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ABSTRACT  

Rationale & Objective 

Nearly 20% of deceased donor kidneys in the United States are placed “out-of-sequence” (i.e., 

outside of standard allocation rules). The rationale for out-of-sequence placements is to expedite 

placement of kidneys at risk of nonuse. We aimed to (1) develop machine learning (ML) models 

to predict the risk of kidney nonuse over time during the allocation process and (2) use the ML 

predictions to assess current out-of-sequence placements. 

Study Design 

Retrospective cohort study using OPTN data. 

Setting & Participants 

Deceased donors with at least one kidney recovered for transplant between January 1, 2022, and 

December 31, 2023 (25,785 donors, 51,320 kidneys). 

Predictor 

Clinical information available at distinct timepoints throughout the allocation process (donor 

medical history, biopsy, and center refusal patterns). 

Outcome(s) 

Probability of kidney nonuse. 

Analytical Approach 

We trained ML models, evaluating AUC, accuracy, and other metrics. Feature importance was 

assessed using Gini impurity. We compared predicted nonuse probabilities across kidneys by 

outcome (in-sequence, out-of-sequence, not used), conditioned on the Kidney Donor Profile 

Index (KDPI). 
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Results 

Adding refusal information up to clamp time performs better than a model that uses biopsy but 

no refusal information (0.90 vs 0.88). Center refusal information by time of prediction was 

among the most important predictors. Donors with out-of-sequence placements had intermediate 

predicted nonuse probabilities between donors with in-sequence placements and donors with 

unused kidneys. ML models were able to discriminate hard-to-place kidneys within each KDPI 

strata. 

Limitations 

Incomplete data on out-of-sequence placements. 

Conclusions 

ML can identify kidneys at high risk of nonuse before when biopsy data become available and 

better than the KDPI. Overall, ML can provide real-time, data-driven tools to identify hard-to-

place kidneys, offer a standardized and transparent way to guide accelerated placement and 

evaluate current practices, and ultimately reduce organ wastage. 

Key words: Machine learning; kidney allocation; kidney transplant; expedited placement; out-

of-sequence placement 

 

Abbreviations: 

Receiver operating characteristic area-under-the-curve (AUC) 

Cold ischemia time (CIT) 

Kidney allocation system (KAS) 

Kidney Donor Profile Index (KDPI) 

Kidney Donor Risk Index (KDRI) 

Machine learning (ML) 

Nautical mile (NM) 

Organ Procurement and Transplantation Network (OPTN) 
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Organ procurement organization (OPO) 

 

PLAIN LANGUAGE SUMMARY  

In the United States, deceased donor kidneys are allocated via a sequential offering 

process. Presently, nearly 20% are placed discretionarily “out-of-sequence,” outside of standard 

allocation rules. The rationale for this practice is to avoid organ loss. In this study, we used 

machine learning (ML) to predict whether a kidney would go unused, using donor medical 

history, biopsy results, and early refusal data from transplant centers. Real-time data on other 

centers’ assessment of the kidney was an extremely powerful predictor, even outperforming 

biopsy results. According to the ML predictions, kidneys currently placed out-of-sequence were 

generally harder-to-place. Overall, ML can provide real-time, data-driven tools to identify hard-

to-place kidneys. It also offers a standardized way to guide accelerated placement and evaluate 

current practices. 
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INTRODUCTION 

In the United States, a national system exists whereby deceased donor kidneys are 

allocated to waitlisted candidates based on medical and geographic criteria.1 Organ procurement 

organizations (OPOs) can exercise discretion to offer kidneys to any transplant program “out-of-

sequence” (i.e., outside usual allocation criteria), if they feel that the allocation system will not 

place the kidney in time, as excessive cold ischemia time (CIT) is associated with poorer post-

transplant survival outcomes.2–5 Since 2021, out-of-sequence placements of deceased donor 

kidneys have risen significantly, to nearly 20% of placements by the end of 2023.6 This shift in 

allocation practice coincides with the adoption of the Kidney Allocation System (KAS)-250 

policy, which increased both the volume of offers and the complexity of the OPO-transplant 

center network.7–12 

The allocation of nearly 20% of placed kidneys via a process outside the formal 

allocation system leads to natural concerns about inequity and disparities.6,13,14 OPOs develop 

their own criteria for out-of-sequence offers, but the process lacks standards and oversight, and 

there is no meaningful way of public engagement. This opacity can make out-of-sequence 

allocation feel unfair to both patients and transplant surgeons.  

In August 2023, the Organ Procurement and Transplantation Network (OPTN) formed an 

“Expeditious Task Force” to develop data-driven accelerated placement pathways.15 Current 

proposed policies consider pathways for donors with a KDPI (Kidney Donor Profile Index) of 

75% or higher.16 The KDPI, a composite of ten donor attributes available pre-offer (e.g., age, 

weight, creatinine), excludes the wealth of data that becomes available during the offer process.17 

A prior experiment to expedite offers of adult kidney donors based on KDPI failed to increase 
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utilization.18 Thus, a potential problem with the OPTN’s current approach is that the KDPI-based 

classification does not reliably identify kidneys at risk of nonuse. 

Patients awaiting transplantation urgently need a more effective and responsive allocation 

system that prevents the loss of viable deceased donor kidneys. A critical first step is to establish 

rigorous, data-driven criteria to identify kidneys likely to be hard-to-place under the standard 

allocation system, early in the offer process. Prioritizing these kidneys through accelerated 

allocation pathways would reduce the number that unnecessarily go unused. This more flexible 

and transparent system would in turn shorten wait times for all patients and foster greater trust 

among both patients and surgeons.  

This paper has two objectives. Firstly, we develop machine learning (ML) models to 

estimate the likelihood of a deceased donor kidney not being used (i.e., recovered for the 

purposes of transplantation but not transplanted), incorporating information that arrives at 

distinct timepoints during the allocation process. Throughout the allocation process, new 

information arrives, such as refusals by transplant programs, and biopsy results and pump values 

after the kidney has been procured and moved into cold storage. This paper expands upon 

previous work19–21 by incorporating refusal data into ML models. Secondly, we utilize these ML 

predictions to assess whether current out-of-sequence placements are appropriately focused on 

organs at risk of nonuse. Ultimately, patients awaiting transplantation and transplant surgeons 

urgently need greater transparency into current out-of-sequence allocation practices. ML 

provides an objective way to identify viable but hard-to-place kidneys to ensure they are not lost, 

and refusal data incorporates a human-in-the-loop element to capture contextual factors that may 

not be fully represented in clinical data alone. 
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METHODS 

Data 

Approval for this study was obtained from the Stanford University Institutional Review 

Board (Protocol 68925). Using datasets from the OPTN, our study cohort was donors with match 

runs (i.e., whose kidneys were allocated) between January 1, 2022, and December 31, 2023. We 

excluded donors that followed non-standard allocation pathways and donors missing key data 

(see Item S1: Supplementary Methods for full details). 

Predicting risk of nonuse over time 

Similar to previous literature19–21, we used logistic regression, decision trees, and random 

forests to identify whether a donor would be at risk of nonuse. To assess how informative data 

arriving during allocation is, we explicitly made predictions at different time points during the 

allocation process. We assumed that during the initial hours of allocation, an OPO would not 

treat kidneys from the same donor differently, so observations were at the donor level. 

Features/Predictors - We used donor features known at different points during the 

allocation process (Table 1). Prior work has made predictions after biopsy and machine 

perfusion variables became available,20 whereas we added additional information from centers’ 

refusals that may be available earlier. Based on discussions with OPO personnel and transplant 

surgeons, we selected 3 hours after clamp as the timepoint at which biopsy results became 

available. We trained models with and without refusal data to assess how much refusals add on 

top of clinical information. In total, we trained on 6 different feature sets: (1) pre-offer (i.e., 

using donor medical history data available at the time of offering); (2) clamp time, without 

refusals; (3) clamp time, with refusals; (4) 3 hours post-clamp, without refusals; (5) 3 hours post-
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clamp, with refusals; (6) 6 hours post-clamp, with refusals. Further sensitivity analysis on these 

features is given in the Supplementary Methods: Item S1. 

Centers often decline offers for multiple patients at the same time, rather than only for the 

patient who was offered the kidney, as observed in the refusal timestamps in the dataset.22 We 

constructed features representing the number of distinct centers that have sent single- and 

multiple-patient refusals (>1 or >5 patients simultaneously refused) by certain time points after 

clamp, based on the hypothesis that multi-patient refusals are linked to intrinsic organ issues and 

single-patient refusals result from a mismatch between the patient and the organ.22 We only 

captured refusals up to the specified time point; if no offers were made, there were consequently 

no refusals. 

Label/Outcome - We predicted donors for whom all recovered kidneys were not used.  

Model training and evaluation - We trained the models on donors whose match runs were 

between January 1, 2022, and June 30, 2023 (n=19,695) and evaluated the models on donors 

whose match runs were between July 1, 2023, and December 31, 2023 (n=6,090). We used cross 

validation with randomized search to tune hyperparameters on the training set, maximizing the 

receiver operating characteristic area-under-the-curve (AUC). The hyperparameters and their 

values are given in Table S1. We then assessed model performance on the held-out test set, 

using the evaluation metrics of AUC, accuracy, balanced accuracy, F1 score, false positive rate, 

and false negative rate. For robustness, we also report model performance on the training set. For 

all metrics, we computed 95% confidence intervals (CIs) by bootstrapping the evaluation set 

with 1,000 iterations. 
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The ML models estimate the probability of nonuse. We chose the threshold to compute 

accuracy, balanced accuracy, false positive rate, and false negative rate by taking the threshold 

with the highest F1 score on the training set. We quantified the eight most important features of 

the random forest models via Gini impurity-based feature importance to assess if and how much 

the additional clinical and refusal information were important predictors compared to the donor 

medical history. 

Characterizing donors with kidneys placed out-of-sequence 

As in previous work6, we identified kidneys placed through out-of-sequence allocation by 

looking at the refusal codes entered during the match run. The data does not record whether out-

of-sequence allocation was attempted for kidneys that were not used. A kidney was defined as 

being placed out-of-sequence if there was at least one bypass offer with a refusal code 

“Operational OPO” (861), “Donor medical urgency” (862), or “Offer not made due to expedited 

placement attempt” (863), at a lower sequence number than that of the accepted offer. In the 

scenario that a donor has one kidney placed prior and one kidney placed after bypasses, the first 

kidney would not be, but the second kidney would be considered out-of-sequence. We created a 

histogram to visualize deceased donor kidney outcomes stratified by KDPI under the current 

KAS-250 allocation system, marking kidneys placed in-sequence versus out-of-sequence (see 

Supplementary Material: Item S1 for full details). 

We used the predicted nonuse probabilities from our random forest models as a score 

reflecting the complexity of placing organs. As we developed donor-level prediction models, we 

stratified our analysis by donors whose kidneys were all placed in-sequence via the standard 

allocation system (“placed in-sequence”) (n=16,804), donors who had at least one kidney placed 

out-of-sequence (“placed out-of-sequence”) (n=3,216), and donors whose recovered kidneys 
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were not used (“not used”) (n=5,765). We analyzed the key characteristics of these donors with 

descriptive statistics. We used a density plot to analyze the distribution of these predicted nonuse 

probabilities from the pre-offer random forest, the clamp time random forest with refusals, and 

the 3 hours post-clamp random forest with refusals. To assess how predicted probabilities vary 

based on pre-recovery organ quality and post-recovery observed refusal patterns, we investigated 

the relative contributions of 1) KDPI and 2) the number of centers issuing multi-patient refusals 

for more than 5 patients, to the probabilities predicted by the clamp time random forest with 

refusals. Lastly, to understand if OPOs were applying out-of-sequence allocation to harder-to-

place organs and to see if the ML model can differentiate hard-to-place organs conditional on the 

KDPI, we created a density plot of the probabilities from the clamp time random forest with 

refusals, stratified by KDPI categories. A further exploration of the differences between donors 

with one and two kidneys placed out-of-sequence is given in the Supplementary Methods: 

Item S1. 

RESULTS 

Of the 51,320 kidneys from 25,785 donors in our analysis, 37,215 kidneys (72.5%) were 

transplanted, and 14,105 kidneys (27.5%) were not used (i.e., recovered for the purposes of 

transplantation but not transplanted).  

Predicting risk of nonuse over time 

At all times, the random forests performed better than both logistic regression and the 

decision trees (Figure 1, Table S2). Incorporating additional clinical information as features 

enhanced model performance and adding offer refusal data further augmented model 

performance (Figure 1, Table S2). For example, on the test set, the pre-offer random forest had 

an AUC of 0.87 and an accuracy of 0.79. Including refusal data by clamp time increases the 
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AUC to 0.90 and the accuracy to 82%; including both biopsy results and refusal data by 3 hours 

post-clamp further increases the AUC to 0.91 and accuracy to 84%; including refusal data by 6 

hours post-clamp further increases the AUC to 0.92 and accuracy to 85%. The clamp time 

random forest with refusal data outperformed the 3 hours post-clamp random forest without 

refusal data (AUC 0.900, 95% CI: [0.892, 0.908] vs. 0.883, 95% CI: [0.874, 0.892]), even 

though the latter incorporated biopsy results and the former did not. For robustness, Table S3 

reports model performance on the training set, demonstrating consistent results. 

The KDRI (Kidney Donor Risk Index), donor age, peak and terminal creatinine, and 

diabetes status were the most important features of the pre-offer random forest model (Figure 

2A). The second most important feature of the clamp time and 3 hours post-clamp random 

forests with refusal data was the number of unique centers sending a refusal for >5 patients 

simultaneously (Figures 2C and 2E), and this feature was relatively more important at 3 hours 

post-clamp compared to at clamp time. In the 6 hours post-clamp random forest with refusal 

data, this was the most important feature, surpassing both the KDRI and biopsy results (Figure 

2F). 

Characterizing donors with kidneys placed out-of-sequence 

In our cohort, 32,830 kidneys were placed in-sequence, and 4,385 kidneys were placed 

out-of-sequence (11.8%) with 162, 6, and 4,217 following refusal codes 861, 862, and 863, 

respectively. Kidneys across all KDPIs undergo out-of-sequence allocation (Figure S1).  

There were 3,216 donors who had at least one kidney placed out-of-sequence (Table 2). 

These donors were more likely to have higher KDPI, KDRI, age, and creatinine compared to 

donors placed in-sequence, but lower values compared to not used donors. Generally, donors 

placed out-of-sequence had characteristics that fell in between those of donors placed in-
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sequence and not used donors. More centers issued multi-patient refusals prior to clamp time for 

donors placed out-of-sequence and not used donors compared to donors placed in-sequence. For 

example, by clamp time, an additional 2.32 (1.56 vs. 3.88) centers had sent multi-patient refusals 

for donors placed out-of-sequence versus donors placed in-sequence (Table 2). 

In our test set, there were 3,734 donors placed in-sequence, 960 donors placed out-of-

sequence, and 1,396 not used donors. The pre-offer random forest separated these donors, with 

average predicted nonuse probabilities of 0.28, 0.40, and 0.70, respectively (Figure 3A). The 

clamp time random forest with refusals was further able to separate these donors in terms of the 

predicted probabilities, with average probabilities of 0.22, 0.40, and 0.72, respectively (Figure 

3B).  

Across all time points, as the predicted probabilities increased, the share of donors placed 

in-sequence decreased, and the share of not used donors increased (Figure 3). The share of 

donors placed out-of-sequence peaked around the probability of 0.6. In the mid-range of 

probabilities (0.5 to 0.7), all three outcomes were represented. 

Low KDPI donors with high numbers of multi-patient refusals (Figure 4, top right of 

each panel) had similar predicted probabilities to high KDPI donors with low numbers of multi-

patient refusals (Figure 4, bottom left of each panel). When the number of multi-patient refusals 

was large, the predicted nonuse probability was slightly lower for donors placed out-of-sequence 

than for donors placed in-sequence.  

There was clear separation in the distributions of predicted nonuse probabilities of placed 

in-sequence, placed out-of-sequence, and not used donors within each KDPI bin (Figure 5). 

Across all KDPI groups, the probabilities predicted by the clamp time random forest with 

refusals are higher for donors placed out-of-sequence and not used donors compared to donors 
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placed in-sequence. Slightly enhanced separation is seen in the 3 hours post-clamp random forest 

with refusals (Figure S2). We observed a separation in predicted probabilities between donors 

with one kidney placed out-of-sequence and those with both kidneys placed out-of-sequence, 

with the latter generally having higher predicted nonuse probabilities except in the highest KDPI 

group (Figure S3). 

DISCUSSION 

Since 2022, the number of deceased donor kidneys placed out-of-sequence has grown 

rapidly.6 This shift may partly be due to the increasing complexity of OPO and transplant 

program interactions, engendered by the change to KAS-250, which increased the number of 

offers considered local.7 Given the ongoing efforts to transition all solid organ allocation in the 

United States to a continuous distribution system, which will only magnify the complexity of 

OPO-center relations, the rise of discretionary offering is especially problematic. The current use 

of out-of-sequence allocation can appear unfair to waitlisted candidates and lacks sufficient 

transparency for both patients and transplant surgeons. Hence, a high policy priority is to identify 

organs at risk of nonuse, early during the offer process and using a standardized set of criteria, 

and selecting these organs for accelerated placement.16  

Because kidney allocation occurs over a period of time, metrics of organ quality that are 

updated throughout the allocation process (e.g., a “real-time” risk index) would be particularly 

advantageous over static measures like the KDPI. Time-updating ML predictions provide an 

objective way to identify viable but hard-to-place kidneys. Beyond clinical data about the donor, 

refusal information from offers that have already been made can further improve identification of 

kidneys at risk of nonuse. Although refusal data reflect subjective clinical judgment and may 

embed human biases, clinical data alone also contain biases that would influence any accelerated 
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placement selection criteria, including currently used approaches. Moreover, refusal patterns 

often capture valid clinical concerns not reflected in KDPI or other registry-based measures, such 

as infection or malignancy risk, anatomical or surgical anomalies, procurement issues, or other 

medical factors.22 Incorporating refusal data thus introduces a human-in-the-loop element that 

captures these contextual factors (e.g., anatomical data) not fully represented by clinical registry 

data. Motivated by this, the goals of this paper were to use ML to predict, over time, the 

likelihood of a kidney being hard-to-place and to characterize current out-of-sequence 

placements based on these predictions. Leveraging such predictions to guide accelerated 

placement could lead to higher utilization. 

We find that organ refusal information, even prior to clamp, is highly informative. 

Adding refusal information up to the time of clamp improves random forest model accuracy by 

4% (83% vs. 79%) and AUC by 0.03 (0.90 vs 0.87) compared to the pre-offer model (Figure 1 

and Table S2). Additionally, the number of unique centers that have sent simultaneous refusals 

for >5 patients is the second most important feature at clamp time and three hours after clamp, 

and the most important feature at six hours after clamp (Figure 2). The random forest with 

refusal data up until clamp outperforms the random forest without refusal data, even when 

biopsy information is incorporated (Figure 1). As biopsy results arrive hours into the allocation 

process, when it may already be too late to begin to begin out-of-sequence allocation, refusals 

can be a valuable early signal for organs that are hard-to-place. Overall, refusal data generated 

during the allocation process improves the identification of hard-to-place kidneys and may serve 

as an objective criterion in creating pathways for accelerated placement.  

Consistent with previous work6, we find that when measured by the predicted nonuse 

probabilities, out-of-sequence placements result in transplanting higher-KDPI, harder-to-place 
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kidneys compared to in-sequence allocations. The predicted nonuse probabilities from the ML 

models are higher for donors with at least one organ placed out-of-sequence compared to donors 

whose recovered kidneys were placed in sequence (Figure 3). The ML model can identify which 

organs are hard-to-place better than KDPI, as there is separation of probabilities by donor 

outcomes even within KDPI buckets (Figure 5). While this finding does not imply that kidneys 

placed out-of-sequence would have been placed had they been offered in-sequence, it is 

encouraging that ML predictions identify them as harder-to-place.  

We characterized donors with out-of-sequence kidney placements, but the existing data 

are insufficient to conclusively answer whether out-of-sequence placements improve utilization. 

Our analysis cannot predict counterfactual placement outcomes. Whether organs with low 

predicted probabilities that were placed out-of-sequence would have been placed in-sequence is 

an important open question. Similarly, whether organs with high predicted probabilities would 

have gone unplaced without the out-of-sequence allocation deserves further study. However, 

many kidneys that are not used in the United States are successfully transplanted in France23, 

suggesting that some organs with high predicted probabilities of nonuse could have resulted in 

successful transplants as well. Nonetheless, since all placed organs share the same label in 

training, the ML model generates a “score” quantifying each organ’s risk of nonuse. This score 

can be used to objectively prioritize the organs based on their likelihood of being used and guide 

allocation decisions. As time progresses during the allocation process, the greater amount of 

information available allows for more refined criteria for identifying hard-to-place donors. Still, 

despite limiting the input information to that which is accumulated up to clamp time, the clamp 

time random forest with refusals is quite accurate and can identify hard-to-place donors better 

than the KDPI. 
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One limitation of this analysis is that out-of-sequence allocation is only recorded for 

kidneys that were ultimately transplanted. Calls by OPOs to place organs outside the standard 

allocation system are not recorded for kidneys that go unused, resulting in a biased dataset that 

does not include failed out-of-sequence placement attempts. If some of the kidneys that were not 

used had previously undergone unsuccessful out-of-sequence placement attempts, organs that are 

placed out-of-sequence are likely to be even harder-to-place than our analysis shows. 

Additionally, we were unable to count certain out-of-sequence placement attempts due to 

miscoding.24 Another limitation with regards to the dataset is that it is missing important 

information, such as the time OPOs began calling centers to initiate the expediting process, the 

time of biopsy information arrival, and donor anatomic data and surgical damage. Further, the 

dataset does not fully capture logistical and transportation factors, such as missed flights, which 

can limit allocation to geographically nearby centers. Better data collection to capture the full 

picture of the allocation process will be helpful in improving the accuracy of our models and 

understanding out-of-sequence allocation. 

Overall, our analysis offers valuable insights into the current state of out-of-sequence 

placements and provides a method to improve identification of hard-to-place kidneys early on 

during the offer process (i.e., time of clamping). Current out-of-sequence allocation is 

discretionary at the OPO level, creating a lack of transparency for both patients and transplant 

surgeons and potentially leading to perceptions of unfairness. ML provides a systematic, data-

driven approach to support pathways that improve kidney utilization, rather than promoting 

indiscriminate out-of-sequence allocation. ML predictions themselves should also adapt over 

time to reflect policy changes and shifts in donor supply. After identifying a kidney as hard-to-

place based on standardized, objective, and easily obtainable information within the offering 
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process, the priority order should be adapted in a transparent manner to facilitate placement. 

These kidneys could still lead to successful transplants but might otherwise go unused under the 

current sequential offering system. Increasing utilization can shorten waiting times for all 

waitlisted patients. This data-driven approach can enhance transparency and trust in the 

allocation process, improve the efficiency of accelerated placement, and ultimately achieve the 

objective of better outcomes for all patients. 
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Table 1. Features used in the machine learning models to predict risk of nonuse at different 

times during the offering process. 

Time Information available to use as features 

Pre-offer Donor characteristics known before match run: 

• Kidney Donor Risk Index (KDRI), age, height, weight, gender, blood type 

• Admission, peak, and terminal creatinine 

• Donation after cardiac death (DCD) 

• Cause of death 

• Donor health history (diabetes, insulin dependence, protein in urine, high 

risk for HIV, history of cancer, cigarette usage, cocaine usage, 

hypertension, IV drug usage, other drug usage, arginine) 

• Whether the donor is homozygous for A, B, and DR antigens 

• Organ Procurement Organization (OPO) 

• Number of centers within 250 nautical miles (NM) of donor hospital  

Clamp 

time 

Additional information gained: 

• Urine output lower bound 

• Whether the donor was offered pre-clamp 

 

If including refusal data: 

• Number of different centers that sent a multiple-patient simultaneous 

refusal by clamp for >1 and >5 patients 

• Number of different centers that sent a single-patient refusal by clamp  

Clamp + 

3 hours* 

Additional information gained: 

• Whether at least one kidney was biopsied 

• “Good biopsy:” 0-10% glomerulosclerosis AND absent or minimal 

interstitial fibrosis in all biopsied kidneys** 

• “Bad Biopsy:” >20% glomerulosclerosis OR mild-moderate or severe 

interstitial fibrosis in at least 1 kidney** 

 

If including refusal data: 

• The three features relating to the number of different centers sending 

refusals were updated to include refusals sent within 3 hours of clamp. 

Clamp + 

6 hours 

Additional information gained: 

• The three features relating to the number of different centers sending 

refusals were updated to include refusals sent within 6 hours of clamp. 
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* We excluded pump values as most were null even 3 hours after clamp.  

**We grouped biopsy results in this manner because some categories (e.g., severe interstitial 

fibrosis) had small sample sizes, which were further reduced when stratified by kidney side (left 

or right). Combining these categories increased sample sizes, and this approach was informed by 

personal communication with transplant surgeons. In the Supplementary Material: Item S1, 

we present results using the original biopsy categories. 
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Table 2. Selected donor characteristics. Continuous variables are represented as mean (SD). 

Categorical variables are represented as N (%). 

 Characteristic 

Donors with all 

kidneys placed 

in-sequence 

(n=16,804) 

Donors with at 

least one 

kidney placed 

out-of-sequence 

(n=3,216) 

Donors with 

all recovered 

kidneys not 

used (n=5,765) 

 KDPI (%) 43 (27) 54 (25) 79 (20) 

 KDRI 1.29 (0.40) 1.45 (0.41) 1.97 (0.52) 

 Donor age 39.3 (15.2) 43.7 (14.9) 54.7 (13.8) 

 Creatinine (mg/dL) 1.28 (1.28) 1.68 (1.67) 2.12 (1.95) 

 Donation after cardiac 

death (DCD)  5373 (32.0%) 1389 (43.2%) 2570 (44.6%) 

 History of hypertension 461 (2.7%) 111 (3.5%) 402 (7.0%) 

 History of diabetes 1468 (8.7%) 369 (11.5%) 1713 (29.7%) 

 At least 1 kidney biopsied 8330 (49.6%) 2219 (69.0%) 5317 (92.2%) 

 

Glomerulosclerosis >20% 

OR mild-moderate or 

severe interstitial fibrosis in 

at least 1 kidney 504 (3.0%) 126 (3.9%) 1817 (31.5%) 

Blood Type 

O 7997 (47.6%) 1624 (50.5%) 2758 (47.8%) 

A 6154 (36.6%) 1132 (35.2%) 2146 (37.2%) 

B 2021 (12.0%) 408 (12.7%) 620 (10.8%) 

AB 632 (3.8%) 52 (1.6%) 241 (4.2%) 

Number of 

unique centers 

sending a 

single-patient 

refusal 

Clamp 3.13 (3.05) 4.21 (3.77) 3.44 (3.15) 

Clamp + 3 hours 

3.49 (3.21) 4.62 (3.91) 3.71 (3.27) 

Number of 

unique centers 

sending a 

multi-patent 

refusal for >1 

patients 

Clamp 1.56 (3.24) 3.88 (5.77) 7.13 (8.83) 

Clamp + 3 hours 

1.83 (3.53) 4.53 (6.15) 8.20 (9.53) 

Clamp 0.66 (2.33) 2.53 (4.94) 5.63 (8.00) 
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Number of 

unique centers 

sending a 

multi-patent 

refusal for >5 

patients 

Clamp + 3 hours 

0.81 (2.59) 3.02 (5.31) 6.60 (8.71) 

 
Average number of centers 

within 250NM of donor 

hospital 26.61 (17.84) 32.43 (18.99) 28.34 (17.48) 

 Accepted by 1 hour after 

clamp 208 (1.2%) 25 (0.8%)  

 Accepted by 3 hours after 

clamp 4560 (27.1%) 270 (8.4%)  
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Figure Legends 

Figure 1. Area-under-the-curve (AUC) and corresponding 95% confidence interval of machine learning 

models trained with features derived from data up to different time points on held-out test set donors (n = 

6,090). The x-axis represents the time points at which the features were determined: pre-offer, at clamp time, 3 hours 

post-clamp, and 6 hours post-clamp. The y-axis displays the AUC values. The colors and linestyles indicate the type 

and features of the machine learning model. 

 

Figure 2. Feature importances of random forest models trained with features derived from data up to 

different time points. The row represents the time points at which the features were determined: pre-offer (a), clamp 

(b-c), 3 hours post-clamp (d-e), and 6 hours post-clamp (f). The colors indicate whether the model was trained with or 

without refusal information. DCD, Donation after Cardiac Death. KDRI, Kidney Donor Risk Index. 

 

Figure 3. Stacked distribution of the predicted nonuse probabilities of the random forest models. The x-axis 

displays predicted nonuse probabilities from (a) the pre-offer random forest, (b) the clamp time random forest with 

refusals, and (c) the 3 hours post-clamp random forest with refusals. The y-axis shows the number of donors with 

each predicted nonuse probability (stacked). The colors represent donors whose kidneys were placed in-sequence 

(green), donors with at least one kidney placed out-of-sequence (yellow), and donors whose kidneys were not used 

(purple). 

 

Figure 4. Average predicted nonuse probability of (a) donors whose kidneys were placed in-sequence and (b) 

donors with at least one kidney placed out-of-sequence based on the KDPI and the number of unique centers 

sending multi-patient refusals for >5 patients by clamp time. In each heatmap, the x-axis shows the number of 

unique centers sending multi-patient refusals for more than 5 patients by clamp time, and the y-axis shows the KDPI 

bin. Each cell displays the average predicted nonuse probability from the clamp time random forest with refusals. 

 

Figure 5. Density plot of predicted nonuse probability from the clamp time random forest with refusals, by 

KDPI and donor outcome. Each subfigure illustrates a density of the predicted nonuse probability from the clamp 

time random forest with refusals for donors with KDPI (a) 0-34%, (b) 35-60%, (c) 61-85%, and (d) 86-100%. The 

colors represent donors whose kidneys were placed in-sequence (green), donors with at least one kidney placed out-

of-sequence (yellow), and donors whose kidneys were not used (purple). 

 

 

  

Jo
urn

al 
Pre-

pro
of



27 

 

 

Jo
urn

al 
Pre-

pro
of



Pre-offer Cross-Clamp Clamp+3 hours Clamp+6 hours
Time Point

0.79

0.81

0.83

0.85

0.87

0.89

0.91

0.93

AU
C

AUC and 95% Confidence Interval of Machine Learning Models over Time on Test Set

Logistic Regression - No Refusal Features
Logistic Regression - With Refusal Features

Decision Tree - No Refusal Features
Decision Tree - With Refusal Features

Random Forest - No Refusal Features
Random Forest - With Refusal Features

Jo
urn

al 
Pre-

pro
of



 

Jo
urn

al 
Pre-

pro
of



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Predicted probability

0

200

400

600

800

1000

1200

1400

1600

Nu
m

be
r o

f d
on

or
s

A
Pre-offer

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Predicted probability

0

200

400

600

800

1000

1200

1400

1600

Nu
m

be
r o

f d
on

or
s

B
Clamp time, with refusals

Donors whose kidneys were placed in-sequence
Donors who had at least 1 kidney placed out-of-sequence
Donors whose kidneys were not used
Average predicted probability

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Predicted probability

0

200

400

600

800

1000

1200

1400

1600

Nu
m

be
r o

f d
on

or
s

C
Clamp+3h, with refusals

Jo
urn

al 
Pre-

pro
of



0 1 2-3 >3
Unique centers sending multi-patient

refusals for >5 patients by clamp time

0-
34

35
-6

0
61

-8
5

86
-1

00
KD

PI
 (%

)

0.05
(n=1401)

0.17
(n=68)

0.39
(n=28)

0.53
(n=12)

0.12
(n=953)

0.30
(n=104)

0.45
(n=65)

0.60
(n=35)

0.32
(n=536)

0.51
(n=114)

0.66
(n=81)

0.76
(n=57)

0.57
(n=135)

0.67
(n=61)

0.82
(n=50)

0.87
(n=34)

A Donors whose kidneys
were placed in-sequence

0 1 2-3 >3
Unique centers sending multi-patient

refusals for >5 patients by clamp time
0-

34
35

-6
0

61
-8

5
86

-1
00

KD
PI

 (%
)

0.08
(n=160)

0.17
(n=41)

0.45
(n=18)

0.48
(n=25)

0.19
(n=141)

0.28
(n=39)

0.47
(n=51)

0.58
(n=36)

0.43
(n=157)

0.48
(n=53)

0.61
(n=68)

0.72
(n=68)

0.65
(n=30)

0.69
(n=21)

0.83
(n=14)

0.85
(n=38)

B Donors who had at least 1
kidney placed out-of-sequence

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Jo
urn

al 
Pre-

pro
of



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Predicted probability

0

2

4

6

8

10

12

14

De
ns

ity
A KDPI 0-34% (n=1808)

In-seq n=1509; 1 out-of-seq n=244; Not used n=55

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Predicted probability

0

1

2

3

4

5

6

De
ns

ity

B KDPI 35-60% (n=1600)
In-seq n=1157; 1 out-of-seq n=267; Not used n=176

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Predicted probability

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

C KDPI 61-85% (n=1603)
In-seq n=788; 1 out-of-seq n=346; Not used n=469

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Predicted probability

0

1

2

3

4

5

6

7

8

De
ns

ity

D KDPI 86-100% (n=1079)
In-seq n=280; 1 out-of-seq n=103; Not used n=696

Donors whose kidneys were placed in-sequence Donors who had at least 1 kidney placed out-of-sequence Donors whose kidneys were not used

Jo
urn

al 
Pre-

pro
of


