 0,
v =10 = 0.1, and ¢, = 0 gives the true expected payoff of EBDM under DGP1. To
calculate the true expected payoff of EBDM under DGP2, we first use equation (6) to
compute FE[7|7T] over the n x 1000 = 500,000 realizations of 7 in the simulations, and report
the average of max{E[7|7],0}. In each of the simulations, we calculate parametric and
nonparametric empirical Bayes estimates of the average payoff of EBDM. The parametric
empirical Bayes estimator is the sample analog of equation (5). This estimator is valid under
the assumption that the true distribution of 7 is Gaussian. The nonparametric empirical
Bayes estimator is as in Section 3.2.1. For the simulations in this section, we treat o2 as
known.

Table 1 reports the true values of the expected payoff of EBDM along with means and

16



95 percent intervals for the distribution of the estimates across simulations. When 7 is
Gaussian, the distributions of the parametric and nonparametric empirical Bayes estimates
across simulations are both centered near the true value of the expected EBDM payoff.
Moreover, there is no evidence of substantial gains from knowledge of the parametric form
of the distribution of 7. The 95 percent interval for the nonparametric estimator is only 1.5
percent wider than the interval for the parametric estimator.

For the case when the distribution of 7 is a mixture, the results for the parametric
estimator reveal a clear bias, while the distribution of the nonparametric estimator remains
centered at the true value of the expected payoff. Moreover, the 95 percent interval for
the nonparametric estimator is 28.3 percent narrower than the interval for the parametric

estimator.

5. Application to the Upworthy dataset

Table 2 reports parametric and nonparametric empirical Bayes estimates of the value of
EBDM in the Upworthy data. In the parametric case, the table reports estimates com-
puted under heteroskedasticity (Section 3.1.2). In the nonparametric case, it reports three
estimates: the precision-independence NPMLE (Section 3.2.1), and binning and CLOSE-
NPMLE estimates (Section 3.2.2) that relax the assumption of precision independence.
Below each of the estimates of the value of EBDM, Table 2 reports 95 percent intervals
computed over 1,000 bootstrap draws from the distribution of (7,5?) in the data. In our
calculations, we impose c;, = c¢r = c¢(d?) = 0.

Because T has a negative mean and large dispersion relative to its mean, this is a set-
ting where we expect to have substantial gains from EBDM. Indeed, the parametric model
suggests a VoE of about 1.8 times the magnitude of i (but with a positive sign), while
nonparametric empirical Bayes under the most restrictive specification yields a value only
slightly larger than fi in magnitude. The most flexible specifications (binning and CLOSE)
deliver similar results, implying a VoE that is 25.4 percent larger than fi in magnitude and
with a positive sign and a VoID that is 125.4 percent larger than fi in magnitude, again with

a positive sign.
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Table 2: Value of EBDM for the Upworthy data

Distribution of T:
o= —0.7622
(standard deviation of 7 is 6.03)

Value of EBDM:

parametric nonparametric
precision binning CLOSE-NPMLE
independence
(1) (2) (3) (4)
VoE estimate 1.4057 0.7621 0.9285 0.9560
© 95% interval [1.2792,1.5321] [0.6743,0.8499] [0.8290,1.0280] [0.8519,1.0601]
estimate 2.1678 1.5242 1.6907 1.7181

VoID {95% interval [1.9906,2.3451] [1.3832,1.6653] [1.5495,1.8319] [1.5794,1.8568]

Note: The table reports estimates of the VoE and VolD for the Upworthy data (n = 4,857). For each
method, the table presents the point estimate of the payoff and a dispersion interval obtained from 1,000
bootstrap samples. The parametric model is computed under a heteroskedasticity assumption.

6. Estimation of counterfactual EBDM values

This section provides estimates of the value of EBDM under alternative levels of statistical
precision and under alternative levels of dispersion in the distribution of the effects of the
policies.

First, we estimate how the value of EBDM would change as a result of a change in
o2, In the resulting counterfactuals, the variance of the estimators is equal to the variance
of 71| 71,...,7n |7 in the original sample multiplied by A. That is, A\ = 0.5 represents a
counterfactual scenario where the variances of the estimators are 50 percent smaller than
the variance estimates in the original sample, while for A = 1.5 the variances of the estimators
are 50 percent larger than in the original sample.

For simplicity, we consider only counterfactual scenarios such that 7 is independent of

2 and estimate the value of EBDM using the parametric empirical

estimation variance, o
Bayes estimator of Section 3.1. It is conceptually straightforward to extend this procedure

to more general settings (e.g., by modeling the dependence between 7 and ¢? and/or using
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nonparametric empirical Bayes estimators).

For each estimate ¢ = 1,...,n in our sample, we draw a value from the empirical Bayes
estimate of the distribution of 7. Let 77", ..., 7% be the resulting values for the draws. Next,
fori =1,...,n, we obtain 7 = 7* + ¢}U;, where Uy, ..., U, are independent draws from the
standard Gaussian distribution, and o = v/A5;. We use the new sample (7, 5%), ..., (7*,5%)
to compute an estimate of the value of EBDM. We repeat this procedure multiple times to
obtain the distribution of EBDM-value estimates for a particular value of A\. The average of
this distribution is our estimate of the value of EBDM under variance modification factor .
For the parametric empirical Bayes case, this average can also be computed directly using
an empirical counterpart of equation (5) that applies the variance modification factor A to
o2,

Panel A of Figure 2 reports the results obtained from applying the procedure described
above to the Upworthy data. The solid line represents the value of EBDM as a function of
the variance modification factor, A\. The shaded area represents 95 percent intervals from the
distribution of EBDM estimates. An investment that reduces estimation variance by half
(about a 29.3 percent decrease in standard errors) leads to an increase in the value of EBDM
by 8.33 percent, from 1.4057 to 1.5228. Conversely, an increase in estimation variance by
half (about a 22.5 percent increase in standard errors) decreases the value of EBDM by 6.56
percent, from 1.4057 to 1.3133.

We next compute counterfactual EBDM values for different levels of 72, the variance of
the distribution of 7. For each observation ¢ = 1,..., N in our sample, we draw a value
from a distribution with the same mean as the empirical Bayes estimate of the distribution
of 7 but with variance adjusted by a factor A\. Let 77, ..., 7 denote these draws. Next, for
each i, we compute 7 = 7* + 6;U;, where Uy, ..., U, are independent standard Gaussian
draws. Using the sample (7,51),...,(7F, 5,), we estimate the value of EBDM. Repeating

this procedure multiple times yields a distribution of EBDM estimates for a given A\. The

mean of this distribution is our estimate of EBDM under variance modification factor \ for

72,
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Panel B of Figure 2 shows how changes in the heterogeneity of true policy effects influence
the value of EBDM. When the variance modification factor A is greater than one, meaning
that the variance of the true effects increases, the value of EBDM rises. For instance, when +?
is increased by 50 percent (A = 1.5), the estimated value of EBDM increases from 1.4057 to
1.8882, reflecting a 34.32 percent gain. Conversely, when 7?2 is reduced by half (A = 0.5), the
value of EBDM declines to 0.7841, representing a 44.22 percent decrease from the baseline.

7. Significance testing reduces the value of information

Organizations commonly implement interventions only when they (i) deliver positive esti-
mated treatment effects and (7i) attain statistical significance at a prespecified level. This
section shows that significance-based decision rules fail to exploit the full informational con-
tent of the data and are therefore suboptimal from an EBDM perspective.

Intuitively, statistical significance decision rules prioritize Type I error control rather
than maximizing expected payoff. Therefore, they may discard interventions with large but
imprecisely estimated effects that could generate substantial rewards, or systematically fa-
vor interventions with small but precisely estimated effects, thereby biasing decisions toward
low-variance interventions rather than those with high expected payoffs. Moreover, condi-
tioning implementation decisions on statistical significance induces a winner’s curse effect:
selected interventions are disproportionately likely to be those whose effects were overesti-
mated in the sample due to sampling variation (see Andrews et al., 2023). Empirical Bayes
methods address these challenges by shrinking extreme estimates toward the prior distri-
bution of treatment effects, thereby removing substantial noise from signals. This enables
decision-makers to better distinguish signal from noise and rank interventions according to
their posterior expected value, thus favoring interventions with genuinely positive expected
payoffs.

Define the value of EBDM under a statistical significance rule with one-sided significance

level « as

Vig = BI(T = c)l(z1_oo0) (T = ¢1)/0)]
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= E[E[(T —c1) |7, 0]l (21— 0)((T —c1)/0)]

where z;_, is the (1 — «)-th quantile of a standard normal distribution.
Consider first the case of a fixed value of . For the parametric model 7 ~ N(u,~?), the
marginal distribution of 7 is 7|0 ~ N(u,v? + 02). As a result, conditional on o2, the value

of EBDM under a statistical significance rule at significance level « is

Vig(0?) = E[(T = c)I(ey o) (7 = €1)/0) 0]

- B[ (5T o) G =) [ o]

Calculations in the appendix show

(o?) = (14— (—cL) = 21-a0 72 (u—cr) — 21_a0

Compare this expression to V(0?) in (4). It holds that
Viglo®) < V(o?), (10)

provided 2 > 0, with strict inequality except for the case in which the arguments of the
functions ®(-) and ¢(-) coincide in the expression of V' (¢) and V(o). The appendix contains
a detailed comparison of the payoffs V(o) and V(o).

A plug-in procedure yields the estimator of V,

2 c /7 —CL — Z1-a0; 4 32 & ﬁ —CL = Z1-a0;
= —cr) L _ L ‘
VAPt o} VAPt o} VAP + o}
As an alternative, for any estimator of the posterior mean E[r|7,0;] (parametric or

nonparametric) an estimator of the value of EBDM under a statistical significance decision

rule is given by

—Z ( 7|7, 04 CL) Ly ao0)((Ti = €L)/07).

Table 3 compares the value delivered by significance-based EBDM to the VoE for the

Upworthy data. Across specifications, the empirical Bayes procedures in Section 3 deliver
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Table 3: The value of optimal vs. significance decision rules in the Upworthy data

parametric nonparametric
precision binning CLOSE-NPMLE
independence
(1) (2) (3) (4)
VoE 1.4057 0.7621 0.9285 0.9560
Significance rule (o = 0.05) 1.0287 0.5910 0.6510 0.6609

Note: The table reports estimates of the VoE and the value under a 5 percent significance decision
rule for the Upworthy data (n = 4,857). The parametric estimates are for the heteroskedastic case
(Section 3.1.2).

substantially higher value than significance-based decision making. Under the parametric
heteroskedastic model, EBDM yields 1.4057, compared with 1.0287 under the 5 percent sig-
nificance rule—a reduction of about 27 percent. The gap is larger under nonparametric
methods: binning and CLOSE yield values between 0.93 and 0.95, whereas the correspond-
ing significance-rule values cluster around 0.66-0.67, implying that significance screening
discards roughly 30 percent of attainable value. Overall, these results show that significance-
oriented decision rules systematically underperform value-based policies, especially in set-
tings with substantial heterogeneity and estimation noise, where empirical Bayes methods

can extract value from interventions that significance tests would discard.

8. Conclusions

This article develops an empirical framework to quantify the value of evidence-based decision
making and to examine how statistical precision and heterogeneity in policy effects moderate
that value. Using both parametric and nonparametric empirical Bayes methods, we estimate
the benefit of incorporating data-driven evidence into decision-making processes by balancing
the trade-off between the costs of acquiring information and the expected improvements in
outcomes. Higher statistical precision (i.e., lower 0?) and greater heterogeneity in policy
effects (i.e., higher +?) increase the value of evidence-based decision making.

Our framework provides a principled approach for organizations to evaluate whether in-
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vesting in additional data collection or policy exploration is worthwhile given the expected
gains in decision quality. The proposed methods are particularly relevant for organiza-
tions that frequently conduct experiments to optimize policies and business strategies. The
availability of many experimental evaluations—that is, the availability of many instances of
(7,02%)—makes it possible to estimate the distribution of policy effects.

Future research could extend our framework by incorporating more flexible empirical
Bayes estimators and exploring settings where estimation variance and treatment effect het-
erogeneity are determined endogenously by prior information. Additionally, applying our
approach to firm-level, governmental, and healthcare decision-making contexts could further
validate its usefulness in diverse policy environments.

Currently, many organizations rely on power calculations to guide their study designs,
without taking into account the cost-benefit trade-offs associated with evidence-based deci-
sion making. As organizations continue to expand their reliance on data for policy decisions,
our proposed methods offer a practical procedure for optimizing information acquisition

strategies.

Appendix

Convezity of V(o): The second derivative of V(¢?) with respect to o2 is

PV(o®) 3+ (p—cr)’ (P + ) f—cr -0
002002 492(72 + 02)5/2 V2/7/72 + 02 =

Now, Jensen’s inequality implies V (E[0?]) < E[V (a?)].

Derivation of (7): For any integrable function h and any s > 0,

[ 1O ate19) = U0 /o) [0 = 51 = Bl = [ bw/s) d6iw)
By the law of total probability,
f210lo(r | s) = ff?/or/a,o(r | t,8) dFro0(t | 5)
= [ otr =t dF e |5
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- fgb(r— %) G (w).

Now consider n studies indexed by i = 1,...,n, with observed pairs {(7;,0;)}"_;. Then, the

likelihood of the data {(7;, 0;)}; is

ﬁf?/akf (; ‘ ai) — ﬁj 4 (ﬁ-;w) dG(w).
i1 i i1 IR i

justifying the nonparametric Maximum Likelihood procedure.

Proof of (8): Since 7 | (1 = w,0 = s) ~ N(w,s?), it follows that fz,,(z | w,s) = ¢((z —
w)/s)/s. Now, the law of total probability implies

Frol 18) = [ Frnale | w9)iGlw) = [ 6 (22 dGw)

Moreover, it follows from Bayes’ rule that
frir0(2 | w, 8)dG(w)
fro(2 ] 8)
zZ—w
6 (F—) dG(w)

S

o) aet

dFz0(w | 2z,5) =

whereby,

[ (5w
Jo(F57) dew)

Proof of (9): For the parametric model 7 ~ N(u,7?), the marginal distribution of 7 is

El[r|T = z,0 = 5] = deFTTU(w | 2, 5)

T|lo ~ N(p,v*+ 0?). As a result, the value of EBDM under a statistical significance rule at
significance level « is
o _ [ (1470 -
Vig(o®) = E [(m —cr ) sy o0)((T —c1)/0) ‘ ol.
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Let t = (7 —¢p)/o,sot | o~ N((u—cr)/o, (7% + 62)/c?). Then,

2

vsigw):(u—cmpr(?ml_a|a>+( I )E[(?—mzl_a,w)(?ﬂo].

72 + 0—2
U)

Note that

t—(u—c))o 20— (p—ci)lo

>
VP +o?)jer (P +a?) o
I S e
Or et )
Moreover, it follows from integration by parts that

A R o0 1 t—
E[(7 = i) _oo0)(1) | 0] :J L (t_u)\/’y?—i-UQ(b(\/’YQ fﬁ) .

/72 + 0-2

Pr(t> z_q | 0) = Pr <

Therefore,

W)= (u—cp) [1-0 e (= cr)fo v 1o — (W—cL)/o
Vialo) = (1 — 1) (1 " < ) )) et < =IO, )

= (i —c)® (h—cL) —z1-a0 n 7 & (b —cL) — 2100
oo /7% + o? /7% + o? V2 4+ o2 .

Proof of (10): Consider the function f(z) = a®(x) + bg(x), with b > 0. Using the fact that
0p(x)/0x = —x@(x), it follows that

of (x)
ox

= (a = bz)o().

That is, df(z)/dx is positive for x < a/b, equal to zero for x = a/b, and negative for
x > a/b. As a result, z* = a/b gives the unique global maximum. Making a = pu — ¢ and

b =7%/4/7? + o2 proves (10).

Comparison of V(o) and V(o)
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First, notice that Vig(c?) and V(0?) are continuous in o2, and V4, (0) = V(0). That is, the

two rules extract similar values in low-noise environments.

As the scale of the noise, 0%, increases, both Vig(0?) and V(0?) decrease. Indeed, some

algebra shows,

5Vsig(02) _ (72(72 + 02) + ((p—cp)o + z1_a72)2) 5 ((M —cp) — zl_a0> <o.

0o? 2(y2 + 02)5/2 V2 + o2
Moreover
Tim Viglo®) = (= cr)a,
and

lim V(0?) = max{yu — cr, 0}

02—

2

That is, as o° increases, significance testing loses power and rejects with probability «.

2 increases, 7 loses informativeness and E[7|7,c?] converges to u.

At the same time, as o
This explains the limit of Vig(0?). For sufficiently large o2, the value of EBDM under a
significance decision rule is negative if u — ¢, < 0, and recovers only a small fraction o of
w— cp if 4 —cp > 0. In contrast, V(o?) is always non-negative and always recovers at least

the full value of p — ¢, when p—cp > 0.
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