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OA.1. Other Versions of the Synthetic Control Design

Recall that in Figure 1, we discuss how to take into account the clustered nature of the data so
one unit is treated per cluster. This provides a better approximation of the distribution of the
predictor values for the entire sample, ameliorating concerns of interpolation biases. We provide
a formulation of the synthetic control design in this setting.

Suppose we divide the set of J available units into K clusters. Let Z; be the set of indices

for the units in cluster k. The cluster mean is

X=X/ Y 0

JELK JE€LK

for each cluster k = 1,..., K. For each index : = 1,...,J, let k(i) be the cluster to which unit i
belongs, i.e., i € Zy(;). A clustered version of the synthetic control design in (10) is given by:
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m < [Jwllo < m.

We conclude this section by discussing other possible extensions to the synthetic control
design. First, it is well known that synthetic control estimators may not be unique. Lack of
uniqueness is typical in settings where the values of the predictors that a synthetic control is
targeting (i.e., X in equation (7), or X, for a treated unit in equation (10)) fall inside the
convex hull of the values of X for the units in the donor pool. To address the potential lack
of uniqueness, we adapt the penalized estimator of Abadie and L’Hour (2021) to the synthetic
control designs proposed in this article. The penalized synthetic control estimator of Abadie
and L’Hour (2021) is unique provided that predictor values for the units in the donor pool are
in general quadratic position (see Abadie and L’Hour, 2021, for details). Moreover, penalized
synthetic controls favor solutions where the synthetic units are composed of units that have

predictor values, X, similar to the target values. Applying the penalized synthetic control of

R

Abadie and L’Hour (2021) to the objective function of (7), we obtain
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Here, A\; and A\, are positive constants that penalize discrepancies between the target values of
the predictor X and the values of the predictors for the units that contribute to their synthetic
counterparts. See Abadie and L'Hour (2021) for details on penalized synthetic control estimators.
In Section OA.2 below, we discuss how to apply the Abadie and L’Hour penalty to the other
synthetic designs proposed in this article.

Other types of penalization are possible. In particular, Doudchenko and Imbens (2016),
Doudchenko et al. (2021), and others have proposed synthetic control estimators that use ridge
or elastic net regularization on the synthetic control weights (e.g., on w; and v; in design (7)). The
synthetic control designs proposed in this article can be modified to incorporate regularization
on the weights.

Finally, Abadie and L'Hour (2021), Arkhangelsky et al. (2021), and Ben-Michael, Feller and
Rothstein (2021) have proposed bias-correction techniques for synthetic control methods. In
Section OA.2 below we provide details on how to apply bias correction techniques in a synthetic

control design.

OA.2. Designs Based on Penalized and Bias-corrected Synthetic Control Methods
Consider the design problem in (10),
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To apply the penalized synthetic control method of Abadie and L'Hour (2021) to this design, we

replace the term (a) in (OA.2) with

2

J J
||Y—ijx + A wi|[ X - X (OA.3)
j=1 j=1
and the terms (b) with
J 2 J
HX] —Z’U”X +)\2ZU”HX] _Xz||2 (OA4)
i=1 i=1

Here, A\; and A\, are positive constants that penalize discrepancies between the target values of
the predictors (X in (OA.3) and X in (OA.4)) and the values of the predictors for the units
that contribute to their synthetic counterparts.

All designs of Section 2 depend on terms akin to (a) and (b) in (OA.2). These terms can be
adapted as in (OA.3) and (OA.4) to implement the penalized synthetic control design of Abadie
and L’'Hour (2021).

For all the designs in Section 2, the bias-corrected estimator of Abadie and L’'Hour (2021) is
J
Z w — Hot (X Z v; — Jto( ))
7=1
where t > Ty+1 and the terms fio,(X;) are the fitted values of a regression of untreated outcomes,

VY, on unit’s characteristics, X;. To avoid over-fitting biases, fio:(X;) can be cross-fitted for

the untreated.

OA.3. Approximate Validity when \; are not Exchangeable

Recall that in Theorem 2 we have shown that when A; are exchangeable for t € BU{Ty+1,...,T}

the p-value in (17) is exact. In this section, we discuss the case when A; are not necessarily
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exchangeable. We show below in Theorem OA.1 that the p-value in (17) is approximately valid

when T is large.

Theorem OA.1 Assume that Assumptions 1 — 8 hold. Assume there exists a constant k < 0o,
such that for j = 1,...,J, t = 1,...,T, €j are continuously distributed with (a version of)
the probability density function upper bounded by k. Then, under the null hypothesis (15), the
p-values of equation (17) are approximately valid. In particular, there is an event C, such that

conditional on C, for any « € (0,1], we have

1 ~
o — 229 — ﬁ <Pr(p<a) <a+ 2z, (OA.5)

and the event C happens with probability at least

Z%f 21 ;
Pr(C) >1—2Jexp | ———=—T¢ | — = 4dey/2J(min{T — Ty, Ty — T¢})*k, (OA.6)
852\ F2 Z

where zy,z9 are arbitrary positive choice parameters. In expression (OA.6), the probability

Pr(C) is over the distribution of {€;i}jeqr, .. yeq,..ry and {&e}jeqr, .. oy eefmot,..ry- In expres-

sion (OA.5), the probability Pr(p < «) is over the distribution of {€;i}jeq,...syeqr,...my and

A limitation of the result in Theorem OA.1 is that there are values of the parameters of the
data generating for which the result of the theorem provides a tight bound on test size only for
large values of Tg. Large T¢ allows choices for z; and 2, such that the bounds in (OA.5) are tight
and the probability Pr(C) in (OA.6) is close to one.

We prove Theorem OA.1 in Section OA.7.4.
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OA.4. Estimating the Average Effect of Treatment on the Treated Units

In Section 3, we have shown formal results of the bias bounds in estimating the average treatment
effect. In this section, we present similar results for estimating the average effect of treatment

on the treated units. Similar to Assumption 3, we begin with the assumption of perfect fit.

Assumption 5 With probability one, (i)
J J
> wiZi=) viZi
j=1 j=1
and (ii)
J J
xyE xyE
D wiYF =) vYf.
j=1 j=1

In practice, Assumption 3 may only hold approximately. The next assumption accommodates

settings with imperfect fit.

Assumption 6 There exists a positive constant d > 0, such that with probability one,

2
’ < Ted?.
2

J J
H ijj — Uij
j=1 j=1

J J
2
2 xvE xvE
JSRE Y wy =Yy,
j=1 j=1

Using the above assumptions, we are able to provide the following bias bounds.

Theorem OA.2 If Assumptions 1, 2, and 5 hold, then for any t > Ty + 1,

If Assumptions 1, 2, and 6 hold, then for anyt > Ty + 1,

2 2
|E[7— 7| < (éR + %(1 +§R))d+ %2 2log (2.])

7
VTe
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The expectations are taken over the distribution of {€;t}jeq1,... iy eequ,.. 7y and {&e}jeqr, .. oy ee{Tot1,...T} -

We prove Theorem OA.2 in Section OA.7.5. Next, we provide the following result on inference.

Theorem OA.3 Suppose that Assumptions 1, 2(ii) and 5(i) hold, and the noises {€j; }repufry+1,... 1}
and {&;t b e(my+1,... 7y have continuous distributions. Assume that { X }repu{ry+1,..,1y 8 @ sequence

of exchangeable random variables. Under the null hypothesis (15), for any a € [0, 1], we have

oY <Pr(p<a)<a,

|11
where Pr(p < «) is taken over the distribution of {€;i}jcq, . .yeeqr,..mys 1&ittjeq, .oy e {To41,... T}

and {A¢}eqr,.. Ty

We prove Theorem OA.3 in Section OA.7.6.

OA.5. Swapping Treated and Control Weights

Recall that when it is possible to swap synthetic treated and synthetic control weights, we choose
the treated units so that the number of units with positive weights in w* is smaller than the
number of units with positive weights in v*. When |[w*||o = ||v*|lo, we determine whether or
not to swap using the following rule. For the Unconstrained design, we choose the treated group
to be the one with the smallest index among the units with positive weights. We use the same
procedure based on the lowest index for Constrained with m = 7 (highest value) and Penalized
with A = 0.01 (lowest value). Then, starting from m = 7 and for smaller values of m, we
assign to the treated group the set of weights that is most similar to the weights obtained for
lw*|lo <™+ 1 (in terms of what units obtain positive weights). In those cases where the two
sets of swappable weights for ||w*||o < ™ are equally similar to the synthetic treated weights for
llw*|lo < ™ + 1, we select the set of weights with the smallest index. We follow the analogous

procedure for A > 0.01, starting from smaller values of \.
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OA.6. Implementations of Different Optimization Formulations

To computationally solve (7), i.e., the Unconstrained design, we propose two methods. The first
method is by enumeration, which takes advantage of the objective function of (7) being separated
between w and v. If we knew which units were to receive treatment and which units were to
receive control, then we could decompose (7) into two classical synthetic control problems and
solve both of them efficiently. We brute-force enumerate all the possible combinations of the
treatment units and control units. Because the two groups of treated and control units can
be swapped, we only enumerate combinations such that the cardinality of the treated group is
smaller than or equal to the cardinality of the control group. When the cardinality of the treated
group is equal to the cardinality of the control group, we prioritize the treated group to be the
one with the smallest index among the units with positive weights.

The second method solves a constrained optimization problem, by converting it into the
canonical form of a Quadratic Constraint Quadratic Program (QCQP), which we detail below.
The decision variables are w; and v;,V j = 1,...,J. For simplicity, we write it in a vector form
W = (wy, Wa, ..., Wy, V1, Vg, ..., V).

Let M be the dimension of the predictors X,. Let X be an M x J matrix, each column of
which is X;, which stands for the predictors of unit j.

Define P° = { P }x=1,..20 € R**?/ such that P° has only two diagonal blocks, while the

two off-diagonal blocks are zero. Define for any k, 1 =1,...,2J,

( M
ZXi,kXi,b kal = 177‘]a
=1

M
ZXz‘,(k—J)Xz‘,(z_J), kl=J+1,...,2J,
=1

L0, otherwise.
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Define q° € R?/, such that for any k =1,...,2J

( M J
_QZXZ,k<Zf]XZJ)’ k’:L’J,
0o i=1 j=1
4, = M 7
=2 Xy O FiXig), k=J+1,...,2J
L i=1 j=1

Further define e; = (1,1,...,1,0,0,...,0)" whose first J elements are 1 and last J elements 0;

and ey = (0,0,...,0,1,1,..., 1) whose first J elements are 0 and last J elements 1.

.....

two off-diagonal blocks, i.e., for any k, [l =1,...,2J,

;

1

P=11, k=1-J

0, otherwise.
\

Using the above notations we re-write the (non-convex) QCQP as follows,

min  W'P'W + ¢"W (OA.7)
st. e W =1,
esW =1,
W'P'W =0,
W > 0.

The first computational method (enumeration) solves two synthetic control problems in each
iteration. The synthetic control problems can be efficiently solved. We implement the syn-
thetic control problem using the “Isei” function from “limSolve” package in R 4.0.2. For the

second computational method (quadratic programming), the problem (OA.7) is implemented
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using Gurobi 9.0.2 in R 4.0.2. Since the QCQP is non-convex, the computation leads to some
numerical errors up to 0.001 in finding the treated and control weights. So we round the treated
and control weights to the nearest 2-digits in the implementation of the QCQP. Moreover, for
all the weights that are less than or equal to 0.01, we trim the weights to zero. This is because
smaller weights suffer from greater impacts of numerical errors, and numerical errors could cause
zero weights to be non-zero, thus having a non-negligible impact on the swapping rule.

To conclude, we compare the treated and control weights calculated from both methods.
Both methods yield the same treated and control weights up to some negligible rounding error,
while the first method takes longer computational time.

All the different versions of the synthetic control design are computationally implemented
using either one of the above two methods. The Unconstrained design is implemented using the
quadratic programming method. The Constrained design is implemented using the enumeration
method. In cases when the cardinality constraint m is small, this brute force enumeration is very
efficient. The Weakly-targeted design is implemented using the quadratic programming method.
In the QCQP formulation, the objective function has both a different quadratic term P° and a
different linear term q°. The Unit-Level design is implemented using the enumeration method.
The Penalized design is implemented using the quadratic programming method. In the QCQP

formulation, the objective function has the same quadratic term P° and a different linear term

q°.

OA.7. Proofs

OA.7.1. Proof of Theorem 1

Proof of Theorem 1. For any period t = Ty + 1,...,T we decompose (7, — 7;) as follows,
J J J J
= (St ) - (S-S )
j=1 j=1 j=1 j=1
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J J J J
= (Z wiYj, =) fﬁ@i) - (Zv;‘yjiv - LYY ) - (OA8)
Jj=1 Jj=1 Jj=1 Jj=1

The first term in (OA.8) measures the difference between the synthetic treatment outcome and
the aggregated treatment outcomes. The second term measures the difference between the syn-
thetic control outcome and the aggregate control outcomes. We bound these two terms separately.

From (12b), we obtain

J J J J
dowii- > S =v£<2w;*zj - ZM)
- . j:l

j=1
J J J J
+m; <Z wip;— Y fjuj) + <Z wign — Y fjgjt> (OA.9)
=1 j=1 j=1 j=1

Similarly, using expression (12a), we obtain

J J J J
D_wYf =S¥ =6 (Zw;*zj - Zf}@)
j=1 j=1 j=1 j=1
J J J
+>\5<ij.“‘]’ - Zﬁw) + (Zw}‘ef - ij€§>’
j=1 i=1

j=1 j=1

where O¢ is the (T¢ x R) matrix with rows equal to the 6;’s indexed by &, and ef is defined

analogously. Pre-multiplying by 7,(A:zAe) "t AL yields

J J
N (AeAe) AL ( > wiyf-> ijE'S)
j=1 j=1

J J
= M AeAe) T A0 ( dwiz; = ijj)
j=1 Jj=1
J J
+m, ( PRCITEDS ijj)
P =1
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J J
+n;(>\g>\g)-1>\g<zw;e§ — ije;?). (OA.10)

Equations (OA.9) and (OA.10) imply

J J
Zw] it Z ng — i (AeAe) I AEO:) <Zw;Zj > ijj>
j=1

J
+ nzu'gxs)—lxg(Zwﬁf - ijf>
j=1

j=1

<

J
— XX TN Y wiel

j=1

J
F I (NeA) AL D el

J=1

J J
* <Zw§§jt - ijﬁjt) (OA.11)
J=1 j=1

If Assumption 3 holds, (OA.11) becomes

Zw Zf] —0)(AeAe) 1>\gzw;‘e§

7j=1

J
TN Xe) TN Y i€

j=1

J J
+ <Zw§gﬁ - ijfjt) (OA.12)
J=1 j=1

Only the first term on the right-hand side of (OA.12) has a non-zero mean (because the weights,

7, depend on the error terms €; £). Therefore,

J

J
B D wYi= ) LY}
j=1

j=1

J
= |E ng(AgAg)—lxgzw;e;?] .

=1
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Using the same line of reasoning for the second term on the right-hand side of (OA.8), we obtain

J
= |E [ X(AXe) ALY v) 5] .

7j=1

J
E 22@?#’ > LYY
j=1 =1

For any t > Ty + 1 and s € &, under Assumption 2(i), we apply Cauchy-Schwarz inequality and

the eigenvalue bound on the Rayleigh quotient to obtain

(M (AeXe) AT < (i (NeXe) 7 ) (AL(AEAE) TN,

e
Te¢ ) \TeC )

IN

Similarly,
VA
(M)A < (2 ) (OA.13)
TeC
Let
= M (AeXAe) AT =) mi(AeAe) T e
se&

Because Eft is a linear combination of independent sub-Gaussians with variance proxy @2, it
follows that €, is sub-Gaussian with variance proxy (7AF/()%5%/Tz. Let S = {w € R/ :

Z}'le w; = 1}. Theorem 1.16 from Rigollet and Hiitter (2019) implies

J J
B[S wivh =3 ]
i=1 j=1

>|

nAF

[ij ]t] Iggé{‘Zw] € v 210g(2J)\/iT_g.

<
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An analogous argument yields

2

AN F o
S T\/ 210g (QJ)\/—T_g,

[ZU*YN Zf] ]

which completes the proof of the theorem.
Suppose now Assumption 4 holds (but Assumption 3 does not). To obtain a bound on the
bias, we bound the first two terms in (OA.11). Recall that

NiF

/ —1
7 (Ao Ae) ’\‘—Tgc

Therefore, the absolute value of each element in vector (v, — 1;(AzAg) "' AL0¢) is bounded by

A\ F
v+ HUT. Cauchy—Schwarz inequality and Assumption 4 imply

(7 = M (NeXe) T AL O¢) (sz ng )‘

_ )\nF J
< £Z,
N |
<(7+ 5%) Rd.
and
d d N F
Mm(AeAe) ' AL (Z wiYf =) ijf) San.
J=1 j=1 >

Combining the last two displayed equations with (OA.11), we have

i - o
VTe

< ( R+T(1+9R))d+¥ 2log (2J)

J J
E| Y wiYi= iV
= =
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An analogous derivation produces

J J 2 2 _
— AF — AF
B Yoy =S v || < (0R+ (14 0R) )d + == /210g 2]) =,
j=1 j=1 S ¢ VIe
which finishes the proof of the theorem. [

OA.7.2. Proof of Theorem 2

Proof of Theorem 2. Recall that

J J

-~ * *
Uy = E ij}t— E Vs X jts
j 1

Jj=1 Jj=

fort e BU{Ty +1,...,T}. Fort € {To +1,...,T}, u; are the post-intervention estimates of
the treatment effects; and for ¢t € B, u; are the placebo treatment effects estimated for the blank

periods. Let

J J
U = E /lUjE]t E Ujejt
Jj=1

j=1

for t € B, and
J J
Ut = E wjéjt E 'UjEJt
j=1 j=1

,,,,,

is a sequence of exchangeable random variables. Additionally, Assumption 1 and the null hy-

pothesis (15) imply

OA.15



J
= A Zw — U} )y + g,
7j=1

fort € BU{To+1,...,T}, where the last equality is due to Assumption 3(i). So {uU }iepufry+1,....1}
is a sequence of exchangeable random variables.
Recall that, for each © € II, 7 is a subset of indices from the blank periods and the experi-

mental periods BU {To + 1,...,T}, such that || =T — T,. Recall that

and

_ 1 .
S(thn) = T > .

Now define k = |II| — La\HH Define S®) (@) to be the k-th smallest value in a small-to-large

..........

continuous distributions, {S(u,)}ren are all unique with probability 1.

Using the above definitions, for any «,

1{p < a} = 1{S(@) > SW(a)}.

Note that for any 7 € II, we have S®)(@i,) = S® (&). Then we have

> 1{S(@s) > sW(un)} =Y 1{S(a,) > SW (@)} = 1| — k = |a|I]].

mell mell

Because {U; }1epu(Ty+1....7) 1S a sequence of exchangeable random variables, 1{S(@) > S®) (@)}

.....
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has the same distribution as 1{S(t,) > S® (4,)} for any 7 € II. So we have

Pr(p < a) = E[{p < a}] = E[1{5(@) > SV (@)}]

_ E[ﬁ S 1{S(@) > S (@) = %ﬁ”

mell

Note that a|Il| = 1 < [«a|II]] < a|II|. This implies

1
a—— <Prp<a) <a.
11|

OA.7.3. Proof of Theorem 3

OA.7.3.1. A Technical Lemma

We first define the following quantity and present a technical lemma. Let €, = (€14, €24, ..., €Jx)
be an i.i.d. copy of (€, €2, ..., €5;) the idiosyncratic noises. Using the definition of €, and for any

weights (w*, v*), we define, for any g € R,

J J
Pqu = Pr (’ Zw;ej* — Z’U;Ej* S q) .
j=1

j=1

Lemma OA.4 Assume there exist parameters eg and e, as well as events Cg and Cy, such that

the following two conditions hold:

1. There exists a high probability event Cs such that conditional on this event, for any weights

(w*,v*) and any q € R,

J

1 . .
To—Tg;IL{’;ij}t_Z%Y}t

7=1

S q} — ngq S €R. (OA14>
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2. Recall that 7, = Z}]:1 fj(Yjé — Y;Jtv) There exists a high probability event Cr such that

conditional on this event, for any weights (w*,v*), any q € R, and anyt € {To+1,...,T},

< ET. (OA15>

)-r.

J
‘Pr(‘Zw »th—Tt
j=

1

Assume that the joint event Cg N Cr happens with probability at least 1 — dg(ep) — o7 (e7), where

we use Op(eg) and dr(e7) to stand for two quantities that each depends on eg and e, respectively.

" J 7 ) L .
In addition, assume that | D i1 Wi€i — D51 V€| has a continuous distribution. Then, for any

€(0,1) and any t € {Tp + 1,..., T},

Gia)~(1-a)

< eg+ €7 + 0g(es) + or(er).

J J
P (| - o
j=1 j=1

Note that Lemma OA.4 does not require Assumptions 1-3. But for Conditions (OA.14) and
(OA.15) to hold, we will apply Assumptions 1-3. To prove Lemma OA.4, we borrow the proof
techniques from Oliveira et al. (2022). We first define the following quantile on the probability

distribution (instead of the empirical distribution),

;gﬂg{Pr (‘Zw €n — Zv €] < ) > 1—a} (OA.16)

Intuitively, ¢1_, as defined in (18) approximates ¢;_, as defined in (OA.16).

Proof of Lemma OA.4. This proof proceeds in two parts.

Part 1: Consider the event

51 - {Zl\l—oa Z q1—a—65}-

We aim to show that event & occurs given event Cg. For any positive integer k£ € N, we can use
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Condition (OA.14) to show that conditional on event Cg,

1
< q1—o¢—63 - _}

TO—ng {‘Zw] Z v Yo 2
(‘Zw ej*—iv €

7j=1

1
< Qi-a- EB—E>+€B

<l—a—eg+ep

=1—«

<
_TO—Tg Z {‘Zw v ¥

B ]71

<Q1 a}

where the first inequality is due to Condition (OA.14); the second inequality is due to the
infimum part of (OA.16) (because ¢1—q—¢; — % < @1—q—¢; Which is the infimum value such that
the probability in (OA.16) is greater or equal to 1 —«); the last inequality is due to the definition
of q1_, in (18).

The above inequality suggests that for any k£ € N, the event

1 ! * ! * !
515§):{T0—ngl{)zwjy}t_zjjt - _E}

teB j=1 j=1

J
_To—Tg {‘Zw ;U;Y}t

}}

happens conditional on event Cgz. Since the left hand side of the inequality inside event S,ES),

o I
which is T0+T52t681{‘ ijl wiYj — Z] LU Y
probability 5,53) decreases in k. Given that the lower bound of Pr(é’,ig)) exists, the limit of

limy,_ 4 oo Pr(E,ES))

< Qloa—eg — %}, is increasing in k, so the

exists, i.e.,

1—65 < lim Pr(£Y) =Pr(Y),

k—4o00
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where we use Pr(S )) to stand for the limiting event

g‘g)_{To {)Zw J_l }

STo {)Zw 1 oY

<o a}}

This means that, event & = {Gi—a > ¢1-a—esz} happens conditional on event Cg. Due to the

assumption of Lemma OA.4, event C+NE&; happens with probability at least 1 —dg(eg) — dr(e7).

Next we have, for any ¢t € {Ty + 1,...,T} in the experimental periods,

J
Pr Zw ZU Y}t T| < Z]\I—oc)

j=1

J
> Pr Zw;yjt - ZU;Y}% — 7| < GQ-a ﬂ(CT 8 51)) — dp(ep) — o7 (€T)
J=1 g=1

J J
> Pr Z w;th - ZU;Y}% — 7| < Ql—a—eB) - (53(63) - 57’(67’)

J
> Pr Zw EJ*_ZU €

j=1

< d1—a— 65) — €7 — 53(63) - 5T(€T>

>l —a—eg— €T — 53(63) - 57’(67').

where the second inequality is because the probability decreases if we decrease from ¢q;_, to
Qi—a—ep; the third inequality is due to Condition (OA.15); the last inequality is due to the
definition of ¢;_n—c, in (OA.16).

Part 2: Consider the event

82 - {Zz\la < q1a+elg}-

We wish to show that event & happens conditional on event Cg. We use Condition (OA.15) to
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show that conditional on event Cg,

S C]17a+e,3 }

! v N
To—TfteZB]l{)j;ij}t_;vjnt
J J
> Pr (‘ Zw;ej* — Zv}‘ej*
i=1 '

J=1

S q1—a+63> —€B

>l —a+eg—e€p

=1 — q,

where the first inequality is due to Condition (OA.14); the second inequality is due to the
definition of ¢1_a4c, in (OA.16);

Due to (18), since ¢;_, is the smallest value satisfying this condition, we have that event
& = {Q1—a < Qi—a+es ; happens conditional on event Cz. Due to the assumption of Lemma OA 4,
event Cr N & happens with probability at least 1 — dg(eg) — d7(e7).

Then, for any t € {Ty + 1, ..., T} in the experimental periods,

J J
pe (|3 um - S e < m)
s =1

J J
<Pr Z w;Yj, — Z VY —Tt| < Qi-a ﬂ(CT N 52)) + 0g(eg) + o1(e7)
=1 =1

J J
<Pr Z w;Yj — Z ;Y — 7| < Q1—a+e5> + dp(es) + d7(eT)
j=1 j=1
J J
<Pr||Y wie— Y v < qla+eg> + e + ds(es) + o7 (eT)
j=1 g=1

Sl — —|— €B + €T + (53(63) —|— 67(67).

where the second inequality is because the probability increases if we increase from ¢;_, to

Q1—a+ep; the third inequality is due to Condition (OA.15); the last inequality is due to the
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definition of ¢1_a4c, in (OA.16). ]

0OA.7.3.2. Proof of Theorem 3
In this section, we use Lemma OA.4 to prove Theorem 3. Instead of proving exactly Theorem 3,
we prove Theorem OA.5 below with all the constants provided. Then, setting zg = (T — Tg)_%

_1
and z¢ =T, * we prove Theorem 3.

Theorem OA.5 Assume that Assumptions 1— 3 hold. Assume there exists a constant k < oo,
such that for all j = 1,...,J, t =1,...,T, €;; are continuously distributed with the probability
density function upper bounded by k. Assume that fort =To+1,...,T, andj =1,...,J, & has
the same distribution as €;;. Then the confidence interval defined in (19) approzimately achieves

point-wise coverage, i.e., for any o € (0,1) and any t € {Ty +1,...,T},

' Pr (Tt S al—a(ylt,y% --~>YJt)> -(1-a)

< 1 ! ( 2 > N 8eJE2X2ﬁ2F2 ! <2J) 1o 8e T2\ F2 | <2J> I
——— 10, — KR ——— 10 e K —— 10 e z ze.
=\ 21 — 1) %\ O o\ ST A

where zp and ze are arbitrary positive choice parameters.

Proof of Theorem OA.5. We outline the proof of Theorem OA.5 as follows. We first define
four events. We then check Conditions (OA.14) under the first two events and (OA.15) under
the last two events. Finally, we apply Lemma OA.4 and conclude the proof.

Step 1: We define the following four events. First, in the blank periods,

J J
1 * *

s{ S S Y <)

07 *¢ B =1 =1
J J
1 * *
o e D DL (DA D SR
0 € B j=1 j=1

<o ()]

<q)

0A.22



To analyze the event &, condition on the weights (w*, v*) obtained from the fitting periods and
consider Pr(&; | w*, v*).

For any ¢ € B in the blank periods, once we condition on (w*,v*), the indicator

<q}

is a random variable whose only source of randomness comes from the idiosyncratic noises {Gjt}}]:l

J
{\Z wYie = w3y
j=1

in period ¢. Since for any ¢ # t', the noise vectors {e;;}7_; and {e;y}7_, are independent, the

corresponding indicators

<q}

are also independent. By Hoeffding’s inequality for bounded random variables, the event &;

S -2 <

J J
¢} and 1{‘Zw;3/jt,—zv;}gt,
p =1

under the conditioning on (w*, v*) occurs with probability

Using the law of total probability, because the inequality holds for any weights (w*, v*), we
conclude that, unconditionally, the event £ happens with probability Pr(&;) > 1 — zg.

Second, in the blank periods,

J _o~4
852\ F? 2J
=Vt AL ’IXE oMl < | 22 (_>
& vt € B, | A (AgAe) Ejl(wj vj)€j| < QZTS 0g e
J _o~4
852\ 2 2J
_ ! / —1y/ * *\ _E
e X ] <\ S s ()

OA.23



Note that,

J
A (NEA) TN C(wh — 7)€l

max
teB
j=1
< Z . Z 1/ -1
< I?E%X |w v; H I AL AEAe) T Al
se€
J
< Z W} — vj] Z |€]S
j=1 se& T C

where the second inequality is due to (OA.13), and because |w} —vj| > 0 and |e;s| > 0. Therefore,

J

Z |wt — v Z NF 252\ 2 2J
H(&) 21 ' ( 2 = 75§|€J8| g §275 tog <zg>

j=1

! NF 2N F2 2]
Zl—jzlPr(Z C|€]S| gz—TglOg(Z)>

se&

Zl—Zg,

where the second inequality follows from union bound, and the third inequality is the Chernoff
bound for sub-Gaussian random variables.

Third, in the experimental periods,

J

3 ) 8PN TPF? 2]
E= AVt e {Ty+ 1., Th |mNede) ™ N Y (= f)ed| < | G log<—>
= g Tg RE
AV 1y a £ 852X2ﬁ2F2 2J
_ xS g« | TEPE (2
te{T{)I}fE.{..,T} 'rlt( £ 5) 8j21<w] f])ej = CQTg og P
Note that,
J
! —1y7/ * &
te{TIoIJlral),.(..,T} nt(AgAg) )\g;(w] fj)ej



<  max - Z lw; — fjl Z LACY D W
=1

te{To+1,...,
{To se&

X
< Z|w _fj|z 77F|€Js

se&

where the second inequality is due to (OA.13), and because |wj — f;| > 0 and |e;s| > 0. Therefore,

lwi — fj] >\77F 2T\ 2 2 2J
Pr(&)>1-P (Z Z | €js| Q—Tglog (—))

7j=1 se& €
2": (Z A F WENTF2 2]
>1—) Pr l€js| > 1| ——5— log <—>
j=1 e Te¢ CTe ze
>1- zE,

where the second inequality follows from union bound, and the third inequality is the Chernoff
bound for sub-Gaussian random variables.

Fourth, in the experimental periods,

J
XNXe) TN Y (0] — )€

Jj=1

N2 2
Si=Avte{Ty+1,....T}, 80—10g(—‘])

zE

Similar to the event &3, we can show that Pr(&;) > 1 — z¢.
Step 2: Now we check Conditions (OA.14) and (OA.15). We first check Condition (OA.14). In

the statement of Condition (OA.14), let Cg = & N &;. Note that

J J J J
Susv S <o, (zw;zj—zv;zj)
j=1 j=1 i=1 =
J
xS 3o ) + (L - ).

J=1

OA.25



Assumption 3 implies

J J
3= i =030 % (i - S ).

For t € B, we have

J J J
* * o * *v N
E :“G}9t"§ :Vj it = E :“% E :“JY}
j=1 j=1 j=1
J J J
/ 1 £
g wiejr — E Vi€ — A (AeXe) T AL g (w; —vj)e;.

7j=1 7j=1

Conditional on event &, we have for any ¢ € B in the blank periods,

J J J
DIACTED A Zw Zv €t = X(XeAe) AL Y (w) — v))ed
Jj=1 j=1 7j=1
J J
< Zw;eﬁ =D v + XA A Y g - vp)ed
j=1 Jj=1 Jj=1
J _ o4
82\ F? 2J
S Zw Ejt Z’U €]t + QQ—TgIO <Z)

From the above inequality, for any ¢t € B, due to Lemma OA.7-1 and Lemma OA.8, the probability
density of ’ Z}]:1 wiejr — Zj 1 ]e]t‘ is upper bounded by xkVeJ, where e & 2.718 is the base of

the natural logarithm. This implies that, conditional on event &, for any ¢ € B and any ¢ € R,

J J
* *
pr (| S usti- 3w
j=1 j:l
J
=| Pr (’ ij;-t— ]}/]t
i=1 i=1

8e T2\ F2 | <2J)

) <‘Zw63*—2063* <q)‘
=1

) —Pr (’ Zw;eﬁ - Zv}‘eﬁ < q)‘
j=1 j=1

<K

< QQ—TSOg

RE
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This means that, conditional on event &, for any ¢ € B and any ¢ € R,

Sq) <‘Zw ej*— V€

j=1

)

oA
86J02 A F log (g)
CTe

zE

To conclude checking Condition (OA.14), we see that conditional on event Cz = £ N &,, for any

weights (w*,v*) and ¢ € R,

To—Tg {‘]Zw Z } (‘Zw 63*—iv € <q>

1 2 8eJGIN F2 2.7
< J— e (£ IO AT 10 (22,
= \/2(T0—Tg) °& <23> T T Og(zg)

We then move on to check Condition (OA.15). In the statement of Condition (OA.15), let

Cr=E&nNE&;. Forany t € {Ty + 1,...,T} in the experimental periods, we have

Zv]
( ;—fjmi—ij

7j=1

<
Il
-

-Mcﬁmg

J J

J
weﬁ Z €t = MNEXE) AL D (W) — f;)€5 + MNeA) TN D (05 — f)ef

Jj=1 J=1

p'lqg

<.
Il

where the third equality is using Assumption 3 and using the assumption that £;; has the same
distribution as €;; fort =Ty +1,...,T,and j=1,...,J.

Conditional on event £ N &y, we have for any t € {To + 1, ..., T} in the experimental periods,
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J J
‘ Zw;th - Z’U;Y}t
j=1

=1

—852;27?:]:2 lo (2—‘]> + —8225;52 log (g)

<‘Zweﬁ vejt—i-

Z
Jj=1 £

zE

Following the same argument, we see that conditional on event Cr = & N &y, for any t €

{Tv+1,...,T} and any g € R,

J J J J
SO AR EN B () ST SEPA Y
j=1 j=1 j=1 j=1

SeJFEINTE2 /2] 8e TN F2 2]
————— " log (—) + K QQ—TS log (—)

K

- £2TE zE ze

Step 3: Now we apply Lemma OA.4. Note that, the joint event Cs NCyr = ENE NENE,

happens with probability at least 1 — z5 — 3z¢. Due to Lemma OA 4,

J
Pr(‘Zw th—Tt

1 2 8eJEINT2F2 /2] 8eJFNF2 (2]
< ﬁlog (—)—i—/@ —log( )+2/<; —log( )—1-23—1—325
zg

< Eﬁ—a) —(1—a)

™
I

CTe e CTe

Because | Z;‘le wiYj — Z viYj Ttl < (1_q 18 equivalent to 7, € 61_a(}/1t, Yor, ..., Yy), this

J= 1

implies

' Pr (Tt S al—a(ylt,yma --~>YJt)> —(1-a)

- 1 | ( 2 ) N 8eJFIN T2 F2 | <2J) o 8e T2\ F2 o <2J> .
———log (— )| +hy| ————10 Ky | ———— — .
- Q(To — Tg) & ZB £2Tg & zE £2Tg & zE b €
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OA.7.4. Proof of Theorem OA.1
OA.7.4.1. Definitions

First, define T, = min{T" — Ty, Ty — Tc}. Next, recall that

J

J

~ * *

Uy = E ijjt_ E Uijt7
Jj=1

J=1

fort €e BU{To+1,...,T}. Fort € {To+1,...,T}, u; are the post-intervention estimates of

the treatment effects; and for ¢ € B, u, are the placebo treatment effects estimated for the blank

periods.
Let
J J
Uy = Zw;eﬁ — Z VZEjt (OA.17)
j=1 j=1
for t € B, and
J J
up =Y wik — > vy (OA.18)
j=1 j=1

for t € {Ty +1,...,T}. For each 7w € II, similar to our definition of u,, define the (T' — Tp)-

dimensional vector

Ur = (Ur(1), Ur(2), -, Un(T—T)))-

In addition, let v = (ug,41,...,ur) = (Pr,41,--.,7r). It is useful to observe that, under the
null hypothesis in (15), the random variables u, for t € BU{Ty+1,...,T} are independent and

identically distributed.
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Next, define the following two functions. Let

~

Pa) = ﬁ S 1{S(n) < o},

well

and

Flz) = |—é| S 1{S(u,) < 2}

mell

The proof of Theorem OA.1 proceeds in four steps. In step one, we define a high probability
event, Cq, such that u; and u; are close to each other under C;. In step two, we define a high
probability event, Cy, such that many components of {S(w,)}ren are well-separated from S(u)
under Cy. In step three, we show that, conditional on C; and Cy, the ordering of S(u,) and S(u)
will be the same as the ordering of S(@,) and S(@) for most 7 € IT, which implies that F/(S(@))
and F(S(u)) are also close to each other. In step four, we conclude the proof by linking F'(S(@))

to the estimated p-value, and F(S(u)) to the nominal level a.

OA.7.4.2. Lemmas for the Proof of Theorem OA.1

For each continuously distributed random variable X with a density fx, define Ay to be the

smallest upper bound on the probability density fx.

Lemma OA.6 (Corollary 2, Bobkov and Chistyakov (2014)) Let X, Xs,..., X, be in-
dependent and continuously distributed random wvariables with densities fx,, fx,,---, fx,. For
any k € {1,2,...,n}, let Ax, be the smallest upper bound on the probability density fx,. For
any ap, ag, .. ., an, let X = a1 X1+asXo+. .. +a,X,. Suppose for any k € {1,2,...,n}, Ax, <k;

and if Y 0 ai =1,
Ax < ek
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Lemma OA.7 Let X be a continuously distributed random variable with a density fx. Let Ax

be the smallest upper bound on the probability density fx.
1. The random variable | X| has a density fix| bounded by Ajx| < 2Ax;

2. For any constant a # 0, the random variable aX has a density f,x bounded by Ayx <
Ax/|al.

Proof of Lemma OA.7. To prove 1, note that for any v > 0,

fixi(w) = fx(v) + fx(—v) < 2Ax.

To prove 2, note that for any v > 0,

fax(v) = —fX(U/a>

Lemma OA.8 Recall that u; is defined as (OA.17) and (OA.18), for the blank periods and the
experimental periods, respectively. Under the null hypothesis (15), the probability density of wu,

can be bounded by

Proof of Lemma OA.8. This proof consists of two steps. In Step 1, we prove a version of the
lemma after conditioning on (w*, v*). In Step 2, we apply the law of total probability to obtain
a bound on the unconditional density of wu,.

Step 1. We condition on (w*,v*) and write u,|(w*, v*) to indicate that we are conditional on

(w*, v*).
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Fix any t € BU{Ty + 1,...,T}. Using Lemma OA.6 (Bobkov and Chistyakov, 2014, Corol-

lary 2), let there be J variables €, for any j € {1,2,...,J}. For any j € {1,2,...,J}, define

w*

k¥ J 2 . . J
s M R e — . — * _ *¥)2.
a; Em—r such that > =14 1. Using a;, we can write u; as uy \/§ j:l(wj v])

1= J J

J :
>_j—1 aj€jt. When J is even,

1
Aut\(w*,v*) < 7 ) AZ}‘Izl aj€je
\/z]’:1(w; o U;>2
1

where the first inequality is due to Lemma OA.7 Part 2; the second inequality is due to
Lemma OA.6; the third inequality is due to convexity and Jensen’s inequality, and the worst
case is taken when wj = 2/.J for one half of total units and v; = 2/.J for the other half. When

J is odd,

Aut|('l.v*,'u*) S <A

J
> =1 @55t

where the first inequality is due to Lemma OA.7 Part 2; the second inequality is due to
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Lemma OA.6; the third inequality is due to convexity and Jensen’s inequality, and the worst
case is taken when wj = 2/(J + 1) for (J +1)/2 of total units and vj = 2/(J — 1) for the other
(J —1)/2 of total units.

Step 2. Using the law of total probability, we show

fu = [ sl ) dp@’,v)
Vi

< —Ver dP(w*, v")
* * 2
(w*,v*)
J
:£\/E/1,
2
where we use P(w*, v*) to stand for the joint distribution of (w*, v*). ]

OA.7.4.3. Proof of Theorem OA.1

Proof of Theorem OA.1. (Step one.) Note that
J

J J J
S - Yt -0 (i Y
j=1 j=1 J=1

J=1

Assumption 3 implies

J J J J
> i~ Yo = 063 (i - Yooi ).
Jj=1 J=1 Jj=1 j=1
Under the null hypothesis (15), it follows that
J J
up =) wi¥ie — Z v; Y
7j=1 j=1
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J
= = N(AeAe) ALY (wr — )€l +

Jj=1

fort € BU{To+1,...,T}. We next define an event

N(NeAe)™ Zw—v

Szl}.

Clz{vtEBU{To+1, T}

Szl}

J
AL(NEAS) TN Y (wh — v))ed

j=1

== max
teBU{To+1,...,T}

Note that,
J
HAeXe) I *0f)el
teBu{%?—)i ..... T t(AeAe) 5;(% v;)€;
J
< _ X /\/}‘ 1)\ \
teBU{TorL, .. T ]ZW v; |;| £)" Asllejs]
<Z!w — v} ‘ZTCMS
se& =

where the second inequality is due to (OA.13), and because |w} —vj| > 0 and |e;s| > 0. Therefore,

Pr(C;) >1—Pr i|w;—v}k|z)\}7| | > S A
1= 2 T(JS 9

Jj=1

2
>1—ZPI<ZT§|613| %)

se&
2
>1—2Jexp —%%Tg ,
872\ F?
where the second inequality follows from union bound, and the third inequality is the Chernoff

bound for sub-Gaussian random variables.

(Step two.) Define Z; = 221 > 0, and T}, = min{T'— Ty, Ty —T¢}. Foreach k € {0,1,2,...,T,,},
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we define the following sets of permutations. First, define Iy = {mg}, where 7 is defined as the

set of indices mo = {Tp + 1,...,T}. Then, for any k € {1,2,...,7,}, define

Hk:{WEH

|7r\7r0\:k:}

to be the set of (T'—Tp)-combinations with exactly k£ many indices from the blank periods. Using

the above definitions, we can decompose II into
Tp
1= J .
k=0
Then, for any & € {1,2,...,7,} and 7 € II;, we focus on the following indicator
ﬂ{

The above indicator involves 2k instances of |u;|’s. Intuitively, it is obtained by canceling out

Z || — Z |l

tem\mo temo\m

common terms in S(u,) and S(u).
Below we focus on the properties of the sum of such indicators. First, focus on the probability

density of | 32 o [l = D terovs [uel |- We have

A < 2A
’Zt@r\wo [uel =2t mg\ |ut” - Dremimo [Ut1=2temg\m Ul

< 2v 2kAZtE7r\7TO \/%Wd*ZtE"o\” ﬁ\ud
< 2V2k\/eA
< 2V2k+vevVelk

=2V 2Jker,

where the first inequality is due to Lemma OA.7-1; the second inequality is due to Lemma OA.7-2;
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the third inequality is due to Lemma OA.6; the last inequality is due to Lemma OA.8 and OA.7-1.

o

Next, due to Markov inequality, for any constant z, > 0, we have

S 2]621} Z |H|22>
S 2]{521}]

We obtain

Z Jue| — Z |

tem\mo temo\m

< 2kz1> < 4evV2Jk3z k.

Z || — Z e

tem\mo temo\m

|H1|22§ZE ]1{ Doolwl= D> Jul

k=1 melly, ter\mo temo\m

= X ITl4ev2Tk 2
a |11z ‘

Pr(iZl{

k=1 welly

<

To conclude step two, define the event

Z |ue| — Z e

tem\mo temo\m

CQ:{iZ]l{

k=1 melly

< kal} < |H|2’2} (OA19>

The probability that event C, happens is at least

LT[ VES 4en/2T 21k

i
> —
PI‘(CQ) = 1 |H| P

(Step three.) Conditional on event C, fewer than |II|zy of the absolute value terms in
(OA.19) are such that ’ D temm [Ut] = Dienovr [Uel| < 2kz1. For all the others, | 37, fue —

> 2kzy.

ZtEﬂ'o\ﬂ' |U’t|

Conditional on event Cy, we know that |u; — uy| < 21 for any t € BU{Ty + 1,...,T}. So we

OA.36



have that >, o [wel = 32 cp\x (U] > 2kz1 implies

~ . 1 N 1 R
0 tem 0 temo
1 ~ ~
=7 | 2 = Xl
T — 1T,
tem\mo temo\m
1
> g | 20t =20) = > (il + =)
tem\mo temo\m
1
> T (2kzy — 2kzy)
=0,

where the first equality is due to definition S(u,) = T+T0 > tex || Similarly, Crand 37, Jue|—

ZtEWO\Tr |u| < —2kz; imply

. _ 1 ~ ~
S(ur) = S(u) = — Y fwl =y fal
T —"1Tj
tem\mo temo\m
1
ST o7 Z (lue] + 21) = Z (Jug] — 21)
0 tem\mo temo\m
< T—T, (—2]{?21 + 2]{321)
= 0.

Combining both cases, we know that conditional on C; and when ‘ Do (Wl = D iemonn ]| >
2kzp, the ordering of S(u,) and S(u) is the same as the ordering of S(u,) and S(u). As a

result, for those  such that | >, fue| — 320\ [wel| > 2k21, we have 1{S(u,) > S(u)} =
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1{S(u,) > S(u)}. There are at most |II|zo many 7’s that contribute to the following summation,

Zp ) (11 {S(ux) = S(u)} — 1{S(ux) = S(U)})

k=1 welly

< |H’22.

Note that S(u.) = S(u) and S(ur,) = S(u), so L{S(u,) > S(u)} = L{S(ur) > S(u)} is

always true. Combining 7, we have

> (148 2 5(@) - 1{(us) 2 S} )|

mell

— i > (1 {S(ur) = S(u)} — 1{S(ux) > S(u)})‘

k=0 WEHk

<|H‘22.
We conclude step three using the following block of inequalities. For any « € (0, 1],

Pr<1 ) Pr(l—F(S(U))SQ)’
1— |H|Zn{s )}<@) Pr( |H|Zn{5uﬁ)<5( )}<a)

( mell mell

D 1{S(@,) = S(@)} < a|H|> — Pr <21{5(uﬂ) > S(u)} < a|H|)

mell

= |Pr

well

E{]l{ > 1{S(@,) > S(@)} < @ym}] — E{]l{ D 1{S(ux) > S(u)} < mmH ‘

<e|1f S 148@) 2 S(@) < alm} - 1 S 1{8i0w) 2 Sla) < alm}

SPr(

where the second inequality is due to the following: |1{a < ¢} —1{b < ¢}| < I{|c—b| < |a—b|}.

ol = 3" 1{S(uy) > s<u>}\ <

mell

> (L08@) = S@) - 1 {S(ue) = S(w)} ) D

mell
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Conditional on events C; and Cy, we obtain

‘Pr (1_ﬁ(5(a)) < a) Py (1_ )

< Pr (Jolm = X 105w > S| < Il

mell
2|H|22
-

= 22, (OA.20)

where the last inequality is because ) . 1{S(u,) > S(u)} is a discrete uniform distribution
over {1,2,...,|II|}, and that there are at most 2|II|z; many integers centered around «|II|.

(Step four.) Note that, for any « € (0, 1],

and

Combining both parts, conditional on C = C; N Cy, we have

a— 2z — §Pr(ﬁ§a):Pr<1—F\(S(iZ))<a><a+2z2,

1
1]
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and C happens with probability at least

Pr(C;NCy) = (1 —=Pr(Cy)) 4+ (1 = Pr(Cy)) —

ZQ 2 Tp H /kg
>1—2Jexp —+£4Tg — 2 [T ~ﬂ-46\/2<],‘i,
872\ F2 | 22

which finishes the proof. [

OA.7.5. Proof of Theorem OA.2

Proof of Theorem OA.2. For any period t = Ty+1,...,T we decompose (71 —7) as follows,

J
v N
Tt —E:wj Jt §: JYJt

j=1

From (12a), we obtain

J J
ZwJYﬁV Zv]Y]]tV 9£<Zw;Zj—Zv;‘Zj>
=1 =1 =1 =1
—i—X(Zw Z J,u]) (Zw €jt — Zv (—:jt> (OA.21)

j=1

Similarly, using expression (12a), we obtain

J J J J
Zw;klfjg _ ZU;Y]"S = 05 < Z w;Z] — Z U;Zj)
j=1 j=1 j=1 j=1
J
(D wi =Y i) + (Y wpe =Y vjel).
Jj=1 j=1 j=1 j=1
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where O¢ is the (T x R) matrix with rows equal to the 6,’s indexed by &, and e? is defined

analogously. Pre-multiplying by A,(A:Ag) ' AL yields

J J
AL AeAe) TN <Z INEEDY U?Yf>
j=1 j=1
J J
=AU AeAe) TIALO: <Zw;fzj -y v;zj>
j=1 j=1
J J
+X; ( > wipi =Y v;%)
j=1 Jj=1
J
XN (AeAe)TIAL (Z wief =) u;e§?> . (OA.22)

Equations (OA.21) and (OA.22) imply

J J J
Zw =S uYY = (6] - A(NeAe) T AL6¢) (Zw Z,-y Zj>
J=1 j

<
Il
—

<.
Il
—

J
ELAE) AL (Zw*yf Zv*yf)
7j=1 7j=1
J J
— AL (ALAe) 1)\ <Zwe ve?)
Jj=1 Jj=1
J

J
+ (Z wiejr — Z v;ejt) . (OA.23)
j=1

j=1

If Assumption 3 holds, (OA.23) becomes

J J
SV = i = XA X (Yl ~ Do)

j=1 j=1 j=1 J=1

J
+ (Y wpen - Z Vi) (OA.24)
j=1 j=1

Only the first term on the right-hand side of (OA.24) has a non-zero mean (because the weights
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w} and v}, depend on the error terms €; £). Therefore,

J J
Bl uvy - vy | = |F A;uzww(zw;ef—zv;ef>]\
J=1 J=1 j=1 j=1
J
< |E [N NGA) AL D wiel | [+ B | A (AEAe) Zv ]

j=1

For any t > Ty + 1 and s € £, under Assumption 2 (i), we apply Cauchy-Schwarz inequality

and the eigenvalue bound on the Rayleigh quotient to obtain

(NA)A) < (?f)

Let
= N (A:Ag) ! =D ML) Ak
se&
Because E?t is a linear combination of independent sub-Gaussians with variance proxy o2, we

know €, is sub-Gaussian with variance proxy (XQF/£)2E2/T5. Let S = {w c R’ : Z}']:1 w; =1}

be the unit simplex. Theorem 1.16 from Rigollet and Hiitter (2019) implies

J J J
xv N xv N *—=E
B3 wvi =Syl < {ng )|+ | B[]
j=1 j=1 j=1
<K 15}12;(‘211}] €| +E max’ZvJ Jt]
X'F T

which finishes the proof of the theorem.

Suppose now Assumption 6 holds (but Assumption 5 does not). To obtain a bound on the
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bias we need to bound the first two terms in (OA.23). Recall that

2

>|
&

}\2()\:5)\5)_1)\5 <

o3
[

Therefore, the absolute value of each element in vector (6 — Aj(AzAg) "' AL0¢) is bounded by
2

— A F
8(1 + T) Cauchy—Schwarz inequality and Assumption 6 imply

(0, — X Ao Ae) I N:0;) <sz sz>‘
J J

Do wiz; =Y vz

j=1 j=1

2

and

J J
Agwgw(zw;ﬁ—Zv;Yf)
j=1

j=1

Combining the last two displayed equations with (OA.23), we have

J

J
E|Y wiYi=Y " [V
j=1

=1

—2 —2
_ ANF — AN F o
<(0R+ —(1+0R))d+ —2+/2log (2J)—,
(07 + =04 OR) )+ = =2/ 21og (2] 7
which finishes the proof of the theorem.

OA.7.6. Proof of Theorem OA.3

Proof of Theorem OA.3. Recall that



fort e BU{Ty+1,...,T}. Forte {To+1,...,T}, u; are the post-intervention estimates of
the treatment effects; and for ¢t € B, u; are the placebo treatment effects estimated for the blank

periods. Let

J J
Ut = ’LUjEjt — Ujejt
Jj=1 J=1

for t € B, and

Z wi&j — Z (N

7j=1

fort € {Ty+1,...,T}. The null hypothesis (15) and the assumptions of Theorem OA.3 imply that
{wi}reBuqmys1,..,m} is a sequence of exchangeable random variables. Additionally, Assumption 1

and the null hypothesis (15) imply

J J J

J
atzzw;yjt_zvjy = sz — ;) Z; +XZ(U} — U} )y +

j=1 j=1 J=1

J
Zw _U N]+ut7

fort € BU{To+1,...,T}, where the last equality is due to Assumption 5(i). So {Us }iepufry+1,..7}
is a sequence of exchangeable random variables. The result of the theorem follows now from the

proof of Theorem 2. n

OA.8. Additional Results for the Walmart Data

In this section, we present results for m = 1 and m = 3. Using only one treated unit (m = 1) fails
to produce a good fit between the treated and synthetic control unit in the fitting periods. For

the case of m = 1, Figures OA.1 and OA.2 reveal a substantial gap with a clear seasonal trend
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between the two synthetic units. Figures OA.3 and OA.4 report results for m = 3. Increasing
m from m = 2 to m = 3 results in a minor improvement in fit, and leaves estimation results

substantively unchanged.

OA.9. Additional Simulation Results

OA.9.1. Results for a Single Simulation

In Section 5.1 the idiosyncratic shocks are i.i.d. Normal with variance o? = 1. Figures OA.5
and OA.7 report results for 02 = 5 and 0?2 = 10, respectively. Figures OA.6 and OA.8 report
differences between the outcomes for the synthetic treated and the synthetic control units for the

2. As the value of 02 increases, the quality of the post-treatment estimation

same values for o
and inference deteriorates, and the p-value for the null hypotheses of in (15) increases. The
deterioration in pre-treatment fit in Figures OA.5 and OA.7 provides a diagnosis of the accuracy

of the respective estimates.

OA.9.2. Performance across Many Simulations
In this section, we present additional simulation results that compare the performance of the dif-
ferent versions of the synthetic control designs over 1000 simulations that independently generate
the model primitives (i.e., the factor loadings, covariates, and error terms) of Assumption 1. The
data generating process is the same as in Section 5.1.

We consider five versions of the synthetic control design:

1. Unconstrained design: This is the design in (7) without a cardinality constraint, so m = 1

and m=J—1=14.

2. Constrained design: Same as the design in (7), but withm=1and m=1,...,7.

3. Weakly-targeted design: This is the design in (9). We vary g from 0.01 to 100.

4. Unit-level design: This is the design in (10), which fits a different synthetic control to each

unit assigned to treatment. We vary £ from 0.01 to 100.
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5. Penalized design: This is the design in (OA.1), with A = A} = Ay. We vary A from 0.01 to
100.

The Constrained design imposes sparsity in the synthetic treatment weights through a hard
cardinality constraint specified by the integer m. The Weakly-targeted design targets the average
treatment effect for small values of 5 and a weighted average effect for the treated for large values
of 8. For the Unit-level design, large values of £ generate sparsity in the synthetic treated weights.
A sufficiently large value of ¢ produces a Unit-level design where the only single treated unit can
be closely fitted by a convex combination of the other units. For large values of \, the Penalized
design behaves like a one-to-one matching design, assigning all the weight to one treated and one
control unit.

For the Unit-level design, synthetic control weights are aggregated as in (11). For the Uncon-
strained and Penalized designs, the synthetic treated and synthetic control weights can always be
swapped without changing the objective values for their respective designs. For the Constrained
design, the weights can be swapped when ||[v*|[p < m. When it is possible to swap synthetic
treated and synthetic control weights, we choose the treated units so that the number of units
with positive weights in w* is smaller than the number of units with positive weights in v*. When
llw*|lo = ||v*]lo, we determine whether to swap using a specific rule described in Section OA.5 of

the online appendix.

0A.9.2.1. Awverage Treatment Effects

Table OA.1 repeats Table 2 and includes additional results for the other synthetic control designs.
The first panel of Table OA.1 reports average treatment effects, 7;, over 1000 simulations. The
second panel reports estimates of the average treatment effects, and then mean absolute error,
root mean square error, and p-value, all averaged over 1000 simulations. The second last column

reports the rejection rates. The last column reports the number of treated units averaged over
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1000 simulations. Mean absolute error (MAE) and root mean square error are defined as

T T

1 _ 1 ~
MAE = —— > F-nl, RMSE= T, Y (@m-m)2  (OA25)

t=To+1 t=Top+1

and the p-value is defined as in (17). Because the treatment effect is not equal to zero in the
simulation of Table OA.1, smaller p-values and larger rejection rates reflect better performance
of the testing procedure for a particular design.

In Table OA.1, the Unconstrained design has a strong relative performance. The performance
of the Constrained design improves for larger m, and is virtually identical to the performance
of the Unconstrained design when m = 7. The performance of Weakly-targeted and Unit-level
designs is best when [ and £ take intermediate values. The Penalized design yields results similar

to those of the Unconstrained design for small values of the penalization parameter .

0A.9.2.2. Awverage Treatment Effects on the Treated

In this section, we estimate the average treatment effects on the treated units by conducting
simulations following the simulation setup as in Section OA.9.2. We report the average treatment
effects on the treated units in Table OA.2.

The first five columns in Table OA.2 report averages of 7, the average effect of treatment
on the treated units. These quantities depend on the weights for the treated units, which differ
across formulations of the synthetic control design. The next five columns report averages of 7;.
They are the same as in Table OA.1, yet we use them as estimators for 7/ in Table OA.2. The
next two columns of Table OA.2 report averages across simulations of the mean absolute error
and the root mean square error, defined as in (OA.25) but with 77 replacing 7;. The last column
reports the number of treated units averaged over 1000 simulations.

The results in Table OA.2 are similar to those for 7 in Table OA.1. This is because in this

simulation units are i.i.d. and carry equal weights, making the average treatment effect on the
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treated, 7, almost identical to 7;. Section OA.9.4 reports results for a design with unequal

weights, which breaks this close correspondence between 7 and 7.

0A.9.2.3. Test size

In this section, we generate the model primitives under the null hypothesis (15). That is, we
employ a data generating process such that the values of the common factors and the distributions
of the idiosyncratic error variables are unaffected by the intervention.

We report the simulation results in Table OA.3, which organizes information in the same way
as in Table 2. Because the data are generated from the same distribution under treatment and
under no treatment, the average treatment effects in Table OA.3 are close to zero. The same
is true for the averages of 7; for all designs. Under the null hypothesis (15), the p-value should
approximately follow a uniform distribution between zero and one. The results in Table OA.3
show good behavior of our testing procedure under the null hypothesis: average p-values and

rejection rates are close to 0.5 and 0.05, respectively.

OA.9.3. Performance across Many Simulations with Nonlinearities

We now examine the behavior of estimators based on synthetic control designs under deviations

from the linear model in (12a) and (12b). We consider a nonlinear data generating process,

thv =0 +exp (0,Z;) + exp (Ajp;) + €jt,

Y]i = v+ exp (V,Z;) + exp (M) + &t

The motivation to study a nonlinear model is that nonlinearities may induce interpolation biases,
affecting the relative performance of the different designs. All parameter values are the same
as in the simulation setup of Section 5.1, except for the values of the factor loadings and the

values of the covariates. To control the magnitude of the exponential terms in the nonlinear
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design, we draw 6y, v, A, and 7, as vectors of i.i.d. Uniform(0,3) random variables, instead
of Uniform(0, 10). Similarly, we draw Z; and p; as vectors of i.i.d. Uniform(—0.5,0.5) random

variables, instead of Uniform(0, 1).

0A.9.3.1. Awverage Treatment Effects

Table OA.4 reports simulation results for average treatment effects under the nonlinear model.
In comparison to the results in Table OA.1, we see that Table OA.4 presents similar results.

The Unconstrained design has a strong relative performance. The performance of the Constrained

design improves for larger m, and is virtually identical to the performance of the Unconstrained

design when m = 7. The performance of Weakly-targeted and Unit-level designs is best when

£ and & take intermediate values. The Penalized design yields results similar to those of the

Unconstrained design for small values of the penalization parameter .

0A.9.3.2. Awverage Treatment Effects on the Treated
Table OA.5 reports simulation results for the average treatment effects on the treated units under
the nonlinear model.

In comparison to the results in Table OA.2, we now see that the Weakly targeted, Unit-
level, and Penalized designs can easily improve the performance of the Unconstrained design in
many cases. The Weakly targeted design easily outperforms the Unconstrained design for larger
values of (3, as it puts more emphasis on the average treatment effects on the treated units.
The Unit-level design can ameliorate interpolation biases induced by the aggregation of X, by
fitting each treated unit with a unit-specific synthetic control. Although the Unit-level design is
outperformed by the Weakly targeted design, it selects fewer treated units. Finally, the Penalized
design outperforms the Unconstrained design in some cases, while always selecting fewer treated

units than the Unconstrained design.
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0A.9.3.3. Comparison to Randomized Treatment Assignments

In this section, we follow the simulation setup as in Section OA.9.3. We consider randomized
treatment assignment with m treated units. In comparison to the results in Table 3, we see
that Table OA.6 presents similar results. Across all values of m, the synthetic control design
outperforms randomized assignment, including variants that incorporate pre-stratification, post-
stratification, or regression adjustment. Taken together with the findings in Tables 1 and 3,
these results underscore the potential of synthetic controls as a more effective design strategy in

experiments involving aggregate units and a limited number of treated units.

OA.9.4. Performance across Many Simulations with Unequal Weights

We now examine the behavior of estimators based on synthetic control designs when the weights
fj in expression (1) are equal. All parameter values are the same as in the simulation setup of
Section 5.1, except for the weights f;. The weights f; are chosen to be proportional to %, %, ey s 1—15

where the sum of weights ijl fj = 1is equal to 1.

0A.9.4.1. Average Treatment Effects

In this section, we estimate the average treatment effects by conducting simulations following the
simulation setup as in Section OA.9.4. We report the average treatment effects under unequal
weights in Table OA.7.

In comparison to the results in Table OA.1, we see that Table OA.7 presents similar results.
The Unconstrained design has a strong relative performance. The performance of the Constrained
design improves for larger m, and is virtually identical to the performance of the Unconstrained
design when m = 7. The performance of Weakly-targeted and Unit-level designs is best when
£ and ¢ take intermediate values. The Penalized design yields results similar to those of the

Unconstrained design for small values of the penalization parameter .
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0A.9.4.2. Awverage Treatment Effects on the Treated
In this section, we estimate the average treatment effects on the treated units by conducting
simulations following the simulation setup as in Section OA.9.4. We report the average treatment
effects on the treated units under unequal weights in Table OA.8.

Table OA.8 reports the results for 7. In comparison to the results in Table OA.2, we now see
that the Weakly targeted design improves the performance of the Unconstrained design for larger
values of (3, as it puts more emphasis on the average treatment effects on the treated units. The

Unit-level and the Penalized designs, however, have worse performance than the Unconstrained

design.
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Figure OA.1: Synthetic Treated Unit and Synthetic Control Unit, m = 1

Note: The black solid line represents the synthetic treated outcome. The black dashed line represents the synthetic

control outcome. The blue dashed lines are individual stores’ sales.
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Figure OA.3: Synthetic Treatment Unit and Synthetic Control Unit, when m = 3.

Note: The black solid line represents the synthetic treated outcome. The black dashed line represents the synthetic

control outcome. The blue dashed lines are individual stores’ sales.
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Figure OA.4: Treatment Effect Estimate, when m = 3.

Note: This figure reports the difference between the synthetic treated and synthetic control outcomes of Fig-

ure OA.3. For the experimental periods, this is the treatment effect estimate.
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Figure OA.5: Synthetic Treatment Unit and Synthetic Control Unit, when o2 = 5.
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Figure OA.6: Treatment Effect Estimate, when o2 = 5.
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Figure OA.7: Synthetic Treatment Unit and Synthetic Control Unit, when o2 = 10.
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Figure OA.8: Treatment Effect Estimate, when o2 = 10.
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Table OA.1: Additional Results for Average Treatment Effects (Averages over 1000 Simulations)

Tt

t=26 t=27 t=28 t=29 t=30
-13.58 -10.99 -835 -5.00 -2.50
7 MAE RMSE p  p<005 |wl
t=26 t=27 t=28 t=29 t=230
Unconstrained -13.57 -10.97  -8.38 -5.07  -2.53  0.83 0.97 0.014 0.944 6.76
Constrained m=1 -13.61 -10.97 -8.39 -4.86 -2.41  2.93 3.45 0.057 0.668 1
m=2 -13.58 -10.90 -8.43 -5.01 -2.40 1.69 2.00 0.028 0.854 2
m=3 -13.56  -11.00 -8.38 -5.05 -2.52  1.26 1.49 0.019 0.916 3
m=4 -13.59 -11.06 -8.40 -4.99 -2.50 1.06 1.25 0.016 0.935 4
m=>5 -13.57 -11.01 -8.37  -5.02 -2.48 0.93 1.09 0.015 0.933 5.00
m==6 -13.51 -10.95 -8.29 -5.01 -2.47  0.87 1.02 0.015 0.942 5.97
m="7 -13.57 -10.96 -8.37  -5.06 -2.52  0.83 0.97 0.014 0.946 6.76
Weakly-targeted (= 0.01 -13.57 -10.95 -8.38 -4.99 -2.53  1.17 1.38 0.018 0.920 11.49
f=01 -13.56 -10.99 -834 -497 -252 0.93 1.08 0.014 0.951 9.75
s=1 -13.55 -10.98 -8.32 -4.95 -2.44  0.87 1.01 0.013 0.954 8.49
B8 =10 -13.56 -10.96 -837 -499 -248 0.94 1.10 0.014 0.953 8.15
5 =100 -13.61 -10.99 -8.42 -5.06 -2.53 1.00 1.18  0.013 0.953 7.91
Unit-level £=0.01 -13.60 -10.95 -8.39 -5.04 -2.53  0.95 1.13 0.014 0.938 10.16
£E=0.1 -13.58 -10.97  -8.35 -4.97  -2.47 091 1.07 0.015 0.942 7.30
&E=1 -13.57 -10.99 -8.38 -4.99 -2.49  1.34 1.58 0.020 0.900 4.50
&E=10 -13.60 -10.93 -8.45 -5.06 -2.52  2.16 2.57 0.030 0.829 2.11
&E=100 -13.61 -10.86 -8.48 -5.02 -2.54  2.76 3.27 0.040 0.770 1.15
Penalized A=0.01 -13.58 -10.97 -8.34 -5.05 -2.47  0.88 1.03 0.014 0.950 6.70
A=0.1 -13.64 -11.03 -8.43 -5.03 -2.50 1.21 1.42 0.019 0.904 5.43
A=1 -13.67 -10.96 -8.41 -4.87  -2.45 2.08 2.46 0.037 0.791 2.95
A=10 -13.68 -11.04 -8.37 -4.79 -2.45  3.72 4.40 0.091 0.542 1.11
A=100 -13.64 -10.94 -8.42 -4.86 -2.50  4.17 4.93 0.111 0.490 1

Note: In this table, all designs use m = 1 and m = 14.
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Table OA.3: Average Treatment Effects Under the Null Hypothesis (15) (Averages over 1000
Simulations)

Tt
t=26 t=27 t=28 t=29 t=30

0.01 0.00 0.00 0.01 -0.01

T MAE RMSE P p<0.05 Jwlo
t=26 t=27 t=28 t=29 t=30
Unconstrained -0.01 0.00 -0.03 -0.05 -0.07 0.96 1.13 0.495 0.061 6.76
Constrained m=1 0.20 0.14 0.02 -0.08 0.05 3.00 3.55  0.495 0.056 1
m=2 -0.02 -0.01 -0.02 -0.09 -0.03 1.80 2.13  0.497  0.038 2
m=3 -0.09 -0.07 -0.02 -0.05 -0.02 1.37 1.62  0.505 0.048 3
m=4 -0.02  -0.02 0.00 -0.01 -0.01 1.19 1.41  0.494 0.054 4
m=5 0.01 -0.02 0.03 0.00 -0.05 1.07 1.25  0.496 0.057 5.00
m==6 0.07 0.06 0.10 -0.01 -0.03 0.99 1.17  0.484 0.054 5.97
m=7 -0.01 0.00 -0.02 -0.04 -0.07 0.96 1.13  0.495 0.059 6.76
Weakly-targeted [ = 0.01 0.01 0.04 -0.06 0.00 -0.02 1.27 1.50 0.504 0.042 11.49
5 =0.1 0.03 -0.01 0.01 0.04 -0.02 1.03 1.21  0.499 0.055 9.75
s=1 0.00 0.00 0.03 0.08 0.04 0.95 1.11  0.499 0.047 8.49
B8 =10 -0.03 0.01 -0.03 0.04 0.03 0.95 1.10 0.486 0.053 8.15
£ =100 -0.08 -0.08 -0.09 -0.04 -0.02 0.96 1.11  0.490 0.050 7.91
Unit-level £=0.01 0.00 0.03 -0.04 -0.04 -0.02 1.05 1.25  0.511 0.053 10.16
£E=0.1 0.00 0.00 0.03 0.02 0.02 1.05 1.24  0.500 0.049 7.30
E=1 0.01 0.02 -0.06 -0.05 -0.03 1.38 1.63  0.498 0.046 4.50
&E=10 0.18 0.00 -0.02 -0.15 -0.02 1.97 2.33  0.496 0.038 2.11
&=100 0.19 -0.03 -0.02 -0.18 -0.03 2.34 2.77  0.502 0.053 1.15
Penalized A=0.01 0.01 0.01 0.02 -0.03 -0.01 1.01 1.18  0.493 0.052 6.70
A=0.1 -0.0v -0.05 -0.07 -0.11 -0.10 1.32 1.56  0.505 0.041 5.43
A=1 0.02 0.07  -0.07 -0.07 0.01 2.17 2.57  0.495 0.045 2.95
A=10 0.16 0.03 -0.11 -0.08 -0.08 3.79 448 0.514 0.045 1.11
A =100 0.22 0.15 -0.14 -0.14 -0.08 4.22 5.00 0.515 0.041 1

Note: Unless otherwise noted, all designs use m =1 and m = 14.
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Table OA.4: Average Treatment Effects, Nonlinear Model (Averages over 1000 Simulations)

Tt

t=26 t=27 t=28 t=29 t=30
-13.18 -10.72 -7.96 547 -2.43
7 MAE RMSE p  p<005 |wl
t=26 t=27 t=28 t=29 t=230
Unconstrained -13.45 -10.90 -8.18 -5.88 -2.75  1.99 2.54 0.059 0.741 6.49
Constrained m=1 -15.70 -13.18 -10.50 -7.76 -4.78 3.51 4.27 0.061 0.717 1
m=2 -14.27 -11.86 -8.90 -6.44 -3.34  2.64 3.29 0.061 0.725 2
m=3 -13.69 -11.38 -8.38 -5.95 =297  2.23 2.83 0.058 0.745 3
m=4 -13.58 -11.09 -8.23 -5.89 -2.75  2.10 2.67 0.058 0.754 4
m=2>5 -13.37 -1097 -8.14 -5.79 -2.88  2.05 2.61 0.060 0.747 5.00
m==6 -13.54 -11.03 -8.31 -5.86 -2.86  2.00 2.56 0.060 0.738 5.93
m=7 -13.49 -10.94 -8.16 -5.85 =277 1.98 2.53 0.058 0.743 6.56
Weakly-targeted (= 0.01 -11.67  -9.02 -6.37  -3.87 -1.00 2.59 3.24 0.116 0.603 11.14
f=01 -1208 -9.60 -6.86 -4.31 -147 2.15 273  0.083 0.678 9.56
s=1 -12.50 -10.12 -7.37 481 -193 1.97 2.52 0.056 0.762 8.30
B8 =10 -13.00 -10.54 -7.79 524 -232 2.19 277 0.031 0.851 7.93
£ =100 -13.28 -10.76 -8.00 -5.44 -2.55  2.45 3.11 0.024 0.884 7.47
Unit-level £E=0.01 -11.76 -9.15 -6.51 -3.91 -1.15  2.57 3.22 0.118 0.593 10.06
£E=0.1 -13.11  -10.59 -7.82 -5.15 -2.29  2.06 2.64 0.060 0.754 7.17
&E=1 -13.74  -11.12 -8.42 -5.75 -2.84 237 3.02 0.029 0.850 4.08
&E=10 -13.74  -11.20 -8.55 -5.89 -3.09  3.02 3.77 0.028 0.866 1.74
&E=10 -13.79 -11.16 -8.54 -5.90 -3.08  3.20 4.00 0.029 0.863 1.08
Penalized A=0.01 -13.41 -10.93 -8.32 -5.82 -2.82 197 2.53 0.055 0.759 6.44
A=0.1 -13.32  -10.79 -8.12 -5.56 -2.64  2.07 2.64 0.045 0.777 5.69
A=1 -13.32 -10.84 -8.15 -5.39 -2.60  3.08 3.84 0.056 0.738 3.04
A=10 -13.39 -10.82 -7.95 -5.34 -2.58 3.85 4.80 0.103 0.595 1.09
A=100 -13.35 -10.82 -8.00 -5.29 -2.57  4.10 5.11 0.117 0.562 1

Note: Unless otherwise noted, all designs use m = 1 and m = 14.
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Table OA.6: RMSE for Different Experimental Designs and Estimators, Nonlinear Model (Av-
erages over 1000 Simulations)

SC RND STR REG 1-NN 5-NN

4.27 1271 1271 1426 8.02  7.42
3.29 979 9.68 10.11 6.51  6.20
283 848 9.08 893 565 5.54
267 8.01 895 846 524 522
261 7.88 807 787 495 5.00
256 771 892 742 469 4381
253 743 805 727 454 468

333333
I
O U W N

Note: SC: Constrained formulation of the synthetic control design. RND: Randomized treatment assignment
followed by the difference-in-means estimator. STR: Stratified randomization, followed by difference in means in
each stratum. REG: Randomized treatment assignment followed by regression adjustment. 1-NN: Randomized
treatment assignment followed by 1-nearest neighbor matching. 5-NN: Randomized treatment assignment followed
by 5-nearest neighbor matching. SC uses outcomes in the fitting periods and covariates as predictors. STR, 1-NN,

and 5-NN use all pre-intervention outcomes and covariates. REG adjusts for the covariates only.
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Table OA.7: Average Treatment Effects, Unequal Weights (Averages over 1000 Simulations)

Tt

t=26 t=27 t=28 t=29 t=30
-13.64 -1096 -834 -499 -2.52
7 MAE RMSE p  p<005 |wl
t=26 t=27 t=28 t=29 t=30
Unconstrained -13.61 -10.95 -835 -5.00 -248 1.16 1.36 0.019 0.913 6.36
Constrained m=1 -13.80 -11.11 -8.34 -5.05 =242 2.94 3.45 0.062 0.646 1
m=2 -13.58 -11.01 -8.30 -4.98 -248 1.70 2.01 0.031 0.836 2
m=3 -13.63 -10.96 -829 -5.00 -246 1.38 1.62 0.022 0.891 3
m=4 -13.65 -10.91 -8.32 -4.97 -2.49 1.20 1.43 0.020 0.906 4
m=2>5 -13.61 -10.93 -832 -497 -249 1.17 1.38 0.019 0.918 4.99
m==6 -13.59 -10.96 -832 -498 -246 1.12 1.33 0.019 0.914 5.91
m="7 -13.58 -10.96 -8.32 -5.01 -246 1.13 1.34 0.018 0.915 6.47
Weakly-targeted (=0.01 -13.65 -11.09 -8.44 -5.09 -2.58 1.44 1.70  0.023 0.883 10.65
5 =0.1 -13.64 -11.05 -840 -5.08 -2.57 1.25 1.47  0.019 0.915 9.06
s=1 -13.62 -11.06 -833 -5.06 -2.50 1.21 1.44 0.016 0.934 7.89
B8 =10 -13.53 -10.97 -827 493 -242 1.37 1.62 0.014 0.947 7.61
5 =100 -13.52 -10.96 -8.32 -496 -248 1.48 1.75 0.014 0.952 7.65
Unit-level £E=0.01 -13.52 -10.97 -8.27 497 -244 142 1.67 0.021 0.887 9.33
£E=0.1 -13.60 -11.04 -8.31 -5.01 -248 1.33 1.57  0.020 0.910 6.84
&E=1 -13.61 -10.99 -838 -5.04 -249 1.56 1.85 0.022 0.897 4.32
&E=10 -13.62 -10.98 -8.46 -5.08 -2.54 2.42 2.85 0.031 0.825 2.12
&E=100 -13.62 -10.85 -8.49 -5.01 -2.54  3.01 3.54 0.040 0.768 1.16
Penalized A=0.01 -13.67 -10.97 -836 -5.01 -2.53  1.18 1.39 0.019 0.917 6.28
A=0.1 -13.68 -11.02 -8.40 -5.07 =240 1.42 1.67 0.022 0.897 5.13
A=1 -13.68 -10.92 -8.33 -4.96 -2.34  2.25 2.66 0.042 0.757 2.72
A=10 -13.75 -10.85 -8.21 -4.85 -2.25 3.76 4.44 0.095 0.528 1.08
A=100 -13.79 -10.94 -8.20 -4.84 -2.26  4.18 4.93 0.114 0.470 1

Note: Unless otherwise noted, all designs use m = 1 and m = 14.
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