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OA.1. Other Versions of the Synthetic Control Design

Recall that in Figure 1, we discuss how to take into account the clustered nature of the data so

one unit is treated per cluster. This provides a better approximation of the distribution of the

predictor values for the entire sample, ameliorating concerns of interpolation biases. We provide

a formulation of the synthetic control design in this setting.

Suppose we divide the set of J available units into K clusters. Let Ik be the set of indices

for the units in cluster k. The cluster mean is

Xk =
∑
j∈Ik

fjXj

/∑
j∈Ik

fj,

for each cluster k = 1, . . . , K. For each index i = 1, . . . , J , let k(i) be the cluster to which unit i

belongs, i.e., i ∈ Ik(i). A clustered version of the synthetic control design in (10) is given by:

min
wj ,∀j=1,2,..,J,
vij ,∀i,j=1,2,...,J

K∑
k=1

(∑
j∈Ik

fj

){∥∥∥∥∥Xk −
∑
j∈Ik

wjXj

∥∥∥∥∥
2

+ ξ
∑
j∈Ik

wj

∥∥∥∥∥Xj −
∑
i,j∈Ik

vijXi

∥∥∥∥∥
2}

s.t.
∑
j∈Ik

wj = 1, ∀k = 1, . . . , K,

wj ≥ 0, ∀j = 1, . . . , J,

J∑
i=1

vij = 1, ∀j ∈ Jw

vij ≥ 0, ∀j ∈ Jw, i = 1, . . . , J,
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vij = 0, ∀j /∈ Jw, i = 1, . . . , J,

vij = 0, ∀i ∈ Jw, j = 1, . . . , J,

vij = 0, ∀i, j, such that k(i) ̸= k(j),

m ≤ ∥w∥0 ≤ m.

We conclude this section by discussing other possible extensions to the synthetic control

design. First, it is well known that synthetic control estimators may not be unique. Lack of

uniqueness is typical in settings where the values of the predictors that a synthetic control is

targeting (i.e., X in equation (7), or Xj for a treated unit in equation (10)) fall inside the

convex hull of the values of Xj for the units in the donor pool. To address the potential lack

of uniqueness, we adapt the penalized estimator of Abadie and L’Hour (2021) to the synthetic

control designs proposed in this article. The penalized synthetic control estimator of Abadie

and L’Hour (2021) is unique provided that predictor values for the units in the donor pool are

in general quadratic position (see Abadie and L’Hour, 2021, for details). Moreover, penalized

synthetic controls favor solutions where the synthetic units are composed of units that have

predictor values, Xj, similar to the target values. Applying the penalized synthetic control of

Abadie and L’Hour (2021) to the objective function of (7), we obtain

min
w1,...,wJ ,
v1,...,vJ

∥∥∥∥X −
J∑

j=1

wjXj

∥∥∥∥2 + ∥∥∥∥X −
J∑

j=1

vjXj

∥∥∥∥2

+ λ1

J∑
j=1

wj

∥∥∥X −Xj

∥∥∥2 + λ2

J∑
j=1

vj

∥∥∥X −Xj

∥∥∥2
s.t.

J∑
j=1

wj = 1,

J∑
j=1

vj = 1,

wj, vj ≥ 0, ∀j = 1, . . . , J,
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wjvj = 0, ∀j = 1, . . . , J,

m ≤ ∥w∥0 ≤ m. (OA.1)

Here, λ1 and λ2 are positive constants that penalize discrepancies between the target values of

the predictor X and the values of the predictors for the units that contribute to their synthetic

counterparts. See Abadie and L’Hour (2021) for details on penalized synthetic control estimators.

In Section OA.2 below, we discuss how to apply the Abadie and L’Hour penalty to the other

synthetic designs proposed in this article.

Other types of penalization are possible. In particular, Doudchenko and Imbens (2016),

Doudchenko et al. (2021), and others have proposed synthetic control estimators that use ridge

or elastic net regularization on the synthetic control weights (e.g., on wj and vj in design (7)). The

synthetic control designs proposed in this article can be modified to incorporate regularization

on the weights.

Finally, Abadie and L’Hour (2021), Arkhangelsky et al. (2021), and Ben-Michael, Feller and

Rothstein (2021) have proposed bias-correction techniques for synthetic control methods. In

Section OA.2 below we provide details on how to apply bias correction techniques in a synthetic

control design.

OA.2. Designs Based on Penalized and Bias-corrected Synthetic Control Methods

Consider the design problem in (10),

∥∥∥∥∥X −
J∑

j=1

wjXj

∥∥∥∥∥
2

︸ ︷︷ ︸
(a)

+ξ
J∑

j=1

wj

∥∥∥∥∥Xj −
J∑

i=1

vijXi

∥∥∥∥∥
2

︸ ︷︷ ︸
(b)

. (OA.2)
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To apply the penalized synthetic control method of Abadie and L’Hour (2021) to this design, we

replace the term (a) in (OA.2) with

∥∥∥∥∥X −
J∑

j=1

wjXj

∥∥∥∥∥
2

+ λ1

J∑
j=1

wj∥X −Xj∥2, (OA.3)

and the terms (b) with

∥∥∥∥∥Xj −
J∑

i=1

vijXi

∥∥∥∥∥
2

+ λ2

J∑
i=1

vij∥Xj −Xi∥2. (OA.4)

Here, λ1 and λ2 are positive constants that penalize discrepancies between the target values of

the predictors (X in (OA.3) and Xj in (OA.4)) and the values of the predictors for the units

that contribute to their synthetic counterparts.

All designs of Section 2 depend on terms akin to (a) and (b) in (OA.2). These terms can be

adapted as in (OA.3) and (OA.4) to implement the penalized synthetic control design of Abadie

and L’Hour (2021).

For all the designs in Section 2, the bias-corrected estimator of Abadie and L’Hour (2021) is

τ̂BC
t =

J∑
j=1

w∗
j (Yjt − µ̂0t(Xj))−

J∑
j=1

v∗j (Yjt − µ̂0t(Xj)),

where t ≥ T0+1 and the terms µ̂0t(Xj) are the fitted values of a regression of untreated outcomes,

Y N
jt , on unit’s characteristics, Xj. To avoid over-fitting biases, µ̂0t(Xj) can be cross-fitted for

the untreated.

OA.3. Approximate Validity when λt are not Exchangeable

Recall that in Theorem 2 we have shown that when λt are exchangeable for t ∈ B∪{T0+1, . . . , T}

the p-value in (17) is exact. In this section, we discuss the case when λt are not necessarily
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exchangeable. We show below in Theorem OA.1 that the p-value in (17) is approximately valid

when TE is large.

Theorem OA.1 Assume that Assumptions 1 – 3 hold. Assume there exists a constant κ < ∞,

such that for j = 1, . . . , J , t = 1, . . . , T , ϵjt are continuously distributed with (a version of)

the probability density function upper bounded by κ. Then, under the null hypothesis (15), the

p-values of equation (17) are approximately valid. In particular, there is an event C, such that

conditional on C, for any α ∈ (0, 1], we have

α− 2z2 −
1

|Π|
≤ Pr(p̂ ≤ α) ≤ α + 2z2, (OA.5)

and the event C happens with probability at least

Pr(C) ≥ 1− 2J exp

(
−

z21ζ
2

8σ2λ
4
F 2

TE

)
− z1

z2
4e
√

2J(min{T − T0, T0 − TE})3 κ, (OA.6)

where z1, z2 are arbitrary positive choice parameters. In expression (OA.6), the probability

Pr(C) is over the distribution of {ϵjt}j∈{1,...,J},t∈{1,...,T} and {ξjt}j∈{1,...,J},t∈{T0+1,...,T}. In expres-

sion (OA.5), the probability Pr(p̂ ≤ α) is over the distribution of {ϵjt}j∈{1,...,J},t∈{1,...,T} and

{ξjt}j∈{1,...,J},t∈{T0+1,...,T}, conditional on event C.

A limitation of the result in Theorem OA.1 is that there are values of the parameters of the

data generating for which the result of the theorem provides a tight bound on test size only for

large values of TE . Large TE allows choices for z1 and z2 such that the bounds in (OA.5) are tight

and the probability Pr(C) in (OA.6) is close to one.

We prove Theorem OA.1 in Section OA.7.4.
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OA.4. Estimating the Average Effect of Treatment on the Treated Units

In Section 3, we have shown formal results of the bias bounds in estimating the average treatment

effect. In this section, we present similar results for estimating the average effect of treatment

on the treated units. Similar to Assumption 3, we begin with the assumption of perfect fit.

Assumption 5 With probability one, (i)

J∑
j=1

w∗
jZj =

J∑
j=1

v∗jZj,

and (ii)

J∑
j=1

w∗
jY

E
j =

J∑
j=1

v∗jY
E
j .

In practice, Assumption 3 may only hold approximately. The next assumption accommodates

settings with imperfect fit.

Assumption 6 There exists a positive constant d > 0, such that with probability one,

∥∥∥ J∑
j=1

w∗
jZj −

J∑
j=1

v∗jZj

∥∥∥2
2
≤ Rd2,

∥∥∥ J∑
j=1

w∗
jY

E
j −

J∑
j=1

v∗jY
E
j

∥∥∥2
2
≤ TEd

2.

Using the above assumptions, we are able to provide the following bias bounds.

Theorem OA.2 If Assumptions 1, 2, and 5 hold, then for any t ≥ T0 + 1,

|E
[
τ̂Tt − τTt

]
| ≤ λ

2
F

ζ
2
√
2 log (2J)

σ√
TE

.

If Assumptions 1, 2, and 6 hold, then for any t ≥ T0 + 1,

|E [τ̂t − τt] | ≤
(
θR +

λ
2
F

ζ
(1 + θR)

)
d+

λ
2
F

ζ
2
√

2 log (2J)
σ√
TE

.
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The expectations are taken over the distribution of {ϵjt}j∈{1,...,J},t∈{1,...,T} and {ξjt}j∈{1,...,J},t∈{T0+1,...,T}.

We prove Theorem OA.2 in Section OA.7.5. Next, we provide the following result on inference.

Theorem OA.3 Suppose that Assumptions 1, 2(ii) and 5(i) hold, and the noises {ϵjt}t∈B∪{T0+1,...,T}

and {ξjt}t∈{T0+1,...,T} have continuous distributions. Assume that {λt}t∈B∪{T0+1,...,T} is a sequence

of exchangeable random variables. Under the null hypothesis (15), for any α ∈ [0, 1], we have

α− 1

|Π|
≤ Pr(p̂ ≤ α) ≤ α,

where Pr(p̂ ≤ α) is taken over the distribution of {ϵjt}j∈{1,...,J},t∈{1,...,T}, {ξjt}j∈{1,...,J},t∈{T0+1,...,T}

and {λt}t∈{1,...,T}.

We prove Theorem OA.3 in Section OA.7.6.

OA.5. Swapping Treated and Control Weights

Recall that when it is possible to swap synthetic treated and synthetic control weights, we choose

the treated units so that the number of units with positive weights in w∗ is smaller than the

number of units with positive weights in v∗. When ∥w∗∥0 = ∥v∗∥0, we determine whether or

not to swap using the following rule. For the Unconstrained design, we choose the treated group

to be the one with the smallest index among the units with positive weights. We use the same

procedure based on the lowest index for Constrained with m = 7 (highest value) and Penalized

with λ = 0.01 (lowest value). Then, starting from m = 7 and for smaller values of m, we

assign to the treated group the set of weights that is most similar to the weights obtained for

∥w∗∥0 ≤ m + 1 (in terms of what units obtain positive weights). In those cases where the two

sets of swappable weights for ∥w∗∥0 ≤ m are equally similar to the synthetic treated weights for

∥w∗∥0 ≤ m + 1, we select the set of weights with the smallest index. We follow the analogous

procedure for λ > 0.01, starting from smaller values of λ.
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OA.6. Implementations of Different Optimization Formulations

To computationally solve (7), i.e., the Unconstrained design, we propose two methods. The first

method is by enumeration, which takes advantage of the objective function of (7) being separated

between w and v. If we knew which units were to receive treatment and which units were to

receive control, then we could decompose (7) into two classical synthetic control problems and

solve both of them efficiently. We brute-force enumerate all the possible combinations of the

treatment units and control units. Because the two groups of treated and control units can

be swapped, we only enumerate combinations such that the cardinality of the treated group is

smaller than or equal to the cardinality of the control group. When the cardinality of the treated

group is equal to the cardinality of the control group, we prioritize the treated group to be the

one with the smallest index among the units with positive weights.

The second method solves a constrained optimization problem, by converting it into the

canonical form of a Quadratic Constraint Quadratic Program (QCQP), which we detail below.

The decision variables are wj and vj, ∀ j = 1, . . . , J . For simplicity, we write it in a vector form

W̃ = (w1, w2, ..., wJ , v1, v2, ..., vJ).

Let M be the dimension of the predictors Xj. Let X be an M × J matrix, each column of

which is Xj, which stands for the predictors of unit j.

Define P 0 = {P 0
k,l}k,l=1,...,2J ∈ R2J×2J , such that P 0 has only two diagonal blocks, while the

two off-diagonal blocks are zero. Define for any k, l = 1, . . . , 2J,

P 0
k,l =



M∑
i=1

Xi,kXi,l, k, l = 1, . . . , J ;

M∑
i=1

Xi,(k−J)Xi,(l−J), k, l = J + 1, . . . , 2J ;

0, otherwise.
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Define q0 ∈ R2J , such that for any k = 1, . . . , 2J

q0k =


− 2

M∑
i=1

Xi,k · (
J∑

j=1

fjXi,j), k = 1, . . . , J ;

− 2
M∑
i=1

Xi,k−J · (
J∑

j=1

fjXi,j), k = J + 1, . . . , 2J.

Further define e1 = (1, 1, ..., 1, 0, 0, ..., 0)′ whose first J elements are 1 and last J elements 0;

and e2 = (0, 0, ..., 0, 1, 1, ..., 1)′ whose first J elements are 0 and last J elements 1.

Finally, define P 1 = {P 1
k,l}k,l=1,...,2J ∈ R2J×2J such that P 1 only has non-zero values in the

two off-diagonal blocks, i.e., for any k, l = 1, . . . , 2J,

P 1
k,l =


1, k = l + J ;

1, k = l − J ;

0, otherwise.

Using the above notations we re-write the (non-convex) QCQP as follows,

min W̃ ′P 0W̃ + q0′W̃ (OA.7)

s.t. e′
1W̃ = 1,

e′
2W̃ = 1,

W̃ ′P 1W̃ = 0,

W̃ ≥ 0.

The first computational method (enumeration) solves two synthetic control problems in each

iteration. The synthetic control problems can be efficiently solved. We implement the syn-

thetic control problem using the “lsei” function from “limSolve” package in R 4.0.2. For the

second computational method (quadratic programming), the problem (OA.7) is implemented
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using Gurobi 9.0.2 in R 4.0.2. Since the QCQP is non-convex, the computation leads to some

numerical errors up to 0.001 in finding the treated and control weights. So we round the treated

and control weights to the nearest 2-digits in the implementation of the QCQP. Moreover, for

all the weights that are less than or equal to 0.01, we trim the weights to zero. This is because

smaller weights suffer from greater impacts of numerical errors, and numerical errors could cause

zero weights to be non-zero, thus having a non-negligible impact on the swapping rule.

To conclude, we compare the treated and control weights calculated from both methods.

Both methods yield the same treated and control weights up to some negligible rounding error,

while the first method takes longer computational time.

All the different versions of the synthetic control design are computationally implemented

using either one of the above two methods. The Unconstrained design is implemented using the

quadratic programming method. The Constrained design is implemented using the enumeration

method. In cases when the cardinality constraint m is small, this brute force enumeration is very

efficient. The Weakly-targeted design is implemented using the quadratic programming method.

In the QCQP formulation, the objective function has both a different quadratic term P 0 and a

different linear term q0. The Unit-Level design is implemented using the enumeration method.

The Penalized design is implemented using the quadratic programming method. In the QCQP

formulation, the objective function has the same quadratic term P 0 and a different linear term

q0.

OA.7. Proofs

OA.7.1. Proof of Theorem 1

Proof of Theorem 1. For any period t = T0 + 1, . . . , T we decompose (τ̂t − τt) as follows,

τ̂t − τt =

(
J∑

j=1

w∗
jY

I
jt −

J∑
j=1

v∗jY
N
jt

)
−

(
J∑

j=1

fjY
I
jt −

J∑
j=1

fjY
N
jt

)
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=

(
J∑

j=1

w∗
jY

I
jt −

J∑
j=1

fjY
I
jt

)
−

(
J∑

j=1

v∗jY
N
jt −

J∑
j=1

fjY
N
jt

)
. (OA.8)

The first term in (OA.8) measures the difference between the synthetic treatment outcome and

the aggregated treatment outcomes. The second term measures the difference between the syn-

thetic control outcome and the aggregate control outcomes. We bound these two terms separately.

From (12b), we obtain

J∑
j=1

w∗
jY

I
jt −

J∑
j=1

fjY
I
jt = γ ′

t

(
J∑

j=1

w∗
jZj −

J∑
j=1

fjZj

)

+ η′
t

(
J∑

j=1

w∗
jµj −

J∑
j=1

fjµj

)
+

(
J∑

j=1

w∗
j ξjt −

J∑
j=1

fjξjt

)
(OA.9)

Similarly, using expression (12a), we obtain

J∑
j=1

w∗
jY

E
j −

J∑
j=1

fjY
E
j = θE

(
J∑

j=1

w∗
jZj −

J∑
j=1

fjZj

)

+ λE

(
J∑

j=1

w∗
jµj −

J∑
j=1

fjµj

)
+

(
J∑

j=1

w∗
jϵ

E
j −

J∑
j=1

fjϵ
E
j

)
,

where θE is the (TE × R) matrix with rows equal to the θt’s indexed by E , and ϵEj is defined

analogously. Pre-multiplying by η′
t(λ

′
EλE)

−1λ′
E yields

η′
t(λ

′
EλE)

−1λ′
E

(
J∑

j=1

w∗
jY

E
j −

J∑
j=1

fjY
E
j

)

= η′
t(λ

′
EλE)

−1λ′
EθE

(
J∑

j=1

w∗
jZj −

J∑
j=1

fjZj

)

+ η′
t

(
J∑

j=1

w∗
jµj −

J∑
j=1

fjµj

)
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+ η′
t(λ

′
EλE)

−1λ′
E

(
J∑

j=1

w∗
jϵ

E
j −

J∑
j=1

fjϵ
E
j

)
. (OA.10)

Equations (OA.9) and (OA.10) imply

J∑
j=1

w∗
jY

I
jt −

J∑
j=1

fjY
I
jt = (γ ′

t − η′
t(λ

′
EλE)

−1λ′
EθE)

(
J∑

j=1

w∗
jZj −

J∑
j=1

fjZj

)

+ η′
t(λ

′
EλE)

−1λ′
E

(
J∑

j=1

w∗
jY

E
j −

J∑
j=1

fjY
E
j

)

− η′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

w∗
jϵ

E
j

+ η′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

fjϵ
E
j

+

(
J∑

j=1

w∗
j ξjt −

J∑
j=1

fjξjt

)
. (OA.11)

If Assumption 3 holds, (OA.11) becomes

J∑
j=1

w∗
jY

I
jt −

J∑
j=1

fjY
I
jt = −η′

t(λ
′
EλE)

−1λ′
E

J∑
j=1

w∗
jϵ

E
j

+ η′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

fjϵ
E
j

+

(
J∑

j=1

w∗
j ξjt −

J∑
j=1

fjξjt

)
. (OA.12)

Only the first term on the right-hand side of (OA.12) has a non-zero mean (because the weights,

w∗
j , depend on the error terms ϵEj ). Therefore,

∣∣∣∣∣E
[

J∑
j=1

w∗
jY

I
jt −

J∑
j=1

fjY
I
jt

]∣∣∣∣∣ =
∣∣∣∣∣E
[
η′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

w∗
jϵ

E
j

]∣∣∣∣∣ .
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Using the same line of reasoning for the second term on the right-hand side of (OA.8), we obtain

∣∣∣∣∣E
[

J∑
j=1

v∗jY
N
jt −

J∑
j=1

fjY
N
jt

]∣∣∣∣∣ =
∣∣∣∣∣E
[
λ′

t(λ
′
EλE)

−1λ′
E

J∑
j=1

v∗j ϵ
E
j

]∣∣∣∣∣ .
For any t ≥ T0 + 1 and s ∈ E , under Assumption 2(i), we apply Cauchy-Schwarz inequality and

the eigenvalue bound on the Rayleigh quotient to obtain

(
η′
t(λ

′
EλE)

−1λs

)2 ≤ (η′
t(λ

′
EλE)

−1ηt

) (
λ′

s(λ
′
EλE)

−1λs

)
≤
(
η2F

TEζ

)(
λ
2
F

TEζ

)
.

Similarly,

(
λ′

t(λ
′
EλE)

−1λs

)2 ≤ (λ
2
F

TEζ

)2

. (OA.13)

Let

ϵEjt = η′
t(λ

′
EλE)

−1λ′
Eϵ

E
j =

∑
s∈E

η′
t(λ

′
EλE)

−1λsϵjs.

Because ϵEjt is a linear combination of independent sub-Gaussians with variance proxy σ2, it

follows that ϵEjt is sub-Gaussian with variance proxy (η λF/ζ)2σ2/TE . Let S = {w ∈ RJ :∑J
j=1wj = 1}. Theorem 1.16 from Rigollet and Hütter (2019) implies

∣∣∣∣∣E[
J∑

j=1

w∗
jY

I
jt −

J∑
j=1

fjY
I
jt

]∣∣∣∣∣
=

∣∣∣∣∣E[
J∑

j=1

w∗
j ϵ

E
jt

]∣∣∣∣∣ ≤ E

[
max
w∈S

∣∣∣ J∑
j=1

wjϵ
E
jt

∣∣∣] ≤ η λF

ζ

√
2 log (2J)

σ√
TE

.
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An analogous argument yields

∣∣∣∣∣E[
J∑

j=1

v∗jY
N
jt −

J∑
j=1

fjY
N
jt

]∣∣∣∣∣ ≤ λ
2
F

ζ

√
2 log (2J)

σ√
TE

,

which completes the proof of the theorem.

Suppose now Assumption 4 holds (but Assumption 3 does not). To obtain a bound on the

bias, we bound the first two terms in (OA.11). Recall that

∣∣η′
t(λ

′
EλE)

−1λs

∣∣ ≤ ληF

TEζ
.

Therefore, the absolute value of each element in vector (γ ′
t − η′

t(λ
′
EλE)

−1λ′
EθE) is bounded by

γ + θ
ληF

ζ
. Cauchy–Schwarz inequality and Assumption 4 imply

∣∣∣∣∣(γ ′
t − η′

t(λ
′
EλE)

−1λ′
EθE)

(
J∑

j=1

w∗
jZj −

J∑
j=1

fjZj

)∣∣∣∣∣
≤
(
γ + θ

ληF

ζ

)√
R

∥∥∥∥∥
J∑

j=1

w∗
jZj −

J∑
j=1

fjZj

∥∥∥∥∥
2

≤
(
γ + θ

ληF

ζ

)
Rd,

and

∣∣∣∣∣η′
t(λ

′
EλE)

−1λ′
E

(
J∑

j=1

w∗
jY

E
j −

J∑
j=1

fjY
E
j

)∣∣∣∣∣ ≤ληF

ζ
d.

Combining the last two displayed equations with (OA.11), we have

∣∣∣∣∣E
[

J∑
j=1

w∗
jY

I
jt −

J∑
j=1

fjY
I
jt

]∣∣∣∣∣ ≤ (γR +
ληF

ζ
(1 + θR)

)
d+

ληF

ζ

√
2 log (2J)

σ√
TE

.
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An analogous derivation produces

∣∣∣∣∣E
[

J∑
j=1

v∗jY
N
jt −

J∑
j=1

fjY
N
jt

]∣∣∣∣∣ ≤ (θR +
λ
2
F

ζ
(1 + θR)

)
d+

λ
2
F

ζ

√
2 log (2J)

σ√
TE

,

which finishes the proof of the theorem.

OA.7.2. Proof of Theorem 2

Proof of Theorem 2. Recall that

ût =
J∑

j=1

w∗
jYjt −

J∑
j=1

v∗jYjt,

for t ∈ B ∪ {T0 + 1, . . . , T}. For t ∈ {T0 + 1, . . . , T}, ût are the post-intervention estimates of

the treatment effects; and for t ∈ B, ût are the placebo treatment effects estimated for the blank

periods. Let

ut =
J∑

j=1

w∗
j ϵjt −

J∑
j=1

v∗j ϵjt

for t ∈ B, and

ut =
J∑

j=1

w∗
j ξjt −

J∑
j=1

v∗j ϵjt

for t ∈ {T0+1, . . . , T}. The null hypothesis (15) and Assumption 2(ii) imply that {ut}t∈B∪{T0+1,...,T}

is a sequence of exchangeable random variables. Additionally, Assumption 1 and the null hy-

pothesis (15) imply

ût = θ′
t

J∑
j=1

(w∗
j − v∗j )Zj + λ′

t

J∑
j=1

(w∗
j − v∗j )µj + ut
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= λ′
t

J∑
j=1

(w∗
j − v∗j )µj + ut,

for t ∈ B∪{T0+1, . . . , T}, where the last equality is due to Assumption 3(i). So {ût}t∈B∪{T0+1,...,T}

is a sequence of exchangeable random variables.

Recall that, for each π ∈ Π, π is a subset of indices from the blank periods and the experi-

mental periods B ∪ {T0 + 1, . . . , T}, such that |π| = T − T0. Recall that

S(û) =
1

T − T0

T∑
t=T0+1

|ût|,

and

S(ûπ) =
1

T − T0

∑
t∈π

|ût|.

Now define k = |Π| − ⌊α|Π|⌋. Define S(k)(û) to be the k-th smallest value in a small-to-large

rearrangement of {S(ûπ)}π∈Π. Because the noises {ϵjt}t∈B∪{T0+1,...,T} and {ξjt}t∈{T0+1,...,T} have

continuous distributions, {S(ûπ)}π∈Π are all unique with probability 1.

Using the above definitions, for any α,

1{p̂ ≤ α} = 1{S(û) > S(k)(û)}.

Note that for any π ∈ Π, we have S(k)(ûπ) = S(k)(û). Then we have

∑
π∈Π

1{S(ûπ) > S(k)(ûπ)} =
∑
π∈Π

1{S(ûπ) > S(k)(û)} = |Π| − k = ⌊α|Π|⌋.

Because {ût}t∈B∪{T0+1,...,T} is a sequence of exchangeable random variables, 1{S(û) > S(k)(û)}
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has the same distribution as 1{S(ûπ) > S(k)(ûπ)} for any π ∈ Π. So we have

Pr(p̂ ≤ α) = E[1{p̂ ≤ α}] = E
[
1{S(û) > S(k)(û)}

]
= E

[ 1

|Π|
∑
π∈Π

1{S(ûπ) > S(k)(ûπ)}
]
=

⌊α|Π|⌋
|Π|

.

Note that α|Π| − 1 ≤ ⌊α|Π|⌋ ≤ α|Π|. This implies

α− 1

|Π|
≤ Pr(p̂ ≤ α) ≤ α.

OA.7.3. Proof of Theorem 3

OA.7.3.1. A Technical Lemma

We first define the following quantity and present a technical lemma. Let ϵ∗ = (ϵ1∗, ϵ2∗, ..., ϵJ∗)

be an i.i.d. copy of (ϵ1t, ϵ2t, ..., ϵJt) the idiosyncratic noises. Using the definition of ϵ∗ and for any

weights (w∗,v∗), we define, for any q ∈ R,

PE,q = Pr

(∣∣∣ J∑
j=1

w∗
j ϵj∗ −

J∑
j=1

v∗j ϵj∗

∣∣∣ ≤ q

)
.

Lemma OA.4 Assume there exist parameters ϵB and ϵT , as well as events CB and CT , such that

the following two conditions hold:

1. There exists a high probability event CB such that conditional on this event, for any weights

(w∗,v∗) and any q ∈ R,

∣∣∣∣ 1

T0 − TE

∑
t∈B

1

{∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt

∣∣∣ ≤ q
}
− PE,q

∣∣∣∣ ≤ ϵB. (OA.14)
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2. Recall that τt =
∑J

j=1 fj(Y
I
jt − Y N

jt ). There exists a high probability event CT such that

conditional on this event, for any weights (w∗,v∗), any q ∈ R, and any t ∈ {T0 +1, ..., T},

∣∣∣∣Pr(∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt − τt

∣∣∣ ≤ q
)
− PE,q

∣∣∣∣ ≤ ϵT . (OA.15)

Assume that the joint event CB ∩ CT happens with probability at least 1− δB(ϵB)− δT (ϵT ), where

we use δB(ϵB) and δT (ϵT ) to stand for two quantities that each depends on ϵB and ϵT , respectively.

In addition, assume that
∣∣∑J

j=1w
∗
j ϵj∗−

∑J
j=1 v

∗
j ϵj∗
∣∣ has a continuous distribution. Then, for any

α ∈ (0, 1) and any t ∈ {T0 + 1, ..., T},

∣∣∣∣Pr(∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt − τt

∣∣∣ ≤ q̂1−α

)
− (1− α)

∣∣∣∣ ≤ ϵB + ϵT + δB(ϵB) + δT (ϵT ).

Note that Lemma OA.4 does not require Assumptions 1–3. But for Conditions (OA.14) and

(OA.15) to hold, we will apply Assumptions 1–3. To prove Lemma OA.4, we borrow the proof

techniques from Oliveira et al. (2022). We first define the following quantile on the probability

distribution (instead of the empirical distribution),

q1−α = inf
z∈R

{
Pr

(∣∣∣ J∑
j=1

w∗
j ϵj∗ −

J∑
j=1

v∗j ϵj∗

∣∣∣ ≤ z

)
≥ 1− α

}
(OA.16)

Intuitively, q̂1−α as defined in (18) approximates q1−α as defined in (OA.16).

Proof of Lemma OA.4. This proof proceeds in two parts.

Part 1: Consider the event

E1 =
{
q̂1−α ≥ q1−α−ϵB

}
.

We aim to show that event E1 occurs given event CB. For any positive integer k ∈ N, we can use
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Condition (OA.14) to show that conditional on event CB,

1

T0 − TE

∑
t∈B

1

{∣∣∣ J∑
j=1

w∗
jYjt−

J∑
j=1

v∗jYjt

∣∣∣ ≤ q1−α−ϵB − 1

k

}
≤Pr

(∣∣∣ J∑
j=1

w∗
j ϵj∗ −

J∑
j=1

v∗j ϵj∗

∣∣∣ ≤ q1−α−ϵB − 1

k

)
+ ϵB

<1− α− ϵB + ϵB

=1− α

≤ 1

T0 − TE

∑
t∈B

1

{∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt

∣∣∣ ≤ q̂1−α

}
,

where the first inequality is due to Condition (OA.14); the second inequality is due to the

infimum part of (OA.16) (because q1−α−ϵB − 1
k
< q1−α−ϵB which is the infimum value such that

the probability in (OA.16) is greater or equal to 1−α); the last inequality is due to the definition

of q̂1−α in (18).

The above inequality suggests that for any k ∈ N, the event

E (≤)
k =

{
1

T0 − TE

∑
t∈B

1

{∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt

∣∣∣ ≤ q1−α−ϵB − 1

k

}
≤ 1

T0 − TE

∑
t∈B

1

{∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt

∣∣∣ ≤ q̂1−α

}}

happens conditional on event CB. Since the left hand side of the inequality inside event E (≤)
k ,

which is 1
T0−TE

∑
t∈B 1

{∣∣∣∑J
j=1 w

∗
jYjt −

∑J
j=1 v

∗
jYjt

∣∣∣ ≤ q1−α−ϵB − 1
k

}
, is increasing in k, so the

probability E (≤)
k decreases in k. Given that the lower bound of Pr(E (≤)

k ) exists, the limit of

limk→+∞ Pr(E (≤)
k ) exists, i.e.,

1− δB ≤ lim
k→+∞

Pr(E (≤)
k ) = Pr(E (≤)

∞ ),
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where we use Pr(E (≤)
∞ ) to stand for the limiting event

E (≤)
∞ =

{
1

T0 − TE

∑
t∈B

1

{∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt

∣∣∣ ≤ q1−α−ϵB

}
≤ 1

T0 − TE

∑
t∈B

1

{∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt

∣∣∣ ≤ q̂1−α

}}
.

This means that, event E1 = {q̂1−α ≥ q1−α−ϵB} happens conditional on event CB. Due to the

assumption of Lemma OA.4, event CT ∩E1 happens with probability at least 1− δB(ϵB)− δT (ϵT ).

Next we have, for any t ∈ {T0 + 1, ..., T} in the experimental periods,

Pr

(∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt − τt

∣∣∣ ≤ q̂1−α

)

≥Pr

(∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt − τt

∣∣∣ ≤ q̂1−α

⋂
(CT ∩ E1)

)
− δB(ϵB)− δT (ϵT )

≥Pr

(∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt − τt

∣∣∣ ≤ q1−α−ϵB

)
− δB(ϵB)− δT (ϵT )

≥Pr

(∣∣∣ J∑
j=1

w∗
j ϵj∗ −

J∑
j=1

v∗j ϵj∗

∣∣∣ ≤ q1−α−ϵB

)
− ϵT − δB(ϵB)− δT (ϵT )

≥1− α− ϵB − ϵT − δB(ϵB)− δT (ϵT ).

where the second inequality is because the probability decreases if we decrease from q̂1−α to

q1−α−ϵB ; the third inequality is due to Condition (OA.15); the last inequality is due to the

definition of q1−α−ϵB in (OA.16).

Part 2: Consider the event

E2 =
{
q̂1−α ≤ q1−α+ϵB

}
.

We wish to show that event E1 happens conditional on event CB. We use Condition (OA.15) to
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show that conditional on event CB,

1

T0 − TE

∑
t∈B

1

{∣∣∣ J∑
j=1

w∗
jYjt−

J∑
j=1

v∗jYjt

∣∣∣ ≤ q1−α+ϵB

}
≥Pr

(∣∣∣ J∑
j=1

w∗
j ϵj∗ −

J∑
j=1

v∗j ϵj∗

∣∣∣ ≤ q1−α+ϵB

)
− ϵB

≥1− α + ϵB − ϵB

=1− α,

where the first inequality is due to Condition (OA.14); the second inequality is due to the

definition of q1−α+ϵB in (OA.16);

Due to (18), since q̂1−α is the smallest value satisfying this condition, we have that event

E2 = {q̂1−α ≤ q1−α+ϵB} happens conditional on event CB. Due to the assumption of Lemma OA.4,

event CT ∩ E2 happens with probability at least 1− δB(ϵB)− δT (ϵT ).

Then, for any t ∈ {T0 + 1, ..., T} in the experimental periods,

Pr

(∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt − τt

∣∣∣ ≤ q̂1−α

)

≤Pr

(∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt − τt

∣∣∣ ≤ q̂1−α

⋂
(CT ∩ E2)

)
+ δB(ϵB) + δT (ϵT )

≤Pr

(∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt − τt

∣∣∣ ≤ q1−α+ϵB

)
+ δB(ϵB) + δT (ϵT )

≤Pr

(∣∣∣ J∑
j=1

w∗
j ϵj∗ −

J∑
j=1

v∗j ϵj∗

∣∣∣ ≤ q1−α+ϵB

)
+ ϵT + δB(ϵB) + δT (ϵT )

≤1− α + ϵB + ϵT + δB(ϵB) + δT (ϵT ).

where the second inequality is because the probability increases if we increase from q̂1−α to

q1−α+ϵB ; the third inequality is due to Condition (OA.15); the last inequality is due to the
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definition of q1−α+ϵB in (OA.16).

OA.7.3.2. Proof of Theorem 3

In this section, we use Lemma OA.4 to prove Theorem 3. Instead of proving exactly Theorem 3,

we prove Theorem OA.5 below with all the constants provided. Then, setting zB = (T0 − TE)
− 1

2

and zE = T
− 1

2
E we prove Theorem 3.

Theorem OA.5 Assume that Assumptions 1– 3 hold. Assume there exists a constant κ < ∞,

such that for all j = 1, . . . , J , t = 1, . . . , T , ϵjt are continuously distributed with the probability

density function upper bounded by κ. Assume that for t = T0+1, . . . , T , and j = 1, . . . , J , ξjt has

the same distribution as ϵjt. Then the confidence interval defined in (19) approximately achieves

point-wise coverage, i.e., for any α ∈ (0, 1) and any t ∈ {T0 + 1, ..., T},

∣∣∣∣Pr(τt ∈ Ĉ1−α(Y1t, Y2t, ..., YJt)
)
− (1− α)

∣∣∣∣
≤

√
1

2(T0 − TE)
log
( 2

zB

)
+κ

√√√√8eJσ2λ
2
η2F 2

ζ2TE
log
(2J
zE

)
+2κ

√√√√8eJσ2λ
4
F 2

ζ2TE
log
(2J
zE

)
+zB+3zE .

where zB and zE are arbitrary positive choice parameters.

Proof of Theorem OA.5. We outline the proof of Theorem OA.5 as follows. We first define

four events. We then check Conditions (OA.14) under the first two events and (OA.15) under

the last two events. Finally, we apply Lemma OA.4 and conclude the proof.

Step 1: We define the following four events. First, in the blank periods,

E1 =

{∣∣∣∣∣ 1

T0 − TE

∑
t∈B

1

{∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt

∣∣∣ ≤ q
}

− 1

T0 − TE

∑
t∈B

Pr
(∣∣∣ J∑

j=1

w∗
jYjt −

J∑
j=1

v∗jYjt

∣∣∣ ≤ q
)∣∣∣∣∣ ≤

√
1

2(T0 − TE)
log
( 2

zB

)}
.
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To analyze the event E1, condition on the weights (w∗,v∗) obtained from the fitting periods and

consider Pr(E1 | w∗,v∗).

For any t ∈ B in the blank periods, once we condition on (w∗,v∗), the indicator

1

{∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt

∣∣∣ ≤ q
}

is a random variable whose only source of randomness comes from the idiosyncratic noises {ϵjt}Jj=1

in period t. Since for any t ̸= t′, the noise vectors {ϵjt}Jj=1 and {ϵjt′}Jj=1 are independent, the

corresponding indicators

1

{∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt

∣∣∣ ≤ q
}

and 1

{∣∣∣ J∑
j=1

w∗
jYjt′ −

J∑
j=1

v∗jYjt′

∣∣∣ ≤ q
}

are also independent. By Hoeffding’s inequality for bounded random variables, the event E1

under the conditioning on (w∗,v∗) occurs with probability

Pr(E1 | w∗,v∗) ≥ 1− zB.

Using the law of total probability, because the inequality holds for any weights (w∗,v∗), we

conclude that, unconditionally, the event E1 happens with probability Pr(E1) ≥ 1− zB.

Second, in the blank periods,

E2 =

∀t ∈ B,

∣∣∣∣∣λ′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

(w∗
j − v∗j )ϵ

E
j

∣∣∣∣∣ ≤
√√√√8σ2λ

4
F 2

ζ2TE
log
(2J
zE

)
=

max
t∈B

∣∣∣∣∣λ′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

(w∗
j − v∗j )ϵ

E
j

∣∣∣∣∣ ≤
√√√√8σ2λ

4
F 2

ζ2TE
log
(2J
zE

) .
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Note that,

max
t∈B

∣∣∣λ′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

(w∗
j − v∗j )ϵ

E
j

∣∣∣
≤ max

t∈B

J∑
j=1

|w∗
j − v∗j |

∑
s∈E

|λ′
t(λ

′
EλE)

−1λs||ϵjs|

≤
J∑

j=1

|w∗
j − v∗j |

∑
s∈E

λ
2
F

TEζ
|ϵjs|,

where the second inequality is due to (OA.13), and because |w∗
j−v∗j | ≥ 0 and |ϵjs| ≥ 0. Therefore,

Pr(E2) ≥ 1− Pr

(
J∑

j=1

|w∗
j − v∗j |
2

∑
s∈E

λ
2
F

TEζ
|ϵjs| >

√√√√2σ2λ
4
F 2

ζ2TE
log
(2J
zE

))

≥ 1−
J∑

j=1

Pr

(∑
s∈E

λ
2
F

TEζ
|ϵjs| >

√√√√2σ2λ
4
F 2

ζ2TE
log
(2J
zE

))

≥ 1− zE ,

where the second inequality follows from union bound, and the third inequality is the Chernoff

bound for sub-Gaussian random variables.

Third, in the experimental periods,

E3 =

∀t ∈ {T0 + 1, . . . , T},

∣∣∣∣∣η′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

(w∗
j − fj)ϵ

E
j

∣∣∣∣∣ ≤
√√√√8σ2λ

2
η2F 2

ζ2TE
log
(2J
zE

)
=

 max
t∈{T0+1,...,T}

∣∣∣∣∣η′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

(w∗
j − fj)ϵ

E
j

∣∣∣∣∣ ≤
√√√√8σ2λ

2
η2F 2

ζ2TE
log
(2J
zE

) .

Note that,

max
t∈{T0+1,...,T}

∣∣∣η′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

(w∗
j − fj)ϵ

E
j

∣∣∣
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≤ max
t∈{T0+1,...,T}

J∑
j=1

|w∗
j − fj|

∑
s∈E

|η′
t(λ

′
EλE)

−1λs||ϵjs|

≤
J∑

j=1

|w∗
j − fj|

∑
s∈E

ληF

TEζ
|ϵjs|,

where the second inequality is due to (OA.13), and because |w∗
j−fj| ≥ 0 and |ϵjs| ≥ 0. Therefore,

Pr(E3) ≥ 1− Pr

(
J∑

j=1

|w∗
j − fj|
2

∑
s∈E

ληF

TEζ
|ϵjs| >

√√√√2σ2λ
2
η2F 2

ζ2TE
log
(2J
zE

))

≥ 1−
J∑

j=1

Pr

(∑
s∈E

ληF

TEζ
|ϵjs| >

√√√√2σ2λ
2
η2F 2

ζ2TE
log
(2J
zE

))

≥ 1− zE ,

where the second inequality follows from union bound, and the third inequality is the Chernoff

bound for sub-Gaussian random variables.

Fourth, in the experimental periods,

E4 =

∀t ∈ {T0 + 1, . . . , T},

∣∣∣∣∣λ′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

(v∗j − fj)ϵ
E
j

∣∣∣∣∣ ≤
√√√√8σ2λ

4
F 2

ζ2TE
log
(2J
zE

) .

Similar to the event E3, we can show that Pr(E4) ≥ 1− zE .

Step 2: Now we check Conditions (OA.14) and (OA.15). We first check Condition (OA.14). In

the statement of Condition (OA.14), let CB = E1 ∩ E2. Note that

J∑
j=1

w∗
jY

E
j −

J∑
j=1

v∗jY
E
j = θE

(
J∑

j=1

w∗
jZj −

J∑
j=1

v∗jZj

)

+ λE

(
J∑

j=1

w∗
jµj −

J∑
j=1

v∗jµj

)
+

(
J∑

j=1

w∗
jϵ

E
j −

J∑
j=1

v∗j ϵ
E
j

)
.
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Assumption 3 implies

J∑
j=1

w∗
jµj −

J∑
j=1

v∗jµj = −(λ′
EλE)

−1λ′
E

(
J∑

j=1

w∗
jϵ

E
j −

J∑
j=1

v∗j ϵ
E
j

)
.

For t ∈ B, we have

J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt =
J∑

j=1

w∗
jY

N
jt −

J∑
j=1

v∗jY
N
jt

=
J∑

j=1

w∗
j ϵjt −

J∑
j=1

v∗j ϵjt − λ′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

(w∗
j − v∗j )ϵ

E
j .

Conditional on event E2, we have for any t ∈ B in the blank periods,

∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt

∣∣∣ =∣∣∣ J∑
j=1

w∗
j ϵjt −

J∑
j=1

v∗j ϵjt − λ′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

(w∗
j − v∗j )ϵ

E
j

∣∣∣
≤
∣∣∣ J∑
j=1

w∗
j ϵjt −

J∑
j=1

v∗j ϵjt

∣∣∣+ ∣∣∣λ′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

(w∗
j − v∗j )ϵ

E
j

∣∣∣
≤
∣∣∣ J∑
j=1

w∗
j ϵjt −

J∑
j=1

v∗j ϵjt

∣∣∣+
√√√√8σ2λ

4
F 2

ζ2TE
log
(2J
zE

)

From the above inequality, for any t ∈ B, due to Lemma OA.7-1 and Lemma OA.8, the probability

density of
∣∣∑J

j=1w
∗
j ϵjt −

∑J
j=1 v

∗
j ϵjt
∣∣ is upper bounded by κ

√
eJ , where e ≈ 2.718 is the base of

the natural logarithm. This implies that, conditional on event E2, for any t ∈ B and any q ∈ R,

∣∣∣∣∣Pr
(∣∣∣ J∑

j=1

w∗
jYjt −

J∑
j=1

v∗jYjt

∣∣∣ ≤ q

)
− Pr

(∣∣∣ J∑
j=1

w∗
j ϵj∗ −

J∑
j=1

v∗j ϵj∗

∣∣∣ ≤ q

)∣∣∣∣∣
=

∣∣∣∣∣Pr
(∣∣∣ J∑

j=1

w∗
jYjt −

J∑
j=1

v∗jYjt

∣∣∣ ≤ q

)
− Pr

(∣∣∣ J∑
j=1

w∗
j ϵjt −

J∑
j=1

v∗j ϵjt

∣∣∣ ≤ q

)∣∣∣∣∣
≤κ

√√√√8eJσ2λ
4
F 2

ζ2TE
log
(2J
zE

)
.
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This means that, conditional on event E2, for any t ∈ B and any q ∈ R,

∣∣∣∣∣ 1

T0 − TE

∑
t∈B

Pr
(∣∣∣ J∑

j=1

w∗
jYjt −

J∑
j=1

v∗jYjt

∣∣∣ ≤ q
)
− Pr

(∣∣∣ J∑
j=1

w∗
j ϵj∗ −

J∑
j=1

v∗j ϵj∗

∣∣∣ ≤ q

)∣∣∣∣∣
≤ κ

√√√√8eJσ2λ
4
F 2

ζ2TE
log
(2J
zE

)
.

To conclude checking Condition (OA.14), we see that conditional on event CB = E1 ∩ E2, for any

weights (w∗,v∗) and q ∈ R,

∣∣∣∣∣ 1

T0 − TE

∑
t∈B

1

{∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt

∣∣∣ ≤ q
}
− Pr

(∣∣∣ J∑
j=1

w∗
j ϵj∗ −

J∑
j=1

v∗j ϵj∗

∣∣∣ ≤ q

)∣∣∣∣∣
≤

√
1

2(T0 − TE)
log
( 2

zB

)
+ κ

√√√√8eJσ2λ
4
F 2

ζ2TE
log
(2J
zE

)
.

We then move on to check Condition (OA.15). In the statement of Condition (OA.15), let

CT = E3 ∩ E4. For any t ∈ {T0 + 1, ..., T} in the experimental periods, we have

J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt − τt

=
J∑

j=1

(w∗
j − fj)Y

I
jt −

J∑
j=1

(v∗j − fj)Y
N
jt

=
J∑

j=1

w∗
j ϵjt −

J∑
j=1

v∗j ϵjt − η′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

(w∗
j − fj)ϵ

E
j + λ′

t(λ
′
EλE)

−1λ′
E

J∑
j=1

(v∗j − fj)ϵ
E
j .

where the third equality is using Assumption 3 and using the assumption that ξjt has the same

distribution as ϵjt for t = T0 + 1, . . . , T , and j = 1, . . . , J .

Conditional on event E3 ∩E4, we have for any t ∈ {T0 +1, ..., T} in the experimental periods,
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∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt − τt

∣∣∣
≤
∣∣∣ J∑
j=1

w∗
j ϵjt −

J∑
j=1

v∗j ϵjt

∣∣∣+
√√√√8σ2λ

2
η2F 2

ζ2TE
log
(2J
zE

)
+

√√√√8σ2λ
4
F 2

ζ2TE
log
(2J
zE

)
.

Following the same argument, we see that conditional on event CT = E3 ∩ E4, for any t ∈

{T0 + 1, ..., T} and any q ∈ R,

∣∣∣∣∣Pr(∣∣∣
J∑

j=1

w∗
jYjt −

J∑
j=1

v∗jYjt − τt

∣∣∣ ≤ q
)
− Pr

(∣∣∣ J∑
j=1

w∗
j ϵj∗ −

J∑
j=1

v∗j ϵj∗

∣∣∣ ≤ q

)∣∣∣∣∣
≤ κ

√√√√8eJσ2λ
2
η2F 2

ζ2TE
log
(2J
zE

)
+ κ

√√√√8eJσ2λ
4
F 2

ζ2TE
log
(2J
zE

)
.

Step 3: Now we apply Lemma OA.4. Note that, the joint event CB ∩ CT = E1 ∩ E2 ∩ E3 ∩ E4

happens with probability at least 1− zB − 3zE . Due to Lemma OA.4,

∣∣∣∣Pr(∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt − τt

∣∣∣ ≤ q̂1−α

)
− (1− α)

∣∣∣∣
≤

√
1

2(T0 − TE)
log
( 2

zB

)
+κ

√√√√8eJσ2λ
2
η2F 2

ζ2TE
log
(2J
zE

)
+2κ

√√√√8eJσ2λ
4
F 2

ζ2TE
log
(2J
zE

)
+zB+3zE .

Because
∣∣∑J

j=1w
∗
jYjt −

∑J
j=1 v

∗
jYjt − τt

∣∣ ≤ q̂1−α is equivalent to τt ∈ Ĉ1−α(Y1t, Y2t, ..., YJt), this

implies

∣∣∣∣Pr(τt ∈ Ĉ1−α(Y1t, Y2t, ..., YJt)
)
− (1− α)

∣∣∣∣
≤

√
1

2(T0 − TE)
log
( 2

zB

)
+κ

√√√√8eJσ2λ
2
η2F 2

ζ2TE
log
(2J
zE

)
+2κ

√√√√8eJσ2λ
4
F 2

ζ2TE
log
(2J
zE

)
+zB+3zE .
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OA.7.4. Proof of Theorem OA.1

OA.7.4.1. Definitions

First, define Tp = min{T − T0, T0 − TE}. Next, recall that

ût =
J∑

j=1

w∗
jYjt −

J∑
j=1

v∗jYjt,

for t ∈ B ∪ {T0 + 1, . . . , T}. For t ∈ {T0 + 1, . . . , T}, ût are the post-intervention estimates of

the treatment effects; and for t ∈ B, ût are the placebo treatment effects estimated for the blank

periods.

Let

ut =
J∑

j=1

w∗
j ϵjt −

J∑
j=1

v∗j ϵjt (OA.17)

for t ∈ B, and

ut =
J∑

j=1

w∗
j ξjt −

J∑
j=1

v∗j ϵjt (OA.18)

for t ∈ {T0 + 1, . . . , T}. For each π ∈ Π, similar to our definition of ûπ, define the (T − T0)-

dimensional vector

uπ = (uπ(1), uπ(2), ..., uπ(T−T0)).

In addition, let u = (uT0+1, . . . , uT ) = (τT0+1, . . . , τT ). It is useful to observe that, under the

null hypothesis in (15), the random variables ut for t ∈ B ∪ {T0 +1, . . . , T} are independent and

identically distributed.
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Next, define the following two functions. Let

F̂ (x) =
1

|Π|
∑
π∈Π

1 {S(ûπ) < x} ,

and

F̃ (x) =
1

|Π|
∑
π∈Π

1 {S(uπ) < x} .

The proof of Theorem OA.1 proceeds in four steps. In step one, we define a high probability

event, C1, such that ut and ût are close to each other under C1. In step two, we define a high

probability event, C2, such that many components of {S(uπ)}π∈Π are well-separated from S(u)

under C2. In step three, we show that, conditional on C1 and C2, the ordering of S(uπ) and S(u)

will be the same as the ordering of S(ûπ) and S(û) for most π ∈ Π, which implies that F̂ (S(û))

and F̃ (S(u)) are also close to each other. In step four, we conclude the proof by linking F̂ (S(û))

to the estimated p-value, and F̃ (S(u)) to the nominal level α.

OA.7.4.2. Lemmas for the Proof of Theorem OA.1

For each continuously distributed random variable X with a density fX , define ΛX to be the

smallest upper bound on the probability density fX .

Lemma OA.6 (Corollary 2, Bobkov and Chistyakov (2014)) Let X1, X2, . . . , Xn be in-

dependent and continuously distributed random variables with densities fX1 , fX2 , . . . , fXn. For

any k ∈ {1, 2, . . . , n}, let ΛXk
be the smallest upper bound on the probability density fXk

. For

any a1, a2, . . . , an, let X = a1X1+a2X2+. . .+anXn. Suppose for any k ∈ {1, 2, . . . , n}, ΛXk
≤ κ;

and if
∑n

k=1 a
2
k = 1,

ΛX ≤
√
eκ.
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Lemma OA.7 Let X be a continuously distributed random variable with a density fX . Let ΛX

be the smallest upper bound on the probability density fX .

1. The random variable |X| has a density f|X| bounded by Λ|X| ≤ 2ΛX ;

2. For any constant a ̸= 0, the random variable aX has a density faX bounded by ΛaX ≤

ΛX/|a|.

Proof of Lemma OA.7. To prove 1, note that for any v ≥ 0,

f|X|(v) = fX(v) + fX(−v) ≤ 2ΛX .

To prove 2, note that for any v ≥ 0,

faX(v) =
1

|a|
fX(v/a) ≤

1

|a|
ΛX .

Lemma OA.8 Recall that ut is defined as (OA.17) and (OA.18), for the blank periods and the

experimental periods, respectively. Under the null hypothesis (15), the probability density of ut

can be bounded by

Λut ≤
1

2

√
eJκ.

Proof of Lemma OA.8. This proof consists of two steps. In Step 1, we prove a version of the

lemma after conditioning on (w∗,v∗). In Step 2, we apply the law of total probability to obtain

a bound on the unconditional density of ut.

Step 1. We condition on (w∗,v∗) and write ut|(w∗,v∗) to indicate that we are conditional on

(w∗,v∗).
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Fix any t ∈ B ∪ {T0 + 1, . . . , T}. Using Lemma OA.6 (Bobkov and Chistyakov, 2014, Corol-

lary 2), let there be J variables ϵjt for any j ∈ {1, 2, . . . , J}. For any j ∈ {1, 2, . . . , J}, define

aj =
w∗

j−v∗j√∑J
j=1(w

∗
j−v∗j )

2
such that

∑J
j=1 a

2
j = 1. Using aj, we can write ut as ut =

√∑J
j=1(w

∗
j − v∗j )

2 ·∑J
j=1 ajϵjt. When J is even,

Λut|(w∗,v∗) ≤
1√∑J

j=1(w
∗
j − v∗j )

2

· Λ∑J
j=1 ajϵjt

≤ 1√∑J
j=1(w

∗
j − v∗j )

2

·
√
eκ

≤ 1√∑J
j=1(

2
J
)2

·
√
eκ

=

√
J

2

√
eκ,

where the first inequality is due to Lemma OA.7 Part 2; the second inequality is due to

Lemma OA.6; the third inequality is due to convexity and Jensen’s inequality, and the worst

case is taken when w∗
j = 2/J for one half of total units and v∗j = 2/J for the other half. When

J is odd,

Λut|(w∗,v∗) ≤
1√∑J

j=1(w
∗
j − v∗j )

2

· Λ∑J
j=1 ajϵjt

≤ 1√∑J
j=1(w

∗
j − v∗j )

2

·
√
eκ

≤ 1√
J+1
2
( 2
J+1

)2 + J−1
2
( 2
J−1

)2
·
√
eκ

=

√
J2 − 1

J
·
√
eκ

2
,

≤
√
J

2

√
eκ,

where the first inequality is due to Lemma OA.7 Part 2; the second inequality is due to
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Lemma OA.6; the third inequality is due to convexity and Jensen’s inequality, and the worst

case is taken when w∗
j = 2/(J + 1) for (J + 1)/2 of total units and v∗j = 2/(J − 1) for the other

(J − 1)/2 of total units.

Step 2. Using the law of total probability, we show

fut(u) =

∫
(w∗,v∗)

f
(
u|(w∗,v∗)

)
dP (w∗,v∗)

≤
∫
(w∗,v∗)

√
J

2

√
eκ dP (w∗,v∗)

=

√
J

2

√
eκ,

where we use P (w∗,v∗) to stand for the joint distribution of (w∗,v∗).

OA.7.4.3. Proof of Theorem OA.1

Proof of Theorem OA.1. (Step one.) Note that

J∑
j=1

w∗
jY

E
j −

J∑
j=1

v∗jY
E
j = θE

(
J∑

j=1

w∗
jZj −

J∑
j=1

v∗jZj

)

+ λE

(
J∑

j=1

w∗
jµj −

J∑
j=1

v∗jµj

)
+

(
J∑

j=1

w∗
jϵ

E
j −

J∑
j=1

v∗j ϵ
E
j

)
.

Assumption 3 implies

J∑
j=1

w∗
jµj −

J∑
j=1

v∗jµj = −(λ′
EλE)

−1λ′
E

(
J∑

j=1

w∗
jϵ

E
j −

J∑
j=1

v∗j ϵ
E
j

)
.

Under the null hypothesis (15), it follows that

ût =
J∑

j=1

w∗
jYjt −

J∑
j=1

v∗jYjt
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=− λ′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

(w∗
j − v∗j )ϵ

E
j + ut,

for t ∈ B ∪ {T0 + 1, . . . , T}. We next define an event

C1 =

{
∀t ∈ B ∪ {T0 + 1, . . . , T},

∣∣∣∣∣λ′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

(w∗
j − v∗j )ϵ

E
j

∣∣∣∣∣ ≤ z1

}

=

{
max

t∈B∪{T0+1,...,T}

∣∣∣∣∣λ′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

(w∗
j − v∗j )ϵ

E
j

∣∣∣∣∣ ≤ z1

}
.

Note that,

max
t∈B∪{T0+1,...,T}

∣∣∣λ′
t(λ

′
EλE)

−1λ′
E

J∑
j=1

(w∗
j − v∗j )ϵ

E
j

∣∣∣
≤ max

t∈B∪{T0+1,...,T}

J∑
j=1

|w∗
j − v∗j |

∑
s∈E

|λ′
t(λ

′
EλE)

−1λs||ϵjs|

≤
J∑

j=1

|w∗
j − v∗j |

∑
s∈E

λ
2
F

TEζ
|ϵjs|,

where the second inequality is due to (OA.13), and because |w∗
j−v∗j | ≥ 0 and |ϵjs| ≥ 0. Therefore,

Pr(C1) ≥ 1− Pr

(
J∑

j=1

|w∗
j − v∗j |
2

∑
s∈E

λ
2
F

TEζ
|ϵjs| >

z1
2

)

≥ 1−
J∑

j=1

Pr

(∑
s∈E

λ
2
F

TEζ
|ϵjs| >

z1
2

)

≥ 1− 2J exp

(
−

z21ζ
2

8σ2λ
4
F 2

TE

)
,

where the second inequality follows from union bound, and the third inequality is the Chernoff

bound for sub-Gaussian random variables.

(Step two.) Define z̃1 = 2z1 > 0, and Tp = min{T −T0, T0−TE}. For each k ∈ {0, 1, 2, ..., Tp},
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we define the following sets of permutations. First, define Π0 = {π0}, where π0 is defined as the

set of indices π0 = {T0 + 1, . . . , T}. Then, for any k ∈ {1, 2, . . . , Tp}, define

Πk =

{
π ∈ Π

∣∣∣∣|π \ π0| = k

}

to be the set of (T−T0)-combinations with exactly k many indices from the blank periods. Using

the above definitions, we can decompose Π into

Π =

Tp⋃
k=0

Πk.

Then, for any k ∈ {1, 2, ..., Tp} and π ∈ Πk, we focus on the following indicator

1

{∣∣∣∣ ∑
t∈π\π0

|ut| −
∑

t∈π0\π

|ut|
∣∣∣∣ ≤ 2kz1

}
.

The above indicator involves 2k instances of |ut|’s. Intuitively, it is obtained by canceling out

common terms in S(uπ) and S(u).

Below we focus on the properties of the sum of such indicators. First, focus on the probability

density of
∣∣∣∑t∈π\π0

|ut| −
∑

t∈π0\π |ut|
∣∣∣. We have

Λ|∑t∈π\π0
|ut|−

∑
t∈π0\π

|ut|| ≤ 2Λ∑
t∈π\π0

|ut|−
∑

t∈π0\π
|ut|

≤ 2
√
2kΛ∑

t∈π\π0
1√
2k

|ut|−
∑

t∈π0\π
1√
2k

|ut|

≤ 2
√
2k

√
eΛ|ut|

≤ 2
√
2k

√
e
√
eJκ

= 2
√
2Jkeκ,

where the first inequality is due to Lemma OA.7-1; the second inequality is due to Lemma OA.7-2;
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the third inequality is due to Lemma OA.6; the last inequality is due to Lemma OA.8 and OA.7-1.

We obtain

Pr

(∣∣∣∣ ∑
t∈π\π0

|ut| −
∑

t∈π0\π

|ut|
∣∣∣∣ ≤ 2kz1

)
≤ 4e

√
2Jk3z1κ.

Next, due to Markov inequality, for any constant z2 > 0, we have

Pr

(
Tp∑
k=1

∑
π∈Πk

1

{∣∣∣∣ ∑
t∈π\π0

|ut| −
∑

t∈π0\π

|ut|
∣∣∣∣ ≤ 2kz1

}
≥ |Π|z2

)

≤ 1

|Π|z2

Tp∑
k=1

∑
π∈Πk

E

[
1

{∣∣∣∣ ∑
t∈π\π0

|ut| −
∑

t∈π0\π

|ut|
∣∣∣∣ ≤ 2kz1

}]

≤
∑Tp

k=1 |Πk|4e
√
2Jk3z1κ

|Π|z2
.

To conclude step two, define the event

C2 =

{
Tp∑
k=1

∑
π∈Πk

1

{∣∣∣∣ ∑
t∈π\π0

|ut| −
∑

t∈π0\π

|ut|
∣∣∣∣ ≤ 2kz1

}
< |Π|z2

}
. (OA.19)

The probability that event C2 happens is at least

Pr(C2) ≥ 1−
∑Tp

k=1 |Πk|
√
k3

|Π|
4e
√
2Jz1κ

z2
.

(Step three.) Conditional on event C2, fewer than |Π|z2 of the absolute value terms in

(OA.19) are such that
∣∣∣∑t∈π\π0

|ut| −
∑

t∈π0\π |ut|
∣∣∣ ≤ 2kz1. For all the others,

∣∣∣∑t∈π\π0
|ut| −∑

t∈π0\π |ut|
∣∣∣ > 2kz1.

Conditional on event C1, we know that |ût − ut| ≤ z1 for any t ∈ B ∪ {T0 + 1, . . . , T}. So we
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have that
∑

t∈π\π0
|ut| −

∑
t∈π0\π |ut| > 2kz1 implies

S(ûπ)− S(û) =
1

T − T0

∑
t∈π

|ût| −
1

T − T0

∑
t∈π0

|ût|

=
1

T − T0

 ∑
t∈π\π0

|ût| −
∑

t∈π0\π

|ût|


≥ 1

T − T0

 ∑
t∈π\π0

(|ut| − z1)−
∑

t∈π0\π

(|ut|+ z1)


>

1

T − T0

(2kz1 − 2kz1)

= 0,

where the first equality is due to definition S(uπ) =
1

T−T0

∑
t∈π |ut|. Similarly, C1 and

∑
t∈π\π0

|ut|−∑
t∈π0\π |ut| < −2kz1 imply

S(ûπ)− S(û) =
1

T − T0

 ∑
t∈π\π0

|ût| −
∑

t∈π0\π

|ût|


≤ 1

T − T0

 ∑
t∈π\π0

(|ut|+ z1)−
∑

t∈π0\π

(|ut| − z1)


<

1

T − T0

(−2kz1 + 2kz1)

= 0.

Combining both cases, we know that conditional on C1 and when
∣∣∣∑t∈π\π0

|ut| −
∑

t∈π0\π |ut|
∣∣∣ >

2kz1, the ordering of S(uπ) and S(u) is the same as the ordering of S(ûπ) and S(û). As a

result, for those π such that
∣∣∣∑t∈π\π0

|ut| −
∑

t∈π0\π |ut|
∣∣∣ > 2kz1, we have 1 {S(ûπ) ≥ S(û)} =
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1 {S(uπ) ≥ S(u)}. There are at most |Π|z2 many π’s that contribute to the following summation,

∣∣∣∣ Tp∑
k=1

∑
π∈Πk

(
1 {S(ûπ) ≥ S(û)} − 1 {S(uπ) ≥ S(u)}

)∣∣∣∣ < |Π|z2.

Note that S(ûπ0) = S(û) and S(uπ0) = S(u), so 1 {S(ûπ) > S(û)} = 1 {S(uπ0) > S(u)} is

always true. Combining π0 we have

∣∣∣∣∑
π∈Π

(
1 {S(ûπ) ≥ S(û)} − 1 {S(uπ) ≥ S(u)}

)∣∣∣∣
=

∣∣∣∣ Tp∑
k=0

∑
π∈Πk

(
1 {S(ûπ) ≥ S(û)} − 1 {S(uπ) ≥ S(u)}

)∣∣∣∣
<|Π|z2.

We conclude step three using the following block of inequalities. For any α ∈ (0, 1],

∣∣∣Pr(1− F̂ (S(û)) ≤ α
)
− Pr

(
1− F̃ (S(u)) ≤ α

)∣∣∣
=

∣∣∣∣∣Pr
(
1− 1

|Π|
∑
π∈Π

1{S(ûπ) < S(û)} ≤ α

)
− Pr

(
1− 1

|Π|
∑
π∈Π

1{S(uπ) < S(u)} ≤ α

)∣∣∣∣∣
=

∣∣∣∣∣Pr
(∑

π∈Π

1{S(ûπ) ≥ S(û)} ≤ α|Π|
)
− Pr

(∑
π∈Π

1{S(uπ) ≥ S(u)} ≤ α|Π|
)∣∣∣∣∣

=

∣∣∣∣∣E
[
1

{∑
π∈Π

1{S(ûπ) ≥ S(û)} ≤ α|Π|
}]

− E

[
1

{∑
π∈Π

1{S(uπ) ≥ S(u)} ≤ α|Π|
}]∣∣∣∣∣

≤E

∣∣∣∣∣1
{∑

π∈Π

1{S(ûπ) ≥ S(û)} ≤ α|Π|
}
− 1

{∑
π∈Π

1{S(uπ) ≥ S(u)} ≤ α|Π|
}∣∣∣∣∣

≤Pr

(∣∣∣∣α|Π| −∑
π∈Π

1{S(uπ) ≥ S(u)}
∣∣∣∣ ≤ ∣∣∣∣∑

π∈Π

(
1 {S(ûπ) ≥ S(û)} − 1 {S(uπ) ≥ S(u)}

)∣∣∣∣),
where the second inequality is due to the following: |1{a ≤ c}−1{b ≤ c}| ≤ 1{|c− b| ≤ |a− b|}.
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Conditional on events C1 and C2, we obtain

∣∣∣∣Pr(1− F̂ (S(û)) ≤ α

)
− Pr

(
1− F̃ (S(u)) ≤ α

)∣∣∣∣
≤ Pr

(∣∣∣∣α|Π| −∑
π∈Π

1{S(uπ) ≥ S(u)}
∣∣∣∣ < |Π|z2

)
≤ 2|Π|z2

|Π|

= 2z2, (OA.20)

where the last inequality is because
∑

π∈Π 1{S(uπ) ≥ S(u)} is a discrete uniform distribution

over {1, 2, ..., |Π|}, and that there are at most 2|Π|z2 many integers centered around α|Π|.

(Step four.) Note that, for any α ∈ (0, 1],

α− 1

|Π|
≤ Pr

(
1− F̃ (S(u)) ≤ α

)
≤ α.

So conditional on events C1 and C2, (OA.20) implies

Pr
(
1− F̂ (S(û)) ≤ α

)
≤ Pr

(
1− F̃ (S(u)) ≤ α

)
+ 2z2 ≤ α + 2z2

and

Pr
(
1− F̂ (S(û)) ≤ α

)
≥ Pr

(
1− F̃ (S(u)) ≤ α

)
− 2z2 ≥ α− 2z2 −

1

|Π|
.

Combining both parts, conditional on C = C1 ∩ C2, we have

α− 2z2 −
1

|Π|
≤ Pr(p̂ ≤ α) = Pr

(
1− F̂ (S(û)) ≤ α

)
≤ α + 2z2,
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and C happens with probability at least

Pr(C1 ∩ C2) ≥ (1− Pr(C1)) + (1− Pr(C2))− 1

≥ 1− 2J exp

(
−

z21ζ
2

8σ2λ
4
F 2

TE

)
−
∑Tp

k=1 |Πk|
√
k3

|Π|
· z1
z2

· 4e
√
2Jκ,

which finishes the proof.

OA.7.5. Proof of Theorem OA.2

Proof of Theorem OA.2. For any period t = T0+1, . . . , T we decompose (τ̂Tt −τTt ) as follows,

τ̂Tt − τTt =
J∑

j=1

w∗
jY

N
jt −

J∑
j=1

v∗jY
N
jt .

From (12a), we obtain

J∑
j=1

w∗
jY

N
jt −

J∑
j=1

v∗jY
N
jt = θ′

t

( J∑
j=1

w∗
jZj −

J∑
j=1

v∗jZj

)
+ λ′

t

( J∑
j=1

w∗
jµj −

J∑
j=1

v∗jµj

)
+
( J∑

j=1

w∗
j ϵjt −

J∑
j=1

v∗j ϵjt

)
. (OA.21)

Similarly, using expression (12a), we obtain

J∑
j=1

w∗
jY

E
j −

J∑
j=1

v∗jY
E
j = θE

( J∑
j=1

w∗
jZj −

J∑
j=1

v∗jZj

)
+ λE

( J∑
j=1

w∗
jµj −

J∑
j=1

v∗jµj

)
+
( J∑

j=1

w∗
jϵ

E
j −

J∑
j=1

v∗j ϵ
E
j

)
,
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where θE is the (TE × R) matrix with rows equal to the θt’s indexed by E , and ϵEj is defined

analogously. Pre-multiplying by λ′
t(λ

′
EλE)

−1λ′
E yields

λ′
t(λ

′
EλE)

−1λ′
E

(
J∑

j=1

w∗
jY

E
j −

J∑
j=1

v∗jY
E
j

)

=λ′
t(λ

′
EλE)

−1λ′
EθE

(
J∑

j=1

w∗
jZj −

J∑
j=1

v∗jZj

)

+λ′
t

(
J∑

j=1

w∗
jµj −

J∑
j=1

v∗jµj

)

+λ′
t(λ

′
EλE)

−1λ′
E

(
J∑

j=1

w∗
jϵ

E
j −

J∑
j=1

v∗j ϵ
E
j

)
. (OA.22)

Equations (OA.21) and (OA.22) imply

J∑
j=1

w∗
jY

N
jt −

J∑
j=1

v∗jY
N
jt = (θ′

t − λ′
t(λ

′
EλE)

−1λ′
EθE)

( J∑
j=1

w∗
jZj −

J∑
j=1

v∗jZj

)
+ λ′

t(λ
′
EλE)

−1λ′
E

( J∑
j=1

w∗
jY

E
j −

J∑
j=1

v∗jY
E
j

)
− λ′

t(λ
′
EλE)

−1λ′
E

( J∑
j=1

w∗
jϵ

E
j −

J∑
j=1

v∗j ϵ
E
j

)
+
( J∑

j=1

w∗
j ϵjt −

J∑
j=1

v∗j ϵjt

)
. (OA.23)

If Assumption 3 holds, (OA.23) becomes

J∑
j=1

w∗
jY

N
jt −

J∑
j=1

v∗jY
N
jt = − λ′

t(λ
′
EλE)

−1λ′
E

( J∑
j=1

w∗
jϵ

E
j −

J∑
j=1

v∗j ϵ
E
j

)
+
( J∑

j=1

w∗
j ϵjt −

J∑
j=1

v∗j ϵjt

)
. (OA.24)

Only the first term on the right-hand side of (OA.24) has a non-zero mean (because the weights
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w∗
j and v∗j , depend on the error terms ϵEj ). Therefore,

∣∣∣∣∣E
[

J∑
j=1

w∗
jY

N
jt −

J∑
j=1

v∗jY
N
jt

]∣∣∣∣∣ =
∣∣∣∣∣E
[
λ′

t(λ
′
EλE)

−1λ′
E

( J∑
j=1

w∗
jϵ

E
j −

J∑
j=1

v∗j ϵ
E
j

)]∣∣∣∣∣
≤

∣∣∣∣∣E
[
λ′

t(λ
′
EλE)

−1λ′
E

J∑
j=1

w∗
jϵ

E
j

]∣∣∣∣∣+
∣∣∣∣∣E
[
λ′

t(λ
′
EλE)

−1λ′
E

J∑
j=1

v∗j ϵ
E
j

]∣∣∣∣∣ .
For any t ≥ T0 + 1 and s ∈ E , under Assumption 2 (i), we apply Cauchy-Schwarz inequality

and the eigenvalue bound on the Rayleigh quotient to obtain

(
λ′

t(λ
′
EλE)

−1λs

)2 ≤ (λ
2
F

TEζ

)2

.

Let

ϵEjt = λ′
t(λ

′
EλE)

−1λ′
Eϵ

E
j =

∑
s∈E

λ′
t(λ

′
EλE)

−1λsϵjs.

Because ϵEjt is a linear combination of independent sub-Gaussians with variance proxy σ2, we

know ϵEjt is sub-Gaussian with variance proxy (λ
2
F/ζ)2σ2/TE . Let S = {w ∈ RJ :

∑J
j=1wj = 1}

be the unit simplex. Theorem 1.16 from Rigollet and Hütter (2019) implies

∣∣∣∣∣E[
J∑

j=1

w∗
jY

N
jt −

J∑
j=1

v∗jY
N
jt

]∣∣∣∣∣ ≤
∣∣∣∣∣E[

J∑
j=1

w∗
j ϵ

E
jt

]∣∣∣∣∣+
∣∣∣∣∣E[

J∑
j=1

v∗j ϵ
E
jt

]∣∣∣∣∣
≤ E

[
max
w∈S

∣∣∣ J∑
j=1

wjϵ
E
jt

∣∣∣]+ E

[
max
v∈S

∣∣∣ J∑
j=1

vjϵ
E
jt

∣∣∣]

≤ λ
2
F

ζ
2
√
2 log (2J)

σ√
TE

,

which finishes the proof of the theorem.

Suppose now Assumption 6 holds (but Assumption 5 does not). To obtain a bound on the
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bias we need to bound the first two terms in (OA.23). Recall that

λ′
t(λ

′
EλE)

−1λs ≤
λ
2
F

TEζ
.

Therefore, the absolute value of each element in vector (θ′
t − λ′

t(λ
′
EλE)

−1λ′
EθE) is bounded by

θ
(
1 +

λ
2
F

ζ

)
. Cauchy–Schwarz inequality and Assumption 6 imply

∣∣∣∣∣(θ′
t − λ′

t(λ
′
EλE)

−1λ′
EθE)

(
J∑

j=1

w∗
jZj −

J∑
j=1

v∗jZj

)∣∣∣∣∣
≤ θ

(
1 +

λ
2
F

ζ

)√
R

∥∥∥∥∥
J∑

j=1

w∗
jZj −

J∑
j=1

v∗jZj

∥∥∥∥∥
2

≤ θ
(
1 +

λ
2
F

ζ

)
Rd,

and

∣∣∣∣∣λ′
t(λ

′
EλE)

−1λ′
E

(
J∑

j=1

w∗
jY

E
j −

J∑
j=1

v∗jY
E
j

)∣∣∣∣∣ ≤ λ
2
F

ζ
d.

Combining the last two displayed equations with (OA.23), we have

∣∣∣∣∣E
[

J∑
j=1

w∗
jY

I
jt −

J∑
j=1

fjY
I
jt

]∣∣∣∣∣ ≤ (θR +
λ
2
F

ζ
(1 + θR)

)
d+

λ
2
F

ζ
2
√

2 log (2J)
σ√
TE

,

which finishes the proof of the theorem.

OA.7.6. Proof of Theorem OA.3

Proof of Theorem OA.3. Recall that

ût =
J∑

j=1

w∗
jYjt −

J∑
j=1

v∗jYjt,
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for t ∈ B ∪ {T0 + 1, . . . , T}. For t ∈ {T0 + 1, . . . , T}, ût are the post-intervention estimates of

the treatment effects; and for t ∈ B, ût are the placebo treatment effects estimated for the blank

periods. Let

ut =
J∑

j=1

w∗
j ϵjt −

J∑
j=1

v∗j ϵjt

for t ∈ B, and

ut =
J∑

j=1

w∗
j ξjt −

J∑
j=1

v∗j ϵjt

for t ∈ {T0+1, . . . , T}. The null hypothesis (15) and the assumptions of Theorem OA.3 imply that

{ut}t∈B∪{T0+1,...,T} is a sequence of exchangeable random variables. Additionally, Assumption 1

and the null hypothesis (15) imply

ût =
J∑

j=1

w∗
jYjt −

J∑
j=1

v∗jYjt = θ′
t

J∑
j=1

(w∗
j − v∗j )Zj + λ′

t

J∑
j=1

(w∗
j − v∗j )µj + ut

= λ′
t

J∑
j=1

(w∗
j − v∗j )µj + ut,

for t ∈ B∪{T0+1, . . . , T}, where the last equality is due to Assumption 5(i). So {ût}t∈B∪{T0+1,...,T}

is a sequence of exchangeable random variables. The result of the theorem follows now from the

proof of Theorem 2.

OA.8. Additional Results for the Walmart Data

In this section, we present results for m = 1 and m = 3. Using only one treated unit (m = 1) fails

to produce a good fit between the treated and synthetic control unit in the fitting periods. For

the case of m = 1, Figures OA.1 and OA.2 reveal a substantial gap with a clear seasonal trend
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between the two synthetic units. Figures OA.3 and OA.4 report results for m = 3. Increasing

m from m = 2 to m = 3 results in a minor improvement in fit, and leaves estimation results

substantively unchanged.

OA.9. Additional Simulation Results

OA.9.1. Results for a Single Simulation

In Section 5.1 the idiosyncratic shocks are i.i.d. Normal with variance σ2 = 1. Figures OA.5

and OA.7 report results for σ2 = 5 and σ2 = 10, respectively. Figures OA.6 and OA.8 report

differences between the outcomes for the synthetic treated and the synthetic control units for the

same values for σ2. As the value of σ2 increases, the quality of the post-treatment estimation

and inference deteriorates, and the p-value for the null hypotheses of in (15) increases. The

deterioration in pre-treatment fit in Figures OA.5 and OA.7 provides a diagnosis of the accuracy

of the respective estimates.

OA.9.2. Performance across Many Simulations

In this section, we present additional simulation results that compare the performance of the dif-

ferent versions of the synthetic control designs over 1000 simulations that independently generate

the model primitives (i.e., the factor loadings, covariates, and error terms) of Assumption 1. The

data generating process is the same as in Section 5.1.

We consider five versions of the synthetic control design:

1. Unconstrained design: This is the design in (7) without a cardinality constraint, so m = 1

and m = J − 1 = 14.

2. Constrained design: Same as the design in (7), but with m = 1 and m = 1, . . . , 7.

3. Weakly-targeted design: This is the design in (9). We vary β from 0.01 to 100.

4. Unit-level design: This is the design in (10), which fits a different synthetic control to each

unit assigned to treatment. We vary ξ from 0.01 to 100.
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5. Penalized design: This is the design in (OA.1), with λ = λ1 = λ2. We vary λ from 0.01 to

100.

The Constrained design imposes sparsity in the synthetic treatment weights through a hard

cardinality constraint specified by the integer m. The Weakly-targeted design targets the average

treatment effect for small values of β and a weighted average effect for the treated for large values

of β. For the Unit-level design, large values of ξ generate sparsity in the synthetic treated weights.

A sufficiently large value of ξ produces a Unit-level design where the only single treated unit can

be closely fitted by a convex combination of the other units. For large values of λ, the Penalized

design behaves like a one-to-one matching design, assigning all the weight to one treated and one

control unit.

For the Unit-level design, synthetic control weights are aggregated as in (11). For the Uncon-

strained and Penalized designs, the synthetic treated and synthetic control weights can always be

swapped without changing the objective values for their respective designs. For the Constrained

design, the weights can be swapped when ∥v∗∥0 ≤ m. When it is possible to swap synthetic

treated and synthetic control weights, we choose the treated units so that the number of units

with positive weights inw∗ is smaller than the number of units with positive weights in v∗. When

∥w∗∥0 = ∥v∗∥0, we determine whether to swap using a specific rule described in Section OA.5 of

the online appendix.

OA.9.2.1. Average Treatment Effects

Table OA.1 repeats Table 2 and includes additional results for the other synthetic control designs.

The first panel of Table OA.1 reports average treatment effects, τt, over 1000 simulations. The

second panel reports estimates of the average treatment effects, and then mean absolute error,

root mean square error, and p-value, all averaged over 1000 simulations. The second last column

reports the rejection rates. The last column reports the number of treated units averaged over
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1000 simulations. Mean absolute error (MAE) and root mean square error are defined as

MAE =
1

T − T0

T∑
t=T0+1

|τ̂t − τt|, RMSE =

√√√√ 1

T − T0

T∑
t=T0+1

(τ̂t − τt)2, (OA.25)

and the p-value is defined as in (17). Because the treatment effect is not equal to zero in the

simulation of Table OA.1, smaller p-values and larger rejection rates reflect better performance

of the testing procedure for a particular design.

In Table OA.1, the Unconstrained design has a strong relative performance. The performance

of the Constrained design improves for larger m, and is virtually identical to the performance

of the Unconstrained design when m = 7. The performance of Weakly-targeted and Unit-level

designs is best when β and ξ take intermediate values. The Penalized design yields results similar

to those of the Unconstrained design for small values of the penalization parameter λ.

OA.9.2.2. Average Treatment Effects on the Treated

In this section, we estimate the average treatment effects on the treated units by conducting

simulations following the simulation setup as in Section OA.9.2. We report the average treatment

effects on the treated units in Table OA.2.

The first five columns in Table OA.2 report averages of τTt , the average effect of treatment

on the treated units. These quantities depend on the weights for the treated units, which differ

across formulations of the synthetic control design. The next five columns report averages of τ̂t.

They are the same as in Table OA.1, yet we use them as estimators for τTt in Table OA.2. The

next two columns of Table OA.2 report averages across simulations of the mean absolute error

and the root mean square error, defined as in (OA.25) but with τTt replacing τt. The last column

reports the number of treated units averaged over 1000 simulations.

The results in Table OA.2 are similar to those for τt in Table OA.1. This is because in this

simulation units are i.i.d. and carry equal weights, making the average treatment effect on the
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treated, τTt , almost identical to τt. Section OA.9.4 reports results for a design with unequal

weights, which breaks this close correspondence between τTt and τt.

OA.9.2.3. Test size

In this section, we generate the model primitives under the null hypothesis (15). That is, we

employ a data generating process such that the values of the common factors and the distributions

of the idiosyncratic error variables are unaffected by the intervention.

We report the simulation results in Table OA.3, which organizes information in the same way

as in Table 2. Because the data are generated from the same distribution under treatment and

under no treatment, the average treatment effects in Table OA.3 are close to zero. The same

is true for the averages of τ̂t for all designs. Under the null hypothesis (15), the p-value should

approximately follow a uniform distribution between zero and one. The results in Table OA.3

show good behavior of our testing procedure under the null hypothesis: average p-values and

rejection rates are close to 0.5 and 0.05, respectively.

OA.9.3. Performance across Many Simulations with Nonlinearities

We now examine the behavior of estimators based on synthetic control designs under deviations

from the linear model in (12a) and (12b). We consider a nonlinear data generating process,

Y N
jt = δt + exp (θ′

tZj) + exp (λ′
tµj) + ϵjt,

Y I
jt = υt + exp (γ ′

tZj) + exp (η′
tµj) + ξjt.

The motivation to study a nonlinear model is that nonlinearities may induce interpolation biases,

affecting the relative performance of the different designs. All parameter values are the same

as in the simulation setup of Section 5.1, except for the values of the factor loadings and the

values of the covariates. To control the magnitude of the exponential terms in the nonlinear
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design, we draw θt, γt, λt, and ηt as vectors of i.i.d. Uniform(0, 3) random variables, instead

of Uniform(0, 10). Similarly, we draw Zj and µj as vectors of i.i.d. Uniform(−0.5, 0.5) random

variables, instead of Uniform(0, 1).

OA.9.3.1. Average Treatment Effects

Table OA.4 reports simulation results for average treatment effects under the nonlinear model.

In comparison to the results in Table OA.1, we see that Table OA.4 presents similar results.

The Unconstrained design has a strong relative performance. The performance of the Constrained

design improves for larger m, and is virtually identical to the performance of the Unconstrained

design when m = 7. The performance of Weakly-targeted and Unit-level designs is best when

β and ξ take intermediate values. The Penalized design yields results similar to those of the

Unconstrained design for small values of the penalization parameter λ.

OA.9.3.2. Average Treatment Effects on the Treated

Table OA.5 reports simulation results for the average treatment effects on the treated units under

the nonlinear model.

In comparison to the results in Table OA.2, we now see that the Weakly targeted, Unit-

level, and Penalized designs can easily improve the performance of the Unconstrained design in

many cases. The Weakly targeted design easily outperforms the Unconstrained design for larger

values of β, as it puts more emphasis on the average treatment effects on the treated units.

The Unit-level design can ameliorate interpolation biases induced by the aggregation of Xj, by

fitting each treated unit with a unit-specific synthetic control. Although the Unit-level design is

outperformed by the Weakly targeted design, it selects fewer treated units. Finally, the Penalized

design outperforms the Unconstrained design in some cases, while always selecting fewer treated

units than the Unconstrained design.
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OA.9.3.3. Comparison to Randomized Treatment Assignments

In this section, we follow the simulation setup as in Section OA.9.3. We consider randomized

treatment assignment with m treated units. In comparison to the results in Table 3, we see

that Table OA.6 presents similar results. Across all values of m, the synthetic control design

outperforms randomized assignment, including variants that incorporate pre-stratification, post-

stratification, or regression adjustment. Taken together with the findings in Tables 1 and 3,

these results underscore the potential of synthetic controls as a more effective design strategy in

experiments involving aggregate units and a limited number of treated units.

OA.9.4. Performance across Many Simulations with Unequal Weights

We now examine the behavior of estimators based on synthetic control designs when the weights

fj in expression (1) are equal. All parameter values are the same as in the simulation setup of

Section 5.1, except for the weights fj. The weights fj are chosen to be proportional to 1
1
, 1
2
, ..., , 1

15

where the sum of weights
∑J

j=1 fj = 1 is equal to 1.

OA.9.4.1. Average Treatment Effects

In this section, we estimate the average treatment effects by conducting simulations following the

simulation setup as in Section OA.9.4. We report the average treatment effects under unequal

weights in Table OA.7.

In comparison to the results in Table OA.1, we see that Table OA.7 presents similar results.

The Unconstrained design has a strong relative performance. The performance of the Constrained

design improves for larger m, and is virtually identical to the performance of the Unconstrained

design when m = 7. The performance of Weakly-targeted and Unit-level designs is best when

β and ξ take intermediate values. The Penalized design yields results similar to those of the

Unconstrained design for small values of the penalization parameter λ.
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OA.9.4.2. Average Treatment Effects on the Treated

In this section, we estimate the average treatment effects on the treated units by conducting

simulations following the simulation setup as in Section OA.9.4. We report the average treatment

effects on the treated units under unequal weights in Table OA.8.

Table OA.8 reports the results for τTt . In comparison to the results in Table OA.2, we now see

that the Weakly targeted design improves the performance of the Unconstrained design for larger

values of β, as it puts more emphasis on the average treatment effects on the treated units. The

Unit-level and the Penalized designs, however, have worse performance than the Unconstrained

design.
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Figure OA.1: Synthetic Treated Unit and Synthetic Control Unit, m = 1

Note: The black solid line represents the synthetic treated outcome. The black dashed line represents the synthetic
control outcome. The blue dashed lines are individual stores’ sales.
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Figure OA.2: Placebo Treatment Effects, m = 1

Note: This figure reports the difference between the synthetic treated and synthetic control outcomes of Fig-
ure OA.1.
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Figure OA.3: Synthetic Treatment Unit and Synthetic Control Unit, when m = 3.

Note: The black solid line represents the synthetic treated outcome. The black dashed line represents the synthetic
control outcome. The blue dashed lines are individual stores’ sales.
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Figure OA.4: Treatment Effect Estimate, when m = 3.

Note: This figure reports the difference between the synthetic treated and synthetic control outcomes of Fig-
ure OA.3. For the experimental periods, this is the treatment effect estimate.
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Figure OA.5: Synthetic Treatment Unit and Synthetic Control Unit, when σ2 = 5.
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Figure OA.6: Treatment Effect Estimate, when σ2 = 5.
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Figure OA.7: Synthetic Treatment Unit and Synthetic Control Unit, when σ2 = 10.

OA.58



Figure OA.8: Treatment Effect Estimate, when σ2 = 10.
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Table OA.1: Additional Results for Average Treatment Effects (Averages over 1000 Simulations)

τt
t = 26 t = 27 t = 28 t = 29 t = 30

-13.58 -10.99 -8.35 -5.00 -2.50

τ̂t MAE RMSE p̂ p̂ < 0.05 ∥w∥0
t = 26 t = 27 t = 28 t = 29 t = 30

Unconstrained -13.57 -10.97 -8.38 -5.07 -2.53 0.83 0.97 0.014 0.944 6.76

Constrained m = 1 -13.61 -10.97 -8.39 -4.86 -2.41 2.93 3.45 0.057 0.668 1
m = 2 -13.58 -10.90 -8.43 -5.01 -2.40 1.69 2.00 0.028 0.854 2
m = 3 -13.56 -11.00 -8.38 -5.05 -2.52 1.26 1.49 0.019 0.916 3
m = 4 -13.59 -11.06 -8.40 -4.99 -2.50 1.06 1.25 0.016 0.935 4
m = 5 -13.57 -11.01 -8.37 -5.02 -2.48 0.93 1.09 0.015 0.933 5.00
m = 6 -13.51 -10.95 -8.29 -5.01 -2.47 0.87 1.02 0.015 0.942 5.97
m = 7 -13.57 -10.96 -8.37 -5.06 -2.52 0.83 0.97 0.014 0.946 6.76

Weakly-targeted β = 0.01 -13.57 -10.95 -8.38 -4.99 -2.53 1.17 1.38 0.018 0.920 11.49
β = 0.1 -13.56 -10.99 -8.34 -4.97 -2.52 0.93 1.08 0.014 0.951 9.75
β = 1 -13.55 -10.98 -8.32 -4.95 -2.44 0.87 1.01 0.013 0.954 8.49
β = 10 -13.56 -10.96 -8.37 -4.99 -2.48 0.94 1.10 0.014 0.953 8.15
β = 100 -13.61 -10.99 -8.42 -5.06 -2.53 1.00 1.18 0.013 0.953 7.91

Unit-level ξ = 0.01 -13.60 -10.95 -8.39 -5.04 -2.53 0.95 1.13 0.014 0.938 10.16
ξ = 0.1 -13.58 -10.97 -8.35 -4.97 -2.47 0.91 1.07 0.015 0.942 7.30
ξ = 1 -13.57 -10.99 -8.38 -4.99 -2.49 1.34 1.58 0.020 0.900 4.50
ξ = 10 -13.60 -10.93 -8.45 -5.06 -2.52 2.16 2.57 0.030 0.829 2.11
ξ = 100 -13.61 -10.86 -8.48 -5.02 -2.54 2.76 3.27 0.040 0.770 1.15

Penalized λ = 0.01 -13.58 -10.97 -8.34 -5.05 -2.47 0.88 1.03 0.014 0.950 6.70
λ = 0.1 -13.64 -11.03 -8.43 -5.03 -2.50 1.21 1.42 0.019 0.904 5.43
λ = 1 -13.67 -10.96 -8.41 -4.87 -2.45 2.08 2.46 0.037 0.791 2.95
λ = 10 -13.68 -11.04 -8.37 -4.79 -2.45 3.72 4.40 0.091 0.542 1.11
λ = 100 -13.64 -10.94 -8.42 -4.86 -2.50 4.17 4.93 0.111 0.490 1

Note: In this table, all designs use m = 1 and m = 14.
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Table OA.3: Average Treatment Effects Under the Null Hypothesis (15) (Averages over 1000
Simulations)

τt
t = 26 t = 27 t = 28 t = 29 t = 30

0.01 0.00 0.00 0.01 -0.01

τ̂t MAE RMSE p̂ p̂ < 0.05 ∥w∥0
t = 26 t = 27 t = 28 t = 29 t = 30

Unconstrained -0.01 0.00 -0.03 -0.05 -0.07 0.96 1.13 0.495 0.061 6.76

Constrained m = 1 0.20 0.14 0.02 -0.08 0.05 3.00 3.55 0.495 0.056 1
m = 2 -0.02 -0.01 -0.02 -0.09 -0.03 1.80 2.13 0.497 0.038 2
m = 3 -0.09 -0.07 -0.02 -0.05 -0.02 1.37 1.62 0.505 0.048 3
m = 4 -0.02 -0.02 0.00 -0.01 -0.01 1.19 1.41 0.494 0.054 4
m = 5 0.01 -0.02 0.03 0.00 -0.05 1.07 1.25 0.496 0.057 5.00
m = 6 0.07 0.06 0.10 -0.01 -0.03 0.99 1.17 0.484 0.054 5.97
m = 7 -0.01 0.00 -0.02 -0.04 -0.07 0.96 1.13 0.495 0.059 6.76

Weakly-targeted β = 0.01 0.01 0.04 -0.06 0.00 -0.02 1.27 1.50 0.504 0.042 11.49
β = 0.1 0.03 -0.01 0.01 0.04 -0.02 1.03 1.21 0.499 0.055 9.75
β = 1 0.00 0.00 0.03 0.08 0.04 0.95 1.11 0.499 0.047 8.49
β = 10 -0.03 0.01 -0.03 0.04 0.03 0.95 1.10 0.486 0.053 8.15
β = 100 -0.08 -0.08 -0.09 -0.04 -0.02 0.96 1.11 0.490 0.050 7.91

Unit-level ξ = 0.01 0.00 0.03 -0.04 -0.04 -0.02 1.05 1.25 0.511 0.053 10.16
ξ = 0.1 0.00 0.00 0.03 0.02 0.02 1.05 1.24 0.500 0.049 7.30
ξ = 1 0.01 0.02 -0.06 -0.05 -0.03 1.38 1.63 0.498 0.046 4.50
ξ = 10 0.18 0.00 -0.02 -0.15 -0.02 1.97 2.33 0.496 0.038 2.11
ξ = 100 0.19 -0.03 -0.02 -0.18 -0.03 2.34 2.77 0.502 0.053 1.15

Penalized λ = 0.01 0.01 0.01 0.02 -0.03 -0.01 1.01 1.18 0.493 0.052 6.70
λ = 0.1 -0.07 -0.05 -0.07 -0.11 -0.10 1.32 1.56 0.505 0.041 5.43
λ = 1 0.02 0.07 -0.07 -0.07 0.01 2.17 2.57 0.495 0.045 2.95
λ = 10 0.16 0.03 -0.11 -0.08 -0.08 3.79 4.48 0.514 0.045 1.11
λ = 100 0.22 0.15 -0.14 -0.14 -0.08 4.22 5.00 0.515 0.041 1

Note: Unless otherwise noted, all designs use m = 1 and m = 14.
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Table OA.4: Average Treatment Effects, Nonlinear Model (Averages over 1000 Simulations)

τt
t = 26 t = 27 t = 28 t = 29 t = 30

-13.18 -10.72 -7.96 -5.47 -2.43

τ̂t MAE RMSE p̂ p̂ < 0.05 ∥w∥0
t = 26 t = 27 t = 28 t = 29 t = 30

Unconstrained -13.45 -10.90 -8.18 -5.88 -2.75 1.99 2.54 0.059 0.741 6.49

Constrained m = 1 -15.70 -13.18 -10.50 -7.76 -4.78 3.51 4.27 0.061 0.717 1
m = 2 -14.27 -11.86 -8.90 -6.44 -3.34 2.64 3.29 0.061 0.725 2
m = 3 -13.69 -11.38 -8.38 -5.95 -2.97 2.23 2.83 0.058 0.745 3
m = 4 -13.58 -11.09 -8.23 -5.89 -2.75 2.10 2.67 0.058 0.754 4
m = 5 -13.37 -10.97 -8.14 -5.79 -2.88 2.05 2.61 0.060 0.747 5.00
m = 6 -13.54 -11.03 -8.31 -5.86 -2.86 2.00 2.56 0.060 0.738 5.93
m = 7 -13.49 -10.94 -8.16 -5.85 -2.77 1.98 2.53 0.058 0.743 6.56

Weakly-targeted β = 0.01 -11.67 -9.02 -6.37 -3.87 -1.00 2.59 3.24 0.116 0.603 11.14
β = 0.1 -12.08 -9.60 -6.86 -4.31 -1.47 2.15 2.73 0.083 0.678 9.56
β = 1 -12.50 -10.12 -7.37 -4.81 -1.93 1.97 2.52 0.056 0.762 8.30
β = 10 -13.00 -10.54 -7.79 -5.24 -2.32 2.19 2.77 0.031 0.851 7.93
β = 100 -13.28 -10.76 -8.00 -5.44 -2.55 2.45 3.11 0.024 0.884 7.47

Unit-level ξ = 0.01 -11.76 -9.15 -6.51 -3.91 -1.15 2.57 3.22 0.118 0.593 10.06
ξ = 0.1 -13.11 -10.59 -7.82 -5.15 -2.29 2.06 2.64 0.060 0.754 7.17
ξ = 1 -13.74 -11.12 -8.42 -5.75 -2.84 2.37 3.02 0.029 0.850 4.08
ξ = 10 -13.74 -11.20 -8.55 -5.89 -3.09 3.02 3.77 0.028 0.866 1.74
ξ = 100 -13.79 -11.16 -8.54 -5.90 -3.08 3.20 4.00 0.029 0.863 1.08

Penalized λ = 0.01 -13.41 -10.93 -8.32 -5.82 -2.82 1.97 2.53 0.055 0.759 6.44
λ = 0.1 -13.32 -10.79 -8.12 -5.56 -2.64 2.07 2.64 0.045 0.777 5.69
λ = 1 -13.32 -10.84 -8.15 -5.39 -2.60 3.08 3.84 0.056 0.738 3.04
λ = 10 -13.39 -10.82 -7.95 -5.34 -2.58 3.85 4.80 0.103 0.595 1.09
λ = 100 -13.35 -10.82 -8.00 -5.29 -2.57 4.10 5.11 0.117 0.562 1

Note: Unless otherwise noted, all designs use m = 1 and m = 14.
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Table OA.6: RMSE for Different Experimental Designs and Estimators, Nonlinear Model (Av-
erages over 1000 Simulations)

SC RND STR REG 1-NN 5-NN

m = 1 4.27 12.71 12.71 14.26 8.02 7.42
m = 2 3.29 9.79 9.68 10.11 6.51 6.20
m = 3 2.83 8.48 9.08 8.93 5.65 5.54
m = 4 2.67 8.01 8.95 8.46 5.24 5.22
m = 5 2.61 7.88 8.07 7.87 4.95 5.00
m = 6 2.56 7.71 8.92 7.42 4.69 4.81
m = 7 2.53 7.43 8.05 7.27 4.54 4.68

Note: SC: Constrained formulation of the synthetic control design. RND: Randomized treatment assignment

followed by the difference-in-means estimator. STR: Stratified randomization, followed by difference in means in

each stratum. REG: Randomized treatment assignment followed by regression adjustment. 1-NN: Randomized

treatment assignment followed by 1-nearest neighbor matching. 5-NN: Randomized treatment assignment followed

by 5-nearest neighbor matching. SC uses outcomes in the fitting periods and covariates as predictors. STR, 1-NN,

and 5-NN use all pre-intervention outcomes and covariates. REG adjusts for the covariates only.
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Table OA.7: Average Treatment Effects, Unequal Weights (Averages over 1000 Simulations)

τt
t = 26 t = 27 t = 28 t = 29 t = 30

-13.64 -10.96 -8.34 -4.99 -2.52

τ̂t MAE RMSE p̂ p̂ < 0.05 ∥w∥0
t = 26 t = 27 t = 28 t = 29 t = 30

Unconstrained -13.61 -10.95 -8.35 -5.00 -2.48 1.16 1.36 0.019 0.913 6.36

Constrained m = 1 -13.80 -11.11 -8.34 -5.05 -2.42 2.94 3.45 0.062 0.646 1
m = 2 -13.58 -11.01 -8.30 -4.98 -2.48 1.70 2.01 0.031 0.836 2
m = 3 -13.63 -10.96 -8.29 -5.00 -2.46 1.38 1.62 0.022 0.891 3
m = 4 -13.65 -10.91 -8.32 -4.97 -2.49 1.20 1.43 0.020 0.906 4
m = 5 -13.61 -10.93 -8.32 -4.97 -2.49 1.17 1.38 0.019 0.918 4.99
m = 6 -13.59 -10.96 -8.32 -4.98 -2.46 1.12 1.33 0.019 0.914 5.91
m = 7 -13.58 -10.96 -8.32 -5.01 -2.46 1.13 1.34 0.018 0.915 6.47

Weakly-targeted β = 0.01 -13.65 -11.09 -8.44 -5.09 -2.58 1.44 1.70 0.023 0.883 10.65
β = 0.1 -13.64 -11.05 -8.40 -5.08 -2.57 1.25 1.47 0.019 0.915 9.06
β = 1 -13.62 -11.06 -8.33 -5.06 -2.50 1.21 1.44 0.016 0.934 7.89
β = 10 -13.53 -10.97 -8.27 -4.93 -2.42 1.37 1.62 0.014 0.947 7.61
β = 100 -13.52 -10.96 -8.32 -4.96 -2.48 1.48 1.75 0.014 0.952 7.65

Unit-level ξ = 0.01 -13.52 -10.97 -8.27 -4.97 -2.44 1.42 1.67 0.021 0.887 9.33
ξ = 0.1 -13.60 -11.04 -8.31 -5.01 -2.48 1.33 1.57 0.020 0.910 6.84
ξ = 1 -13.61 -10.99 -8.38 -5.04 -2.49 1.56 1.85 0.022 0.897 4.32
ξ = 10 -13.62 -10.98 -8.46 -5.08 -2.54 2.42 2.85 0.031 0.825 2.12
ξ = 100 -13.62 -10.85 -8.49 -5.01 -2.54 3.01 3.54 0.040 0.768 1.16

Penalized λ = 0.01 -13.67 -10.97 -8.36 -5.01 -2.53 1.18 1.39 0.019 0.917 6.28
λ = 0.1 -13.68 -11.02 -8.40 -5.07 -2.40 1.42 1.67 0.022 0.897 5.13
λ = 1 -13.68 -10.92 -8.33 -4.96 -2.34 2.25 2.66 0.042 0.757 2.72
λ = 10 -13.75 -10.85 -8.21 -4.85 -2.25 3.76 4.44 0.095 0.528 1.08
λ = 100 -13.79 -10.94 -8.20 -4.84 -2.26 4.18 4.93 0.114 0.470 1

Note: Unless otherwise noted, all designs use m = 1 and m = 14.
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