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We consider multi-stage games with incomplete information, and we analyze strategic 
reasoning by means of epistemic events within a “total” state space made of all the profiles 
of behaviors (paths of play) and possibly incoherent infinite hierarchies of conditional 
beliefs. Thus, we do not rely on types structures, or similar epistemic models. Subjective 
rationality is defined by the conjunction of coherence of belief hierarchies, rational 
planning, and consistency between plan and on-path behavior. Since consistent hierarchies 
uniquely induce beliefs about behavior and belief hierarchies of others, we can define 
rationality and common strong belief in rationality, and analyze their behavioral and low-
order beliefs implications, which are characterized by strong rationalizability. Our approach 
allows to extend known techniques to the epistemic analysis of psychological games where 
the utilities of outcomes depend on beliefs of order k or lower. This covers almost all 
applications of psychological game theory.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Epistemic game theory (EGT) is the formal analysis of players’ interactive strategic reasoning in games.1 Such analysis 
posits, or obtains by construction, a set states of the world � so that each ω ∈ � is an all-encompassing implicit or explicit 
specification of all the relevant aspects of the strategic situation, including what players do and how they think about each 
other’s behavior and beliefs. This permits the definition of events (measurable subsets of �) such as “players are rational” 
[viz. R ⊆ �] and “it is common belief that players are rational” [viz. CB (R) ⊆ �]. These events are the epistemic assump-
tions of interest and relate behavior to beliefs. The typical theorem of epistemic game theory provides a characterization of 
the interesting implications of such epistemic assumptions, such as the behavioral implications. For example, given appro-
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priate definitions of “rationality,” “common belief,” and “rationalizability,” we have the following theorem2: Players’ behavior 
is consistent with R ∩ CB (R) if and only if it is rationalizable.”

Standard approach The standard approach of EGT is to posit or construct � so that it is true at every state ω in �
that every player is cognitively rational, that is, that his system of beliefs satisfies appropriate coherence requirements. 
Specifically, each state ω determines for each player i a hierarchy of beliefs such that the “first-order” belief of i about the 
behavior of other players −i is the marginal of “higher-order” joint beliefs about the behavior and beliefs of −i, and similar 
coherence restrictions hold for higher-order beliefs. Since cognitive rationality holds at every state, it has to be commonly 
believed at every state that players are cognitively rational. Say that an event is transparent if it is true and commonly 
believed. With this, the standard approach assumes that cognitive rationality is transparent.

Yet, rationality has also a behavioral aspect: roughly, a player is rational at ω if he is cognitively rational at ω and his 
behavior at ω is a best reply to his beliefs at ω. Most contributions to EGT do not assume that players are rational at every 
state. In particular, allowing for states where players are irrational is important in the epistemic analysis of multi-stage 
games that contain histories inconsistent with either mere rationality, or with rationality and common belief in rationality. 
Indeed, assuming that rationality holds at every state would imply “by fiat” that the actions in such histories cannot be 
chosen even if they comply with the rules of the game. Several authors (including ourselves) find this feature conceptually 
problematic. Thus, standard EGT postulates transparency of cognitive rationality, but instead treats rationality and common 
belief in rationality as a property that holds only in some states. We accept the latter, but question the former: Why should 
cognitive rationality be transparent while rationality holds only at some states?

In our view, the reason is more technical than conceptual: the standard approach allows to work with epistemic struc-
tures. In particular, much of the EGT literature on multi-stage games works with type structures, whereby each player is 
uncertain about the coplayers’ behavior and a type of a player corresponds to a hierarchy of beliefs satisfying coherence 
and common belief in coherence. It is argued that this is without loss of generality, because one can show that the space of 
profiles of behaviors and belief hierarchies satisfying transparency of coherence gives the “largest” type structure.3

Our approach Working with type structures is traditional and in many ways convenient, but we show in this paper that 
eschewing them is both possible and fruitful. We regard cognitive rationality simply as an aspect of rationality that—like ratio-
nality itself—holds only in some states. Hence, we consider the “total” space of all profiles of behaviors and beliefs, including 
incoherent beliefs. Rationality of player i corresponds to the set of states where i has coherent beliefs and his behavior 
is a sequential best reply to such beliefs. Since the belief-hierarchy of a rational player is coherent, it induces a belief (a 
conditional probability system) about behaviors and beliefs hierarchies of the opponents.4 Leveraging on this, we prove that, 
in multi-stage games with possibly incomplete information, strong rationalizability characterizes the behavioral implications 
of rationality and common strong belief in rationality, which represents forward-induction reasoning.

We take advantage of our “fresh start” to introduce other innovations compared to standard epistemic game theory. 
Indeed, we take as primitive players’ uncertainty about the path of play, rather than uncertainty about contingent behavior. 
With this, the only mathematical objects that look like “strategies” are players’ (marginal) systems of beliefs about their 
own actions conditional of reaching non-terminal histories. These are mere plans. Rationality is modeled as coherence of 
beliefs, rational planning (incentive compatibility of plans), and on-path consistency of plan and actions.5

Application to psychological games Besides its conceptual appeal, our approach has also a technical advantage: it allows 
us to extend to so called “psychological games” the techniques used by Battigalli and Tebaldi (2019) in the epistemic analysis 
of a class of infinite dynamic games. In a psychological game utilities of outcomes depend on beliefs. This allows to capture 
a wide range of emotional or otherwise psychological aspects of choice.6 In applications, the utility of outcomes is assumed 
to depend only on beliefs of the first k orders, e.g., only on the first-order beliefs of everybody. Dependence on beliefs up to 
order k allows for a tractable definition of rationalizability by means of iterated elimination of non-best replies to beliefs of 
order k + 1. The technical problem is to show that a k + 1th-order belief that justifies a player’s behavior as rationalizable 
can be extended to an infinite hierarchy of beliefs that makes such behavior consistent with rationality and common strong 
belief in rationality. Battigalli and Tebaldi (2019) rely on the possibility to factorize the uncertainty space of any player i
as �−i = U−i × M−i , where U−i is a set of utility-relevant states and M−i is a space of opponents’ beliefs (probability 
measures). In a psychological game, U−i should be the set of possible behaviors and opponents’ beliefs up to order k, and 
M−i should be the set of opponents’ beliefs of order k + 1 or higher. Yet, when working with type structures, �−i cannot 
be factorized in this way, because low-order beliefs must be the marginal of higher-order beliefs; thus, �−i � U−i × M−i , 
which prevents the application of the aforementioned methods. We instead work with the space of all belief hierarchies, 

2 One can give versions of this result for different decision criteria (forms of rationality), different kinds of game (e.g., simultaneous, or sequential, with 
complete or incomplete information), and—correspondingly—different definitions of rationalizability.

3 See Battigalli and Siniscalchi (1999).
4 See Proposition 1 in Battigalli and Siniscalchi (1999) and Proposition 1 in Brandenburger and Dekel (1993).
5 For more on this, see the discussion in Section 8.
6 See the survey by Battigalli and Dufwenberg (2019).
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Fig. 1. Trust Game form.

including the incoherent ones, which implies that the relevant factorization holds. With this, we prove the results stated 
above for multi-stage games where psychological utility depends on beliefs of some given order k, or lower. To be clear, 
we are not claiming that our approach is necessary for an epistemic analysis of psychological games,7 we only argue that 
our approach has an independent conceptual motivation and it also has the advantage of allowing the extension of known 
methods from standard games to psychological games.

Heuristic example We illustrate the main ideas of this paper through a simple example. We model guilt aversion in a 
two-person game form with monetary payoffs8 as the desire—other things being equal—not to disappoint the other player. The 
disappointment of player j at terminal history z given first-order belief μ j,1 is the difference, if positive, between her or his 
(initially) expected monetary payoff and his realized monetary payoff at z.9 Thus, the psychological utility of player i �= j
depends on μ j,1 (unknown to i) as in the following equation

ui
(
z, θi,μ j,1

)= πi (z) − θi max
{

0,Eμ j,1

(
π j
)− π j (z)

}
, θ i ≤ θi ≤ θ̄i , (1)

where πi (z) denotes the monetary payoff of i at z, and θi is a sensitivity parameter known to i. Furthermore, it is common 
knowledge that θi belongs to the compact interval �i = [

θ i, θ̄i
]

with θ i ≥ 0. Note that ui is a kind of state-dependent 
utility function, because it depends on a feature of j, his first-order belief, that i neither knows nor controls. To assess the 
expected utility of his actions, player i has to consult his second-order beliefs μi,2, that is, his beliefs about behavior and 
the personal features of j, whether exogenous (θ j) or affected by strategic thinking (μ j,1). Suppose that the game form 
with monetary payoffs is the Trust Game depicted in Fig. 1. Adding psychological utility functions as in Eq. (1) we obtain a 
first-order psychological game. We provide an informal analysis based on the epistemic assumptions of (correct) common 
strong belief in rationality and the solution concept that characterizes its utility-relevant implications, strong rationalizability 
(cf. Battigalli and Siniscalchi, 2002).

To simplify the analysis we assume throughout that Ann is commonly known to be selfish (and risk neutral), i.e., θ a = θ̄a . 
Since Ann can secure payoff $1, if Bob believes whenever possible (=strongly believes) in her rationality, then he would 
infer from In that her disappointment after Take would be at least 1. Hence, by Eq. (1), the expected utility of Take given 
In satisfies Eμb,2 (ub|In, T ake) ≤ 4 − θb . Since Ann cannot be disappointed by Share, Bob’s utility of Share given In is 2, and 
Bob would certainly Share if 4 − θb < 2, or θb > 2.

Let us first analyze the case in which Bob is commonly known to be “sufficiently guilt averse”: θb > 2. If Ann (on top of 
being rational) believes that Bob is rational and that he strongly believes in her rationality, then she expects to get $2 if she 
goes In and so she does. If Bob believes all this, he indeed expects In. Theorem 1 shows that strong rationalizability, an iter-
ated elimination procedure, characterizes the utility-relevant implications of rationality, (correct) strong belief in rationality, 
and so on. Step 1 of the procedure eliminates all path-belief pairs 

(
z,μa,1

)
such that z = (In, ab), and Eμa,1 (πa|In) < 1

or μa,1 (In) = 0. Note that 
(
(In,ab),μa,1

)
with μa,1 (In) = 0 is eliminated because μa,1 (In) = 0 means that Ann plans to 

go Out, but at this personal state she does the opposite, and such inconsistency between plan and behavior is a form of 
irrationality.10 Since θb > 2 and all the non-eliminated pairs 

(
(In,ab) ,μa,1

)
satisfy Eμa,1 (πa|In) ≥ 1, step 2 eliminates all (

z,μb,1
)

such that either z = (In, T ake) or μb,1 (Share|In) < 1 (or both), because there is no second-order belief μb,2 assign-
ing probability 1 to 

{
μa,1 :Eμa,1 (πa|In) ≥ 1

}
and such that Take is a best reply to μb,2 (·|In). Note, the procedure eliminates 

paths of play (behaviors) and first-order beliefs, where the latter include players’ plans. In this case Bob must plan to Share
if given the opportunity and must actually Share if Ann goes In. Thus, we look at actual behavior (paths of play) and plans 
separately, and we require that rational players (1) plan to choose best replies to their beliefs (rational planning) and never 
take actions that they planned not to take (material consistency). Steps n > 1, at any given history/node h, take into account 
only non-eliminated pairs, as long as they allow for h, which captures strong belief in previous steps.

Case θ̄b < 1, in which Bob is commonly known to be “sufficiently selfish” is easier. The first step for Ann is the same 
as before, but now mere rationality has implications for Bob as well: even if, upon observing In, he were certain that Ann 

7 See our comments on the literature.
8 Note, the game form represents only the rules of the game, not players’ preferences. Here we assume that the consequences of players’ behavior are 

monetary payoffs, which do not necessarily represent players’ preferences.
9 See Battigalli and Dufwenberg (2019), Battigalli et al. (2019a), and the relevant references therein.

10 Similarly, all pairs (z,μa,1
)

such that z = (O ut), and either Eμa,1 (πa|In) > 1 or μa,1 (O ut) = 0 are eliminated as well.
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expected to get $2, he would still Take, because his guilt sensitivity is too low. In this case, only Out is consistent with 
rationality and belief in rationality.

If θb < 2 and θ̄b > 1, the analysis is more complex: for Bob, we have to look at triplets 
(
z, θb,μb,1

)
and delete them 

if z = (In,ab) and ab is not a best reply for “utility type” θb to any μb,2(·|In) satisfying the belief restrictions implied by 
previous steps (or if μb,1 (ab|In) = 0). Anyway, the upshot is that in this case information incompleteness prevents definite 
predictions: every path is consistent with rationality and common strong belief in rationality.

Related literature To the best of our knowledge, this is the first paper on epistemic game theory that does not assume 
transparency of coherence and hence does not rely on standard epistemic structures. As we explained above, our epistemic 
justification of solution concepts adapts techniques borrowed from Battigalli and Tebaldi (2019). Our analysis of hierarchies 
of conditional beliefs builds on Battigalli and Siniscalchi (1999), and their result (Proposition 1) that coherent hierarchies of 
conditional beliefs can be homeomorphically mapped to conditional beliefs about external uncertainty and (coherent as well 
incoherent) belief hierarchies of the other players.11 Our analysis of common strong belief in rationality (forward-induction 
reasoning) builds on Battigalli and Siniscalchi (2002) and Battigalli et al. (2013). In the latter paper, as in ours, primitive 
uncertainty concerns the path of play. Psychological games were first analyzed by Geanakoplos et al. (1989). Here we borrow 
from and modify the extended framework of Battigalli and Dufwenberg (2009), who also provide the first epistemic analysis 
of (strong) rationalizability in psychological games. The most important difference with Battigalli and Dufwenberg (2009) is 
that they do not assume a finite upper bound on the order of beliefs that affect psychological utility; hence, they cannot give 
a tractable definition of (strong) rationalizability as iterated elimination of non-best replies. Also, Battigalli and Dufwenberg 
(2009) assume transparency of coherence and of consistency between plan and behavior, and that psychological utility does 
not depend on one’s own plan, while we dispense with these assumptions. In particular, this allows for an explicit analysis 
of players’ inferences about coplayers’ intentions and it introduces the possibility of dynamically inconsistent preferences. 
Both features are crucial in some important applications of psychological game theory.12 Finally, Jagau and Perea (2017,
2018) analyze rationality and common belief in rationality in simultaneous-move games where psychological utility depends 
only on initial beliefs. Our analysis differs from theirs in several aspects. First, we consider multi-stage games13 where 
psychological utility may depend on initial as well as updated beliefs, including terminal beliefs. Therefore, we are able to 
model—both in one-stage and in multi-stage games—backward and forward-induction reasoning, as well as concerns for 
the opinions of others (see Battigalli and Dufwenberg, 2009, 2019). Second, Jagau and Perea (2017) rely on the standard 
type-structure approach; hence, they use different methods.

Outline The rest of the paper is organized as follows. Section 2 reviews some mathematical preliminaries. Section 3
presents multi-stage game forms. Section 4 defines hierarchies of beliefs and the total state space of the game. Section 5
defines k-th order psychological games and subjective rationality. Section 6 defines strong rationalizability. Section 7 states 
and proves our main result, Theorem 1, which provides an epistemic justification of strong rationalizability. Finally, Section 8
discusses possible extensions of our work.

2. Mathematical preliminaries

For every set X and for every n ∈ N , let Xn denote the n-fold product of the set X with generic element denoted by 
xn . By convention, we let X0 = {∅}, where ∅ denotes the empty sequence. Fix a (non-ordered) index set I , a profile of 
sets (Xi)i∈I , and let 

∏
i∈I Xi denote the set of all selections from correspondence i 	→ Xi , that is, the set of all functions 

f : I →
⋃
i∈I

Xi such that f (i) ∈ Xi . In other words, the Cartesian product 
∏

i∈I Xi is regarded as a set of functions and the 

order of “factors” is irrelevant.
Given any compact metrizable topological space �, let B (�) denote its Borel sigma-algebra and let � (�) denote the 

space of all the Borel probability measures over B (�). We always endow � (�) with the topology of weak convergence 
of probability measures. It follows that � (�) is a compact metrizable topological space (see for example Aliprantis and 
Border, 2006, Chapter 15). We always endow finite spaces with the discrete topology, product of topological spaces with 
the product topology and subsets of topological spaces with the relative topology. Given a measurable subset F of �, let 
B (�) ∩ F denote the relative Borel sigma-algebra of F .

Definition 1. Let � be compact metrizable and let F be a countable collection of clopen subsets of �. The pair (�,F) is 
called conditional measurable space.

The following definition is key in our analysis.

Definition 2. Let (�,F) be a conditional measurable space. A conditional probability system (CPS) over (�,F) is an array 
μ ∈ [�(�)]F that satisfies:

11 This is an extension of Proposition 1 in Brandenburger and Dekel (1993), which concerns hierarchies of probability measures.
12 For a comprehensive analysis of the main applications of psychological game theory see Battigalli and Dufwenberg (2019) and Battigalli et al. (2019a).
13 Including simultaneous games as a special case.
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• (Knowledge implies belief) For all F ∈F and for all E ∈ B (�)

F ⊆ E ⇒ μ(E |F ) = 1.

• (Chain Rule) For all F1, F2 ∈F with F2 ⊆ F1 and for all E ∈ B (�) ∩ F2

μ(E |F1 ) = μ(E |F2 )μ(F2 |F1 ) .

Let �F (�) ⊆ [�(�)]F denote the set of CPSs on (�,F).

The defining properties of CPSs essentially say that the rules of conditional probability apply whenever possible. In 
particular, they imply that, for each F ∈F , each measurable partition {F1, ..., Fk} of F and each measurable subset E of F ,

μ(E|F ) =
k∑

�=1

μ(E|F�)μ(F�|F ) .

Battigalli and Siniscalchi (1999) proved the following result.

Lemma 1. Set �F (�) is compact metrizable.

Next, consider two compact metrizable spaces �1, �2, their product � = �1 ×�2 and a collection F ⊆ B (�1) of clopen 
subsets of �1. The “cylinders”

F ′ = {F × �2 ⊆ � : F ∈ F} ⊆ B (�)

form a family of clopen subsets of �; therefore, 
(
�,F ′) is a conditional measurable space. We can marginalize CPSs defined 

over product spaces through the map marg�1 : �F ′
(�) → �F (�1) defined by

marg�1
(μ) (E |F ) = μ(E × �2 |F × �2 )

for all E ∈ B (�1) and F ∈F , which is clearly continuous.

3. Multi-stage game form

A multi-stage game form is a mathematical object that encodes the rules of interaction in a game: the set of players 
(roles), and, for each player, his information and feasible actions at each stage as well as the outcomes of each feasible path 
of play. Here we consider a simplified version with observable actions. The game proceeds through stages. In each stage, the 
set of feasible actions of each player may depend on the history of past actions, which is public information. A player is 
inactive when his set of feasible actions is a singleton. In each stage, all active players move simultaneously.

A multi-stage game tree is a mathematical structure〈
I, (Ai)i∈I , H̄

〉
comprising the following elements:

• I is the finite set of players;
• Ai is a finite set of actions of player i ∈ I , and we let A =

∏
i∈I

Ai denote the set of action profiles;

• H̄ ⊆
⋃

n∈N0

An denotes the finite set of feasible histories h = ((
ai,s

)
i∈I

)n
s=1

. In particular, H̄ has a tree structure: every 

prefix of a sequence in H̄ (including the empty sequence ∅) belongs to H̄ as well. Thus, histories in H̄ correspond to 
nodes of the game tree and ∅ is the root. Set H̄ is partitioned into the set of non-terminal histories H and terminal 
histories Z . Each z ∈ Z is a complete description of the actual behavior of players from the beginning to the end of the 
game.

For every h ∈ H , let

A (h) = {
a ∈ A : (h,a) ∈ H̄

}
,

denote the set of feasible action profiles after h.14 For every i ∈ I , Ai (h) is the projection of A (h) onto Ai and A−i (h) is 
similarly defined. The set of personal histories of player i is

14 Note that, for each z ∈ Z , A (z) = ∅.
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Hi = H̄ ∪ {(h,ai) ∈ H × Ai : ai ∈ Ai (h)} .

In words, (h,ai) represents the interim information of player i as soon as he has chosen action ai given h and before 
he obtains information about the actions simultaneously chosen by the coplayers. Such interim histories are important to 
model what players believe about the consequences of their choices.

The natural precedence relation on H̄ is denoted by �, that is, for all h, h′ ∈ H̄ , we write h � h′ if and only if h is a prefix 
of h′ (the irreflexive part of � is denoted by ≺). For each i ∈ I , � can be extended to a corresponding precedence relation 
� on Hi in an obvious way.15 For every player i ∈ I and personal history hi ∈ Hi ,

Z (hi) = {z ∈ Z : hi � z}
denotes the set of paths consistent with hi . For each h ∈ H , a−i ∈ A−i (h), the subsets Z (h,ai) and Z (h,a−i) of Z are 
similarly defined.

To complete the description of the game form we need to specify the relation between feasible actions and outcomes. 
In particular, we assume that the former and the latter may be mediated by players’ personal traits such as intelligence, 
strength, or in general any kind of skills, according to natural laws. For instance, the exact consequences implied by a player 
doing a physical task may depend on his level of strength.

Formally, we parametrize the personal traits of each player i through a compact metrizable space �i . We assume that each 
player i knows his personal traits θi ∈ �i , but is uncertain about the personal traits of coplayers, θ−i ∈ �−i =

∏
j∈I\{i}

� j . Play-

ers’ personal traits θ ∈ � = ∏
i∈I �i are utility-relevant insofar they may influence both the outcomes and the preferences 

of players over outcomes and beliefs.16 Thus, we assume that every player forms (potentially utility-relevant) beliefs about 
his coplayers’ personal traits.17

We consider a metric space of outcomes Y and a continuous outcome function π : Z × � → Y that maps each path of 
play and profile of personal traits to the corresponding outcome.18 With this, we can define a multi-stage game form as a 
mathematical structure

	 = 〈
I, (Ai,�i)i∈I , H̄,π

〉
As explained above, even though the “written” rules of the game do not explicitly refer to personal traits, natural laws 

may imply that outcomes depend on personal traits given players’ actions.
We illustrate our framework and results with repeated reference to the game form depicted in Fig. 2.

Example 1. Ann (a), Bob (b), and Chloe (c) play according to the following rules: First Ann and Bob choose independently 
and simultaneously between, respectively, Up or Down (U or D), and Left or Right (L or R). At this first stage, Chloe can only 
Wait (W ). (Waiting actions are not shown explicitly in the graphical representation.) If (D, L) is selected, Chloe can choose 
either a Non-selfish or a Selfish action (N or S), while Ann and Bob can only Wait for the end of the interaction. Every 
other action pair of Ann and Bob terminates the interaction. The personal features of Ann and Bob are common knowledge, 
while the personal features of Chloe are summarized by a parameter θc ∈ [

θ c, θ̄c
] ⊆ R+ that measures Chloe’s sensitivity 

to a given emotion (e.g., guilt, or anger) known only to Chloe. Outcomes are profiles of monetary payoffs, that is, Y = RI , 
where I = {a,b, c} is the player set, and π = (πi)i∈I : Z × � →RI , where z 	→ πi (z, θ) denotes the monetary payoff of i at 
terminal history z and is independent of θ . Thus, in this case19 the outcome depends only on what players do, not on their 
personal features.20 We consider two possible monetary payoffs for Chloe after S , x ∈ {−1,1}, and we leave πc ((D, R, W ))

unspecified (denoted ∗) to emphasize that it does not play any role in the numerical examples based on this game form. 
Consistently with the intended interpretation of our framework, we assume that this game form (including the value of x) 
is common knowledge. To sum up, we have:21

� Aa = {U , D, W }, Ab = {L, R, W }, Ac = {N, S, W },
� H = {∅, ((D, L, W ))},
� Z = {((U , L, W )) , ((U , R, W )) , ((D, R, W )) , ((D, L, W ) , (W , W , S))},
� � is isomorphic to 

[
θ c, θ̄c

]
,

and π is specified in the picture. One can derive from these primitive elements the sets of feasible actions and of personal 
histories of each player. For example, Aa (∅) = {U , D}, Aa ((D, L, W )) = {W }, and Ha = H ∪ Z ∪ {(U ) , (D)}, where (U ) and 
(D) are the interim histories associated with Ann’s feasible actions at the root. �

15 In particular, for h ∈ H , ai ∈ Ai (h), and h′ ∈ H̄ , (h,ai) � h′ if and only if h ≺ h′ and (h, (ai ,a−i)) � h′ for some a−i ∈ A−i (h).
16 See Section 5.
17 See Section 4.
18 To ease notation, we do not distinguish between traits affecting outcomes from traits that only affect preferences. Therefore, in some cases function π

may be independent of θ , as in the heuristic example of the Introduction.
19 As in most experimental games.
20 Payoff profiles are shown in alphabetical order from top to bottom.
21 For the sake of clarity, we allow for redundant parentheses, as we have those of action profiles, those of sequences of action profiles (histories), and 

those of functions. To ease notation, in the following examples we omit redundant parentheses and the “waiting” actions.
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Fig. 2. A 3-person game form.

4. Beliefs

In this section we first analyze systems of conditional beliefs about paths and personal features of coplayers, focusing on 
a key independence property. Next we analyze the hierarchies of conditional beliefs.

4.1. Conditional beliefs, subjective plans and Own-action independence of beliefs

For a fixed player i ∈ I , we posit an abstract compact metrizable space T−i that we interpret as the set of profiles 
of possible personal features of the coplayers. Specifically, each t−i ∈ T−i is interpreted as a description of the personal 
traits of the coplayers and of how they think, that is, what they think at the beginning of the game and how they update 
their beliefs upon receiving information about past play. For example, we may have T−i = �−i . Later we will provide a 
constructive definition of this abstract space, which right now is not necessary.

The (abstract) uncertainty space of player i is the product space �−i = Z × T−i , and the corresponding collection of 
conditioning events is

F = {Z (hi) × T−i}hi∈Hi
⊆ B (�−i) .

Since Z is finite, each �−i (hi) = Z (hi) × T−i is clopen. Given that F is isomorphic to Hi , let (�−i, Hi) denote the corre-
sponding conditional measurable space. The space of CPSs on (�−i, Hi) is denoted by �Hi (�−i). For simplicity, we write 
conditional beliefs as μi (·|hi). Furthermore, for any CPS μi on (�−i, Hi), we introduce a simplified notation for marginal 
conditional probabilities summarized by the following Table 1, where h ∈ H , hi, h′

i ∈ Hi such that hi � h′
i , E−i ⊆ T−i is 

measurable, and (ai,a−i) ∈ A(h):

Table 1
Marginal conditional probabilities.

Notation Definition

μi(h′
i |hi) μi(Z(h′

i) × T−i |hi)

μi(E−i |hi) μi(Z × E−i |hi)

μi(ai ,a−i |h) μi(Z(h, (ai ,a−i)) × T−i |h)

μi(ai |h) μi(Z(h,ai) × T−i |h) =∑
a′−i∈A−i (h) μi(ai ,a′

−i |h)

μi(a−i |h) μi(Z(h,a−i) × T−i |h) =∑
a′

i∈Ai (h) μi(a′
i ,a−i |h)

Define

σ̂i (μi) = (
(μi (ai |h))ai∈Ai(h)

)
h∈H

∈
∏

�(Ai (h))
h∈H
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and note that σ̂i (μi) corresponds to a behavior strategy of i. We interpret these conditional probabilities as the subjective
plan of i conditional on each possible history. Similarly,

σ̂−i (μi) =
(
(μi (a−i |h))a−i∈A−i(h)

)
h∈H

∈
∏
h∈H

�(A−i (h))

corresponds to a correlated behavior strategy for player i’s coplayers. We interpret these conditional probabilities as the 
subjective belief of i about the behavior of his coplayers conditional on each possible history. Let �i and �−i respectively 
denote the set of subjective plans of i and the set of his beliefs about the behavior of his coplayers. Let σi (resp. σ−i) denote 
a generic element of �i (resp. �−i) and let σ̂i (μi) (resp. σ̂−i (μi) ∈ �−i ) denote the element of �i (resp. �−i) derived from 
μi . As we shall see in the following sections, the deterministic plans of i (i.e., those plans that assign probability 1 to a 
single action at each history) have a particular relevance in our analysis. Let Si ⊆ �i denote the set of deterministic plans of 
i, with generic element si .22 In particular, with a slight abuse of notation, for each h ∈ H , let si (h) denote the unique action 
prescribed by a deterministic plan si at h. Note that each plan σi ∈ �i can also be seen as a mixture over deterministic 
plans. Indeed, it will be useful to define the “support” of a plan σi ∈ �i as

suppσi = {si ∈ Si : ∀h ∈ H,σi (si (h) |h) > 0} .

As a final piece of notation, for all hi, h′
i ∈ Hi with hi � h′

i , let Pσi ,σ−i

(
h′

i |hi
)

denote the conditional probability of h′
i given 

hi derived form the behavior strategies (σi, σ−i) ∈ �i × �−i in the usual way.
The definition of conditional belief as expressed in Definition 2 may represent the system of beliefs of an external 

observer that obtains the same information as player i. But, arguably, reasonable beliefs of player i should satisfy a further 
condition: what i believes about his coplayers’ features and simultaneous actions is independent of his own actions. Indeed, there is 
no objective causality that links the behavior of player i at a certain history with the simultaneous behavior of his coplayers 
or their personal features. We next formalize this property and then illustrate it through our running example.

Definition 3. A CPS μi on (�−i, Hi) satisfies own-action independence (OAI) if

μi (Z (h, (ai,a−i)) × E−i|h,ai) = μi
(

Z
(
h,
(
a′

i,a−i
))× E−i|h,a′

i

)
for all h ∈ H , ai, a′

i ∈ Ai (h), a−i ∈ A−i (h) and measurable E−i ⊆ T−i .23

The set of CPSs of i satisfying OAI is denoted by �Hi
i (�−i).

Example 2. Consider the game form depicted in Fig. 2. Let us focus on Ann’s initial beliefs on Z × �c , and those 
conditional on her action D and action pair (D, L). Suppose that at the root Ann plans to go Up, she expects Bob 
to go Left with probability 0.5, and she assigns probability 0.5 to each one of the two extreme types θ c and θ̄c of 
Chloe. Thus, μa

((
U , L, θ̄c

) |∅) = 0.25 and μa ((D,ab, θc) |∅) = 0 for every (ab, θc) ∈ Ab (∅) × �c . Condition OAI implies 
μa

(
L, θ̄c|∅

)= μa
(
L, θ̄c|D

)
, because what Ann believes about the simultaneous action of Bob and the type of Chloe is inde-

pendent of what she does, even when—as in this case—Ann “surprises herself” by taking an unplanned action. Yet, OAI does 
not require independence across coplayers: in particular, it is possible that μa

(
L, θ̄c|∅

) �= 0.5 × 0.5 and μa
(
θ̄c | (D, L)

) �= 0.5, 
i.e., that in Ann’s eyes there is (spurious) correlation between Bob’s behavior and Chloe’s type. �

The following proposition characterizes OAI.

Proposition 1. Consider a CPS μi on (�−i, Hi). The following are equivalent:

i) μi satisfies OAI;
ii) for all h ∈ H, (ai,a−i) ∈ A (h), and measurable E−i ⊆ T−i ,

μi (Z (h,a−i) × E−i|h) = μi (Z (h, (ai,a−i)) × E−i|h,ai) .

OAI implies that a CPS of player i is made of two independent parts, i’s beliefs about his own behavior and his beliefs 
about the coplayers’ behavior and personal features. In the Appendix, we also show that OAI is equivalent to a factorization 
of μi ∈ �

Hi
i (�−i) in a behavior strategy σ̂i (μi) ∈ �i for i and a pair

22 Note that, mathematically, the set of deterministic plans just defined coincides with the standard set of pure strategies for an extensive-form game. 
Indeed, we are denoting them with the usual notation si ∈ Si . However, according to our interpretation, each si ∈ Si ⊆ �i is a subjective plan which 
represents player i’s intentions rather than actual behavior. In fact, the latter is described only by play paths z ∈ Z .
23 The previous condition holds vacuously for terminal information sets.
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(ς−i, ηi) =
((

ς
t−i
−i

)
t−i∈T−i

,
(
ηi,h

)
h∈H̄

)
∈ �

T−i
−i × �(T−i)

H̄

of features-dependent behavior strategies of coplayers and a system of marginal beliefs of i over T−i . In words, each ς t−i
−i

describes the belief of i about the behavior of his coplayers when their personal features are t−i , and each ηi,h describes the 
beliefs of i about his coplayers’ personal features at every history. In particular, the correlated behavior strategy σ̂−i (μi) ∈
�−i defined above is obtained as

σ̂−i (μi) (a−i |h) =
∫

T−i

ς
t−i
−i (a−i |h)ηi,h (dt−i)

for all h ∈ H and a−i ∈ A−i (h). Clearly, in two-person game forms with observable actions, each σ̂−i (μi) is a proper behavior 
strategy for the (unique) coplayer of i.

Relying on Lemma 1, we can prove the following result.

Lemma 2. Set �Hi
i (�−i) is compact metrizable.

To ease the exposition, we refer to CPS that satisfy the OAI property with the acronym ICPS.

Definition 4. We say that an ICPS μi ∈ �
Hi
i (�−i) strongly believes event E−i ∈ B (�−i) if, for every h ∈ H ,

�−i (h) ∩ E−i �= ∅ ⇒ μi (E−i|h) = 1.

We say that μi ∈ �
Hi
i (�−i) strongly believes 

(
E1

−i, ..., En
−i

) ∈ B (�−i)
n if μi strongly believes Ek

−i for every k ∈ {1, ...,n}.24

The following result adapts Lemma 3 of Battigalli and Tebaldi (2019).25 It is crucial in the proof of the main theorem of 
this article.

Lemma 3. Let �−i = Z × T−i as above and let X−i be compact metrizable. Fix a decreasing chain 
(

E1
−i, ..., En

−i

)
in �−i × X−i and let 

proj�−i
Em

−i be measurable for each m ∈ {1, ...,n}. For each μi ∈ �
Hi
i (�−i) that strongly believes 

(
proj�−i

E1
−i, . . . ,proj�−i

En
−i

)
there 

exists νi ∈ �
Hi
i (�−i × X−i) that strongly believes 

(
E1

−i, ..., En
−i

)
and satisfies marg�−iνi = μi .

4.2. Hierarchies of conditional beliefs

For each player i ∈ I , the space of primitive uncertainty of i is �0
−i = Z × �−i , that is, player i is first of all uncertain 

about how the game is going to be played (z ∈ Z ) and of the personal traits of the coplayers (θ−i ∈ �−i ). The set �0
−i is 

compact metrizable because Z is finite and �−i is compact metrizable. It is immediate to see that �0
−i is a particular case 

of the (abstract) uncertainty space �−i introduced in Section 4.1: it is enough to let T−i = �−i . With this, the conditional 
measurable space 

(
�0

−i, Hi
)

is well defined and we can consider ICPSs in �Hi
i

(
�0

−i

)
.

For all i ∈ I , hierarchies of ICPSs are recursively defined as follows:

• �0
−i = Z × �−i ; Mi,1 = M1

i = �
Hi
i

(
�0

−i

)
,

• �k
−i = �k−1

−i ×∏
j∈I\{i} M j,k; Mi,k+1 = �

Hi
i

(
�k

−i

)
; Mk+1

i =∏k+1
m=1 Mi,m

(
k ∈N

)
;

where, for all k ∈N , �k
−i is the k-th order uncertainty space of i, Mi,k is the space of k-th order ICPSs of i and Mk

i is the 
space of k-th order hierarchies of ICPSs of i. A generic element μk

i = (
μi,m

)k
m=1 in Mk

i is a sequence of length k of ICPSs 
defined on uncertainty spaces of increasing orders. Moreover, for all k ∈N , it can be checked that

�k
−i = Z × �−i ×

k∏
m=1

∏
j∈I\{i}

M j,m.

For each i ∈ I and k ∈N , let

24 We can show that OAI implies that if the condition displayed above holds for all h ∈ H̄ , then it also holds for all hi ∈ Hi .
25 In particular, we rely on a generalization of their result proved in the working paper version of the article (IGIER w.p. 609).
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Mk
−i =

k∏
m=1

∏
j∈I\{i}

M j,m and T k
−i = �−i × Mk

−i

respectively denote the spaces of k-th order hierarchies and personal features of coplayers; with this, each k-th order 
uncertainty space �k

−i = Z × T k
−i has the same structure of the abstract space �−i introduced in Section 4.1. By repeated 

applications of Lemma 2 and Tychonoff’s Theorem, one can show that each Mk
i is compact metrizable. Thus, for every k ∈N , 

T k
−i is compact metrizable and 

(
�k

−i, Hi
)

is a well defined conditional measurable space.26

An infinite hierarchy of ICPSs of player i is a denumerable sequence μ∞
i = (

μi,k
)

k∈N ∈ M∞
i , where M∞

i = ∏
k∈N Mi,k . 

For every i ∈ I , M∞
i is compact metrizable, and so are M∞

−i =∏
j∈I\{i} M∞

j and M∞ =∏
i∈I M∞

i . The total state space given 
the game form 	 is

�∞ = Z × � × M∞.

Each state ω∞ = (z, θ,μ∞) in �∞ is a complete description of the actual behavior of players, of their personal traits, and 
of their systems of conditional beliefs of all orders. Since player i is assumed to know both his personal traits θi and his 
infinite hierarchy μ∞

i , the total uncertainty space of i is

�∞
−i = Z × �−i × M∞

−i .

The spaces of personal features of player i and coplayers −i are, respectively, T ∞
i = �i × M∞

i and T ∞
−i = �−i × M∞

−i . With 
this, we can write the total uncertainty space of i as �∞

−i = Z × T ∞
−i , and 

(
�∞

−i, Hi
)

is a well defined conditional measurable 
space.

4.3. Belief coherence

So far, we did not impose the requirement that beliefs of different orders in a hierarchy are mutually consistent, i.e., that 
they assign the same probabilities to events of lower order of uncertainty, such as events about behavior. Next we consider 
hierarchies satisfying this requirement, that we interpret as a cognitive rationality condition.27

Definition 5. Fix an infinite belief hierarchy μ∞
i ∈ M∞

i . We say that μ∞
i is coherent if, for all k ∈N , and hi ∈ Hi ,

marg
�k−1

−i
μi,k+1 (·|hi) = μi,k (·|hi) . (2)

For each i ∈ I , we let C∞
i denote the subset of coherent hierarchies in M∞

i and let C∞ = ∏
i∈I C∞

i . For each n ∈ N , Cn
i

and Cn are similarly defined, i.e., condition (2) must hold for all k ≤ n. The following technical result implies that C∞
i has 

the same topological properties of M∞
i .

Lemma 4. Set C∞
i is compact metrizable.

This easily follows from the fact that, for all k ∈ N and hi ∈ Hi , the map

μi,k+1 (·|hi) 	→ marg
�k−1

−i
μi,k+1 (·|hi)

is continuous (see for example Aliprantis and Border, 2006, Chapter 15).
The following result adapts Proposition 1 of Battigalli and Siniscalchi (1999) to the current setup.28

Proposition 2. There exists a canonical homeomorphism gi : C∞
i → �

Hi
i

(
�∞

−i

)
such that for all μ∞

i ∈ C∞
i and k ∈ N ,

marg
�k−1

−i
gi
(
μ∞

i

)= μi,k.

26 The countable collection of clopen subsets of �k
−i is given by

{
Z (hi) × T k

−i

}
hi∈Hi

⊆B
(
�k

−i

)
,

which is isomorphic to Hi for all k ∈N .
27 Note, we did already impose some cognitive rationality requirements: the chain rule and OAI. We did this only for brevity. We could allow for more 

deviations from cognitive rationality at arbitrary states of the world, requiring all the relevant consistency conditions only at states where players are 
rational.
28 Proposition 1 of Battigalli and Siniscalchi (1999) considers an abstract conditional measurable space, not one based on a game; therefore, the game-

based OAI condition used in the definition of C∞
i and �Hi

i

(
�∞

−i

)
cannot be expressed. The game-theoretic applications of the second part of that article 

instead impose a requirement in the spirit of OAI as part of the definition of rationality.
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Finally, it is straightforward to define the space of coherent k-th order hierarchies of ICPSs which is denoted by Ck
i .

5. Psychological games and rationality

Next we introduce belief-dependent utilities and append them to the game form to obtain a psychological game. Fix a 
multi-stage game form 	, a k-th order psychological game based on 	 is a structure

〈	, v〉 = 〈
	, (vi)i∈I

〉
where, for every i ∈ I , the psychological utility function vi : Y × � × Mk →R is continuous.29 Let P Gk denote the class of 
k-th order psychological games and let 〈	, v〉 denote a generic element of this class. Note that in many interesting cases 
vi depends only on θi ∈ �i (which parametrizes player i’s preferences over outcomes and beliefs), not on θ−i . However, we 
allow for dependence of each vi on the entire profile θ ∈ �. With this, we are also able to consider models of interdependent 
preferences as in Gul and Pesendorfer (2016).30

For simplicity, we will always consider the implied utility function defined over terminal histories and personal features

ui : Z × � × Mk → R,(
z, θ,μk

) 	→ vi
(
π (z, θ) , θ,μk

)
,

obtained as composition of the outcome function π with vi . With this, the utility-relevant state space of each player is 
�k = Z × � × Mk . Note that the total state space can be factorized as follows:

�∞ = �k ×
∏
i∈I

∏
m≥k

�
Hi
i

(
�m

−i

)= Z ×
∏
i∈I

(
T k

i ×
∏
m>k

Mm
i

)
, (3)

that is, each state ω∞ ∈ �∞ can be seen as a pair 
(
ωk,ω>k

)
such that only ωk ∈ �k is utility-relevant. Since player i knows 

his own personal features 
(
θi,μ

k
i

) ∈ �i × Mk
i = T k

i , his utility-relevant uncertainty space is �k
−i = Z × T k

−i .
A rational player i has to consult his (k + 1)-order ICPS μi,k+1 in order to take conditional expectations of his psycholog-

ical utility. If i has observed h ∈ H , for each ai ∈ Ai (h), he computes the corresponding expected utility given θi and μi,k+1, 
that is,

ūi,h
(
ai, θi,μi,k+1

)=
∫

�k
−i

ui

(
θi,μ

k
i ,ω

k
−i

)
μi,k+1

(
dωk

−i|h,ai

)
. (4)

Hence, for every i ∈ I , we have a vector(
ūi,h : Ai (h) × �i × Mi,k+1 →R

)
h∈H

of psychological decision utilities defined as in (4).

Remark 1. For every i ∈ I and h ∈ H , ūi,h is continuous.

In the rest of the paper, we only refer to such decision utilities to define players’ rationality and derive our results. Note 
that we could have considered the vector of utilities 

(
ūi,h

)
(i,h)∈I×H as the primitive element of the analysis, rather than 

deriving it from the psychological utility defined over terminal paths.31

Given h ∈ H , a rational player i with personal traits θi and beliefs μi,k+1 solves the following problem:

max
ai∈Ai(h)

ūi,h
(
ai, θi,μi,k+1

)
.

With this, for every h ∈ H , we define the local best-reply correspondence of i at h as

ri,h : �i × Mi,k+1 ⇒ Ai (h) ,(
θi,μi,k+1

) 	→ arg maxai∈Ai(h) ūi,h
(
ai, θi,μi,k+1

)
.

Remark 2. For every i ∈ I and h ∈ H , ri,h is non-empty valued and upper hemicontinuous.

29 As in Battigalli and Dufwenberg (2009), we take continuity of psychological utilities as a maintained assumption. In their analysis of static psychological 
games, Jagau and Perea (2017) relax the continuity assumption.
30 See also Levine (1998).
31 Such reduced form approach is more general because it does not require that decision utilities are derived from an overall utility over terminal nodes. 

As explained in Battigalli et al. (2019a) this allows to model some belief-dependent action tendencies like being aggressive when frustrated.
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In the following section, we are going to define rational planning of i given the personal features 
(
θi,μi,k+1

)
as a 

consistency condition between the local best replies 
(
ri,h

(
θi,μi,k+1

))
h∈H and the plan (behavior strategy) σ̂i

(
μi,1

)
of i

derived by his first-order beliefs. Recall that in Section 4 we have defined the subjective plan of i implied by his beliefs as:

σ̂i
(
μi,1

)
(ai|h) = margZμi,1 (Z (h,ai) |h)

for all h ∈ H and ai ∈ Ai (h).32 Note that here we take the space of first-order beliefs as domain of the map σ̂i . This 
choice—although natural—is somewhat arbitrary, because one can derive a plan for i from a belief of any order. Yet, we will 
focus on plans of rational players, whose belief hierarchy is coherent and hence yields the same plan starting from beliefs 
of any order.

5.1. Rational planning and material consistency

Recall that player i has a coherent belief at ω∞
i = (

z, θi,μ
∞
i

) ∈ �∞
i whenever μ∞

i ∈ C∞
i , that is, whenever the prevailing 

state of the world ω∞
i belongs to

�
∞,∗
i = {(

z̄, θ̄i, μ̄
∞
i

) ∈ �∞
i : μ̄∞

i ∈ C∞
i

}
which is measurable. Event �∞,∗

i represents the statement “Player i has coherent beliefs.”

Remark 3. The set �∞,∗
i is compact.33

Our notion of rationality is given by the conjunction of several consistency conditions. We begin with rational planning which 
requires the subjective plan σ̂i

(
μi,1

)
of i to be immune to one-shot deviations given his personal features 

(
θi,μi,k+1

)
.

Definition 6. Player i is a rational planner (RP) at 
(
z, θi,μ

∞
i

) ∈ �∞
i if μ∞

i ∈ C∞
i and

σ̂i
(
μi,1

) (
ri,h

(
θi,μi,k+1

) |h)= 1 (5)

for every h ∈ H .

In words, rational planning corresponds to a notion of intra-personal equilibrium among the selves (indexed by all the 
feasible histories h ∈ H) of player i. Indeed, it requires that all the actions ai in the support of the plan σ̂i

(
μi,1

)
(·|h)

maximize the local utility ūi,h
(·, θi,μi,k+1

)
which on turn depends on the first-order belief μi,1, hence on the plan σ̂i

(
μi,1

)
itself.34 Therefore, i is a rational planner if and only if his belief μi,k+1 satisfies the fixed-point condition in Eq. (5) for 
every h ∈ H . In Example 3 we illustrate this point by considering psychological preferences directly expressed through local 
decision utilities.

The event that player i is a rational planner is

R Pi = {(
z, θi,μ

∞
i

) ∈ �
∞,∗
i : ∀h ∈ H, σ̂i

(
μi,1

) (
ri,h

(
θi,μi,k+1

) |h)= 1
}

.

Lemma 5. The set R Pi is non-empty and compact.

Another aspect of rationality is the consistency between planned behavior and actual behavior:

Definition 7. Player i is materially consistent (MC) at 
(
z, θi,μ

∞
i

) ∈ �∞
i if μ∞

i ∈ C∞
i and, for all h ∈ H ,

h ≺ z =⇒ σ̂i
(
μi,1

) (
ai,h (z) |h)> 0,

where ai,h (z) ∈ Ai (h) is the unique feasible action of i at h implied by z.

The corresponding event is

MC i = {(
z, θi,μ

∞
i

) ∈ �
∞,∗
i : ∀h ∈ H,h ≺ z =⇒ σ̂i

(
μi,1

) (
ai,h (z) |h)> 0

}
.

Note that we can similarly define the event that player i is strictly materially consistent as

MC∗
i = {(

z, θi,μ
∞
i

) ∈ MC i : ∀h ∈ H,∃ai ∈ Ai (h) , σ̂i
(
μi,1

)
(ai |h) = 1

}
where we require that player i’s subjective plan assigns probability 1 to his actual behavior.

32 See Section 4 and Proposition 6 in the Appendix for more details.
33 To see this, just notice that �∞,∗

i = Z × �i × C∞
i , where C∞

i is compact (Lemma 4).
34 Note that here the coherence property between μi,1 and μi,k+1 is crucial.
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Lemma 6. Set MCi is nonempty and measurable, MC∗
i is nonempty and compact.

Rationality is therefore defined as follows.

Definition 8. Player i is rational at 
(
z, θi,μ

∞
i

) ∈ �∞
i if i is a rational planner and is materially consistent at 

(
z, θi,μ

∞
i

)
.

The event that player i is rational is denoted by Ri = R Pi ∩ MCi . Finally, we define the events “Every player is rational” 
and “Every coplayer of player i is rational,” respectively in �∞ and �∞

−i , as:

R =
⋂
i∈I

(
Ri × T ∞

−i

)
and R−i =

⋂
j∈I\{i}

⎛
⎝R j ×

∏
ι∈I\{i, j}

T ∞
ι

⎞
⎠ ,

with the convention that, whenever we analyze 2-player games, the set 
∏

ι∈I\{i, j} T ∞
ι is a singleton and R−i is equal to R j . 

Moreover, we define the sets R∗
i , R∗ and R∗

−i by replacing MCi with MC∗
i in all the previous definitions.

Remark 4. Sets Ri , R−i and R are non-empty and measurable; sets R∗
i , R∗

−i and R∗ are compact.

Note that R∗
i is the event that i is rational and has a deterministic plan. This set can be empty. Indeed, there are cases 

in which only non-deterministic plans are consistent with rational planning.
We illustrate our notion of subjective rationality in a case where psychological preferences are not dynamically consistent.

Example 3. Consider the game form with monetary payoffs of Fig. 2 with x = −1, so that S is a costly punishment that 
Chloe can inflict on Ann and Bob. Suppose that Chloe, given (D, L), may be affected by frustration and simple anger as in 
the theory of Battigalli et al. (2019b). In this particular case, her frustration is measured by her disappointment,35 which 
induces a propensity to harm coplayers proportional to frustration. Specifically, Chloe’s decision utility function is

ūc,(D,L)

(
ac, θc,μc,1

)= πc ((D, L) ,ac) − θc
[
Eμc,1 (πc|∅)

]+ ∑
j∈{a,b}

π j ((D, L) ,ac) ,

where [·]+ = max {·,0}. Suppose Chloe initially expects Bob to go Left with probability 1 and Ann to go Down with proba-
bility 0.5, so that σ̂−c

(
μc,1

)
((D, L) |∅) = 0.5, and let p = σ̂c

(
μc,1

)
(S| (D, L)) denote the probability with which Chloe plans 

to “punish” her coplayers. Then

Eμc,1 (πc|∅) = 0.5 + 0.5px = 1 − p

2
≥ 0

and the decision utilities of N and S are

ūc,(D,L)

(
N, θc,μc,1

)= −3θc (1 − p) , ūc,(D,L)

(
S, θc,μc,1

)= −1

respectively. Given her beliefs about coplayers, Chloe cannot have a deterministic rational plan to punish, because p = 1
implies that she wants to choose N given (D, L):

ūc,(D,L)

(
N, θc,μc,1

)= 0 > −1 = ūc,(D,L)

(
S, θc,μc,1

)
.

Also, she has a deterministic rational plan not to punish (p = 0) if and only if

ūc,(D,L)

(
N, θc,μc,1

)= −3θc ≥ −1 = ūc,(D,L)

(
S, θc,μc,1

)
,

i.e., θc ≤ 1/3. Thus, if θc > 1/3, Chloe has no deterministic rational plan. In this case, the non-deterministic rational plan 
solves the following indifference condition

3θc (1 − p) = 1,

which yields p = 1 − 1/ (3θc) ∈ (0,1). With this, Chloe plans rationally and is materially consistent, hence is rational, at 
both personal states 

(
((D, L) ,ac) , θc,μc,1

)
(aa ∈ {N, S}) if θ > 1/3 and p = 1 − 1/ (3θc), because in both states she plans to 

choose with positive probability a local best reply, which is also her action on the actual path. �

35 In the theory of Battigalli et al. (2019b), disappointment is only an upper bound on frustration. Note also that, as mentioned earlier, in the theory of 
anger decision utilities are not simply derived as the expectations of terminal psychological utility.



P. Battigalli et al. / Games and Economic Behavior 120 (2020) 28–57 41
In the previous example, dynamic inconsistency of preferences implies the non-existence of a rational deterministic plan. 
Next we provide a simple condition on psychological utility such that the induced preferences over actions are dynamically 
consistent, because they are represented by a state-dependent subjective expected utility.

Definition 9. We say that 〈	, v〉 satisfies own-belief independence (OBI) if, for all i ∈ I , y ∈ Y , θ ∈ � and μk, μ̂k ∈ Mk ,

μk
−i = μ̂k

−i =⇒ vi

(
y, θ,μk

)
= vi

(
y, θ, μ̂k

)
.

Let P G O B I
k denote the class of k-th order psychological games satisfying OBI. In words, a psychological game satisfies OBI 

if and only if, for each player i with traits θi , the utility of outcomes depends on the unknown state 
(
θ−i,μ

k
−i

)
, that is, it can 

be written as vi,θi

(
y, θ−i,μ

k
−i

)
. In particular, i’s utility is independent of his own plan σ̂i

(
μi,1

)
.36 For example, when each vi

is given by the guilt-aversion formula (1) of Section 1, we obtain a game in P G O B I
1 . Models of image concerns—whereby i’s 

utility depends on −i’s terminal beliefs about unobserved traits or actions of i—provide another example of psychological 
preferences satisfying OBI.37 Under OBI, we can rely on standard results about subjective expected utility maximization, 
such as the one-shot deviation principle and the existence of deterministic rational plans. In order to formally express such 
results we need a further piece of notation. For all h ∈ H , μi,k+1 ∈ Mi,k+1, and σi ∈ �i define μσi

i,k+1 as the k + 1 order ICPS 
obtained from μi,k+1 by substituting the original plan σ̂i

(
μi,1

)
implied by μi,k+1 with the arbitrary plan σi . Note that OAI 

implies that this factorization is well defined.38 Also, for all h ∈ H , σi ∈ �i , θi ∈ �i , and μi,k+1 ∈ Mi,k+1, define

V i,h
(
σi, θi,μi,k+1

)=
∫

�k
−i

ui

(
θi,μ

k
i ,ω

k
−i

)
μ

σi
i,k+1

(
dωk

−i |h
)

.

Remark 5. If 〈	, v〉 ∈ P G O B I
k , then player i is a rational planner at 

(
z, θi,μ

∞
i

) ∈ �∞
i if and only if μ∞

i ∈ C∞
i and, for each 

h ∈ H ,

si ∈ suppσ̂i
(
μi,1

) =⇒ sh
i ∈ arg max

s′i∈Si(h)
V i,h

(
s′

i, θi,μi,k+1
)

,

where sh
i is the deterministic plan that allows h and coincides with si at all histories that do not precede h, and Si (h) ⊆ �i

is the set of deterministic plans that allow history h.

The previous remark is just a restatement adapted to the current framework of the standard equivalence between the 
one-shot deviation property and sequential optimality of strategies under subjective expected utility maximization.39

6. Strong belief and strong rationalizability

In this section, we adapt Battigalli and Siniscalchi’s (2002) notion of strong belief to our framework and then provide the 
definition of strong rationalizability. We first focus on events within the utility-relevant space of uncertainty of player i. We 
say that (k + 1) order belief μi,k+1 ∈ Mi,k+1 strongly believes an event E−i ⊆ �k

−i if

�k
−i (h) ∩ E−i �= ∅ =⇒ μi,k+1 (E−i |h ) = 1,

for all h ∈ H .
We are now ready to present the algorithm defining strong rationalizability, which is meant to capture the predictions 

for behavior and low-order beliefs implied by rationality and forward-induction reasoning (see Theorem 1). Recall that, for 
each i ∈ I , T k

i = �i × Mk
i and T k

−i = �−i × Mk
−i are the spaces of (k order) personal features of i and −i respectively.

(Step 0) For all i ∈ I , let Pi (0) = �k
i , P−i (0) = �k

−i and P (0) = �k .
(Step n > 0) Assume that Pi (m), P−i (m) and P (m) have been defined for all m ∈ {0, ...,n − 1}. For each i ∈ I , let (

z, θi,μ
k
i

) ∈ Pi (n) if there exists μi,k+1 ∈ Mi,k+1 such that:

• (Coherence)
(
μk

i ,μi,k+1
) ∈ Ck+1

i ;
• (RP) for each h ∈ H , σ̂i

(
μi,1

) (
ri,h

(
θi,μi,k+1

) |h)= 1;
• (MC) for each h ∈ H , if h ≺ z, then σ̂i

(
μi,1

) (
ai,h (z) |h)> 0;

36 Indeed, own-plan independence is the key property (see Battigalli et al., 2019a). We consider the stronger OBI condition for expositional simplicity.
37 See Section 4.2 in Battigalli and Dufwenberg (2019) and references therein.
38 See Proposition 6 in the Appendix.
39 Cf. Battigalli and Dufwenberg (2009), Sections 3-5.
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• (Strong belief) for each m ∈ {1, ...,n − 1}, μi,k+1 strongly believes P−i (m).

Finally, for all i ∈ I , let

P−i (n) =
⋂

j∈I\{i}

⎛
⎝P j (n) ×

∏
ι∈I\{i, j}

T k
ι

⎞
⎠ and P (n) =

⋂
i∈I

(
Pi (n) × T k

−i

)
.

Proposition 3. For every n ∈N , the following are true:

i) For every i ∈ I , Pi (n) is measurable.
ii) For every i ∈ I , Pi (n) ⊆ Pi (n − 1), P−i (n) ⊆ P−i (n − 1) and P (n) ⊆ P (n − 1).

Therefore, the sequence of prediction sets (P (n))n∈N0
is decreasing and it is standard to define P (∞) =

⋂
n∈N0

P (n). If 

ωk ∈ P (∞) then we say that ωk is strongly rationalizable.
If we replace condition MC above with strict material consistency, we obtain the decreasing sequence of events 

(P∗ (n))n∈N0
and its limit set P∗ (∞). Note that, in general, we cannot prove the non-emptiness of P (∞) or P∗ (∞). However, 

we can provide general and relevant sufficient conditions to obtain these results. Indeed, if we assume that 〈	, v〉 ∈ P G O B I
k ,40

then the behavioral equivalence and non-emptiness of P (∞) or P∗ (∞) are obtained.41

Proposition 4. If 〈	, v〉 ∈ P G O B I
k , then the following are true:

i) For every n ∈N ∪ {∞}, projZ P (n) =projZ P∗ (n).
ii) For every n ∈N ∪ {∞}, P∗ (n) is non-empty and compact.

The following example illustrates strong rationalizability in a psychological game where own-belief independence holds.

Example 4. Consider the game form with monetary payoffs of Fig. 2 with x = 1: S is a selfish action that maximizes the 
monetary payoff of Chloe. Suppose that Ann and Bob are (commonly known to be) selfish and risk neutral,42 whereas Chloe 
may be affected by guilt aversion. Specifically, her belief-dependent utility is

uc
(
z, θc,μa,1,μb,1

)= πc (z) − θc

∑
j∈{a,b}

[
Eμ j,1

(
π j|∅

)− π j (z)
]+

,

where θc ∈ [
θ c, θ̄c

]⊆R+ denotes her guilt sensitivity, that is, how much she dislikes to disappoint Ann and Bob. Since they 
obtain their maximal payoff after N and 0 after S , only the latter can disappoint them, with disappointment equal to the 
payoff they initially expected to get. Thus, the decision utilities of actions N and S given (D, L) are, respectively

ūc,(D,L)

(
N, θc,μc,2

)= 0

and

ūc,(D,L)

(
S, θc,μc,2

)= 1 − θcEμc,2

⎛
⎝ ∑

j∈{a,c}
Eμ j,1

(
π j|∅

)∣∣∣∣∣∣ ((D, L) , S)

⎞
⎠

= 1 − θcEμc,2

⎛
⎝ ∑

j∈{a,c}
Eμ j,1

(
π j|∅

)∣∣∣∣∣∣ (D, L)

⎞
⎠ ,

where the latter equality holds by OAI. Note that Ann (Bob) can obtain $2 for sure choosing U (R). Therefore Ann 
(Bob) rationally chooses D (L) only if s(he) expects to thereby get at least $2, and chooses U (R) otherwise. Since 
max j∈{a,b}Eμ j,1

(
π j |∅

) ≤ 3, Chloe may rationally plan N only if 1 − 6θc ≤ 0. If Chloe strongly believes in Ann’s and Bob’s 

40 Actually, it is sufficient to assume that i’s utility does not depend on i’s plan, which is just a (first-order) feature of i’s belief hierarchy. We consider 
the stronger assumption in the text to simplify the exposition.
41 The proof of Proposition 4 is available upon request. The first part follows from the fact that a behavior strategy is a sequential best reply to a 

conditional probability system (about the coplayers) if and only if every pure strategy in its “support” is also a sequential best reply. The proof of the 
second part adapts the proof of Theorem 13 in Battigalli and Dufwenberg (2009).
42 That is, vi (π (z) , θ,μ) = πi(z) for i = a, b and all z, θ , and belief profiles μ.
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rationality, ex ante she cannot exclude any action pair of the coplayers, but ex post she would interpret (D, L) as signaling 
that min j∈{a,b}Eμ j,1

(
π j |∅

) ≥ 2. Thus, we obtain two relevant thresholds for θc , 1/4 and 1/6. We consider three relevant 
cases43:
� If θ̄c < 1/6 it is as if Chloe were unaffected by guilt aversion: rationality implies Chloe would choose selfishly upon 
observing (D, L) (1st step). Thus, Ann’s rationality and belief in others’ rationality implies that she chooses U (2nd step). 
Bob’s belief in rationality and in the coplayers’ belief in rationality implies that he expects to get $3 by choosing L, which he 
rationally does (3rd step). With this, strong rationalizability implies (U , L), which is correctly expected (4th step), on top of 
the expectation that Chloe would choose S (from the 2nd step). Thus, strong rationalizability yields (U , L), the elimination 
process terminates in 4 steps, with the behavioral implications obtained in 3 steps.
� If θ c > 1/4, Chloe may rationally plan to choose N; if she also strongly believes in Ann’s and Bob’s rationality, she defi-
nitely plans to choose N (2nd step). Thus, Ann and Bob predict that Chloe would act non-selfishly if given the opportunity 
and Bob chooses L respectively (3rd step),44 which is correctly expected, inducing Ann to rationally choose D (4th step), 
which is correctly expected (5th step). Thus, strong rationalizability yields ((D, L) , N), the elimination process terminates in 
5 steps, with the behavioral implications obtained in 4 steps.
� If 1/6 < θ c < 1/4, strong rationalizability has no behavioral implications: Chloe may rationally plan to choose N , but her 
strong belief in Ann’s and Bob’s rationality does not imply that she definitely plans to choose N . Thus, Ann and Bob may not 
trust her to to act non-selfishly even if they believe that she is rational and that she strongly believes in their rationality. 
The elimination process changes slightly according to whether the commonly known upper bound θ̄c is above or below 
1/4. If θ̄c < 1/4 the analysis is simpler, as rationality and mutual strong belief in rationality of any order do not have any 
implication for behavior, nor any joint implication for behavior and first-order beliefs beyond those of mere rationality. If 
instead θ̄c > 1/4, Ann and Bob expect that high types of Chloe would choose N if given the opportunity (3rd step). Yet, they 
may also believe that high types have low probability; hence, such belief restriction has no impact on possible behaviors.

�

7. Epistemic justification of strong rationalizability

In this section we provide an epistemic justification for the algorithm of strong rationalizability defined above. Recall 
that gi : C∞

i → �
Hi
i

(
�∞

−i

)
is the canonical homeomorphism of Proposition 2, and that �∞

−i (h) = Z (h) × T ∞
−i for all h ∈ H .

Definition 10. The strong belief operator of i is a map SBi : B (
�∞

−i

)→ 2�∞
i defined as

SBi (E−i) = {(
z, θi,μ

∞
i

) ∈ �
∞,∗
i : ∀h ∈ H,�∞

−i (h) ∩ E−i �= ∅ ⇒ gi
(
μ∞

i

)
(E−i|h) = 1

}
,

for all E−i ∈ B
(
�∞

−i

)
.

The following remark clarifies some of the properties of SBi .

Remark 6. For all E−i ∈ B
(
�∞

−i

)
, SBi (E−i) is measurable; if E−i is closed, then SBi (E−i) is closed.

We express our epistemic assumptions as events about behavior and personal features (personal traits and beliefs) of 
each player i, that is, measurable subsets of �∞

i = Z × T ∞
i . For instance, we say that player i is rational and strongly 

believes the rationality of his coplayers at 
(
z, t∞

i

) ∈ �∞
i if 

(
z, t∞

i

) ∈ Ri ∩ SBi (R−i) ⊆ �∞
i . The elements of Ri satisfy cross 

restrictions concerning actual behavior and the personal features t∞
i of player i, whereas the elements of SBi (R−i) are just 

characterized by restrictions concerning the personal features of i, that is, projZ SBi (R−i) = Z . Similarly, the event that the 
coplayers −i are rational and strongly believe in their coplayers’ rationality is

⋂
j∈I\{i}

⎛
⎝(R j ∩ SB j

(
R− j

))×
∏

ι∈I\{i, j}
T ∞
ι

⎞
⎠⊆ �∞

−i .

Consider the following epistemic assumptions of increasing strength:
(Step 1) For every i ∈ I , let Ri (1) = Ri ⊆ �∞

i and R−i (1) = R−i ⊆ �∞
−i .

(Step n) Assume that Ri (m) and R−i (m) have been defined for every i ∈ I and m ∈ {1, ...,n − 1}, then define

Ri (n) = Ri (n − 1) ∩ SBi (R−i (n − 1))

and

43 In the appendix, we offer a complete formal analysis of each step P (n).
44 Note that Bob expects to get $3 with L independently of Ann’s choice.
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R−i (n) =
⋂

j∈I\{i}

⎛
⎝R j (n) ×

∏
ι∈I\{i, j}

T ∞
ι

⎞
⎠ .

With this, for every n ∈ N , event R (n) =
⋂
i∈I

[
Ri (n) × T ∞

−i

]
represents the hypothesis of rationality (of all players) and 

n-mutual strong belief in rationality. By definition, it follows that, for every i ∈ I and n ∈ N , Ri (n + 1) ⊆ Ri (n) and 
R (n + 1) ⊆ R (n). Therefore, the event in �∞ that represents rationality and common strong belief in rationality is R (∞) =⋂
n∈N

R (n). As explained in Battigalli and Siniscalchi (2002) these assumptions require, on top of rationality, that each player 

ascribes to his coplayers the highest degree of “strategic sophistication” consistent with their observed behavior, that is, 
given any h ∈ H player i assigns probability 1 to R−i

(
n∗

−i,h

)
, where

n∗
−i,h = max

{
n ∈N : �∞

−i (h) ∩ R−i (n) �= ∅} .

We can now state the main result of this paper.

Theorem 1. For every n ∈N ,

∀i ∈ I,Pi (n) = proj
�k

i
Ri (n) and P (n) = proj�k R (n) .

The theorem characterizes the utility-relevant implications of rationality and n-mutual strong belief in rationality, thus 
providing an epistemic justification for the strong rationalizability algorithm in kth-order psychological games. The proof is 
in the Appendix, here we give a brief sketch. The harder part of the proof is to show that, for all n ∈N and for every i ∈ I , 
given an element 

(
z, θi,μ

k
i

) ∈ Pi (n) we can find an infinite hierarchy μ∞
i of conditional beliefs for i which is consistent 

with μk
i and yields a personal state in Ri (n). Here, the factorization in Eq. (3) allows us to invoke Lemma 3 to show the 

existence of a consistent ICPS defined over the space of total uncertainty for i. Then, we use the canonical homeomorphism 
gi (see Proposition 2) to derive μ∞

i .
Relying on Theorem 1, under the assumption that the psychological utility vi of every player i does not depend on his 

own beliefs, one can use standard compact-continuity arguments to prove the following result.

Proposition 5. If 〈	, v〉 ∈ P G O B I
k , then

P∗ (∞) = proj�k R∗ (∞) ,

where P∗ (∞) is non-empty and compact.

Under OBI we can rely on the properties of state-dependent expected utility. As for standard games, we can focus without 
loss of generality on deterministic rational plans (see Proposition 4), obtain a decreasing sequence of compact events and 
apply the finite intersection property to show that the limit set obtained from our algorithm is non-empty and characterizes 
the utility-relevant implications of rationality and common strong belief in rationality.

8. Discussion

We discuss some features of our approach and simplifying assumptions, hinting at extensions and generalizations.

External uncertainty and behavior Players are uncertain about the mental states (beliefs) of coplayers, their traits, and 
behavior. First-order beliefs are beliefs about the non-mental, or external aspects of what is uncertain. In particular, beliefs 
about behavior are (aspects of) first-order beliefs. The representation of behavior is uncontroversial for simultaneous-move 
games, where it is given by the profile of actions simultaneously chosen by the players. In dynamic games, instead, there are 
multiple ways to model the space of possible behaviors. The more traditional one is to represent behavior as a conjunction 
of subjunctive conditional statements of the form “if h were reached, j would take action a j .” Formally, the conjunction of 
all such statements for player j is a pure strategy. Thus, the traditional approach is to represent behavior as a profile of 
pure strategies. Yet, if we interpret strategies as plans in the minds of the players, they should belong to the mental part of 
the state of the world, not the external one. Modeling strategies as plans in the minds of players is essential for many ap-
plications of psychological game theory.45 Thus, if we follow the traditional representation of behavior, we have to allow for 
two mathematical objects that can legitimately be called “strategy”: the objective description of behavioral subjunctive con-
ditionals, and the subjective plans in the minds of players.46 This may create confusion and misunderstandings. Therefore, 
we follow Battigalli et al. (2013)47 and represent behavior as the actual sequence of actions profiles chosen by the players, 

45 See Battigalli and Dufwenberg (2019) and Battigalli et al. (2019a).
46 See, for example, Section 5 of Battigalli and Siniscalchi (1999).
47 As well as Battigalli and Dufwenberg (2019), and Battigalli et al. (2019a, 2019b).
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whereas strategies are expressed as beliefs about own behavior and belong to the mental part of the state of the world. This 
approach, however, has costs as well. Strategic reasoning, in essence, requires players to have beliefs about how coplayers 
would react to what they observe, i.e., beliefs about behavioral subjunctive conditionals. Yet, such conditional are not part 
of our formal language. We circumvent this difficulty by expressing the probabilities of conditionals as conditional probabilities, 
as in Kuhn’s (1953) transformation from mixed to behavior strategies. For example, if i at h believes with probability p that 
j would take action a j should he choose action ai , then we ascribe to i a first-order belief μ1

i such that μ1
i

(
a j |h,ai

)= p. In 
sum, we do not claim that the present approach dominates the traditional one, but we find it germane to the representation 
of psychological games where players’ intentions, hence their subjective plans, are key.

Imperfectly observable actions and cognitive rationality We assumed that the actions of previous stages are perfectly 
observed because this allows us to simplify the notation and streamline the analysis. But we can prove our results for all 
multi-stage games. Here we sketch this generalization. In doing so, we highlight the possibility and convenience to consider 
more general belief spaces by dropping the necessity of other cognitive rationality properties besides the coherence of belief 
hierarchies. Let Yi denote a set of “personal outcomes” or “messages” that player i may observe as the play unfolds. For each 
stage t such that At ∩ H̄ �= ∅ there is a feedback function f i,t : At ∩ H̄ → Yi that represents the flow of information acquired 
by i at the end of stage t according to the rules of the game, such as his stage-game monetary payoff, or his cumulated 
monetary payoff in a repeated game. If i has perfect recall, at the end of stage t (and the beginning of stage t + 1) he 
remembers the personal history ht

i = (
ai,k, yi,k

)t
k=1 of actions and personal outcomes and can back out the information 

set
[
ht

i

] ⊆ H̄ of histories consistent with it.48 Let Hi denote the collection containing the information sets 
[
ht

i

]
as well 

as similarly defined “interim information sets” 
[
ht

i ,ai,t+1
]
. If the player is cognitively rational, he remembers all previous 

choices and signals; thus, as the play unfolds, he conditions on the stock of cumulated information represented by elements 
of Hi . If he is not fully cognitively rational and forgets his previous choices and signals, he only conditions on the last piece 
of information yi,t he just obtained, that is, the set f −1

i,t

(
yi,t

)⊆ H̄ . Thus, it makes sense to define the spaces of conditional 
beliefs so that conditioning refers only to “memoryless” information sets of the form f −1

i,t

(
yi,t

)
, and possibly without even 

assuming the chain rule, whose bite depends heavily on (perfect) memory, which makes the collection of conditioning 
events ordered by set inclusion a tree.49 The key observation is that as long as we define (cognitive) rationality so as to 
encompass perfect recall, application of the chain rule, and coherence belief hierarchies, our analysis can be extended to 
this more general environment.

Generalized psychological utilities In our analysis, the decision utility of action ai given history h is the subjective ex-
pectation of psychological utility vi conditional on (h,ai) given personal traits θi and k + 1 order belief μi,k+1. With 
this, we obtain a continuous “local” utility function ūi,h

(
ai, θi,μi,k+1

)
. We emphasized that only the local utility func-

tions 
(
ūi,h

)
(i,h)∈I×H matter for our epistemic analysis. Thus, the results in this article are valid for psychological games with 

more general forms of psychological preferences. For example, we may obtain ūi,h as a local “distortion” of the conditional 
expectation of “experience utility” vi (see Battigalli et al., 2019a and 2019b).

Infinite games We considered finite games forms, but our analysis extends to a large class of multi-stage games where 
players’ feasible action sets are finite at all histories of height 2 or more, and their psychological utility functions do not 
depend on terminal beliefs, as we can still adapt the techniques of Battigalli and Tebaldi (2019) to such games. This covers, 
for example, all compact-continuous games with simultaneous moves where utility depends only on initial beliefs.

Rationalizable self-confirming equilibrium The self-confirming equilibrium (SCE) concept — a generalization of Nash equi-
librium — characterizes the steady states of learning dynamics in games played recurrently. According to SCE, agents are 
asymptotic empiricists who best reply to confirmed, but possibly false beliefs. In particular, players need not believe in the 
strategic sophistication of others. In a (strongly) rationalizable SCE (RSCE) agents (strongly) believe in the strategic sophis-
tication of others. We can provide an algorithmic definition of RSCE for multi-stage (k order psychological) games and an 
epistemic justification of RSCE.

Restrictions on low-order beliefs and �-rationalizability In applications, it is often natural to impose some restrictions 
on low-order beliefs and assume that such restrictions shape strategic reasoning (see, e.g., Battigalli and Tebaldi, 2019
and references therein). This yields a modified notion of strong rationalizability, called strong �-rationalizability (where �

48 That is, [ht
i

]=
{(

a′
I,k

)t

k=1
∈ H̄ : ∀k,a′

i,k = ai,k, f i,k

(
a′

I,1, ...,a′
I,k

)
= yi,k

}
. By construction, this collection of information sets satisfies the standard perfect-

recall conditions.
49 As we consider larger belief spaces allowing for more inconsistencies, it becomes more important to specify how psychological utility may depend on 

beliefs. The structural assumption should be that utility depends only on realized beliefs about outcomes, or behavior, or traits, and higher-order realized 
beliefs. This is important also for rational players, whose beliefs are fully consistent, because their utility may depend on the unknown beliefs of possibly 
irrational coplayers. See Battigalli et al. (2019a).
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represents the restricted set of profiles of beliefs). We can define strong �-rationalizability for k order psychological games 
and provide an epistemic justification of this solution concept.

Iterated conditional dominance We defined strong rationalizability for k-th order psychological games and provided an 
epistemic foundation for this solution procedure, thus extending the results proved by Battigalli and Siniscalchi (2002) for 
finite standard games, and by Battigalli and Tebaldi (2019) for a class of infinite standard games. Shimoji and Watson (1998)
proved that strong rationalizability in finite standard games can be algorithmically implemented by a procedure of iterated 
elimination of conditionally dominated strategies. We can extend their characterization result to the class of infinite games 
analyzed by Battigalli and Tebaldi (2019) and to the k-th order psychological games that satisfy own-belief independence 
(see Battigalli and Corrao, 2019). The result does not hold for general psychological games (see Mourmans, 2019).

9. Appendix

9.1. Complete analysis of strong rationalizability in Example 4

Recall that � is isomorphic to 
[
θ c, θ̄c

]
, that is, it is common knowledge that θa = θb = 0, and θ c ≤ θc ≤ θ̄c . The utility 

functions are ui
(
z, θ,μ1

)= πi (z) for i ∈ {a,b}, and

uc
(
z, θc,μa,1,μb,1

)= πc (z) − θc

∑
j∈{a,b}

[
Eμ j,1

(
π j|∅

)− π j (z)
]+

.

Hence,

Pa (1) = {(
z,μa,1

) : αa (z) = U , σ̂a
(
μa,1

)
(U |∅) > 0,Eμa,1 (πa|∅) = 2,Eμa,1 (πa|D) ≤ 2

}
∪{(

z,μa,1
) : αa (z) = D, σ̂a

(
μa,1

)
(D|∅) > 0,Eμa,1 (πa|∅) =Eμa,1 (πa|D) ≥ 2

}
,

Pb (1) = {(
z,μb,1

) : αb (z) = R, σ̂b
(
μa,1

)
(R|∅) > 0,Eμb,1 (πb|∅) = 2,Eμb,1 (πb|L) ≤ 2

}
∪{(

z,μb,1
) : αb (z) = L, σ̂b

(
μa,1

)
(L|∅) > 0,Eμb,1 (πb|∅) = Eμa,1 (πa|L) ≥ 2

}
,

because a and b can secure payoff 2 by choosing U and R respectively.
As for c, there are two thresholds: θc = 1/6 makes c indifferent if she believes a and b initially expected the maximum 

payoff 3, while θc = 1/4 makes c indifferent if she thinks that a and c expected the payoff they can secure, 2. With this, we 
consider 3 cases:

• θ̄c < 1/6 is strategically equivalent to common knowledge that also c is selfish. Thus, mere rationality rules out the 
non-selfish action N , and strong rationalizability yields (U , L) with the expectation that Chloe would choose S:

Pc (1) = Pc (2) = {(
z, θc,μ1,c

) : (αa(z),αb (z)) �= (D, L) , σ̂c (S| (D, L)) = 1
}

∪{(
z, θc,μ1,c

) : z = ((D, L) , S) , σ̂c (S| (D, L)) = 1
}
,

Pa (2) = {(
z,μa,1

) : αa (z) = U , σ̂a
(
μa,1

)
(U |∅) = 1,Eμa,1 (πa|D) = 0

}
,

Pb (2) = {(
z,μb,1

) ∈ Pb (1) : Eμb,1 (πb| (D, L)) = 0
}

Pa (3) = Pa (2) ,

Pb (3) = {(
z,μb,1

) ∈ Pb (2) : αb (z) = L,Eμb,1 (πb|∅) = Eμa,1 (πa|L) = 3
}
,

Pc (3) = {(
z, θc,μ1,c

) ∈ Pc (2) : μc,1 (U |∅) = 1
}
,

Pa (4) = {(
z,μa,1

) ∈ P (3) : μa,1 (L|∅) = 1
}
,

Pb (4) = Pb (3) ,

Pc (4) = {(
z, θc,μ1,c

) ∈ Pc (3) : μc,1 (L|∅) = 1
}
,

∀n > 4,∀i ∈ I,Pi (n) = Pi (4) .

• θ c > 1/4 means it is common knowledge that c is so averse to guilt that if she strongly believes in a’s and c’s rationality, 
then she wants to take the non-selfish action upon observing (D, L). Thus, while mere rationality does not rule out any 
plan of c (because θ c > 1/6) and just imposes material consistency, strong rationalizability yields (D, L) with the correct 
expectation that c chooses N:

Pc (1) = Phigh.G
c (1) := {(

z, θc,μ1,c
) : (αa(z),αb (z)) �= (D, L)

}
∪{(

z, θc,μ1,c
) : (αa(z),αb (z)) = (D, L) , σ̂c (αc (z) | (D, L)) > 0

}
,



P. Battigalli et al. / Games and Economic Behavior 120 (2020) 28–57 47
Pa (2) = Pa (1) ,

Pb (2) = Pb (1) ,

Pc (2) = {(
z, θc,μ1,c

) ∈ Pc (1) : σ̂c (N| (D, L)) = 1
}
,

Pa (3) = {(
z,μa,1

) ∈ Pa (2) : Eμa,1 (πa| (D, L)) = 3
}
,

Pb (3) = {(
z,μb,1

) ∈ Pb (2) : αb (z) = L,Eμb,1 (πb|L) = 3
}
,

Pc (3) = Pc (2) ,

Pa (4) = {(
z,μa,1

) ∈ Pa (3) : αa(z) = D,Eμa,1 (πa|D) = 3
}
,

Pb (4) = Pb (3) ,

Pc (4) = {(
z, θc,μ1,c

) ∈ Pc (3) : μ1,c (L|∅) = 1
}
,

Pa (5) = Pa (4) ,

Pb (5) = {(
z,μb,1

) ∈ Pb (4) : μb,1 (D|∅) = 1
}
,

Pc (5) = {(
z, θc,μ1,c

) ∈ Pc (4) : μ1,c (D|∅) = 1
}
,

∀n > 4,∀i ∈ I,Pi (n) = Pi (5) .

• 1/6 < θ c < 1/4 means that a and b do not know enough to predict c’s choice; thus, neither rationality, nor strong 
rationalizability rule out any behavior. There are two relevant sub-cases:
– If 1/6 < θ c ≤ θ̄c < 1/4, then strong belief in rationality is not enough to compel any type of c to take the non selfish 

action N upon observing (D, L). Thus, the first step is as in the previous case, but unlike the previous case there are 
no further restrictions in the following steps:

Pc (1) = Phigh.G
c (1) ,

∀n > 1,∀i ∈ I,Pi (n) = Pi (1) .

– If 1/6 < θ c < 1/4 < θ̄c , strong rationalizability rules out some first-order beliefs about c because high-guilt types 
would act non-selfishly upon observing (D, L):

Pc (1) = Phigh.G
c (1) ,

Pa (2) = Pa (1) ,

Pb (2) = Pb (1) ,

Pc (2) =
{(

z, θc,μ1,c
) ∈ Pc (1) : θc >

1

4
, σ̂c (N| (D, L)) = 1

}

∪
{(

z, θc,μ1,c
) ∈ Pc (1) : θc ≤ 1

4

}
,

Pi (3) =
{(

z,μi,1
) ∈ Pi (2) : μi,1

({
(z, θc) : z = ((D, L) , S) , θc >

1

4

}∣∣∣∣ (D, L)

)
= 0

}
(i ∈ {a,b}),

Pc (3) = Pc (2)

∀n > 3,∀i ∈ I,Pi (n) = Pi (3) .

9.2. Proofs of the main results

We start by proving a general result that implies Proposition 1. For all measurable functions ς−i : T−i → �−i and proba-
bility measures ηi ∈ � (T−i) we define ςηi

−i ∈ �−i as

ς
ηi
−i (a−i |h) =

∫
T−i

ς
t−i
−i (a−i|h)ηi (dt−i)

for all h ∈ H and a−i ∈ A−i (h). Also, recall that for all (σi, σ−i) ∈ �i × �−i , and hi, h′
i ∈ Hi with h′

i � hi , we let

Pσi ,σ−i

(
h′

i|hi
)

denote the probability of h′ given hi induced by (σi, σ−i).
i
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Proposition 6. Fix any μi ∈ [�(Z × T−i)]Hi . The following are equivalent:

i) μi is a CPS that satisfies OAI;
ii) μi is a CPS such that for all h ∈ H, (ai,a−i) ∈ A (h), and measurable E−i ⊆ T−i ,

μi (Z (h,a−i) × E−i|h) = μi (Z (h, (ai,a−i)) × E−i|h,ai) ;

iii) there exist σi ∈ �i , a measurable function ς−i : T−i → �−i , and a vector of probability measures ηi ∈ [�(T−i)]H such that, for 
all h, h′ ∈ H with h′ � h, z ∈ Z , and measurable E−i ⊆ T−i ,

P
σi ,ς

ηi
−i

(
h′|h)> 0 =⇒ ηi,h′ (E−i) = 1

P
σi ,ς

ηi
−i

(h′|h)

∫
E−i

P
σi ,ς

t−i
−i

(
h′|h)ηi,h (dt−i) (6)

and

μi ({z} × E−i|h) =
∫

E−i

(
σi, ς

t−i
−i

)
(z|h)ηi,h (dt−i) ,

μi ({z} × E−i|h,ai) =
∫

E−i

(
σi, ς

t−i
−i

)
(z|h,ai)ηi,h (dt−i) ,

The pair (σi, ηi) is unique and, given ηi , each function t−i 	→ ς
t−i
−i (·|h) is ηi,h-a.e. uniquely defined.

Proof of Proposition 6. i) =⇒ ii) Fix h ∈ H , (ai,a−i) ∈ A (h), and a measurable E−i ⊆ T−i . With this,

μi (Z (h,a−i) × E−i|h) =
∑

a′
i∈Ai(h)

μi
(

Z
(
h,
(
a′

i,a−i
))× E−i|h

)

=
∑

a′
i∈Ai(h)

μi
(

Z
(
h,
(
a′

i,a−i
))× E−i|h,a′

i

)
μi

(
a′

i |h
)

= μi (Z (h, (ai,a−i)) × E−i|h,ai)

⎛
⎝ ∑

a′
i∈Ai(h)

μi
(
a′

i|h
)⎞⎠

= μi (Z (h, (ai,a−i)) × E−i|h,ai) ,

where the third equality holds by OAI.
ii) =⇒ iii) For all h ∈ H , a ∈ A (h), t−i ∈ T−i , and measurable E−i ⊆ T−i , define

σi (ai |h) = μi(ai|h),

ς
t−i
−i (a−i|h) = μi(Z(h,a−i)|h, t−i),

ηi (E−i|h) = μi (Z × E−i|h) ,

where t−i 	→ μi(Z(h, a−i)|h, t−i) is a version of the conditional probability of Z(h, a−i) given the probability measure 
μi(·|h) ∈ � (Z × T−i). Note that, by construction, we have∫

T−i

ς
t−i
−i (a−i|h)ηi,h (dt−i) = ς

ηi
−i (a−i|h) = σ̂−i (a−i|h) .

We now prove the following claim: For all h ∈ H, a ∈ A (h) , z ∈ Z , and measurable E−i ⊆ T−i ,

μi ({z} × E−i|h) =
∫

E−i

P
σi ,ς

t−i
−i

(z|h)ηi,h (dt−i)

and

P
σi ,ς

ηi
−i

((h,a) |h) > 0 =⇒ ηi,(h,a) (E−i) = 1

P
σi ,ς

ηi
−i

((h,a) |h)

∫
E−i

P
σi ,ς

t−i
−i

((h,a) |h)ηi,h (dt−i) .

We prove this claim by induction on the height L (h) = max {� (z) − � (h) : z ∈ Z (h)} of histories. Pick any h ∈ H̄ such that 
L (h) = 1, that is, h is preterminal. Then, for all a ∈ A (h) and measurable E−i ⊆ T−i ,
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μi ({(h,a)} × E−i|h) = μi ({(h,ai)} × T−i|h)μi ({(h,a)} × E−i|h,ai)

= μi ({(h,ai)} × T−i|h)μi ({(h,a−i)} × E−i|h)

=
∫

E−i

μi ({(h,ai)} × T−i|h)μi({(h,a−i)} |h, t−i)margT−i
μi,h (dt−i)

=
∫

E−i

P
σi ,ς

t−i
−i

(z|h)ηi,h (dt−i) .

Next, pick any a ∈ A (h) such that P
σi ,ς

ηi
−i

((h,a) |h) > 0, that is, μi ({(h,a)} × T−i |h) > 0. Then

ηi,(h,a) (E−i) = μi (Z × E−i| (h,a))

= μi ({(h,a)} × E−i| (h,a))

= 1

μi ({(h,a)} × T−i|h)
μi ({(h,a)} × E−i|h)

= 1

P
σi ,ς

ηi
−i

((h,a) |h)

∫
E−i

P
σi ,ς

t−i
−i

(z|h)ηi,h (dt−i) .

Suppose by way of induction that the claim holds for every history h′ ∈ H with L 
(
h′) ≤ n. Pick any h ∈ H̄ such that 

L (h) = n + 1. Then, for all z ∈ Z (h) and measurable E−i ⊆ T−i ,

μi ({z} × E−i|h)

= μi
(

Z
((

h,ah,z
))× T−i|h

)
μi

({z} × E−i|h,ah,z
)

= μi
(

Z
((

h,ai,h,z
))× T−i|h

) ∫
E−i

μi
(

Z
((

h,a−i,h,z
)) |h, t−i

)
P

σi ,ς
t−i
−i

(
z|h,ah,z

)
ηi,

(
h,ah,z

) (dt−i)

=
∫

E−i

σi
(
ai,h,z|h

)
ς

t−i
−i

(
a−i,h,z|h

)
P

σi ,ς
t−i
−i

(
z|h,ah,z

)
ηi,

(
h,ah,z

) (dt−i)

=
∫

E−i

P
σi ,ς

t−i
−i

(z|h)ηi,h (dt−i) ,

where ah,z is the unique profile of feasible actions at h implied by z and ai,h,z and a−i,h,z are similarly defined. Next, 
consider some a ∈ A (h) such that P

σi ,ς
ηi,h
−i

((h,a) |h) > 0, that is, μi ({(h,a)} × T−i |h) > 0. We have

ηi,(h,a) (E−i) = μi (Z × E−i| (h,a))

= μi (Z (h,a) × E−i| (h,a))

= 1

μi (Z (h,a) × T−i|h)
μi (Z (h,a) × E−i|h)

= 1

P
σi ,ς

ηi
−i

((h,a) |h)

∑
z∈Z(h,a)

∫
E−i

P
σi ,ς

t−i
−i

(z|h)ηi,h (dt−i)

= 1

P
σi ,ς

ηi
−i

((h,a) |h)

∫
E−i

∑
z∈Z(h,a)

[
P

σi ,ς
t−i
−i

(z|h)

]
ηi,h (dt−i)

= 1

P
σi ,ς

ηi
−i

((h,a) |h)

∫
E−i

P
σi ,ς

t−i
−i

((h,a) |h)ηi,h (dt−i) ,

proving the statement. Note that an analogous argument shows that, for all h, h′ ∈ H with h′ � h, ai ∈ Ai (h), z ∈ Z and 
measurable E−i ⊆ T−i ,

μi ({z} × E−i|h,ai) =
∫

E−i

(
σi, ς

t−i
−i

)
(z|h,ai)ηi,h (dt−i)

and
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P
σi ,ς

ηi,h
−i

(
h′|h)> 0 =⇒ ηi,h′ (E−i) = 1

P
σi ,ς

ηi,h
−i

(h′|h)

∫
E−i

P
σi ,ς

t−i
−i

(
h′|h)ηi,h (dt−i) .

iii) =⇒ i) Consider a vector of probability measures μi ∈ [�(Z × T−i)]Hi satisfying the factorization (σi, ς−i, ηi) defined 
in point iii). We need to show that μi is a ICPS. Fix hi ∈ H and note that

μi (Z (hi) × T−i|hi) =
∑

z∈Z(hi)

∫
T−i

P
σi ,ς

ηi
−i

(z|hi)ηi,h (dt−i)

=
∫

T−i

⎡
⎣ ∑

z∈Z(hi)

P
σi ,ς

ηi
−i

(z|hi)

⎤
⎦ηi,h (dt−i)

=
∫

T−i

ηi,h (dt−i) = 1.

Next, fix h, h′ ∈ H , z ∈ Z such that z � h′ � h, and a measurable set E−i ⊆ T−i . We have

μi ({z} × E−i|h) =
∫

E−i

P
σi ,ς

t−i
−i

(z|h)ηi,h (dt−i)

= P
σi ,ς

ηi,h
−i

(z|h)

∫
E−i

P
σi ,ς

t−i
−i

(
z|h′)ηi,h′ (dt−i)

P
σi ,ς

ηi
−i

(z|h′)

= P
σi ,ς

ηi,h
−i

(
h′|h) ∫

E−i

P
σi ,ς

t−i
−i

(
z|h′)ηi,h′ (dt−i)

= μi
(
h′|h)μi

({z} × E−i|h′) ,

where the second equality follows from condition (6). Finally, we need to show that μi satisfies OAI. Fix h ∈ H , ai, bi ∈ Ai (h), 
a−i ∈ A−i (h) and a measurable set E−i ⊆ T−i . We have

μi (Z (h,a−i) × E−i|h,ai) = μi (Z (h,a) × E−i|h,ai) =
∑

z∈Z(h,a)

μi ({z} × E−i|h,ai)

=
∑

z∈Z(h,a)

∫
E−i

P
σi ,ς

t−i
−i

(z|h,ai)ηi,h (dt−i)

=
∑

z∈Z(h,a)

∫
E−i

P
σi ,ς

t−i
−i

(z|h,a)ς
t−i
−i (a−i|h)ηi,h (dt−i)

=
∫

E−i

⎡
⎣ ∑

z∈Z(h,a)

P
σi ,ς

t−i
−i

(z|h,a)

⎤
⎦ς

t−i
−i (a−i |h)ηi,h (dt−i)

=
∫

E−i

ς
t−i
−i (a−i |h)ηi,h (dt−i)

=
∫

E−i

⎡
⎢⎣ ∑

z∈Z
(
h,
(
bia−i

))Pσi ,ς
t−i
−i

(z|h, (bia−i))

⎤
⎥⎦ς

t−i
−i (a−i |h)ηi,h (dt−i)

=
∑

z∈Z
(
h,
(
bi ,a−i

))
∫

E−i

P
σi ,ς

t−i
−i

(z|h,bi)ηi,h (dt−i)

=
∑

z∈Z
(
h,
(
bi ,a−i

))
∫

E

P
σi ,ς

t−i
−i

(z|h, (bi,a−i))ς
t−i
−i (a−i|h)ηi,h (dt−i)
−i



P. Battigalli et al. / Games and Economic Behavior 120 (2020) 28–57 51
=
∑

z∈Z
(
h,
(
bi ,a−i

))μi ({z} × E−i|h,bi) = μi (Z (h, (bi,a−i)) × E−i|h,bi)

= μi (Z (h,a−i) × E−i|h,bi) .

This shows that OAI holds. �
Proof of Lemma 2. From Lemma 1 we know that �Hi (�−i) is compact metrizable. Consider a sequence 

(
μn

i

)
n∈N of el-

ements in �Hi
i (�−i) converging to μi ∈ �Hi (�−i). We need to show that μi ∈ �

Hi
i (�−i). For simplicity, we write μn

i,hi

and μi,hi to denote the corresponding conditional probabilities at hi ∈ Hi . Fix h ∈ H , ai, a′
i ∈ Ai (h) and a−i ∈ A−i (h), and 

consider the following class of subsets of B (T−i):

D =
{

E−i ∈ B (T−i) : μi,(h,ai) (Z (h, (ai,a−i)) × E−i) = μi,
(
h,a′

i

) (Z
(
h,
(
a′

i,a−i
))× E−i

)}
.

We show that all the open subsets of T−i belong to D and that D is a Dynkin class. Finally, by the Dynkin’s lemma, we 
have B (T−i) =D. Also, note that, for each bi ∈ {

ai,a′
i

}
, the map

E−i 	→ μi,(h,bi) (Z (h, (bi,a−i)) × E−i)

is a finite measure on B (T−i). In what follows, we will consider integrals with respect to the measures just introduced. For 
the sake of simplicity, we denote such measures, for all E−i ∈ B (T−i), as

μn (E−i) = μn
i,(h,ai)

(Z (h, (ai,a−i)) × E−i) ,

μ(E−i) = μi,(h,ai) (Z (h, (ai,a−i)) × E−i) ,

μ′
n (E−i) = μn

i,
(
h,a′

i

) (Z
(
h,
(
a′

i,a−i
))× E−i

)
,

μ′ (E−i) = μi,
(
h,a′

i

) (Z
(
h,
(
a′

i,a−i
))× E−i

)
.

We proceed by steps.

1. (For all n ∈ N , and for all measurable functions f : T−i → R, 
∫

T−i
f dμn = ∫

T−i
f dμ′

n .)50 Fix n ∈ N . If f = IE−i (i.e., f

is the indicator function on E−i ) for some measurable set E−i ∈ B (T−i), then the thesis is true since μn
i ∈ �

Hi
i (�−i). 

If f is a simple measurable function, then there exists a finite partition 
{

E1
−i, ..., E Q

−i

}
of T−i and a collection of real 

numbers 
{

d1, ...,dQ
}

such that f =∑Q
q=1 dqIEq

−i
. Therefore,

∫
T−i

f dμn =
∫

T−i

⎛
⎝ Q∑

q=1

dqIEq
−i

⎞
⎠dμn

=
Q∑

q=1

dq

⎛
⎜⎝∫

T−i

IEq
−i

dμn

⎞
⎟⎠

=
Q∑

q=1

dq
(
μn

i,(h,ai)

(
Z (h, (ai,a−i)) × Eq

−i

))

=
Q∑

q=1

dq
(
μn

i,
(
h,a′

i

) (Z
(
h,
(
a′

i,a−i
))× Eq

−i

))

=
Q∑

q=1

dq

⎛
⎜⎝∫

T−i

IEq
−i

dμ′
n

⎞
⎟⎠

=
Q∑

q=1

dq

⎛
⎜⎝∫

T−i

IEq
−i

dμ′
n

⎞
⎟⎠=

∫
T−i

( f )dμ′
n.

50 Here, with an abuse of notation, we let ∫T (·)dμi,h denote the integral of the marginal over T−i conditional on h.
−i
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If f is an arbitrary measurable function, then there exists a sequence 
(

f m
)

m∈N of simple measurable functions such 
that f m ↑ f . Therefore,∫

T−i

f dμn =
∫

T−i

(
lim

m
f m

)
dμn

=
∫

T−i

lim
m

f mdμn

= lim
m

∫
T−i

f mdμn

= lim
m

∫
T−i

f mdμ′
n

=
∫

T−i

lim
m

f mdμ′
n

=
∫

T−i

f dμ′
n,

where the third and fifth equalities follow from the Monotone Convergence Theorem. This proves the claim.
2. (Every open subset of T−i is in D.) Consider an open set E−i ∈ D. By Urysohn’s lemma, there exists a sequence (

f m
)

m∈N of continuous real functions defined over T−i such that f m (t−i) ↑ IE−i (t−i) for all t−i ∈ T−i . Then, we have

μ(E−i) =
∫

T−i

IE−i dμ

=
∫

T−i

lim
m

(
f m)dμ

= lim
m

∫
T−i

f mdμ

= lim
m

lim
n

∫
T−i

f mdμn

= lim
m

lim
n

∫
T−i

f mdμ′
n

= lim
m

∫
T−i

f mdμ′

=
∫

T−i

lim
m

f mdμ′ = μ′ (E−i) ,

where the third and seventh equalities follow from the Monotone Convergence Theorem, the fourth and sixth equality 
follow from the characterization of weak convergence of measures (see Portmanteau Theorem), and the fifth equality 
follows from point 1.

3. (D is a Dynkin class.) It is immediate to show that T−i ∈D. Let E−i, E ′
−i ∈D such that E−i ⊆ E ′

−i . With this,

μi,(h,ai)

(
Z (h, (ai,a−i)) × (

E ′
−i\E−i

))= μ
(

E ′
−i\E−i

)
= μ

(
E ′

−i

)− μ(E−i)

= μ′ (E ′
−i

)− μ′ (E−i)

= μ′ (E ′
−i\E−i

)
= μ ( ′) (Z

(
h,
(
a′,a−i

))× (
E ′ \E−i

))
,
i, h,ai i −i
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showing that 
(

E ′
−i\E−i

) ∈ D. Finally, consider a sequence 
(

En
−i

)
n∈N of pairwise disjoint measurable subsets of T−i in 

D. Then

μi,(h,ai)

(
Z (h, (ai,a−i)) ×

(⋃
En

−i

))
=
∑

n

μ
(

En
−i

)
=
∑

n

μ′ (En
−i

)
= μi,

(
h,a′

i

) (Z
(
h,
(
a′

i,a−i
))×

(⋃
En

−i

))
,

which shows that 
⋃

En
−i ∈D. This finally shows that D is a Dynkin class and D = B (T−i).

Given that h ∈ H , ai, a′
i ∈ Ai (h), a−i ∈ A−i (h) were arbitrarily chosen, μi satisfies OAI and belongs to �Hi

i (�−i), proving 
that the latter is closed, hence compact metrizable. �
Proof of Lemma 3. By Theorem 9 in Battigalli et al. (2017), there exists νi ∈ �Hi (�−i × X−i) that strongly believes (

E1
−i, ..., En

−i

)
and satisfies marg�−iνi = μi . We need to show that νi ∈ �

Hi
i (Z × T−i × X−i). By inspection of the proof 

of Theorem 9 in Battigalli et al. (2017), we know that

νi (B|hi) = μ∗
i

(
f −1 (B) |hi

)
for each measurable B ⊆ Z × T−i × X−i , where μ∗

i (·|hi) is the completion of μi (·|hi) and function f : Z × T−i → Z × T−i ×
X−i is analytically measurable and defined as

f (z, t−i) = (z, t−i,q (z, t−i))

for some analytically measurable q : Z × T−i → Z × T−i × X−i .
Next, fix h ∈ H , ai, a′

i ∈ Ai (h), a−i ∈ A−i (h) and measurable E−i ⊆ T−i × X−i . We have

μi (Z (h, (ai,a−i)) × E−i × B−i|h,ai) = μi
(

Z
(
h,
(
a′

i,a−i
))× E−i|h,a′

i

)
,

and

νi (Z (h, (ai,a−i)) × E−i × B−i|h,ai) = μ∗
i

(
f −1 (Z (h, (ai,a−i)) × E−i × B−i) |h,ai

)
= μi (Z (h, (ai,a−i)) × E−i|h,ai)

= μi
(

Z
(
h,
(
a′

i,a−i
))× E−i|h,a′

i

)
= μ∗

i

(
f −1 (Z

(
h,
(
a′

i,a−i
))× E−i × B−i

) |h,a′
i

)
= νi

(
Z
(
h,
(
a′

i,a−i
))× E−i × B−i |h,a′

i

)
,

showing that also νi satisfies OAI. �
Proof of Proposition 2. We need some preliminary definitions. Let Y ∞

i be the set of coherent infinite hierarchies that do 
not necessarily satisfy OAI. Clearly, we have C∞

i ⊆ Y ∞
i . From Proposition 1 of Battigalli and Siniscalchi (1999) we know that 

there exists a homeomorphism bi : Y ∞
i → �Hi

(
�∞

−i

)
such that

μk
i = marg

�k
−i

bi
(
μ∞

i

)
(7)

for all k ∈ N . We only need to check that bi
(
C∞

i

) = �
Hi
i

(
�∞

−i

)
and define gi = bi|C∞

i
. Consider νi ∈ bi

(
C∞

i

) ⊆ bi
(
Y ∞

i

) =
�Hi

(
�∞

−i

)
. Thus there exists μ∞

i ∈ C∞
i such that bi

(
μ∞

i

)= νi . Fix any h ∈ H , ai, a′
i ∈ Ai (h) and a−i ∈ A−i (h), and consider 

the families of subsets

D =
{

E−i ∈ B
(
T ∞

−i

) : νi,
(
h,
(
ai ,a−i

)) (Z (hi, (ai,a−i)) × E−i) = νi,
(
h,
(
a′

i ,a−i
)) (Z

(
hi,

(
a′

i,a−i
))× E−i

)}
and the class of cylinder subsets of T ∞

−i (hi)

C =
{

Ek
−i × T ∞

−i ⊆ T ∞
−i : k ∈N, Ek

−i ∈ B
(

T k
−i

)}
.

Given that μ∞
i ∈ C∞

i and (7) holds, it is easy to verify that C ⊆ D. With essentially the same steps used in the proof 
of Lemma 2 one can show that D is a Dynkin class of subsets of T ∞ and therefore, by Dynkin’s Lemma and the well 
−i
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known fact C is a π -class, we have D = B
(
T ∞

−i

)
. This finally shows that νi ∈ �

Hi
i

(
�∞

−i

)
. Next, pick any νi ∈ �

Hi
i

(
�∞

−i

)
. We 

want to show that there exists μ∞
i ∈ C∞

i such that bi
(
μ∞

i

)= νi . Given that �Hi
i

(
�∞

−i

)⊆ �Hi
(
�∞

−i

)= bi
(
Y ∞

i

)
, there exists 

μ∞
i ∈ Y ∞

i with bi
(
μ∞

i

) = νi . Finally, (7) and νi ∈ �
Hi
i

(
�∞

−i

)
necessarily implies that each μk

i satisfies OAI, showing that 
μ∞

i ∈ C∞
i . �

Proof of Lemma 5. Define the correspondence

�∗
i : �∞

i ⇒ �i ,(
z, θi,μ

∞
i

) 	→ ∏
h∈H �

(
ri,h

(
θi,μi,k+1

))
.

Note that �∗
i inherits all the properties of each ri,h (in particular, it is upper hemicontinuous) and that

R Pi =
{
ω∞

i ∈ �
∞,∗
i : ω∞

i ∈ (
σ̂i
)−1 (

�∗
i

(
ω∞

i

))}
,

that is, R Pi coincides with the set of fixed points of the correspondence 
(
σ̂i
)−1 ◦�∗

i . By upper hemicontinuity of 
(
σ̂i
)−1 ◦�∗

i
and Kakutani fixed point theorem, it follows that R Pi is non-empty and compact. �
Proof of Lemma 6. Let N denote the maximum length of the game. Note that N is well defined as Z is finite. Both MCi and 
MC∗

i are obviously nonempty. Define the function qi : �∞,∗
i →RN as

qi
(
z, θ,μ∞)

n =
{

gi
(
μ∞

i

)([
hn−1

i (z) ,ai,n (z)
] ∣∣∣hn−1

i (z)
)

, if n ≤ � (z) ,

c, otherwise,

for all n ∈ {1, ..., N}, where c ∈R is an arbitrary real number. In words, the function qi (·) takes value in those states of the 
world at which player i is fully coherent and gives back the list of probabilities with which he planned to play the actions 
implied by z. With this, we can write

MC i = {(
z, θ,μ∞) ∈ �

∞,∗
i : qi

(
z, θ,μ∞)

> 0
}

,

sMC i = {(
z, θ,μ∞) ∈ �

∞,∗
i : qi

(
z, θ,μ∞)= 1

}
,

where 0 = (0, ...0) , 1 = (1, ...,1) ∈RN . We thus need to show that q is measurable with respect to the Borel sigma-algebra 
over �∞,∗

i . In particular, it is sufficient (and necessary) that qi (·)n : �∞,∗
i →R is measurable for each n ∈ {1, ..., N}. Recalling 

that (1) gi is a homeomorphism, (2) hn−1
i (·) and ai,n (·) are functions between finite spaces, and (3) the Borel sigma-algebra 

of the set of probability measures (endowed with the topology of weak convergence) on a compact metrizable space is 
generated by all the bounded continuous functionals over that space, we can conclude that each qi (·)n is continuous, hence 
measurable. Continuity of each qi (·)n also implies that MC∗

i is closed, hence compact. �
Proof of Proposition 3. We prove the result by induction. Clearly,

Pi (1) ⊆ �k
i = Pi (0) , P−i (1) ⊆ �k

−i = P−i (0) and P (1) ⊆ �k = P (0) .

Moreover, note that Pi (1) can be written as the intersection of the following two sets:{(
z, θi,μ

k
i

)
∈ �k

i :
(
μk

i ∈ Ck
i

)
∧ (∀h ∈ H,h ≺ z =⇒ σ̂i

(
μi,1

) (
ai,h (z) |h)> 0

)}
and

proj
�k

i

{(
z, θi,μ

k+1
i

)
∈ �k+1

i :
(
μk+1

i ∈ Ck+1
i

)
∧ (∀h ∈ H, σ̂i

(
μi,1

) (
ri,h

(
θi,μi,k+1

) |h)= 1
)}

.

On the one hand, through the same steps used in the proof of Lemma 6, one can show that the former set is measurable. 
On the other hand, the latter set is the image through a continuous function (i.e., the projection) of a compact set, hence 
measurable. With this, Pi (1) is measurable as well. Next, assume that (i)−(ii) hold for every k ∈ {0,1, ...,n}. Let 

(
z, θi,μ

k
i

) ∈
Pi (n + 1). It follows that there exists μi,k+1 ∈ Mi,k+1 such that 

(
z, θi,μ

k
i

)
and μi,k+1 satisfy Coherence, RP, MC and Strong 

belief for each m ∈ {1, ...,n}. Therefore, 
(
z, θi,μ

k
i

) ∈ Pi (n). We can similarly show that

P−i (n + 1) ⊆ P−i (n) and P (n + 1) ⊆ P (n) .

For (i), measurability of Pi (n + 1) follows from the fact that Pi (n) is measurable and the measurability property of 
strong belief (see Lemma 6). �
Proof of Theorem 1. We prove the thesis by induction on n.
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(Basis step, n = 1) Fix i ∈ I . Pick any 
(
z, θi,μ

k
i

) ∈ Pi (1). Then, there exists μi,k+1 ∈ �
Hi
i

(
�k

−i

)
such that 

(
z, θi,μ

k
i ,μi,k+1

)
satisfies coherence, RP and MC. It is not hard to verify that 

(
z, θi, μ̄

∞
i

) ∈ Ri (1) for all μ̄∞
i ∈ C∞

i such that μ̄k+1
i =(

μk
i ,μi,k+1

)
, and therefore 

(
z, θi,μ

k
i

) ∈ proj
�k

i
Ri (1). Conversely, let 

(
z, θi,μ

k
i

) ∈ proj
�k

i
Ri (1). Then, there exists μ̄∞

i ∈ C∞
i

such that 
(
z, θi, μ̄

∞
i

) ∈ Ri (1) and μ̄k
i = μk

i . One can check that μ̄i,k+1 ∈ �
Hi
i

(
�k

−i

)
is such that 

(
z, θi,μ

k
i , μ̄i,k+1

)
satisfies 

coherence, RP and MC, that is, 
(
z, θi,μ

k
i

) ∈ Pi (1). Since i was arbitrarily chosen, it follows that Pi (1) = proj
�k

i
Ri (1) for every 

i ∈ I .
(Inductive step) Assume that P−i (m) = proj

�k
i
Ri (m) for every i ∈ I and m ∈ {1, ...,n}. First, we show that the 

inductive hypothesis implies that Pi (m) = proj
�k

−i
R−i (m) for every i ∈ I and m ∈ {1, ...,n}. For the sake of simplic-

ity, we write T k
−i, j instead of 

∏
ι∈I\{i, j} T k

ι , for every i, j ∈ I and k ∈ N∪{∞}. Fix i ∈ I and m ∈ {0, ...,n}. Pick any (
z, θ−i,μ

k
−i

) ∈ P−i (m) =
⋂

j∈I\{i}

(
P j (m) × T k

−i, j

)
. Then 

(
z, θ j,μ

k
j

)
∈ P j (m) for every j ∈ I\ {i}. By the inductive hypoth-

esis, for every j ∈ I\ {i}, there exists μ̄∞
j ∈ M∞

j such that μ̄k
j = μk

j and 
(

z, θ j, μ̄
∞
j

)
∈ R j (m). Moreover, by defini-

tion it holds that R−i (m) =
⋂

j∈I\{i}

(
R j (m) × T ∞

−i, j

)
, hence, for every j ∈ I\ {i}, we have 

(
z, θ−i, μ̄

∞
−i

) ∈ R j (m) × T ∞
−i, j , 

where μ̄∞
−i =

(
μ̄∞

j

)
j∈I\{i} . Therefore, 

(
z, θ−i, μ̄

∞
−i

) ∈ R−i (m), proving that 
(
z, θ−i,μ

k
−i

) ∈ proj
�k

−i
R−i (m). Conversely, as-

sume that 
(
z, θ−i,μ

k
−i

) ∈ proj
�k

−i
R−i (m). It follows that there exists μ̄∞

−i such that μ̄k
−i = μk

−i and, for every j ∈ I\ {i}, (
z, θ j, μ̄

∞
j

)
∈ R j (m). By the inductive hypothesis, for every j ∈ I\ {i}, we have 

(
z, θ j,μ

k
j

)
∈ P j (m) and, as a consequence, (

z, θ−i,μ
k
−i

) ∈ P j (m) × T k
−i, j . With this, 

(
z, θ−i,μ

k
−i

) ∈ P−i (m). Since i and m were arbitrarily chosen, the claim holds.

Next, we show that Pi (n + 1) = proj
�k

i
Ri (n + 1) for every i ∈ I . Fix i ∈ I , and assume first that 

(
z, θi,μ

k
i

) ∈ Pi (n + 1). 

Then, there exists μi,k+1 ∈ �
Hi
i

(
�k

−i

)
such that 

(
z, θi,μ

k
i ,μi,k+1

)
satisfies coherence, RP and MC. Moreover, μi,k+1 strongly 

believes the decreasing chain (P−i (m))n
m=1 of events in �k

−i . By the previous claim, we have that μi,k+1 strongly be-

lieves 
(

proj
�k

−i
R−i (m)

)n

m=1
. Therefore, by Lemma 3, there exists νi ∈ �

Hi
i

(
�∞

−i

)
that strongly believes the decreasing chain 

(R−i (m))n
m=1 of events in �∞

−i and such that marg
�k

−i
νi = μi,k+1. Next, let μ̄∞

i ∈ C∞
i be defined as g−1

i (νi). We claim that (
z, θi, μ̄

∞
i

) ∈ Ri (n + 1) and μ̄k
i = μk

i . The second part is immediate since, by Proposition 2, for all q ≤ k,

μ̄i,q = marg
�

q−1
−i

gi
(
μ̄∞

i

)= marg
�

q−1
−i

gi

(
g−1

i (νi)
)

= marg
�

q−1
−i

νi = marg
�

q−1
−i

μi,k+1 = μi,q ,

where the last equality follows from the fact that 
(
μk

i ,μi,k+1
) ∈ Ck+1

i by hypothesis. As for the first part of the claim, note 
that

Ri (n + 1) = Ri (n) ∩ SBi (R−i (n)) = Ri ∩
n⋂

m=1

SBi (R−i (m)) .

Therefore, it is enough to show that 
(
z, θi, μ̄

∞
i

) ∈ Ri and 
(
z, θi, μ̄

∞
i

) ∈ SBi (R−i (m)) for every m ∈ {1, ...,n}. The fact that (
z, θi, μ̄

∞
i

) ∈ Ri is trivial since μ̄∞
i ∈ C∞

i and μ̄k
i = μk

i satisfies rational planning and material consistency. Since gi
(
μ̄∞

i

)=
νi strongly believes R−i (m) for every m ∈ {1, ...,n}, it follows that 

(
z, θi, μ̄

∞
i

) ∈ SBi (R−i (m)) for every m ∈ {1, ...,n}. With 
this, we proved that 

(
z, θi, μ̄

∞
i

) ∈ Ri (n + 1) and therefore that 
(
z, θi,μ

k
i

)= (
z, θi, μ̄

k
i

) ∈ proj
�k

i
Ri (n + 1). Conversely, assume 

that 
(
z, θi,μ

k
i

) ∈ proj
�k

i
Ri (n + 1). Thus there exists μ̄∞

i ∈ M∞
i such that 

(
z, θi, μ̄

∞
i

) ∈ Ri (n + 1) and μ̄k
i = μk

i . Now, consider 

μ̄i,k+1 ∈ �
Hi
i

(
�k

−i

)
. It is clear that 

(
μk

i , μ̄i,k+1
) ∈ Ck+1

i and that 
(
z, θi,μ

k
i , μ̄i,k+1

)
satisfies RP and MC since 

(
z, θi, μ̄

∞
i

) ∈
Ri (n + 1) ⊆ Ri . We still need to show that μ̄i,k+1 strongly believes the chain (P−i (m))n

m=1. By the first claim, this is 

equivalent to showing that μ̄i,k+1 strongly believes the chain 
(

proj
�k

−i
R−i (m)

)n

m=1
. Pick any h ∈ H and m ∈ {1, ...,n} such 

that �k
−i (h) ∩ proj

�k
−i

R−i (m) �= ∅. Then, there exists z ∈ Z (h) and t∞
−i ∈ T ∞

−i such that 
(
z, t∞

−i

) ∈ R−i (m). Then, we have 

�∞
−i (h) ∩ R−i (m) �= ∅ which, by hypothesis, implies gi

(
μ̄∞

i

)
(R−i (m) |h) = 1. By Proposition 2,

μ̄i,k+1

(
proj

�k
−i

R−i (m) |h
)

= marg
�k

−i
gi
(
μ̄∞

i

)(
proj

�k
−i

R−i (m) |h
)

= gi
(
μ̄∞

i

)((
proj

�k
−i

)−1 ◦
(

proj
�k

−i

)
(R−i (m)) |h

)
= gi

(
μ̄∞)

(R−i (m) |h) = 1.
i
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Given that h and m were arbitrarily chosen, this implies that μ̄i,k+1 strongly believes the chain 
(

proj
�k

−i
R−i (m)

)n

m=1
, i.e., 

(P−i (m))n
m=1, showing that 

(
z, θi,μ

k
i

) ∈ Pi (n + 1) . Since i was arbitrarily chosen, Pi (n + 1) = proj
�k

i
Ri (n + 1) for every i ∈ I . 

Since the result holds for all n,

Pi (∞) =
⋂

n∈N
Pi (n) =

⋂
n∈N

Pi (n) .

Finally, we need to show that P (n) = proj�k R (n) for every n ∈ N . Fix n ∈ N , and let 
(
z, tk

) ∈ P (n). Then 
(
z, tk

i

) ∈ Pi (n)

for every i ∈ I . Hence there exists t̄∞
i ∈ T ∞

i such that 
(
z, t̄∞

i

) ∈ Ri (n) and t̄k
i = tk

i . With this, 
(
z, t̄∞) ∈ Ri (n) × T ∞

−i for every 
i ∈ I , which implies 

(
z, t̄∞) ∈

⋂
i∈I

(
Ri (n) × T ∞

−i

) = R (n). This shows that 
(
z, tk

) ∈ proj�k R (n). The proof of the converse is 

almost identical to the proof of the first claim and left to the reader. �
Proof of Proposition 5. By repeating the same steps of the proof of Theorem 1, we can show that, for every i ∈ I ,

∀n ∈N , P∗
i (n) = proj

�k
i
R∗

i (n) and P∗ (n) = proj�k R∗ (n) .

This, together with Proposition 3, implies that

P∗ (∞) =
⋂

n∈N
P∗ (n)

=
⋂

n∈N
proj�k R∗ (n)

⊇ proj�k

⋂
n∈N

R∗ (n)

= proj�k R∗ (∞) .

Conversely, let 
(
z, θ,μk

) ∈ P∗ (∞) =
⋂

n∈N
proj�k R∗ (n), so that, for every n ∈ N , there exists μ̄∞ (n) ∈ M∞ such that 

(z, θ, μ̄∞ (n)) ∈ R∗ (n) and μ̄k (n) = μ. This implies that, for every n ∈ N , the section (R∗ (n))(z,θ,μk
) is nonempty. In par-

ticular, 
(
(R∗ (n))(z,θ,μk

))
n∈N is a decreasing sequence of nonempty compact sets and, by the finite intersection property, ⋂

n∈N

(
R∗ (n)

)(
z,θ,μk

) �= ∅. With this, pick any 
(
μ̂�

)
�≥k+1 ∈

⋂
n∈N

(
R∗ (n)

)(
z,θ,μk

); then we have, by construction,

(
z, θ,μk,

(
μ̂�

)
�≥k+1

)
∈
⋂

n∈N

(
R∗ (n)

)= R∗ (∞) ,

and so 
(
z, θ,μk

) ∈ proj�k R∗ (∞). �
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