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ABSTRACT. We propose strategies to estimate and make inference on key features of heterogeneous
effects in randomized experiments. These key features include best linear predictors of the effects

using machine learning proxies, average effects sorted by impact groups, and average character-

istics of most and least impacted units. The approach is valid in high dimensional settings, where
the effects are proxied (but not necessarily consistently estimated) by predictive and causal machine
learning methods. We post-process these proxies into estimates of the key features. Our approach
is generic, it can be used in conjunction with penalized methods, neural networks, random forests,
boosted trees, and ensemble methods, both predictive and causal. Estimation and inference are based
on repeated data splitting to avoid overfitting and achieve validity. We use quantile aggregation of
the results across many potential splits, in particular taking medians of p-values and medians and
other quantiles of confidence intervals. We show that quantile aggregation lowers estimation risks
over a single split procedure, and establish its principal inferential properties. Finally, our analysis
reveals ways to build provably better machine learning proxies through causal learning: we can use
the objective functions that we develop to construct the best linear predictors of the effects, to obtain
better machine learning proxies in the initial step. We illustrate the use of both inferential tools
and causal learners with a randomized field experiment that evaluates a combination of nudges to
stimulate demand for immunization in India.
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1. INTRODUCTION

Randomized Controlled Trials (RCT) and Machine Learning (ML) are arguably two of the most
important developments in data analysis methods for applied researchers. RCTs play an important
role in the evaluation of social and economic programs, medical treatments and marketing (e.g.,
Duflo et al., 2007; Imbens and Rubin, 2015). ML is a name attached to a variety of constantly
evolving statistical learning methods including Random Forest, Boosted Trees, Neural Networks,
Penalized Regression, Ensembles, and Hybrids; see, e.g., Wasserman (2016) for a recent review,
and Friedman et al. (2001), Bishop and Nasrabadi (2006), Murphy (2012), Hastie et al. (2015),
Goodfellow et al. (2016) and James et al. (2021) for prominent textbook treatments. ML has
become a key tool for prediction and pattern recognition problems, surpassing classical methods
in high dimensional settings.

At first blush, those two sets of methods may seem to have very different applications: in the
most basic randomized controlled experiment, there is a sample with a single treatment and a single
outcome. Covariates are not necessary and even linear regression is not the best way to analyze the
data (Freedman, 2008; Imbens and Rubin, 2015). In practice however, applied researchers are often
confronted with more complex experiments. For example, there might be accidental imbalances
in the sample, which require selecting control variables in a principled way. ML tools, such as
the lasso method proposed in Belloni et al. (2014, 2017) or the double machine learning method
proposed in Chernozhukov et al. (2017), have proven useful for this purpose. Moreover, some
complex RCT designs have so many treatment combinations that ML methods may be useful to
select the few treatments that actually work and pool the rest with the control groups for statistical
power (Banerjee et al., 2019). Finally, researchers and policy makers are often interested in features
of the impact of the treatment that go beyond the simple average treatment effect. In particular,
very often, they want to know whether the treatment effect depends on covariates, such as gender,
age, etc. This heterogeneity is essential to assess if the impact of the program would generalize
to a population with different characteristics, and, for economists, to better understand the driving
mechanism behind the effects of a particular program. In a review of 189 RCTs published in
top economic journals since 2006, we found that 76 (40%) report at least one subgroup analysis,
wherein they report treatment effects in subgroups formed by baseline covariates.1

One issue with reporting treatment effects split by subgroups, however, is that there might be a
large number of potential ways to form subgroups. Often researchers collect rich baseline surveys,
which give them access to a large number of covariates: choosing subgroups ex-post opens the pos-
sibility of overfitting. To solve this problem, medical journals and the FDA require pre-registering

1The papers were published in Quarterly Journal of of Economics, American Economic Review, Review of Eco-

nomics Studies, Econometrica and Journal of Political Economy. We thank Karthik Mularidharan, Mauricio Romero
and Kaspar Wüthrich for sharing the list of papers they computed for another project.
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the sub-sample of interest in medical trials in advance. In economics, this approach has gained
some traction with the adoption of pre-analysis plans, which can be filed in the AEA registry for
randomized experiments. However, restricting the heterogeneity analysis to pre-registered sub-
groups amounts to throwing away a large amount of potentially valuable information, especially
now that many researchers collect large baseline data sets. It should be possible to use the data to
discover ex post whether there is any relevant heterogeneity in treatment effect by covariates.

To do this in a disciplined fashion and avoid the risk of overfitting, scholars have recently pro-
posed using ML tools. Indeed, ML tools seem ideal for exploring heterogeneity of treatment effects
when researchers have access to a potentially large array of baseline variables to form subgroups
and few guiding principles on which of those are likely to be relevant. Several recent papers, which
we review below, develop methods for detecting heterogeneity in treatment effects. Empirical re-
searchers have taken notice.2

This paper develops a generic approach to using any of the available ML tools to predict and
make inference on heterogeneous treatment or policy effects. A core difficulty of applying ML
tools to the estimation of heterogenous causal effects is that, while they are successful in predic-
tion empirically, it is much more difficult to obtain uniformly valid inference, i.e., inference that
remains valid under a large class of data generating processes. In fact, in high dimensional set-
tings, absent strong assumptions, generic ML tools may not even produce consistent estimators
of the conditional average treatment effect (CATE), the difference in the expected potential out-
comes between treated and control states conditional on covariates. Previous attempts to solve this
problem focused either on specific tools (for example, the method proposed by Athey and Imbens
(2016), which has become popular with applied researchers, and uses trees), or on situations where
those assumptions might be satisfied. Our approach to resolving the fundamental impossibilities in
non-parametric inference is different. Motivated by Genovese and Wasserman (2008), instead of
attempting to get consistent estimation and uniformly valid inference on the CATE itself, we focus
on providing valid estimation and inference on features of CATE.

We start by building a ML proxy predictor of CATE, and then target features of the CATE based
on this proxy predictor. In particular, we consider three objects, which are likely to be of interest
to applied researchers and policy makers: (1) Best Linear Predictor (BLP) of the CATE on the
ML proxy predictor; (2) Sorted Group Average Treatment Effects (GATES) or average treatment

2In the recent past, several new empirical papers in economics used ML methods to estimate heterogeneous effects.
E.g. Hussam et al. (2022) showed that villagers outperform the machine learning tools when they predict heterogeneity
in returns to capital. Davis and Heller (2020) predicted who benefits the most from summer internship projects.
Deryugina et al. (2019) used the methods developed in the present paper to evaluate the heterogeneity in the effect of
air pollution on mortality. Crepon et al. (2021) also built on the present paper to develop a methodology to determine if
the impact of two different programs can be accounted for by different selection. The methodological papers reviewed
later also contain a number of empirical applications.
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effect by heterogeneity groups induced by the ML proxy predictor; and (3) Classification Analysis
(CLAN) or the average characteristics of the most and least affected units defined in terms of the
ML proxy predictor. Thus, we can find out if there is detectable heterogeneity in the treatment
effect based on observables, and if there is any, what the treatment effect is for different bins. And
finally we can describe which of the covariates are associated with this heterogeneity.

There is a trade-off between more restrictive assumptions or tools and a more ambitious esti-
mation. We address this trade-off by focusing on coarser objects of the function rather than the
function itself, but make as little assumptions as possible. This seems to be a worthwhile sacri-
fice: the objects for which we have developed inference appear to us at this point to be the most
relevant, but in the future, one could easily use the same approach to develop methods to estimate
other objects of interest. For example, Crepon et al. (2021) used the same technique to construct
and estimate a specific form of heterogeneity at the post-processing stage. Even then, as we will
see, getting robust and conservative standard errors for heterogeneity requires a larger sample size
than just estimating average treatment effects. This reflects a different trade-off: if we do not as-
sume that we can predict ex ante where the heterogeneity might be (in which case we can write it
down in a pre-analysis plan), power will be lower, and detecting heterogeneity will require a larger
sample. This is a consideration that applied researchers will need to keep in mind when designing
and powering their experiments.

Our estimation and inference methods rely on sample splitting to avoid overfitting and other
inferential non-regularities (from using the model selection as an integral part of machine learning).
Conditional on a single data split into a training and a hold-out sample, statistical inference is
conceptually straightforward and appealing. Indeed, in this case, statistical inference reduces to
the classical inference for linear regression and sample means. Theoretically, if a researcher can
credibly pre-commit to a single data split, this gives one clean solution to the inferential problem.
However, researchers often consider multiple data splits to demonstrate that the empirical results
are robust and not driven by a favorable or unfavorable particular split.3 To support this approach,
we propose quantile-aggregated inference – which aggregates inferential results by taking medians
of estimates and medians and other quantiles of upper and lower confidence intervals obtained
from different splits. We show that quantile aggregation formally lowers estimation (reporting)
risks over a single-split procedure, and we establish its inferential properties.

The proposed approach is generic in that it can be applied in conjunction with any ML method.
To compare and select among ML methods, we develop goodness-of-fit measures for the BLP and
GATES. We also take one step backward and use these goodness-of -fit measures to build ML
proxies that better target the CATE through causal learning. We show that these causal machines

3Moreover, using multiple splits and aggregating the results reduces the probability that two researchers working
with the same data will arrive at different conclusions.
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produce provably better proxies of the CATE than generic (predictive) ML methods. Moreover, by
designing the ML to target CATE directly, the post-processing methods that we develop can focus
more on providing valid inference and less on correcting biases.

We apply our method to a large-scale RCT of nudges to encourage immunization in the state of
Haryana, Northern India. This experiment, an important practical application in its own right, is
designed and discussed in Banerjee et al. (2019). Immunization is generally recognized as one of
the most effective and cost-effective ways to prevent illness, disability, and diseases. Yet, world-
wide, close to 20 million children every year do not receive critical immunizations (Unicef, 2019).
While early policy efforts have focused mainly on improving the infrastructure for immunization
services, a more recent literature suggests that “nudges” (such as small incentives, leveraging the
social network, SMS reminders, social signalling, etc.) may have large effects on the use of those
services.4 This project was a collaboration with the government of Haryana, which was willing
to experiment with a combination of nudges, with the goal of choosing the most effective policy
and implement it at scale. It built a custom vaccination platform, and ran a large-scale experiment
covering seven districts, 140 Primary health centers, 2,360 villages involved in the experiment
(including 915 at risk for all the treatments), and 295,038 children in the resulting database. Im-
munization was very low at baseline: in every single village of the district, the fraction of children
whose parents had reported they received the measles vaccine (the last in the sequence) was 39%,
and only 19.4% had received the vaccine before the age of 15 months, whereas the full sequence
is supposed to be completed in one year. The experiment was a cross randomized design of three
main nudges: providing incentives, sending SMS reminders, and seeding ambassadors. It included
several variants for each policy: the level and schedule of the incentives, the number of people
receiving reminders, and the mode of selection of the ambassadors, leading to a large number (75)
of finely differentiated bundles.

Banerjee et al. (2019) developed a methodology to identify the most effective and cost-effective
bundle of policies, based on an application of LASSO to a marginal effects specification that
imposes some structure on the bundles, and in particular, the idea that policy variants (e.g. level
of incentives, or level of coverage of SMS reminders) may be indistinguishable in practice. They
found that the most cost-effective policy is to combine “information hubs” (people identified by
others as good at diffusing information) and SMS reminders. This is cheap and can be done
everywhere. In fact, they showed that this policy is the only one among those tested that would
actually save money to the government for each measles shot, while increasing immunization. But
the most effective policy, i.e., the policy that increases immunization the most, is the combination
of incentives, immunization ambassadors, and SMS reminders, which is much more expensive.

4See, for example, Banerjee et al. (2010); Bassani et al. (2013); Wakadha et al. (2013); Johri et al. (2015); Oyo-Ita
et al. (2016); Gibson et al. (2017); Karing (2018); Domek et al. (2016); Uddin et al. (2016); Regan et al. (2017); Alatas
et al. (2019); Banerjee et al. (2021).
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Yet, while this policy increases the cost per immunization, the effects are important: the number of
monthly measles shots (the last vaccine in the schedule, and thus a marker for full immunization)
delivered increases by 3.26, corresponding to 44% of the mean vaccination rate in the control
group that got neither SMS nor increasing incentives and information hubs. The government was
therefore interested in finding out where the program would be most effective, to implement it only
in those places even at the higher cost per immunization.

The pre-analysis plan specified to look for heterogeneity by gender and by “Village-level base-
line/national census variables, including assets, beliefs, knowledge, and attitudes towards immu-
nization” but did not identify one or two specific baseline variables to look at. This reflected
genuine uncertainty (as is often the case). Many factors can influence policy impact, from attitudes
to implementation capabilities to baseline levels, and we did not have a specific theory of where to
look. It is precisely the type of context that requires a principled approach to avoid overfitting, and
provide a policy-relevant recommendation.5

The rest of the paper is organized as follows. Section 2 formalizes the framework, describes our
approach and compares it with the existing literature. Section 3 presents identification and estima-
tion strategies for the key features of CATE of interest. Section 4 introduces our inference method
that accounts for uncertainty coming from parameter estimation and sample splitting. Section 5
presents the construction of causal machines that can learn CATE better than purely predictive
approaches or some existing proposals for causal approaches. Section 6 reports the results of the
empirical application and provides detailed implementation algorithms. Section 7 concludes with
some remarks. The Appendix gathers proofs of the main theoretical results and additional technical
results.

2. OUR AGNOSTIC APPROACH

2.1. Model and Key Causal Functions. Let Y (1) and Y (0) be the potential outcomes in the
treatment state 1 and the non-treatment state 0 (see Neyman, 1923; Rubin, 1974). Let Z be a
possibly high-dimensional vector of covariates that characterize the observational units. The main
causal functions are the baseline conditional average (BCA):

b0(Z) := E[Y (0) | Z], (2.1)

and the conditional average treatment effect (CATE):

s0(Z) := E[Y (1)−Y (0) | Z] = E[Y (1) | Z]−E[Y (0) | Z]. (2.2)

5This approach of finding the best treatment and then looking at where it works the best gets closer to the idea
of “personalized medicine”. Using the same data, Agarwal et al. (2020) go one step further and use a “synthetic
intervention” approach to look for the policy that works the best for each kind of village.
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Suppose the binary treatment variable D is randomly assigned conditional on Z, with probability
of assignment depending on a subvector of stratifying variables Z1 ⊆ Z, namely

D ⊥⊥ (Y (1),Y (0)) | Z, (2.3)

and the propensity score is known and is given by

p(Z) := P[D = 1 | Z] = P[D = 1 | Z1], (2.4)

which we assume is bounded away from zero or one:

p(Z) ∈ [p0, p1]⊂ (0,1) a.s. (2.5)

This setup is similar to Rosenbaum and Rubin (1983).

The observed outcome is Y = DY (1)+ (1−D)Y (0). Under the stated assumption, the causal
functions are identified by the components of the regression function of Y given D,Z:

Y = b0(Z)+Ds0(Z)+U, E[U | Z,D] = 0, (2.6)

that is, b0(Z) = E[Y | D = 0,Z], and

s0(Z) = E[Y | D = 1,Z]−E[Y | D = 0,Z]. (2.7)

This regression underlies the use of predictive ML methods that learn E[Y | D,Z] and then estimate
CATE using the formula.

Alternatively one can identify CATE using the following two equivalent “causal” regressions:

s0(Z) = E[HY | Z] = Cov[Y,H|Z]; (2.8)

where H is the residualized treatment scaled by its variance:

H = H(D,Z) :=
D− p(Z)

p(Z)(1− p(Z))
, (2.9)

also known as the Horvitz-Thompson transform. We mention these alternative strategies here,
because as shown in Section 5, they can lead to better ways of approximating s0(Z) than through
the predictive regression (2.6), and our inference tools equally apply to ML methods that try to
learn s0(Z) through either of these relations. In fact, in our empirical analysis, the strategies based
on (2.8) measurably outperform the strategies based on (2.7).

2.2. Estimation and Inference Challenges. Regardless of the way we try to learn s0(Z), estima-
tion and inference are challenging in modern high-dimensional settings, because the target function
z 7→ s0(z) can live in a very complex class. ML methods effectively explore various forms of spar-
sity to yield “good” approximations to s0(z). In its simplest form, sparsity reduces the complexity
of z 7→ s0(z) by assuming that it can be well-approximated by a function that only depends on a
low-dimensional subset of z, making consistent estimation possible. As a result, these methods can
perform much better than classical methods in high-dimensional settings under sparsity. However,
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sparsity or, more generally, low complexity of the CATE function s0, are untestable assumptions
that must be used with caution.

Without some form of sparsity, it is hard, if not impossible, to obtain consistent estimators of
z 7→ s0(z). There are several fundamental reasons as well as large gaps between theory and practice
that are responsible for this. One fundamental reason is that ML methods might not even produce
consistent estimators of z 7→ s0(z) in high dimensional settings. For example, if z has dimension d
and the target function z 7→ s0(z) is assumed to have p continuous and bounded derivatives, then
the worst case (minimax) lower bound on the rate of learning this function from a random sample
of size N cannot be better than N−p/(2p+d) as N → ∞, as shown by Stone (1982). Hence if p is
fixed and d is also small, but slowly increasing with N, such as d ⩾ logN, then there exists no
consistent estimator of z 7→ s0(z) generally. Hence, generic ML estimators cannot be regarded as
consistent, unless further assumptions are made. Examples of such assumptions include structured
forms of linear and non-linear sparsity and super-smoothness.6

The problem of obtaining uniformly valid inference on z 7→ s0(z) using generic ML methods is
even more difficult. While the previous assumptions make consistent adaptive estimation possible
(e.g., Bickel et al., 2009), confidence sets that adapt to unknown regularity (smoothness or sparsity)
do not exist even for low-dimensional nonparametric problems (Low et al., 1997; Genovese and
Wasserman, 2008)7. Construction of adaptive confidence bands then requires making additional
untestable assumptions.8

In this paper, we take an agnostic view. We neither rely on any sparsity or low-complexity
assumptions to make the ML estimators consistent, nor impose other stronger conditions to make
“traditional” confidence intervals valid. We simply treat ML as providing proxy predictors for the
objects of interest.

2.3. Our Approach. To address the previous challenges, we propose strategies for estimation and
inference on key features of s0(Z) rather than on s0(Z) itself. Because of this difference in focus
we can avoid making strong assumptions about the properties of the ML estimators.

Let (M,A) denote a random partition of the set of indices {1, . . . ,N}. The strategies that we
consider rely on random splitting of Data = (Yi,Di,Zi)

N
i=1 into a main sample, denoted by DataM

6The function z 7→ s0(z) is super-smooth if it has continuous and bounded derivatives of all orders.
7Let z 7→ s0(z) be a target function that lives in an infinite-dimensional class with unknown regularity s (e.g.,

smoothness or degree of sparsity). Adaptive consistent estimation (resp. inference) for z 7→ s0(z) with respect to s is
possible if there exists a consistent estimator (resp. valid confidence set) with a rate of convergence (resp. diameter)
that changes with s in a (nearly) rate-optimal way.

8See, e.g., Giné and Nickl (2010), where self-similarity conditions are used in low-dimensional nonparametric
problems.
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= (Yi,Di,Zi)i∈M, and an auxiliary sample, denoted by DataA = (Yi,Di,Zi)i∈A. We will sometimes
refer to these samples as M and A. After splitting the sample, we carry out two stages:

Stage 1: From the auxiliary sample A, we obtain ML estimators of the baseline and treatment
effects, which we call the ML proxy predictors,

z 7→ B(z) = B(z;DataA) and z 7→ S(z) = S(z;DataA).

Here S(Z) is a possibly biased and noisy predictor of s0(z) and B(Z) is a possibly biased and noisy
predictor of b0(Z) (or other technical “baseline” functions, as we discuss below). We do not require
these predictors to be consistent for the true functions.

Stage 2: We post-process the proxies from Stage 1 to estimate and make inference on features
of the CATE function z 7→ s0(z) in the main sample M. The key features that we target include:

(1) Best Linear Predictor (BLP) of the CATE s0(Z) on the ML proxy predictor S(Z);

(2) Sorted Group Average Treatment Effects (GATES): average of s0(Z) (ATE) by hetero-
geneity groups induced by the ML proxy predictor S(Z);

(3) Classification Analysis (CLAN): average characteristics of the most and least affected
units defined in terms of the ML proxy predictor S(Z).

Our approach is generic with respect to the ML method being used, and is agnostic about its formal
properties.

We use many data splits into main and auxiliary samples to produce robust estimators. We
employ quantile aggregation of inference to combine results across splits. Specifically, for point
estimation, we report the median of the estimated key features over different random splits of the
data. We take medians and other quantiles of many random conditional confidence sets for interval
estimation. Finally, we construct p-values by taking medians of many random conditional p-values.
We establish the formal inferential properties of this procedure.

2.4. Relationship to the Literature. We focus the review strictly on the literatures about estima-
tion and inference on heterogeneous effects and inference using sample splitting.

This work is related to the literature that uses linear and semiparametric regression methods for
estimation and inference on heterogeneous effects. Crump et al. (2008) developed tests of treat-
ment effect homogeneity for low-dimensional settings based on traditional series estimators of
the CATE. A semiparametric inference method for characterizing heterogeneity, called the sorted
effects method, was given in Chernozhukov et al. (2015). This approach does provide a full set
of inference tools, including simultaneous bands for percentiles of the CATE, but is strictly lim-
ited to the traditional semiparametric estimators of the regression and causal functions. Hansen
et al. (2017) proposed a sparsity-based method called “targeted undersmoothing” to perform infer-
ence on heterogeneous effects. This approach does allow for high-dimensional settings, but makes
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strong assumptions on sparsity as well as additional assumptions that enable the targeted under-
smoothing. A related approach, which allows for simultaneous inference on many coefficients
(for example, inference on the coefficients corresponding to the interaction of the treatment with
other variables) was first given in Belloni et al. (2013) using a Z-estimation framework, where the
number of interactions can be very large; see also Dezeure et al. (2016) for a more recent effort in
this direction, focusing on de-biased lasso in mean regression problems. This approach, however,
still relies on a strong form of sparsity assumptions. Zhao et al. (2017) proposed a post-selection
inference framework within high-dimensional linear sparse models for the heterogeneous effects.
The approach is attractive because it allows for some misspecification of the model.

Another approach is to use tree-based and other methods. Imai and Ratkovic (2013) discussed
the use of a heuristic support-vector-machine method with lasso penalization for classification of
heterogeneous treatments into positive and negative ones. They used the Horvitz-Thompson trans-
formation of the outcome (e.g., as in Hirano et al., 2003; Abadie, 2005) such that the new outcome
becomes an unbiased, noisy version of CATE.9 Athey and Imbens (2016) made use of the Horvitz-
Thompson transformation of the outcome to inform the process of building causal trees, with the
main goal of predicting CATE. They also provided a valid inference result on average treatment
effects for groups defined by the tree leaves, conditional on the data split into two subsamples: one
used to build the tree leaves and the one to estimate the predicted values given the leaves. Like our
methods, this approach is essentially assumption-free. Our generic approach is not limited to trees
and does hedge the splitting risks, and so it can be applied together with the causal trees. Wager
and Athey (2017) proposed a subsampling-based construction of a causal random forest, provid-
ing valid pointwise inference for CATE (see also the review in Wager and Athey (2017) on prior
uses of random forests in causal settings) for the case when covariates are very low-dimensional
(and essentially uniformly distributed).10 Unfortunately, this condition rules out the typical high-
dimensional settings that arise in many empirical problems, especially in current RCTs, where the
number of baseline covariates is potentially very large.

Several other references look at model-based strategies for performing inference on CATE, but
relative to our approach, the assumptions invoked are quite strong. Semenova and Chernozhukov
(2021) used ML to perform inference on the “partial” CATE, E[s0(Z) | X ], where X is a prespec-
ified low-dimensional set of covariates. Specifically, they constructed an estimator of a denoised
HT transform of the outcome and projected it using a nonparametric series estimator on the set

9Note that using Horvitz-Thompson (HT) transform of outcome, in this and other references, typically gives very
noisy signal. One can improve the approach by either including the HT transform interacted with some baseline
covariates as regressors in a regression model, as we do in the present paper, or using residualized outcomes in
conjunction with HT, as in Semenova and Chernozhukov (2021).

10The dimension d is fixed in Wager and Athey (2017); the analysis relies on the Stone’s model with smoothness
index β = 1, in which no consistent estimator exists once d ⩾ logn in the minimax sense.
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of low-dimensional prespecified covariates of interest X , whose dimension is much lower than
Z.11 The main advantage of this approach is that it delivers familiar nonparametric inference on
partial CATE (even though inference on the full CATE remains intractable). Fan et al. (2022), Zim-
mert and Lechner (2019), Chernozhukov et al. (2018), and Chernozhukov et al. (2021a) developed
kernel versions of this procedure. Related ideas but based on partialling-out (using residualized
outcomes and treatment) appear in Semenova et al. (2017), Nekipelov et al. (2022), Nie and Wa-
ger (2020), Foster and Syrgkanis (2019), and more recently (per ArXiv appearance) in Kennedy
(2020). Relative to the approach taken here, the assumptions made in these papers are very strong,
albeit delivering stronger results. For example, in the approach of Semenova and Chernozhukov
(2021), one has to specify the baseline covariates X for the partial CATE analysis, which is exactly
what we are trying to avoid in our approach. Second, the methods critically rely on the consis-
tency of ML to estimate the nuisance components well. The latter is a strong assumption in high
dimensions, as discussed above.

The idea of using a “hold out” sample to validate the result of a ML procedure to discover het-
erogeneity was suggested in Davis and Heller (2020), who used the method proposed in Wager
and Athey (2017) and compared their results to the heterogeneity in a holdout sample. Our in-
ference approach is different because it calls for multiple splits. This procedure itself is also of
independent interest and could be applied to many problems, where sample splitting is used to
produce ML predictions (e.g., Abadie et al., 2017). Related references include Wasserman and
Roeder (2009), and Meinshausen et al. (2009), where the ideas are related, but the details are quite
different, as we shall explain below. The premise is the same; however, as in Meinshausen et al.
(2009) and Rinaldo et al. (2016) – we should not rely on a single random split of the data and
should adjust inference in some way. Our construction of p-values builds upon ideas in Mein-
shausen et al. (2009), though what we propose is simpler, and our confidence intervals appear to
be new. Of course, sample splitting ideas are classical, going back to Hartigan (1969); Kish and
Frankel (1974); Barnard (1974); Cox (1975); Mosteller and Tukey (1977), though having been
mostly underdeveloped and overlooked for inference, as characterized by Rinaldo et al. (2016).
Finally, our inference method shares with the literature on post-selection inference in statistics that
the target estimands are random functions depending on a ML proxy (e.g., Fithian et al., 2014; Lee
et al., 2016).

3. MAIN IDENTIFICATION RESULTS AND ESTIMATION STRATEGIES

In what follows, we observe Data := (Yi,Zi,Di)
N
i=1, consisting of i.i.d. copies of the random

vector (Y,Z,D) having probability law P. The data are defined on an underlying probability space

11Specifically, the denoised HT transform of outcome is Ỹ = g(1,Z)−g(0,Z)+H(Y −g(D,Z)), where H = (D−
p(Z))/[p(Z)(1− p(Z)] and g(D,Z) = E(Y | D,Z). Semenova and Chernozhukov (2021) used ML to estimate g(D,Z)

and the propensity score p(Z), in case the latter is unknown.



12 VICTOR CHERNOZHUKOV, MERT DEMIRER, ESTHER DUFLO, AND IVÁN FERNÁNDEZ-VAL

with measure P. The expectation operator is denoted by E. When we need to emphasize the
dependence of P and E on P, we use the notation PP and EP. In what follows we condition on
DataA and therefore consider the functions

z 7→ B(z) = B(z;DataA) and z 7→ S(z) = S(z;DataA).

as fixed functions. Alternatively, in this section, we can interpret E as conditional expectation,
where we condition on DataA.

3.1. Best Linear Predictor of CATE. The first inferential target is the best linear predictor of the
CATE using the proxy S(Z).

Definition 3.1 (BLP). The best linear predictor of s0(Z) by S(Z) is the solution to:

min
b1,b2

E[s0(Z)−b1 −b2S(Z)]2,

which, if exists, is defined as

BLP[s0(Z) | S(Z)] := β1 +β2(S(Z)−ES(Z)),

where β1 = Es0(Z) and β2 = Cov[s0(Z),S(Z)]/Var[S(Z)].

By construction, BLP[s0(Z) | S(Z)] is an unbiased predictor of s0(Z), which improves over S(Z)
in the mean-squared error sense, that is

E{s0(Z)−BLP[s0(Z) | S(Z)]}2 ⩽ E[s0(Z)−S(Z)]2.

Indeed, we can quantify the improvement by

E[s0(Z)−S(Z)]2 −E{s0(Z)−BLP[s0(Z) | S(Z)]}2 = (1−β2)
2 Var[S(Z)]+ [ES(Z)−Es0(Z)]2,

which is positive unless S(Z) is an unbiased predictor and, either β2 = 1 or Var[S(Z)] = 0.12 Ac-
cordingly, compared to the ML proxy, the BLP can be seen as a refined predictor of the individual
CATE, s0(Z). If S(Z) is a perfect proxy for s0(Z), then β2 = 1. In general, β2 ̸= 1, correcting for
noise in S(Z). If S(Z) is complete noise, uncorrelated to s0(Z), then β2 = 0. Furthermore, if there
is no heterogeneity, that is, s0(Z) = s, then β2 = 0. Rejecting the hypothesis β2 = 0 therefore means
that there is both heterogeneity in s0(Z) and S(Z) is a relevant predictor.

We provide two strategies for identifying and estimating BLP[s0(Z) | S(Z)].

12The previous expression follows from the decompositions E[s0(Z)− S(Z)]2 = E[{s0(Z)−Es0(Z)}− {S(Z)−
ES(Z)}+ {Es0(Z)− ES(Z)}]2 and E{s0(Z)− BLP[s0(Z) | S(Z)]}2 = E{[s0(Z)− Es0(Z)]− [BLP[s0(Z) | S(Z)]−
Es0(Z)]}2, using that EBLP[s0(Z) | S(Z)] = Es0(Z) and β2 = Cov(s0(Z),S(Z))/Var(S(Z)).
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Strategy A: Weighted Residual BLP. Consider the weighted linear projection:

Y = α
′
0X1 +α1(D− p(Z))+α2(D− p(Z))(S−ES)+ ε, E[w(Z)εX ] = 0, (3.1)

where S := S(Z), w(Z) := {p(Z)(1− p(Z))}−1, X := (X ′
1,X

′
2)

′,

X1 = [1,B(Z), p(Z), p(Z)S(Z)]′, X2 := [D− p(Z),(D− p(Z))(S−ES)]′.

The term B(Z) could be replaced by any “noise-reducing” proxy function. For example, the algo-
rithms of Semenova et al. (2017) and Nie and Wager (2020), targeting the delivery of S(Z), also
construct B(Z) that are meant to approximate E[Y | Z] but not b0(Z); see also Section 5 for other
examples of such algorithms. We include X1 to reduce finite sample noise of the estimators of the
BLP parameter based on this strategy.13

Note that α1 and α2 are identified under weak assumptions. Further, we note that the interaction
(D− p(Z))(S−ES) is orthogonal to D− p(Z) under the weight w(Z), and to all functions of Z
such as X1. Consequently, we obtain the following result that shows that the linear projection (3.1)
identifies the BLP.

Theorem 3.1 (BLP Identification A). Consider z 7→ S(z) and z 7→ B(z) as fixed maps. Assume that
Y and X have finite second moments, and EXX ′ is finite and full rank, which requires Var(S(Z))>
0. Then, (α1,α2) defined in (3.1) identifies the coefficients of the BLP,

α1 = β1, α2 = β2.

Comment 3.1 (Why not Classical OLS of Y on Proxies?). It is tempting and perhaps more natural
to consider the projection equation:

Y = α̃1 + α̃2B+ β̃1D+ β̃2D(S−ES)
BLP of CEF

+ε, E[εX̃ ] = 0,

where X̃ = [1,B,D,D(S −ES)]′. The idea here is the classical one: the ordinary least squares
method with Y as the outcome provides the Best Linear Predictor or Approximation to the CEF
E[Y | D,Z], even if the latter is nonlinear. Angrist and Pischke (2008) discuss the importance and
practical relevance of this property. However, this property does not translate into providing the
BLP of CATE s0(Z).14 Indeed, even in pure RCTs, while β̃1 = β1 is true, we have that β̃2 ̸= β2 in
general, and therefore

β̃1 + β̃2(S−ES) ̸= BLP(s0(Z) | S). (3.2)

In this case, a sufficient condition for having equality in (3.2) is that (a) B−EB spans S−ES, or (b)
both b0(Z) and s0(Z) are orthogonal to B−EB and S−ES, or (c) B−EB and b0(Z) are orthogonal
to S−ES. (See Online Appendix A.1 for the proof.) None of these conditions are plausible. ■

13Note that X1 can include other functions of Z. In our experiments, the use of B(Z) strongly improves the precision
of estimating BLP (and other quantities such as GATEs and CLAN introduced below).

14This answers a question from Joshua Angrist; we are grateful to him for posing it.
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The identification result in Theorem 3.1 is constructive. We can base a corresponding estimation
strategy on the empirical analog:

Yi = α̂
′
0X1i + α̂1(Di − p(Zi))+ α̂2(Di − p(Zi))(Si −EN,MSi)+ ε̂i, i ∈ M,

EN,M[w(Zi)ε̂iXi] = 0,
(3.3)

where Xi = [X ′
1i,X

′
2i]

′, X2i := [Di− p(Zi),(Di− p(Zi))(Si−EN,MSi)]
′, and EN,M denotes the empir-

ical expectation with respect to the main sample, i.e.

EN,Mh(Yi,Di,Zi) := |M|−1
∑
i∈M

h(Yi,Di,Zi).

The properties of this estimator, conditional on the auxiliary data, are well known and follow as a
special case of Lemma D.1 in the Appendix.

Figure 1 provides two examples. The left panel shows a case where s0(Z) = 0 with zero effect
and zero heterogeneity in the CATE, whereas the right panel shows a case where s0(Z) = Z with
strong heterogeneity in the CATE. In both cases, we evenly split 1,000 observations between the
auxiliary and main samples, Z follows uniform distribution on (−1,1), b0(Z) = 3Z, U is standard
normal, independently of Z, and Y is generated by (2.6). We obtain the proxy predictor S(Z) by
Breiman’s random forest, using the ranger implementation in R (Wright and Ziegler, 2017). We
also report analogous results for causal random forest based on subsampling.

In the first example, the ML proxy is pure noise by construction, and the BLP post-processor
correctly eliminates the noise, producing a CATE prediction that is roughly a 35-39% better ap-
proximation to the CATE under the RMSE metric. Furthermore, using our inferential methods of
Section 4, we cannot reject the null hypothesis that the BLP is zero. In the second case, under
strong heterogeneity, the signal in the ML proxy dominates the noise component. As a result, the
BLP does not change the ML proxy drastically, but still gives a meaningful improvement to the
CATE under the RMSE metric. These improvements agree with the theoretical arguments given
above.

Comment 3.2 (Significance for RCTs.). The first example has implications for the empirical anal-
ysis of RCTs. Here we see that one of the best ML algorithms, as per Friedman et al. (2001),
can easily suggest a heterogeneous CATE when the treatment is, in fact, a placebo. Placebos (in-
effective treatments) are common occurrences in real-world experiments, and our methodology
provides a simple way to confirm that the CATE (and not just ATE) is indeed zero in such cases.

Strategy B: HT BLP. This strategy makes use of the Horvitz-Thompson transform H defined in
(2.9). It is well known that the transformed response Y H provides an unbiased signal about CATE:

E[Y H | Z] = s0(Z),
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FIGURE 1. BLP Using ML Proxy vs the ML Proxy (Predictive and Causal RF)

NOTES: The CATE is plotted with the solid black line; the proxy predictor S(Z), produced by
Random Forest (Causal Random Forest in bottom panels), is plotted with the solid grey (light) line;
and the BLP is plotted with the dotted blue line. In both panels, the BLP is less noisy than the
ML proxy. In the left panels the BLP improves the RMSE by 35− 39%; in the right panels BLP
improves the RMSE by 5−22%.
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and it follows by the properties of the best linear predictor that

BLP[s0(Z) | S(Z)] = BLP[Y H | S(Z)].

Note that BLP[s0(Z) | S(Z)] is a more precise unbiased predictor of s0(Z) than Y H because, by
construction

Var(BLP[s0(Z) | S(Z)]) = Var(BLP[Y H | S(Z)])⩽ Var(Y H).

The R-squared of BLP[Y H | S(Z)] quantifies the percent reduction in variance of the BLP relative
to Y H.

The simple linear projection BLP[Y H | S(Z)] is completely fine for identification purposes, but
can severely underperform in estimation and inference due to lack of precision. We can repair the
deficiencies by considering, instead, the linear projection:

Y H = µ
′
0X1H +µ1 +µ2(S−ES)+ ε, EεX̃ = 0, (3.4)

where X̃ := (X ′
1H, X̃ ′

2)
′, X̃2 := (1,S−ES)′, and X1 = [1,B(Z), p(Z), p(Z)S(Z)]′ as before. The term

X1 could contain other functions of Z. We include X1H in order to reduce noise.

The following theorem shows that the linear projection (3.4) also identifies the BLP.

Theorem 3.2 (BLP Identification B). Consider z 7→ S(z) and z 7→ B(z) as fixed maps. Assume
that Y has finite second moments, X̃ is such that EX̃ X̃ ′ is finite and full rank, which requires
Var(S(Z))> 0. Then, (µ1,µ2) defined in (3.4) identifies the coefficients of the BLP,

µ1 = β1, µ2 = β2.

Theorem 3.2 leads to an estimator defined through the empirical analog:

YiHi = µ̂
′
0X1iHi + µ̂1 + µ̂2(Si −EN,MSi)+ ε̂i, i ∈ M, EN,M ε̂iX̃i = 0, (3.5)

and the properties of this estimator, conditional on the auxiliary data, are well known and given in
Lemma D.1.

Comment 3.3 (Comparison of Estimation Strategies). While the two identification strategies are
natural, one may wonder whether the two corresponding estimation strategies can be ranked in
terms of asymptotic efficiency. We show in Online Appendix A.2 that they produce estimators that
are first-order equivalent in large main samples.

3.2. Sorted Group Average Treatment Effects. The second inferential target is the group aver-
age treatment effects, where the groups are induced by S(Z).

Definition 3.2 (GATES). The Sorted Group Average Treatment Effects (GATES) are

γk := E[s0(Z) | Gk], k = 1, . . . ,K.

where Gk := {S ∈ Ik}, with Ik := [ℓk−1, ℓk) and −∞ = ℓ0 < ℓ1 < .. . < ℓK =+∞.
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Comment 3.4 (Choice of groups). We build the groups to explain as much variation in s0(Z) as
possible. There are many alternatives for creating groups based upon ML tools applied to the
auxiliary data. For example, one can group or cluster based upon predicted baseline response as
in the “endogenous stratification” analysis (Abadie et al., 2017), or based upon actual predicted
treatment effect S. We focus on the latter approach for defining groups, although our identification
and inference ideas immediately apply to other ways of defining groups, and could be helpful in
these contexts. The causal tree approach of Athey and Imbens (2016) can also be viewed as a
GATES analysis, with a specific way of forming groups via recursive partitioning.15

Comment 3.5 (GATES as Predictors of CATE). The GATES can also be used as nonlinear predic-
tors of the CATE based on the proxy S, in a similar fashion to the BLP. Indeed, the GATES provide
the BLP of CATE using the group indicators Gk,k = 1, . . . ,K.

We provide two strategies for identifying and estimating the GATES.

Strategy A: Weighted Residual GATES. Consider the weighted linear projection equation:

Y = α
′
0X1 +

K

∑
k=1

αk · [D− p(Z)] ·1(Gk)+ν , E[w(Z)νW ] = 0, (3.6)

where W := (X ′
1,W

′
2)

′, X1 contains a vector of functions of Z, e.g., X1 = (B(Z), p(Z){1(Gk)}K
k=1)

′

and W2 := ({[D− p(Z)] · {1(Gk)}K
k=1)

′. The presence of D− p(Z) in the interaction [D− p(Z)] ·
1(Gk) orthogonalizes this regressor relative to all other regressors that are functions of Z, such as
X1. The controls in X1, as in the BLP estimation, are included to reduce noise.

Theorem 3.3 below shows that the linear projection (3.6) identifies the GATES. We can therefore
base an estimation strategy on the empirical analog:

Yi = α̂
′
0X1i + α̂

′W2i + ν̂i, i ∈ M, EN,M[w(Zi)ν̂iWi] = 0, (3.7)

where α̂ = (α̂1, . . . , α̂K)
′. The properties of this estimator, conditional on the auxilliary data, are

well known and stated as a special case of Lemma D.1.

Strategy B: HT GATES. Here we employ a linear projection on Horvitz-Thompson transformed
variables:

Y H = µ
′
0X1H +

K

∑
k=1

µk ·1(Gk)+υ , E[υW̃ ] = 0, (3.8)

where W̃ := (X ′
1H,W̃ ′

2)
′, X1 includes functions of Z, e.g. X1 the same as above, and W̃2 :=

[{1(Gk)}K
k=1]

′.

15Another strand of the literature related to the GATES is the learning policy problem, where a ML method is
trained to assign units to treatment and control based on their covariates(e.g., Kitagawa and Tetenov, 2018; Athey and
Wager, 2021). This problem can be seen as a GATES analysis with two groups chosen to maximize some function of
the CATEs.
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Theorem 3.3 shows that the linear projection (3.8) also identifies the GATES. We can therefore
base an estimation strategy on the empirical analog:

YiHi = µ̂
′
0X1iHi + µ̂

′W̃2i + υ̂i, i ∈ M, EN,M[υ̂iW̃i] = 0, (3.9)

where µ̂ = (µ̂1, . . . , µ̂K)
′. The properties of this estimator, conditional on the auxiliary data, are

well known and given in Lemma D.1. The resulting estimator has similar performance to the
estimator in (3.7), and under some conditions their first-order properties coincide.

We now provide a formal statement of the identification results.

Theorem 3.3 (GATES). Consider z 7→ S(z) and z 7→ B(z) as fixed maps. Assume that Y has finite
second moments and W and W̃ are such that EWW ′ and EW̃W̃ ′ are finite and have full rank.
Consider α = (αk)

K
k=1 defined by the weighted regression equation (3.6) and µ = (µk)

K
k=1 defined

by the regression equation (3.8). These coefficients are equal and identify the GATES:

αk = µk = γk = E[s0(Z) | Gk], k = 1, ...,K.

Comment 3.6 (Motonicity Restrictions on GATES). Suppose we observe s0(Z). In this case we
can define the ideal GATES as:

γ0k := E[s0(Z) | G0k], k = 1, . . . ,K,

where G0k := {s0(Z) ∈ I0k}, with I0k = [ℓ0,k−1, ℓ0,k) and −∞ = ℓ0 < ℓ1 < .. . < ℓK = +∞. By
construction the ideal GATES obey the monotonicity restriction:

γ01 ⩽ ...⩽ γ0K.

If S(Z) provides a good approximation to s0(Z), it is reasonable to expect that the GATES also
obey the monotonicity restriction: γ1 ⩽ ... ⩽ γK, but there is no guarantee. However, we can
always replace γ = {γk}K

k=1 by the non-decreasing rearrangement (sorted vector) γ∗ = {γ∗k }K
k=1,

such that γ∗ obeys the monotonicity condition γ∗1 ⩽ ...⩽ γ∗K . The benefit is that γ∗ is always closer
to γ0 = {γ0k}K

k=1 than γ in the sense that

∥γ
∗− γ0∥∞ ⩽ ∥γ − γ0∥∞,

where ∥·∥∞ is the sup-norm. This follows from the contraction property of the rearrangement (e.g.,
Chernozhukov et al., 2009). Therefore, we can always use sorting to better target the ideal GATES.
Similarly, when performing estimation, we can replace γ̂ = {γ̂k}K

k=1 by the their non-decreasing
rearrangement (sorted vector) γ̂∗ = {γ̂∗k }K

k=1, which results in an estimator with lower estimation
error in the sense that surely:

∥γ̂
∗− γ0∥∞ ⩽ ∥γ̂ − γ0∥∞.
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3.3. Classification Analysis. When the BLP and GATES analyses reveal substantial heterogene-
ity, it is interesting to know the properties of the subpopulations that are the most and least affected.
Here we focus on the “least affected group” G1 and “most affected group” GK , where the labels
“most” and “least” can be swapped depending on the context.

Definition 3.3 (CLAN). Let g(Y,D,Z) be a vector of characteristics of an observational unit. The
classification analysis (CLAN) is the comparison of the average characteristics of the most and
least affected groups:

δ1 := E[g(Y,D,Z) | G1] and δK := E[g(Y,D,Z) | GK].

The parameters δ1 and δK are identified because they are averages of variables that are directly
observed. The CLAN quantifies the differences between the most and least affected groups and
singles out the covariates that are associated with the heterogeneity in the CATE. The CLAN can
be extended to comparisons of features other than averages, such as variances, covariances or
distributions. In the empirical analysis, we estimate the CLAN parameters by taking averages in
M:

δ̂1 =
EN,M[g(Yi,Di,Zi)G1,i]

EN,MG1,i
and δ̂K =

EN,M[g(Yi,Di,Zi)GK,i]

EN,MGK,i
, (3.10)

using Gk,i = 1{S(Zi) ∈ Ik}, where Ik = [ℓk−1, ℓk) and ℓk is the (k/K)-quantile of {Si}i∈M.

3.4. Goodness of Fit Measures for Fitting CATE. In practical applications it is useful to have
goodness-of-fit measures to guide the selection of ML proxies.

For the analysis based on the BLP of CATE, we propose to use:

Λ := |β2|2Var(S(Z)) = Corr(s0(Z),S(Z))2Var(s0(Z)). (3.11)

Maximizing Λ is equivalent to maximizing the correlation between the ML proxy predictor S(Z)
and the true score s0(Z), or equivalent to maximizing the R2 in the regression of s0(Z) on S(Z).
Therefore, an ML method that attains a higher Λ is a preferred method.

Analogously, for the GATES analysis, we propose to use:

Λ̄ = E

(
K

∑
k=1

γk1(S ∈ Ik)

)2

=
K

∑
k=1

γ
2
k P(S ∈ Ik). (3.12)

This is the part of variation of s0(z), Es0(Z)2, explained by S̄(Z) = ∑
K
k=1 γk1(S(Z) ∈ Ik). Hence

choosing the ML proxy S(Z) to maximize Λ̄ is equivalent to maximizing the R2 in the regression of
s0(Z) on S̄(Z) (without a constant). If the groups Gk = {S ∈ Ik} have equal size, namely P(S(Z) ∈
Ik) = 1/K for each k = 1, ...,K, then

Λ̄ =
1
K

K

∑
k=1

γ
2
k .
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Therefore, a ML method that attains a higher Λ̄ is a preferred method. The empirical versions of
the parameters above are:

Λ̂ = |β̂2|2EN,M(Si −EN,MSi)
2, ̂̄

Λ =
K

∑
k=1

γ̂
2
kEN,M1{Si ∈ Ik}. (3.13)

The choice of the ML method using goodness-of-fit measures does not pose any additional
inferential challenge, when there is clearly an ML method that dominates the others – so that we
select the best method with probability approaching one. This means that the inferential methods of
the next section would not need any further adjustment. When this is not the case, there are several
possibilities depending on the scientific reporting objectives. For example, suppose there are two
(near) winners and we want to construct a (1−α)-confidence set, as in our empirical analysis.
Then in the spirit of sensitivity analysis, we can report the union of the (1−α)-confidence sets.
This ensures the inferential coverage guarantee of 1−α continues to apply, if the reader of the
empirical report chooses one or the other winner at random. On the other hand, the inferential
guarantee needs to be discounted to 1−2α via Bonferroni adjustment, if the reader of the empirical
report chooses one or the other report depending on the empirical results themselves. We use
the first approach because the readers of our empirical analysis are not likely to follow the latter
approach.

Finally, if the data sets are big, we could use additional splitting to choose the best-performing
ML method, before taking the resulting ML proxies to the main sample.16

4. SPLIT-SAMPLE ROBUST ESTIMATION AND INFERENCE METHODS

4.1. Estimation and Inference: The Generic Targets. Let θ denote a generic target parameter
or functional. For example,

• θ = β2 is the BLP slope, the heterogeneity loading parameter;
• θ = BLP[s0(Z) | S(z)] = β1+β2(S(z)−ES) is the “personalized” predictor of CATE s0(z);
• θ = γk is the GATES for the group Gk;
• θ = γK − γ1 is the difference in the GATES between the most and least affected groups;
• θ = δK −δ1 is the difference in the expectation of the characteristics of the most and least

impacted groups in CLAN.

Let (a,m) denote a fixed partition of {1, . . . ,N}. In what follows, we recognize that the esti-
mands depend on the auxiliary sample a,

Dataa := {(Yi,Di,Xi)}i∈a,

16We also refer to Section 5 which discusses other, more exploratory ideas for building the best ML algorithms for
targeting CATE already in the first stage.
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used to create the ML proxies B = Ba and S = Sa:

θ = θa := θ(Dataa).

We shall use the notation θa when we want to highlight this dependence. Moreover, unlike in
Section 3, we made explicit the conditioning on Dataa in the expectations when needed.

Single Split. We begin the discussion of inference conditional on a single split of data induced by
the partition {(a,m)} of {1, ...,N} into sets of cardinality (N −n,n). All of the examples admit an
estimator θ̂a that is approximately Gaussian, namely as n → ∞ and for any z,

P(σ̂−1
a (θ̂a −θa)< z | Dataa)→P Φ(z). (4.1)

We provide sufficient regularity conditions for (4.1) in Lemma D.1, which may be of independent
interest. Indeed, the deployment of single-split inference requires verification of (4.1), but we
could not find any reference establishing this condition for least squares estimators.

As a consequence of (4.1), the standard p-values

p+a := 1−Φ(σ̂−1
a (θ̂a −θ0)), p−a := Φ(σ̂−1

a (θ̂a −θ0)),

for testing the null hypothesis θa = θ0 against the alternatives θa > θ0 and θa < θ0, respectively,
are approximately uniform under the null, namely

P(p±a < α | Dataa) = α +oP(1).

As another consequence of (4.1), the standard confidence interval (CI)

[La,Ua] := [θ̂a ±Φ
−1(1−α/2)σ̂a]

covers θa with approximate probability 1−α conditional on Dataa:

P[θa ∈ [La,Ua] | Dataa] = 1−α −oP(1).

Thus, we have straightforward inference conditional on a single data split.

Multiple Splits. In practice, researchers often prefer using multiple splits (a,m)′s to reduce es-
timation risk and demonstrate that the results are robust to how they split the data. Therefore,
we need a way to aggregate the results across different splits, and propose quantile aggregation
methods and analyze their properties.

Definition 4.1 (Collection of Splits). Consider the collection {(a,m),a∈A } of partitions of [N] =

{1, ...,N} into auxiliary sets a of cardinality N −n and main sets m of cardinality n. We generate
the collection independently of

Data := (Yi,Di,Xi)
N
i=1.
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Different partitions of [N] yield different estimands and estimators. To formalize this random-
ness, we consider A as a uniform random variable taking values a ∈ A , that is, A ∼U(A ). There-
fore, conditional on Data, the estimand θA is a random variable. In what follows, we will mainly
target our inference on the median value of θA. Furthermore, different partitions yield different
estimators θ̂A and approximate distributions for these estimators. Therefore, conditional on Data,
estimators θ̂A, p-values pA, and intervals [LA,UA] are all random variables. We will use quantile
aggregation methods to summarize them.

It is useful to recall some definitions of quantiles for discrete variables. For a random variable
X with law PX and k points of support, and index u ∈ (0,1), the lower and upper u-quantiles are
Qu(X) := inf{x ∈R : PX(X ⩽ x)⩾ u}, and Qu(X) := sup{x ∈R : PX(X ⩾ x)⩾ 1−u), respectively.
For wu := ⌊uk⌋/(⌊uk⌋+ ⌈uk⌉), we define

Qu(X) := wuQu(X)+(1−wu)Qu(X)

as the central quantile.17 If X is continuous, all three definitions coincide. To define upper, lower,
and central medians, we use u = 1/2 in the definitions above and M instead of Qu.

We now formally define the median-aggregated p-value.

Definition 4.2 (Median-Aggregated P-value). The median p-values for testing one-sided alterna-
tive hypotheses are

p± = M(p±A | Data).

The two-sided median p-value is p̄ = 2min(p+, p−).

Aggregation using lower median p-values was first proposed by Meinshausen et al. (2009) in
the context of split-sample hypothesis testing in linear regression with selection. Here we take the
central medians, since they are more likely to behave like regular p-values.18

We next define the quantile-aggregated point and interval estimators.

Definition 4.3 (Quantile-Aggregated Point and Interval Estimators). The median point estimator
is:

θ̂ := M[θ̂A | Data].

The β -quantile confidence interval is [L,U ], where

L := Qβ (LA | Data), U := Q1−β (UA | Data), β ⩽ 1/2.

We can interpret these definitions as risk-reducing inferential summaries.

17For example, the quantile function in R uses this definition (R Core Team, 2022).
18For example, the sample lower median of {U,1−U}, U ∼ U(0,1), obeys P(M < α) = 2α for α < 1/2. In

contrast, the central median obeys P(M < α)< α for α < 1/2.
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Lemma 4.1 (Risk Contraction). Consider any fixed target value θ ′ ∈ R. Then θ̂ is more concen-
trated near θ ′ than any single-split generated θ̂A:

E|θ̂ −θ
′|⩽ E|θ̂A −θ

′|. (4.2)

Set β = 1/2. Then the confidence set [L,U ] has the same concentration property:

E|U −θ
′|∨E|L−θ

′|⩽ E|UA −θ
′|∨E|LA −θ

′|. (4.3)

Moreover, for any β ∈ (0,1/2] the width of [L,U ] is weakly smaller than the worst-case width of
the sets across splits:

|U −L|⩽ max
a∈A

|Ua −La|. (4.4)

Analogous risk contraction properties hold for the mean aggregation, but we focus on medians
for robustness reasons.

In what follows, we study the formal inferential guarantees of [L,U ]. The default choice of β is
1/2, but we obtain useful theoretical guarantees for other choices β < 1/2 as well.

Principal Regularity Condition. As the main regularity condition, we assume approximate nor-
mality of the split-sample t-statistics:19

(R1) There exist a sequence of positive constants γ ′N ↘ 0 as (n,N)→ ∞, such that

sup
z∈R

|P{σ̂
−1
A (θ̂A −θA)< z}−Φ(z)|⩽ γ

′
N . (4.5)

Suppose that the data {(Yi,Zi,Di)}N
i=1 are generated as i.i.d. copies of (Y,Z,D). In this case, for

any a ∈ A :

P{σ̂
−1
A (θ̂A −θA)< z}= E

[
1

|A | ∑
a∈A

1(σ̂−1
a (θ̂a −θa)< z)

]
= P{σ̂

−1
a (θ̂a −θa)< z},

because the expression on the right does not depend on a ∈ A under the i.i.d. sampling. This
observation simplifies the verification of (R1) for least squares type estimators; see Lemma D.1.
While the i.i.d. case is our main focus, the main results in this section rely only on the conditions
labeled R, which are likely to hold more generally.

Below we give various theoretical guarantees for our inferential summaries using this condition
and adding more conditions to get stronger results.

19Here and below we use the standard error σ̂A instead of the theoretical standard deviation σA in all statements,
but we can exchange the two if σ̂A/σA →P 1, which holds under typical conditions, e.g. Lemma D.1.
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4.2. Hypothesis Testing with Multiple Splits. We start the analysis by testing homogeneous
hypotheses θA = θ0, which imply that θa does not vary with a. Suppose, for example, that we want
to test that the slope of the BLP is zero with probability one, β2A = 0, against the alternative β2A > 0
with positive probability. This problem amounts to both testing the heterogeneity in CATE and the
relevance of the ML score SA as a predictor. Another interesting hypothesis is whether β2A = 1,
with probability one, that is, whether SA is well-calibrated and needs no post-processing.

More generally, suppose we are testing the hypothesis

H0 : θA = θ0, (4.6)

with probability one, against H+
1 : θA > θ0 with positive probability. Testing using the median

p-value p+ will have power against the null when the majority of θa’s violate the null, so we can
interpret the rejection accordingly. Similarly, we can test against H−

1 : θA < θ0 or H1 : θA ̸= θ0 with
positive probability.

Below we establish the properties of the median p-values under (R1). To get the sharpest results,
we can invoke a concentration condition for approximate medians:

(R2) For all z = Φ−1(α), where the nominal level of interest α is in some closed sub-interval
of (0,1/4), and some sequences of positive constants γ ′′N ↘ 0 and non-negative constants
εn ↘ 0:

P
(

Q.5−εN (σ̂
−1
A (θA − θ̂A)|Data)< z

)
⩽ P

(
σ̂
−1
A (θA − θ̂A)< z

)
+ γ ′′N ,

P
(

Q.5−εN (σ̂
−1
A (θ̂A −θA)|Data)< z

)
⩽ P

(
σ̂
−1
A (θ̂A −θA)< z

)
+ γ ′′N .

(4.7)

This condition states that the approximate median over-the-splits t-statistics tend to concentrate
more than any single-split t-statistic. This condition is intuitive, but it is hard to give general
primitive conditions for it.20 We believe (4.7) is quite plausible. We verified it for typical values of
α < 1/4 numerically in various experiments that mimic empirical applications, and were unable
to find any counterexample.

Theorem 4.1 (Uniform Validity of Median-Aggregated P-Value). Suppose that the null hypothesis
H0 in (4.6) holds with probability one. Let p be either of {p+, p−, p̄}. (i) Suppose that approximate
normality (R1) holds, then

P(2p < α)⩽ α +o(1),

20When the t-stats are independent, then their median concentrates in a fixed interval around 1/2 with probability
approaching 1 exponentially fast; see DiCiccio et al. (2020). Therefore, the approximate median concentration condi-
tion holds. This happens when m’s are non-overlapping and some further homogeneity conditions hold. On the other
hand, suppose the p-values are the same asymptotically, then the inequality in the concentration condition binds, but
does not fail. This situation is not common in our context, though.
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where the o(1) depends only on γ ′N . (ii) Suppose in addition that the median concentration condi-
tion (R2) holds with εN = 0, then

P(p < α)⩽ α +o(1),

where the o(1) depends only on γ ′N and γ ′′N .

Therefore under the median concentration condition, the median p-values have the standard
property. Without the median concentration condition, the median p-values need to be multiplied
by 2. However, based on our computational experiments, median p-values are conservative even
for the nominal level α (once α < 1/4), mainly due to the concentration property holding with
γ ′′N < 0. We therefore do not recommend multiplying by 2; see also DiCiccio et al. (2020) for a
similar point. The exact form of o(1), given in the proof, allows us to convert the results into those
holding uniformly in a set of probability measures P. The proof of the first result partly relies on
the idea of Meinshausen et al. (2009) to use Markov inequality to bound quantiles of an arbitrary
collection of marginally uniform random variables.

4.3. Prediction Intervals with Multiple Splits. Outside of the settings with homogeneity, the
estimand θA is a random variable, and we might be interested in characterizing its typical values.
Our first approach serves this purpose, and is connected to conformal/permutation inference that is
commonly used for predicting unobserved outcomes (Hoeffding, 1952; Vovk et al., 2005; Barber
et al., 2022).

Here our goal is to have a prediction interval for θA, and the challenge we face is that θA is
not observed directly, which places us outside the standard conformal setting. However, for each
a ∈ A , we have a (random) confidence interval [La,Ua] that has the covering property:

P(θa < La)⩽ α/2+o(1), P(θa >Ua)⩽ α/2+o(1). (4.8)

This condition is implied by the basic regularity condition (R1) in our context.

We take the quantile-aggregated confidence interval [L,U ] as our prediction interval for θA.

Theorem 4.2 (Properties of the Prediction Interval). Suppose that (4.8) holds. Then

P(θA < L)⩽ β +α/2+o(1), P(θA >U)⩽ β +α/2+o(1),

where the o(1) terms are the same as in (4.8). Therefore, P(θA ∈ [L,U ])⩾ 1−2β −α −2o(1).

We can use the prediction interval [L,U ] to characterize the “majority” of the central values of
the random target θA that one could get from sample splitting. For this we set β = .25 and ”small”
α = o(1), then MP = [L,U ] has the property:

P(θA ∈ MP)⩾ .5−o(1). (4.9)



26 VICTOR CHERNOZHUKOV, MERT DEMIRER, ESTHER DUFLO, AND IVÁN FERNÁNDEZ-VAL

That is, MP contains majority of central values of θA. On the other hand, if we set β = 1/2, we
get a median aggregated interval

MI = [L,U ].

In this setting, we can think of MI as predicting the median of θA with small margin of error, if
α = o(1):

P(θA < L)⩽ 1/2+o(1) and P(θA >U)⩽ 1/2+o(1). (4.10)

The latter gives us a useful interpretation of median confidence intervals, and notably this interpre-
tation applies under the weakest possible regularity condition (R1) in our setting.

4.4. Confidence Intervals for Median Parameter with Multiple Splits. Instead of predicting
the “majority” of θA, we may focus the inference on a single target.

Definition 4.4 (Inferential Target). Our inferential target is the median estimand:

θ
∗ = M[θA|Data].

The choice of the target has the intuitive appeal of representing a typical value. Moreover, in
many cases, θA will concentrate around its median value θ ∗, making it an even more natural target.
What follows is the principal regularity condition that covers this concentration scenario.

(R3) For some positive sequences of constants rN ↘ 0 and γ ′′′N ↘ 0 as (n,N −n)→ ∞,

P
(
σ̂
−1
A |θ ∗−θA|> rN

)
⩽ γ

′′′
N . (4.11)

The concentration condition above is a convenient property for the interpretability of the in-
ference. Here the rate of concentration of θA around θ ∗ should be faster than the rate σ̂A of θ̂A

estimating θA. Thus, the concentration condition implicitly requires the auxiliary set a to be large
and the main set m to be small compared to a; so that randomness in the inferential target is small
compared to the size of the estimation error σ̂a in the main sample, which typically is proportional
to n−1/2.

The condition (R3) is high-level; we demonstrate the plausibility of this condition for the BLP
parameter in Appendix B.2 using notions of estimation and algorithmic stability. Estimation sta-
bility implies that θA concentrates around a fixed value θ•, in which case the median also concen-
trates around θ•. Estimation stability follows from the ML proxy SA being consistent for some
fixed proxy function s•, but not necessarily consistent for the true CATE. This condition can be
readily verified using statistical learning theory, as we do in Section 5 for causal learners of CATE.
The algorithmic stability condition is strictly weaker than estimation stability, though not as read-
ily available. Our use of these stability criteria is inspired by similar ideas in Wager et al. (2016),
Chernozhukov et al. (2021b), and Chen et al. (2022), applied to a different context. Appendix B.2
discusses all of this further.



GENERIC ML FOR FEATURES OF HETEROGENOUS TREATMENT EFFECTS 27

The following results summarize the properties of the proposed median confidence interval un-
der various conditions.

Theorem 4.3 (Properties of the Confidence Interval for θ ∗). Let β = 1/2. (i) Suppose that (R1)
and (R3) hold. Then,

P(θ ∗ ∈ [L,U ])⩾ 1−2α −o(1),

where o(1) depends only on γ ′N ,γ
′′′
N and rN . (ii) Suppose in addition that (R2) holds with εN =

2
√

γ ′′′N . Then,

P(θ ∗ ∈ [L,U ])⩾ 1−α −o(1),

where o(1) depends only on γ ′N ,γ
′′′
N ,γ ′′N and rN . (iii) In either case, the event θ ∗ ∈ [L,U ] implies

|θ ∗− θ̂ |⩽ |U −L|.

Under the strongest assumptions, the target θ ∗ is covered with a probability of at least 1 −
α − o(1). Under the minimal set of assumptions, the coverage probability is 1− 2α − o(1). In
our numerical results, the confidence intervals tend to be conservative even under the minimal
condition, with coverage exceeding 1−α . Therefore, using 1−α as the nominal level is our
recommended choice based on this evidence.

Comment 4.1 (Robustness of the Coverage Property). In our numerical results, the coverage prop-
erty is satisfied even if only (R1) holds. This suggests that it may be possible to establish the cov-
erage property under much weaker conditions. In particular, the coverage property holds without
the concentration conditions (R2) and (R3) if

P
(
|M(σ̂−1

A (θ̂A −θ ∗) | Data)|> z
)
⩽ P

(
|σ̂−1

A (θ̂A −θA)|> z
)
+ γ ′′′N . (4.12)

Perhaps surprisingly, this property does hold in numerical experiments even when θA does not
concentrate around θ ∗; see, e.g. Figure 2. However, formally demonstrating this property proved
difficult and remains an unresolved problem for future research.

4.5. Other Issues: Stratified Splitting, Small Variation of Proxies. The idea of stratified sample
splitting is to balance the proportions of treated and untreated units in both a and m samples so that
the proportion of treated units is equal to the experiment’s propensity scores across strata. This
balance potentially improves the performance of the inferential algorithms. Stratified sampling
formally requires us to replace the i.i.d. assumption with an i.n.i.d. assumption (independent but
not identically distributed observations). The inference results continue to apply as long as the
conditions (R1), (R2), (R3) hold. We conjecture that these conditions continue to be plausible
under stratified splitting.

Another issue is that the analysis may generate proxy predictors S that have little variation, so
we can think of them as “weak”. This causes some target parameters to be weakly identified, e.g.,
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FIGURE 2. A simple Monte-Carlo experiment illustrating inferential robustness
with and without concentration conditions.

NOTES. This example shows that the actual quantiles of the statistic M(σ̂−1
A (θ̂A − θ ∗) | Data) are

conservatively bounded by those of N(0,1) with concentration and without concentration. The
estimand θA is generated from U(0,K), with K = 1/

√
N in the left panel (almost homogeneous

case) or with K = 10 in the right panel (strong heterogeneous case). The estimator θ̂A is generated
as θA+1/|M|∑i∈M εi, where εi’s are i.i.d. exponential random variables centered to have mean zero.
The main sample indices M are randomly drawn from {1, ...,N} without replacement, with N = 600
and the subsample size n/N = 1/3. σ̂A is the classical standard error for the sample mean. In the
left figure we get 99.5% coverage, and in the right 98.2% coverage for the nominal level of 95%.
The results are based on 100 splits, and 1,000 replications.

the BLP parameter, leading to the potential breakdown of the basic normal approximation (4.5),
which our inferential results rely on. To avoid this issue, we can add small noise to the proxies
(jittering) so that inference results go through.

5. FURTHER CONSIDERATION: CAUSAL MACHINES THAT LEARN CATE BETTER

Our main proposal so far is to take proxies from any first stage black box machine and post-
process them to better target CATE and perform inference on functionals of CATE, such as the
BLP and GATES. But, can we design the machines to target CATE directly in the first stage? If
we can, then the post-processing methods of the previous section would mostly focus on providing
inference, and less on correcting biases of the first stage inputs. Building on Athey and Imbens
(2016), we propose two types of such causal machines, and connect them to the emerging literature
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on orthogonal machine learning, such as Nie and Wager (2020), Semenova et al. (2017), and Foster
and Syrgkanis (2019), among others.

5.1. Focusing ML Methods on CATE in Stage 1. We propose two options, taking ideas from
our stage 2 analysis to stage 1. Specifically, we can train ML proxies in the auxiliary sample based
on either:

(A) Minimizing w(Z)-weighted square prediction errors of Y using B and (D− p(Z))S;
(B) Minimizing square prediction errors of Y H on BH and S;

where B(Z) is now a technical “baseline” function of covariates Z, as described below, whose role
is to reduce noise in the learning problem.

Definition 5.1 (Causal Learners for Stage 1). We can solve either of:

(B,S) ∈ arg min
b∈B,s∈S

∑
i∈A

w(Zi)[Yi −b(Zi)−{Di − p(Zi)}s(Zi)]
2, (A)

(B,S) ∈ arg min
b∈B,s∈S

∑
i∈A

[YiHi −b(Zi)Hi − s(Zi)]
2, (B)

where w(Z) = [p(Z)(1− p(Z))]−1, and B and S are functional parameter spaces.

We can refer to the first causal learner as the weighted residual (WR) learner, and the second
causal learner as the HT learner. Examples of parameter spaces include spaces of linear functions
generated by a set of dictionary transformations of Z, reproducing kernels, linear combinations of
decision trees, neural networks, and others. In (A) the parameter spaces are meant, but not required,
to contain the functions z 7→ b̃0(Z) := b0(z)+ p(z)s0(z) and z 7→ s0(Z). In (B) the parameter spaces
are meant, but not required, to contain the functions z 7→ b̄0(Z) := b0(Z) + (1− p(z))s0(z) and
z 7→ s0(Z).

Both (A) and (B) improve over the standard predictive learners that predict Y using the best
approximation to E[Y | D,Z] in a given class, but not necessarily the best approximation to the
CATE s0(Z) itself, and may be of independent interest. Moreover, the loss functions in (A) and
(B) are also helpful for validation purposes, and choosing the best or aggregating classes of ML
methods for targeting the CATE function.

The proposal (B) generalizes and refines the strategy of Athey and Imbens (2016) of predicting
Y H using (a tree form of) S by introducing denoising by B. Semenova and Chernozhukov (2021)
developed a related HT strategy that applies series/sieve learners to the denoised HT-transformed
outcome, but it explicitly relies on consistent estimation of the regression function, unlike our
approach. We further discuss connections of proposal (A) to the unweighted residual learners of
Semenova et al. (2017), Nie and Wager (2020), and others below.21

21Both of our proposals appeared to be new around the first circulation of this paper as ArXiv:1712.04802. See
links to the recent literature below, which proposed related, but different ideas. Relative to the initial version of the
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Theorem 5.1 (Oracle Properties of the Population Objective Functions). Suppose that Y , b(Z),
s(Z), and w(Z) are square integrable. (1) Then, the expectations of the loss functions in (A) and
(B) are

Ew(Z)[Y −b(Z)− (D− p(Z))s(Z)]2 = E[s0(Z)− s(Z)]2 +C1b, (5.1)

E[Y H −b(Z)H − s(Z)]2 = E[s0(Z)− s(Z)]2 +C2b, (5.2)

where C1b := E[w(Z)(b̃0(Z)−b(Z))2]+C1 and C2b := E[w(Z)(b̄0(Z)−b(Z))2]+C2 for some con-
stants C1 and C2. (2) Therefore, the minimizers, say s•(Z), of the left-hand sides of (5.1) and (5.2)
over s ∈ S , if exist, also minimize the oracle loss function E[s0(Z)− s(Z)]2 over the same set.

Theorem 5.1 shows that the minimizers of the two loss functions provide the best approximation
in the mean-square sense to the actual CATE function s0(Z) in the class S . This property occurs
even though we do not observe s0(Z), and such performance is usually qualified as “oracle.” A
sufficient condition for the existence of minimizers is that the set S be convex and closed in the
L2(P) norm.

We illustrate the benefits of using the causal learning objectives (A) and (B) in Figure 3. In the
two panels, we compare the CATE learners derived from the standard predictive Random Forest
and Neural Network with the Causal Learners from Random Forests and Neural Network that solve
the objective functions (A) and (B). We find that the causal learners are better at approximating
the actual CATE function, thereby providing better proxies for CATE. The improvements in the
RMSE of approximating the CATE provided by the causal learners range from 21% to 55%.

Likewise, the left panel of Figure 4 shows that we can improve the standard predictive OLS by
the Causal OLS that solves the objective functions (A) and (B). Here we estimate linear models in
Z for the baseline function and CATE. The improvement in the RMSE of approximating the CATE
provided by causal OLS is about 35%. This finding might be of interest to researchers using OLS
in empirical work.

Finally, the right panel of Figure 4 shows that one can improve the Causal Forest by a causal
boosting step that solves the objective functions (A) and (B) by looking for a shallow forest devi-
ation away from the cross-fitted Causal Forest proxy. The improvements in the RMSE of approx-
imating the true CATE provided by this step are 54−63%. The explanation for this improvement
is that the Causal Forest, while explicitly targeting CATE, actually solves a different objective than
(A) or (B).22 We also verified that this improvement only applies when the propensity score is not
constant, like in this example.

paper, the current version contributes with several formal learning properties of (A) and (B). We are grateful to the
referees for suggesting that we develop these properties.

22In our understanding it performs a residual learning approach, but not the weighted residual learning approach,
which makes the method under-perform relative to the Forest Causal Learner based upon (A) or (B).
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FIGURE 3. Comparison of Predictive Machine Learners vs Causal Learners Based
on (A) and (B).

NOTES: The solid black curve is the CATE function s0(Z), and the solid grey (light) curve is the pre-
dictive learner S(Z) (PL) obtained by random forest and neural network. The dashed green and dot-
ted blue curves are estimators S(Z) produced by the causal learners of CATE based on solving objec-
tives (A) and (B) (CL-A and CL-B) . The underlying data is generated as Yi = b0(Zi)+s0(Zi)Di+ξi,
where ξi ∼ N(0,1/4), Zi ∼ U(0,1), Di is Bernoulli with success probability p(Z) = .1 · 1{Z <

1/2}+ .5 ·1{Z ⩾ 1/2}, b0(z) = z, s0(z) = cos(2πz), and i = 1, ..,500.

Comment 5.1 (Connections to the Literature). Residual learning like (A), but without weighting
by w(Z), appears in the debiased machine learning of Robinson’s partially linear model in Cher-
nozhukov et al. (2017).23 In the nonparametric setting, Nie and Wager (2020) and Semenova et al.
(2017) proposed the unweighted version of type (A) objection function around the same time as we
did ours (all appeared in December of 2017 in ArXiv). Both of these papers target CATE learning
in non-experimental settings. Their proposal does not use weighting by w(Z) as ours and therefore
does not provide the best approximation property to the CATE in population. However, it is easy to
verify that their proposal provides the best approximation to CATE weighted by p(Z)(1− p(Z)):

min
s∈S

E[p(Z)(1− p(Z))(s0(Z)− s(Z))2].

23Also called ”partialling out”, residual, and orthogonal learning, building upon classical econometric ideas due to
Frisch-Waugh-Lovell and Robinson (1988). Note Chernozhukov et al. (2017) presents other strategies as well, with
residual learning being just one of them.
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FIGURE 4. Comparison of OLS and Causal Forest as Predictive Learners vs OLS
Causal Learners and Forest Causal Learners Based on (A) and (B).

NOTES: The solid black curve is the CATE function s0(Z), and the solid grey (light) curve is the
predictive CATE learner S(Z) (PL) obtained by OLS and Causal Random Forest. The dashed green
and dotted blue curves are estimators S(Z) produced by the causal learners of CATE based on solving
objectives (A) and (B) (CL-A and CL-B) . The underlying data is generated in the same way as in
fig. 3.

In contrast to our proposal, this weighting gives relatively less attention to units that are either
more likely or less likely to be treated than units that are equally likely. While this property is
not appealing in general, in pure RCTs with constant propensity score p(Z), the objective function
above reduces to the best approximation to CATE. Moreover, weighting by w(Z) in (A) plays less
important role when s0 can be estimated consistently, as in Nie and Wager (2020), Semenova et al.
(2017), and Foster and Syrgkanis (2019). We are interested, however, in the high-dimensional
settings in which consistent learning of s0 might not be possible. Therefore, below we provide for-
mal estimation results for causal learners (A) and (B) under this “agnostic” setting. Our inference
methods of Section 4 also apply to the causal learners (A) and (B) used as first-stage proxies.

5.2. Learning Guarantees. The learning guarantees of the causal learners (A) and (B) follow
from the state-of-art statistical learning theory (Liang, Rakhlin, and Sridharan, 2015), in particular
through the use of the expected off-set Rademacher complexity (ORC).
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Liang et al. (2015) define the expected ORC of the function class H as:

Ro(A,H ,c) := E sup
h∈H

1
|A| ∑i∈A

[
eih(Zi)− ch(Zi)

2] ,
where {ei} are i.i.d. Rademacher variables taking values −1 and 1 with probability 1/2, that are
generated independently of the data {Zi}i∈A, and c > 0 is a positive constant. ORC is a statistical
measure of complexity that captures the ability of the functional class to fit i.i.d. Rademacher noise.
The more complex the class is, the higher the ORC. As shown in Liang et al. (2015), the expected
ORC naturally scales like d/|A|, where d is the effective dimension of the function class and |A| is
the sample size. For example, for linear classes, d is the actual dimension of the linear class; and
for VC classes, d scales like the VC dimension. Liang et al. (2015) show that ORC is the sharpest
characterization of complexity: in particular, the ORC is upper bounded by the standard critical
radii of function classes defined in terms of local Rademacher complexity (e.g., Wainwright, 2019)
or in terms of the standard uniform covering entropy (Dudley, 2000). This makes the ORC bounds
readily available for all function classes used in modern ML.

The following result establishes formal learning guarantees for causal learners in randomized
experiments under general settings that do not assume we can learn s0 consistently.

Theorem 5.2 (Near-Oracle Guarantees for Causal Learners). Suppose that Y , the elements of B

and S , and w(Z) are bounded in absolute values by K, and B and S are closed, convex, and
symmetric sets. The estimator S obtained as a solution of either (A) or (B) is as good as using the
best in class approximation, say s•(Z), up to an error expressed in terms of ORC:

0 ⩽ E[s•(Z)−S(Z)]2 ⩽ E[s0(Z)−S(Z)]2 −
oracle risk

E[s0(Z)− s•(Z)]2

excess risk

⩽CKRo(A,H ,cK), (5.3)

where CK and cK are positive constants that only depend on K, H := 4(w(Z)2B+Hw(Z)S ) for
type (A) loss, and H := 4(HB+S ) for type (B) loss.

The result shows that if the ORC of the functional parameter spaces is small, the excess risk of
this estimator relative to the oracle approximation to the CATE is small. Note that the lower bound
also bounds the distance of S to the oracle (best-in-class) s• predictor of the CATE. Therefore,
the bounds on the excess risk and distance readily follow from the existing characterization of the
ORC. For example, if H has VC type covering entropy with VC index d, then the ORC is of order
d/|A|.

Since the “base” functions B’s play only a noise-reducing rule, we can always select B to be no
more complex than S . For example, we can use B ⊆ S or pre-train B using a separate auxiliary
sample, in which case B is a singleton.24 In either case, learning the technical baseline function

24This also applies to cross-fitting, which is a better form of sample-splitting for practice.
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does not affect the rate of learning the oracle prediction s•; and the ORC is determined solely by
the complexity of S .

Comment 5.2 (Extensions of Theorem 5.2). The result of Theorem 5.2 follows from combining
Theorem 3 of Liang et al. (2015) with Theorem 5.1. We assumed boundedness conditions to make
the statement as simple as possible. Bounds on excess risk without the boundedness conditions
follow from Theorem 4 in Liang, Rakhlin, and Sridharan (2015). If the class S is not convex,
similar performance bound is attained by Audibert (2007)’s ”star” modification of the optimizer S,
by Theorems 3 and 4 by Liang et al. (2015). We refer to Liang et al. (2015) and Vijaykumar (2021)
for detailed general discussion.

5.3. Using Losses (A) and (B) for Choosing the Best ML Method. The loss functions (A) and
(B) can also be used to aggregate several learning methods using separate auxiliary subsets.25 To
fix ideas, suppose we have a set of methods giving scores Sk and Bk, k = 1, ...,K, where K is small,
obtained using a subset A1 ⊂ A. Then, we can combine these scores into

S(Z) =
K

∑
k=1

λ
S
k Sk(Z); B(Z) =

K

∑
k=1

λ
B
k Bk(Z),

and then we can learn the weights λ S and λ B by optimizing the loss functions (A) or (B) evaluated
on subset A2, such that A2 does not overlap with A1, e.g. A2 = A\A1.

Comment 5.3 (Learning Guarantee for Aggregation). Let λ̂ S and λ̂ B denote the weights learned
in this way. Then, another application of the results of Liang et al. (2015) for linear regression,
under the assumption that |Y |, |B|, |S|, |w(Z)| are all bounded by R, gives the excess risk bound:

E
[
s0(Z)−

K

∑
k=1

λ̂
S
k Sk(Z)

]2
−

oracle risk

min
{λ S

k }
K
k=1

E
[
s0(Z)−

K

∑
k=1

λ
S
k Sk(Z)

]2
⩽CRK/|A2|,

where CR is some constant that depends on R and |A2| is the sample size used to perform the
aggregation. Thus, if the right-hand side is small, the excess risk of this estimator relative to the
oracle aggregation method is negligible. Since the oracle aggregation risk here is weakly smaller
than the oracle risk of choosing the best prediction rule mink E[s0(Z)−Sk(Z)]2, convex aggregation
here is approximately better than choosing the best ML method.

Comment 5.4 (Large K). The method above gives a small excess risk when K/|A2| is small; oth-
erwise, the excess risk can be large. In the latter case, we can apply Lasso to select a sparse linear
combination of rules, and the sharp bounds on excess risk follow from Example 4 in Koltchin-
skii et al. (2011). Finally, we may choose the “best” machine learning algorithm using objective

25This is in contrast to our main proposal, where we choose the best ML method based on goodness-of-fit measures
in the second stage.
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functions (A) and (B) evaluated on the data subset A2. Results of Wegkamp et al. (2003) imply
certain good guarantees for the ”best” approach, but sharp bounds on the excess risk that scale like
logK/|A2| only hold for the ”star” modification of the ”best” method (Audibert, 2007).

6. APPLICATION: WHERE ARE NUDGES FOR IMMUNIZATION THE MOST EFFECTIVE?

We apply our methods to an RCT in India that was conducted to improve immunization and
provide detailed implementation algorithms. Our main specification reports median intervals (MI)
from causal learners via Boosting as described in Algorithm 6.2. We also estimate results using
predictive ML methods and report them in the Online Appendix C as they perform worse than the
causal learners. Finally, inferential results are robust to using prediction intervals for the majority
values (MP, reported in Online Appendix D). For the sample splitting, we allocate 1/3 of the
sample to the main sample.26

Immunization is widely believed to be one of the most cost-effective ways to save children’s
lives. Much progress has been made in increasing immunization coverage since the 1990s. For ex-
ample, according to the World Health Organization (WHO), global measles deaths have decreased
by 73% from 536,000 estimated deaths in 2000 to 142,000 in 2018. In the last few years, however,
global vaccination coverage has remained stuck at around 85% (until the COVID-19 epidemics,
when they plummeted). In 2018, 19.7 million children under the age of one year did not receive
basic vaccines. Around 60% of these children lived in ten countries: Angola, Brazil, the Demo-
cratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, the Philippines, and
Vietnam. The WHO estimates that immunization saves 2-3 million deaths every year and that an
additional 1.5 million deaths could be averted every year if global vaccination coverage improves
(this is comparable to 689,000 deaths from COVID-19 between January and August 2020).27

While most of the early efforts have been devoted to building an immunization infrastructure
and ensuring that immunization is available close to people’s homes, there is a growing recognition
that it is important to also address the demand for immunization. Part of the low demand reflects
deep-seated mistrust, but in many cases, parents seem to be perfectly willing to immunize their
children. For example, in our data for Haryana, India, among the sample’s older siblings who
should all have completed their immunization course, 99% had received polio drops, and about
90% had an immunization card. 90% of the parents claimed to believe immunization is beneficial,
and 3% claimed to believe it is harmful. However, only 37% of the older children had completed
the course and received the measles vaccine, according to their parents (which is likely to be an
overestimate), and only 19.4% had done so before the fifteen month of life, when it is supposed

26We find similar results using 1/2 splits. These results are available upon request.
27See WHO “10 facts on immunization”, https://www.who.int/features/factfiles/immunization/

facts/en/index1.html
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to be done between the 10th and the 12th month. It seems that parents lose steam over the course
of the immunization sequence, and nudges could be helpful to boost demand. Indeed, recent
literature cited in the introduction suggests that “nudges,” such as small incentives, leveraging the
social network, SMS, etc., may have a large effect on those services.

In 2017, Esther Duflo, one of the authors of this paper, led a team that conducted a large-scale
experiment with the government of Haryana in North India to test various strategies to increase the
takeup of immunization services. The government health system rolled out an e-health platform
designed by a research team and programmed by an MIT group (SANA health), in which nurses
collected data on which child was given which shot at each immunization camp. The platform was
implemented in over 2,000 villages in seven districts and provides excellent administrative data on
immunization coverage.28 From the individual data, we constructed the monthly sum of the number
of children eligible for the program (i.e., age 12 months or younger at their first vaccines) who
received each particular immunization at a program location. These children were aged between 0
and 15 months. This paper focuses on the number of children who received the measles shot, as it
is the last vaccine in the sequence and thus a reliable marker for full immunization.

Before the launch of the interventions, survey data were collected in 912 of those villages using a
sample of 15 households with children aged 1-3 per village. The baseline data covers demographic
and socio-economic variables and the immunization history of these children, who were too old
to be included in the intervention. In these 912 villages, three different interventions (and their
variants) were cross-randomized at the village level:

(1) Small incentives for immunization: parents/caregivers receive mobile phone credit upon
bringing children for vaccinations.

(2) Immunization ambassador intervention: information about immunization camps was dif-
fused through key members of a social network.

(3) Reminders: a fraction of parents/caregivers who had come at least one time received SMS
reminders for pending vaccinations of the children.

For each of these interventions, there were several possible variants: incentives were either low
or high and either flat or increasing with each shot; the immunization ambassadors were either
randomly selected or chosen to be information hubs, using the “gossip” methodology developed
by Banerjee et al. (2021), a trusted person, or both; and reminders were sent to either 33% or
66% of the people concerned. Moreover, each intervention was cross-cut, generating 75 possible
treatment combinations.

Banerjee et al. (2021) developed and implemented a two-step methodology to identify the most
cost-effective and the most effective policy to increase the number of children completing the full
course of immunization at the village level and estimate its effects (correcting for bias due to

28Banerjee et al. (2019) discuss validation data from random checks conducted by independent surveyors.
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TABLE 1. Selected Descriptive Statistics of Villages

All Treated Control

Outcome Variables (Village-Month Level)

Number of children who completed the immunization schedule 8.234 10.071 7.304

Baseline Covariates–Demographic Variables (Village Level)

Household financial status (on 1-10 scale) 3.479 3.17 3.627
Fraction Scheduled Caste-Scheduled Tribe (SC/ST) 0.191 0.199 0.188
Fraction Other Backward Caste (OBC) 0.222 0.207 0.23
Fraction Hindu 0.911 0.851 0.939
Fraction Muslim 0.059 0.109 0.035
Fraction Christian 0.001 0.003 0
Fraction Literate 0.797 0.786 0.802
Fraction Single 0.053 0.052 0.053
Fraction Married (living with spouse) 0.517 0.499 0.526
Fraction Married (not living with spouse) 0.003 0.003 0.003
Fraction Divorced or Separated 0.002 0.005 0
Fraction Widow or Widower 0.04 0.037 0.041
Fraction who received Nursery level educ. or less 0.152 0.154 0.151
Fraction who received Class 4 level educ. 0.081 0.08 0.082
Fraction who received Class 9 educ. 0.157 0.162 0.154
Fraction who received Class 12 educ. 0.246 0.223 0.257
Fraction who received Graduate or Other Diploma 0.085 0.078 0.088
Baseline Covariates–Immunization History of Older Cohort (Village Level)

Number of vaccines administered to pregnant mother 2.276 2.211 2.307
Number of vaccines administered to child since birth 4.485 4.398 4.527
Fraction of children who received polio drops 0.999 1 0.999
Number of polio drops administered to child 2.982 2.985 2.98
Fraction of children who received an immunization card 0.913 0.871 0.933
Fraction of kids who received Measles vaccine by 15 months of age 0.194 0.175 0.203
Fraction of kids who received Measles vaccine at credible locations 0.386 0.368 0.395
Number of Observations
Villages 103 25 78
Village-Months 844 204 640

the fact that the policy is found to be the best). First, they used a specific version of LASSO to
determine which policies are irrelevant and which policy variants can be pooled together. Sec-
ond, they obtained consistent estimates of this restricted set of pooled policies using post-LASSO
(Chernozhukov et al., 2015). They found that the most cost-effective policy (and the only one to
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TABLE 2. Comparison of Causal ML Methods: Immunization Incentives

Elastic Net Boosting Neural Network Random Forest

Best BLP (Λ) 67.750 32.900 53.420 25.200
[51.491, 82.368] [23.246, 44.665] [42.516, 67.647] [18.328, 34.705]

Best GATES (Λ̄) 8.254 5.104 6.001 4.492
[7.329, 9.314] [4.27, 6.079] [5.087, 6.888] [3.339, 5.507]

Notes: Medians over 250 splits. Note that we used Neural Network Causal Boosting for all methods,
using Algorithm 6.2. The brackets report interquartile ranges for goodness-of-fit statistics.

reduce the cost of each immunization compared to the status quo) is to combine information hub
ambassadors (trusted or not) and SMS reminders. But the policy that increases immunization the
most is the combination of information-hub ambassador, the presence of reminders, and increasing
incentives (regardless of levels). This is also the most expensive package, so the government was
interested in prioritizing villages: where should they scale up the full package? This is an excellent
application of this methodology because there was no strong prior.

We compare 25 treated villages where this particular policy bundle was implemented with 78
control villages that received neither sloped incentives and social network intervention nor re-
minder. Our data constitute an approximately balanced monthly panel of the 103 treated and
control villages for 12 months (the duration of the intervention). The outcome variable, Y , is the
number of children 15 months or younger in a given month in a given village who receive the
measles shot. The treatment variable, D, is an indicator of the household being in a village that
receives the policy. The covariates, Z, include 36 baseline village-level characteristics such as re-
ligion, caste, financial status, marriage and family status, education, and baseline immunization.
The propensity score is constant.

Table 1 shows sample averages in the control and treated groups for some of the variables used
in the analysis weighted by village population, as the rest of the analysis. Treatment and control
villages have similar baseline characteristics (in particular, the immunization status of the older
cohort was similar). The combined treatment was very effective on average. During the course
of the intervention, on average, 7.30 children per month aged 15 months or less got the measles
shot that completes the immunization sequence in control villages, and 10.08 did so in treatment
villages. This is a raw difference of 2.77 or 38% of the control mean. Note that while these effects
are not insignificant, we are far from reaching full immunization: The baseline survey suggests that
about 38% of children aged 1-3 had received the measles shot at baseline, and 19.4% had received
it before they turned 15 months. These estimates imply that the fraction getting their measles shot
before 15 months would only go up to 26.7%(19.4+0.38∗19.4).
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TABLE 3. BLP of Immunization Incentives Using Causal Proxies

Elastic Net Neural Network

ATE (β1) HET (β2) ATE (β1) HET (β2)

2.814 1.047 2.441 0.899
(1.087,4.506) (0.826,1.262) (0.846,3.979) (0.685,1.107)

[0.004] [0.000] [0.004] [0.000]

Notes: Medians over 250 splits. Median Confidence Intervals (α = .05) in parenthesis. P-values for
the hypothesis that the parameter is equal to zero against the two-sided alternative in brackets.

The implementation details for the heterogeneity analysis follow Algorithm 6.1 below, with
three characteristics due to the design: we weight village-level estimations by village population,
include district–time fixed effects, and cluster standard errors at the village level. Table 2 compares
the four ML methods for producing proxy predictors S(Zi) using the criteria in (3.11) and (3.12).
We find that Elastic Net and Neural Network outperform the other methods, with Elastic Net
beating Neural Network by a smaller margin than the other methods. Accordingly, we shall focus
on these two methods for the rest of the analysis.

Table 3 presents the results of the BLP of CATE on the ML proxies. We report estimates of the
coefficients β1 and β2, which correspond to the ATE and heterogeneity loading (HET) parameters
in the BLP. The ATE estimates in Columns 1 and 3 indicate that the package treatment increases
the number of immunized children by 2.81 based on elastic net estimates and by 2.44 based on
neural network estimates. Reassuringly, these estimates are on either side of the raw difference
in means (2.77). Focusing on the HET estimates, we find strong heterogeneity in treatment ef-
fects, as indicated by the statistically significant estimates. Moreover, the estimates are close to 1,
suggesting that the ML proxies are good predictors of the CATE.

Next, we estimate the GATES by quintiles of the ML proxies. Figure 5 presents the estimated
GATES coefficients γ1 − γ5 along with joint confidence bands and the ATE estimates. In Table 4
we present the result from the hypothesis test that the difference of the ATE for the most and least
affected groups is statistically significant. We find that this difference is 21.60 and 18.13 based on
elastic net and neural network methods, respectively, and is statistically significant. Given that the
ATE estimates in the whole population are about 2.5, these results suggest a large and potentially
policy-relevant heterogeneity.

The analysis so far reveals very large heterogeneity, with two striking results. First, the results
are very large for the most affected villages. In these villages, an average of 13.23 extra children
eligible for baseline incentives get the measles vaccines every month (starting from a mean of 2.19
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FIGURE 5. GATES of Immunization Incentives
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Notes: GATES of Immunization Incentives, based upon Causal Learners. Median point estimates
and Median confidence interval (α = .05) in parenthesis, over 250 splits.

TABLE 4. GATES of 20% Most and Least Affected Groups

Elastic Net Nnet

20% Most 20% Least Difference 20% Most 20% Least Difference
(G5) (G1) (G5) (G1)

GATE 13.230 -8.000 21.60 11.210 -6.551 18.13
γk := Ê[s0(Z) | Gk] (8.219,18.67) (-13.41,-2.574) (13.70,29.74) (7.721,14.47) (-10.37,-2.786) (12.84,23.52)

[0.000] [0.009] [0.000] [0.000] [0.002] [0.000]

Control Mean 2.19 12.68 -10.56 1.19 10.32 -9.17
:= Ê[b0(Z) | Gk] (1.27,3.06) (11.73,13.59) (-11.84,-9.38) (0.44,1.87) (9.65,11.02) (-10.17,-8.14)

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

Notes: Medians over 250 splits. Median confidence interval (α = .05) in parenthesis. P-values for
the hypothesis that the parameter is equal to zero against the two-sided alternative in brackets.

in the elastic net estimation). Second, the impact is negative and significant in the least affected
villages (an average decline of 8.00 immunization per month, starting from 12.68 in the elastic net
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TABLE 5. CLAN of Immunization Incentives

Elastic Net Nnet

20% Most 20% Least Difference 20% Most 20% Least Difference
(δ5) (δ1) (δ5 −δ1) (δ5) (δ1) (δ5 −δ1)

Number of vaccines 2.187 2.277 -0.081 2.174 2.285 -0.112
to pregnant mother (2.115,2.259) (2.212,2.342) (-0.180,0.015) (2.111,2.234) (2.224,2.345) (-0.202,-0.028)

- - [0.190] - - [0.019]
Number of vaccines 4.077 4.639 -0.562 4.264 4.734 -0.490
to child since birth (3.858,4.304) (4.444,4.859) (-0.863,-0.260) (4.091,4.434) (4.549,4.900) (-0.739,-0.250)

- - [0.001] - - [0.000]
Fraction of children 0.998 1.000 -0.002 1.000 1.000 0.000
received polio drops (0.995,1.001) (0.997,1.003) (-0.006,0.002) (1.000,1.000) (1.000,1.000) (0.000,0.000)

- - [0.683] - - [0.943]
Number of polio 2.955 2.993 -0.037 2.965 2.998 -0.032
drops to child (2.935,2.974) (2.976,3.010) (-0.063,-0.010) (2.953,2.977) (2.985,3.010) (-0.049,-0.016)

- - [0.013] - - [0.000]
Fraction of children 0.803 0.926 -0.121 0.908 0.927 -0.027
received immunization card (0.754,0.851) (0.882,0.969) (-0.187,-0.054) (0.881,0.932) (0.898,0.959) (-0.059,0.007)

- - [0.001] - - [0.217]
Fraction of children received 0.133 0.243 -0.106 0.126 0.260 -0.131
Measles vaccine (0.097,0.169) (0.209,0.276) (-0.153,-0.056) (0.095,0.159) (0.228,0.291) (-0.176,-0.085)
by 15 months of age - - [0.000] - - [0.000]

Fraction of children received 0.293 0.399 -0.110 0.289 0.433 -0.142
Measles vaccine (0.246,0.338) (0.358,0.444) (-0.174,-0.045) (0.246,0.331) (0.391,0.475) (-0.206,-0.084)
at credible locations - - [0.002] - - [0.000]

Notes: Medians over 250 splits. Median confidence interval (α = .05) in parenthesis. P-values for
the hypothesis that the parameter is equal to zero against the two-sided alternatives in brackets.

estimation). It looks like in some contexts, the combined package of small incentives, reminders,
and persuasion by members of the social network put people off immunization.

Given these large differences, it is important to determine whether this heterogeneity seems to
be associated with pre-existing characteristics. To answer this question, we ask what variables
are associated with the heterogeneity detected in BLP and GATES via CLAN. Table 5 reports the
CLAN estimates for a selected set of covariates and Tables 1–2 in Online Appendix B for the rest
of covariates. Regardless of the method used, the estimated differences in the means of most and
least affected groups for the number of vaccines to child since birth, number of polio drops to child,
the fraction of children receiving measles vaccines by 15 months of age, and fraction of children
receiving measles vaccine at credible locations, are negative and statistically significant. Those are
various measures of pretreatment immunization levels, all survey-based, that have nothing to do
with our measure of impact. These results suggest that the villages with low levels of pretreatment
immunization are the most affected by the incentives. These are, in fact, the only variables that
consistently pop up from the CLAN. Thus, in this instance, the policy preferred ex-ante by the
government (since it is equality-enhancing) also happens to be the most effective.
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While the heterogeneity associated with the baseline immunization rates cannot be causally
interpreted (it could always be proxying for other things), it still sheds light on the negative effect
we find for the least affected group. Note that this effect is not mechanical. Even in the least
affected villages, there was a good number of children who did not receive the measles shot, and
they were not close to reaching full immunization, where they could not have experienced an
increase. It may be that it would have been difficult to vaccinate 13.23 extra children every month,
but there was scope to experience an increase in immunization. We had no prior on that the effect
would be larger in the villages with the lowest immunization rate. On the contrary, immunization
rates could have been low precisely because parents were more doubtful about immunization. For
example, immunization is particularly low in Muslim-majority villages, which is believed to reflect
their lack of trust in the health system. There were, therefore, reasons to be genuinely uncertain
about where immunization would have had the largest effect.

One possible interpretation of the negative impact in some villages is that villagers were intrin-
sically motivated to get immunized. The nudging with small incentives and mild social pressure
may have backfired, crowding out intrinsic motivation without providing a strong enough extrinsic
motivation to act as in Gneezy and Rustichini (2000). A point estimate of 13.23 extra immuniza-
tion per month in the most affected group might seem high: a multiplication by 6.0 of the baseline
level (based on the elastic net specification). This increase in immunizations is not inconsistent
with the literature: in a set of villages with a very low immunization rate in Rajasthan, Baner-
jee et al. (2010) find that small incentives increase immunization from 18% to 39% (relative to a
treatment that just improves infrastructures, and 6% relative to the control group) in a low immu-
nization region (in the entire sample, not in the places where it is most effective), which was also a
very large increase. Given the restrictions imposed on the data set (only children 1 year or less at
their first immunization were included), the data cover children who were 15 months or younger
when getting the measles shot. Among the older cohort in the most affected group, only 12.7% of
children were vaccinated before 15 months. Taking this as a benchmark for the control group, the
estimate would still imply that only 64% of the treatment group was immunized before 15 months:
a big improvement but not implausible.

Our last exercise is to compute the cost-effectiveness of the program in various groups. To do so,
we compute in each village the average number of immunizations delivered per dollar spent in a
month in each group. The dollar spent is the fixed cost to run an immunization program per month
(nurse salaries, administrative overheads, etc.) plus the marginal cost of each vaccine multiplied
by the number of vaccines administered (incentives distributed to local health workers, vaccines
doses, syringes, etc.) in both treatment and control villages, plus the extra cost of running each
particular treatment (the cost of the tablets used for recording in all the treatment villages, the cost
of contacting and enrolling the ambassadors, and the cost of the incentives). We then estimate the
cost-effectiveness in each GATES group as E[X(1)−X(0) | Gk], where X is the immunizations per
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TABLE 6. Cost Effectiveness in GATE quintiles

Elastic Net Nnet
Mean in Treatment Mean in Control Difference Mean in Treatment Mean in Control Difference

(Ê[X | D = 1,Gk]) (Ê[X | D = 0,Gk]) (Ê[X | D = 1,Gk]) (Ê[X | D = 0,Gk])

Imm. per dollar (G1) 0.034 0.047 -0.013 0.033 0.047 -0.014
(0.030,0.037) (0.045,0.048) (-0.017,-0.009) (0.029,0.036) (0.045,0.049) (-0.018,-0.010)
- - [0.000] - - [0.000]

Imm. per dollar (G2) 0.031 0.044 -0.013 0.035 0.044 -0.009
(0.027,0.036) (0.042,0.046) (-0.018,-0.008) (0.031,0.039) (0.042,0.046) (-0.014,-0.005)
- - [0.000] - - [0.000]

Imm. per dollar (G3) 0.037 0.043 -0.007 0.037 0.043 -0.006
(0.033,0.041) (0.041,0.046) (-0.011,-0.002) (0.034,0.041) (0.041,0.045) (-0.010,-0.001)
- - [0.015] - - [0.022]

Imm. per dollar (G4) 0.039 0.039 -0.001 0.038 0.041 -0.004
(0.036,0.042) (0.036,0.042) (-0.005,0.004) (0.034,0.041) (0.038,0.044) (-0.008,0.000)
- - [1.000] - - [0.163]

Imm. per dollar (G5) 0.036 0.035 0.001 0.035 0.034 0.001
(0.031,0.041) (0.030,0.040) (-0.006,0.008) (0.031,0.040) (0.029,0.040) (-0.006,0.008)
- - [1.000] - - [1.000]

Notes: Medians over 250 splits. Median confidence interval (α = .05) in parenthesis. P-values for
the hypothesis that the parameter is equal to zero against two-sided alternative in brackets.

dollar. E[X(1)−X(0) |Gk] =E[X |D= 1,Gk]−E[X |D= 0,Gk] by the randomization assumption,
and we can estimate each of E[X | D = 1,Gk] and E[X | D = 0,Gk] analogously to CLAN, that is by
taking sample averages within treatment groups for each sample split and aggregating over sample
splits.

The results are presented in Table 6. They highlight the crucial importance of treatment effect
heterogeneity for policy decisions in this context. Overall, as shown in Banerjee et al. (2021) the
treatment is not cost-effective compared to the control (the immunization per dollar spent goes
down). This analysis reveals that this is driven (not surprisingly) by negative impacts on cost-
effectiveness in the groups where it is least effective. However, in the fourth and fifth quintile
of cost-effectiveness, we cannot reject that the immunization per dollar spent is the same in the
control group and in the treatment group, despite the added marginal cost of the incentives and the
vaccines: this is because the fixed cost of running the program is now spread over a larger number
of immunizations.

We also performed the following additional analysis. Since the main result in Banerjee et al.
(2021) is that the most cost-effective option on average is the combination of SMS plus Information
hubs, an alternative policy question may therefore be whether there are places where it may be
more cost-effective to add the incentives to this cheaper treatment. We replicated the heterogeneity
analysis comparing these two treatments and looked at the cost-effectiveness of GATES in these
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two options. There is also considerable heterogeneity in this comparison (see Online Appendix
Figure 1). The results for cost-effectiveness are shown in Table 3 in the Online Appendix. There,
again, we find that in the two quintiles where adding incentives is most effective, it would need to
be cost-effective, even compared to an alternative status quo of just having SMS and information
hubs.

6.1. Implementation. We describe two general algorithms and provide some specific implemen-
tation details for the empirical example.

Algorithm 6.1 (Inference Algorithm). The inputs are given by the data {(Yi,Di,Zi, p(Zi)} on
units i ∈ [N] = {1, ...,N}. Fix the number of splits NS and the significance level α , e.g. NS = 250
and α = 0.05. Fix a set of ML or Causal ML methods.

1. Generate NS random splits of [N] into the main sample, M, and the auxiliary sample, A. Over
each split apply the following steps:

a. Using A, train each ML method and output predictions B and S for M.
b. Optionally, choose the best or aggregate ML methods using the results of Section 5.
c. Estimate the BLP parameters via WR BLP (3.3) or HT BLP (3.5) in M.
d. Estimate the GATES parameters by WR GATEs (3.7) or HT GATEs (3.9) in M.
e. Estimate the CLAN parameters by taking averages (3.10) in M.
f. Compute the goodness of fit measures via (3.13) in M.

2. If the winning ML methods were not chosen in Step 1b, median-aggregate the goodness-of-fit
measures and choose the best ML methods.

3. Compute and report the quantile-aggregated point estimates, p-values, and confidence in-
tervals of Section 4. If Step 2 is used, compute and report the union of these statistics for all
winners.

Comment 6.1. (Choices) We choose NS sufficiently large to get enough representative values of
the estimates of the target parameter values. In our experience, 250 splits are more than sufficient to
obtain stable results in the sense that the point and interval estimates are not sensitive to increasing
the number of splits in the empirical application. We followed a version of the algorithm with Step
2 and without Step 1a. Note that it is also possible to choose the best methods using a hold out
sample using either the loss functions of Section 5 or the goodness-of-fit measures of Section 3.
More research is needed to determine better practice for choosing the best ML methods.

We implemented our causal learners via a boosting approach that looks for relatively simple
deviations from the initial predictive learner to improve CATE predictions. The reason is that this
approach performed better in our simulation experiments than directly solving the objective func-
tions (A) and (B) over large parameter spaces. We also observed that this boosting implementation
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performed better in the empirical example. The performance improvement occurs because the
objective functions (A) or (B) tend to be much noisier than the objective functions in predictive
learning and harder to tune. The following algorithm summarizes the implementation.

Algorithm 6.2 (Causal Learner via Boosting). The inputs are given by data {Yi,Di,Zi, p(Zi)} on
units i ∈ A ⊂ {1, ...,N}. Fix a predictive learner. Fix deviation (or boosting) parameter spaces:
B∆ and S∆ that contain functions z 7→ b∆(z) and z 7→ s∆(z), mapping the support of Z to the real
line.

1. Train the predictive learner on the input, and output the base proxy function z 7→ BA(z) and
CATE proxy function z 7→ SA(z).

2. Solve the objective function (A) or (B) for the parameter sets B = {BA+b∆,b∆ ∈B∆} and
S = {SA + s∆,s∆ ∈ S∆}, and update z 7→ SA(z) and z 7→ BA(z) to be the solution.

3. Optionally, iterate on step 2 a few times.

Ideally, step 1 of the algorithm should make use of cross-fitting, but we present a simplified
version for clarity.

Comment 6.2 (Choices for Computational Experiments). We use simple deviation parameter
spaces with low complexity (small ORC). For example, in the computational experiments reported
in Figures 3 and 4, we made the following choices: for Causal Neural Network (NN) Learner, we
used shallow, regularized NN as deviation spaces when the predictive learner was NN; for For-
est Causal Learner, we used the shallow forest as the deviation space when the predictive learner
was Random Forest; for Causal OLS Learner, we used linear deviation space, when the predic-
tive learner was OLS. Finally, when we used Causal Forest as the predictive learner, we used the
shallow forest as the deviation space to obtain the Forest Causal Learner.29 We have also experi-
mented with hybrid versions, for example, using one type of predictive learner and a different type
of booster (for example, RF plus NN as a causal boost or Elastic Net plus NN as a casual boost).

Comment 6.3 (Choices for Empirical Example). We used simple, regularized neural networks as
deviation spaces in all results. The number of neurons was kept less than or equal to 10 and was
chosen based on cross-validating the objective function of type (A) over auxiliary data subsamples.
We used this choice regardless of the predictive ML as the starter. Causal Learners constructed
in this way improved the performance of each predictive ML method, raising the goodness of fit
metrics by 5-10% in relative terms. However, they did not have any qualitative impact on empirical
results (we report the results for predictive learners in Online Appendix C).

29As this may sound confusing, we note that that Forest Causal Learners (FCL) differ from Causal Random Forests
(CRF) in stratified experiments as FCL are based on weighted residualization whereas CRF are based on unweighted
residualization of Nie and Wager (2020). Therefore we use a slightly different name “Forest Causal Learner” rather
than “Causal Forest” to distinguish the proposal.



46 VICTOR CHERNOZHUKOV, MERT DEMIRER, ESTHER DUFLO, AND IVÁN FERNÁNDEZ-VAL

Comment 6.4 (Predictive ML Methods). We considered four ML methods to estimate the proxy
predictors: elastic net, boosted trees, neural network with feature extraction, and random forest.
The ML methods are implemented in R using the package caret (Kuhn, 2008). The names of the
elastic net, boosted tree, neural network with feature extraction, and random forest methods in
caret are glmnet, gbm, pcaNNet and rf, respectively. For each split of the data, we choose the
tuning parameters separately for B(z) and S(z) based on mean squared error estimates of repeated
2-fold cross-validation, except for random forest, for which we use the default tuning parameters to
reduce the computational time.30 In tuning and training the ML methods we use only the auxiliary
sample. In all the methods we rescale the outcomes and covariates to be between 0 and 1 before
training.

7. CONCLUSION AND EXTENSIONS

We propose to focus inference on key features of heterogeneous effects in randomized experi-
ments, and develop the corresponding methods. These key features include best linear predictors
of the effects and average effects sorted by groups, as well as average characteristics of most and
least affected units. Our approach is valid in high dimensional settings, where the effects are esti-
mated by machine learning methods. The main advantage of our approach is its agnostic nature;
it avoids making strong assumptions. Estimation and inference relies on data splitting, where the
latter allows us to avoid overfitting and all kinds of non-regularities. Our inference aggregates the
results across many splits, reducing the replication risks, and could be of independent interest. An
empirical application illustrates the practical use of the approach.

Our hope is that applied researchers use the method to discover whether there is heterogeneity
in their data in a disciplined way. A researcher might be concerned about the application of our
method due to the possible power loss induced by sample splitting. This power loss is the price
to pay when the researcher is not certain or willing to fully specify the form of the heterogeneity
prior to conducting the experiment. Thus, if the researcher has a well-defined pre-analysis plan
that spells out a small number of heterogeneity groups in advance, then there is no need of splitting
the sample.31 However, this situation is not common. In general, the researchers might not be
able to fully specify the form of the heterogeneity due to lack of information, economic theory, or

30We have the following tuning parameters for each method: Elastic Net: alpha (Mixing Percentage), lambda (Reg-
ularization Parameter), Boosted trees: n.trees (Number of Boosting Iterations), interaction.depth (Max Tree Depth),
shrinkage (Shrinkage), n.minobsinnode (Min. Terminal Node Size), size (Number of Hidden Units) , decay (Weight
Decay), mtry (Number of Randomly Selected Predictors).

31More generally, the plan needs to specify a parametric form for the heterogeneity as a low dimensional function
of pre-specified covariates (e.g., Chernozhukov et al., 2015). In this case, ML tools can still be used to efficiently
estimate the CATEs in the presence of control variables but are not required to detect heterogeneity (Belloni et al.,
2017; Chernozhukov et al., 2017).
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willingness to take a stand at the early stages of the analysis. They might also face data limita-
tions that preclude the availability of the desired covariates. Here we recommend the use of our
method to avoid overfitting and p-hacking, and impose discipline to the heterogeneity analysis at
the cost of some power loss due to sample splitting.32 If discovering and exploiting heterogeneity
in treatment effect is a key goal of the research, the researcher should indeed plan for larger sam-
ple sizes (relative to just testing whether the treatment has an effect), but the required sample size
remains within the realm of what is feasible in the field. In many applications we are aware of,
there was apparent heterogeneity according to some covariates of interest, but the disciplined ML
heterogeneity exercise found no systematic difference. This could be because this heterogeneity
was a fluke, or because the method does not have the power to detect it in a small sample. In any
case, what this experience suggests is that one should not rely on ex-post heterogenous effects in
such cases.

The application to immunization in India is of substantive interest. Our findings suggest that
a combination of small incentives, relay by information hub, and SMS reminders can have very
large effect on vaccine take up in some villages where immunization was low at baseline, and even
be more cost-effective than the status quo, but can also backfire in other places. This suggests that
these type of strategy need to be piloted in the relevant context before being rolled out, and that
heterogeneity needs to be taken into account.

Extensions to Unbiased Signal Framework. Our inference approach generalizes to any problem
of the following sort, studied in Semenova and Chernozhukov (2021) using more conventional
inference approaches. Suppose we can construct an unbiased signal Ỹ such that

E[Ỹ | Z] = s0(Z),

where s0(Z) is now a generic target function. Let S(Z) denote an ML proxy for s0(Z). In exper-
imental settings the unbiased signals arise from multiplying an outcome with a Riesz representer
for the effect of interest, as we explain below.

Then, using previous arguments, we immediately can generate the following conclusions:

(1) The projection of Ỹ on the ML proxy S(Z) identifies the BLP of s0(Z) on S(Z).
(2) The grouped average of the target (GAT) E[s0(Z) | Gk] is identified by E[Ỹ | Gk].
(3) Using ML tools we can train proxy predictors S(Z) to predict Ỹ in auxiliary samples.
(4) We can post-process S(Z) in the main sample, by estimating the BLP and GATs.

32It is not clear whether this loss is real though, as we are not aware of any alternative method that avoids sample
splitting and that works at the same level of agnosticism as ours. In a previous version of the paper we provided a
numerical example using a simple parametric model where standard methods without sample splitting are available.
We find that the extent of the power loss for not using the parametric form of the heterogeneity roughly corresponds
to reducing the sample size by half in a test for the presence of heterogeneity, although the exact comparison depends
on features of the data generating process.
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(5) We can perform split-sample robust inference on functionals of the BLP and GATs.

Example 1 ( Forecasting or Predicting Regression Functions using ML proxies). This is the most
common type of the problem arising in forecasting. Here the target is the best predictor of Y using
Z, namely s0(Z) = E[Y | Z], and Ỹ = Y trivially serves as the unbiased signal. The interesting part
here is the use of the inference tools developed in this paper for constructing confidence intervals
for the predicted values produced by the estimated BLP of s0(Z) using S(Z).

Example 2 (Predicting Structural Derivatives using ML proxies). Suppose we are interested in
predicting the conditional average partial derivative s0(z) = E[g′(D,Z) | Z = z], where g′(d,z) =
∂g(d,z)/∂x and g(d,z) = E[Y | D = d,Z = z]. In the context of demand analysis, Y is the log
of individual demand, D is the log-price of a product, and Z includes prices of other products
and individual characteristics. Then, the unbiased signal is given by Ỹ = −Y [∂ log p(D | Z)/∂d],
where p(· | ·) is the conditional density function of D given Z, which is known if D is generated
experimentally conditional on Z. That is, using the integration by parts formula, E[Ỹ | Z] = s0(Z)
under mild conditions on the density.

Example 3 (Other Causal Objects). Chernozhukov et al. (2018) presented a number of other exam-
ples where a causal parameter of interest s0(Z) is expressed as a linear functional of the regression
function g(D,Z) = E[Y | D,Z], that is, s0(Z) = E[m(Y,D,Z,g) | Z], for some moment function m
that is linear in g; this includes the examples above for instance. Then, under mild conditions, we
can construct an unbiased signal

Ỹ = Y α(D,Z), (7.1)

where α(D,Z) is the Riesz Representer, such that E[Y α(D,Z) | Z] = s0(Z). For instance, in CATE,
the representer α(D,Z) is the HT transform H; in Example 2, α(D,Z)= [∂ log p(X | Z)/∂x]; and in
Example 1, the representer α(D,Z) is just 1. In addition to these examples, other examples that fall
in this framework include causal effects from transporting covariates and from distributional shift
in covariates induced by policies; see Chernozhukov et al. (2018) for more details. In experimental
settings, α(D,Z) will typically be known.

The noise reduction strategies, like the ones we used in the context of H-transformed outcomes,
can be useful in these cases as well. For this purpose we can use terms of the form {α(D,Z)−
E[α(D,Z) | Z]}B(Z) for denoising where α(D,Z) now plays the same role as H before.
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APPENDIX A. PROOFS OF SECTION 3

Proof of Theorem 3.1. The subset of the normal equations, which correspond to α := (α1,α2)
′,

are E[w(Z)(Y −α ′
0X1 −α ′X2)X2] = 0. Substituting Y = b0(Z)+ s0(Z)D+U , and using the defini-

tion X2 = X2(Z,D) = [D− p(Z),(D− p(Z)(S−ES)]′, X1 = X1(Z), and the law of iterated expec-
tations, we notice that:

E[w(Z)b0(Z)X2] = E[w(Z)b0(Z)E[X2(Z,D) | Z]
=0

] = 0,

E[w(Z)UX2] = E[w(Z)E[U | Z,D]

0

X2(Z,D)] = 0,

E[w(Z)X1X2] = E[w(Z)X1(Z)E[X2(Z,D) | Z]
=0

] = 0.

Hence the normal equations simplify to: E[w(Z)(s0(Z)D−α ′X2)X2] = 0. Since

E[{D− p(Z)}{D− p(Z)} | Z] = p(Z)(1− p(Z)) = w−1(Z),

and S = S(Z), the components of X2 are orthogonal by the law of iterated expectations:

E[w(Z)(D− p(Z))(D− p(Z))(S−ES)] = E(S−ES) = 0.

Hence the normal equations above further simplify to

E[w(Z){s0(Z)D−α1(D− p(Z))}(D− p(Z))] = 0,
E[w(Z){s0(Z)D−α2(D− p(Z))(S−ES)}(D− p(Z))(S−ES)] = 0.

Solving these equations and using the law of iterated expectations, we obtain

α1 =
E[w(Z){s0(Z)D(D− p(Z))]}

E[w(Z)(D− p(Z))2]
=

E[w(Z)s0(Z)w−1(Z)]
E[w(Z)w−1(Z)]

= Es0(Z),

α2 =
E[w(Z){s0(Z)D(D− p(Z))(S−ES)}]

E[w(Z)(D− p(Z))2(S−ES)2]

=
E[w(Z)s0(Z)w−1(Z)(S−ES)]

E[w(Z)w−1(Z)(S−ES)2]
=

Cov(s0(Z),S)
Var(S)

.

The conclusion follows by noting that these coefficients also solve the normal equations

E{[s0(Z)−α1 −α2(S−ES)][1,(S−ES)]′}= 0,

which characterize the optimum in the problem of best linear approximation/prediction of s0(Z)
using S. ■
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Proof of Theorem 3.2. The subset of the normal equations, which correspond to µ := (µ1,µ2)
′,

are E[(Y H−µ ′
0X1H−µ ′X̃2)X̃2] = 0. Substituting Y = b0(Z)+s0(Z)D+U , and using the definition

X̃2 = X̃2(Z) = [1,(S(Z)−ES(Z))]′, X1 =X1(Z), and the law of iterated expectations, we notice that:

E[b0(Z)HX̃2(Z)] = E[b0(Z)E[H(D,Z) | Z]
=0

X̃2(Z)] = 0,

E[UHX̃2(Z)] = E[E[U | Z,D]

0

H(D,Z)X̃2(Z)] = 0,

E[X1(Z)HX̃2(Z)] = E[X1(Z)E[H(D,Z) | Z]
=0

X̃2(Z)] = 0.

Hence the normal equations simplify to: E[(s0(Z)DH − µ ′X̃2)X̃2] = 0. Since 1 and S − ES are
orthogonal, the normal equations above further simplify to

E{s0(Z)DH −µ1}= 0, E[{s0(Z)DH −µ2(S−ES)}(S−ES)] = 0.

Using that E[DH | Z] = [p(Z)(1− p(Z))]/[p(Z)(1− p(Z))] = 1, S = S(Z), and the law of iterated
expectations, the equations simplify to

E{s0(Z)−µ1}= 0, E[{s0(Z)−µ2(S−ES)}(S−ES)] = 0.

These are normal equations that characterize the optimum in the problem of best linear approxi-
mation/prediction of s0(Z) using S. Solving these equations gives the expressions for β1 and β2

stated in Definition 3.1. ■

Proof of Theorem 3.3. The proof is similar to the proof of Theorem 3.1- 3.2. Moreover, since the
proofs for the two strategies are similar, we will only demonstrate the proof for the second strategy.

The subset of the normal equations, which correspond to µ := (µk)
K
k=1, are given by E[(Y H −

µ ′
0X1H − µ ′W̃2)W̃2] = 0. Substituting Y = b0(Z) + s0(Z)D +U , and using the definition W̃2 =

W̃2(Z) = [1(Gk)
K
k=1]

′, X1 = X1(Z), and the law of iterated expectations, we notice that:

E[b0(Z)HW̃2(Z)] = E[b0(Z)E[H(D,Z) | Z]
=0

W̃2(Z)] = 0,

E[UHW̃2(Z)] = E[E[U | Z,D]

0

H(D,Z)W̃2(Z)] = 0,

E[X1HW̃2(Z)] = E[X1(Z)E[H(D,Z) | Z]
=0

W̃2(Z)] = 0.

Hence the normal equations simplify to: E[{s0(Z)DH − µ ′W̃2}W̃2] = 0. Since components
of W̃2 = W̃2(Z) = [1(Gk)

K
k=1]

′ are orthogonal, the normal equations above further simplify to
E[{s0(Z)DH − µk1(Gk)}1(Gk)] = 0. Using that E[DH | Z] = 1, S = S(Z), and the law of iterated
expectations, the equations simplify to

E[{s0(Z)−µk1(Gk)}1(Gk)] = 0 ⇐⇒ µk = Es0(Z)1(Gk)/E[1(Gk)] = E[s0(Z) | Gk].
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The asserted result follows. ■

APPENDIX B. SUPPORTING RESULTS AND PROOFS OF SECTION 4

Proof of Lemma 4.1. To show (4.2) note that,

E|θ̂ −θ
′|= EE[|θ̂ −θ

′| | Data]⩽ EE[|θ̂A −θ
′| | Data]⩽ E|θ̂A −θ

′|,

where the inequality follows from (any) median minizing average absolute loss and its equivariance
property. The equalities hold by the law of iterated expectation. The claim (4.3) follows in the same
way.

To show (4.4), let U∗ = {U∗
a }a∈A and L∗ = {L∗

a}a∈A denoted non-decreasing monotone rear-
rangements of {Ua}a∈A and L = {La}a∈A . Then

|U −L|⩽ ∥U∗−L∗∥∞ ⩽ ∥U −L∥∞,

where the second inequality follows from the rearrangement having contractive property in the
max distance. ■

Proof of Theorem 4.1. We demonstrate the result for p+. The proofs for other p-values follow
similarly. We use MA [·] as short hand for M[·|Data], with overlined and underlined versions de-
fined similarly.

To show claim (ii) we note that for z = Φ−1(1−α) and using that Φ(z) = 1−α:

P
(

MA [1−Φ(σ̂−1
A (θ̂A −θ0))]< α

)
= P

(
MA [Φ(−σ̂

−1
A (θ̂A −θ0))]< α −1

)
= P

(
MA [σ̂−1

A (θA − θ̂A)]<−z
)

⩽ P
(

σ̂
−1
A (θA − θ̂A)<−z

)
+ γ

′′
N

⩽ Φ(−z)+ γ
′
N + γ

′′
N = α + γ

′
N + γ

′′
N ,

where the first inequality uses the concentration of median assumption, and the last inequality
follows from the approximate normality assumption (4.5).
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To show claim (i), we note that

P
(

MA [1−Φ(σ̂−1
A (θ̂A −θ0))]< α

)
= P

(
MA [σ̂−1

A (θA − θ̂A)]<−z
)

⩽ P

(
1
A ∑

a∈A

1{ σ̂
−1
A (θA − θ̂A)]<−z}⩾ 1/2

)

⩽ 2E

[
1
A ∑

a∈A

1{ σ̂
−1
A (θA − θ̂A)]<−z}

]
= 2P{ σ̂

−1
A (θA − θ̂A)]<−z}

⩽ 2Φ(−z)+2γ
′
N = 2α +2γ

′
N ,

where the first equality reused the previous calculation, the first inequality holds by definition of
the numerical median, the second inequality holds by Markov inequality, and the equality that
follows holds by

2E

[
1
A ∑

a∈A

1{ σ̂
−1
a (θa − θ̂a)]<−z}

]
= 2EP

(
σ̂
−1
A (θA − θ̂A)<−z | Data

)
= 2P{ σ̂

−1
A (θA − θ̂A)]<−z},

and the last inequality follows from the approximate normality assumption (4.5).

Proof of Theorem 4.2. Define D = {θa, [La,Ua] : a ∈ A }, and let A ∼U(A ) given D . Then,

P(θA < L) = EP(θA < L | D) = E

[
1

|A | ∑
a∈A

1{θa < L}

]

= E

[
1

|A | ∑
a∈A

1{θa < L, La < L}+ 1
|A | ∑

a∈A

1{θa < L, La ⩾ L}

]

⩽ E

[
1

|A | ∑
a∈A

1{La < L}

]
+E

[
1

|A | ∑
a∈A

1{θa < La}

]

⩽ E(β )+E

[
1

|A | ∑
a∈A

1{θa < La}

]
⩽ β +EP(θA < LA | D)

⩽ β +P{θA < LA}⩽ β +α/2+o(1),

where the first equality holds by the law of iterated expectations; the second by the fact that, given
D , L is fixed but A ∼U(A ); the second inequality holds by definition of L:

1
|A | ∑

a∈A

1{La < L}⩽ 1
|A | ∑

a∈A

1{La < Qβ [LA | Data]}⩽ β ,
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by the definition of the upper quantile; and the third by the same argument as the second equality,
the penultimate inequality holds by the law of iterated expectations, and the last inequality holds
by assumption (4.8). We conclude similarly

P(θA >U)⩽ β +P{θA >UA}⩽ β +α/2+o(1).

The asserted result follows. ■

B.1. Proof of Theorem 4.3. In the proof let z = Φ−1(1−α/2), and use MA [·] and QA [·] as short
hand for M[·|Data] and Q[·|Data], respectively, with overlined and underlined versions defined
similarly.

We first note

P(θ ∗ ̸∈ [L,U ]) = P(θ ∗ > MA (θ̂A + zσ̂A))+P(θ ∗ < MA (θ̂A − zσ̂A))

= P(0 > MA (θ̂A −θ
∗+ zσ̂A))+P(0 < MA (θ̂ −θ

∗− zσ̂A)).

To show part (i) with β = 1/2,

P(0 < MA (θ̂ −θ
∗− zσ̂A)) ⩽ P

(
1

|A | ∑
a∈A

1
(

σ̂
−1
a (θ̂a −θ

∗)> z
)
⩾ 1/2

)

⩽ 2E

[
1

|A | ∑
a∈A

1
(

σ̂
−1
a (θ̂a −θ

∗)> z
)]

= 2EP
(

σ̂
−1
A (θ̂A −θ

∗)> z | Data
)

= 2P
(

σ̂
−1
A (θ̂A −θ

∗)> z
)

⩽ 2P
(

σ̂
−1
A (θ̂A −θA)> z− rN

)
+2γ

′′′
N

⩽ 2(1−Φ(z− rN))+2γ
′
N +2γ

′′′
N

⩽ 2α/2+2rN/
√

2π +2γ
′
N +2γ

′′′
N ,

where the first inequality follows from the definition of the numerical median, the second from
the Markov inequality; the first equality holds by A ∼U(A ) given Data, the second by the law of
iterated expectations; the third inequality holds by the concentration condition (R3) and the union
bound, the penultimate inequality holds by the approximation normality conditions (R1), and the
last from the properties of Φ.

We derive similarly that

P(0 > MA (θ̂A −θ
∗+ zσ̂A))⩽ 2α/2+2rN/

√
2π +2γ

′
N +2γ

′′′
N .

Therefore the part (i) holds for the term

o(1) := 4rN/
√

2π +4(γ ′N + γ
′′′
N ).
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To show part (ii), from the analysis of part (i),

P(0 < MA (θ̂ −θ
∗− zσ̂A))⩽ P

(
1

|A | ∑
a∈A

1
(

σ̂
−1
a (θ̂a −θ

∗)> z
)
⩾ 1/2

)
.

Then we bound

T =
1

|A | ∑
a∈A

1
(

σ̂
−1
a (θ̂a −θ

∗)> z
)
⩽ T1 +T2

T1 :=
1

|A | ∑
a∈A

1
(

σ̂
−1
a (θ̂a −θa)> z− rN

)
, T2 :=

1
|A | ∑

a∈A

1
(
σ̂
−1
a (θa −θ

∗)> rN
)
.

By the union bound

P(T ⩾ 1/2)⩽ P
(

T1 > 1/2−2
√

γ ′′′N

)
+P

(
T2 ⩾

√
γ ′′′N

)
.

Then for βN = 1/2−2
√

γ ′′′N ,

P(T1 > βN) ⩽ P
(

QβN ,A [σ̂−1
A (θA − θ̂A)]<−z+ rN

)
⩽ P

(
QβN ,A [σ̂−1

A (θA − θ̂A)]<−z+ rN

)
⩽ P

(
σ̂
−1
A (θA − θ̂A)<−z+ rN

)
+ γ

′′
N

⩽ Φ(−z+ rN)+ γ
′
N + γ

′′
N

⩽ α/2+ rN/
√

2π + γ
′
N + γ

′′
N ,

where first inequality holds by the definition of the numerical quantile, the third by the concentra-
tion of medians assumption (R2), and the fourth by the approximate normality (R1).

Also, by Markov inequality

P
(

T2 ⩾
√

γ ′′′N

)
⩽ ET2/

√
γ ′′′N = P

(
σ
−1
A |θA −θ

∗|> rN
)
/
√

γ ′′′N ⩽ γ
′′′
N /
√

γ ′′′N ,

where we are using (R3) and the relation

ET2 = E

[
1
A ∑

a∈A

1
(
σ
−1
a |θa −θ

∗|> rN
)]

= EP(σ−1
A |θA −θ

∗|> rN | Data) = P
(
σ
−1
A |θA −θ

∗|> rN
)
,

using our formalism that A ∼U(A ) independently of Data.

Collecting terms conclude

P(0 < MA (θ̂ −θ
∗− zσ̂A))⩽ α/2+ rN/

√
2π + γ

′
N + γ

′′
N +

√
γ ′′′N .

We derive similarly that

P(0 > MA (θ̂A −θ
∗+ zσ̂A))⩽ α/2+ rN/

√
2π + γ

′
N + γ

′′
N +

√
γ ′′′N .
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Therefore the part (ii) holds for the term

o(1) = 2
(

rN/
√

2π + γ
′
N + γ

′′
N +

√
γ ′′′N

)
.

To show claim (iii) note that by construction L ⩽ θ̂ ⩽ U and the coverage event L ⩽ θ ∗ ⩽ U
implies that |θ̂ −θ ∗|⩽U −L. ■

B.2. Concentration of Estimands Around Their Median. The purpose of this section is to
demonstrate that the concentration assumptions made in the inference section are plausible. To
show this we focus on the BLP parameter

θA =
CovZ(s0(Z),SA(Z)

VarZ SA(Z))
,

where A is a uniform variable on A , and the variance and covariance are taken with respect to the
marginal distribution of Z. We want to show the concentration of this parameter around

θ
∗ = Med[θA | Data].

We show the difference can be bounded using measures of estimation and algorithmic stabilities;
we derive inspiration from Chernozhukov et al. (2021b) and Chen et al. (2022)).

In what follows, we assume the same set-up as in the main text, in particular the exchangeability.

Estimation Stability or Pseudo-Consistency. Statistical learning theory, for example, results in
Section 5, provides bounds on estimation errors of the form:

EEZ(SA(Z)− s•(Z))2 = E(SA(Z)− s•(Z))2 ⩽ R2
|A|,

where s• is a fixed “pseudo-true” function that does not depend on A, and this function does not
have to be the CATE s0 in the misspecified case. Here EZ denotes the expectation taken with
respect to the marginal distribution of Z. For example, in Section 5, s• minimizes the mean square
approximation error

min
s∈S

E[s0(Z)− s(Z)]2 = E[s0(Z)− s•(Z)]2,

but s• above does not to be defined in this way.

Define the BLP parameter corresponding to s• as:

θ• =
CovZ(s0(Z),s•(Z))

VarZ s•(Z))
.

This is a fixed estimand.

If R|A| → 0 as |A| → ∞, then SA converges to the pseudo-true value s•. We call this property
“pseudo”-consistency. The lemma shows that in this case, the random estimand θA approaches θ•

at the rate R|A|.
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Lemma B.1 (Concentration from “Pseudo”-Consistency). Assume that Sa ∈ S for all a ∈ A and
s• ∈ S , that the elements of S and s0 are all bounded above by a finite constant K, and that
VarZ S(Z) is bounded below by a positive constant k > 0 for all S ∈ S . Then

E|θA −θ•|⩽CK,k[R|A|∧1]

where CK,k is a numeric constant that only depends on K and k.

Concentration under Algorithmic Stability. On the other hand, algorithmic or statistical influ-
ence analysis often implies that

EEZ(SA(Z)−SA′(Z))2 ⩽ R′2
|A|,

where A and A′ are independent uniform variables on A . To explain the notion, let M and M′ be
the complements of A and A′ relative to {1, ...,N}. The symmetric difference between A and A′ is
M∩M′. If the latter set is small in cardinality relative to the cardinality of A, then we would expect
SA and SA′ not to differ if the machine producing S’s is a smooth function of data. The definition
above provides one way to measure this stability. We provide further discussion below.

By triangle inequality, the algorithmic stability can be bounded by estimation stability:√
EEZ(SA(Z)−SA′(Z))2 ⩽ 2

√
EEZ(SA(Z)−S•(Z))2

Therefore algorithmic stability is more general.

Lemma B.2 (Concentration from Algorithmic Stability). Suppose the assumptions of the previous
lemma hold. Then if R′

|A| → 0 as |A| → ∞, then

E|θA −θA′|⩽CK,k[R′
|A|∧1],

where CK,k is a numeric constant that only depends on K and k.

Putting it Together: Concentration Around Median. The following result shows that the de-
sired concentration condition holds if either estimation stability or algorithmic stability is strong
enough.

Lemma B.3 (Stability of Median Target from Estimation or Algorithmic Stability). Suppose the
assumptions of the previous lemma hold. Then

E|θA −θ
∗|⩽ E|θA −θA′|∧E|θA −θ•|.

Therefore, if
√

nCK,k[R′
|A|∧R|A|]⩽ δN (B.1)

for δN → 0 as N → ∞, then

P(
√

n|θ̂A −θ
∗|>

√
δN)⩽

√
δN .
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The latter implies the condition we want provided σ̂A/
√

n+
√

n/σ̂A = OP(1).

We conclude here with some comparisons of the two notions of stability. Estimation stability
readily follows from the available statistical learning theory. In particular R2

|A| scales like d/|A|
where d is the intrinsic dimension of the function class S , as we discussed in Section 5. Therefore,
n needs to be much smaller than d(N −n) to satisfy the last condition of the last lemma.

Algorithmic stability does not require estimation stability, even though the latter property seems
quite mild. On the other hand, its characterizations are not well-studied and are much less available.
See Chernozhukov et al. (2021b) for analysis of constrained Lasso and Ridge that is applicable
here; see also Chen et al. (2022) for leave-one-out stability analysis for bagged estimators over the
subsamples (this analysis requires extension to the present framework).

It is useful to give a simple example to compare the two measures of stability. If SA(Z)’s are
generated by linear least squares Z′β̂A with d = dim(Z), then we have a crude upper bound on the
algorithmic stability bound R′2

A scaling like nd/(N−n)2. This is generally smaller than RA scaling
like d/(N −n). It implies a weaker same qualitative requirement on n: n needs to be smaller than√

d(N −n) to satisfy the condition (B.1) of Lemma B.3.

Proof of Lemmas B.1- B.3. To show Lemma B.1, it is convenient to define f o(Z) = f (Z)−
EZ f (Z). Then, using the boundedness assumption we have

|CovZ(s0(Z),SA(Z))−CovZ(s0(Z),s•(Z))| = |EZ[so
0(Z)SA(Z)]−E[so

0(Z)s•(Z)]|

⩽ KEZ|SA(Z)− s•(Z))|,

|VarZ(SA(Z))−VarZ(s•(Z))| = |EZ(So
A(Z))

2 −EZ(so
•(Z))

2|

⩽ EZ|So
A(Z)+ so

•(Z))||So
A(Z)− so

•(Z))|

⩽ 2KEZ|So
A(Z)− so

•(Z))|.

Then using elementary inequalities and boundedness assumptions conclude

|θA −θ•|⩽ (k−1K +2k−2K2)EZ|SA(Z)− s•(Z)|

Taking expectation over A,

E|θA −θ•|⩽ (k−1K +2k−2K2)EEZ|SA(Z)− s•(Z))|⩽CK,kR|A|,

where the last inequality follows from the norm inequality.

Lemma B.2 follows analogously, replacing s• with SA′ to obtain

|θA −θA′ |⩽ (k−1K +2k−2K2)EZ|SA(Z)−SA′(Z)|

Taking expectation over (A,A′), we obtain:

E|θA −θA′|⩽ (k−1K +2k−2K2)EEZ|SA(Z)−SA′(Z))|⩽CK,kR′
|A|,
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where the last inequality follows from the norm inequality.

To show Lemma B.3, we note that

E|θA −θ
∗| = EE

[
1
A ∑

a∈A

|θa −θ
∗| | Data

]

⩽ EE

[
1
A ∑

a∈A

|θa −θ•| | Data

]
= E|θA −θ•|,

where the first property holds by the law of iterated expectation and by A ∼U(A ) independently
of the Data, the inequality holds by definition of θ ∗ as the median of the sample {θa : a ∈ A }, and
the last equality holds by iterating expectations again.

Similarly, we note

E|θA −θ
∗| = EE

[
1
A ∑

a∈A

|θa −θ
∗| | Data

]

= E
1

|A | ∑
a′∈A

E

[
1

|A | ∑
a∈A

|θa −θ
∗| | Data

]

⩽ E
1

|A | ∑
a′∈A

E

[
1

|A | ∑
a∈A

|θa −θa′| | Data

]

= E

[
1

|A | ∑
a′∈A

1
|A | ∑

a∈A

|θa −θa′| | Data

]
= E|θA −θA′|,

where the first property holds by the law of iterated expectation and by A ∼U(A ) independently
of the Data, the inequality holds by definition of θ ∗ as the median of {θA : a ∈A }, the last equality
holds by iterating expectations and independence of A and A′.

Finally, the second claim of the Lemma follows by the Markov inequality. ■

APPENDIX C. PROOFS OF SECTION 5

Proof of Theorem 5.1. For the objective (B), write Y = b0(Z)+Ds0(Z)+ε , where E[ε |D,Z] = 0.
Then

Y H = {Hb0(Z)+(HD−1)s0(Z)}+ s0(Z)+ εH,

where the first term can be expressed as:

{Hb0(Z)+(HD−1)s0(Z)}= H(b0(Z)+(1− p(Z))s0(Z)) = Hb̄0(Z).

So that we can decompose:

Y H −b(Z)H − s(Z) = {H(b̄0(Z)−b(Z))}+{s0(Z)− s(Z)}+ εH.
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Then the result follows taking the square and expectation, by using (i) orthogonality of the three
terms in the decomposition above:

E[εH2(b̄0(Z)−b(Z))] = 0, E[εH(s0(Z)− s(Z))] = 0, E[H(b̄0(Z)−b(Z))(s0(Z)− s(Z)] = 0,

where the last relation follows from E[H | Z] = 0, and (ii) also noting that E[H2|Z] = w(Z).

For the objective (A), write similarly,

Y −b(Z)− (D− p(Z))s(Z) = [b̃0(Z)−b(Z)]+ [D− p(z)](s0(Z)− s(Z))+ ε,

and then conclude that the three terms are orthogonal to each other. The result follows by complet-
ing the square and taking expectation, where we also observe that

Ew(Z)(D− p(Z))2(s0(Z)− s(Z))2 = E(s0(Z)− s(Z))2,

since E[w(Z)(D− p(Z))2 | Z] = 1. ■

Proof of Theorem 5.2. We demonstrate the result for type B loss; the demonstration for type A
follows similarly. Application of Theorem 3 of Liang et al. (2015) gives the following bound on
the excess risk R of the estimator (B,S):

0 ⩽ R := E[Y H −B(Z)H −S(Z)]2 −E[Y H −b•(Z)H − s•(Z)]2 ⩽CKRo(A,H ,cK),

where (b•,s•) minimize E[Y H − b•(Z)H − s•(Z)]2 over b ∈ B and s ∈ S , and CK and cK are
positive constants that only depend on K, and H := 4(HB+S ). Theorem 5.1 then implies that

R = E[s0(Z)−S(Z)]2 −E[s0(Z)− s•(Z)]2

+ E[w(Z)(b̄0(Z)−B(Z))]2 −E[w(Z)(b̄0(Z)−b•(Z))]2,

where the second term is non-negative. Therefore,

E[s0(Z)−S(Z)]2 −E[s0(Z)− s•(Z)]2 ⩽CKRo(A,H ,cK).

The lower bound

E[s0(Z)−S(Z)]2 −E[s0(Z)− s•(Z)]2 ⩾ E[S(Z)− s•(Z)]2

follows from Pythagorian inequality for obtuse triangles and the fact that s• minimizes E[s0(Z)−
S(Z)]2 over the convex set S . ■
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APPENDIX D. GAUSSIAN APPROXIMATION FOR SPLIT-SAMPLE LEAST SQUARES

UNIFORMLY OVER CONVEX SETS AND IN P.

We present a set-up that covers not only the split-sample least square estimators of the main
text, but also other potential cases of interest. Let W denote a generic data vector. All the linear
regressions or mean estimators used on the main sample M could be viewed as ordinary least
squares with a suitable definition of W .

Throughout we assume that {(Wi)}N
i=1 are i.i.d. copies of vector W that has law P. We abbreviate

(DA,DM) := (DataA,DataM). There is a learning algorithm that inputs DA and outputs a map
f (·;DA), which maps the support of W to Rd+1 for a fixed d. This map defines the split-specific
outcome and regressors:

(YA,i,XA,i) = f (Wi;DA), i ∈ M.

Let β̂A be a solution to EN,M[XA,iε̂A,i] = 0 for ε̂A,i = YA,i −X ′
A,iβ̂A. Let V̂A denote the Eicker-Huber-

White sandwich

V̂A := (EN,MXA,iX ′
A,i)

−1EN,M ε̂
2
A,iXA,iX ′

A,i(EN,MXA,iX ′
A,i)

−1,

whenever it exists.

Fix some positive finite constants c and C. Let βA denote a solution to E[XAεA] = 0, for εA =

YA −X ′
AβA, if it exists. And let

VA := (EP[XAX ′
A | DA])

−1EP[ε
2
AXAX ′

A | DA](EP[XAX ′
A | DA])

−1,

if it exists. Let EA,N be the event that

EP|YA|4+δ +EP[∥XA∥4+δ | DA]⩽C, min
∥a∥=1

EP[(a′XA)
2 | DA]> c.

On this event βA and εA are well defined. Let E ′
A,N ⊂ EA,N be the event such that

min
∥a∥=1

EP[(εAa′XA)
2 | DA]> c.

On this event VN is well-defined. Let CS(Rd) denote the collection of the convex sets in Rd .

We observe that, by the i.i.d. sampling and A ∼ U(A ) independently of Data, (DA,DM) has
the same distribution as (Da,Dm), for a fixed partition (a,m). This is an exchangeability property.
Therefore, we can fix (A,M) to be a fixed partition {a,m} in what follows. Moreover (Xa,i,Ya,i)

N−m
i=1

are i.i.d. conditional on Da. These observations simplify the verification of the following result.

Lemma D.1 (Gaussian Approximation). Using the setup above, let γN be a sequence of positive
constants tending to zero. Suppose that for all P∈P , we have PP(E ′

N,A)⩾ 1−γN . Then, uniformly
in P ∈ P , as (n,N)→ ∞:

sup
R∈CS(Rd)

∣∣∣PP[V̂
−1/2
A (β̂A −βA) ∈ R | DA]−P(N(0, Id) ∈ R)

∣∣∣ PP−→ 0,
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sup
R∈CS(Rd)

∣∣∣PP[V̂
−1/2
A (β̂A −βA) ∈ R]−P(N(0, Id) ∈ R)

∣∣∣−→ 0,

and the same results hold with V̂A replaced by VA; moreover, V̂NV−1
N →PP I both conditional on DN

and unconditionally.

Proof of Lemma D.1. It suffices to demonstrate the argument for an arbitrary sequence {PN} in
P . Let

t̂A := V̂−1/2
A (β̂A −βA), tA :=V−1/2

A (β̂ o
A −βA), β̂

o
A := [EXAX ′

A]
−1EN,MXAYA.

Consider the event E ′′
N,A ⊆ E ′

N,A such that:

E ′′
N,A =

{
(̂tA, tA,V̂N) exist and ∥t̂A − tA∥+∥V̂N −VN∥⩽ rN

}
.

It follows from the standard arguments for asymptotic theory for least squares under i.i.d. sampling
of data arrays (YA,i,XA,i)

N
i=1, e.g. Gallant and White (1988), that there exists a sequence of positive

constants {rN ,δN}↘ 0 such that P
(
E ′′

N,A | DA

)
⩾ 1−δN on the event E ′

N,A. Therefore by the union
bound

P
(
E ′′

N,A
)
⩾ 1−δN − γN , (D.1)

for γN defined in the statement of the lemma. For r > 0 let Rr = {x ∈ Rd : d(x,R) ⩾ r} and
R−r = {x ∈ R : d(x,Rd \R)⩾ r}, where d(x,R) := minx′∈R ∥x′−x∥. Note that R−r can be an empty
set. Then, on the event E ′′

N,A,

P
(
t̂A ∈ R | DA

)
⩾ P

(
tA ∈ R−rN | DA

)
⩾ P(N(0, Id) ∈ R−rN )−BNd1/4/

√
n,

⩾ P(N(0, Id) ∈ R)−4d1/4rN −BNd1/4/
√

n,

where BN = C′E[∥V−1/2
N XAεA∥3 | DA], where C′ is a numerical constant. The second inequality

follows by the Bentkus bounds (Bentkus, 2003; Raič, 2019), which extend the Berry-Essen bounds
to the multidimensional case, and the last inequality follows from the Ball’s reverse isoperimetric
inequality of the standard Gaussian vector (Ball, 1991). It follows similarly that

P
(
t̂A ∈ R | DA

)
⩽ P(tA ∈ RrN | DA)

⩽ P(N(0, Id) ∈ RrN )+BN/
√

n,

⩽ P(N(0, Id) ∈ R)+4d1/4rN +BNd1/4/
√

n.
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Since R above is arbitrary convex subset of Rd , we have that on the event E ′′
N,A:

sup
R∈CS(Rd)

|P
(
t̂A ∈ R | DA

)
−P(N(0, Id) ∈ R)|

⩽ sup
R∈CS(Rd)

|P
(
t̂A ∈ R | DA

)
−P(N(0, Id) ∈ R)|

⩽ 4d1/4rN +d1/4BN/
√

n.

Using Holder inequalities, we can check that BN ⩽ B on the event E ′′
N , for some constant B that

depends only on (c,C,d,δ ). The first claim follows combining this inequality with (D.1).

To show that second claim note that

sup
R∈CS(Rd)

|EP
(
t̂A ∈ R | DA

)
−P(N(0, Id) ∈ R)|

⩽ 4d1/4rN +d1/4BN/
√

n+(1−P(E ′′
N,A))⩽ 4d1/4BN/

√
n+ γN +δN .

Finally, ∥V̂NV−1
N − I∥ ⩽ ∥V−1

N ∥rN ⩽ crN conditional on DA and on the event E ′′
N . The condi-

tional convergence claim follows from (D.1). It then follows that EP(∥V̂NV−1
N − I∥⩽ crN | DA)⩾

P(EN,A)⩾ 1−δN − γN . ■


