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Abstract

This article studies experimental design in settings where the experimental units are

large aggregate entities (e.g., markets), and only one or a small number of units can

be exposed to the treatment. In such settings, randomization of the treatment may

result in treated and control groups with substantially different baseline characteris-

tics, inducing biases. We propose a variety of experimental non-randomized synthetic

control designs (Abadie, Diamond and Hainmueller, 2010, Abadie and Gardeazabal,

2003) that select the units to be treated, as well as the untreated units to be used as a

control group. Average potential outcomes with treatment are estimated as weighted

averages of observed outcomes for treated units, and average potential outcomes

without treatment as weighted averages of observed outcomes for control units. We

analyze the properties of estimators based on synthetic control designs and propose

new inferential techniques. We show that in experimental settings with aggregate

units, synthetic control designs can substantially reduce estimation biases in compar-

ison to randomization of the treatment.
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1. Introduction

Consider the problem of a ride-sharing company choosing between two compensation plans for

drivers (Doudchenko et al., n.d.; Jones and Barrows, 2019 for related examples). The company

can either keep the current compensation plan or adopt a new one with higher incentives. In

order to estimate the effect of a change in compensation plans on profits, the company’s data

science unit designs an experimental evaluation where the new plan is deployed at a small scale,

say, in one of the local markets (cities) in the country. In this setting, a randomized control

trial—or A/B test, where drivers in a local market are randomized into the new plan (active

treatment arm) or the status quo (control treatment arm)— is problematic. On the one hand,

such an experiment raises equity concerns, as drivers in the same local market but in different

treatment arms obtain different compensations for the same jobs. On the other hand, if drivers

in the active treatment arm respond to higher incentives by working longer hours, they will

effectively steal business from drivers in the control arm of the experiment, resulting in biased

experimental estimates.1

One possible approach to this problem is to assign an entire local market to treatment, and

use the rest of the local markets, which remain under the current compensation plan during

the experimental periods, as potential comparison units. In this setting, using randomization to

assign the active treatment allows ex-ante (i.e., pre-randomization) unbiased estimation of the

effect of the active treatment. However, ex-post (i.e., post-randomization) biases can be large if,

at baseline, the treated unit differs from the untreated units in the values of the features that

affect the outcomes of interest. We document the magnitude and practical relevance of these

biases in Sections 4 and 5.

1A randomized evaluation across many markets is a potential solution to the problem of experimental interfer-
ence between drivers. In practice, however, large-scale market-level randomized evaluations are often unfeasible.
In the context of the ride-sharing company example, large-scale market-level randomized evaluations (i) could be
prohibitively expensive, (ii) could still raise substantial equity concerns, (iii) could negatively affect morale for
the large number of drivers in the treated cities if the program is rolled back after experimentation, and (iv) in
some cases, the number of cities where the company operates could be too small for effective randomization.

2



As in the ride-sharing example with only one treated local market, large biases may arise more

generally in randomized studies when either the treatment arm or the control arm contains a

small number of units, so randomized treatment assignment may not produce treated and control

groups that are similar in their features (see, e.g., Bruhn and McKenzie, 2009). In those cases,

the fact that estimation biases would have averaged out over alternative treatment assignments

is of little comfort to a researcher who, in practice, is limited to one assignment only.

To address these challenges, we propose using the synthetic control method (Abadie, Diamond

and Hainmueller, 2010, Abadie and Gardeazabal, 2003) as an experimental design to select

treated units in non-randomized experiments, and the untreated units to serve as a comparison

group. We adopt the name synthetic control designs for the resulting experimental designs.2,3

In our framework, the choice of the treated unit (or treated units, if multiple treated units

are desired) aims to accomplish two goals. First, the treated units should be representative of an

aggregate of interest, such as a national market, so that the estimated effect reflects the aggregate

impact of the treatment. Second, the treated units should not be idiosyncratic in the sense that

the untreated units cannot closely approximate their features. Otherwise, the reliability of the

estimate of the effect on the treated unit may be questionable. We show how to achieve these

two objectives, whenever they are possible to achieve, using synthetic control methods.

While we are aware of the extensive use of synthetic control methods for experimental design

in data science units, especially in the technology industry,4 the academic literature on this sub-

ject is at a nascent stage. There are, however, a few publicly available studies that are connected

to this article. Aside from the present article, to our knowledge, Doudchenko et al. (n.d.) and

Doudchenko et al. (2021) are the only other publicly available studies on the topic of experi-

2While we leave the “experimental” qualifier implicit in “synthetic control design”, it should be noted that the
synthetic control designs proposed in this article differ from observational synthetic control designs (e.g., Abadie,
Diamond and Hainmueller, 2010, Abadie and Gardeazabal, 2003, Doudchenko and Imbens, 2016), for which the
identity of the treated unit(s) is taken as given.

3See, e.g., Abadie (2021), Amjad, Shah and Shen (2018), Arkhangelsky et al. (2021), Doudchenko and Imbens
(2016) for background material on synthetic controls and related methods.

4See, in particular, Jones and Barrows (2019) for applications of synthetic control methods in the ride-sharing
context, and Ma (2017) for applications in the internet retail context.
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mental design with synthetic controls. The focus of Doudchenko et al. (n.d.) is on statistical

power, which they calculate by simulating the estimated effects of placebo interventions using

historical (pre-experimental) data. That is, the selection of treated units is based on a measure

of statistical power implied by the distribution of the placebo estimates for each unit. As a

result, estimates based on the procedure in Doudchenko et al. (n.d.) target the effect of the

treatment for the unit or units that are most closely tracked in the placebo distribution. In

the same spirit, the target parameter in Doudchenko et al. (2021) is the treatment effect for a

weighted average of treated units that can be closely matched in their pre-treatment outcomes

by a weighted average of untreated units. In the present article, we aim to take a different

perspective on the problem of unit selection in experiments with synthetic controls; one that can

take into account the extent to which different sets of treated and control units approximate an

aggregate causal effect of interest chosen by the analyst, such as the average treatment effect for

the relevant population.5 The inferential methods in the present article also differ from those in

the related literature. In particular, Doudchenko et al. (2021) proposes a permutation procedure

for inference that requires that potential outcomes without the treatment are independent and

identically distributed (i.i.d.) in time. In contrast, the inferential procedure proposed in the

present article allows for time series dependence and non-stationarity in outcomes, which are

pervasive features of time-series data. Another important difference between the present article

and Doudchenko et al. (n.d.) and Doudchenko et al. (2021) is that Doudchenko et al. (n.d.) and

Doudchenko et al. (2021) make use of pre-treatment outcomes only to select treated and control

units, while our method allows the use of other observed features of the units.

In a wider context, our methods are rooted in the broader framework of experimental non-

randomized designs (see, e.g., Armstrong and Kolesár, 2018, Kasy, 2016, Thorlund et al., 2020).

Yet, they diverge by addressing a distinct challenge: estimating synthetic control counterfactuals

in experimental settings where only a limited number of aggregate units can be treated.

5Consistent with the majority of literature on synthetic controls, our focus is primarily on average treatment
effects. For an analysis of distributional effects using synthetic controls, see Gunsilius (2023).

4



An alternative approach to control post-randomization bias involves stratifying units based

on covariate values prior to randomization of treatment within each stratum. Stratification can

significantly reduce post-randomization biases if units have similar covariate values within strata.

However, traditional stratification methods do not adapt to the setting considered in this article,

which features a limited number of large aggregate entities as units of analysis and a single unit

or a handful chosen for treatment. Because every stratum in stratified designs must have at least

one unit randomized into treatment, the number of strata cannot exceed the desired number of

treated units in the experiment. In the case of only one treated unit, we would be limited to

a single stratum. This may lead to significant variation in units’ characteristics within strata,

reducing the appeal of stratification procedures.

The rest of the article is organized as follows: Section 2 presents and discusses the synthetic

control designs proposed in this article. Section 3 details the formal properties of estimators

based on synthetic control designs and proposes inferential methods. In Section 4, we report

the findings from an empirical validation of synthetic control designs using sales data from a

sample of Walmart stores. Section 5 discusses the results of simulation studies. Finally, Section

6 provides concluding remarks. The appendix contains proofs and supplemental materials.

2. Synthetic Control Designs

2.1. Setup and Notation

We consider a setting with T time periods and J units, which may represent J local markets as

in the ride-sharing example in the previous section. Let T0 be the number of pre-experimental

periods, with 1 ≤ T0 < T . At the end of period T0, a researcher designs an experiment to conduct

during periods T0+1, T0+2, . . . , T . Using the information available at T0, the experimenter aims

to select the set of units that will receive the treatment (intervention) during the experimental

periods.

To define causal parameters, we formally adopt a potential outcomes framework. For any
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j ∈ {1, . . . , J} and any t ∈ {T0 + 1, . . . , T}, Y I
jt is the potential outcome for unit j at time t

when unit j is exposed to treatment starting at T0 + 1. Similarly, for any j ∈ {1, . . . , J} and

any t ∈ {1, . . . , T}, Y N
jt is the potential outcome for unit j at time t under no treatment in all

periods. In the ride-sharing example, Y I
jt and Y N

jt could measure net revenue divided by market

size under the active and the control treatment, respectively. Unit-level treatment effects are

defined as

Y I
jt − Y N

jt ,

for j = 1, . . . , J and t = T0+1, . . . , T . They represent the effect of switching unit j to the active

treatment at time T0+1 on the outcome of unit j at time t > T0. We aim to estimate the average

treatment effect

τt =
J∑

j=1

fj · (Y I
jt − Y N

jt ), (1)

for t = T0 + 1, . . . , T . In this expression, f1, . . . , fJ are known positive weights that define the

average of interest. In the ride-sharing example from the previous section, fj may represent the

size of local market j as a share of the national market. Without loss of generality, and because

it is often the case in applications, we can assume that the weights fj sum to one,

J∑
j=1

fj = 1.

When units are equally weighted, we set fj = 1/J for j = 1, . . . , J . We use the notation f for a

vector that collects the values of fj for all the units, i.e., f = (f1, . . . , fJ).
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2.2. The Experimenter’s Problem

At time T0, in order to estimate the treatment effect τt for t = T0 + 1, . . . , T , the experimenter

chooses w = (w1, . . . , wJ) and v = (v1, . . . , vJ), such that

J∑
j=1

wj = 1,

J∑
j=1

vj = 1, (2)

wj ≥ 0, vj ≥ 0, and wjvj = 0, ∀j = 1, . . . , J.

Units with wj > 0 are units that will be assigned to the intervention of interest from T0 + 1 to

T , and will be used to estimate average outcomes under the intervention. Units with wj = 0

constitute an untreated reservoir of potential control units (a “donor pool”). Among units with

wj = 0, those with vj > 0 will be used to estimate average outcomes under no intervention.

The first goal of the experimenter is to choose w1, . . . , wJ such that

J∑
j=1

wjY
I
jt =

J∑
j=1

fjY
I
jt, (3)

for t = T0+1, . . . , T . If equation (3) holds, a weighted average of outcomes for the units selected

for treatment reproduces the average outcome with treatment for the entire population of J units.

In practice, however, the choice of w1, . . . , wJ cannot directly rely on matching the population

average of Y I
jt, as in equation (3). The quantities Y I

jt are unobserved before time T0 + 1, and

will remain unobserved in the experimental periods for the units that are not exposed to the

treatment. Instead, we aim to approximate equation (3) using predictors observed at T0 of the

values of Y I
jT0+1, . . . , Y

I
jT . Note also that it is not possible to use the weights w1 = f1, . . . , wJ = fJ ,

because it would leave no units in the donor pool, making the set of units with vj > 0 empty

and violating equation (2).
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The second goal of the experimenter is to choose v1, . . . , vJ such that

J∑
j=1

vjY
N
jt =

J∑
j=1

fjY
N
jt , (4)

or, alternatively,

J∑
j=1

vjY
N
jt =

J∑
j=1

wjY
N
jt . (5)

If equations (4) or (5) hold, a weighted average of outcomes for the units in the donor pool

reproduces the average outcome without treatment for the entire population of J units (equation

(4)), or for the units selected for treatment (equation (5)). Like in the previous case with treated

outcomes, it is not feasible to directly choose v1, . . . , vJ so that equation (4) or (5) is satisfied.

Instead, we propose a variety of methods to approximate either (4) or (5) based on predictors of

Y N
jT0+1, . . . , Y

N
jT .

For the treated units, we define Yjt = Y N
jt if t = 1, . . . , T0, and Yjt = Y I

jt if t = T0 + 1, . . . , T .

For the untreated units, we define Yjt = Y N
jt , for all t = 1, . . . , T . That is, Yjt is the outcome

observed for unit j = 1, . . . , J at time t = 1, . . . , T . We say that

J∑
j=1

wjYjt and
J∑

j=1

vjYjt

are the synthetic treated and synthetic control outcomes, respectively. The difference between

these two quantities is

τt(w,v) =
J∑

j=1

wjYjt −
J∑

j=1

vjYjt,

for t = T0 + 1, . . . , T . Suppose that equations (3) and (4) hold. Then, τt(w,v) is equal to the

average treatment effect, τt. If equation (5) holds instead, then τt(w,v) is equal to the average
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treatment effect on the treated (w-weighted),

τTt =
J∑

j=1

wj · (Y I
jt − Y N

jt ) (6)

(Doudchenko et al., 2021).

2.3. Synthetic Control Designs

The experimenter chooses w = (w1, . . . , wJ) and v = (v1, . . . , vJ) to match the pre-intervention

values of predictors of the potential outcomes Y N
jt and Y I

jt for t > T0.

Let Xj be a column vector of pre-intervention features of unit j. We view the features in

Xj as predictors of the values of Y
N
jt and Y I

jt in the experimental periods, in a sense that will be

made precise in Section 3. We use the notation

X =
J∑

j=1

fjXj.

That is, X is the vector of population values for the predictors in Xj. For any real vector x,

∥x∥ is the Euclidean norm of x, and ∥x∥0 is the number of non-zero coordinates of x. Let m

and m be positive integers such that 1 ≤ m ≤ m ≤ J − 1.

A simple way to choose weights w = (w1, . . . , wJ) and v = (v1, . . . , vJ) is to solve the

optimization problem

min
w1,...,wJ ,
v1,...,vJ

∥∥∥∥∥X −
J∑

j=1

wjXj

∥∥∥∥∥
2

+

∥∥∥∥∥X −
J∑

j=1

vjXj

∥∥∥∥∥
2

s.t.
J∑

j=1

wj = 1,

J∑
j=1

vj = 1,
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wj, vj ≥ 0, ∀j = 1, . . . , J,

wjvj = 0, ∀j = 1, . . . , J,

m ≤ ∥w∥0 ≤ m. (7)

The first term of the objective function in (7) measures the discrepancies between the population

average of the features in Xj (f -weighted) and the averages of the features for units assigned to

the treatment group (w-weighted). The second term is analogous but with the second average

taken over the units assigned to no intervention (v-weighted). The first four constraints require

that the weights in w, as well as the weights in v, are non-negative and sum to one. They

also require that any unit selected for treatment cannot serve as a control unit, i.e., if wj > 0,

then vj = 0, and vice versa. The last constraint allows a minimum and maximum number of

units assigned to treatment. This restriction is of practical importance in a variety of contexts,

especially when experimentation is costly and the experimenter is restricted in the number of

units that may receive the treatment. We say that the design is Unconstrained if m = 1 and

m = J − 1; otherwise, we say the design is Constrained. The cardinality constraint in (7) is not

the only conceivable restriction to the size or cost of the experiment. An explicit upper bound

on the cost of an experiment would be given by c′d ≤ B, where the j-th coordinate of c is equal

to the cost of assigning unit j to treatment, d is a J-dimensional vector with ones at coordinates

where wj > 0, and zeros otherwise, and B is the experimenter’s budget.

Let w∗ = (w∗
1, . . . , w

∗
J) and v∗ = (v∗1, . . . , v

∗
J) be a solution to the optimization problem in

(7). In practice, we do not require optimality of (w∗,v∗), as long as (w∗,v∗) is feasible and

satisfies X −
∑J

j=1 w
∗
jXj ≈ 0 and X −

∑J
j=1 v

∗
jXj ≈ 0, where 0 is a vector of zeros of the same

dimension as Xj. Suppose that units with w∗
j > 0 are assigned to treatment in the experiment,

and units with w∗
j = 0 are kept untreated. A synthetic control estimator of τt is τ̂t = τt(w

∗,v∗),
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i.e.,

τ̂t =
J∑

j=1

w∗
jYjt −

J∑
j=1

v∗jYjt. (8)

This estimator is based on approximations to equations (3) and (4) that rely on Xj, the observed

predictors of the potential outcomes, Y N
jt , and Y I

jt. Note that for every solution to (7) with

m ≤ ∥v∥0 ≤ m, there exists another solution that swaps the roles of the treated and the

untreated in the experiment without altering the value of the objective function.

In what follows, we take the formulation in (7) as a starting point for synthetic control designs

and modify it in several ways. A second formulation of the synthetic control design is based on

equations (3) and (5), which we refer to as the Weakly targeted design,

min
w1,...,wJ ,
v1,...,vJ

∥∥∥∥∥X −
J∑

j=1

wjXj

∥∥∥∥∥
2

+ β

∥∥∥∥∥
J∑

j=1

wjXj −
J∑

j=1

vjXj

∥∥∥∥∥
2

s.t.
J∑

j=1

wj = 1,

J∑
j=1

vj = 1,

wj, vj ≥ 0, ∀j = 1, . . . , J,

wjvj = 0, ∀j = 1, . . . , J,

m ≤ ∥w∥0 ≤ m. (9)

The parameter β > 0 reflects the trade-off between selecting treated units to fit the aggregate

value of the predictors X, and selecting control units to fit the aggregate value of the treated

units. A small value of β favors designs with treated units that closely match X, and prioritizes

estimation of τt, the average treatment effect. A large value of β, on the other hand, favors

designs with aggregate treated and aggregate control units that closely match each other, and

prioritizes estimation of τTt , the w-weighted average treatment effect on the treated. While it
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is possible to use data-driven selectors of β, the rule of thumb β = 1 provides a natural choice

that equally weights the two terms in the objective function in (9). For this formulation of the

synthetic control design, the treatment assignment and estimation procedures follow the same

steps as those used in the formulation in (7).

In our third formulation of the synthetic control design, we select treated units to fit the

aggregate value of the predictors X. But unlike the design in (9), we choose multiple synthetic

control units, one for each unit that contributes to the synthetic treated unit. For any J-

dimensional vector of non-negative coordinates, w = (w1, . . . , wJ), let Jw be the set of the

indices with non-zero coordinates, Jw = {j : wj > 0}. We refer to this formulation as the Unit-

level design. Like the Weakly targeted design, this formulation estimates the average treatment

effect on the treated, as defined in equation (6), but typically relies on a small set of treated

units even in the absence of a sparsity constraint on w (i.e., when m = J − 1).

min
wj ,∀j=1,2,..,J,
vij ,∀i,j=1,2,...,J

∥∥∥∥∥X −
J∑

j=1

wjXj

∥∥∥∥∥
2

+ ξ
J∑

j=1

wj

∥∥∥∥∥Xj −
J∑

i=1

vijXi

∥∥∥∥∥
2

s.t.
J∑

j=1

wj = 1,

wj ≥ 0, ∀j = 1, . . . , J,

J∑
i=1

vij = 1, ∀j ∈ Jw,

vij = 0, ∀i ∈ Jw, j = 1, . . . , J,

vij ≥ 0, ∀j ∈ Jw, i = 1, . . . , J,

vij = 0, ∀j /∈ Jw, i = 1, . . . , J,

m ≤ ∥w∥0 ≤ m. (10)

The parameter ξ > 0 reflects the trade-offs between selecting treated units to fit the aggregate
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value of the predictors X, and selecting control units to fit the values of the predictors for each

treated unit. A small value of ξ favors experimental designs with treated units that closely match

X. A large value of ξ, on the other hand, favors designs where the values of the predictors for

the treated units are closely matched by those of their synthetic controls.

Let {w∗
j , v

∗
ij}i,j=1,...,J be a solution of the optimization problem in (10). As before, we do

not strictly require optimality of {w∗
j , v

∗
ij}i,j=1,...,J , provided {w∗

j , v
∗
ij}i,j=1,...,J is feasible and X −∑J

j=1w
∗
jXj ≈ 0 and Xj −

∑J
j=1 v

∗
ijXj ≈ 0 for all j such that w∗

j > 0. Assign units with w∗
j > 0

to treatment in the experiment, and keep units with w∗
j = 0 untreated. Let

v∗j =
J∑

i=1

w∗
i v

∗
ij. (11)

Then,

τ̂t =
J∑

j=1

w∗
jYjt −

J∑
j=1

v∗jYjt

=
J∑

j=1

w∗
j

(
Yjt −

J∑
i=1

v∗ijYit

)
.

Our next adjustment to the synthetic control design is motivated by settings where experimen-

tal units may be naturally divided into clusters with similar values in the predictors, X1, . . . ,XJ .

For example, weather patterns, which may be highly dependent across cities in the same region

(e.g., Northeast, Midwest, etc., in the US), may influence the seasonality of the demand for

ride-sharing services. In those cases, it is natural to treat each cluster (each region, in our ex-

ample) as a distinct experimental design to ameliorate interpolation biases. Figure 1 illustrates

this point. Panels (a) and (b) depict identical samples in the space of the predictors. In this

simple example, we have two predictors only, and their values for each unit are represented by

the coordinates of the dots in the figure. Red dots represent units assigned to treatment. All

other units are plotted as black dots. Panel (a) visualizes the result of treating the entire sample
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as one cluster. Three units are assigned to treatment. They closely reproduce the value of X,

but they all fall in the same central cluster, far away from observations in other clusters. In panel

(b), assignment to treatment takes into account the clustered nature of the data, and one unit

is treated per cluster. This provides a better approximation of the distribution of the predictor

values for the entire sample, ameliorating concerns of interpolation biases.

Section 5 and the online appendix present extensive simulation evidence on the relative per-

formance of different formulations of the synthetic control design. In the simulations, the baseline

formulation in (7) generally has the most accurate estimates of the average treatment effect, as

it fits both the synthetic treated and control units to reproduce the population-level predictor

vector X. By prioritizing the match of aggregate predictor values for the treated, the Weakly

targeted formulation in (9) achieves high relative accuracy for the average treatment effect on

the treated when β is large. With large ξ, the Unit-level formulation (10) also yields accurate

estimates, but remains less accurate than the Weakly targeted design. Its main advantage is

parsimony: even without a hard cardinality constraint, it selects fewer treated units by empha-

sizing unit-level fits. Finally, the online appendix introduces a penalized version of the synthetic

control design, which further limits the number of units in both the synthetic treated and control

groups, even in the absence of a hard cardinality constraint.

3. Formal Results

This section introduces an extension of the linear factor model commonly employed in the syn-

thetic control literature and use it to analyze the properties of estimators based on synthetic

control designs.

Assumption 1 Potential outcomes follow a linear factor model,

Y N
jt = δt + θ′

tZj + λ′
tµj + ϵjt, (12a)

14



Y I
jt = υt + γ ′

tZj + η′
tµj + ξjt, (12b)

where Zj is a (R × 1) vector of observed covariates, θt and γt are (R × 1) vectors of unknown

parameters, µj is a (F × 1) vector of unobserved covariates, λt and ηt are (F × 1) vectors of

unknown parameters, and ϵjt and ξjt are unobserved idiosyncratic noise terms whose distributions

do not depend on the other components of the linear factor model.

Equation (12a) is the linear factor model for potential outcomes under no treatment, a benchmark

commonly used in the literature to analyze the properties of synthetic control estimators (see,

e.g., Abadie, Diamond and Hainmueller, 2010, Ferman, 2021). Equation (12b) extends the linear

factor structure to potential outcomes under treatment. The reason for this extension is that,

in contrast to synthetic control estimation with observational data, synthetic control designs

require the choice of a treatment group in addition to the choice of a comparison group.

We employ the covariates in Zj as well as pre-experimental values of the outcome variable

Yjt to construct the vectors of predictors, Xj. In particular, let E ⊆ {1, . . . , T0}, let TE = |E|

(i.e., the cardinality of E), and let Y E
j be the (TE × 1) vector of TE pre-experimental outcomes

for unit j and time indices in E . We define

Xj =

 Y E
j

Zj

 ,

for j = 1, . . . , J . That is, the vector of predictors Xj collects the covariates in Zj and the

pre-experimental outcome values Yjt for the fitting periods in E . In practice, the values in Xj

are often scaled to make them independent of units of measurement or to reflect the relative

importance of each of the predictors (see, e.g., Abadie, 2021).

The next assumption gathers regularity conditions on model primitives.

Assumption 2
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(i) F ≤ TE . Moreover, let λE be the (TE ×F ) matrix with rows equal to the λt’s indexed by E.

Let ζE be the smallest eigenvalue of λ′
EλE . Then, ζ = ζE/TE > 0.

(ii) For each j = 1, . . . , J , ϵj1, . . . , ϵjT is a sequence of i.i.d. sub-Gaussian random variables

with mean zero and variance proxy σ2. For any j = 1, . . . , J , ξjT0+1, . . . , ξjT is a sequence of

i.i.d. sub-Gaussian random variables with mean zero, variance proxy σ2, and independent

of ϵj1, . . . , ϵjT .

Assumption 2(i) is similar to conditions in Abadie, Diamond and Hainmueller (2010). As-

sumption 2(ii) is similar to conditions in Abadie, Diamond and Hainmueller (2010), Doudchenko

and Imbens (2016), Chernozhukov, Wüthrich and Zhu (2021), and Arkhangelsky et al. (2021).

Sub-Gaussianity is not strictly necessary, but it simplifies the form of our results. It can be relaxed

by assuming bounded finite-order moments (instead of bounding the entire moment generating

function). At the same time, sub-Gaussianity is a relatively mild assumption. It holds for any

Gaussian distribution, as well as any distribution with a bounded support. Distributions with

heavy tails, such as the Cauchy distribution, are not sub-Gaussian. Notably, Assumption 2(ii)

allows for dependence of ϵjt and ξjt across units.

Unless otherwise noted, all probability statements are over the joint distribution of ϵjt and

ξjt and conditional on the values of the other components on the right-hand sides of equations

(12a) and (12b). The next assumption pertains to the quality of the synthetic control fit. For

concreteness, we focus on the base design in (7), and choose w∗ = (w∗
1, . . . , w

∗
J) and v∗ =

(v∗1, . . . , v
∗
J) so that the synthetic treated and synthetic control units reproduce the average

values of Xj.

Assumption 3 With probability one, (i)

J∑
j=1

w∗
jZj =

J∑
j=1

v∗jZj =
J∑

j=1

fjZj,
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and (ii)

J∑
j=1

w∗
jY

E
j =

J∑
j=1

v∗jY
E
j =

J∑
j=1

fjY
E
j .

Assumption 3 implies that the synthetic treated and control units defined by w∗ and v∗ pro-

vide a perfect fit for X. Assumption 3 is a strong restriction, which may only hold approximately

in practice. The next assumption relaxes the perfect fit condition in Assumption 3.

Assumption 4 There exists a positive constant d > 0, such that with probability one, (i)

∥∥∥ J∑
j=1

w∗
jZj −

J∑
j=1

fjZj

∥∥∥2
2
≤ Rd2,

∥∥∥ J∑
j=1

v∗jZj −
J∑

j=1

fjZj

∥∥∥2
2
≤ Rd2,

and (ii)

∥∥∥ J∑
j=1

w∗
jY

E
j −

J∑
j=1

fjY
E
j

∥∥∥2
2
≤ TEd

2,
∥∥∥ J∑

j=1

v∗jY
E
j −

J∑
j=1

fjY
E
j

∥∥∥2
2
≤ TEd

2.

Let λt,f be the f -th coordinate of λt, and

λ = max
t=1,...,T
f=1,...,F

|λtf |.

We define ηtf , θtr, γtr, η, θ and γ analogously, so |ηtf | ≤ η for t = T0 + 1, . . . , T , f = 1, . . . , F ,

|θtr| ≤ θ for t = 1, . . . , T , r = 1, . . . , R, and |γtr| ≤ γ, for t = T0 + 1, . . . , T , r = 1, . . . , R. Next

theorem extends results on the bias of synthetic control estimators (see, e.g., Abadie, Diamond

and Hainmueller, 2010, Vives-i-Bastida, 2022) to the experimental setup of Section 2.

Theorem 1 If Assumptions 1 – 3 hold, then for any t ≥ T0 + 1,

|E [τ̂t − τt] | ≤
λ(η + λ)F

ζ

√
2 log (2J)

σ√
TE

. (13)
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If Assumptions 1, 2, and 4 hold, then for any t ≥ T0 + 1,

|E [τ̂t − τt] | ≤
(
(γ + θ)R +

λ(η + λ)F

ζ
(1 + θR)

)
d+

λ(η + λ)F

ζ

√
2 log (2J)

σ√
TE

. (14)

Expectations are over the distribution of {ϵjt}j∈{1,...,J},t∈{1,...,T} and {ξjt}j∈{1,...,J},t∈{T0+1,...,T}.

Note that, while the factor model in equations (12a) and (12b) leave the sign and scale of

λt and ηt free (e.g., multiplying λt and dividing µt by the same non-zero constant does not

change the value of λ′
tµj), the value of the bound in Theorem 1 is invariant to changes in the

sign or the scale of λt and ηt. Moreover, the bound in (14) does not depend on the scale of Zj,

because changing the scale of Zj leaves the product θd unchanged. The scale of Yjt does affect

the bound in (14) because the treatment effect τt is measured in the same units as Yjt. The

results in Theorem 1 do not depend on the specific formulation of the synthetic control design

(e.g., Constrained vs. Unconstrained).

The bias bounds (13) and (14) depend on the ratio between the scale of ϵjt, represented by

σ, and the number of fitting periods TE . Intuitively, the bias of the synthetic control estimator

is small when a good fit in pre-experimental outcomes (Assumption 3) is obtained by implicitly

fitting the values of the latent variables, µj. Overfitting happens when pre-experimental outcomes

are instead fitted out of the variability in the individual transitory shocks, ϵjt. A small number

of fitting periods TE combined with large variability in ϵjt increases the risk of overfitting and, as

a result, increases the bias bound. Similarly, for any fixed value of TE , the bias bound increases

with J , reflecting the increased risk of over-fitting caused by increased variability in ϵjt over larger

donor pools. Finally, the number of unobserved factors F enters the bound (13) linearly, which

highlights the importance of including the observed predictors Zj —other than pre-experimental

outcomes— in the vector of fitting variables Xj. Under the factor model in equations (12a) and

(12b), observed predictors not included in Zj are shifted to µj, increasing F and the magnitude
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of the bound.6

We next turn our attention to inference. We utilize a set of blank periods, B ⊆ {1, . . . , T0}\E ,

which comprise pre-experimental periods whose outcomes Yjt have not been used to calculate w∗

or v∗. Because pre-experimental periods that are not in E or B are not used in our procedure,

without loss of generality, we consider B = {1, . . . , T0}\E . Therefore, we assume that the number

of elements of B is TB = |B| = T0 − TE . We aim to test the following null hypothesis:

For t = T0 + 1, . . . , T , and j = 1, . . . , J ,

Y I
jt = δt + θ′

tZj + λ′
tµj + ξjt, (15)

where ξjt has the same distribution as ϵjt.

Under the null hypothesis in (15), the distribution of Y I
jt is the same as the distribution of

Y N
jt , for t = T0 + 1, . . . , T , and j = 1, . . . , J . But the realized values of Y I

jt and Y N
jt may differ.

Recall from (8) that, for t ∈ {T0 + 1, . . . , T}, a synthetic control estimator is defined as

τ̂t =
J∑

j=1

w∗
jYjt −

J∑
j=1

v∗jYjt.

Let ût = τ̂t,∀t ∈ {T0 + 1, . . . , T} be the synthetic control estimator in the experimental periods.

Similarly, for each t ∈ B in the blank periods, let

ût =
J∑

j=1

w∗
jYjt −

J∑
j=1

v∗jYjt.

6Shifting predictors from Zj to µj changes the bias bound (13) in a more complex manner than what might
be inferred from a cursory look at the bias formula. First, moving predictors from Zj to µj also means shifting
components of θt to λt, which can change the value of ζ. Poincaré’s separation theorem implies that ζ cannot

increase as a result of this shift. Moreover, moving predictors from Zj to µj cannot decrease the values of λ and
η. Overall, the value of the bias bound in (13) cannot decrease and will typically increase by moving predictors
from Zj to µj . This is not necessarily true for the bound in (14), because a shift of components from Zj to µj

decreases the value of R.
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Such ût for t ∈ B are placebo treatment effects estimated for the blank periods. We study the

properties of a test based on combinations from the set {ût}t∈B∪{T0+1,...,T}.

We define Π as the set of all (T−T0)-combinations of B∪{T0+1, . . . , T}. That is, for each π ∈

Π, π is a subset of indices from the blank periods and the experimental periods B∪{T0+1, . . . , T},

such that |π| = T − T0. The cardinality of Π is |Π| = (T − TE)!/((T − T0)!(T0 − TE)!). For each

π ∈ Π, let π(i) be the ith smallest value in π, and

ûπ = (ûπ(1), ûπ(2), ..., ûπ(T−T0)).

In addition, let û = (ûT0+1, . . . , ûT ) = (τ̂T0+1, . . . , τ̂T ). This is a vector of treatment effect

estimates from the experimental periods. We adopt the following test statistic,

S(û) =
1

T − T0

T∑
t=T0+1

|ût|. (16)

Other choices of test statistics are possible, such as those based on an Lp-norm of û (Cher-

nozhukov, Wüthrich and Zhu, 2021) and one-sided versions of the resulting test statistics (i.e.,

with the positive or the negative parts of ût replacing |ût| in equation (16)).

For ûπ ∈ Π, define S(ûπ) =
1

T−T0

∑
t∈π |ût|. The p-value of a permutation test on (16) is

p̂ =
1

|Π|
∑
π∈Π

1{S(ûπ) ≥ S(û)} (17)

Theorem 2 below shows that if λt are exchangeable random variables for t ∈ B ∪ {T0+1, . . . , T},

then a test of the null hypothesis in (15) based on the p-value in (17) is exact.

Theorem 2 Suppose that Assumptions 1, 2(ii), and 3(i) hold, and the noises {ϵjt}t∈B∪{T0+1,...,T}

and {ξjt}t∈{T0+1,...,T} have continuous distributions. Assume that {λt}t∈B∪{T0+1,...,T} is a sequence
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of exchangeable random variables. Under the null hypothesis (15), for any α ∈ [0, 1], we have

α− 1

|Π|
≤ Pr(p̂ ≤ α) ≤ α,

where Pr(p̂ ≤ α) is over the distribution of {ϵjt}j∈{1,...,J},t∈{1,...,T}, {ξjt}j∈{1,...,J},t∈{T0+1,...,T} and

{λt}t∈{1,...,T}.

Under the assumptions of Theorem 2, the potential outcome series Y N
jt is allowed to be non-

stationary through the term δt + θ′
tZj in equation (12a). This is in contrast to a related result

in Doudchenko et al. (2021), which requires that the potential outcomes Y N
jt are i.i.d. over time.

The assumptions in Theorem 2 build upon those in Theorem 1. Although these assumptions

are simple and sufficient for the result of the theorem, they can be substantially relaxed. Under

exchangeability of λt, if the i.i.d. condition in Assumption 2(ii) is violated, the result for The-

orem 2 holds if for each j = 1, . . . , J , {ϵjt}t∈B∪{T0+1,...,T} and {ξjt}t∈{T0+1,...,T} are sequences of

exchangeable random variables. Second, if Assumption 3(i) is violated, the result for Theorem 2

holds if {(θt,λt)}t∈B∪{T0+1,...,T} is a sequence of exchangeable random variables independent of

{ϵjt}t∈B∪{T0+1,...,T} and {ξjt}t∈{T0+1,...,T}. In the above two cases under exchangeability of λt, we

still have exact p-value. Finally, exchangeability of λt is a strong restriction. Theorem OA.1 in

the online appendix relaxes this restriction by showing that for fixed λt (i.e., without resorting

to exchangeability of λt), the p-value in (17) is still approximately valid for large TE .

In some settings, the number of possible combinations, |Π|, could be very large, making exact

calculation of p̂ computationally expensive. In those instances, random samples from Π can be

used to approximate the p-value in equation (17).

The inferential technique proposed in this article is related to, but distinct from, the permu-

tation methods in Abadie, Diamond and Hainmueller (2010), Chernozhukov, Wüthrich and Zhu

(2019), Chernozhukov, Wüthrich and Zhu (2021), Firpo and Possebom (2018), Lei and Candès

(2021), and others. Inferential methods that reassign treatment across units (e.g., Abadie, Dia-
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mond and Hainmueller, 2010) are not appropriate for the designs of Section 2, which explicitly

select treated and control units to satisfy an optimality criterion.

Similar to Chernozhukov, Wüthrich and Zhu (2021), our method is based on rearrangements

of estimated treatment effects across time periods. But unlike Chernozhukov, Wüthrich and Zhu

(2021), which proposes permutations over all periods, including the pre-intervention periods, our

inferential method permutes only over the blank periods and post-intervention periods, which

are not used to estimate the weights in the synthetic control design. Relative to Chernozhukov,

Wüthrich and Zhu (2021), the generative models of equations (12a) and (12b), which allow for

unobserved factors, and the finite sample nature of the results require a novel testing procedure

that, similar to split conformal prediction methods (Lei et al., 2018, Vovk, Gammerman and

Shafer, 2005), takes advantage of the availability of blank periods. Lei and Sudijono (2025)

introduces a refinement to conformal inference in synthetic control settings, particularly effective

when the number of rearrangements (in our case, |Π|) is small.

Confidence intervals for τt can be constructed using split conformal inference methods. For

any α ∈ (0, 1), let

q̂1−α = inf
z∈R

{
1

T0 − TE

∑
t∈B

1

{∣∣∣ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt

∣∣∣ ≤ z

}
≥ 1− α

}
(18)

be the empirical (1−α)-quantile on the absolute values of placebo treatment effects in the blank

periods, and

Ĉ1−α(Y1t, Y2t, ..., YJt) =

[ J∑
j=1

w∗
jYjt −

J∑
j=1

v∗jYjt − q̂1−α,
J∑

j=1

w∗
jYjt −

J∑
j=1

v∗jYjt + q̂1−α

]
. (19)

We next show that the confidence interval defined in (19) approximately achieves correct point-

wise coverage in large samples if treatment does not change the distribution of the idiosyncratic

noises.
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Theorem 3 Assume that Assumptions 1– 3 hold. Assume there exists a constant κ < ∞, such

that for all j = 1, . . . , J , t = 1, . . . , T , ϵjt are continuously distributed with the probability density

function upper bounded by κ. Assume that for t = T0 + 1, . . . , T , and j = 1, . . . , J , ξjt has the

same distribution as ϵjt. Then the confidence interval defined in (19) approximately achieves

point-wise coverage, i.e., for any α ∈ (0, 1) and any t ∈ {T0 + 1, ..., T}, as (T0 − TE), TE → +∞,

∣∣∣∣Pr(τt ∈ Ĉ1−α(Y1t, Y2t, ..., YJt)
)
− (1− α)

∣∣∣∣
= O

((
log (T0 − TE)/(T0 − TE)

)1/2
+
(
log TE/TE

)1/2) −→ 0.

where the probability Pr
(
τt ∈ Ĉ1−α(Y1t, Y2t, ..., YJt)

)
is over the distribution of {ϵjt}j∈{1,...,J},t∈{1,...,T}

and {ξjt}j∈{1,...,J},t∈{T0+1,...,T}.

4. Empirical Illustration Using Walmart Data

In this section, we illustrate the applicability of the methods in this article using store-level data

from Walmart (Prakash, 2023). The dataset is a balanced panel of weekly sales for J = 45

Walmart stores and T = 143 weeks, spanning the period from the week of February 5, 2010, to

the week of October 26, 2012. We estimate the effect of a placebo intervention and show that

the methods of Section 3 produce point estimates that are close to zero and a test result that

does not reject the null hypothesis in (15) for the placebo intervention.

We consider the design of a fictitious experiment across stores taking place on July 20, 2012

(week 129 in the data). Out of the T0 = 128 pre-experimental weeks, we take the first TE = 100

weeks as the fitting period, and the last (T0 − TE) = 28 weeks as the blank period. The number

of weeks in the experimental period is T − T0 = 15. The outcomes {Yjt}j=1,...,J,t=1,...,T are weekly

sales (units of revenue are undisclosed in the data). We use uniform weights fj = 1/J for

j = 1, ..., J , to average sales across all stores. To estimate the synthetic treated and synthetic
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control weights, we normalize each of the 100 pre-experimental outcomes to have unit variance.

We compute synthetic treated and control units that apply the Constrained formulation in

(7) with m = 2. We adopt m = 2 because using only one store for the synthetic treated fails

to produce a good fit between the resulting synthetic treated and synthetic control units during

the fitting period (as measured by root-mean square error or mean absolute error). Increasing

to m = 3 brings only marginal improvements in fit. Figures 2 and 3 report results for m = 2.

Results for m = 1 and m = 3 appear in the online appendix.

Figure 2 reports the time series of weekly sales for the synthetic treated unit (black solid

line), the synthetic control unit (black dashed line), and for each individual store in the dataset

(blue dashed lines). Weekly sales for the synthetic treated and the synthetic control units closely

follow each other during the fitting period. The gap between the two synthetic units remains

small after the fitting period, indicating good out-of-sample predictive power in the absence of

intervention.

Figure 3 reports the difference in weekly sales between the synthetic treated and the synthetic

control units. The p-value of equation (17), calculated over the residuals of Figure 3, is equal to

0.933, which results in a failure to reject the null hypothesis (15). Confidence intervals based on

equation (19) cover zero for all t in the experimental period.

Table 1 compares the performance of the synthetic control design to those of straight ran-

domization followed by difference-in-means, randomization after stratification on pre-intervention

outcomes followed by difference-in-means, and 1- and 5-nearest neighbor adjustment after ran-

domization. In particular, Table 1 reports out-of-sample root mean square error (RMSE) over

the post-intervention period, normalized by the post-intervention outcome mean (see Section

5.2.2 for a precise definition of the estimators and RMSE performance metric). For each of the

four randomization-based estimators, the reported RMSE is the average over 1000 randomized

treatment assignments. The synthetic control design dominates all other alternatives, even when

it uses only the outcomes in the fitting periods to construct the synthetic treated and synthetic
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control units, whereas stratification and nearest-neighbor adjustment utilize all pre-intervention

outcomes.

5. Simulation Study

This section presents simulation results that showcase the behavior of estimators based on syn-

thetic control designs. The simulation design employs J = 15 units, R = 7 observed covariates,

and F = 11 unobserved covariates. Each simulated sample covers T = 30 periods, with T0 = 25

periods before the intervention and five after the intervention. Synthetic control weights are

estimated using the first TE = 20 periods, leaving t = 21, . . . , 25 as blank periods. The weights

fj in expression (1) are set to fj = 1/J for all j = 1, . . . , J .

For our baseline simulation design, we use the linear factor model in Assumption 1 to generate

potential outcomes. For t = 1, . . . , T , we generate the series δt as small-to-large re-arrangements

of T i.i.d. Uniform (0, 20) random variables. For t = T0 + 1, . . . , T , we generate the series υt as

small-to-large re-arrangements of T−T0 i.i.d. Uniform (0, 20) random variables. For j = 1, . . . , J ,

we set both Zj and µj to be random vectors of i.i.d. Uniform (0, 1) random variables. For

t = 1, . . . , T , we set θt, γt, λt, and ηt to be random vectors of i.i.d. Uniform (0, 10) random

variables. Finally, for j = 1, . . . , J , and any t = 1, . . . , T , we set ϵjt and ξjt to be i.i.d. Normal

N (0, σ2) random variables, with σ2 = 1. We present additional simulation results of alternative

values of the noise parameter σ2 in the online appendix.

The simulations in this section cover the Unconstrained and the Constrained designs. For

the Constrained design, we consider m = 1, . . . , 7. For the Unconstrained design, the synthetic

treated and synthetic control weights can always be swapped without changing the value of

the objective function in (7). For the Constrained design, the weights can be swapped when

∥v∗∥0 ≤ m. When it is possible to swap synthetic treated and synthetic control weights, we

choose the treated units so that the number of units with positive weights in w∗ is smaller than

the number of units with positive weights in v∗. When ∥w∗∥0 = ∥v∗∥0, we determine whether
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to swap using a specific rule described in the online appendix.

5.1. Results for a Single Simulation

Using the data generating process described above, we draw a single sample and conduct the

synthetic control design in (7), with parameters m = 1 and m = 14, i.e., no constraint on the

number of treated units. We report the results in Figures 4 and 5. In Figure 4, each blue

dashed line represents an outcome trajectory Yjt, for t = 1, . . . , T and j = 1, . . . J . The solid

black line represents the trajectory of the synthetic treated unit
∑J

j=1w
∗
jYjt, for t = 1, . . . , T .

The black dashed line represents the trajectory of the synthetic control unit
∑J

j=1 v
∗
jYjt, for

t = 1, . . . , T . The synthetic treated and synthetic control units closely track each other in the

pre-experimental periods. They diverge during the experimental periods, when a treatment effect

emerges as a result of the differences in the parameters of the data-generating processes for Y N
jt

and Y I
jt. Figure 5 reports the difference between the synthetic treated and the synthetic control

outcomes. The inferential procedure of Section 3 produces p-value equal to 0.004 for the null

hypothesis of no treatment effect in (15).

5.2. Performance across Many Simulations

This section compares the performance of the different versions of the synthetic control designs

over 1000 simulations that independently generate the model primitives (i.e., the factor loadings,

covariates, and error terms) of Assumption 1.

5.2.1. Average Treatment Effects

The first panel of Table 2 reports true values of τt, averaged over 1000 simulations. The first

seven columns of the second panel report τ̂t for each of the five experimental periods, mean

absolute error, and root mean square error, averaged over 1000 simulations. Mean absolute error
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(MAE) and root mean square error (RMSE) are defined as

MAE =
1

T − T0

T∑
t=T0+1

|τ̂t − τt|, RMSE =

√√√√ 1

T − T0

T∑
t=T0+1

(τ̂t − τt)2,

The last three columns of Table 2 report average p-values, rejection rates, and average number

of treated units, over 1000 simulations.

Because the treatment effect is not equal to zero in the simulation of Table 2, smaller p-values

and larger rejection rates reflect better performance of the testing procedure for a particular

design.

Table 2 shows how m affects the performance of the synthetic control design. As expected,

the Unconstrained design delivers the best performance across all measures, at the cost of using

a larger number of treated units than the Constrained design. Relative to the single-treated-unit

case, performance metrics improve substantially when allowing m = 2 or m = 3, with smaller

gains beyond that point.

5.2.2. Comparison to Randomized Treatment Assignment

Randomized treatment assignment produces ex-ante (pre-randomization) unbiased estimation of

the average treatment effect. As we show below, however, ex-post (post-randomization) biases

can be large, especially when only a small number of units are treated.

In this section, we adopt the same setup as in the previous section to compare the performance

of the synthetic control design with that of randomized designs, with or without pre- or post-

stratification, in settings with a small number of treated units.

Let Dj denote a treatment indicator equal to one if unit j is randomized into the treated

group and zero otherwise. Table 3 evaluates the performance of the following experimental design

and estimation strategies:

1. SC : Constrained formulation of the synthetic control design. The results reproduce those
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of Table 2.

2. RND : Randomized assignment of m units to treatment followed by the difference in means

estimator,

1

m

J∑
j=1

DjYjt −
1

J −m

J∑
j=1

(1−Dj)Yjt.

3. STR: Stratification in m blocks, with at least two units per block. In each block, one unit is

assigned to treatment at random. Blocks are chosen to minimize the maximal within-block

discrepancy in the covariates, Zj, and pre-experimental outcomes (all normalized to have

unit variance). Let Bjk be a binary variable that equals one if and only if unit j belongs

to block k. The estimator of τt is

m∑
k=1

Jk
J

( J∑
j=1

BjkDjYjt −
1

Jk − 1

k∑
j=1

Bjk(1−Dj)Yjt

)
,

where Jk represents the number of units within the k-th block.

4. REG : Randomized assignment of m units to treatment followed by regression adjustment

on the covariates, Zj. Ordinary least-squares adjustment on all pre-treatment outcomes is

unfeasible because the number of pre-treatment outcomes exceeds the number of units in

the sample.

5. 1-NN and 5-NN : Randomized assignment of m units to treatment followed by 1-nearest

neighbor and 5-nearest neighbor matching, respectively, on all pre-experimental outcomes

and covariates. In both cases, predictors are rescaled to have unit variance.

Across all values ofm, the synthetic control design outperforms randomized assignment, including

variants that incorporate pre-stratification, post-stratification, or regression adjustment. The

online appendix reports similar results from simulations based on a nonlinear data-generating
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process. Combined with the results in Table 1, these findings demonstrate the power of synthetic

controls as an effective design strategy for experiments with aggregate units.

6. Conclusions

Experimental design methods have largely been concerned with settings where a large number

of experimental units are randomly assigned to a treatment arm, and a similarly large number of

experimental units are assigned to a control arm. This focus on large samples and randomization

has proven to be enormously useful in various classes of problems, but becomes inadequate when

treating more than a few units is unfeasible, as is often the case in experimental studies with

large aggregate units (e.g., markets). In that case, randomized designs may produce estimators

that are substantially biased (post-randomization) relative to the average treatment effect or

to the average treatment effect on the treated. Large biases can be expected when the unit or

units assigned to treatment fail to approximate average outcomes under treatment for the entire

population or when the units in the control arm fail to approximate the outcomes that treated

units would experience without treatment.

In this article, we have proposed synthetic control techniques, widely used in observational

studies, to design experiments when the treatment can only be applied to a small number of

experimental units. The synthetic control design optimizes jointly over the identities of the units

assigned to the treatment and the control arms and over the weights that determine the relative

contribution of those units to reproduce the counterfactuals of interest. We propose various

designs to estimate average treatment effects, analyze the properties of such designs and the

resulting estimators, and devise inferential methods to test a null hypothesis of no treatment

effects and construct confidence intervals. In addition, we report results from an application to

retail sales data and simulation results that demonstrate the applicability and computational

feasibility of the methods proposed in this article. We show that synthetic control design can

substantially outperform randomized designs in experimental settings with a small number of
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treated units.

Corporate researchers, policymakers, and academic investigators are often confronted with

settings where interventions at the micro-unit level (e.g., customers, workers, or families) are

unfeasible, impractical, or ineffective (see, e.g., Duflo, Glennerster and Kremer, 2007, Jones and

Barrows, 2019). Consequently, there is broad scope for experimental design methods targeting

large aggregate entities (such as regional markets, school districts, or states), a setting where

synthetic control designs offer a powerful tool for data-driven evaluation of treatment effects.
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Table 1: Out-of-Sample Normalized Root Mean Square Error

SC RND STR 1-NN 5-NN

m = 1 0.052 0.452 0.452 0.096 0.082
m = 2 0.018 0.312 0.299 0.070 0.063
m = 3 0.019 0.254 0.173 0.059 0.053
m = 4 0.027 0.223 0.181 0.052 0.048
m = 5 0.012 0.202 0.164 0.047 0.043

Note: Root mean square error divided by the average outcome in the experimental periods. m stands for the max-

imum number of treated units. SC: Constrained formulation of the synthetic control design. RND: Randomized

treatment assignment followed by the difference-in-means estimator. STR: Stratified randomization, followed by

difference in means in each stratum. 1-NN: Randomized treatment assignment followed by 1-nearest neighbor

matching, using all pre-experimental outcomes. 5-NN: Randomized treatment assignment followed by 5-nearest

neighbor matching, using all pre-experimental outcomes.
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Table 2: Average Treatment Effects (Averages over 1000 Simulations)

τt
t = 26 t = 27 t = 28 t = 29 t = 30

-13.58 -10.99 -8.35 -5.00 -2.50

τ̂t MAE RMSE p̂ p̂ < 0.05 ∥w∥0
t = 26 t = 27 t = 28 t = 29 t = 30

Unconstrained -13.57 -10.97 -8.38 -5.07 -2.53 0.83 0.97 0.014 0.944 6.76

Constrained m = 1 -13.61 -10.97 -8.39 -4.86 -2.41 2.93 3.45 0.057 0.668 1
m = 2 -13.58 -10.90 -8.43 -5.01 -2.40 1.69 2.00 0.028 0.854 2
m = 3 -13.56 -11.00 -8.38 -5.05 -2.52 1.26 1.49 0.019 0.916 3
m = 4 -13.59 -11.06 -8.40 -4.99 -2.50 1.06 1.25 0.016 0.935 4
m = 5 -13.57 -11.01 -8.37 -5.02 -2.48 0.93 1.09 0.015 0.933 5.00
m = 6 -13.51 -10.95 -8.29 -5.01 -2.47 0.87 1.02 0.015 0.942 5.97
m = 7 -13.57 -10.96 -8.37 -5.06 -2.52 0.83 0.97 0.014 0.946 6.76
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Table 3: RMSE for Different Experimental Designs and Estimators (Averages over 1000 Simu-
lations)

SC RND STR REG 1-NN 5-NN

m = 1 3.45 6.35 6.35 8.14 5.28 4.40
m = 2 2.00 4.70 3.53 6.00 3.69 3.20
m = 3 1.49 3.91 2.75 5.11 3.02 2.66
m = 4 1.25 3.49 2.44 4.49 2.67 2.40
m = 5 1.09 3.22 2.07 4.12 2.38 2.28
m = 6 1.02 3.04 1.95 3.87 2.24 2.23
m = 7 0.97 3.01 1.85 3.90 2.18 2.32

Note: SC: Constrained formulation of the synthetic control design. RND: Randomized treatment assignment

followed by the difference-in-means estimator. STR: Stratified randomization, followed by difference in means in

each stratum. REG: Randomized treatment assignment followed by regression adjustment. 1-NN: Randomized

treatment assignment followed by 1-nearest neighbor matching. 5-NN: Randomized treatment assignment followed

by 5-nearest neighbor matching. SC uses outcomes in the fitting periods and covariates as predictors. STR, 1-NN,

and 5-NN use all pre-intervention outcomes and covariates. REG adjusts for the covariates only.
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(a) (b)

Figure 1: Clustering in a synthetic control design

Note: Panels (a) and (b) plot the values of the predictors in Xj , which is bivariate in this simple example. Units

assigned to treatment are drawn in red. In panel (a), we treat the entire sample as a single cluster. In panel (b),

we divide the sample into three clusters and assign one unit in each cluster to the treatment.
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Figure 2: Synthetic Treatment Unit and Synthetic Control Unit, m = 2

Note: The black solid line represents the synthetic treated outcome. The black dashed line represents the synthetic

control outcome. The blue dashed lines are individual stores’ sales.
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Figure 3: Treatment Effect Estimate, when m = 2.

Note: This figure reports the difference between the synthetic treated and synthetic control outcomes of Figure 2.

For the experimental periods, this is the treatment effect estimate. The shaded region indicates the 95% confidence

interval for each of the experimental periods.
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Figure 4: Synthetic Treatment Unit and Synthetic Control Unit, σ2 = 1

Note: The black solid line represents the synthetic treated outcome (w∗-weighted). The black dashed line

represents the synthetic control outcome (v∗-weighted).
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Figure 5: Treatment Effect Estimate, when σ2 = 1

Note: This figure reports the difference between the synthetic treated and synthetic control outcomes of Figure 4.

For the experimental periods, this is the treatment effect estimate.
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