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Abstract

We study community enforcement in a large population with noisy monitoring.

We focus on equilibria in the prisoner’s dilemma that are coordination-proof, meaning

that matched partners never play a Pareto-dominated Nash equilibrium in the one-

shot game induced by the equilibrium continuation payoffs at their current histories.

We show that a noise-tolerant version of contagion strategies is optimal among all

coordination-proof equilibria. Welfare under tolerant contagion strategies decreases in

the noise level and the gain from defection faster than welfare in a fixed partnership

does. Thus, community enforcement has a comparative advantage in supporting “low-

stakes” relationships.
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1 Introduction

Repeated game models of decentralized cooperation in large societies—“community enforcement”—

have been used to explain cooperation in settings such as merchant coalitions (Milgrom,

North, and Weingast, 1990, Greif, 1993), credit and risk-sharing (Klein, 1992, Karlan et al.,

2009, Bhaskar and Thomas, 2019), cooperation in village economies (Jackson, Rodriguez-

Barraquer, and Tan, 2012) and online markets (Friedman and Resnick, 2001, Tadelis, 2016).

In all of these settings, in reality a partnership has a significant chance of failing even when

both partners act in good faith. However, this feature—which we simply call noise—is

largely absent from canonical community enforcement models: existing models are often

robust to introducing a small amount of noise, but they are typically ill-suited to studying

cooperation when noise is substantial and causes welfare to fall short of the first best. Conse-

quently, existing models cannot assess how welfare under community enforcement compares

to that under other social or institutional arrangements when noise is present, or how this

comparison depends on the noise level and other parameters. This is an important short-

coming, because these comparisons influence which kinds of economic transactions are more

likely to be mediated by community enforcement, rather than alternatives such as repeated

interaction in a fixed partnership or small group.

This paper develops a simple model of community enforcement under noise. We consider

the prisoner’s dilemma with random matching and perfectly complementary actions, where

matched partners who cooperate obtain a success with probability p ă 1, while success is im-

possible if either partner defects. We adapt the continuum-player model of Clark, Fudenberg,

and Wolitzky (2021) (CFW) by specifying that each player observes their partner’s history

of successes and failures, and that the population distribution of histories is in a steady state.

Thus, while each partnership is subject to noise, the noise washes out in aggregate. We also

follow CFW in focusing on equilibria that are “coordination-proof,” meaning that matched

partners never play a Pareto-dominated Nash equilibrium in the one-shot game induced by

the equilibrium continuation payoffs at their current histories.
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Our first result is that a noise-tolerant version of the contagion strategies introduced by

Kandori (1992) is optimal among all coordination-proof equilibria. (Our strategies differ

from Kandori’s in that failure leads to punishment only probabilistically, by conditioning on

the outcome of a randomization device.) When players’ time horizons are sufficiently long,

welfare under these strategies is given by a simple formula, and is decreasing in both the

noise level and the gain from defection. This gives a simple theory of how welfare under

community enforcement depends on noise and the defection gain.

We then compare welfare under community enforcement with welfare when players inter-

act in fixed partnerships (without rematching). Our second result is that, as either noise or

the defection gain increases, welfare under community enforcement falls faster than welfare

in fixed partnerships. Thus, community enforcement is less robust to noise (or to increases

in the defection gain) than is cooperation in fixed partnerships. Intuitively, noise inevitably

causes some players to switch from cooperation to defection—in either community inter-

actions or fixed partnerships—but in community interactions contagion additionally causes

defection to spread to some innocent players.

Our results speak to the classic question of how productive activities should be divided

between small-scale groups, such as fixed partnerships, and larger communities or markets.

The key tradeoff between these modes of production is thought to be that trust is easier to

sustain in a fixed partnership, while wider interactions allow greater specialization and pro-

ductive efficiency. Thus, a typical conclusion is that if agents are sufficiently forward-looking

to sustain trust in community-wide interactions, then these interactions are more efficient

than interactions in fixed partnerships; while if agents are more myopic then it is more effi-

cient to retreat into fixed partnerships where trust is easier to sustain.1 Our results instead

imply that if community interactions have an exogenous productivity advantage over fixed

partnerships (e.g., due to specialization), then overall social welfare is higher under commu-

nity interactions if noise is sufficiently low and the defection gain is sufficiently small, and is

higher under fixed partnerships otherwise. In particular, if we adopted the “variable stakes”

framework of Ghosh and Ray (1996), Kranton (1996), or Ali and Miller (2016), where the

1Arguments along these lines have been made by many scholars, including Putnam (1993), Greif (1994),
Dixit (2003), Karlan et al. (2009), and Seabright (2010).
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defection gain is relatively larger in higher-stakes relationships, then community interactions

would have a comparative advantage in supporting low-stakes relationships.2 This finding

echoes the classic intuitions of Granovetter (1973) and Putnam (2000) that “weak ties”

or “bridging social capital”—i.e., low-stakes but nonetheless valuable interactions, such as

advice or job recommendation networks—are key benefits of community interactions.3

Related literature. We contribute to the community enforcement literature by de-

veloping a tractable model where maximum equilibrium welfare depends on the amount of

noise. Classic community enforcement models like Kandori (1992) and Okuno-Fujiwara and

Postlewaite (1995) exclude noise altogether, as do many subsequent papers including Dixit

(2003), Karlan et al. (2009), Jackson, Rodriguez-Barraquer, and Tan (2012), and Wolitzky

(2013). Ellison (1994), Takahashi (2010), Deb, Sugaya, and Wolitzky (2018), Heller and

Mohlin (2018), and CFW establish folk theorems in the limit of vanishingly little noise.4

Bhaskar and Thomas (2019) consider a model with one-sided moral hazard, where there is

no scope for contagion, and efficiency under community enforcement can be as high as in a

fixed partnership. Finally, Clark, Fudenberg, and Wolitzky (2020) analyze the performance

of a class of tolerant trigger strategies that are similar to the tolerant contagion strategies

we consider. However, that paper has a different information structure (players only observe

their current partner’s past actions), under which tolerant trigger strategies are suboptimal

and efficiency is determined by stage-game strategic complementarity (which is irrelevant in

the current paper), rather than noise.

2We do not formally introduce variable stakes or a productivity difference between community and
partnership interactions in our model, as this point is straightforward given our results for the standard
prisoner’s dilemma.

3Earlier models such as Dixit (2003), Karlan et al. (2009), Ali and Miller (2013), or Wolitzky (2013)
capture related intuitions, but the logic of these models is very different because they do not involve noise.

4These papers make different population structure and observability assumptions. Our doubly-infinite
time model with long player histories is most similar to Heller and Mohlin (2018) and CFW, as well as earlier
papers on learning in games such as Fudenberg and Levine (1993) and Fudenberg and He (2018).
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2 Cooperation in a Large Community

This section develops our model of cooperation in a large community and characterizes

maximum welfare in this setting. Section 3 will then compare this welfare level with the

maximum attainable welfare in a fixed partnership.

2.1 Matching and Pairwise Interactions

There is a unit mass of players, each of whom has a geometrically distributed lifespan with

continuation probability γ P p0, 1q, with exits balanced by an inflow of new entrants of size

1 ´ γ. The time horizon is doubly infinite, so there is no fixed start date.

Each period, the players randomly match in pairs to play the prisoner’s dilemma stage

game, with expected payoffs

C D

C 1, 1 ´ℓ, 1 ` g

D 1 ` g,´ℓ 0, 0

(1)

where g, ℓ ą 0.The public outcome of each bilateral interaction is either S (a success) or

F (a failure). We assume that the probability of a success when the partners take actions

a P tC,Du
2 is given by

Pr pS|aq “

$

&

%

p if a “ pC,Cq,

0 otherwise,
(2)

where 0 ă p ă 1. Thus, the public outcome can only be a success if both partners cooperate,

but success is never assured. As we explain in Section 4, our results extend to the case

where Pr pS|aq “ q for all a ‰ pC,Cq, for sufficiently small q ą 0. In addition to generating

a public outcome, each bilateral interaction also generates an independent Uniform r0, 1s

random variable z, which, like the public outcome, is publicly observed at the end of the

period. These additional random variables, which we call pairwise randomizations, amount

to having a separate public randomizing device for each matched pair. We discuss the

interpretation and role of these randomizations in Section 2.5.

When two players meet, each observes the other’s entire history of past outcomes and ran-

dom draws (and no further information), which is an element ofH “ ∅Y
Ť8

t“1 ptS, F u ˆ r0, 1sq
t,

4



where a new entrant has the null history ∅, and an experienced player’s history is the record

of their past outcomes along with the corresponding values of z. Players also recall their

own histories. Thus, a pure strategy is a function σ : H ˆ H Ñ tC,Du, with the convention

that the first coordinate is a player’s own history and the second is the opponent’s history.5

We restrict attention to symmetric pure strategy profiles, where each player uses the same

pure strategy.6 We henceforth omit the qualifiers “symmetric” and “pure” without further

comment, and use the same notation σ for an individual strategy and a (symmetric) strategy

profile.

2.2 Aggregate Behavior and Equilibrium

The state µ P ∆ pHq of the community describes the share of players with each possible

history.7 Since there is a continuum of players, under any strategy profile σ the state evolves

according to a deterministic transition function fσ : ∆ pHq Ñ ∆ pHq. A steady state under

σ is a state µ such that fσ pµq “ µ.8 One can then define the expected continuation payoff

p1 ´ γq
ř

t γ
tE ruts of a player with any history h P H at a steady state µ, when all other

players in the population follow σ and the player under consideration plays an arbitrary

strategy σ1. An equilibrium is a pair pσ, µq such that µ is a steady state under σ and, for

any history h, the expected continuation payoff of a player with history h is maximized by

taking σ1 “ σ. Finally, welfare at an equilibrium pσ, µq is defined as the average payoff in the

population at state µ under strategy σ. Note that welfare is equal to the expected lifetime

payoff of a new entrant, because the steady state distribution µ also describes the fraction

of periods in which an entrant expects to have each history.

5In principle, a player could condition on their own past actions in addition to their history of successes
and failures, but as we allow public randomization there is no benefit to doing so. Since H is a continuum
due to the random variables z, we also formally require that strategies are measurable functions on H ˆ H,
where H is endowed with the weak* topology.

6Restricting to pure equilibria simplifies the analysis and also captures a type of robustness. We could
alternatively further restrict attention to strict equilibria. This would yield almost the same analysis except
for some technicalities resulting from the fact that the set of strict equilibria is not closed. In contrast, mixed
strategies would allow pC,Dq and pD,Cq to be played on the equilibrium path, which as discussed below
would greatly complicate the analysis.

7Formally, since H is a continuum, the state describes the measure of players with each measurable set
of histories.

8Section 2.5 discusses the details involved in constructing the transition function and the issue of the
existence of a steady state.
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A preliminary observation is that in any (pure) equilibrium, only pC,Cq and pD,Dq are

played along the equilibrium path. To see this, observe that equation (2) implies that when

the opponent defects, the probability of success is independent of a player’s own action. Since

future opponents will observe only whether the current outcome is a success or a failure (as

well as the uniform variable z), and D is dominant in the stage game, this implies that D is

the unique best response of a player who anticipates that their opponent will play D. Thus,

only pC,Cq and pD,Dq can be played along the equilibrium path.

The fact that only pC,Cq and pD,Dq are played on path implies that equilibrium incen-

tives can be provided only through surplus creation and destruction—switching from pD,Dq

to pC,Cq or vice versa—rather than surplus transfers between matched partners, which

would occasionally require pC,Dq or pD,Cq to be played. This feature greatly simplifies the

analysis, as well as ensuring that first-best efficiency is unattainable regardless of the players’

expected lifespans.9

2.3 Coordination-Proof Equilibria

We say that an equilibrium is coordination-proof if matched partners never play a Pareto-

dominated Nash equilibrium in the one-shot game induced by the equilibrium continuation

payoffs at their current histories.10

We restrict attention to coordination-proof strategies throughout our analysis. The mo-

tivation for imposing this refinement is that an equilibrium that is not coordination-proof

would break down if a pair of matched partners could manage to coordinate on the efficient

equilibrium in their interaction (taking behavior in the rest of the population as given).

The following lemma describes the key implication of coordination-proofness for our analysis

(indeed, the only implication of coordination-proofness that we will use).11

Lemma 1. In any coordination-proof equilibrium pσ, µq, the set of all histories H can be

partitioned into two sets, HC and HD, such that:

9Our results would be similar if Pr pS|pC,Dqq ‰ Pr pS|pD,Dqq but ℓ is sufficiently large, as then too only
pC,Cq and pD,Dq are played on path.

10See Definition 4 in CFW for the formal definition of coordination-proofness.
11The lemma relies on our assumption that actions are perfect complements: PrpS|pC,Dqq “ PrpS|pD,Dq.

Without this assumption, more equilibria can be coordination-proof, including ones where pC,Dq is played
on the equilibrium path.
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1. Players with histories in HC cooperate against opponents with histories in HC: σ ph, h1q “

C for all h, h1 P HC.

2. Players with histories in HC defect against opponents with histories in HD: σ ph, h1q “

D for all h P HC , h1 P HD.

3. Players with histories in HD defect against all opponents: σ ph, h1q “ D for all h P

HD, h1 P H.

Proof. Fix a coordination-proof equilibrium pσ, µq, and defineHC “ th P H : Dh1 P H s.t. σ ph, h1q “ Cu

and HD “ HzHC . By definition, σ ph, h1q “ D for all h P HD, h1 P H. Moreover, since C is

never a best response against an opponent who plays D (as Pr pS|pC,Dqq “ Pr pS|pD,Dqq

and D is dominant in the stage game), we have σ ph, h1q “ D for all h P HC , h1 P HD.

It remains to show that σ ph, h1q “ C for all h, h1 P HC . Fix any h, h1 P HC . Since C

is never a best response against an opponent who plays D, the fact that h, h1 P HC implies

that for a player with history h or h1, C is a best response against an opponent who plays

C. Hence, when players with histories h and h1 meet each other, both pC,Cq and pD,Dq

are equilibria in the induced one-shot game. Next, since C is sometimes a best response

for these players even though D is dominant in the stage game, their expected continuation

payoffs must each be higher when the outcome of their match is S rather than F . This

implies that the pC,Cq equilibrium yields higher expected continuation payoffs for both

players (since the probability of S is higher) as well as higher stage game payoffs for both

players, relative to the pD,Dq equilibrium. Therefore, coordination-proofness requires that

σ ph, h1q “ σ ph1, hq “ C.

Given Lemma 1, a coordination-proof equilibrium is entirely described by the partition
␣

HC , HD
(

. Henceforth, given a coordination-proof equilibrium, we simply refer to players

with histories in HC as cooperators, and to players with histories in HD as defectors.

Our first main result is a bound on the payoff of any coordination-proof equilibrium.12 We

will subsequently show that when γ is sufficiently large this bound is tight, and is attained

by a version of contagion strategies. Hence, the bound W̄ derived in the proposition will be

key for comparing welfare in communities and partnerships in Section 3.

12The proof of this results builds on the proof of Lemma 11 of Clark, Fudenberg, and Wolitzky (2020).
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Proposition 1. For any continuation probability γ, welfare in any coordination-proof equi-

librium is bounded above by W̄ “ µ̄2, where

µ̄ “

$

&

%

1`g
2

`

b

`

1`g
2

˘2
´

g
p

if p ě
4g

p1`gq
2 ,

0 otherwise.

Note that the condition p ě 4g{p1 ` gq2 can only be satisfied if g ď 1, regardless of p.

Thus, no cooperation is possible in a coordination-proof community equilibrium if g ą 1.

Moreover, as noise increases, cooperation becomes impossible even for smaller values of g:

for example, if p “ 8{9 then cooperation is impossible whenever g ě 1{2.

Proof. Fix a coordination-proof equilibrium with partition
␣

HC , HD
(

. Let µC “
ş

HC dµ

denote the share of cooperators. Suppose that µC ą 0.

For any h P H, let V phq denote the expected continuation payoff of a player with history

h. Note that V phq ě 0 for all h P H, since a player’s minmax payoff is 0. Next, let

V̄ “ suphPH V phq. Note that V̄ ą 0, since V phq ě 0 for all h and µC ą 0. We claim that

V̄ “ suphPHC V phq. Otherwise, there would exist h P HD such that V phq ą suph1PHC V ph1q,

but since all defectors obtain a stage game payoff of 0, we have V phq ď γ suph1PHC V ph1q.

Now consider a cooperator with history h P HC . Let V ph, Sq “ Ez rV ph, S, zqs and

V ph, F q “ Ez rV ph, F, zqs denote this player’s expected continuation payoff when their

current-period outcome is a success or a failure, respectively. Since this player cooperates

against opponents in HC and defects against opponents in HD, we have

V phq “ p1 ´ γqµC
` γ

`

pµCV ph, Sq `
`

1 ´ pµC
˘

V ph, F q
˘

.

At the same time, since the player prefers to play C against an opponent who plays C, we

have

γp pV ph, Sq ´ V ph, F qq ě p1 ´ γq g.

Combining these inequalities, we have

p

1 ´ pµC

ˆ

µC
´ V phq `

γ

1 ´ γ
pV ph, Sq ´ V phqq

˙

ě g.
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This inequality holds for all h P HC and V̄ “ suphPHC V phq ě suphPHC V ph, Sq, so

p

1 ´ pµC

`

µC
´ V̄

˘

ě g.

Moreover, the expected lifetime payoff of a new entrant equals pµCq2 (the share of matches

that cooperate), so V̄ ě
`

µC
˘2
. Hence, we have

pµC
`

1 ´ µC
˘

1 ´ pµC
ě g ðñ

`

µC
˘2

´ p1 ` gqµC
`

g

p
ď 0.

This implies that µC ď µ̄. Since welfare equals
`

µC
˘2
, we conclude that welfare is bounded

above by µ̄2.

2.4 Tolerant Contagion Strategies

We will show that the following class of coordination-proof strategies attains the welfare

bound W̄ .

Definition 1. In a tolerant contagion strategy profile, there is a parameter ϕ P p0, 1q such

that:

1. New entrants are cooperators: ∅ P HC.

2. If the outcome of a cooperator’s interaction is pS, zq for any z, they remain a cooperator:

if h P HC then h ˆ pS, zq P HC.

3. If the outcome of a cooperator’s interaction is pF, zq, they remain a cooperator if z ě ϕ,

and become a defector if z ă ϕ: if h P HC then h ˆ pF, zq P HC for z ě ϕ, and

h ˆ pF, zq P HD for z ă ϕ.

4. A defector remains a defector forever.

Note that these strategies utilize our assumption that a player’s past values of z are

observed by all of their partners. We refer to ϕ as the transition probability.
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The next lemma characterizes the equilibrium conditions and the steady state share of

cooperators under tolerant contagion strategies.

Lemma 2. Under a tolerant contagion strategy profile with transition probability ϕ, an equi-

librium with cooperator share µC and cooperator payoff V ą 0 exists if and only if

V “
`

µC
˘2

, (PK)

γpϕV ě p1 ´ γq g, and (IC)

µC
“ 1 ´ γ ` γµC

`

1 ´ ϕ ` pµCϕ
˘

. (SS)

Moreover, the steady state share of cooperators is unique.

Proof. (PK) (“promise keeping”) says that the cooperator payoff equals pµCq2. This is

necessary because entrants are cooperators, and an entrant’s payoff equals social welfare,

pµCq2. (IC) is the incentive constraint, which is necessary because deviating to D against a

cooperator yields a gain of p1 ´ γq g, but increases the probability of a failure by p, which

implies an expected future loss of γpϕV . (SS) is the steady state condition, which is necessary

because in a steady state, the share of cooperators µC must equal the share of new entrants

1 ´ γ (who are all cooperators) plus the share of surviving cooperators γµC who remain

cooperators (as all surviving defectors remain defectors), and this latter share is equal to

1 ´ ϕ (the share of surviving cooperators who obtain outcomes with z ą ϕ), plus pµCϕ (the

share of surviving cooperators who obtain outcomes pS, zq with z ă ϕ). Conversely, when

all three conditions are satisfied, pσ, µq is an equilibrium. Finally, the steady-state equation

(SS) is quadratic in µC , and only the smaller solution is in the required r0, 1s range.13

Now we show that tolerant contagion strategies attain the maximum welfare level W̄ ,

whenever γ is sufficiently large.

Proposition 2. For any γ ě γ̄, there exists a tolerant contagion equilibrium that yields

welfare W̄ , where γ̄ “ p1 ` pµ̄2{gq
´1

P p0, 1q.

13In particular, the unique steady state share of cooperators is

1 ´ γ ` γϕ ´
a

p1 ´ γ ´ γϕq2 ´ 4γp1 ´ γqpϕ

2γpϕ
.
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Proof. Consider tolerant contagion strategies with transition probability

ϕ “
p1 ´ γq g

γpµ̄2
.

Note that ϕ ď 1 (so the strategy profile is well-defined) iff γ ě γ̄. Substituting this value of

ϕ into (SS) gives

µC
“ 1 ´ γ ` γµC

ˆ

1 ´
p1 ´ γqg

γpµ̄2
`

p1 ´ γqg

γpµ̄2
pµC

˙

ðñ

µC µ̄ ´ µ̄ ´ g
pµCq2

µ̄
`

g

p

µC

µ̄
“ 0.

Observe that µC “ µ̄ solves this equation. Thus, µC is the steady state share of cooperators

under tolerant contagion strategies with transition probability ϕ.14 Moreover, steady state

welfare equals W̄ “ µ̄2 by (PK), and (IC) holds with equality by construction of ϕ. Hence,

the steady state corresponds to an equilibrium with the desired properties.

We henceforth assume that γ ě γ̄, so that maximum welfare under coordination-proof

community enforcement is W̄ .

2.5 Interpretation and Technical Details

Here we provide an interpretation of pairwise randomizations, and discuss some technical

details that we deferred above.

Interpretation of pairwise randomization. The role of pairwise randomizations is to

introduce some noise tolerance into contagion strategies, by reducing the probability that

failure causes players to switch to defection. A possible interpretation of tolerant contagion

strategies is that these randomizations determine whether a failure leads to a “dispute,”

where society remembers which players have been involved in disputes (but not necessarily

the precise values of the associated random z’s). It is also possible to dispense with random-

izing devices altogether, at the cost of some additional complexity. For example, we could

consider strategies with several cooperative states, where players become defectors only after

14The steady state is unique by Lemma 2, although the current proof does not require this fact.
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experiencing some number K ą 1 of failures. We analyzed such “GrimK” strategies in Clark,

Fudenberg, and Wolitzky (2020). In the current setting, we conjecture that GrimK strategies

are approximately as efficient as tolerant contagion strategies when γ is sufficiently large.

However, they cannot exactly attain efficiency for any fixed γ due to the constraint that K

must be an integer, and they are harder to analyze because we have to keep track of the share

of players with each number of failures. Allowing pairwise randomizations thus considerably

simplifies the analysis, and we believe it does not substantially affect the results.

Definition of the update map; existence of a steady state. CFW give the equation

for the update map and establish existence of a steady state in a model without pairwise

randomizations where players observe their partner’s “record,” which can include additional

information such as the past actions and records of the current partner’s past partners. The

update map and existence proof generalize to pairwise randomizations, but the notation is

somewhat complicated and the existence of a steady state involves some measurability issues.

However, in the current paper the only behaviorally relevant aspect of the update map is

the update rule for the share of cooperators, and the only relevant aspect of a steady state

is the steady state share of cooperators. These are both given by the steady-state equation

(SS).

Observability of own payoffs. The payoffs given by equation (1) cannot be written

as an expectation over the outcomes S and F with probabilities given by (2) of a utility

function that depends only a player’s own action and the outcome. Thus, to interpret the

model as one where players observe their own payoffs, we must also let each player privately

observe their own payoff. Adding this information does not affect the analysis in the current

section, because players can never gain by conditioning on it. Adding such information to

the fixed-partnership repeated game considered in the next section could expand the set

of all Nash equilibria, but not the set of perfect public equilibria (Fudenberg, Levine, and

Maskin, 1994), where players condition only on public signals. Thus, when players observe

their own payoffs, the analysis in the next section remains valid for PPE.15

15In addition, if we restrict attention to strict equilibria and assume that players’ additional private
signals are independent conditional on actions and the public signal, then focusing on PPE is without loss
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3 Comparison of Community and Partnership

We now compare W̄ with the maximum welfare that can be attained in a fixed partnership.

Suppose the prisoner’s dilemma stage game (1) is played repeatedly by a fixed pair of players

with a fixed start date t “ 1, with outcome distribution as in (2) and public randomization,

with discount factor δ P p0, 1q. As in our analysis of cooperation in a large community,

we restrict attention to pure-strategy equilibria. In place of tolerant contagion strategies,

we now show that the upper bound on welfare can be achieved using tolerant grim trigger

strategies.

Definition 2. In a tolerant grim trigger strategy profile, there is a parameter ϕ P p0, 1q

such that:

1. The players cooperate in period 1.

2. If the players cooperate in period t and the outcome is pS, zq for any z, they continue

cooperating in period t ` 1.

3. If the players cooperate in period t and the outcome is pF, zq, they continue cooperating

in period t ` 1 if z ě ϕ, and switch to defecting if z ă ϕ.

4. If the players defect in period t, they continue defecting forever.

The next result (which is standard) characterizes maximum welfare in a fixed partnership,

and shows that it is attained by tolerant grim trigger strategies.

Proposition 3. In a fixed partnership, for any discount factor δ, welfare in any pure-strategy

Nash equilibrium is bounded above by

Ŵ “ max

"

1 ´
1 ´ p

p
g, 0

*

.

Moreover, whenever Ŵ ą 0 , for any δ ě δ̂, there exists a tolerant grim trigger equilibrium

that yields welfare Ŵ , where δ̂ “ g{ pp1 ` gq pq P p0, 1q.

of generality, because players never have a strict incentive to condition on their private signals. Our analysis
is unchanged under a restriction to strict equilibria, except that strict tolerant contagion equilibria can only
approximate the maximum welfare level W̄ rather than exactly attaining it.
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Proof. As in the community enforcement game considered above, only pC,Cq and pD,Dq

are played on-path in any pure Nash equilibrium, so every pure Nash equilibrium is strongly

symmetric. By standard arguments, in the optimal strongly symmetric equilibrium, contin-

uation payoffs at every history are either some V ě 0 or 0. When public randomizations are

available, equilibria of this form are precisely tolerant grim trigger equilibria. It therefore

remains to characterize the optimal tolerant grim trigger equilibria. There is a tolerant grim

trigger equilibrium with transition probability ϕ P r0, 1s and payoff V iff

V “ 1 ´ δ ` δ p1 ´ ϕ ` pϕqV and (PK’)

δpϕV ě p1 ´ δq g. (IC’)

Taking ϕ to satisfy (IC’) with equality and substituting into (PK’), we have

V “ 1 ´
1 ´ p

p
g.

Substituting for V in (IC’) shows that the required value of ϕ is less than 1 (so the strategy

profile is well-defined) iff p1 ´ pq p1 ` gq ď 1 (i.e., Ŵ ą 0) and δ ě δ̂.

With Propositions 1 and 3 in hand, we can now compare maximum welfare under com-

munity interactions and fixed partnerships.

Proposition 4. Assume that p ą 4g{ p1 ` gq
2, so that W̄ ą 0. Then we have:

1. W̄ ă Ŵ .

2. BW̄ {Bp ą BŴ {Bp.

3. BW̄ {Bg ă BŴ {Bg.

Thus, welfare is lower in community interactions than in fixed partnerships, and also

decreases faster as noise increases (i.e., p decreases) and the defection gain g increases. The

intuition for why W̄ ă Ŵ is that, since a matched cooperator and defector take pD,Dq in

community interactions, and some players inevitably become defectors when their interac-

tions are “hit by noise” (i.e., when a partnership fails despite mutual effort), there is a certain
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unavoidable amount of contagion, as even players whose own interactions are never hit by

noise become defectors as a result of matching with other players who were hit by noise. In

contrast, in a fixed partnership, the partners only switch to defection when they themselves

are hit by noise. A similar intuition explains why BW̄ {Bp ą BŴ {Bp and BW̄ {Bg ă BŴ {Bg.

Noise is more harmful in community interactions, because it affects both players whom it

directly hits and players who match with players whom it hits. Finally, the defection gain g

determines how much future cooperation must be lost when noise hits to preserve incentives,

so increasing g has a similar effect as increasing noise.

Proof. Observe that

BW̄

Bp
“ 2µ̄

Bµ̄

Bp
“

¨

˝

1 ` g

2
b

`

1`g
2

˘2
´

g
p

` 1

˛

‚

g

p2
ą

g

p2
“

BŴ

Bp
,

where the inequality uses p ą 4g{ p1 ` gq
2. Moreover, if p “ 1 (contrary to our assumptions)

then µ̄ “ W̄ “ Ŵ “ 1. Since p P p0, 1q, the first two parts of the proposition follow.

For the third part of the proposition, observe that

BW̄

Bg
“ 2µ̄

Bµ̄

Bg
“ µ̄

¨

˝1 `

1`g
2

´ 1
p

b

`

1`g
2

˘2
´

g
p

˛

‚“

µ̄
´

µ̄ ´ 1
p

¯

µ̄ ´
1`g
2

, and

BŴ

Bg
“ ´

1 ´ p

p
.

Hence, BW̄ {Bg ă BŴ {Bg iff

µ̄

ˆ

1

p
´ µ̄

˙

ą
1 ´ p

p

ˆ

µ̄ ´
1 ` g

2

˙

ðñ

pµ̄ p1 ´ µ̄q ą ´ p1 ´ pq
1 ` g

2
,

which holds as the LHS is positive and the RHS is negative.

Proposition 4 implies that if community interactions have an exogenous productivity ad-

vantage over interactions in fixed partnerships, then society should allocate activities involv-

ing low noise and low defection gains to community interactions, while allocating activities
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involving high noise and high defection gains to fixed partnerships. (Absent a productivity

edge for community interactions, all production should take place in fixed partnerships.) In-

tuitively, community interactions have a comparative advantage in activities with low noise

and low defection gains, because the failures that inevitably occur in the presence of noise

are more harmful in community interactions than in fixed partnerships, as they necessar-

ily trigger some degree of community-wide contagion. As a consequence, if we adopt the

standard assumption that the defection gain is relatively higher in high-stakes activities,

we can conclude that community interactions have a comparative advantage in supporting

low-stakes activities.16

4 Discussion

We conclude by discussing some possible variants and extensions.

Non-Coordination-Proof Equilibria. Our comparison of welfare in communities and

partnerships relies on focusing on coordination-proof equilibria in community interactions.

We have argued that this equilibrium refinement is reasonable, since equilibria built on

within-match miscoordination are arguably fragile. We have also shown that tolerant conta-

gion strategies are optimal under this refinement, so the refinement also supports focusing on

this class of strategies, which generalize the usual contagion strategies that are a centerpiece

of the community enforcement literature.

Nonetheless, it is worth noting that, at least for some parameters p and g, the maxi-

mum partnership welfare level of Ŵ can be attained in community interactions using non-

coordination-proof strategies. In particular, consider the following variant of tolerant conta-

gion strategies.

1. The set of histories H is partitioned into cooperators and defectors. Entrants are

cooperators.

16We are not aware of direct empirical evidence on whether the defection gain rises faster than the
cooperative payoff in higher-stakes activities, but this is a standard assumption: see, e.g., Ghosh and Ray
(1996), Kranton (1996), Ali and Miller (2013, 2016). Another similar setup is Dixit (2003), which considers
a random matching model where information about high-value interactions spreads more slowly, so that
incentive constraints bind more in higher-value interactions.
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2. Matched partners always cooperate, unless they are both defectors, in which case they

both defect. (This is a key difference from coordination-proof strategies, where a

matched cooperator and defector both defect.)

3. If the outcome of a cooperator’s interaction is pS, zq for any z, they remain a cooperator.

If the outcome of a cooperator’s interaction is pF, zq, they remain a cooperator if

z ě 1 ´ ϕ, and become a defector if z ă ϕ.

4. If the outcome of a defector’s interaction is pF, zq for any z, they remain a defector. If

the outcome of a defector’s interaction is pS, zq, they remain a defector if z ě 1 ´ ϕ,

and become a cooperator if z ă ϕ.

These strategies are not coordination-proof, because pC,Cq is a Pareto-dominant Nash

equilibrium in an interaction between two defectors, but the strategies prescribe pD,Dq in

these interactions. Nonetheless, it can be shown that if g is sufficiently small, there exists

γ̃ such that, for all γ ą γ̃, there exists a value for ϕ such that these strategies form an

equilibrium that delivers welfare Ŵ .17 This shows that coordination-proofness is an essential

part of our theory. Intuitively, coordination-proofness implies that a matched cooperator and

defector must take pD,Dq, as if they took pC,Cq then matched defectors would also take

pC,Cq (as pC,Cq would be a Pareto-dominant Nash equilibrium in their interaction), which

in turn would destroy incentives. Matched cooperators and defectors taking pD,Dq is the

source of contagion discussed following Proposition 4, which accounts for the gap between

welfare in communities and partnerships. If instead matched cooperators and defectors take

pC,Cq as in the above strategies, there is no contagion, and welfare in communities and

partnerships is equal.

Two-Sided Noise. Our assumption that success requires cooperation from both partners

is restrictive. A natural generalization is to assume that

Pr pS|aq “

$

&

%

p if a “ pC,Cq,

q otherwise,
(3)

17It can also be shown that, as in a fixed partnership, welfare in any pure Nash equilibrium in the
community enforcement game cannot exceed Ŵ .
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where 0 ă q ă p ă 1. Under this assumption, the partners’ actions remain perfect com-

plements in delivering a success, in that Pr pS|pC,Dqq “ Pr pS|pD,Dqq, but it is possible to

obtain a success even if one or both partners defect. Under (3), the same argument as in

the proof of Proposition 1 gives an upper bound for welfare that converges to µ̄2 as q Ñ 0.

Similarly, the same argument as in the proof of Proposition 2 implies that, for sufficiently

high γ, there exist a sequence of tolerant contagion equilibria whose welfare converges to µ̄2

as q Ñ 0, but now there is a gap between the upper bound and the welfare level that can

be attained by tolerant contagion strategies.18 This gap can be shown to be second-order

in q, so tolerant contagion strategies are quite robust to a small probability that the players

obtain a success even when one or both of them defects.

The intuition for why tolerant contagion strategies are exactly optimal when q “ 0, but

not when q ą 0, is as follows. When q “ 0, obtaining a success proves that both partners

cooperated. It is therefore optimal to assign each partner the highest possible continuation

payoff following a success, which is what tolerant contagion strategies do. Instead, when

q ą 0, a success may be due to luck. It may therefore be better to assign a player the highest

possible continuation payoff only after a series of successes. However, the advantage of such

strategies over tolerant contagion strategies is small when q is small.

More General Outcome Distributions. It is more challenging to generalize the out-

come structure to allow Pr pS|pC,Dqq ‰ Pr pS|pD,Dqq, so that the partners’ actions are not

perfect complements. If Pr pS|pC,Dqq ‰ Pr pS|pD,Dqq and the parameter ℓ is sufficiently

small, then we conjecture that the asymmetric action profiles pC,Dq and pD,Cq can be

supported in equilibrium. This enables society to provide incentives through continuation

payoff transfers (as in Fudenberg, Levine, and Maskin, 1994), even though with only two

outcomes pairwise full rank cannot hold. Moreover, because players face a new partner each

period, there can be a positive mass of players whose continuation payoffs are above the

18The upper bound and the maximum welfare level attainable by tolerant contagion strategies are, re-
spectively,

1 ` g

2
`

d

ˆ

1 ` g

2

˙2

´
1 ´ q

p ´ q
g and

1 `
p

p´q g

2
`

g

f

f

e

˜

1 `
p

p´q g

2

¸2

´
1

p ´ q
g.
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highest feasible and individually rational payoff in a fixed partnership. This in turn raises

the question of what general properties of the outcome structure suffice for the folk theorem

in our steady-state community interaction model, either with or without a restriction to

coordination proof equilibrium. This is an interesting question for future work.19

Avoidance. A modification of the prisoner’s dilemma stage game that seems realistic

in some contexts is that in every interaction each player has third action, Avoid, which

corresponds to refusing to interact with the current partner. Suppose that Avoid gives both

players a payoff of zero regardless of their partner’s action, and that the outcome of an

interaction where either partner takes Avoid is recorded as Avoided, or alternatively is not

recorded at all. It can be shown that in this modified game, when γ is sufficiently high,

maximum welfare in (coordination-proof) community enforcement increases to Ŵ 2. To see

the intuition, note that with avoidance, we can modify tolerant contagion strategies so that

players with histories in HD play Avoid rather than D, while players still transition from

HC to HD only after a failure. This modification eliminates contagion: now, players only

transition from HC to HD when they themselves are hit by noise, because when they match

with partners inHD the outcome is now Avoided rather than F . Consequently, the transition

probability from HC to HD can be set at the minimum level required to provide incentives,

which implies that the steady-state share of players with histories in HC can be as high as

Ŵ , exactly as in a fixed partnership. Nonetheless, the maximum welfare level of Ŵ 2 is still

less than the welfare level of Ŵ that is attainable in a fixed partnership, because, since noise

and matching are independent of each other in community interactions, the share of matches

where both partners have histories in HC is only Ŵ 2.

More General Records. We have assumed that players observe no information other

than their partner’s history of past outcomes and random draws. It is also interesting to

consider settings where a player gets some information about their partner’s past partners,

such as their identities or past outcomes. In CFW, we showed that such “interdependent

19Theorem 2 of CFW provides a partial folk theorem under almost-perfect monitoring.

19



records” provide little advantage beyond observing the partner’s history of outcomes, when

outcomes are observed with very little noise. However, with non-trivial noise, interdepen-

dent records might help reduce contagion and improve efficiency. This seems an interesting

direction for future research.

Richer Social Structure. Finally, we have only compared two extreme social structures:

random matching in a large population, and a fixed partnership. Reality lies in between

these extremes: we interact with friends and colleagues more than with strangers, but we

do sometimes meet strangers. Incorporating richer social structures—e.g., weighted random

matching or networked interactions—into our analysis is another promising direction for

future work.
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