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Oğuzhan Çelebi∗
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Abstract

I introduce and analyze a dynamic process called Repeated Boston Mechanism (RBM),

where the Boston Mechanism (BM) is used for multiple periods, and students form

their application strategies by best responding to the admission cutoffs of the previ-

ous period. If students are truthful in the initial period, the allocation under RBM

converges in finite time to the student optimal stable matching (SOSM), which is the

Pareto-dominant equilibrium of BM and the outcome of the strategy-proof Deferred

Acceptance Mechanism. If some students are sincere and do not strategize, then the

allocation converges to the SOSM of a market in which sincere students lose their

priorities to sophisticated ones. When students are not truthful in the first period

but best reply to some initial admission cutoffs, the allocation converges to SOSM if

students are initially optimistic about their admissions chances but may cycle between

allocations Pareto-dominated by SOSM if they are pessimistic. My results provide a

foundation for the earlier characterizations of equilibria of BM and are in line with the

observations of non-equilibrium play in BM in real-world markets.
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1. Introduction

The Boston Mechanism (BM) is a centralized assignment mechanism that has been widely

used in many parts of the world to assign students to schools. The most important feature

of BM is that it is not strategy-proof: students lose their priority in schools they rank

lower in their preference lists to students who rank those schools higher. Starting with the

characterization of equilibria of BM (Ergin and Sönmez, 2006), a large body of literature has

analyzed BM and compared it to the widely-used Deferred Acceptance Mechanism (DA),

which implements the Student Optimal Stable Matching (SOSM) as a dominant strategy

equilibrium.

This paper contributes to the literature on BM by asking the following question: (when)

should we expect an equilibrium of BM to be played? Motivated by the fact that BM is

used repeatedly across periods in many markets,1 I set up a multi-period model where each

period students submit rankings of the schools to a centralized clearinghouse which uses

BM to determine the allocation. In the baseline model, which I call the Repeated Boston

Mechanism (RBM), in each period, students play a best response to the admission cutoffs

of the previous period, with the exception of the initial period, where they apply truthfully.

This paper focuses on characterizing the (non-)convergence of the best response dynamics

under RBM and its modifications.

My analysis builds on a surprisingly close connection between the steps of DA and the

periods of RBM.2 It turns out that each period of RBM is analogous to the corresponding

step of a slightly modified but equivalent version of DA in the sense that, the set of students

who are (tentatively) matched to each school is identical. My main result, Theorem 1, shows

that the matching implemented in RBM converges in finitely many periods to the Student

Optimal Stable Matching (SOSM), which is the dominant-strategy outcome of DA and the

Pareto-dominant equilibrium of BM. Theorem 1 provides a foundation to the equilibrium

analysis of BM based on best response dynamics by showing that if BM is repeatedly used

in the same market in consecutive periods and students form their strategies by myopically

best responding to previous period’s cutoffs, the implemented matching converges to a stable

matching in finitely many periods. The rest of the paper relaxes some assumptions of RBM

and to analyzes convergence in more general settings.

Section 4 considers an environment with unsophisticated students, who always report

1Examples of settings where BM or variants are used include college admissions in China (Chen and
Kesten, 2017), public school systems in Charlotte (Hastings, Kane, and Staiger, 2009), Beijing (He, 2015)
and Barcelona (Calsamiglia, Fu, and Güell, 2020). See Agarwal and Somaini (2018) for more examples and
details.

2In both BM and DA, students submit a ranking of schools to the mechanism, which then proceeds
iteratively and returns a matching of students to schools as the outcome after finitely many steps.
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their true preferences, and sophisticated students, who strategize as they do under RBM.

Pathak and Sönmez (2008) characterize the equilibria of BM in this setting, show that un-

sophisticated students lose their priorities to sophisticated ones and sophisticated students

prefer the Pareto-dominant Nash equilibrium of BM to DA. I show that RBM with unsophis-

ticated students converge in finitely many periods to the Pareto-dominant equilibrium of BM

with unsophisticated students, providing a foundation to their equilibrium characterization

and their equilibrium selection for the comparison between BM and DA.

Section 5 relaxes my assumptions on the first period behavior and allows students to best

reply to some initial cutoff scores, instead of applying truthfully. The initial cutoff scores

determine the optimism of students about their admission chances: if cutoff scores are low,

they believe that their score is enough to obtain a place in most schools, while if cutoffs

are high, they believe most schools are not achievable. I show that if students are initially

optimistic enough about their admission chances, then RBM converges to the SOSM, while

if students are pessimistic (in particular, if they believe their school under SOSM is not

achievable), then it is possible that RBM does not converge and implements matchings that

are Pareto-dominated by the SOSM in each period. These non-convergence results are in line

with the observations of non-equilibrium play under BM in real-world markets (He, 2015;

Kapor, Neilson, and Zimmerman, 2020; Song, Tomoeda, and Xia, 2020).

In the baseline model, I assume that same, finite market is repeated in each period.

However, it is plausible that there is some randomness in the market across periods. To deal

with this, Section 6 extends the analysis to large, random markets. First I extend results to

a market with continuum students (Abdulkadiroğlu, Che, and Yasuda, 2015; Azevedo and

Leshno, 2016). Then, I study the best response dynamics when a different and random finite

market is sampled from a stationary continuum market each period and show that for each

period, the matching implemented in the finite random market under RBM converges to

the matching implemented in the continuum market as the finite market grows large. This

shows that the results are robust to uncertainty in large markets.

Related Literature. This paper contributes to the literature on school choice. Abdulka-

diroğlu and Sönmez (2003) formalize and study the Boston Mechanism and compare it with

its alternatives, DA and the Top Trading Cycles (TTC) mechanisms. The equilibria of

BM is characterized in Ergin and Sönmez (2006) and this characterization is extended to

unsophisticated students in Pathak and Sönmez (2008). Chen and Kesten (2017) charac-

terize a parametric family of mechanisms, the application-rejection assignment mechanisms,

where BM and DA constitute two limiting cases and empirically demonstrate that authori-

ties move away from BM towards stable mechanisms such as DA. Dur, Pathak, Song, and
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Sönmez (2022) study the assignment mechanism in Taiwan, which is a hybrid of BM and

DA. Akbarpour, Kapor, Neilson, van Dijk, and Zimmerman (2022) show that when students

have the same ordinal preferences and some have outside options, students with outside

options prefer manipulable BM to DA. Abdulkadiroğlu, Che, and Yasuda (2011) study BM

from an ex-ante perspective where students do not know their priorities and have identi-

cal ordinal preferences and show that the equilibria of BM generate higher ex-ante welfare

for each student than the dominant strategy outcome of DA. In a similar setting, Babaioff,

Gonczarowski, and Romm (2018) show that it is possible that non-trivial fraction of students

prefer to be sincere rather than strategic under BM.

Dur, Hammond, and Kesten (2021) study a related model where students sequentially

submit their preferences to BM and DA mechanisms and compare the efficiency of equilibria.

Most relatedly, they also consider a model where students can update their submitted pref-

erences as many times as they want and observe the latest submission of each student while

they are resubmitting their preferences. When all students rank the best achievable school

first, they show that this process converges to SOSM. My results complement their work by

considering a setting where students observe the last period’s cutoff scores and submit their

preferences once, rather than a setting where students can update their preferences observ-

ing what others have done. Thus, this paper manages to uncover the relationship between

repeated BM and DA, show that convergence may be attained under repeated application of

BM even if students submit preference once and demonstrate how convergence may depend

on the beliefs of students and their sophistication.

Zhang (2021) studies the equilibria of BM in a setting where students engage different

levels of strategic reasoning, using the level-k model. He defines Fast DA, a modified version

of DA that I refer as the Modified DA (MDA) in this paper, and shows that under certain

assumptions about students beliefs and common knowledge of preferences and priorities,

the matchings in the rounds of Fast DA are analogous to the equilibrium matchings under

corresponding levels of strategic reasoning. Proposition 1 in this paper is similar to his result

as I establish a similar relationship between the rounds of MDA and periods of the RBM,

extending the connection between DA and BM to best response dynamics.

This paper also builds on the empirical literature that study manipulable mechanisms,

and BM in particular. He (2015) examines choice data from Beijing where the Boston mech-

anism is used, and show that parents are overcautious and play safe strategies too often.

Agarwal and Somaini (2018) find evidence that students engage in strategic behavior under

BM. Song et al. (2020) analyze college admissions in China and find that equilibrium is not

being played. They show that two different types of behavioral students, unsophisticated

students who reveal their preferences truthfully and cautious students, who are pessimistic
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about their admission chances, make up a large portion of student populations. The ex-

tensions that show non-convergence to SOSM under unsophisticated or initially pessimistic

students are in line with their results. Kapor et al. (2020) demonstrates that students’ beliefs

about admissions chances differ from rational expectations values and affect their choices.

They evaluate the effects of switching to DA, and of improving households’ belief accuracy,

and find that both would improve welfare.

2. Model

Let I = {i1, ..., in} denote the set of students and C = {c1, ..., cm} denotes the set

of schools. Schools’ capacities are given by Q = {qc1 , ..., qcm}. Each student has a strict

preference over the set of schools and being unmatched, denoted by �I= (�i1 , ...,�in).3 Let

�i denote the “at least as good as” relation induced by �. Σ denotes the set of all strict

student preferences. Each student has score sc(i) ∈ [0, 1] in school c, where sc(i) 6= sc(j)

for all i, j and c. The scores of the lowest and highest scoring students in each school

are normalized to 0 and 1, respectively. Strict school priorities �C= (�c1 , ...,�cm) are

derived from scores by ranking students with respect to their scores. A market is a tuple

ω = {I, C,Q,�I ,�C}.
A matching is a function µ : I ∪C → 2I ∪C, where µ(i) ∈ C ∪{i} for all i ∈ I, µ(c) ⊆ I,

|µ(c)| ≤ qc, and µ(i) = c if and only if i ∈ µ(c). U is the set of all matchings. A matching µ is

blocked by student i and school c if i prefers c to µ(i) and either c prefers i to some i′ ∈ µ(c)

or |µ(c)| < qc. A matching µ is individually rational if µ(i) �i i for all i. A matching µ is

stable if it is individually rational and is not blocked.

A mechanism φ : Σ→ U produces a matching given preference reports from the students.

φ(σ) = µφ(σ, ·) for all σ ∈ Σ where µφ(σ, i) and µφ(σ, c) denote the school and the set of

students i and c are matched to under φ. Next, I describe the Deferred Acceptance and

Boston Mechanisms.

The Deferred Acceptance Mechanism (DA)

Step 1: Students apply to their first choice school. Schools reject the lowest-

ranking students in excess of their capacity. All other offers are held temporarily.

Step t: If a student is rejected in Step t− 1, he applies to the next school on his

rank-order list. If all remaining schools are below the outside option, he applies

nowhere. Schools consider both new offers and the offers held from previous

rounds. They reject the lowest ranked students in excess of their capacity. All

3Being unmatched is denoted by ik for student ik.
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other offers are held temporarily.

Stop: The algorithm stops when no rejections are issued. Each school is matched

to the students it is holding at the end.

The Boston Mechanism (BM)

Step 1: Students apply to their first choice school. Schools reject the lowest-

ranking students in excess of their capacity. All other offers are immediately

accepted and become permanent matches. School capacities are adjusted ac-

cordingly.

Step t: If a student is rejected in Step t− 1, he applies to the next school on his

rank-order list. If all remaining schools are below the outside option, he applies

nowhere. Schools reject the lowest ranked students in excess of their capacity.

All other offers become permanent matches. School capacities are adjusted ac-

cordingly.

Stop: The algorithm stops when no rejections are issued.

It is well known that DA is strategy proof (Dubins and Freedman, 1981; Roth, 1982), and

its outcome is the student optimal stable matching (SOSM), which is individually rational

and stable, but is not efficient for students. BM, on the other hand, is neither strategy proof

nor stable, but is efficient with respect to the submitted preferences.

To make the connection between DA and RBM clear, I consider the following slightly

modified version of DA, previously defined by Zhang (2021).

The Modified Deferred Acceptance Mechanism (MDA)

Step 1: Students apply to their first choice school. Schools reject the lowest-

ranking students in excess of their capacity. All other offers are held temporarily.

Step t: If a student is rejected in Step t− 1, he applies to the highest school on

his rank-order list within the schools that either (i) did not fill its capacity in the

last round or (ii) temporarily hold the offer of a student who has lower ranking

in that school. If there are no schools in his list that satisfies either (i) or (ii),

or that school is ranked below the outside option, he applies nowhere. Schools

consider both new offers and the offers held from previous rounds. They reject

the lowest ranked students in excess of their capacity. All other offers are held

temporarily.

Stop: The algorithm stops when no rejections are issued. Each school is matched

to the students it is holding at the end.

Under MDA, students skip applications to schools that already have enough applicants

to fill their capacity with more preferred students. MDA is useful in understanding the

6



relationship between DA, the student optimal stable matching and BM under repeated play.

The following lemma shows that this mechanism is equivalent to DA.

Lemma 1. Both DA and MDA terminate in finite time and yield the student optimal stable

matching.

3. Best Response Dynamics under Boston Mechanism

I now describe the setting for the repeated application of the Boston Mechanism. Time

is discrete and denoted by t ∈ N. These periods correspond to the consecutive years where

students are matched to schools. In each period, each student in I submits a ranking of

schools in C and being unmatched. A strategy σ ∈ Σ is a best response to σ−i under

mechanism φ if

µφ(σ, σ−i, i) �i µφ(σ′, σ−i, i) for all σ′ ∈ Σ (1)

While modelling the behavior of the students, it is not very realistic to consider a setting

where students best reply to the strategy used by other students in the previous period for

a couple of reasons. First, the strategy of all students is a high dimensional and complicated

object. Therefore, it is not feasible the school district to report this statistic and students

to process it to calculate their best responses. Second, disclosing the rank-order lists of the

students in previous years would be challenging for the school board from a legal perspective.

However, the cutoff scores of each school, which correspond to the score of the lowest scoring

student who is assigned to a school, is a much simpler object which is reported in various

settings.

I use Sc ∈ [0, 1] to denote the cutoff in school c, and S = {S1, . . . , Sn}. Let Sct (σ) denote

the score of the lowest scoring student who is assigned to school c in the first step of BM in

period t if the school fills its capacity in that step (set Sct (σ) = 0 otherwise). Moreover, let

St = {Sc1t , . . . , Scmt }. A strategy σ is compatible with a vector of cutoffs S if the cutoff scores

in the first step of BM under σ is S, that is St(σ) = S. Let S denote set of all cutoffs that

are compatible with at least one σ ∈ Σ. These are the cutoffs that might arise in the first

step of the implementation of BM. A school c is achievable for i at cutoffs S if sc(i) ≥ Sc.

Moreover, let FCi(S) denote the set of all strategies that (i) ranks the most preferred school

that is achievable at S as the first choice (if there is no achievable school, then students

rank their most preferred school first), (ii) ranks all schools preferred to being unmatched

above being unmatched and (iii) ranks all schools less preferred to being unmatched below

being unmatched. For the rest of the paper, I assume that φ is the Boston Mechanism and

suppress dependence on φ.

7



Lemma 2. If σi ∈ FCi(S), then it is a best response to all σ′ such that σ′ is compatible with

S.

This lemma shows that students do not need to observe σ−i to determine their best

response. Rather, observing S and determining the most preferred school that is achievable

under S, a simple exercise, is sufficient for a student to compute a best response.4 I study

the following best response process, which I call Repeated Boston Mechanism (RBM):

• In period 1, all students apply truthfully, σ1
i =�i. BM is used to determine the

allocation.

• In period t, all students choose a strategy σti ∈ FC(St−1). BM is used to determine

the allocation.

Let T denote the step where MDA terminates. We have the following result.

Proposition 1. The set of students who are accepted by school c in the first step of the

Boston Mechanism in period t of RBM is identical to the set of students who are tentatively

accepted by school c in step t of the MDA for all t ≤ T .

This proposition shows that there is a close connection between periods of RBM, where

students myopically best respond using information on the cutoffs from the previous period,

and the steps in MDA. To get intuition about the result, suppose that the result holds for

some t. If student i is tentatively accepted to school c at step t of MDA or applies to c in

step t + 1 of MDA, then that student has already either been rejected by or skipped more

preferred schools in previous rounds of MDA. Given that the result holds for period t, in

both cases, we know (i) the period t first step cutoffs of all schools that i prefers to c are

higher than i’s score at those schools and (ii) the period t first step cutoff of school c is lower

than i’s score at c. Therefore, i applies to c in step 1 of period t+ 1 of RBM. Thus, the set

of applicants for each school is identical in the first step of BM in period t+ 1 of RBM and

step t+ 1 of MDA, which means that the set of students who are accepted in the former and

tentatively accepted in the latter are the same. Moreover, Proposition 1 implies that in all

periods after T , the BM terminates at step 1 and the outcome is SOSM:

Theorem 1. The matching implemented in RBM converges in finitely many periods to the

student optimal stable matching.

4Some other strategies that does not rank the most preferred achievable school first might be best re-
sponses. However this is only possible if all schools ranked above the the most preferred achievable school
are not achievable and the most preferred achievable school has a cutoff of 0 under S.
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As BM is not strategy-proof, to make any predictions about its outcome, one needs to

study the equilibria of a preference revalation game where students submit their preferences

to the mechanism. Ergin and Sönmez (2006) show that the set of Nash equilibria under BM

correspond to the set of stable matchings and interpret their result as evidence in favor of

DA. First, the Pareto-dominant equilibrium of BM is SOSM, which is attained under the

DA when students report their preferences truthfully. Therefore, switching from the BM to

DA cannot harm any student, but can potentially improve the outcomes of some. Second,

as being truthful is a dominant strategy under DA, DA does not require the students to

strategic about their applications.

Theorem 1 complements Ergin and Sönmez (2006) by providing a foundation to their

analysis based on best response dynamics by showing that if BM is repeatedly used in the

same market, and students form their strategies by myopically best responding previous

period’s cutoffs, the implemented matching converges to a stable matching in finitely many

periods. Therefore, the set of equilibria characterized in Ergin and Sönmez (2006) can be

reached under best response dynamics with minimal information about play in the previous

period. Moreover, it selects SOSM as the equilibrium. Even though this result indicates the

BM would converge to its Pareto-dominant equilibrium, DA still has a couple of advantages

over BM. First, the convergence to SOSM is not immediate, while under DA it is reached in

the first period. Moreover, even after the convergence is reached, students still need to be

strategic about their applications in each period, while under DA they can rank the schools

truthfully.

The rest of the paper studies extensions of the model to analyze convergence of RBM

under different conditions.

Unsophisticated Students. Under RBM, all students play a best response to the previ-

ous period’s cutoffs. An important question is the following: what happens if some subset of

students are not able to play strategically, but report their preferences truthfully? Pathak

and Sönmez (2008) develop a framework to allow for unsophisticated students who report

their preferences truthfully, extending the analysis of Ergin and Sönmez (2006), while Song

et al. (2020) empirically demonstrate that a non-trivial fraction of students behave this way

under BM. In Section 4, I extend the analysis in this section by allowing some students to be

unsophisticated and show that RBM converges to the the Pareto-dominant equilibrium of

BM that Pathak and Sönmez (2008) characterize, providing foundation for their equilibrium

characterization as well as their focus on the Pareto-dominant equilibrium when analyzing

preferences of sophisticated students over these two mechanisms.
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First Period Behavior and Optimism. Under RBM, all students are truthful in the

first period. However, it still possible students are actually strategic in the initial period,

depending on their beliefs about their admission chances in different schools. In particular,

if students are best responding to some initial cutoffs, truthful revelation of preferences

correspond to a setting where they believe all schools are achievable, in other words, these

students are optimistic about their admission chances. In Section 5, I relax the assumption

of truthful revelation in the first period and show that if students are optimistic enough, then

RBM converges to SOSM, while if students are pessimistic (in particular, if they believe their

outcome under SOSM is not achievable), the implemented matching may not converge but

instead cycle between matchings that are Pareto-dominated by SOSM.

Large Random Markets. Under RBM, in each period, the preferences and scores of stu-

dents are the same, which is a reasonable assumption for large student assignment markets.

In Section 6, I first study a continuum matching model (Abdulkadiroğlu et al., 2015; Azevedo

and Leshno, 2016) and extend the results to that setting. Next, I study a setting where n

students are sampled independently from a given continuum market each period and prove

the convergence of RBM is obtained asymptotically (as n → ∞), showing that if a market

is large and stationary and students best respond to the previous period’s cutoffs, then the

implemented matching converges to the SOSM.

4. Sophisticated and Unsophisticated Students

The set of students is given by I = IS ∪ IU . If i ∈ Is, then in each period, i behaves

strategically as they did under RBM, while if i ∈ IU , then σti =�i, that is, students in IU

apply truthfully in every period. Following Pathak and Sönmez (2008), we refer to these

students as sophisticated and unsophisticated students, respectively.

Given a market ω = {IS, IU , C,Q,�I ,�C}, construct the augmented preferences �̃C
where each school c ranks students as follows

Rank all sophisticated students and unsophisticated students who ranks c first

according to �c
Rank all unsophisticated students who ranks c second according to �c
...

Rank all unsophisticated students who ranks c last according to �c

Under �̃C , unsophisticated students lose their priorities to sophisticated students in all

schools apart from the one they rank first. Pathak and Sönmez (2008) define the augmented
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market, ω̃ = {I, C,Q,�I , �̃C} and show that (i) the Nash equilibria of BM where unsophis-

ticated students mechanically submit their true preferences correspond to the set of stable

matchings of the augmented market ω̃ and (ii) the Pareto-dominant Nash equilibrium of

this game corresponds to the SOSM of the augmented market ω̃ and (iii) unsophisticated

students become better off if they become sophisticated. The following proposition shows

that RBM with unsophisticated students converges to the Pareto-dominant equilibrium of

BM.

Proposition 2. The matching implemented in RBM with unsophisticated students converges

in finitely many periods to the student optimal stable matching under the augmented market

ω̃.

Proposition 2 provides a foundation for the equilibria characterized in Pathak and Sönmez

(2008) based on best response dynamics. Moreover, Pathak and Sönmez (2008) also show

that sophisticated students prefer the Pareto-dominant equilibrium of BM to the dominant

strategy outcome under DA. This indicates that BM favors sophisticated parents if the

Pareto-dominant Nash equilibrium is played. Their result explains why some parents were

in favor of BM and provides formal support for Boston Public School’s position on changing

their student assignment system to level the playing field for students do not have resources

to be strategic about their applications.5 Proposition 2 complements their result by showing

that the Pareto-dominant equilibrium would be obtained under best response dynamics,

providing further justification for focusing on the Pareto-dominant equilibrium instead of

other equilibria, which may not be preferred by the sophisticated students.

5. Initial Conditions and First Period Play

In this section, I study how the outcome of RBM depends on the behavior in the initial

period, which turns out to be an important determinant of the convergence of RBM. Let

S0 denote the initial cutoffs to which students best reply in the first period of RBM. If

S0 = {0, . . . , 0}, then students are optimistic in the sense that they believe all schools are

achievable and in the first period and they rank first their most preferred school, in other

words, they are truthful. If initial cutoffs are higher, then some schools become unachievable

for some students, and students become more pessimistic about their admission chances in

5See Pathak and Sönmez (2008) for a detailed discussion of this topic. In particular, they note that the
BPS Strategic Planning Team recommended the implementation of a strategy-proof algorithm by saying:

A strategy-proof algorithm “levels the playing field” by diminishing the harm done to parents
who do not strategize or do not strategize well.
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the initial period. In particular, if the initial cutoffs are above the DA cutoffs, then there

are students who are pessimistic enough that they believe their match under SOSM is not

achievable. The following example shows that if the initial cutoffs are above the DA cutoffs

(denoted by SDA), then they may stay above the DA cutoffs in each period, which implies

that (i) the cutoffs and the matchings do not converge and (ii) the realized matchings are

Pareto dominated by SOSM.

Example 1. There are three schools with unit capacity and three students. The priorities

and preferences of students are as follows.

Students sc1 sc2 sc3 �

i1 3 1 2 c2 � c3 � c1

i2 2 3 1 c3 � c1 � c2

i3 1 2 3 c1 � c2 � c3

In the first step of DA and MDA, all students apply to their most preferred school and

are accepted. Thus both mechanisms terminate in the first period and the cutoffs are SDA =

{1, 1, 1}. However, the matchings where all students obtain their second choice and their

third choice are also stable, with cutoffs {2, 2, 2} and {3, 3, 3} respectively. Let S0 = {2, 1, 1}.
The following table shows the applications and cutoffs in the first step of first 4 periods of

RBM, as well as the implemented matching in each period.

Applications cutoffs Matching

c1 c2 c3 c1 c2 c3 c1 c2 c3

P1 i1, i3 i2 1 2 1 i1 i3 i2

P2 i3 i1, i2 1 1 2 i3 i2 i1

P3 i2, i3 i1 2 1 1 i2 i1 i3

P4 i1, i3 i2 1 2 1 i1 i3 i2

In the first step of the BM in the first period of RBM, i1 and i3 apply to c2 and i2 apply

to c3. The cutoffs for next period then becomes S1 = {1, 2, 1} and i3 applies to c1 while i1

and i2 apply to c3. This results in S2 = {1, 1, 2} and in the next period, i1 applies to c2

while i2 and i3 apply to c1, which results in the cutoffs S3 = {2, 1, 1}. Since S0 = S3, period

4 is identical to period 1, and the the matchings implemented under RBM cycles between

matchings implemented in periods 1, 2 and 3 without converging to a matching. In each

period, one student is assigned to her most preferred school, one student is assigned to her

second most preferred school while one student is assigned to her least preferred school. This

outcome is dominated by SOSM, which is attained under DA.

12



The close connection between MDA and RBM, and the fact that under MDA the cutoffs

are increasing and converges to SOSM cutoffs suggests that under RBM, if initial cutoffs are

below the DA cutoffs, then the convergence could be attained. The following example shows

that convergence may not be attained even in that case.

Example 2. There are two schools with unit capacity and five students. The preferences

and scores of the students are as follows.

Students sc1 sc2 �

i1 5 3 c2 �i c1

i2 3 5 c1 �i c2

i3 2 4 c1 �i c2

i4 0 1 c2 �i c1

i5 1 0 c2 �i c1

The applications and admissions in each step of MDA, as well as the realized cutoffs at

the end on each step are given in the following table:

Applications Cutoffs

c1 c2 c1 c2

S1 i2, i3, i5 i1, i4 2 2

S2 i2 i1, i3 2 3

S3 i1, i2 i3 4 2

S4 i1 i2, i3 4 4

S5 i1 i2 4 4

By Proposition 1, if S0 = (0, 0), then the students who are accepted by the schools in the

step 1 of first 5 periods of RBM are given by the table above. Moreover, in later periods, the

outcome is the same as the outcome of step 5. Suppose that S0 = (4, 2). RBM proceeds as

follows:

Applications Cutoffs

c1 c2 c1 c2

P1S1 i5 i1, i2, i3, i4 1 4

P2S1 i1, i2, i3, i5 i4 4 1

P3S1 i5 i1, i2, i3, i4 1 4
...

...
...

...
...
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Under initial cutoffs (4, 2), most students think that c2 is achievable, while c1 is not. They

apply to school c2, increasing its cutoff score, while decreasing the cutoff of c1. However,

both schools are unachievable for i4 and i5, who apply to their most preferred school and are

matched to that school in even and odd periods, respectively. Thus, the neither the cutoffs

nor the matchings under RBM converges to the SOSM, but cycles among matchings that are

not stable.

In Example 2, the cutoffs start below SDA and stay below SDA in all periods but do not

converge to SDA. Next proposition shows this result is true in general.

Proposition 3. If S0 ≤ SDA, then St ≤ SDA for all t. Therefore, St either converges to

SDA in finitely many periods, or cycles below SDA.

Thus, if students are optimistic enough that they believe their match under the student

optimal stable matching is achievable, then they believe this would be the case in all future

periods. Unlike Example 1, the reason of non-convergence is not that students do not apply

to the school they will receive in the SOSM, thinking it is unachievable. The convergence

does not happen because students may be optimistic in each period and believe that schools

more preferred to their match in SOSM are achievable, and never apply to that school.

Given my result on possible non-convergence of RBM, the next question is the efficiency

of the matchings that are implemented in a cycle. The matchings that constitute the cycle

in Example 2 neither Pareto dominate, nor are Pareto dominated by SOSM. Without any

restrictions on strategies, i.e., if students can submit any ranking which is a best response

to previous period’s cutoffs, a matching implemented in a cycle of RBM can also be Pareto

dominated by the SOSM, as students can be matched to suboptimal schools after the first

step in each period. However, if students preserve the relative ranking of schools conditional

on best replying, then this cannot happen. Formally, σi is an order-preserving best reply

to cutoffs S if σi ranks the most preferred achievable school first and preserves the relative

rankings of other schools (as well as the outside option) under �i.

Proposition 4. If S0 ≤ SDA and students’ strategies are order-preserving best replies, then

any matching implemented in an RBM cycle cannot be Pareto dominated by the SOSM.

The reason behind this result is that when students use order-preserving best replies, if

a student is matched to a school worse than their match under SOSM, then there must be

at least one student who has become strictly better off compared to SOSM. I now present

an example where all matchings in a cycle Pareto dominate SOSM.
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Example 3. There are four schools and five students. The preferences and scores of the

students are as follows.

Students sc1 sc2 sc3 sc4 � SOSM

i1 1 2 3 0 c1 �i c3 �i c2 c2

i2 3 1 0 0 c2 �i c1 c1

i3 0 0 2 3 c3 �i c4 c4

i4 0 0 4 2 c4 �i c3 c3

i5 2 0 1 1 c3 �i c4 �i c1 i5

SOSM is inefficient, as i1 and i2 as well as i3 and i4 can exchange their schools and become

better off. However, these exchanges are blocked by i5 and i1, respectively. Suppose that

S0 = (1, 1, 4, 1). RBM proceeds as follows:

Applications Cutoffs Matching

c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4

P1S1 i1 i2 ∅ i3, i4, i5 1 1 1 4 i1 i2 i4 i3

P2S1 i1 i2 i3, i4, i5 ∅ 1 1 4 1 i1 i2 i4 i3
...

...
...

...
...

...
...

...
...

...
...

...
...

As the cutoffs at the end of period 2 are identical to the initial cutoffs, St = (1, 1, 4, 1) for

odd t and St = (1, 1, 1, 4) for even t, while the same matching is implemented in each period.

In this matching, students i1 and i2 are strictly better off compared to SOSM, while all other

students get the same outcome.6 Thus, in each period of RBM, the implemented matching

Pareto dominates the student optimal stable matching.

The examples and propositions in this section show how convergence may not be attained

and how students may be worse or better off under BM. I now turn to the following question:

when does RBM converge to the student optimal stable matching? It turns out that MDA

is useful in understanding when convergence happens. Let S̃ct denote the score of the lowest

scoring student who is matched to school c in period t of MDA.7 As at each step of MDA, the

students who are tentatively admitted to any school apply to that school, the cutoffs under

MDA, S̃ct , are increasing in t. Intuitively, as the algorithm proceeds, each school replaces

6This more efficient matching is not stable, as i5 would block it. However, i5 applies to either c3 or c4 in
each period, and does not initiate a rejection cycle between i1, i2 and i5.

7I set S̃c0 = 0 as there are no student matched to any school at the start of the algorithm and S̃ct = 0 if c
has empty seats in step t.
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lower scoring tentatively admitted students with higher scoring ones and students move

towards less preferred schools. Therefore, S̃ct can be interpreted as an index of optimism

regarding a student’s admission chances at school c. A cutoff S0 is compatible with MDA

if there exists k such that for all c, Sc0 ∈ [S̃ck, S
c
k+1]. This means that the initial cutoffs of

all schools are between the cutoffs in steps k and k + 1 of MDA. The following proposition

extends the close connection between MDA and RBM to this setting.

Proposition 5. If S0 is compatible with MDA, RBM converges to student optimal stable

matching in finitely many periods.

To prove this result, I first show that if St is compatible with round k cutoffs of MDA,

then St+1 is compatible with round k + 1 cutoffs of MDA (Lemma 5). To see why, first

note that when the cutoffs of other schools are higher, more students (in set inclusion sense)

demand school c and next period cutoff of school c increase. Moreover, when other schools

cutoffs are exactly S̃−ck (regardless of school c’s cutoff, as long as it is compatible), next

period cutoff of c under RBM is S̃ck+1. Thus, whenever St is between S̃k and S̃k+1, then next

period cutoffs under RBM is between S̃k+1 and S̃k+2. As the cutoffs under MDA converges

to SDA in finitely many rounds, so does the cutoffs under RBM.

The main take-away from Proposition 5 is that, if students’ levels of optimism about

their admissions chances at different schools are similar in the sense that Sc0 ∈ [S̃ck, S̃
c
k+1] for

all c ∈ C for some k, then RBM converges to SOSM. Given S0, the students are optimistic

enough if S0 ≤ S̃1. As this implies compatibility, we have the following theorem:

Theorem 2. If students are optimistic enough, then RBM converges to the student optimal

stable matching in finitely many periods.

Theorem 2 reinterprets truthfulness in the first period of RBM as optimism regarding

admissions chances and further emphasizes the importance of beliefs of students over the

behavior of best response dynamics under BM.

Finally, I analyze a special case of the model to understand the reasons behind non-

convergence. Given {sc}c∈C, scores are common across schools if s(i) ≡ sc(i) = sc′(i) for all

i, c and c′.8 It is well known that when scores are common across schools, DA is equivalent to

the Serial Dictatorship Mechanism and both mechanisms return the unique stable matching

of the market.

Proposition 6. When scores are common across schools, then the cutoffs and the allocation

under RBM converges to SDA and the unique stable allocation in finitely many periods.

8Examples where this property holds include Taiwanese high school admissions (Dur et al., 2022), Chicago
Public schools (Dur, Pathak, and Sönmez, 2020) and Turkish high school admissions.
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This proposition shows that the non-convergence is due to heterogeneity of scores between

schools. This heterogeneity can create cycles where students remain pessimistic and do not

apply to the schools that are attainable in the stable matching (Example 1) or remain

optimistic and they keep applying to schools that are not attainable in the stable matching

(Example 2). The proof of the proposition shows that once a student gets their stable

matching in a period, they will be matched to that school in every other period and in

each period, at least one additional student will be matched to their school under the stable

matching. Therefore, when the scores are common across schools, such cycles cannot exist.

Sections 4 and 5 highlight the limitations of Theorem 1. First, if some students do

not behave strategically, then RBM does not converge to SOSM. Second, students’ initial

beliefs are important and RBM may not converge to SOSM if they are initially pessimistic.

Moreover, even if convergence eventually happens, it is not immediate and may take time.

These results are in line with the empirical observations of non-equilibrium behavior in BM

such as truthful reporting of preferences and overcautious strategies (Song et al., 2020).

6. Large Random Markets

Under RBM, the same market is repeated in every period. In this section, I analyze

the robustness of the results to this assumption by building a large market model. First, I

consider a continuum matching model based on Abdulkadiroğlu et al. (2015) and Azevedo

and Leshno (2016). Second, I consider the setting where in each period, n students from the

continuum market are randomly drawn and matched using BM. I show that the results about

convergence of RBM to SOSM continue to hold in the first case and hold asymptotically (as

n→∞) in the second case.

6.1. Continuum Markets

There are a finite set of schools, denoted by C = {c0, c1, . . . , cn} and a unit measure of

students, where c0 is a dummy school which denotes being unmatched. Let θ = (�θ, {sθc}c∈C)
denote the type of a student whose preferences over the set of schools is �θ and has score

sθc ∈ [0, 1] in school c. The set of student types is denoted by Θ, over which there is a

probability measure η, which admits a full support density.9 Q = (q0, q1 . . . , qn) denotes the

capacities of schools. There are no capacity constraints for being unmatched, that is, q0 ≥ 1.

A matching in this environment is a function µ : C∪Θ→ 2Θ∪C where µ(θ) ∈ C is the school

any type θ is assigned and µ(c) ⊆ Θ is the set of students assigned to authority c such that

9Formally, the score distribution of students with each preference profile � has a full support density.
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no school is assigned to a measure of students larger than its capacity.10

A student-school pair (θ, c) blocks a matching µ if the student prefers c to its match and

either school c does not fill its quota or school c is matched to another student who has a

strictly lower score than θ. Formally, (θ, c) blocks µ if c �θ µ(θ) and either η(µ(c)) < qc

or there exists θ′ ∈ µ(c) with sθ
′
c < sθc . A matching µ is stable if it is not blocked by any

student-school pair.

Stable matchings can be represented by cutoffs for n non-dummy schools.11 For each

S ∈ [0, 1]n, D̃θ(S) denotes the demand of student θ at S, which is the most preferred school

such that θ clears its threshold. D̃c(S) denotes the set of students who demand c. Given

S, define the assignment M(S) = ν induced by S as ν(θ) = D̃θ(S). An assignment ν is a

matching if η(D̃c(S)) ≤ qc for all c.

The definitions of the mechanisms are almost identical previous definitions, with the

appropriate changes to adapt them to the continuum model. The formal definitions are pro-

vided in Appendix B. As η has full support, there is a unique stable matching in this market

(Theorem 1 in Azevedo and Leshno (2016)). Moreover, this matching can be represented

by a set of cutoffs (SDA) where each student θ is matched to D̃θ(SDA). As in Section 2, S̃ct

denotes the step t cutoffs in the MDA mechanism. The following proposition shows that

MDA implements the stable matching.

Proposition 7. S̃t converges to SDA. The offers each school hold in step t of MDA converge

to the unique stable matching as t→∞.

The main difference of this result from the convergence results in finite markets is the

fact that convergence may not happen in finitely many rounds when there is a continuum

of students. Although the measure of students who are rejected in each step of MDA (and

also, DA) converges to 0, it is possible that a positive measure of students are rejected in

each step.12

Let R0 denote the initial cutoffs that students best respond in the initial period of RBM,

while Rt denote the step 1 cutoffs in the period t of RBM. We can extend Proposition 5 and

Theorem 2 to the continuum setting.

Proposition 8. If R0 is compatible with MDA, then RBM converges to SOSM.

10The mathematical definition of a matching for the continuum market we study follows Azevedo and
Leshno (2016) and requires that µ satisfies the following four properties: (i) for all θ ∈ Θ, µ(θ) ∈ C; (ii) for
all c ∈ C, µ(c) ⊆ Θ is measurable and η(µ(c)) ≤ qc; (iii) c = µ(θ) iff θ ∈ µ(c); (iv) (open on the right) for
any c ∈ C, the set θ ∈ Θ : c �θ µ(θ) is open.

11The cutoff for c0 is always 0 as the outside option of being unmatched is always available.
12See Azevedo and Leshno (2016) for an example.
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Theorem 3. If students are optimistic enough at R0, then allocation under RBM converges

to the unique stable matching.

These results serve two purposes. First, they show that the convergence properties of

RBM are also true in continuum markets. Second, and more importantly, they are useful in

proving the convergence in finite large markets drawn from a stationary distribution, showing

the assumption that the repetition of the same market is not necessary in large markets.

6.2. Large Random Markets

To extend the results to large finite markets sampled from a continuum market, I first

define finite markets in the continuum setting following Azevedo and Leshno (2016). A finite

market F = [Θ̃, Q̃] specifies a finite set of students Θ̃ ⊂ Θ and an integer vector of capacities

q̃c > 0, where q̃c0 ≥ |Θ̃|. A matching for a finite market is a function µ̃ : C ∪ Θ → 2Θ ∪ C
such that (i) for all θ ∈ Θ̃, µ̃(θ) ∈ C, (ii) for all c ∈ C, µ̃(c) ∈ 2Θ̃ and |µ̃(c)| ≥ Q̃c and (iii)

for all θ ∈ Θ̃ and c ∈ C, µ̃(θ) = c iff θ ∈ µ̃(c). The definition of blocking pairs, as well as the

definition of stability is the same as in Section 6.1. A finite market F = [Θ̃, Q̃] is associated

with the following empirical distribution of types

η =
∑
θ∈Θ̃

1

|Θ̃|
δθ

where δθ denotes the probability distribution that places probability one on the point θ. The

supply of seats per student is given by Q = Q̃/|Θ̃|. Either [Θ̃, Q̃] or [η,Q] uniquely determine

a discrete market F .13 Fix a continuum market with full support, (η,Q). (η,Q) has a unique

stable matching µ with cutoffs SDA ∈ [0, 1]C. To remove any confusion, I use R̃t to denote

the first step cutoffs of BM in period t. R̃0 denotes the initial cutoffs.

I study the following repeated implementation of BM where k students are drawn from

the continuum market (η,Q):

• In period 1, k students are independently and randomly drawn from η and the vector

of capacities is Q̃ = Qk. All students choose a strategy that is a best response to the

R̃0. BM is used to determine the allocation and R̃1 denotes the first step cutoffs in the

BM.

• In period t, k students are independently and randomly drawn from η and the vector

of capacities is Q̃ = Qk. All students choose a strategy that is a best response to the

R̃t−1. The BM is used to determine the allocation and R̃t denotes the first step cutoffs

in the BM.
13To see why, note that Θ̃ = support(η) and Q̃ = Q|Θ̃|.
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For a given k, the period t cutoffs of RBM, R̃t(k) is a random variable distributed in

[0, 1]C and its realization depends on the previous period’s cutoffs as well as the random

market drawn from the distribution. The following proposition shows that the behavior

of RBM in random finite markets converges to its behavior in the continuum market the

random markets are sampled from.

Proposition 9. Suppose that R0 = R̃0. Then limk→∞ R̃t(k) converges in probability to Rt.

If R̃0 is compatible with MDA, then limt→∞ limk→∞ R̃t(k) converges in probability to SDA.

Given Proposition 9 and Theorem 3, we conclude that RBM converges to the unique

stable matching in large random markets.

Theorem 4. If students are optimistic enough, then the matching implemented in period t

of RBM converges to the unique SOSM of the continuum market as the market grows large

and t→∞.

This theorem shows that repetition of the same market is not necessary for the result.

In large markets with a stationary distribution of students and scores across periods, the

the cutoffs and the allocation in period t of RBM converges to the cutoffs and tentative

allocation in step t of MDA, which converges to the unique stable matching of the continuum

market. Therefore, it is reasonable to expect that if BM is used in a market and students get

can obtain information about previous periods, then the outcome converges to the student

optimal stable matching.

7. Conclusion

This paper studies best response dynamics under repeated application of the Boston

Mechanism. When students best respond to the admission cutoffs in the previous period

(with the exception of the initial period, where they are truthful), the implemented matching

converges to the student optimal stable matching, which is the Pareto-dominant equilibrium

of the Boston Mechanism and dominant strategy outcome of the competing Deferred Ac-

ceptance Mechanism. This result provides a foundation for the equilibrium analysis of the

Boston Mechanism based on best response dynamics. Extending the model to include un-

sophsiticated students who always apply truthfully and allow for student’s initial beliefs to

determine their first period behavior, I show how the student optimal stable matching may

not be reached if some students cannot strategize or are initially pessimistic about their

admissions chances.
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Appendices

A. Proofs for Discrete Markets

A.1. Proof of Lemma 1

First, a stable allocation exists and is implemented by DA by Gale and Shapley (1962).

The proof follows the proof of stability of DA in Gale and Shapley (1962) with a minor

modification for the possibility of skipping schools under MDA. A school c is “possible” for

a student i if there exists a stable matching where i is matched to c. Assume that up to a

given step of MDA, no student has been rejected by, or skips a school that is possible for

him and let i denote the first student for which this happens. First, assume that i is rejected

by or has skipped c. Then there exists set of students Ic who are accepted in that step and

note that, all i′ ∈ Ic has higher scores than i. We will show that c is not a possible school for

i. For a contradiction, assume that c is possible for i. Then there exists a stable matching

µ such that µ(i) = c. However, this means that there exists a student i′ ∈ Ic such that

c �i′ µ(i′), since i′ cannot match any school it prefers to c as all schools i′ is rejected by or

skipped in the previous steps of MDA are impossible schools for i′. However, this contradicts

that µ is a stable matching and therefore c is not possible for i. Since there are finitely many

students and schools, and students never apply to same school twice after being rejected,

both mechanisms terminate in finite time.

A.2. Proof of Lemma 2

If c′ is not an achievable school at S, then in all σ that is compatible with S, there exists

qc students who have a higher score than Sc
′

puts c′ as their first choice. Therefore, under

any σi, i is rejected by c′ in any step it applied to it in Boston Mechanism. Moreover, since

c is achievable, we have that Sc ≤ s(i, c), which means that there are at most qc − 1 other

students who rank c first and have higher scores than i. Therefore, i is accepted by c in step

1 of the Boston Mechanism. Since c is the most preferred school i can be matched under all

σ−i that is compatible with S, and any σi ∈ FCi(S) guarantees that i is matched to c, all

such strategies are best responses.

A.3. Proof of Proposition 1

The proof is by induction. First, observe that in the first step of MDA and first step

of BM in the first round of RBM, all students apply to the highest ranked school in their

21



preferences and all schools admit qc highest scoring applicants. Therefore, for all schools,

the set of students who apply and the set of students who are accepted are exactly the same.

Now, assume that for all k ≤ k̂, in the kth step of MDA and in first step of BM in the kth

round of RBM, the set of students who apply (for MDA, this also includes the students who

are tentatively assigned) and the set of students who are accepted are exactly the same. Let

Sck denote the score of the lowest scoring student who is tentatively assigned to school c at

the end of kth step of MDA. We now show a useful lemma.

Lemma 3. Sck is increasing in k.

Proof. Note that all students who are tentatively assigned to c at round k applies to c in

round k + 1. Therefore, either all these students are still tentatively assigned to c at round

k+ 1 or lowest scoring l students are replaced with higher scoring l students for some l ≥ 1.

In the first case, Sck = Sck+1 while in the second case, Sck < Sck+1, which proves the result.

We will show that if student i either (1) is tentatively assigned to school c in step k or

(2) applies to school c in step k + 1 of MDA, then i applies to c in the first step of k + 1th

round of RBM. Assume c′ �i c. Then in a previous step of MDA (say, step l) i either was

rejected by school c or skipped school c. In both cases, we have that Scl > s(i, c′). Then as

k > l, by lemma 3, s(i, c′) ≥ Sc
′

k , which means that any such c′ that is preferred to c has a

cutoff above s(i, c′). Moreover, since i is assign to c in step k of MDA or applies to school c

in step k + 1 of MDA, we have that s(i, c) ≥ Sck, which proves that c is the most preferred

achievable school at Sk. Therefore, i applies to c in the first step of k + 1th round of RBM.

Since this is true for all i ∈ I, the set of applicants to each school is same under the kth

step of MDA and in first step of BM in the kth round of RBM. As a result, if i is tentatively

accepted to c in k + 1th step of MDA, it is accepted to c in the first step of BM in the kth

round of RBM, which finishes the induction argument.

A.4. Proof of Proposition 2

I first define another market, ω′, where if i ∈ IU , then �′i has only the first choice of i

as an acceptable school. The rest of the market is the same. I will compare two cases, the

outcome of RBM under ω′ where all students are sophisticated and the outcome of RBM

under ω where students in IU always apply truthfully.

Claim 1. The first round outcome of RBM under ω′ (where all students are sophisticated)

and the first round outcome of RBM (with unsophisticated students) under ω is same in

every period.
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Proof. The proof is by induction. First, note that as in both cases first period applications

are truthful for all students and first choice of all students are same in both cases, the

applications in the first round of first period are the same. This implies that the set of

admitted students, and first round cutoffs are the same.

To prove the induction step, suppose that first round cutoffs in period t in both settings

are the same. Then all sophisticated students (i ∈ IS) apply to the same school in both

cases. Moreover, all unsophisticated students (i ∈ IU) apply to the same school in both

cases as the top school for i under �i is the only acceptable school for i under �′i. Thus, the

set of admitted students are the same in each school and the realized first round cutoffs are

also same. Therefore, in each period, the outcome of both procedures are the same.

As by Theorem 1, the first round outcome of RBM under ω′ converges in finitely many

periods, the first round outcome of RBM under ω with unsophisticated students also con-

verges to the same outcome in the same period. Let µ̂ denote the matching that is realized

in the first round after convergence, which is the student optimal stable matching under ω′,

by Theorem 1. Moreover, given this, in each period after convergence of the first round,

the remaining rounds of the Boston Mechanism is the same and yields the same matching,

which I denote by µ∗. Let Î denote the set of all sophisticated students and unsophisticated

students who are matched to a school in µ̂. Note that if i ∈ Î, then, µ̂(i) = µ∗(i). Let µ

denote the student optimal stable matching under ω̃.

Claim 2. All students in Î are weakly better off under m̂u compared to µ.

Proof. If i ∈ IS, then the result follows as under ω̃, all students in IU extend preferences. If

i ∈ IU , they are already matched to their top choice in µ̂, and therefore is weakly worse off

under µ.

Thus, if i ∈ Î, then i is better off under µ∗ compared to µ.

Claim 3. µ∗ is stable under the market ω̃.

Proof. Assume for a contradiction i blocks µ∗ at c under ω̃. First, this means that c is

acceptable to i. Then, c fills its quota as otherwise, i would either apply to c and get

admitted or would be admitted to a more preferred school, contradicting that i blocks µ∗ at

c. Therefore, there exists i′ ∈ µ∗(c) such that i �c i′.
First, suppose that, i ∈ Î. Then there are two cases, (i) i′ ∈ Î or (ii) i′ 6∈ Î. Under (i), as

if i ∈ Î, then, µ̂(i) = µ∗(i), this blocking pair also blocks µ̂, which is a contradiction. Under

(ii), since i′ 6∈ Î, c does not fill its quota in round 1, which would contradict convergence to

µ∗ as c �i µ∗(i).
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Second, suppose that, i 6∈ Î. This means that i′ 6∈ Î and either (i) i′ ranks c lower than

i or (i) i′ ranks c at the same spot as i and has higher score in c. In both cases, i would be

accepted to c or a more preferred school if i′ is accepted to c, which is a contradiction.

As µ is the student optimal stable matching under ω̃, from Claim 3, all students are

weakly better off under µ compared to µ∗. Then Claim 2 imply that all students in Î are

matched to exactly same schools in µ and µ∗. The following claim completes the proof.

Claim 4. If i 6∈ Î, then µ∗(i) = µ(i).

Proof. Let Ĩ denote the set of students such that µ∗(i) 6= µ(i). Note that any i ∈ Ĩ applies

to µ(i) and is rejected during the implementation of the Boston Mechanism in periods after

convergence is achieved.

Let i denote a student that is rejected from µ(i) in the earliest round k during the

implementation of the Boston Mechanism in periods after convergence is achieved (if there

are multiple students rejected in this earliest round, i can be any of those students).

Since i is rejected, there must be another student, i′ such that µ∗(i′) 6= µ(i′) and i′ is

accepted to µ(i) before or at round k. Also note that µ∗(i′) 6= µ(i′) implies that i 6∈ Î, and

therefore is an unsophisticated student. Moreover, as µ∗(i′) 6= µ(i′), and i′ has not been

rejected from µ(i′) yet, which means that i′ prefers µ∗(i′) to µ(i′), which contradicts that µ

is the student optimal stable matching and completes the proof of the claim.

A.5. Preliminaries for Discrete Markets

First, I will define some notation. Let S̃t denote the step t cutoffs under MDA. Let Bi(S)

denote the budget set of student i under cutoffs i. Formally, Bi(S) = {c ∈ C : si(c) ≥ Sc}.
Di(S) denotes the demanded school of student i, which is the Pi-maximal school in Bi(S).14

Dc(S) denotes the demand set of a school, which is the set of students who demand that

school under S. Formally, Dc(S) = {i : Di(S) = c}. Let Uc(ŝ) denote the set of students

who score higher than ŝ in school c, Uc(ŝ) = {i : si(c) ≥ ŝ}. Moreover, let Tc(S) denote the

first step cutoffs under Boston Mechanism when students apply according to S. Formally,

Tc(S) =

0 if |Dc(S)| < qc

min{s:∃i∈Dc(S) s.t. sc(i)=s} |Dc(S) ∩ Uc(s)| = qc if |Dc(S)| ≥ qc
(2)

Moreover, define T =
∏n

j=1 Tj, where T : [0, 1]→ [0, 1].

Claim 5. Dc(S
c, S−c) is increasing (in set inclusion sense) in S−c and decreasing in Sc.

14If Bi(S) = ∅, then Di(S) is the most preferred school of i.
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Proof. To prove the first part, take i ∈ Dc(S
c, S−c). Let Ŝ−c ≥ S−c. Then Bi(S

c, Ŝ−c) ⊆
Bi(S

c, S−c). As i ∈ Dc(S), c is maximal in Bi(S), which implies that c is maximal in

Bi(S
c, Ŝ−c). Thus, i ∈ Dc(S

c, Ŝ−c), proving the first part.

To prove the second part, take i ∈ Dc(S
c, S−c). Let Ŝc ≤ Sc. Bi(Ŝ

c, S−c) \ {c} =

Bi(S
c, S−c) \ {c} as the cutoffs of all other schools are the same. As i ∈ Dc(S

c, S−c) and

Ŝc ≤ Sc, we have that c ∈ Bi(Ŝ
c, S−c), proving the second part.

Claim 6. Tc(S) is increasing in S−c, decreasing in Sc.

Proof. Suppose that Ŝ−c ≥ S−c. From Claim 5, Dc(S
c, S−c) ⊆ Dc(S

c, Ŝ−c), which implies

that Dc(S
c, S−c) ∩ U(Sc) ⊆ Dc(S

c, Ŝ−c) ∩ U(Sc). The first part of the result then follows

from the definition of Tc. Similarly, suppose that Ŝc ≤ Sc. From Claim 5, Dc(S
c, S−c) ⊆

Dc(Ŝ
c, S−c), which implies that Dc(Ŝ

c, S−c)∩U(Ŝc) ⊆ Dc(S
c, S−c)∩U(Sc). The second part

of the result then follows from the definition of Tc.

Lemma 4. SDA is a fixed point of T .

Proof. Let µ denote the student optimal stable matching. Note that as SDA is the stable

matching cutoff, if µ(i) = c, then i ∈ Dc(SDA). To see why, suppose that, for a contradiction,

i ∈ Dc′(SDA). If sc′(i) ≥ Sc
′
DA, then i and c′ block µ, which is a contradiction. If sc′(i) < Sc

′
DA,

this means that c is not acceptable to i, which contradicts the stability of µ.

Next, suppose that c fills its quota in the student optimal stable matching and let j denote

the lowest scoring student who is matched to c at µ. Note that Dc(SDA ∩ Uc(SDA)) = µ(c).

If Tc(SDA) < ScDA, then from definition of Tc, there exists a student j′ ∈ Dc(SDA) such that

sc(j) = Tc(SDA). However, this is a contradiction as |DSDA∩Uc(Tc(SDA)| > qc, as it includes

j′ and all qc students who are matched to c at µ. Conversely, if Tc(SDA) > ScDA, then

|Dc(SDA ∩ Uc(Tc(SDA))| < qc as j 6∈ Uc(SDA), which is a contradiction.

Finally suppose that c does not fill its quota in the student optimal stable matching,

which means that ScDA = 0. Moreover, from stability of µ, |Dc(SDA)| < qc, which means

that Tc(SDA) = 0, proving the result.

A.6. Proof of Proposition 3

Fix an Ŝt such that Ŝt ≤ SDA. Define St by setting Sct = ScDA and S−ct = Ŝ−ct . Let

D(S) = {i : i ∈ Dc(St) sc(i) ≥ ScDA}. From Lemma 4, Tc(SDA) = ScDA. Then by Claim 6,

we have Tc(S) ≤ ScDA. Therefore, there are at most qc students who has scores above ScDA
demand c, that is, |D(St)| ≤ qc. Moreover, if i ∈ D(Ŝt) but i 6∈ D(St), then sc(i) ≤ Sct ≤ ScDA.

Thus, |D(Ŝt)| ≤ qc, which implies Tc(Ŝt) ≤ SDA, proving the result.
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A.7. Proof of Proposition 4

Suppose that µ is in a cycle and is Pareto dominated by the SOSM, denoted by µ∗.

Suppose that µ appears in round t + 1, that is, following the cutoffs St. First, note that

St ≤ SDA. Therefore, in the first step of BM in period t of RBM, all students apply to a

school that they weakly prefer to their match in the µ∗. Thus, at the end of first step, all

students who are matched to a school are weakly better off compared to µ∗. As µ∗ Pareto

dominates µ, all such students are matched to the school they match at µ∗.

Suppose that k is the first step in the period t of RBM such that a student is matched

to a school which is less preferred than her match under µ∗, or does not have any school to

apply even though she is matched to a school at µ∗. Denote this student by i. Note that

this is only possible if µ∗(i) has exhausted its capacity in the previous step. This means that

there exists a student i′ such that µ∗(i′) 6= µ∗(i), but i′ is matched to µ∗(i) in a previous

step. However, as no student has received a match that is less preferred to their match

under µ∗ at any previous step, i′ must be strictly better off under µ compare to µ∗, which is

a contradiction.

A.8. Proof of Proposition 5

I first prove a few useful results.

Claim 7. Tc(S̃t) = S̃ct+1

Proof. Immediate from the fact that the set of students who apply to c in step t+ 1 of MDA

is Dc(S).

Claim 8. If Tc(S
c, S−c) = Ŝc and Ŝc ≥ Sc, then Tc(s, S

−c) = Ŝc for all s ≤ Ŝc.

Proof. If Ŝc = 0, then the result is immediate as s = Ŝc. Suppose that Ŝc > 0. Then

|Dc(S
c, S−c)∩U(Ŝc)| = qc. Then, Tc(Ŝ

c, S−c) = Ŝc. Thus, from Claim 6, Tc(s, S
−c) ≤ Ŝc for

all s ≤ Ŝc. Moreover, observe that for all s ≤ Ŝc, Dc(Ŝ
c, S−c)∩U(Ŝc) = Dc(s, S

−c)∩U(Ŝc),

which means that there are qc students who demand c at cutoffs s, S−c with scores over Ŝc.

Therefore, Tc(s, S
−c) = Tc(ŝ, S

−c).

Now, assume that Sk ∈ [S̃t, S̃t+1]. We have the following claim.

Claim 9. Tc(Sk) ≤ S̃ct+2.

Proof. From Claim 7, Tc(S̃
c
t+1, S̃

−c
t+1) = S̃ct+2. From Claim 8, as S̃ct+2 ≥ S̃ct+1, we have that

Tc(S
c
k, S

−c
k ) = Tc(S̃

c
t+1, S̃

−c
t+1). Moreover, as S−ck ≤ S̃−ct+1, from Claim 6, we have that

Tc(S
c
k, S

−c
k ) ≤ Tc(S

c
k, S̃

−c
t+1) = Tc(S̃t+1) = S̃ct+2 (3)
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Claim 10. Tc(Sk) ≥ S̃ct+1.

Proof. From Claim 7, Tc(S̃
c
t , S̃

−c
t ) = S̃ct+1. From Claim 8, as S̃ct+1 ≥ Sck, Tc(S

c
k, S̃

−c
t ) = S̃ct+1.

Moreover, as S−ck ≥ S̃−ct , from Claim 6, we have that

Tc(S
c
k, S

−c
k ) ≥ Tc(S

c
k, S̃

−c
t ) = S̃ct+1 (4)

The following Lemma is immediate from Claims 9 and 10.

Lemma 5. If Sk is compatible with step t cutoffs of MDA, then Sk+1 is compatible with step

t+ 1 cutoffs of MDA

Given the lemma, the proposition follows from the fact that MDA converges to the

student optimal stable matching in finitely many steps (Proposition 1 and Theorem 1).

A.9. Proof of Proposition 6

The proof is by induction. First, note that in the first period, regardless of S0, the

highest scoring student applies to her most preferred school and is accepted. Note that this

school is the student’s assignment under the serial dictatorship (and therefore, the deferred

acceptance) mechanism. Let µS denote the serial dictatorship outcome.

Let It denote highest scoring t students. Now suppose that at period t, all students in It

are assigned to their match under the serial dictatorship mechanism at the first round of the

Boston Mechanism. I will show that in period t+ 1, all students in It+1 are assigned to their

match under the serial dictatorship mechanism at the first round of the Boston Mechanism.

First, note that in the first round of period t + 1, if i ∈ It, then i applies to µS(i) as µS(i)

is attainable under St and all schools more preferred to µS(i) are not attainable under St.

Moreover, all such i are admitted.

Next, let j denote the student with t + 1th highest score. As c ≡ µS(j) is the school

of j under serial dictatorship and all higher scoring students are assigned to their serial

dictatorship outcome at round t, Sct ≤ s(i). Moreover, for any school c′ that j prefers to

c, Sc
′
t > s(i) as otherwise, i would be matched to c′ under serial dictatorship. Therefore,

j applies to c. Moreover, as all students in It are assigned to their match under serial

dictatorship in the first round of period t + 1, j is admitted to c in the first round of

period t + 1 as otherwise, j must be rejected in favor of a lower scoring student, which is a

contradiction. This proves the result as the set of students are finite.
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B. Proofs for Large Markets

B.1. Preliminaries for Continuum Markets

The Boston Mechanism (BM) - Continuum Market

Step 1: Students apply to their first choice school. Each school c admits all

students over some cutoff Sc, where Sc is the infimum over all cutoffs where the

school c does not exceed its capacity. All other offers are immediately accepted

and become permanent matches. School capacities are adjusted accordingly.

Step t: If a student is rejected in Step t − 1, he applies to the next school on

his rank-order list. If he has no more schools on his list, he applies nowhere.

Each school c admits all students over some cutoff Sc, where Sc is the infimum

over all cutoffs where the school c does not exceed its capacity. All other offers

become permanent matches. School capacities are adjusted accordingly. Stop:

The algorithm stops when no rejections are issued.

Note that Boston Mechanism terminates in at most |C| rounds, as all students are either

permanently matched or have run out of schools to apply.

The Modified Deferred Acceptance Mechanism (MDA) - Continuum

Market

Step 1: Students apply to their first choice school. Each school c tentatively

admits all students over some cutoff Sc, where Sc is the infimum over all cutoffs

where the school c does not exceed its capacity. Schools reject all students who

are not tentatively accepted.

Step t: If a student is rejected in Step t− 1, he applies to the highest school on

his rank-order list within the schools that either (i) did not fill its capacity in the

last round or (ii) temporarily hold the offer of a student who has lower ranking

in that school. If there are no schools in his list that satisfies either (i) or (ii),

or that school is ranked below the outside option, he applies nowhere. Schools

consider both new offers and the offers held from previous rounds and tentatively

admits all students over some cutoff Sc, where Sc is the infimum over all cutoffs

where the school c does not exceed its capacity. Schools reject all students who

are not tentatively accepted.

Stop: The algorithm stops when no rejections are issued. Each school is matched

to the students it is holding at the end.

Let S̃n denote the cutoffs in step n of the MDA mechanism. I now define a useful function

that maps a distribution of types, capacities and cutoffs to a new set of cutoffs after one
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round of admissions. As in the finite market model, Bθ(S) denotes the budget set of student

θ while Dθ(S) denote the demand of student θ. Dc(S) = {θ : Dθ(S) = c} is the demand set

of school c and Uc(s) return the students with scores higher than s at school c.

Hc(S) = min
ŝ∈[0,1]

|Dc(S) ∩ Uc(ŝ)| ≤ qc (5)

where the minimum exists as η has full support. Let H(S) = {Hc1(S), . . . , Hcn(S)}. The

following claim is immediate from the definition of MDA.

Claim 11. Hn(0, . . . , 0) = S̃n. That is, starting with zero cutoffs in all schools and applying

T n times gives the cutoffs in step n of MDA.

Let Θ̃ε
S = {θ : sc(θ) ∈ Bε(Sc) for some c}, where Bε(Sc) is the ε neighborhood around Sc.

Let d denote the euclidean distance. The following lemma is useful in showing the continuity

of T .

Claim 12. For each θ 6∈ Θ̃0
S, if d(S, Ŝ) < minc |sc(θ)− Sc|, then Dθ(Ŝ) = Dθ(S).

Proof. As θ 6∈ Θ̃0
S, δ̂ ≡ minc |sc(θ) − Sc| > 0. Moreover, for all Ŝ such that d(S, Ŝ) < δ̂,

Bθ(Ŝ) = Bθ(S). As students demand the same school when their budget set is the the same,

Dθ(Ŝ) = Dθ(S), proving the claim.

Claim 13. For each ε > 0, there exists αε such that η(Θ̃α
S) < ε for all α ≤ αε.

Proof. Immediate from the fact that η has no mass points and admits a density.

Lemma 6. Hc(S) is continuous in S.

Proof. Let DD(S, Ŝ) = {θ : Dθ(S) 6= Dθ(Ŝ)} denote the set of students whose demanded

school is different under S and Ŝ. Note that by Claim 12, DD(S, Ŝ) ⊆ Θ̃α
S for α = d(S, Ŝ).

Claim 14. Fix S and let η̄ > 0. There exists δη̄ such that if d(S, Ŝ) < δη̄, then η(DD(S, Ŝ)) <

η̄.

Proof. From Claim 13, there exists αη̄ such that η(Θ̃
αη̄
s ) < η̄ for all α < αη̄. From Claim

12, for all θ 6∈ Θ̃
αη̄
S , Dθ(S) = Dθ(Ŝ) for all Ŝ with d(S, Ŝ) < αη̄. As DD(S, Ŝ) ⊆ Θ̃

αη̄
S for

all Ŝ with d(S, Ŝ) < αη̄ and η(Θ̃
αη̄
S ) < η̄, we have that η(DD(S, Ŝ)) < η̄ for all Ŝ with

d(S, Ŝ) < αη̄, proving the claim.

To prove the lemma, let ε > 0 be given and fix S. Define

Θε↓ = {θ : sc(θ) ∈ (Hc(S)− ε,Hc(S)), c �θ c0 �θ c′ for all c′ 6∈ {c, c0}} (6)
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Θε↑ = {θ : sc(θ) ∈ (Hc(S) + ε/2, Hc(S) + ε), c �θ c′ for all c′ 6= c} (7)

Let η̄ = min{η(Θε↑), η(Θε↓)}. By Claim 14, there exists δη̄ such that if d(S, Ŝ) < δη̄, then

η(DD(S, Ŝ)) < η̄. Moreover, if d(S, Ŝ) < min{ε/2, δη̄}, for θ ∈ Θε↑∪Θε↓, Dθ(S) = Dθ(Ŝ) = c.

I will now show that if d(S, Ŝ) < min{ε/2, δn̄}, then |Hc(Ŝ) − Hc(S)| < ε. There are

three cases, Hc(Ŝ) = Hc(S), Hc(Ŝ) > Hc(S) and Hc(Ŝ) < Hc(S). If Hc(Ŝ) = Hc(S), then

we are done.

Suppose that Hc(Ŝ) > Hc(S). Let ΘN = {θ : Dθ(Ŝ) = c,Dθ(S) 6= c} denote the set of

students who demand c under Ŝ but not under S. As d(S, Ŝ) < δη̄, DD(S, Ŝ) < η̄. Therefore,

η(ΘN) < η̄. But this means that, there can be at most measure η̄ new students who demand

c under Ŝ. As all θ ∈ Θε↑ still demand c under Ŝ and η(Θε↑) = η̄, Hc(Ŝ)−Hc(S) < ε.

Next, suppose that Hc(Ŝ) < Hc(S). Note that Θε↓ has positive measure. Let ΘO = {θ :

Dθ(S) = c,Dθ(Ŝ) 6= c} denote the set of students who demand c under S but not under Ŝ.

As d(S, Ŝ) < δη̄, DD(S, Ŝ) < η̄. Therefore, η(ΘO) < η̄. But this means that, there can be

at most measure η̄ students who demand c under S but not under Ŝ. As all θ ∈ Θε↓ still

demand c under Ŝ and η(Θε↑) = η̄, Hc(S)−Hc(Ŝ) < ε.

This shows that for each ε, we can find α = min{η̄, ε/2} such that |Hc(S)−Hc(Ŝ)| < ε.

Thus, for each ε, we can find a δ such that d(T (S), T (Ŝ)) < ε whenever d(S, Ŝ) < δ.

Lemma 7. SDA is the unique fixed point of H.

Proof. I start by showing that, if S is a fixed point of H, then ν =M(S) is a stable matching.

First, I show that ν is a matching. To see why, from definition of Hc, for each c there is a

measure of qc students with Dθ(S) = c and sc(θ) ≥ Sc. Therefore, there is a measure of qc

students with D̃θ(S) = c and η(ν(c)) ≤ qc for all c. Assume for a contradiction (θ, c) blocks

ν. From definition of ν, D̃θ(S) = ν(θ). Moreover as (θ, c) blocks ν, we have c �θ ν(θ) and

sc(θ) ≥ Sc. However, this implies that D̃θ(S) 6= ν(θ), which is a contradiction.

As full support assumption implies that the market has a unique stable matching, there

is exactly one fixed point of H, which corresponds to the stable matching.

B.2. Proof of Proposition 7

First, note that S̃1 ≥ S̃0 = (0, . . . , 0).

Lemma 8. S̃n is increasing. That is, S̃cn+1 ≥ S̃cn for all c, n.
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Proof. Proof is by induction. The base case holds as S̃1 ≥ S̃0. Suppose that S̃n ≥ S̃n−1. Fix

a c ∈ C. If S̃cn = 0, then S̃cn+1 ≥ S̃cn = 0 and we are done. Therefore, suppose that S̃cn > 0.

Define

Θc
n = {θ : Dθ(S̃n−1) = c, sc(θ) ≥ S̃cn} (8)

As S̃cn > 0, η(Θc
n) = qc. Moreover, as for all c S̃cn ≥ S̃cn−1 and sc(θ) ≥ S̃cn, for all θ ∈ Θc

n, we

have that Dθ(S̃n) = c for all θ ∈ Θc
n. As η(Θc

n) = qc, S̃
c
n+1 = Hc(S̃n) ≥ S̃n. Repeating this

for all c proves the lemma.

Given Lemma 8, as S̃n is bounded, limn→∞ S̃n = S∗ for some S∗. From continuity of H

(Lemma 6) and the fact that Hn(0, . . . , 0) = S̃n, S∗ is a fixed point of H. As H has a unique

fixed point, which is SDA (Lemma 7), the result follows.

B.3. Proof of Proposition 8

First, Claims 5, 6, 8, 9 and 10 as well as Lemma 5 hold in the continuum model, with

essentially the same proofs, replacing the function T with H. The result then follows from

Proposition 7.

B.4. Preliminaries for Finite Markets Sampled From a Continuum Market

A sequence of finite markets {F k}k∈N where F k = [ηk, Qk] converges to a continuum

market F = [η,Q] if the empirical distribution of types ηk converges to η in the weak sense

and if capacity per student Qk converges to Q.

B.5. Proof of Proposition 9

The proof is by induction. Suppose that limk→∞ R̃t(k)
p→ Rt. I will show that limk→∞ R̃t+1(k)

p→
Rt+1, which amounts to showing, for all ε,

lim
k→∞

Pr
(
|R̃t+1(k)−Rt+1| > ε

)
= 0 (9)

Let F k
t denote the distribution of R̃t(k), while Ft denotes the (degenerate) distribution

of Rt. Then the following must be shown:

lim
k→∞

Pr

(∣∣∣∣∫ T (r, k)dF k
t (r)−H(Rt)

∣∣∣∣ > ε

)
= 0 (10)
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Claim 15. The following is true

lim
k→∞

Pr
(
|H(R̃t(k))−H(Rt)| > ε/2

)
= 0 (11)

Proof. Follows from continous mapping theorem given the continuity of H and the assump-

tion that limk→∞ R̃t(k)
p→ Rt.

Claim 16. The following is true

lim
k→∞

Pr

(∣∣∣∣∫ T (r, k)dF k
t (r)−H(R̃t(k))

∣∣∣∣ > ε/2

)
= 0 (12)

Proof. We can rewrite H(R̃t(k)) as

H(R̃t(k)) =

∫
H(r)dF k

t (r) (13)

Thus, Equation 12 becomes

lim
k→∞

Pr

(∣∣∣∣∫ T (r, k)−H(r)dF k
t (r)

∣∣∣∣ > ε/2

)
= 0 (14)

As T (r, k) converges to H(r) pointwise, F k
t converges to Ft and both T (r, k) and F k

t are

bounded for all k, by dominated convergence theorem,

lim
k→∞

∫
|T (r, k)−H(r)| dF k

t (r) = 0 (15)

which implies equation 14 and proves the claim.

Taken together, claims 15 and 16 imply equation 10 and finishes the proof of the inductive

step. To prove the base case of induction, we prove the following claim, which finishes the

proof of the proposition.

Claim 17. limk→∞ R̃1(k)
p→ R1.

Proof. Since R̃0(k) = R0, we have that limk→∞ R̃0(k)
p→ R0. The result then follows from

the proof we had for the inductive step.
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