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Abstract

In an era of data abundance, statistical evidence is increasingly critical for busi-
ness and policy decisions. Yet, organizations lack empirical tools to assess the
value of evidence-based decision making (EBDM), optimize statistical precision,
and balance the costs of evidence-gathering strategies against their benefits. To
tackle these challenges, this article introduces an empirical framework to estimate
the value of EBDM and evaluate the return on investment in statistical precision
and project ideation. The framework leverages parametric and nonparametric
empirical Bayes methods to account for parameter heterogeneity and measure
how statistical precision changes the value of evidence. The value extracted from
statistical evidence depends critically on how organizations translate evidence
into policy decisions. Commonly used decision rules based on statistical signifi-
cance can leave substantial value unrealized and, in some cases, generate negative
expected value.
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1. Introduction

Many organizations use randomized experiments and observational studies to improve their

decision making. For example, Gupta et al. (2019) write “Together [Airbnb, Amazon, Book-

ing.com, Facebook, Google, LinkedIn, Lyft, Microsoft, Netflix, Twitter, Uber, Yandex, and

Stanford University] have tested more than one hundred thousand experiment treatments

last year.” The fact that so many organizations conduct such a large number of experiments

suggests that these organizations believe that data evidence provides significant value in

guiding business and policy decisions. However, we are unaware of empirical tools that orga-

nizations can use to assess the actual value of their EBDM practices. In the absence of such

tools, it is difficult to determine whether too much experimentation is being conducted or

too little, whether experiments are too large or too small, and whether the right experiments

are being undertaken. Part of the challenge in evaluating the value of EBDM lies in the need

to describe the role of evidence in the business and policy decision-making process. In other

words, estimating the value of EBDM requires assumptions about what organizations will do

with and without various amounts of evidence, which they can choose to generate at some

cost.

In this article, we propose an empirical Bayes estimator for the value of EBDM. We study

the problem of a decision maker choosing whether to adopt a particular policy intervention.

We use the term “agent” to refer to the decision maker, and “policy,” “intervention,” and

“treatment” interchangeably to refer to the policy intervention under scrutiny. The agent

can implement the intervention based on prior information or gather additional informa-

tion at some cost—for example, by running an experimental or observational evaluation of

the intervention’s effect. At the stage where the agent decides whether to implement the

intervention, they aim to maximize utility based on the available information. We derive

expressions for the value of additional information and demonstrate how to estimate this

value using metadata on estimates of the effects of business and policy interventions, along

with their standard errors.

Our framework allows decision makers to assess in a principled way the value of experi-
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mental and non-experimental studies, and how design choices affect that value. Currently,

many organizations decide on the precision of their studies based on power calculations.

These do not take into account the costs and benefits of EBDM and instead rely on statisti-

cal conventions (for example, requiring 80% power for tests at the 5% level). Additionally,

our framework enables decision makers to ex ante assess whether an experiment is worth con-

ducting based on its cost and expected benefits (with benefits increasing with the decision

maker’s initial uncertainty about the intervention’s effect).

Related literature.—This article builds on foundational work by Blackwell (1951) and Howard

(1966) on the value of information. It extends that framework to the applied domain of

EBDM, combining costs, precision, and empirical Bayes estimation into a flexible tool for

real-world decisions and counterfactual analysis. The resulting methods are particularly

suited to data-rich environments, where organizations must balance the benefits of additional

information against the costs of generating it.

The empirical setting is also closely related to that of meta-analytic studies (Hedges

and Olkin, 1985; Higgins et al., 2019) in that it leverages information from many individual

studies. However, unlike meta-analysis, the goal of this article is not to assess the effectiveness

of a set of policies but to quantify the value brought by empirical evidence in guiding better

policy decisions.

A key component of the EBDM estimand is the expected value of the positive part of

the predicted policy payoff, that is, the expectation of the maximum of the predicted policy

payoff and zero. A related but distinct object is considered in Semenova (2023) in the

context of estimating the size of a latent population whose outcomes are observed regardless

of treatment exposure. The estimand in Semenova (2023) targets the distribution of an

expectation given observed covariates, and does so in a single study setting. In contrast, our

estimand pertains to the distribution of predicted policy payoffs across many studies.

This article also contributes to the growing literature on empirical Bayes methods (see

Morris, 1983; Efron, 2010, for foundational work on empirical Bayes). Empirical Bayes and

related shrinkage techniques play a central role in applied economics, informing research
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on teacher and school value-added (Chetty et al., 2014; Angrist et al., 2017), neighborhood

effects (Chetty and Hendren, 2018), income dynamics (Gu and Koenker, 2017), and racial

discrimination (Kline et al., 2024), among other topics. As empirical Bayes methods gain

traction in applied economics, a parallel methodological literature has emerged in economet-

rics (Koenker and Mizera, 2014; Abadie and Kasy, 2019; Fessler and Kasy, 2019; Armstrong

et al., 2022; Kwon, 2023; Koenker and Gu, 2024; Chen, 2024). Walters (2024) provides a

comprehensive account of empirical Bayes methods and their applications in economics. This

article applies both parametric and nonparametric empirical Bayes techniques to estimate

the distribution of policy payoffs in settings where the data contain information about the

effects of many policies.

2. The value of EBDM

The notation X � pθ, σ2q indicates that the random variable X has mean θ and variance

σ2. When X follows a Gaussian distribution with mean θ and variance σ2, it is denoted

as X � Npθ, σ2q. fXp�q represents a probability density function of the random variable

X, while fX|W p�|wq denotes a conditional probability density function of X given W � w.

FXp�q denotes the cumulative distribution function of X, and FX|W p� | wq is the cumulative

distribution function of X given W � w. The functions ϕp�q and Φp�q refer to the probability

density function and cumulative distribution function of the standard Gaussian distribution,

respectively.

2.1. Setup

Consider the problem of a risk-neutral decision maker tasked with choosing whether to adopt

a particular policy for a population of units. The ex ante unknown per-unit payoff of the

policy, τ , follows a distribution with known probability density function fτ p�q and mean

µ � Erτ s. In an organization where teams generate new ideas for policies or interventions,

fτ p�q can be thought of as the distribution of the quality of those ideas. For retrospective

estimation tasks, we take this distribution as fixed. However, organizations can shift it, for

example, by prioritizing high-risk projects with substantial upside, protecting agents from
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failure, or allocating resources to exploratory projects.

In the absence of additional information, the agent launches the policy if the expected

payoff from launching is positive,

µ� cL ¡ 0,

where cL is the cost of launching per-unit. The expected value of this decision is maxtµ �
cL, 0u.

Now, suppose the agent has the option to obtain additional information about the policy

payoff at some cost. Specifically, the agent can acquire a signal, pτ , distributed as

pτ | τ, σ2 � Npτ, σ2q, (1)

at a cost of cF � cpσ2q, where cF ¥ 0, cp�q ¥ 0, and c1p�q ¤ 0. This setup captures the infor-

mation obtained from studies estimating policy effects using experimental or observational

data. The constant cF reflects the fixed cost of conducting a data-driven policy evaluation,

while the function cp�q captures the cost of precision, which partly depends on the study’s

sample size. The restriction on the derivative c1p�q indicates that obtaining more precise

information is weakly more expensive. The assumption of Gaussianity for the distribution ofpτ | τ, σ2 is motivated by the approximate Gaussian nature of the large-sample distributions

of many commonly used estimators of treatment effects.

After observing the signal pτ , the expected payoff of the policy is

Erτ |pτ � ts �
»
ufτ |pτ pu|tqdu

�

»
u

σ
ϕppt� uq{σqfτ puqdu»

1

σ
ϕppt� uq{σqfτ puqdu

.

If a signal is observed, the agent launches the policy if

Erτ |pτ s � cL ¡ 0.

For any set A, let IApxq be the function that takes value one if x P A, and value zero

otherwise. The expected payoff with EBDM for a fixed value of the variance of the signal
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σ2 is

V pσ2q � E
�
Ip0,8qpErτ |pτ s � cLqpτ � cLq

�
� E

�
Ip0,8qpErτ |pτ s � cLqpErτ |pτ s � cLq

�
� E rmax tErτ |pτ s � cL, 0us .

Define V p8q as the expected payoff with no information beyond the distribution of τ ,

that is,

V p8q � maxtµ� cL, 0u.

Because maxtx, 0u is a convex function of x, Jensen’s inequality implies,

Vpσ2q ¥ maxtµ� cL, 0u � V p8q.

The value of evidence (VoE) is the difference in expected payoffs V pσ2q and V p8q, which is

nonnegative, minus the cost of acquiring the information, which is generally positive:

VoEpσ2q � V pσ2q � V p8q � pcF � cpσ2qq.

A second version of VoE, which we term VoID (for Value of Information under Default

adoption) is obtained when, in the absence of additional information about the effect of the

intervention, the intervention is always deployed and so V p8q � µ� cL:

VoIDpσ2q � V pσ2q � pµ� cLq � pcF � cpσ2qq.

VoIDpσ2q is motivated by settings with ex-ante (pre-evaluation) ambiguity on the distribution

of τ , and agents who have a bias for action in the presence of such ambiguity.

2.2. A motivating example

A common instance of the setting described above is one where the decision maker obtains

experimental evidence on the effect of the policy. Consider an experiment with N units:

i � 1, . . . , N . The experimenter assigns N1 units at random to treatment and the remaining

N0 � N �N1 to control. If unit i is treated, an outcome is drawn

Yip1q � pθ1, σ2
1q.

6



If unit i is untreated, the outcome is drawn

Yip0q � pθ0, σ2
0q.

Let Wi be an indicator of treatment for unit i. We observe Yi � Yip1qWi � Yip0qp1 �Wiq.
The average effect of the treatment is

τ � θ1 � θ0.

A simple estimator of τ is the difference in mean outcomes between treated and nontreated,

pτ � 1

N1

Ņ

i�1

WiYi � 1

N0

Ņ

i�1

p1�WiqYi.

Then, for large N0 and N1, equation (1) holds approximately, with

σ2 � σ2
1

N1

� σ2
0

N0

.

When a fraction p � N1{N of units are assigned to treatment, and assuming that the only

variable cost of the experiment comes from recruiting subjects at a cost κ per subject, the

total cost of the experiment is

cF � κ

σ2

�
σ2
1

p
� σ2

0

1� p



,

where cF is the fixed cost of the experiment.

Neyman’s allocation rule, p{p1 � pq � σ1{σ0, minimizes the variance σ2 for a fixed total

number of experimental subjects, N . When this rule is applied to allocate subjects between

a treatment and a control group, the cost of the experiment becomes

cF � κ
pσ1 � σ0q2

σ2
.

In some settings, researchers favor treatment effect parameters free of units of measure-

ment, such as lift τ � pθ1 � θ0q{θ0. Let

pτ �
1

N1

Ņ

i�1

WiYi � 1

N0

Ņ

i�1

p1�WiqYi

1

N0

Ņ

i�1

p1�WiqYi

.
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Then, for large N0 and N1, equation (1) holds with

σ2 � 1

θ20

�
σ2
1

N1

� p1� τq2 σ
2
0

N0



.

For values of the lift parameter close to zero, as is common in many online experimentation

settings, we can approximate

σ2 � 1

θ20

�
σ2
1

N1

� σ2
0

N0



.

In this case, Neyman allocation yields,

cF � κ
pσ1 � σ0q2

θ20σ
2

,

2.3. A Gaussian distribution for τ

This section derives a simple closed-form expression for V pσ2q under the assumption that

the distribution of τ is Gaussian,

τ � Npµ, γ2q. (2)

While equation (1) is supported by the Central Limit Theorem in studies with large samples,

equation (2) imposes two important restrictions. First, τ is a Gaussian random variable.

Second, implicit in the notation is the assumption that the distribution of τ is independent

of σ2. The first is a strong parametric restriction. The Gaussian approximation for τ could

be valid in some settings but questionable in others. The second restriction could be violated,

for example, if researchers adapt the power of individual studies to take into account prior

information about the effect on the treatment. We dispose of these two restrictions later in

the article. We adopt them in this section, however, to obtain closed-form formulas for the

value of EBDM in a simple setting.

If equations (1) and (2) hold, the marginal distribution of pτ is pτ � Npµ, γ2 � σ2q. The

posterior for τ is given by

τ | pτ � N

�
µ{γ2 � pτ{σ2

1{γ2 � 1{σ2
,

1

1{γ2 � 1{σ2



.
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The expected payoff with EBDM is

V pσ2q � E

�
max

"
µ{γ2 � pτ{σ2

1{γ2 � 1{σ2
� cL, 0

*�
.

Let

Z � µ{γ2 � pτ{σ2

1{γ2 � 1{σ2
� cL.

Recall that the marginal distribution of pτ is Gaussian with mean µ and variance γ2�σ2. As

a result,

Z � N

�
µ� cL,

γ4

γ2 � σ2



. (3)

Now, V pσ2q is the the first moment of the Gaussian distribution in (3) censored from below

at zero,

V pσ2q � pµ� cLqΦ
�

µ� cL

γ2{
a
γ2 � σ2

�
� γ2a

γ2 � σ2
ϕ

�
µ� cL

γ2{
a
γ2 � σ2

�
. (4)

The derivatives of V pσ2q with respect to σ2, γ2, and µ are

BV pσ2q
Bσ2

� � γ2

2pγ2 � σ2q3{2ϕ
�

µ� cL

γ2{
a
γ2 � σ2

�
¤ 0,

BV pσ2q
Bγ2

� γ2 � 2σ2

2pγ2 � σ2q3{2ϕ
�

µ� cL

γ2{
a
γ2 � σ2

�
¥ 0,

and

BV pσ2q
Bµ � Φ

�
µ� cL

γ2{
a
γ2 � σ2

�
¥ 0.

Higher precision of the signal pτ |τ increases the expected payoff from EBDM. In addition,

the value of experimentation increases when an organization increases the variance of the

distribution of true effects—that is, the variance of idea quality. The derivative of V with

respect to µ implies

BVoE
Bµ � Φ

�
µ� cL

γ2{
a
γ2 � σ2

�
� Ip0,8qpµ� cLq,

and

BVoID
Bµ � Φ

�
µ� cL

γ2{
a
γ2 � σ2

�
� 1.
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VoE peaks at µ � cL and decreases monotonically with |µ � cL|. When |µ � cL| is large,

a simple rule that selects policies based solely on the sign of µ � cL gets most decisions

right, leaving little room for additional evidence to add value. VoID, the value of EBDM

when policies are adopted by default in the absence of additional information, decreases

monotonically with µ. VoID is particularly large when the distribution of τ is concentrated on

negative values, as additional information winnows out many ineffective or counterproductive

policies.

Notice that

lim
σ2Ñ8

V pσ2q � maxtµ� cL, 0u � V p8q

and

lim
σ2Ñ0

V pσ2q � pµ� cLqΦ
�
µ� cL

γ



� γϕ

�
µ� cL

γ



.

As σ2 Ñ 8, we lose any additional information about the value of τ beyond its distribution,

and V pσ2q converges to V p8q. As σ2 Ñ 0, the information gathering process reveals the

value of τ . In this case, V pσ2q converges to Ermaxtτ � cL, 0us, the mean of the distribution

of τ � cL censored at zero.

So far, we have treated σ2 as a constant. We now allow σ2 to have a non-degenerate

distribution, independent of τ . In this case, the average payoff of EBDM is

V � E
�
maxtE�τ |pτ , σ�� cL, 0u

�
� E

�
E
�
maxtErτ |pτ , σs � cL, 0u|σ

��
� E

�
pµ� cLqΦ

�
µ� cL

γ2{
a
γ2 � σ2

�
� γ2a

γ2 � σ2
ϕ

�
µ� cL

γ2{
a
γ2 � σ2

��
, (5)

with the expectation taken over the distribution of σ2.

2.4. A Gaussian mixture distribution for τ

In Section 4 we use a Gaussian mixture distribution to evaluate the effects of misspecification

of the distribution of τ on EBDM value estimates. Suppose τ follows a mixture of k Gaussian

distributions with parameters pµ1, γ
2
1q, . . . , pµk, γ

2
kq, and mixture probabilities p1, . . . , pk. Let
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pτ � τ � ε, where ε is independent Gaussian noise with variance σ2. Conditional on τ �
Npµj, γ

2
j q, we have

Erτ |pτ , τ � Npµj, γ
2
j qs �

µj{γ2
j � pτ{σ2

1{γ2
j � 1{σ2

.

As a result,

Erτ |pτ s � ķ

j�1

Erτ |pτ , τ � Npµj, γ
2
j qsPrpτ � Npµj, γ

2
j q|pτq

�

ķ

j�1

�
µj{γ2

j � pτ{σ2

1{γ2
j � 1{σ2



1b

γ2
j � σ2

ϕ

�� pτ � µjb
γ2
j � σ2

�
pj

ķ

j�1

1b
γ2
j � σ2

ϕ

�� pτ � µjb
γ2
j � σ2

�
pj

. (6)

The simulations in Section 4 use the Gaussian mixture model to capture deviations from

normality in the distribution of τ .

3. Empirical Bayes estimation

In this section, we analyze a setting with n realizations from the distribution of pτ, σ, pτ , pσq,
where only the estimates pτ and pσ are observed. We use the observations on pτ and pσ to

estimate µ and γ2 using an Empirical Bayes strategy. ppτ , pσq represent point estimates and

their corresponding standard errors for a set of policy evaluations in the dataset. We examine

both the homoskedastic case, where σ2 is constant, and the heteroskedastic case, where

varpσ2q ¡ 0. Throughout our analysis, we approximate the per-unit launch cost as cL � 0.

Alternatively, we can interpret τ as representing the net benefits of the treatment after

accounting for the launch cost.

We employ a database of thousands of online experiments run by Upworthy to illus-

trate the applicability of our methods. Upworthy is a U.S. online news and media publisher

that built a large following in the 2010s by pairing positive, uplifting stories with opti-

mized headline-and-image packages designed to drive clicks and shares. Upworthy pioneered

large-scale A/B testing of these packages, routinely randomizing visitors across alternative
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headlines and images for the same article preview and using click-through performance to

guide editorial and distribution choices.

The Upworthy Research Archive records thousands of randomized experiments run by

Upworthy between January 24, 2013 and April 30, 2015. We restrict our analysis to the

Upworthy Exploratory Dataset, which contains outcomes for 4,873 online experiments. Each

experiment compared alternative headline-and-image packages for the same article preview.

We analyze outcomes for the first two packages deployed in each experiment, labeling the

first as the control arm and the second as the treatment arm. For each package, the archive

reports impressions and clicks. We remove from the sample all experiments with fewer than

100 impressions in one of the experimental arms, which yields a sample of n � 4,857 online

experiments. We then compute each experimental arm’s click rate per thousand impressions

and define pτ as the treatment–control difference in those rates. We also compute the standard

error of pτ .
Figure 1 shows the distribution of pτ . The average value of pτ is �0.7621 (clicks per

thousand impressions), with range r�54.17, , 45.13s. The standard errors have mean 2.9727

and range r0.2202, , 7.942s. For the remainder of this section, we use the Upworthy data

to illustrate empirical Bayes estimation of the value of EBDM. Sections 5 through 7 delve

deeper into the EBDM value estimates for the Upworthy dataset.

3.1. Parametric empirical Bayes

In this section, we adopt a Gaussian specification for the distribution of τ . Because pτ is

unbiased, we can estimate µ, the mean of the distribution of τ , as the mean of pτ across eval-

uations. To estimate γ2, the variance of the distribution of τ , we deconvolute the distribution

of pτ as follows. By the Total Law of Variance,

varppτq � Ervarppτ |τqs � varpErpτ |τ sq.
Unbiasedness of pτ conditional on τ implies

γ2 � varpτq
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Figure 1: Distribution of estimated treatment effects in the Upworthy data

-50 -40 -30 -20 -10 0 10
Difference	in	mean	clicks	per	thousand	impressions	(Treated	-	Control)

20 30 40

Nu
m
be

r	o
f	e

xp
er
im
en

ts

0

50

100

150

200

250

300

� varpErpτ |τ sq
� varppτq � Ervarppτ |τqs.

As a result, we define pγ2 as the difference between the variance pτ across experiments in the

data minus the mean of the squares of the standard errors. This estimator is not guaranteed

to be non-negative (see Morris, 1983, for a discussion and alternative estimators). In the

Upworthy dataset, pγ2 � 36.4608� 10.2437 � 26.2171.

3.1.1. Homoskedastic case

For the homoskedastic case, we estimate σ2 as the average of the squares of the standard

deviations of pτ across studies. In the Upworthy data, this estimate is 10.4919. Plugging in

this value in (4) along with estimates of µ and γ2, we obtain V p10.2437q � 1.3691, with the

value of information measured in clicks per thousand impressions.
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3.1.2. Heteroskedastic case

We now relax the assumption that σ2 is constant. It can be shown (see appendix) that

V pσ2q is convex. Then, by Jensen’s inequality, V pErσ2sq ¤ ErV pσ2qs. This result implies

that the assumption of homoskedasticity may lead to underestimation of the average payoff

when σ2 is not constant. Under heteroskedasticity, we evaluate the expression in (5) plugging

in study-specific estimates of σ2. Relative to the calculations in the previous section, now

the value of experimentation is computed for each value of σ2 and then integrated over the

distribution of σ2. An estimator of V based on a set of policy estimates can be calculated

in two steps: (i) use the square of the standard error of pτ to approximate σ2, and estimate

the value of each study separately, and (ii) take the average over all studies in the sample.

For the Upworthy data, this procedure yields V � 1.4057.

3.2. Nonparametric empirical Bayes

We next relax the parametric restriction τ � Npµ, γ2q of Section 3.1 and consider a non-

parametric distribution for τ .

3.2.1. NPMLE under precision independence

Suppose τ | σ � Gσ, where Gσ is an unspecified distribution, and

pτ | pτ, σq � Npτ, σ2q.

Under a precision-independence assumption (namely, that τ is independent of σ) we have

τ | σ � Gσ � G, so the distribution of τ does not depend on σ. It follows that for any s ¡ 0,

the conditional distribution of τ{σ given σ � s coincides with the distribution of τ{s.
Given n studies with observed pairs tppτi, σiquni�1, we estimate the mixing distribution

G using nonparametric empirical Bayes methods. A nonparametric maximum likelihood

estimator (NPMLE) of G solves the problem

max
GPG

ņ

i�1

log

»
ϕ

�pτi � w

σi



dGpwq, (7)

where G denotes a class of discrete distributions supported on a fixed grid u1, . . . , um, with
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probabilities g1, . . . , gm (see appendix for details). Modern implementations of NPMLE (e.g.,

Koenker and Gu, 2017) solve (7) efficiently and come with theoretical guarantees (Jiang,

2020; Soloff et al., 2025). The solution is computed over a grid u1, . . . , um representing

support points of G, with corresponding probabilities, pg1, . . . , pgm.
Moreover, as shown in the appendix, the posterior mean satisfies

Erτ |pτ � z, σ � ss �

»
wϕ

�z � w

s

	
dGpwq»

ϕ
�z � w

s

	
dGpwq

, (8)

from which we derive a sample analog of Erτ |pτ � z, σ � ss as
m̧

j�1

ujϕ
�z � uj

s

	pgj
m̧

j�1

ϕ
�z � uj

s

	pgj .

For the Upworthy dataset, we approximate σ1, . . . , σN using the reported standard errors,

estimate G via the algorithm of Koenker and Mizera (2014) as implemented in Koenker and

Gu (2017), and obtain pV � 0.7621.

3.2.2. Relaxing the precision independence assumption

We relax the precision-independence assumption by partitioning the range of pσ1, . . . , pσn into

five intervals and performing the NPEB calculations from the previous section within each

interval. We refer to this approach as binning. Applied to the Upworthy data, binning yieldspV � 0.9285.

As an alternative, we use the CLOSE-NPMLE framework of Chen (2024), which models

the conditional distribution of the estimates given their standard errors as a flexibly param-

eterized location–scale family and estimates the mixing distribution nonparametrically via

NPMLE. For the Upworthy data, CLOSE-NPMLE yields pV � 0.9560.
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Table 1: Simulation results

empirical Bayes

distribution of τ : true value parametric nonparametric

Gaussian
expected payoff
95% interval

0.3970 0.3962 0.3963
r0.3450, 0.4475s r0.3443, 0.4483s

mixture
expected payoff
95% interval

0.3230 0.3939 0.3232
r0.3121, 0.4757s r0.2645, 0.3819s

4. Simulations

We consider two data generating processes (DGP). In DGP1, the parameters τ have a

standard Gaussian distribution τ � Np0, 1q, so the parametric empirical Bayes model of

Section 2.3 applies. In DGP2, the parameters τ follow the mixture distribution as in Section

2.4. In particular, in DGP2,

τ �
$&%

Np�5, 1{2q with prob. 0.01,
Np0, 1{2q with prob. 0.98,
Np5, 1{2q with prob. 0.01.

DGP1 and DGP2 both produce a distribution of τ with mean zero and variance one. We

generate pτ as pτ � τ � σu, where u is independent standard Gaussian and σ � 0.1. To

calculate the expected payoff of EBDM, we consider the case of cL � 0.

We run 1000 simulations for DGP1 and DGP2 with n � 500. Equation (4) with µ � 0,

γ2 � 1, σ � 0.1, and cL � 0 gives the true expected payoff of EBDM under DGP1. To

calculate the true expected payoff of EBDM under DGP2, we first use equation (6) to

compute Erτ |pτ s over the n� 1000 � 500,000 realizations of pτ in the simulations, and report

the average of maxtErτ |pτ s, 0u. In each of the simulations, we calculate parametric and

nonparametric empirical Bayes estimates of the average payoff of EBDM. The parametric

empirical Bayes estimator is the sample analog of equation (5). This estimator is valid under

the assumption that the true distribution of τ is Gaussian. The nonparametric empirical

Bayes estimator is as in Section 3.2.1. For the simulations in this section, we treat σ2 as

known.

Table 1 reports the true values of the expected payoff of EBDM along with means and
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95 percent intervals for the distribution of the estimates across simulations. When τ is

Gaussian, the distributions of the parametric and nonparametric empirical Bayes estimates

across simulations are both centered near the true value of the expected EBDM payoff.

Moreover, there is no evidence of substantial gains from knowledge of the parametric form

of the distribution of τ . The 95 percent interval for the nonparametric estimator is only 1.5

percent wider than the interval for the parametric estimator.

For the case when the distribution of τ is a mixture, the results for the parametric

estimator reveal a clear bias, while the distribution of the nonparametric estimator remains

centered at the true value of the expected payoff. Moreover, the 95 percent interval for

the nonparametric estimator is 28.3 percent narrower than the interval for the parametric

estimator.

5. Application to the Upworthy dataset

Table 2 reports parametric and nonparametric empirical Bayes estimates of the value of

EBDM in the Upworthy data. In the parametric case, the table reports estimates com-

puted under heteroskedasticity (Section 3.1.2). In the nonparametric case, it reports three

estimates: the precision-independence NPMLE (Section 3.2.1), and binning and CLOSE-

NPMLE estimates (Section 3.2.2) that relax the assumption of precision independence.

Below each of the estimates of the value of EBDM, Table 2 reports 95 percent intervals

computed over 1,000 bootstrap draws from the distribution of ppτ , pσ2q in the data. In our

calculations, we impose cL � cF � cpσ2q � 0.

Because pτ has a negative mean and large dispersion relative to its mean, this is a set-

ting where we expect to have substantial gains from EBDM. Indeed, the parametric model

suggests a VoE of about 1.8 times the magnitude of pµ (but with a positive sign), while

nonparametric empirical Bayes under the most restrictive specification yields a value only

slightly larger than pµ in magnitude. The most flexible specifications (binning and CLOSE)

deliver similar results, implying a VoE that is 25.4 percent larger than pµ in magnitude and

with a positive sign and a VoID that is 125.4 percent larger than pµ in magnitude, again with

a positive sign.
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Table 2: Value of EBDM for the Upworthy data

Distribution of pτ : pµ � �0.7622
(standard deviation of pτ is 6.03)

Value of EBDM:
parametric nonparametric

precision binning CLOSE-NPMLE
independence

(1) (2) (3) (4)

VoE
estimate

95% interval
1.4057 0.7621 0.9285 0.9560

r1.2792, 1.5321s r0.6743, 0.8499s r0.8290, 1.0280s r0.8519, 1.0601s

VoID
estimate

95% interval
2.1678 1.5242 1.6907 1.7181

r1.9906, 2.3451s r1.3832, 1.6653s r1.5495, 1.8319s r1.5794, 1.8568s
Note: The table reports estimates of the VoE and VoID for the Upworthy data pn � 4,857q. For each
method, the table presents the point estimate of the payoff and a dispersion interval obtained from 1,000
bootstrap samples. The parametric model is computed under a heteroskedasticity assumption.

6. Estimation of counterfactual EBDM values

This section provides estimates of the value of EBDM under alternative levels of statistical

precision and under alternative levels of dispersion in the distribution of the effects of the

policies.

First, we estimate how the value of EBDM would change as a result of a change in

σ2. In the resulting counterfactuals, the variance of the estimators is equal to the variance

of pτ1 | τ1, . . . , pτn | τn in the original sample multiplied by λ. That is, λ � 0.5 represents a

counterfactual scenario where the variances of the estimators are 50 percent smaller than

the variance estimates in the original sample, while for λ � 1.5 the variances of the estimators

are 50 percent larger than in the original sample.

For simplicity, we consider only counterfactual scenarios such that τ is independent of

estimation variance, σ2, and estimate the value of EBDM using the parametric empirical

Bayes estimator of Section 3.1. It is conceptually straightforward to extend this procedure

to more general settings (e.g., by modeling the dependence between τ and σ2 and/or using
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nonparametric empirical Bayes estimators).

For each estimate i � 1, . . . , n in our sample, we draw a value from the empirical Bayes

estimate of the distribution of τ . Let τ�1 , . . . , τ
�
n be the resulting values for the draws. Next,

for i � 1, . . . , n, we obtain pτ�i � τ�i �σ�i Ui, where U1, . . . , Un are independent draws from the

standard Gaussian distribution, and σ�i �
?
λpσi. We use the new sample ppτ�1 , pσ�1 q, . . . , ppτ�n , pσ�nq

to compute an estimate of the value of EBDM. We repeat this procedure multiple times to

obtain the distribution of EBDM-value estimates for a particular value of λ. The average of

this distribution is our estimate of the value of EBDM under variance modification factor λ.

For the parametric empirical Bayes case, this average can also be computed directly using

an empirical counterpart of equation (5) that applies the variance modification factor λ to

σ2.

Panel A of Figure 2 reports the results obtained from applying the procedure described

above to the Upworthy data. The solid line represents the value of EBDM as a function of

the variance modification factor, λ. The shaded area represents 95 percent intervals from the

distribution of EBDM estimates. An investment that reduces estimation variance by half

(about a 29.3 percent decrease in standard errors) leads to an increase in the value of EBDM

by 8.33 percent, from 1.4057 to 1.5228. Conversely, an increase in estimation variance by

half (about a 22.5 percent increase in standard errors) decreases the value of EBDM by 6.56

percent, from 1.4057 to 1.3133.

We next compute counterfactual EBDM values for different levels of γ2, the variance of

the distribution of τ . For each observation i � 1, . . . , N in our sample, we draw a value

from a distribution with the same mean as the empirical Bayes estimate of the distribution

of τ but with variance adjusted by a factor λ. Let τ�1 , . . . , τ
�
n denote these draws. Next, for

each i, we compute pτ�i � τ�i � pσiUi, where U1, . . . , Un are independent standard Gaussian

draws. Using the sample ppτ�1 , pσ1q, . . . , ppτ�n , pσnq, we estimate the value of EBDM. Repeating

this procedure multiple times yields a distribution of EBDM estimates for a given λ. The

mean of this distribution is our estimate of EBDM under variance modification factor λ for

γ2.
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Figure 2: Counterfactual values of EBDM
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Panel B of Figure 2 shows how changes in the heterogeneity of true policy effects influence

the value of EBDM. When the variance modification factor λ is greater than one, meaning

that the variance of the true effects increases, the value of EBDM rises. For instance, when γ2

is increased by 50 percent (λ � 1.5), the estimated value of EBDM increases from 1.4057 to

1.8882, reflecting a 34.32 percent gain. Conversely, when γ2 is reduced by half (λ � 0.5), the

value of EBDM declines to 0.7841, representing a 44.22 percent decrease from the baseline.

7. Significance testing reduces the value of information

Organizations commonly implement interventions only when they (i) deliver positive esti-

mated treatment effects and (ii) attain statistical significance at a prespecified level. This

section shows that significance-based decision rules fail to exploit the full informational con-

tent of the data and are therefore suboptimal from an EBDM perspective.

Intuitively, statistical significance decision rules prioritize Type I error control rather

than maximizing expected payoff. Therefore, they may discard interventions with large but

imprecisely estimated effects that could generate substantial rewards, or systematically fa-

vor interventions with small but precisely estimated effects, thereby biasing decisions toward

low-variance interventions rather than those with high expected payoffs. Moreover, condi-

tioning implementation decisions on statistical significance induces a winner’s curse effect:

selected interventions are disproportionately likely to be those whose effects were overesti-

mated in the sample due to sampling variation (see Andrews et al., 2023). Empirical Bayes

methods address these challenges by shrinking extreme estimates toward the prior distri-

bution of treatment effects, thereby removing substantial noise from signals. This enables

decision-makers to better distinguish signal from noise and rank interventions according to

their posterior expected value, thus favoring interventions with genuinely positive expected

payoffs.

Define the value of EBDM under a statistical significance rule with one-sided significance

level α as

Vsig � Erpτ � cLqIpz1�α,8qpppτ � cLq{σqs
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� ErErpτ � cLq | pτ , σsIpz1�α,8qpppτ � cLq{σqs

where z1�α is the p1� αq-th quantile of a standard normal distribution.

Consider first the case of a fixed value of σ. For the parametric model τ � Npµ, γ2q, the
marginal distribution of pτ is pτ |σ � Npµ, γ2 � σ2q. As a result, conditional on σ2, the value

of EBDM under a statistical significance rule at significance level α is

Vsigpσ2q � Erpτ � cLqIpz1�α,8qpppτ � cLq{σq|σs

� E

��
µ{γ2 � pτ{σ2

1{γ2 � 1{σ2
� cL



Ipz1�α,8qpppτ � cLq{σq

��� σ� .
Calculations in the appendix show

Vsigpσ2q � pµ� cLqΦ
�
pµ� cLq � z1�ασa

γ2 � σ2

�
� γ2a

γ2 � σ2
ϕ

�
pµ� cLq � z1�ασa

γ2 � σ2

�
. (9)

Compare this expression to V pσ2q in (4). It holds that

Vsigpσ2q ¤ V pσ2q, (10)

provided γ2 ¡ 0, with strict inequality except for the case in which the arguments of the

functions Φp�q and ϕp�q coincide in the expression of V pσq and Vsigpσq. The appendix contains

a detailed comparison of the payoffs V pσq and Vsigpσq.
A plug-in procedure yields the estimator of Vsig

1

n

ņ

i�1

�
ppµ� cLqΦ

�pµ� cL � z1�ασiapγ2 � σ2
i

�
� pγ2apγ2 � σ2

i

ϕ

�pµ� cL � z1�ασiapγ2 � σ2
i

��
.

As an alternative, for any estimator of the posterior mean pErτ | pτi, σis (parametric or

nonparametric) an estimator of the value of EBDM under a statistical significance decision

rule is given by

1

n

ņ

i�1

� pErτ | pτi, σis � cL

	
Ipz1�α,8qpppτi � cLq{σiq.

Table 3 compares the value delivered by significance-based EBDM to the VoE for the

Upworthy data. Across specifications, the empirical Bayes procedures in Section 3 deliver
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Table 3: The value of optimal vs. significance decision rules in the Upworthy data

parametric nonparametric

precision binning CLOSE-NPMLE
independence

(1) (2) (3) (4)

VoE 1.4057 0.7621 0.9285 0.9560
Significance rule (α � 0.05) 1.0287 0.5910 0.6510 0.6609

Note: The table reports estimates of the VoE and the value under a 5 percent significance decision
rule for the Upworthy data pn � 4,857q. The parametric estimates are for the heteroskedastic case
(Section 3.1.2).

substantially higher value than significance-based decision making. Under the parametric

heteroskedastic model, EBDM yields 1.4057, compared with 1.0287 under the 5 percent sig-

nificance rule—a reduction of about 27 percent. The gap is larger under nonparametric

methods: binning and CLOSE yield values between 0.93 and 0.95, whereas the correspond-

ing significance-rule values cluster around 0.66–0.67, implying that significance screening

discards roughly 30 percent of attainable value. Overall, these results show that significance-

oriented decision rules systematically underperform value-based policies, especially in set-

tings with substantial heterogeneity and estimation noise, where empirical Bayes methods

can extract value from interventions that significance tests would discard.

8. Conclusions

This article develops an empirical framework to quantify the value of evidence-based decision

making and to examine how statistical precision and heterogeneity in policy effects moderate

that value. Using both parametric and nonparametric empirical Bayes methods, we estimate

the benefit of incorporating data-driven evidence into decision-making processes by balancing

the trade-off between the costs of acquiring information and the expected improvements in

outcomes. Higher statistical precision (i.e., lower σ2) and greater heterogeneity in policy

effects (i.e., higher γ2) increase the value of evidence-based decision making.

Our framework provides a principled approach for organizations to evaluate whether in-
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vesting in additional data collection or policy exploration is worthwhile given the expected

gains in decision quality. The proposed methods are particularly relevant for organiza-

tions that frequently conduct experiments to optimize policies and business strategies. The

availability of many experimental evaluations—that is, the availability of many instances of

ppτ , pσ2q—makes it possible to estimate the distribution of policy effects.

Future research could extend our framework by incorporating more flexible empirical

Bayes estimators and exploring settings where estimation variance and treatment effect het-

erogeneity are determined endogenously by prior information. Additionally, applying our

approach to firm-level, governmental, and healthcare decision-making contexts could further

validate its usefulness in diverse policy environments.

Currently, many organizations rely on power calculations to guide their study designs,

without taking into account the cost-benefit trade-offs associated with evidence-based deci-

sion making. As organizations continue to expand their reliance on data for policy decisions,

our proposed methods offer a practical procedure for optimizing information acquisition

strategies.

Appendix

Convexity of V pσq: The second derivative of V pσ2q with respect to σ2 is

B2V pσ2q
Bσ2Bσ2

� 3γ4 � pµ� cLq2pγ2 � σ2q
4γ2pγ2 � σ2q5{2 ϕ

�
µ� cL

γ2{
a
γ2 � σ2

�
¥ 0.

Now, Jensen’s inequality implies V pErσ2sq ¤ ErV pσ2qs.

Derivation of (7): For any integrable function h and any s ¡ 0,»
hptq dFτ{σ|σpt | sq � Erhpτ{σq | σ � ss � Erhpτ{sqs �

»
hpw{sq dGpwq.

By the law of total probability,

f
pτ{σ|σpr | sq �

»
f
pτ{σ|τ{σ,σpr | t, sq dFτ{σ|σpt | sq

�
»
ϕpr � tq dFτ{σ|σpt | sq
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�
»
ϕ
�
r � w

s

	
dGpwq.

Now consider n studies indexed by i � 1, . . . , n, with observed pairs tppτi, σiquni�1. Then, the

likelihood of the data tppτi, σiquni�1 is

n¹
i�1

f
pτ{σ|σ

�pτi
σi

��� σi



�

n¹
i�1

»
R
ϕ

�pτi � w

σi



dGpwq.

justifying the nonparametric Maximum Likelihood procedure.

Proof of (8): Since pτ | pτ � w, σ � sq � Npw, s2q, it follows that f
pτ |τ,σpz | w, sq � ϕppz �

wq{sq{s. Now, the law of total probability implies

f
pτ |σpz | sq �

»
f
pτ |τ,σpz | w, sqdGpwq � 1

s

»
ϕ
�z � w

s

	
dGpwq.

Moreover, it follows from Bayes’ rule that

dFτ |pτ ,σpw | z, sq � f
pτ |τ,σpz | w, sqdGpwq

f
pτ |σpz | sq

�
ϕ
�z � w

s

	
dGpwq»

ϕ
�z � u

s

	
dGpuq

whereby,

Erτ |pτ � z, σ � ss �
»
wdFτ |pτ ,σpw | z, sq �

»
wϕ

�z � w

s

	
dGpwq»

ϕ
�z � w

s

	
dGpwq

.

Proof of (9): For the parametric model τ � Npµ, γ2q, the marginal distribution of pτ ispτ | σ � Npµ, γ2� σ2q. As a result, the value of EBDM under a statistical significance rule at

significance level α is

Vsigpσ2q � E

��
µ{γ2 � pτ{σ2

1{γ2 � 1{σ2
� cL



Ipz1�α,8qpppτ � cLq{σq

��� σ� .
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Let pt � ppτ � cLq{σ, so pt | σ � Nppµ� cLq{σ, pγ2 � σ2q{σ2q. Then,

Vsigpσq � pµ� cLqPrppt ¡ z1�α | σq �
�

γ2

γ2 � σ2



Erppτ � µqIpz1�α,8qppt q | σs.

Note that

Prppt ¡ z1�α | σq � Pr

� pt� pµ� cLq{σapγ2 � σ2q{σ2
¡ z1�α � pµ� cLq{σapγ2 � σ2q{σ2

����� σ
�

� 1� Φ

�
z1�α � pµ� cLq{σapγ2 � σ2q{σ2

�
.

Moreover, it follows from integration by parts that

Erppτ � µqIpz1�α,8qppt q | σs � » 8

cL�z1�ασ

pt� µq 1a
γ2 � σ2

ϕ

�
t� µa
γ2 � σ2

�
dt

�
a
γ2 � σ2ϕ

�
cL � z1�ασ � µa

γ2 � σ2

�
.

Therefore,

Vsigpσq � pµ� cLq
�
1� Φ

�
z1�α � pµ� cLq{σapγ2 � σ2q{σ2

��
� γ2a

γ2 � σ2
ϕ

�
z1�α � pµ� cLq{σapγ2 � σ2q{σ2

�

� pµ� cLqΦ
�
pµ� cLq � z1�ασa

γ2 � σ2

�
� γ2a

γ2 � σ2
ϕ

�
pµ� cLq � z1�ασa

γ2 � σ2

�
.

Proof of (10): Consider the function fpxq � aΦpxq � bϕpxq, with b ¡ 0. Using the fact that

Bϕpxq{Bx � �xϕpxq, it follows that
Bfpxq
Bx � pa� bxqϕpxq.

That is, Bfpxq{Bx is positive for x   a{b, equal to zero for x � a{b, and negative for

x ¡ a{b. As a result, x� � a{b gives the unique global maximum. Making a � µ � cL and

b � γ2{
a
γ2 � σ2 proves (10).

Comparison of V pσq and Vsigpσq

26



First, notice that Vsigpσ2q and V pσ2q are continuous in σ2, and Vsigp0q � V p0q. That is, the
two rules extract similar values in low-noise environments.

As the scale of the noise, σ2, increases, both Vsigpσ2q and V pσ2q decrease. Indeed, some

algebra shows,

BVsigpσ2q
Bσ2

� �
�
γ2pγ2 � σ2q � ppµ� cLqσ � z1�αγ

2q2
2pγ2 � σ2q5{2



ϕ

�
pµ� cLq � z1�ασa

γ2 � σ2

�
  0.

Moreover

lim
σ2Ñ8

Vsigpσ2q � pµ� cLqα,

and

lim
σ2Ñ8

V pσ2q � maxtµ� cL, 0u.

That is, as σ2 increases, significance testing loses power and rejects with probability α.

At the same time, as σ2 increases, pτ loses informativeness and Erτ | pτ , σ2s converges to µ.

This explains the limit of Vsigpσ2q. For sufficiently large σ2, the value of EBDM under a

significance decision rule is negative if µ � cL   0, and recovers only a small fraction α of

µ� cL if µ� cL ¡ 0. In contrast, V pσ2q is always non-negative and always recovers at least

the full value of µ� cL when µ� cL ¡ 0.
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